WO2017156787A1 - 通信方法、终端设备和网络设备 - Google Patents

通信方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2017156787A1
WO2017156787A1 PCT/CN2016/076804 CN2016076804W WO2017156787A1 WO 2017156787 A1 WO2017156787 A1 WO 2017156787A1 CN 2016076804 W CN2016076804 W CN 2016076804W WO 2017156787 A1 WO2017156787 A1 WO 2017156787A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
domain resource
physical channel
terminal device
target time
Prior art date
Application number
PCT/CN2016/076804
Other languages
English (en)
French (fr)
Inventor
曾元清
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to KR1020187015719A priority Critical patent/KR20180124832A/ko
Priority to CN201680067547.0A priority patent/CN108293250B/zh
Priority to JP2018530067A priority patent/JP6678743B2/ja
Priority to PCT/CN2016/076804 priority patent/WO2017156787A1/zh
Priority to US15/779,770 priority patent/US10798709B2/en
Priority to EP16893952.8A priority patent/EP3364701B1/en
Priority to TW106109057A priority patent/TWI703841B/zh
Publication of WO2017156787A1 publication Critical patent/WO2017156787A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • H04B7/2656Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for structure of frame, burst
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communications, and more particularly to a communication method, a terminal device, and a network device.
  • the communication delay is mainly related to the length of the Transmission Time Interval (TTI), so one of the key techniques for reducing the transmission delay is to shorten the TTI. It has now been determined to start researching the use of shorter TTIs for data transmission.
  • TTI Transmission Time Interval
  • the carrier that supports short TTI transmission needs to ensure compatibility with the existing LTE system, that is, it is compatible with the existing long TTI. How to use resources reasonably in the system is a problem to be considered.
  • the embodiments of the present invention provide a communication method, a terminal device, and a network device, which can improve resource utilization.
  • a communication method including: determining, by a terminal device, a first frequency domain resource, where the first frequency domain resource is pre-configured to support transmission in a first target time unit by using a first transmission time interval TTI An available resource of a physical channel, where a length of time of the first TTI is equal to a length of time of the first target time unit; the terminal device determines a second frequency domain resource, and the second frequency domain resource is determined to be used Transmitting, by the second TTI, the second physical channel in the second target time unit, where the second TTI is not smaller than the first TTI, and the second target time unit and the first target time unit are at least Partially overlapping; the terminal device determines a third frequency domain resource, the third frequency domain resource includes at least part of the frequency domain resource of the second frequency domain resource, and the third frequency domain resource supports A TTI transmits a maximum available frequency domain resource of the first physical channel within the first target time unit.
  • the third frequency domain resource further includes at least part of a frequency domain resource of the first frequency domain resource.
  • the terminal device may determine the sum of the first frequency domain resource and the second frequency domain resource as the third frequency domain resource.
  • the sum of the part of the frequency domain resource of the first frequency domain resource and the part of the frequency domain resource of the second frequency domain resource may be determined as the third frequency domain resource, or The part of the frequency domain resource of the second frequency domain resource is determined as the third frequency domain resource.
  • the maximum number of PRBs that can be used to transmit the first physical channel in the first target time unit is N, where the value of N may be limited by the physical resource block (Physical Resource) in the Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • Block, PRB The number of bits of the information field, for example, the fixed use of 9-bit information in the DCI indicates the PRB position, then the maximum number of PRBs is 25, or the base station configuration or the protocol direct agreement N has a value of 25.
  • the number of PRBs included in the second frequency domain resource is M, and M is not greater than N, determining M PRBs in the second frequency domain resource and NM PRBs in the first frequency domain resource to form a third frequency domain resource, where
  • the NM PRBs in the first frequency domain resource may be selected according to an agreed principle, and the first NM PRBs or the last NM PRBs according to the PRB number sequence;
  • the number of PRBs included in the second frequency domain resource is M, and M is greater than N, determining that the first N or the last N PRBs in the second frequency domain resource form a third frequency domain resource.
  • At least part of the frequency domain resources allocated to the second physical channel are determined to belong to the available resources for transmitting the first physical channel, and waste of resources can be avoided.
  • the method further includes: determining, by the terminal device, the target from the third frequency domain resource a frequency domain resource, wherein the terminal device uses the target frequency domain resource, uses the first TTI, sends the first physical channel to a network device, or receives the network device in the first target time unit The first physical channel transmitted.
  • the terminal device determines the target frequency domain resource from the third frequency domain resource, including: receiving The first downlink control information that is sent by the network device, where the first downlink control information is used to indicate a location of the target frequency domain resource in the third frequency domain resource; and the target frequency is determined based on the downlink control information. Domain resource.
  • the method further includes: re-sequencing the PRBs in the third frequency domain resource;
  • the first downlink control information is used to indicate a reordering number of the PRB corresponding to the target frequency domain resource, to indicate a location of the target frequency domain resource in the third frequency domain resource.
  • the physical resource blocks in the third resource are consecutively numbered, which can reduce the control signaling overhead.
  • the method further includes: the terminal device receiving downlink control information on a downlink control channel PDCCH channel, or receiving downlink control on the first frequency domain resource in the first target time information.
  • the method before the determining, by the terminal device, the third frequency domain resource, the method further includes: receiving the network At least one of the following information sent by the device: the first configuration information that is used to indicate the first resource, the second configuration information that is used to indicate the second resource, is used to indicate that the terminal device adopts the The third configuration information of the first physical channel is sent or received by a TTI, and the fourth configuration information for instructing the terminal device to send or receive the second physical channel by using the second TTI.
  • the first physical channel is a dynamically scheduled PDSCH, and the second physical channel is semi-persistently scheduled.
  • the first physical channel is a dynamically scheduled PUSCH
  • the second physical channel is a semi-persistently scheduled PUSCH
  • the first physical channel is a dynamically scheduled PUSCH
  • the second physical channel For a dynamically scheduled PUSCH, the length of time of the first target time unit is less than the length of time of the second target time unit.
  • the first target time unit and the second The subframe to which the target time unit belongs is an uplink subframe; and/or, when the first physical channel is a PDSCH, the subframe to which the first target time unit and the second target time unit belong are downlink subframes Or TDD feature subframes.
  • a communication method including: determining, by a network device, a first frequency domain resource, where the first frequency domain resource is preconfigured to support transmission in a first target time unit by using a first transmission time interval TTI An available resource of a physical channel, where a time length of the first TTI is equal to a length of time of the first target time unit; the network device determines a second frequency domain resource, and the second frequency domain resource is determined to be used Transmitting, by the second TTI, the second physical channel in the second target time unit, where the second TTI is not smaller than the first TTI, and the second target time unit and the first target time unit are at least Partially overlapping; the network device determines a third frequency domain resource, the third frequency domain resource includes at least part of the frequency domain resource of the second frequency domain resource, and the third frequency domain resource supports A TTI transmits a maximum available frequency domain resource of the first physical channel within the first target time unit.
  • the third frequency domain resource further includes at least part of the frequency domain resource of the first frequency domain resource.
  • the method further includes: determining, by the network device, the target from the third frequency domain resource a frequency domain resource; the network device, by using the target frequency domain resource, using the first TTI, sending the first physical channel to a terminal device in the first target time unit, or receiving the sending by the terminal device The first physical channel.
  • the method further includes: the network device sending, by the network device, first downlink control information, where The first downlink control information is used to indicate a location of the target frequency domain resource in the third frequency domain resource, so that the terminal device determines the target frequency domain resource based on the first downlink control information.
  • the method further includes: re-sequencing the PRBs in the third frequency domain resource;
  • the first downlink control information is used to indicate a reordering number of the PRB corresponding to the target frequency domain resource, to indicate a location of the target frequency domain resource in the third frequency domain resource.
  • the method further includes: the network device sending downlink control information on a downlink control channel PDCCH channel, Or transmitting downlink control information on the first frequency domain resource in the first target time.
  • the method further includes: sending, to the terminal device, at least one of the following information: The first configuration information of the first resource is used to indicate that the second configuration information of the second resource is used to indicate that the terminal device sends or receives the third physical channel by using the first TTI. And configuration information, and fourth configuration information used to instruct the terminal device to send or receive the second physical channel by using the second TTI.
  • the first physical channel is a dynamically scheduled PDSCH, and the second physical channel is semi-persistently scheduled.
  • the first physical channel is a dynamically scheduled PUSCH
  • the second physical channel is a semi-persistently scheduled PUSCH
  • the first physical channel is a dynamically scheduled PUSCH
  • the second physical channel For the dynamically scheduled PUSCH, the first target The length of time of the time unit is less than the length of time of the second target time unit.
  • the first target time unit and the second The subframe to which the target time unit belongs is an uplink subframe; and/or, when the first physical channel is a PDSCH, the subframe to which the first target time unit and the second target time unit belong are downlink subframes Or TDD feature subframes.
  • a terminal for performing the method of any of the foregoing first aspect or any optional implementation of the first aspect.
  • the communication device comprises a modular unit for performing the method of the first aspect or any of the possible implementations of the first aspect described above.
  • a network device for performing the method of any of the foregoing second aspect or any alternative implementation of the second aspect.
  • the communication device comprises a modular unit for performing the method of any of the possible implementations of the second aspect or the second aspect described above.
  • a terminal device comprising: a memory for storing an instruction, the processor for executing an instruction stored by the memory, and when the processor executes the instruction stored by the memory, Executing the method of causing the processor to perform the first aspect or any alternative implementation of the first aspect.
  • a network device comprising: a memory for storing instructions for executing instructions stored in the memory, and a processor, and when the processor executes the instructions stored by the memory, Executing the method of causing the processor to perform the second aspect or any alternative implementation of the second aspect.
  • a computer storage medium having stored therein program code for indicating a method of performing the above first aspect or any alternative implementation of the first aspect.
  • a computer storage medium having stored therein program code for indicating a method of performing the second aspect or any alternative implementation of the second aspect.
  • FIG. 1 is a diagram of an application scenario according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of resource allocation according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of resource allocation in accordance with an embodiment of the present application.
  • FIG. 5 is a schematic diagram of resource allocation according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of resource allocation according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of resource allocation and renumbering of physical resource blocks in accordance with an embodiment of the present application.
  • FIG. 8 is a schematic diagram of resource allocation according to an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of a network device according to an embodiment of the present application.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • Application and computing set running on a computing device by illustration The preparation can be a part.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers. Moreover, these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • a terminal device may also be called an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device.
  • the access terminal may be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, a PDA (Personal Digital Assistant), and a wireless communication.
  • the network device can be used to communicate with the mobile device, and the network device can be a GSM (Global System of Mobile communication) or a BTS (Base Transceiver Station) in CDMA (Code Division Multiple Access). It may be an NB (NodeB, base station) in WCDMA (Wideband Code Division Multiple Access), or an eNB or an eNodeB (Evolutional Node B) in LTE (Long Term Evolution). ), or a relay station or access point, or an in-vehicle device, a wearable device, and a network device in a future 5G network.
  • GSM Global System of Mobile communication
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • NB NodeB, base station
  • WCDMA Wideband Code Division Multiple Access
  • eNB or an eNodeB Evolutional Node B
  • LTE Long Term Evolution
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (for example, a hard disk, a floppy disk, or a magnetic tape), and an optical disk (for example, a CD (Compact Disk), a DVD (Digital Versatile Disk). Etc.), smart cards and flash memory devices (eg, EPROM (Erasable Programmable Read-Only Memory), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • the communication system 100 includes a network device 102, which may include multiple antenna groups.
  • Each antenna group may include one or more antennas, for example, one antenna group may include antennas 104 and 106, another antenna group may include antennas 108 and 110, and an additional group may include antennas 112 and 114.
  • Two antennas are shown in Figure 1 for each antenna group, although more or fewer antennas may be used for each group.
  • Network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer, solution) Tuner, demultiplexer or antenna, etc.).
  • a transmitter chain and a receiver chain may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer, solution) Tuner, demultiplexer or antenna, etc.).
  • Network device 102 can communicate with a plurality of terminal devices, such as terminal device 116 and terminal device 122. However, it will be appreciated that network device 102 can communicate with any number of terminal devices similar to terminal device 116 or 122.
  • Terminal devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communicating over wireless communication system 100. device.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over forward link 118 and receive information from terminal device 116 over reverse link 120.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • the forward link 118 can utilize a different frequency band than that used by the reverse link 120, and the forward link 124 can utilize the reverse link. 126 different frequency bands used.
  • FDD Frexncy Division Duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, a forward link 124, and a reverse link.
  • Link 126 can use a common frequency band.
  • Each set of antennas and/or regions designed for communication is referred to as a sector of network device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network device 102 coverage area.
  • the transmit antenna of network device 102 may utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
  • the network device 102 uses beamforming to transmit signals to the randomly dispersed terminal devices 116 and 122 in the relevant coverage area, the network device 102 uses a single antenna to transmit signals to all of its terminal devices. Mobile devices are subject to less interference.
  • network device 102, terminal device 116, or terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • FIG. 2 is a schematic block diagram of a communication method 200 in accordance with an embodiment of the present application.
  • the terminal device determines a first frequency domain resource, where the first frequency domain resource is an available resource that is preconfigured to support transmitting the first physical channel in the first target time unit by using the first transmission time interval TTI, where The length of time of the first TTI is equal to the length of time of the first target time unit.
  • the terminal device determines a second frequency domain resource, where the second frequency domain resource is determined to be used to transmit the second physical channel by using the second TTI in the second target time unit, where the second TTI is not less than the second physical channel.
  • a first TTI, and the second target time unit at least partially coincides with the first target time unit.
  • the terminal device determines a third frequency domain resource, where the third frequency domain resource includes at least part of the frequency domain resource of the second frequency domain resource, and the third frequency domain resource supports the use of the first TTI.
  • the maximum available frequency domain resource of the first physical channel is transmitted in the first target time unit.
  • the third frequency domain resource further includes at least part of the frequency domain resource of the first frequency domain resource.
  • the technical problems that can be solved by the embodiments of the present application will be described below with reference to FIG. 3 .
  • the first TTI is 0.5 ms and the second TTI is 1 ms.
  • Data transmitted using 1ms TTI requires a long scheduling delay.
  • the second physical channel using the 1 ms TTI in subframe n its corresponding scheduling begins at subframe n-4.
  • the second physical channel transmitted using the 0.5 ms TTI is used, and the corresponding scheduling starts at the subframe n-2. That is, at subframe n-4, the second frequency domain resource in the second target time unit in subframe n has been allocated to a certain terminal device to transmit the second physical channel, but in the subframe n- At 2, the first frequency domain resource in the first target time unit in the subframe n is allocated to the terminal device to transmit the first physical channel.
  • the second target time unit includes the first target time unit, and the transmission objects are all the same terminal device, if the same terminal device cannot receive or send multiple physical channels at the same time, The transmission of frequency domain resources of the first physical channel is wasteful. And the scheduling of the first physical channel is later than the second physical channel.
  • the resource for transmitting the second physical channel in the subframe n has been allocated to the certain terminal device, and cannot be redistributed. The use of the second TTI to transmit a physical channel to another terminal device results in waste of resources.
  • At least part of the frequency domain resources allocated to the second physical channel are determined to belong to the available resources for transmitting the first physical channel, and waste of resources can be avoided.
  • the network device may send the first configuration information to the terminal device, where the first configuration information is used to indicate the first frequency domain resource, so that the terminal device may determine the first frequency domain resource based on the first configuration information.
  • the network device may send the second configuration information to the terminal device, where the second configuration information is used to indicate the second frequency domain resource, so that the terminal device may determine the second frequency domain resource based on the second configuration information.
  • the network device may send the third configuration information to the terminal device, where the third configuration information is used to indicate that the terminal device transmits the first physical channel in the first target time unit by using the first TTI transmission, so that the terminal device may be based on the third
  • the configuration information is that the first physical channel is transmitted in the first target time unit by using the first TTI transmission.
  • the network device may send the fourth configuration information to the terminal device, where the fourth configuration information is used to indicate that the terminal device transmits the second physical channel in the second target time unit by using the second TTI transmission, so that the terminal device may be based on the fourth
  • the configuration information is that the second physical channel is transmitted in the second target time unit by using the second TTI transmission.
  • the foregoing first frequency domain resource refers to a pre-configured available resource for transmitting the first physical channel by using the first TTI, for example, as scheduled in the subframe n-2, as shown in FIG. a frequency domain resource for transmitting a first physical channel in a subframe n, where the first frequency domain resource may include multiple physical resource blocks, that is, the first frequency domain resource may be referred to as a resource pool, and the terminal device may be configured according to The indication of the base station selects a physical resource block from the resource pool for transmitting the first physical channel.
  • the foregoing second frequency domain resource refers to a frequency domain resource determined to be used for transmitting the second physical channel by using the second TTI, for example, as scheduled in the subframe n-4, as shown in FIG.
  • a frequency domain resource for transmitting a second physical channel in subframe n refers to a frequency domain resource determined to be used for transmitting the second physical channel by using the second TTI, for example, as scheduled in the subframe n-4, as shown in FIG.
  • the terminal device may determine the sum of the first frequency domain resource and the second frequency domain resource as the third frequency domain resource, that is, transmit the maximum available resource of the first physical channel in the first target time unit, That is, the third frequency domain resource may also be referred to as a resource pool, and the terminal device may be based on the base station. Instructing to select a physical resource block from the resource pool for transmitting the first physical channel.
  • the resource shown in FIG. 4 is a pre-configured available time-frequency resource for transmitting the first physical channel, where the TTI corresponding to the first physical channel may be 0.5 ms, that is, each subframe has two first targets.
  • the time unit, the resource shown in FIG. 5 is a time-frequency resource for transmitting the second physical channel, where the TTI corresponding to the second physical channel may be 1 ms, that is, each subframe has a second target time unit,
  • the maximum available frequency domain resource for transmitting the first physical channel by each first target time unit is as shown in FIG. 6.
  • the sum of the part of the frequency domain resource of the first frequency domain resource and the part of the frequency domain resource of the second frequency domain resource may be determined as the third frequency domain resource, or part of the second frequency domain resource.
  • the frequency domain resource is determined to be a third frequency domain resource.
  • the maximum number of PRBs that can be used to transmit the first physical channel in the first target time unit is N, where the value of N may be limited by the physical resource block (Physical Resource) in the Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • Block, PRB The number of bits of the information field, for example, the fixed use of 9-bit information in the DCI indicates the PRB position, then the maximum number of PRBs is 25, or the base station configuration or the protocol direct agreement N has a value of 25.
  • the number of PRBs included in the second frequency domain resource is M, and M is not greater than N, determining M PRBs in the second frequency domain resource and NM PRBs in the first frequency domain resource to form a third frequency domain resource, where
  • the NM PRBs in the first frequency domain resource may be selected according to an agreed principle, and the first NM PRBs or the last NM PRBs according to the PRB number sequence;
  • the number of PRBs included in the second frequency domain resource is M, and M is greater than N, determining that the first N or the last N PRBs in the second frequency domain resource form a third frequency domain resource.
  • the terminal device determines the target frequency domain resource from the third frequency domain resource, and the terminal device uses the target frequency domain resource to adopt the first TTI.
  • the first target time unit sends the first physical channel to the network device or receives the first physical channel sent by the network device.
  • the network device sends downlink control information to the terminal device, specifically indicating the location of the target frequency domain resource in the third frequency domain resource.
  • the terminal device and the network device may renumber the physical resource blocks of the third frequency domain resource according to the same rule, and the network device carries, in the downlink control information, the physical resource block corresponding to the target frequency domain resource used by the terminal device. Reordering the numbers so that the terminal device can determine the target frequency domain resources from the third frequency domain resources based on the downlink control information.
  • subframe n is a second target time unit
  • slot 0 and slot 1 are respectively two different first target time units.
  • the frequency domain 2 is a second frequency domain resource originally determined to transmit the second physical channel, and has a physical resource block of ⁇ PRB c PRB c+1 ⁇ ; the frequency domain 1a is pre-configured to transmit the first physics in the time slot 0.
  • the first frequency domain resource of the channel has a physical resource block of ⁇ PRB a PRB a+1 ...
  • the frequency domain 1b is a preconfigured first frequency domain for transmitting the first physical channel in the time slot 1
  • the resource has a physical resource block of ⁇ PRB b PRB b+1 ....PRB b+9 ⁇ . Determining that the maximum available frequency domain resource for transmitting the first physical channel in slot 0 is the sum of frequency domain 1a and frequency domain 2, ie, physical resource block ⁇ PRB a PRB a+1 ... PRB a+9 PRB c PRB c +1 ⁇ . Determining that the maximum available frequency domain resource for transmitting the first physical channel in slot 1 is the sum of frequency domain 1b and frequency domain 2, that is, physical resource block ⁇ PRB b PRB b+1 ...
  • PRB b+9 PRB c PRB c +1 ⁇ The physical resource blocks in the ⁇ are consecutively numbered. The number of the preceding PRBs in the ⁇ is smaller than the number of the lower PRBs.
  • the PRB i refers to a specific physical resource block, and i is not the number of the physical resource block.
  • the embodiment of the present application is not limited thereto.
  • the physical resource block in the second frequency domain resource is arranged before the physical resource block of the first frequency domain resource, or the physical resource block in the first frequency domain resource and the physical resource block in the second frequency domain resource are interspersed.
  • the maximum number of PRBs that can be indicated by the PRB resource indication information field in the downlink control information is not less than the sum of the number of PRBs in the third frequency domain resource.
  • the physical resource blocks in the third resource are consecutively numbered, which can reduce the control signaling overhead.
  • the sent downlink control information may carry other control information in addition to the order number of the target frequency domain resource.
  • the downlink control information may also be sent by using a PDCCH.
  • different target time units corresponding to the same TTI may have the same frequency domain resource.
  • each subframe has two target time units, corresponding to slot 0 and slot 1, respectively.
  • the frequency domain resources corresponding to each target time unit are the same.
  • the frequency domain resources of the target time unit corresponding to the same TTI may be completely different or partially different.
  • each subframe has two target time units. Corresponding to slot 0 and slot 1, respectively.
  • the frequency domain resources corresponding to any two target time units may be partially identical, completely different, or identical.
  • the embodiment of the present application can be used for uplink transmission, and can also be used for downlink transmission.
  • the network device Regardless of whether it is used for uplink transmission or downlink transmission, the network device also needs to determine the first frequency domain resource, the second frequency domain resource, and the third frequency domain resource. After determining the third frequency domain resource, the network device may determine the target frequency domain resource from the third frequency domain resource. And notifying the target frequency domain resource to the terminal device in the location of the third frequency domain resource, so that the terminal device determines the target frequency domain resource, and sending the first physical channel by using the target frequency domain resource in the first target time unit. Or receive the first physical channel.
  • the network device may send downlink control information for indicating the target frequency domain resource to the terminal device, where the terminal device determines the target frequency domain resource when receiving the downlink control information. Then, the code is modulated and the uplink data is transmitted on the target frequency domain resource in the first target time unit. The network device may perform uplink data reception on the target frequency domain resource in the first target time unit.
  • Example 1 The first physical channel is a dynamic scheduling PUSCH, and the second physical channel is a semi-persistent scheduling PUSCH.
  • the TTI of the first physical channel is 0.5 ms
  • the TTI of the second physical channel is 1 ms
  • the first physical channel transmitted in the time slot 0 in the subframe n Its corresponding DCI is transmitted in slot 0 in subframe n-2, and its scheduling information is semi-statically configured for the second physical channel, that is, it is once indicated by the base station and then reused.
  • Example 2 The first physical channel is a dynamic scheduling PUSCH, the second physical channel is a dynamic scheduling PUSCH, and the TTI of the second physical channel is greater than the TTI of the first physical channel.
  • the TTI of the first physical channel is 0.5 ms
  • the TTI of the second physical channel is 1 ms
  • the corresponding physical channel of the first physical channel transmitted in the slot 0 in the subframe n is in the subframe n-2.
  • the time slot 0 in the transmission is transmitted, and the corresponding physical channel of the second physical channel transmitted in the subframe n is transmitted in the subframe n-4.
  • the subframe corresponding to the target time unit is an uplink subframe.
  • the first physical channel is a dynamically scheduled PUSCH, and the second physical channel is a semi-persistently scheduled PUSCH; or the first physical channel is a dynamically scheduled PUSCH, and the second physical channel is a dynamically scheduled PUSCH.
  • the length of time of the first target time unit is less than the length of time of the second target time unit.
  • the network device determines that the terminal device needs to send the first physical channel by using the first TTI, where the first physical channel is a dynamically scheduled PUSCH, and the TTI is 0.5 ms.
  • Network equipment determines each The terminal device sends the first frequency domain resource of the first physical channel in the uplink subframe, and sends configuration information to the terminal to notify the first frequency domain resource and/or the uplink subframe that the supporting terminal sends the first physical channel.
  • the terminal device determines the first frequency domain resource and/or supports the uplink subframe that sends the first physical channel.
  • the network device determines that the terminal device needs to send the second physical channel in the subframe n by using the second TTI, where the second physical channel is a dynamically scheduled PUSCH, and the TTI is 1 ms.
  • the network device determines that the terminal device sends the second frequency domain resource of the second physical channel, and sends the configuration information to the network device in the subframe n-4, where the configuration information is used to indicate that the terminal device transmits the second frame in the subframe n by using the second TTI.
  • the physical channel, and the frequency domain resource for transmitting the second physical channel are the second frequency domain resources.
  • the network device determines a third frequency domain resource, the third frequency domain resource including at least a portion of the first frequency domain resource and at least a portion of the second frequency domain resource.
  • the network device reorders all PRBs corresponding to the third frequency domain resource and the second frequency domain resource.
  • the terminal device may start preparing data of the second physical channel that is sent in the subframe n. And the terminal device determines a third frequency domain resource, where the third frequency domain resource includes at least part of the first frequency domain resource and at least part of the second frequency domain resource. The terminal device reorders all PRBs corresponding to the third frequency domain resource and the second frequency domain resource.
  • the network device determines that the terminal device needs to send the first physical channel in the first TTI in the slot 0 of the subframe n, where the first physical channel is a dynamically scheduled PUSCH, and the TTI is 0.5 ms.
  • the network device sends the downlink control signaling to the terminal device in the time slot 0 of the subframe n-2, where the downlink control signaling DCI is used to instruct the terminal device to transmit the target frequency domain resource of the first physical channel, where the target frequency domain resource belongs to Third frequency domain resource.
  • the terminal device may start preparing data of the first physical channel sent in the subframe n, and stop preparing to be sent in the subframe n.
  • the data of the second physical channel may be used to prepare data of the first physical channel sent in the subframe n.
  • the terminal device transmits the first physical channel to the network device using the target frequency domain resource at time slot 0.
  • the network device receives the first physical channel transmitted by the terminal device using the target frequency domain resource at time slot 0.
  • the network device determines that the terminal device needs to send the first physical channel by using the first TTI, where the first physical channel is a dynamically scheduled PUSCH, and the TTI is 0.5 ms.
  • the network device determines that the terminal device sends the first frequency domain resource of the first physical channel in each uplink subframe, and sends configuration information to the terminal to notify the first frequency domain resource and/or the uplink subframe that the supporting terminal sends the first physical channel.
  • the terminal device determines the first frequency domain resource and/or supports the uplink subframe that sends the first physical channel.
  • the network device determines that the terminal device uses the second TTI to transmit the transmission subframe of the second physical channel, and the second frequency domain resource in each transmission subframe, where the second physical channel is a semi-persistently scheduled PUSCH, and the TTI is 1ms.
  • the network device determines a third frequency domain resource in each of the transmission subframes, where the third frequency domain resource includes at least a portion of the first frequency domain resource and at least a portion of the second frequency domain resource.
  • the network device reorders all PRBs corresponding to the third frequency domain resource and the second frequency domain resource.
  • the terminal device determines a transmission subframe and a second frequency domain resource of the second physical channel.
  • the terminal device determines a third frequency domain resource in each transmission subframe, where the third frequency domain resource includes at least part of the first frequency domain resource and at least part of the second frequency domain resource.
  • the terminal device reorders all PRBs corresponding to the third frequency domain resource and the second frequency domain resource.
  • the terminal device determines in the subframe n-4 that the second TTI needs to be adopted in the subframe n, the second physical channel is sent to the terminal device on the second frequency domain resource, and the data corresponding to the second physical channel is started to be prepared.
  • the network device sends the DCI in the subframe n-2 to notify the terminal to send the first physical channel on the target frequency domain resource by using the first TTI in the subframe n, where the target frequency domain resource belongs to the third frequency domain resource.
  • the terminal device receives the DCI in the subframe n-2, determines to use the first TTI in the subframe n to send the first physical channel on the target frequency domain resource, starts preparing data corresponding to the first physical channel, and stops. Prepare data for the second physical channel.
  • the terminal device transmits the first physical channel to the network device using the target frequency domain resource at time slot 0.
  • the network device receives the first physical channel transmitted by the terminal device using the target frequency domain resource at time slot 0.
  • the network device may send downlink control information for indicating the target frequency domain resource to the terminal device in the first target time unit, where the downlink data passes the target frequency. Domain resource is sent.
  • the terminal device determines the destination according to the downlink control information.
  • the standard frequency domain resource is received, and the downlink data sent by the network device is received on the target frequency domain resource.
  • the network device may send the downlink control information to the terminal device by using the first frequency domain resource in the first target time unit, so as to reduce the number of blind detections for the downlink control signaling.
  • the subframe corresponding to the target time unit is a downlink subframe or a TDD feature subframe.
  • the first physical channel is a dynamically scheduled PDSCH
  • the second physical channel is a semi-persistently scheduled PDSCH.
  • the network device determines that the terminal device needs to send the first physical channel by using the first TTI, where the first physical channel is a dynamically scheduled PDSCH, and the TTI is 0.5 ms.
  • the network device determines that the terminal device receives the first frequency domain resource of the first physical channel in each subframe, and sends configuration information to the terminal to notify the first frequency domain resource and/or the subframe in which the supporting terminal receives the first physical channel.
  • the terminal device determines the first frequency domain resource and/or supports receiving the subframe of the first physical channel.
  • the network device determines to transmit, by using the second TTI, a transmission subframe of the second physical channel to the terminal device, and a second frequency domain resource in each transmission subframe, where the second physical channel is a semi-statically scheduled PDSCH, and the TTI thereof It is 1ms.
  • the network device determines a third frequency domain resource in each of the transmission subframes, where the third frequency domain resource includes at least a portion of the first frequency domain resource and at least a portion of the second frequency domain resource.
  • the network device reorders all PRBs corresponding to the third frequency domain resource and the second frequency domain resource.
  • the terminal device determines a transmission subframe and a second frequency domain resource of the second physical channel.
  • the terminal device determines a third frequency domain resource in each transmission subframe, where the third frequency domain resource includes at least part of the first frequency domain resource and at least part of the second frequency domain resource.
  • the terminal device reorders all PRBs corresponding to the third frequency domain resource and the second frequency domain resource.
  • the network device determines, in the subframe n-4, that the second TTI needs to be used in the subframe n, the second physical channel is sent to the terminal device on the second frequency domain resource, and the data corresponding to the second physical channel is started to be prepared. .
  • the network device determines, at the subframe n-2, that the first physical channel needs to be transmitted by using the first TTI in the subframe n, starts preparing data corresponding to the first physical channel, and corresponding DCI, and stops preparing the second physical channel. Corresponding data.
  • the network device sends a DCI to the terminal device in slot 0 of subframe n, the DCI And indicating that the terminal device uses the first TTI in the time slot 0 of the subframe n, and receives the first physical channel by using the target frequency domain resource, where the target frequency domain resource belongs to the third frequency domain resource.
  • the network device uses the target frequency domain resource in slot 0 of subframe n to transmit the first physical channel to the terminal device.
  • the terminal device receives the first physical channel sent by the network device by using the target frequency domain resource in time slot 0 of the subframe n.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limit
  • FIG. 12 is a schematic block diagram of a terminal device 600 according to an embodiment of the present application. As shown in FIG. 12, the terminal device 600 includes a first determining unit 610, a second determining unit 620, and a third determining unit 630.
  • the first determining unit is configured to determine a first frequency domain resource, where the first frequency domain resource is preconfigured to support the use of the first transmission time interval TTI to transmit the available resources of the first physical channel in the first target time unit,
  • the time length of the first TTI is equal to the length of time of the first target time unit
  • the second determining unit is configured to determine a second frequency domain resource, where the second frequency domain resource is determined to be used in the second target time unit
  • the second TTI is used to transmit the second physical channel, where the second TTI is not smaller than the first TTI, and the second target time unit is at least partially coincident with the first target time unit
  • the third determining unit is configured to determine a third frequency domain resource, where the third frequency domain resource includes at least part of the frequency domain resource of the second frequency domain resource, and the third frequency domain resource supports using the first TTI to transmit the first target time unit.
  • the largest available frequency domain resource of the first physical channel is configured to determine a third frequency domain resource, where the third frequency domain resource includes at least
  • the third frequency domain resource further includes at least part of the frequency domain resource of the first frequency domain resource.
  • the terminal device 600 further includes a fourth determining unit 640 and a first transceiver unit 650.
  • the fourth determining unit 640 is configured to determine a target frequency domain resource from the third frequency domain resource, where the first transceiver unit 650 is configured to use the target frequency domain resource to adopt the first TTI. Sending the first physical channel to the network device or receiving the first physical channel sent by the network device in a target time unit.
  • the terminal device 600 further includes a second transceiver unit 660, configured to receive first downlink control information that is sent by the network device, where the first downlink control information is used to indicate target frequency domain resources.
  • the location in the third frequency domain resource; the fourth determining unit 640 is configured to determine the target frequency domain resource based on the downlink control information.
  • the terminal device further includes: a sorting unit 670, configured to re-sequence the PRBs in the third frequency domain resource; wherein the first downlink control information is used to indicate the target The reordering number of the PRB corresponding to the frequency domain resource to indicate the location of the target frequency domain resource in the third frequency domain resource.
  • a sorting unit 670 configured to re-sequence the PRBs in the third frequency domain resource; wherein the first downlink control information is used to indicate the target The reordering number of the PRB corresponding to the frequency domain resource to indicate the location of the target frequency domain resource in the third frequency domain resource.
  • the terminal device further includes: a second transceiver unit 660, configured to receive downlink control information on a downlink control channel PDCCH channel, or in the first target time in the first target time The downlink control information is received on the domain resource.
  • a second transceiver unit 660 configured to receive downlink control information on a downlink control channel PDCCH channel, or in the first target time in the first target time The downlink control information is received on the domain resource.
  • the terminal device 600 further includes: a third transceiver unit 680, configured to receive at least one of the following information sent by the network device: first configuration information used to indicate the first resource, The second configuration information is used to indicate that the terminal device uses the first TTI to send or receive the third configuration information of the first physical channel, and is used to indicate that the terminal device uses the second TTI. Transmitting or receiving fourth configuration information of the second physical channel.
  • the first physical channel is a dynamically scheduled PDSCH, and the second physical channel is a semi-persistently scheduled PDSCH; or the first physical channel is a dynamically scheduled PUSCH, and the second physical channel is a semi-persistently scheduled PUSCH.
  • the first physical channel is a dynamically scheduled PUSCH, and the second physical channel is a dynamically scheduled PUSCH, and the time length of the first target time unit is less than the time length of the second target time unit.
  • the subframe to which the first target time unit and the second target time unit belong are uplink subframes; and/or, when the first physical channel is a PDSCH, The subframe to which the first target time unit and the second target time unit belong is a downlink subframe or a TDD feature subframe.
  • terminal device 600 can implement corresponding functions of the terminal device in the method embodiment, and details are not described herein for brevity.
  • FIG. 13 is a schematic block diagram of a network device 700 in accordance with an embodiment of the present application.
  • the network device 700 includes a first determining unit 710, a second determining unit 720, and a third determining unit 730.
  • the first determining unit 710 is configured to determine a first frequency domain resource, where the first frequency domain resource is a resource that is preconfigured to support transmitting the first physical channel in the first target time unit by using the first transmission time interval TTI.
  • the time length of the first TTI is equal to the length of time of the first target time unit; the second determining unit 720 is configured to determine a second frequency domain resource, where the second frequency domain resource is determined to be used in the second target Transmitting, by the second TTI, a second physical channel, where the second TTI is not smaller than the first TTI, and the second target time unit is the first target time.
  • the third frequency determining unit 730 is configured to determine a third frequency domain resource, where the third frequency domain resource includes at least part of the frequency domain resource of the second frequency domain resource, and the third frequency domain resource is supported. Using the first TTI, the maximum available frequency domain resource of the first physical channel is transmitted in the first target time unit.
  • the third frequency domain resource further includes at least part of the frequency domain resource of the first frequency domain resource.
  • the network device 700 further includes: a fourth determining unit 740, configured to determine a target frequency domain resource from the third frequency domain resource, where the first transceiver unit 750 is configured to utilize the The target frequency domain resource uses the first TTI to send the first physical channel to the terminal device or the first physical channel sent by the terminal device in the first target time unit.
  • a fourth determining unit 740 configured to determine a target frequency domain resource from the third frequency domain resource
  • the first transceiver unit 750 is configured to utilize the The target frequency domain resource uses the first TTI to send the first physical channel to the terminal device or the first physical channel sent by the terminal device in the first target time unit.
  • the network device 700 further includes: a second transceiver unit 760, configured to send, to the terminal device, first downlink control information, where the first downlink control information is used to indicate the target frequency domain resource.
  • the location in the third frequency domain resource so that the terminal device determines the target frequency domain resource based on the first downlink control information.
  • the network device 700 further includes: a sorting unit 770, configured to re-sequence the PRBs in the third frequency domain resource; wherein the first downlink control information is used to indicate the The reordering number of the PRB corresponding to the target frequency domain resource to indicate the location of the target frequency domain resource in the third frequency domain resource.
  • a sorting unit 770 configured to re-sequence the PRBs in the third frequency domain resource; wherein the first downlink control information is used to indicate the The reordering number of the PRB corresponding to the target frequency domain resource to indicate the location of the target frequency domain resource in the third frequency domain resource.
  • the network device 700 further includes: a second transceiver unit 760, configured to send downlink control information on a downlink control channel PDCCH channel, or in the first target time, in the first frequency
  • the downlink control information is sent on the domain resource.
  • the network device 700 further includes: a third transceiver unit 780, configured to send at least one of the following information to the terminal device:
  • the first configuration information of the first resource is used to indicate that the second configuration information of the second resource is used by the terminal device to send or receive the third configuration information of the first physical channel by using the first TTI.
  • fourth configuration information for instructing the terminal device to send or receive the second physical channel by using the second TTI.
  • the first physical channel is a dynamically scheduled PDSCH, and the second physical channel is a semi-persistently scheduled PDSCH; or the first physical channel is a dynamically scheduled PUSCH, and the second physical channel is a semi-persistently scheduled PUSCH.
  • the first physical channel is a dynamically scheduled PUSCH, and the second physical channel is a dynamically scheduled PUSCH, and the time length of the first target time unit is less than the time length of the second target time unit.
  • the subframe to which the first target time unit and the second target time unit belong are uplink subframes; and/or, when the first physical channel is a PDSCH, The subframe to which the first target time unit and the second target time unit belong is a downlink subframe or a TDD feature subframe.
  • network device 700 can implement corresponding functions of the network device in the method embodiment, and details are not described herein for brevity.
  • FIG. 14 is a schematic block diagram of a terminal device 800 according to an embodiment of the present application.
  • the terminal device 800 includes a processor 810 and a memory 820.
  • the memory 820 is configured to store program instructions.
  • the processor 810 can call the program instructions stored in the memory 820, which can be the corresponding operations of the terminal device in the method embodiment.
  • the terminal device 800 further includes a transceiver 830 for external communication, and a bus system 840 for interconnecting the processor 810, the memory 820, and the transceiver 830.
  • the processor 810 may call the program instructions stored in the memory 820, and perform the following process: determining a first frequency domain resource, where the first frequency domain resource is pre-configured to support adopting the first transmission time interval TTI at the first target time. Transmitting, by the unit, the available resources of the first physical channel, where the length of the first TTI is equal to the length of time of the first target time unit; determining the second frequency domain resource, where the second frequency domain resource is determined to be used in the Transmitting, by the second TTI, the second physical channel, where the second TTI is not smaller than the first TTI, and the second target time unit at least partially coincides with the first target time unit; determining the third frequency a domain resource, the third frequency domain resource includes at least part of the frequency domain resource of the second frequency domain resource, and the third frequency domain resource supports the first TTI to transmit the first physics in the first target time unit The largest available frequency domain resource for the channel.
  • the third frequency domain resource further includes at least part of the frequency domain resource of the first frequency domain resource.
  • the processor 810 may call the program instruction stored in the memory 820, and perform the following process: the terminal device determines the target frequency domain resource from the third frequency domain resource; and uses the target frequency domain resource to adopt the first TTI And transmitting, in the first target time unit, the first physical channel to the network device, or receiving the first physical channel sent by the network device.
  • the processor 810 may call the program instructions stored in the memory 820, and perform the following process: receiving, by using the transceiver 830, first downlink control information that is sent by the network device, where the first downlink control information is used to indicate the target frequency domain resource. a location in the third frequency domain resource; determining the target frequency domain resource based on the downlink control information.
  • the processor 810 may call the program instructions stored in the memory 820, and perform the following process: re-sequencing the PRBs in the third frequency domain resource; wherein the first downlink control information is used to indicate the target frequency domain.
  • the reordering number of the PRB corresponding to the resource to indicate the location of the target frequency domain resource in the third frequency domain resource.
  • the processor 810 can call the program instructions stored in the memory 820, and perform the following processing: using the transceiver 830 to receive downlink control information on the downlink control channel PDCCH channel, or in the first target time, in the first frequency
  • the downlink control information is received on the domain resource.
  • the processor 810 may call the program instructions stored in the memory 820, and perform the following process: receiving, by the transceiver 830, at least one of the following information sent by the network device: first configuration information used to indicate the first resource, The second configuration information is used to indicate that the terminal device uses the first TTI to send or receive the third configuration information of the first physical channel, and is used to indicate that the terminal device uses the second TTI. Transmitting or receiving fourth configuration information of the second physical channel.
  • terminal device 800 can implement corresponding functions of the terminal device in the method embodiment, and details are not described herein for brevity.
  • FIG. 15 is a schematic block diagram of a network device 900 in accordance with an embodiment of the present application.
  • the terminal device 900 includes a processor 910 and a memory 920.
  • the memory 920 is configured to store program instructions.
  • the processor 910 can invoke program instructions stored in the memory 920 to perform corresponding operations of the network device in the method embodiment.
  • the terminal device 900 further includes a transceiver 930 for external communication, and a bus system 940 for interconnecting the processor 910, the memory 920, and the transceiver 930.
  • the processor 910 may call the program instructions stored in the memory 920, and perform the following process: determining a first frequency domain resource, where the first frequency domain resource is preconfigured to support adopting the first transmission time interval TTI at the first target time. Transmitting, by the unit, the available resources of the first physical channel, where the length of the first TTI is equal to the length of time of the first target time unit; determining the second frequency domain resource, where the second frequency domain resource is determined to be used in the Transmitting, by the second TTI, the second physical channel, where the second TTI is not smaller than the first TTI, and the second target time unit at least partially coincides with the first target time unit; determining the third frequency a domain resource, the third frequency domain resource includes at least part of the frequency domain resource of the second frequency domain resource, and the third frequency domain resource supports the first TTI to transmit the first physics in the first target time unit The largest available frequency domain resource for the channel.
  • the third frequency domain resource further includes at least part of the frequency domain resource of the first frequency domain resource.
  • the processor 910 may call the program instructions stored in the memory 920, and perform the following processing: determining, from the third frequency domain resource, a target frequency domain resource; using the target frequency domain resource, using the first TTI, where In the first target time unit, the first physical channel is sent to the terminal device through the transceiver 930, or the first physical channel sent by the terminal device is received.
  • the processor 910 may call the program instruction stored in the memory 920, and perform the following process: the first downlink control information is sent to the terminal device by using the transceiver 930, where the first downlink control information is used to indicate that the target frequency domain resource is in the a location in the third frequency domain resource, so that the terminal device determines the target frequency domain resource based on the first downlink control information.
  • the processor 910 may call the program instructions stored in the memory 920, and perform the following process: re-sequencing the PRBs in the third frequency domain resource; wherein the first downlink control information is used to indicate the target frequency domain.
  • the reordering number of the PRB corresponding to the resource to indicate the location of the target frequency domain resource in the third frequency domain resource.
  • the processor 910 may invoke a program instruction stored in the memory 920, and perform the following process: sending downlink control information on the downlink control channel PDCCH channel by the transceiver 930, or in the first frequency domain during the first target time.
  • the downlink control information is sent on the resource.
  • the processor 910 may call the program instructions stored in the memory 920, and perform the following process: sending, by the transceiver 930, at least one of the following information to the terminal device: first configuration information for indicating the first resource,
  • the second configuration information indicating the second resource is used to indicate that the terminal device sends or receives the third configuration information of the first physical channel by using the first TTI, and is used to indicate that the terminal device uses the second TTI to send Or receiving fourth configuration information of the second physical channel.
  • network device 900 can implement corresponding functions of the network device in the method embodiment, and details are not described herein for brevity.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种通信方法、终端设备和网络设备。该方法包括:终端设备确定第一频域资源,第一频域资源为预配置为支持采用第一TTI在第一目标时间单元内传输第一物理信道的可用资源,其中,第一TTI的时间长度等于第一目标时间单元的时间长度;终端设备确定第二频域资源,第二频域资源确定为用于在第二目标时间单元内采用第二TTI传输第二物理信道,其中,第二TTI不小于第一TTI,且第二目标时间单元与第一目标时间单元至少部分重合;终端设备确定第三频域资源,第三频域资源包含第二频域资源的至少部分频域资源,且第三频域资源为支持采用第一TTI在第一目标时间单元内传输第一物理信道的最大可用频域资源。本申请实施例能够提高资源利用率。

Description

通信方法、终端设备和网络设备 技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法、终端设备和网络设备。
背景技术
通信时延主要与传输时间间隔(Transmission Time Interval,TTI)长度有关,因此降低传输时延的关键技术之一就是缩短TTI。目前已经确定开始研究使用更短的TTI进行数据传输。但要求支持短TTI传输的载波上需要保证对现有LTE系统的兼容性,即要同时兼容现有较长的TTI。如何在系统中为合理利用资源是一个需要考虑的问题。
发明内容
本发明实施例提供一种通信方法、终端设备和网络设备,能够提高资源利用率。
第一方面,提供了一种通信方法,包括:终端设备确定第一频域资源,所述第一频域资源为预配置为支持采用第一传输时间间隔TTI在第一目标时间单元内传输第一物理信道的可用资源,其中,所述第一TTI的时间长度等于所述第一目标时间单元的时间长度;所述终端设备确定第二频域资源,所述第二频域资源确定为用于在第二目标时间单元内采用第二TTI传输第二物理信道,其中,所述第二TTI不小于所述第一TTI,且所述第二目标时间单元与所述第一目标时间单元至少部分重合;所述终端设备确定第三频域资源,所述第三频域资源包含所述第二频域资源的至少部分频域资源,且所述第三频域资源为支持采用所述第一TTI在所述第一目标时间单元内传输所述第一物理信道的最大可用频域资源。
结合第一方面,在第一方面的第一种可能的实现方式中,所述第三频域资源还包括所述第一频域资源的至少部分频域资源。
在本申请实施例中,终端设备可以将第一频域资源和第二频域资源的总和确定为第三频域资源。当然,本申请实施例,也可以将第一频域资源的部分频域资源和第二频域资源的部分频域资源的总和确定为第三频域资源,或 者将第二频域资源的部分频域资源确定为第三频域资源。
例如,约定第一目标时间单元内可用于传输第一物理信道的最大PRB数量为N,其中N的取值可能受限于控制信令(Downlink Control Information,DCI)中指示物理资源块(Physical Resource Block,PRB)位置的信息域的比特数量,例如DCI中固定使用9比特信息指示PRB位置,则PRB的最大数量为25,或者基站配置或者协议直接约定N的取值为25。
若第二频域资源包含的PRB数量为M,且M不大于N,则确定第二频域资源中的M个PRB和第一频域资源中的N-M个PRB组成第三频域资源,其中第一频域资源中的N-M个PRB可以根据约定原则选取,根据PRB编号顺序的前N-M个PRB或最后N-M个PRB;
若第二频域资源包含的PRB数量为M,且M大于N,则确定第二频域资源中的前N个或最后N个PRB组成第三频域资源。
因此,本申请实施例中,将分配给第二物理信道的至少部分频域资源确定为属于传输第一物理信道的可用资源,可以避免资源的浪费。
结合第一方面或其第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述方法还包括:所述终端设备从所述第三频域资源中,确定目标频域资源;所述终端设备利用所述目标频域资源,采用所述第一TTI,在所述第一目标时间单元内,向网络设备发送所述第一物理信道,或接收所述网络设备发送的所述第一物理信道。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述终端设备从所述第三频域资源中,确定目标频域资源,包括:接收网络设备发送的第一下行控制信息,所述第一下行控制信息用于指示目标频域资源在所述第三频域资源中的位置;基于所述下行控制信息,确定所述目标频域资源。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,所述方法还包括:对所述第三频域资源中的PRB重新连续排序;其中,所述第一下行控制信息用于指示所述目标频域资源对应的PRB的重新排序编号,以指示所述目标频域资源在所述第三频域资源中的位置。
在本申请实施例中,将第三资源中的物理资源块重新连续编号,可以降低控制信令开销。
结合第一方面或其上述任一种可能的实现方式,在第一方面的第五种可 能的实现方式中,所述方法还包括:所述终端设备在下行控制信道PDCCH信道接收下行控制信息,或在在所述第一目标时间内,在所述第一频域资源上接收下行控制信息。
结合第一方面或其上述任一种可能的实现方式,在第一方面的第六种可能的实现方式中,在所述终端设备确定第三频域资源之前,所述方法还包括:接收网络设备发送的以下信息中的至少一种:用于指示所述第一资源的第一配置信息,用于指示所述第二资源的第二配置信息,用于指示所述终端设备采用所述第一TTI发送或接收所述第一物理信道的第三配置信息,和用于指示所述终端设备采用所述第二TTI发送或接收所述第二物理信道的第四配置信息。
结合第一方面或其上述任一种可能的实现方式,在第一方面的第七种可能的实现方式中,所述第一物理信道为动态调度的PDSCH,所述第二物理信道半持续调度的PDSCH;或者,所述第一物理信道为动态调度的PUSCH,所述第二物理信道为半持续调度的PUSCH;或者,所述第一物理信道为动态调度的PUSCH,所述第二物理信道为动态调度的PUSCH,所述第一目标时间单元的时间长度小于所述第二目标时间单元的时间长度。
结合第一方面的第七种可能的实现方式,在第一方面的第八种可能的实现方式中,在所述第一物理信道为PUSCH时,所述第一目标时间单元和所述第二目标时间单元所属的子帧为上行子帧;和/或,在所述第一物理信道为PDSCH时,所述第一目标时间单元和所述第二目标时间单元所属的子帧为下行子帧或TDD特征子帧。
第二方面,提供了一种通信方法,包括:网络设备确定第一频域资源,所述第一频域资源为预配置为支持采用第一传输时间间隔TTI在第一目标时间单元内传输第一物理信道的可用资源,其中,所述第一TTI的时间长度等于所述第一目标时间单元的时间长度;所述网络设备确定第二频域资源,所述第二频域资源确定为用于在第二目标时间单元内采用第二TTI传输第二物理信道,其中,所述第二TTI不小于所述第一TTI,且所述第二目标时间单元与所述第一目标时间单元至少部分重合;所述网络设备确定第三频域资源,所述第三频域资源包含所述第二频域资源的至少部分频域资源,且所述第三频域资源为支持采用所述第一TTI在所述第一目标时间单元内传输所述第一物理信道的最大可用频域资源。
结合第二方面,在第二方面的第一种可能的实现方式中,所述第三频域资源还包含所述第一频域资源的至少部分频域资源。
结合第二方面或其第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述方法还包括:所述网络设备从所述第三频域资源中,确定目标频域资源;所述网络设备利用所述目标频域资源,采用所述第一TTI,在所述第一目标时间单元内,向终端设备发送所述第一物理信道,或接收终端设备发送的所述第一物理信道。
结合第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,所述方法还包括:所述网络设备向终端设备发送第一下行控制信息,所述第一下行控制信息用于指示目标频域资源在所述第三频域资源中的位置,以便于所述终端设备基于所述第一下行控制信息,确定所述目标频域资源。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,所述方法还包括:对所述第三频域资源中的PRB重新连续排序;其中,所述第一下行控制信息用于指示所述目标频域资源对应的PRB的重新排序编号,以指示所述目标频域资源在所述第三频域资源中的位置。
结合第二方面或其上述任一种可能的实现方式,在第二方面的第五种可能的实现方式中,所述方法还包括:所述网络设备在下行控制信道PDCCH信道发送下行控制信息,或在所述第一目标时间内,在所述第一频域资源上发送下行控制信息。
结合第二方面或其上述任一种可能的实现方式,在第二方面的第六种可能的实现方式中,所述方法还包括:向终端设备发送以下信息中的至少一种:用于指示所述第一资源的第一配置信息,用于指示所述第二资源的第二配置信息,用于指示所述终端设备采用所述第一TTI发送或接收所述第一物理信道的第三配置信息,和用于指示所述终端设备采用所述第二TTI发送或接收所述第二物理信道的第四配置信息。
结合第二方面或其上述任一种可能的实现方式,在第二方面的第七种可能的实现方式中,所述第一物理信道为动态调度的PDSCH,所述第二物理信道半持续调度的PDSCH;或者,所述第一物理信道为动态调度的PUSCH,所述第二物理信道为半持续调度的PUSCH;或者,所述第一物理信道为动态调度的PUSCH,所述第二物理信道为动态调度的PUSCH,所述第一目标 时间单元的时间长度小于所述第二目标时间单元的时间长度。
结合第二方面的第七种可能的实现方式,在第二方面的第八种可能的实现方式中,在所述第一物理信道为PUSCH时,所述第一目标时间单元和所述第二目标时间单元所属的子帧为上行子帧;和/或,在所述第一物理信道为PDSCH时,所述第一目标时间单元和所述第二目标时间单元所属的子帧为下行子帧或TDD特征子帧。
第三方面,提供了一种终端,用于执行上述第一方面或第一方面的任意可选的实现方式中的方法。具体地,该通信设备包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的模块单元。
第四方面,提供了一种网络设备,用于执行上述第二方面或第二方面的任意可选的实现方式中的方法。具体地,该通信设备包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的模块单元。
第五方面,提供了一种终端设备,包括:存储器和处理器,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意可选的实现方式中的方法。
第六方面,提高了一种网络设备,包括:存储器和处理器,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第二方面或第二方面的任意可选的实现方式中的方法。
第七方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第一方面或第一方面的任意可选的实现方式中的方法。
第八方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第二方面或第二方面的任意可选的实现方式中的方法。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造 性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本申请实施例的应用场景图。
图2是根据本申请实施例的通信方法的示意性流程图。
图3是根据本申请实施例的资源分配的示意性图。
图4是根据本申请实施例的资源分配的示意性图。
图5是根据本申请实施例的资源分配的示意性图。
图6是根据本申请实施例的资源分配的示意性图。
图7是根据本申请实施例的资源分配以及对物理资源块的重新编号的示意性图。
图8是根据本申请实施例的资源分配的示意性图。
图9是根据本申请实施例的通信方法的示意性流程图。
图10是根据本申请实施例的通信方法的示意性流程图。
图11是根据本申请实施例的通信方法的示意性流程图。
图12是根据本申请实施例的终端设备的示意性框图。
图13是根据本申请实施例的网络设备的示意性框图。
图14是根据本申请实施例的终端设备的示意性框图。
图15是根据本申请实施例的网络设备的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设 备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本申请结合终端设备和网络设备各个实施例。终端设备也可以称为接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备。网络设备可用于与移动设备通信,网络设备可以是GSM(Global System of Mobile communication,全球移动通讯)或CDMA(Code Division Multiple Access,码分多址)中的BTS(Base Transceiver Station,基站),也可以是WCDMA(Wideband Code Division Multiple Access,宽带码分多址)中的NB(NodeB,基站),还可以是LTE(Long Term Evolution,长期演进)中的eNB或eNodeB(Evolutional Node B,演进型基站),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备。
此外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,CD(Compact Disk,压缩盘)、DVD(Digital Versatile Disk,数字通用盘)等),智能卡和闪存器件(例如,EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是本申请实施例所用的通信系统的示意图。如图1所示,该通信系统100包括网络设备102,网络设备102可包括多个天线组。每个天线组可以包括一个或多个天线,例如,一个天线组可包括天线104和106,另一个天线组可包括天线108和110,附加组可包括天线112和114。图1中对于每个天线组示出了2个天线,然而可对于每个组使用更多或更少的天线。网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络设备102可以与类似于终端设备116或122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(FDD,Freqncy Division Duplex)系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在时分双工(TDD,Time Division Duplex)系统和全双工(Full Duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每组天线和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。在网络设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与网络设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
以上已结合图1对本申请实施例中的通信系统进行详细说明,以下将结合图2至图15对可以应用于该系统的通信方法和通信设备进行详细说明。
图2是根据本申请实施例的通信方法200的示意性框图。
在210中,终端设备确定第一频域资源,该第一频域资源为预配置为支持采用第一传输时间间隔TTI在第一目标时间单元内传输第一物理信道的可用资源,其中,该第一TTI的时间长度等于该第一目标时间单元的时间长度。
在220中,该终端设备确定第二频域资源,该第二频域资源确定为用于在第二目标时间单元内采用第二TTI传输第二物理信道,其中,该第二TTI不小于该第一TTI,且该第二目标时间单元与该第一目标时间单元至少部分重合。
在230中,该终端设备确定第三频域资源,该第三频域资源包含该第二频域资源的至少部分频域资源,且该第三频域资源为支持采用该第一TTI在该第一目标时间单元内传输该第一物理信道的最大可用频域资源。
可选地,该第三频域资源还包括该第一频域资源的至少部分频域资源。
为了便于理解,以下将结合图3对本申请实施例能解决的技术问题进行说明。其中,假设第一TTI为0.5ms,第二TTI为1ms。
使用1ms TTI传输的数据需要较长的调度处理时延。对于在子帧n中使用1ms TTI传输第二物理信道,其对应的调度要在子帧n-4开始。但在子帧n中使用0.5ms TTI传输的第二物理信道,其对应的调度在子帧n-2开始即可。也就是说,在子帧n-4处,已经将子帧n中的第二目标时间单元中的第二频域资源分配给某一终端设备传输第二物理信道了,但在子帧n-2处,将子帧n中的第一目标时间单元中的第一频域资源分配给该终端设备传输第一物理信道。由于第二目标时间单元包括第一目标时间单元,且传输对象均为同一终端设备,如果同一终端设备不能在同一时间接收或发送多个物理信道,用 于传输第一物理信道的频域资源则会造成浪费。并且第一物理信道的调度晚于第二物理信道,在确定传输第一物理信道时,在子帧n中的用于传输第二物理信道的资源已经分配给该某一终端设备,不能再分配给另一终端设备采用第二TTI传输物理信道,则会造成资源的浪费。
因此,本申请实施例中,将分配给第二物理信道的至少部分频域资源确定为属于传输第一物理信道的可用资源,可以避免资源的浪费。
可选地,网络设备可以向终端设备发送第一配置信息,该第一配置信息用于指示该第一频域资源,从而终端设备可以基于该第一配置信息,确定第一频域资源。
可选地,网络设备可以向终端设备发送第二配置信息,该第二配置信息用于指示该第二频域资源,从而终端设备可以基于该第二配置信息,确定第二频域资源。
可选地,网络设备可以向终端设备发送第三配置信息,第三配置信息用于指示终端设备采用第一TTI传输在第一目标时间单元传输第一物理信道,从而终端设备可以基于该第三配置信息,采用第一TTI传输在第一目标时间单元传输第一物理信道。
可选地,网络设备可以向终端设备发送第四配置信息,第四配置信息用于指示终端设备采用第二TTI传输在第二目标时间单元传输第二物理信道,从而终端设备可以基于该第四配置信息,采用第二TTI传输在第二目标时间单元传输第二物理信道。
在本申请实施例中,上述第一频域资源是指预配置的用于采用第一TTI传输第一物理信道的可用资源,例如,如图3所示,在子帧n-2处调度的用于在子帧n传输第一物理信道的频域资源,其中,该第一频域资源可以是包括多个物理资源块,也即第一频域资源可以称为资源池,终端设备可以根据基站的指示从该资源池中选择物理资源块用于传输第一物理信道。
在本申请实施例中,上述第二频域资源是指确定为用于采用第二TTI传输第二物理信道的频域资源,例如,如图3所示,在子帧n-4处调度的用于在子帧n传输第二物理信道的频域资源。
在本申请实施例中,终端设备可以将第一频域资源和第二频域资源的总和确定为第三频域资源,也即在第一目标时间单元传输第一物理信道的最大可用资源,也即第三频域资源也可以称为资源池,终端设备可以根据基站的 指示从该资源池中选择物理资源块用于传输第一物理信道。
例如,图4所示的资源为预配置的用于传输第一物理信道的可用时频资源,其中,第一物理信道对应的TTI可以为0.5ms,也即每个子帧具有两个第一目标时间单元,图5所示的资源为用于传输第二物理信道的时频资源,,其中,第二物理信道对应的TTI可以为1ms,也即每个子帧具有一个第二目标时间单元,则每个第一目标时间单元用于传输第一物理信道的最大可用频域资源如图6所示。
当然,本申请实施例,也可以将第一频域资源的部分频域资源和第二频域资源的部分频域资源的总和确定为第三频域资源,或者将第二频域资源的部分频域资源确定为第三频域资源。
例如,约定第一目标时间单元内可用于传输第一物理信道的最大PRB数量为N,其中N的取值可能受限于控制信令(Downlink Control Information,DCI)中指示物理资源块(Physical Resource Block,PRB)位置的信息域的比特数量,例如DCI中固定使用9比特信息指示PRB位置,则PRB的最大数量为25,或者基站配置或者协议直接约定N的取值为25。
若第二频域资源包含的PRB数量为M,且M不大于N,则确定第二频域资源中的M个PRB和第一频域资源中的N-M个PRB组成第三频域资源,其中第一频域资源中的N-M个PRB可以根据约定原则选取,根据PRB编号顺序的前N-M个PRB或最后N-M个PRB;
若第二频域资源包含的PRB数量为M,且M大于N,则确定第二频域资源中的前N个或最后N个PRB组成第三频域资源。
在本申请实施例中,在确定第三频域资源之后,终端设备从该第三频域资源中,确定目标频域资源;该终端设备利用该目标频域资源,采用该第一TTI,在该第一目标时间单元内,向网络设备发送该第一物理信道,或接收该网络设备发送的该第一物理信道。
具体地,在利用第一频域资源之前,网络设备会向终端设备发送下行控制信息,具体指示目标频域资源在第三频域资源中的位置。
可选地,终端设备和网络设备按照同样规则可以对第三频域资源的物理资源块进行重新编号,网络设备在下行控制信息中携带需要终端设备采用的目标频域资源对应的物理资源块的重新排序编号,从而终端设备可以基于该下行控制信息从第三频域资源中确定目标频域资源。
例如,如图7所示,子帧n是第二目标时间单元,时隙0和时隙1分别是两个不同的第一目标时间单元。频域2是原本确定用来传输第二物理信道的第二频域资源,具有的物理资源块为{PRBc PRBc+1};频域1a是预配置的在时隙0传输第一物理信道的第一频域资源,具有的物理资源块为{PRBa PRBa+1……PRBa+9},频域1b是预配置的在时隙1传输第一物理信道的第一频域资源,具有的物理资源块为{PRBb PRBb+1……PRBb+9}。确定用于在时隙0传输第一物理信道的最大可用频域资源是频域1a和频域2的总和,即物理资源块{PRBa PRBa+1……PRBa+9 PRBc PRBc+1}。确定用于在时隙1传输第一物理信道的最大可用频域资源是频域1b和频域2的总和,即物理资源块{PRBb PRBb+1……PRBb+9 PRBc PRBc+1}。其中,{}中的物理资源块是连续编号的,{}中靠前的PRB的编号小于靠后的PRB的编号,PRBi是指具体的物理资源块,i不是该物理资源块的编号。
虽然图7中示出的是将第一频域资源中物理资源块编在第二频域资源之前,但是本申请实施例并不限于此。例如,将第二频域资源中的物理资源块编在第一频域资源的物理资源块之前,或者第一频域资源中的物理资源块和第二频域资源的物理资源块穿插排列。
在下行控制信息中的PRB资源指示信息域所能指示的PRB的最大数量不小于第三频域资源中的PRB数量的总和。
因此,在本申请实施例中,将第三资源中的物理资源块重新连续编号,可以降低控制信令开销。
当然,发送的下行控制信息除了用于指示目标频域资源的排序编号之外,还可以携带其他控制信息。
在本申请实施例中,下行控制信息还可以通过PDCCH进行发送。
可选地,在本申请实施例中,对于同一TTI对应的不同目标时间单元可以具有相同的频域资源。例如,如图4所示,每个子帧具有两个目标时间单元,分别对应于时隙0和时隙1。每个目标时间单元所对应的频域资源相同。
可选地,在本申请实施例中,对于同一TTI对应的目标时间单元的频域资源可以完全不相同或者部分不相同,例如,如图8所示,每个子帧具有两个目标时间单元,分别对应于时隙0和时隙1。任意两个目标时间单元所对应的频域资源可以部分相同、完全不相同或完全相同。
本申请实施例可以用于上行传输,也可以用于下行传输。本申请实施例 不管用于上行传输还是下行传输,网络设备也需要确定第一频域资源、第二频域资源和第三频域资源。网络设备在确定第三频域资源之后,可以从该第三频域资源中确定目标频域资源。并将目标频域资源在该第三频域资源的位置通知给终端设备,以便于终端设备确定目标频域资源,并在第一目标时间单元内,利用该目标频域资源发送第一物理信道,或接收第一物理信道。
可选地,在用于上行传输时,网络设备可以提前将用于指示目标频域资源的下行控制信息发送给终端设备,由此终端设备接收到该下行控制信息时,确定目标频域资源,然后进行数据的编码调制,并在第一目标时间单元内,在目标频域资源上进行上行数据的发送。网络设备可以在第一目标时间单元内,在目标频域资源上进行上行数据的接收。
示例1:第一物理信道为动态调度PUSCH,第二物理信道为半静态调度PUSCH。
以频分双工(Frequency Division Dual,FDD)系统为例,第一物理信道的TTI为0.5ms,第二物理信道的TTI为1ms,则子帧n内时隙0中传输的第一物理信道其对应的DCI在子帧n-2内的时隙0传输,对于第二物理信道其调度信息半静态配置,即由基站一次指示然后重复使用。
示例2:第一物理信道为动态调度PUSCH,第二物理信道为动态调度PUSCH,且第二物理信道的TTI大于第一物理信道的TTI。
以FDD系统为例,第一物理信道的TTI为0.5ms,第二物理信道的TTI为1ms,则子帧n内时隙0中传输的第一物理信道其对应的DCI在子帧n-2内的时隙0传输,子帧n中传输的第二物理信道其对应的DCI在子帧n-4中传输。
可选地,上行传输时,目标时间单元对应的子帧为上行子帧。
可选地,该第一物理信道为动态调度的PUSCH,该第二物理信道为半持续调度的PUSCH;或者,该第一物理信道为动态调度的PUSCH,该第二物理信道为动态调度的PUSCH,该第一目标时间单元的时间长度小于该第二目标时间单元的时间长度。
为了更加清楚地理解,以下将结合图9所示的方法300对上行传输进行详细说明。其中,
在301中,网络设备确定终端设备需要采用第一TTI发送第一物理信道,其中第一物理信道为动态调度的PUSCH,其TTI为0.5ms。网络设备确定各 上行子帧中终端设备发送第一物理信道的第一频域资源,并向终端发送配置信息通知第一频域资源和/或支持终端发送第一物理信道的上行子帧。
在302中,终端设备接收网络设备发送的配置信息之后,确定第一频域资源和/或支持发送第一物理信道的上行子帧。
在303中,网络设备确定终端设备需要在子帧n采用第二TTI发送第二物理信道,其中第二物理信道为动态调度PUSCH,其TTI为1ms。网络设备确定终端设备发送第二物理信道的第二频域资源,并在子帧n-4向网络设备发送配置信息,该配置信息用于指示终端设备采用第二TTI在子帧n传输第二物理信道,以及传输第二物理信道的频域资源为第二频域资源。网络设备确定第三频域资源,第三频域资源包括至少部分第一频域资源和至少部分第二频域资源。网络设备对第三频域资源和第二频域资源对应的所有PRB进行重新排序编号。
在304中,终端设备在子帧n-4接收到网络设备发送的配置信息之后,可以开始准备在子帧n发送的第二物理信道的数据。且终端设备确定第三频域资源,第三频域资源包括至少部分第一频域资源和至少部分第二频域资源。终端设备对第三频域资源和第二频域资源对应的所有PRB进行重新排序编号。
在305中,网络设备确定终端设备需要在子帧n的时隙0中采用第一TTI发送第一物理信道,其中第一物理信道为动态调度的PUSCH,其TTI为0.5ms。网络设备在子帧n-2的时隙0中向终端设备发送下行控制信令,该下行控制信令DCI用于指示终端设备传输第一物理信道的目标频域资源,其中目标频域资源属于第三频域资源。
在306,终端设备在子帧n-2的时隙0中接收到网络设备发送的DCI之后,可以开始准备在子帧n发送的第一物理信道的数据,以及停止准备将在子帧n发送的第二物理信道的数据。
在307中,终端设备在时隙0,利用目标频域资源向网络设备发送第一物理信道。
在308中,网络设备在时隙0,接收终端设备利用目标频域资源发送的第一物理信道。
为了更加清楚地理解,以下将结合图10所示的方法400对上行传输进行另一详细说明。其中,
在401中,网络设备确定终端设备需要采用第一TTI发送第一物理信道,其中第一物理信道为动态调度的PUSCH,其TTI为0.5ms。网络设备确定各上行子帧中终端设备发送第一物理信道的第一频域资源,并向终端发送配置信息通知第一频域资源和/或支持终端发送第一物理信道的上行子帧。
在402中,终端设备接收网络设备发送的配置信息之后,确定第一频域资源和/或支持发送第一物理信道的上行子帧。
在403中,网络设备确定终端设备采用第二TTI发送第二物理信道的传输子帧,及各传输子帧中第二频域资源,其中第二物理信道为半静态调度的PUSCH,其TTI为1ms。网络设备确定各传输子帧中的第三频域资源,第三频域资源包括至少部分第一频域资源和至少部分第二频域资源。网络设备对第三频域资源和第二频域资源对应的所有PRB进行重新排序编号。
在404中,终端设备接收网络设备发送的配置信息之后,确定第二物理信道的传输子帧及第二频域资源。终端设备确定各传输子帧中的第三频域资源,第三频域资源包括至少部分第一频域资源和至少部分第二频域资源。终端设备对第三频域资源和第二频域资源对应的所有PRB进行重新排序编号。
在405中,终端设备在子帧n-4确定需要在子帧n采用第二TTI,在第二频域资源上向终端设备发送第二物理信道,并开始准备第二物理信道对应的数据。
在406中,网络设备在子帧n-2发送DCI通知终端在子帧n中采用第一TTI在目标频域资源上发送第一物理信道,其中目标频域资源属于第三频域资源。
在407中,终端设备在子帧n-2中接收DCI,确定在子帧n中采用第一TTI在目标频域资源上发送第一物理信道,开始准备第一物理信道对应的数据,并停止准备第二物理信道的数据。
在408中,终端设备在时隙0,利用目标频域资源向网络设备发送第一物理信道。
在409中,网络设备在时隙0,接收终端设备利用目标频域资源发送的第一物理信道。
可选地,在用于下行传输时,网络设备可以在第一目标时间单元内,将用于指示目标频域资源的下行控制信息与下行数据一起发送给终端设备,其中,下行数据通过目标频域资源发送。终端设备根据下行控制信息,确定目 标频域资源,并在目标频域资源上接收网络设备发送的下行数据。可选地,网络设备可以在该第一目标时间单元内,利用第一频域资源将下行控制信息发送给终端设备,以降低对下行控制信令的盲检测数量。
可选地,在用于下行传输时,目标时间单元对应的子帧为下行子帧或TDD特征子帧。
可选地,该第一物理信道为动态调度的PDSCH,该第二物理信道为半持续调度的PDSCH。
为了更加清楚地理解,以下将结合图11所示的方法500对下行传输进行详细说明。
在501中,网络设备确定终端设备需要采用第一TTI发送第一物理信道,其中第一物理信道为动态调度的PDSCH,其TTI为0.5ms。网络设备确定各子帧中终端设备接收第一物理信道的第一频域资源,并向终端发送配置信息通知第一频域资源和/或支持终端接收第一物理信道的子帧。
在502中,终端设备接收网络设备发送的配置信息之后,确定第一频域资源和/或支持接收第一物理信道的子帧。
在503中,网络设备确定采用第二TTI向终端设备发送第二物理信道的传输子帧,及各传输子帧中第二频域资源,其中第二物理信道为半静态调度的PDSCH,其TTI为1ms。网络设备确定各传输子帧中的第三频域资源,第三频域资源包括至少部分第一频域资源和至少部分第二频域资源。网络设备对第三频域资源和第二频域资源对应的所有PRB进行重新排序编号。
在504中,终端设备接收网络设备发送的配置信息之后,确定第二物理信道的传输子帧及第二频域资源。终端设备确定各传输子帧中的第三频域资源,第三频域资源包括至少部分第一频域资源和至少部分第二频域资源。终端设备对第三频域资源和第二频域资源对应的所有PRB进行重新排序编号。
在505中,网络设备在子帧n-4开始确定需要在子帧n采用第二TTI,在第二频域资源上向终端设备发送第二物理信道,并开始准备第二物理信道对应的数据。
在506中,网络设备在子帧n-2开始确定需要在子帧n采用第一TTI传输第一物理信道,开始准备第一物理信道对应的数据及相应的DCI,并停止准备第二物理信道对应的数据。
在507中,网络设备在子帧n的时隙0向终端设备发送DCI,该DCI 用于指示终端设备在子帧n的时隙0采用第一TTI,利用目标频域资源,接收第一物理信道,其中目标频域资源属于第三频域资源。
在508中,网络设备在子帧n的时隙0,采用目标频域资源,向终端设备发送第一物理信道。
在509中,终端设备在子帧n的时隙0,采用目标频域资源,接收网络设备发送的第一物理信道。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定,
图12是根据本申请实施例的终端设备600的示意性框图。如图12所示,该终端设备600包括第一确定单元610、第二确定单元620和第三确定单元630。
其中,第一确定单元,用于确定第一频域资源,该第一频域资源为预配置为支持采用第一传输时间间隔TTI在第一目标时间单元内传输第一物理信道的可用资源,其中,该第一TTI的时间长度等于该第一目标时间单元的时间长度;第二确定单元,用于确定第二频域资源,该第二频域资源确定为用于在第二目标时间单元内采用第二TTI传输第二物理信道,其中,该第二TTI不小于该第一TTI,且该第二目标时间单元与该第一目标时间单元至少部分重合;第三确定单元,用于确定第三频域资源,该第三频域资源包含该第二频域资源的至少部分频域资源,且该第三频域资源为支持采用该第一TTI在该第一目标时间单元内传输该第一物理信道的最大可用频域资源。
可选地,该第三频域资源还包括该第一频域资源的至少部分频域资源。
可选地,如图12所示,该终端设备600还包括第四确定单元640和第一收发单元650。其中,该第四确定单元640,用于从该第三频域资源中,确定目标频域资源;第一收发单元650,用于利用该目标频域资源,采用该第一TTI,在该第一目标时间单元内,向网络设备发送该第一物理信道,或接收该网络设备发送的该第一物理信道。
可选地,如图12所示,该终端设备600还包括第二收发单元660,用于接收网络设备发送的第一下行控制信息,该第一下行控制信息用于指示目标频域资源在该第三频域资源中的位置;该第四确定单元640,用于基于该下行控制信息,确定该目标频域资源。
可选地,如图12所示,该终端设备还包括:排序单元670,用于对该第三频域资源中的PRB重新连续排序;其中,该第一下行控制信息用于指示该目标频域资源对应的PRB的重新排序编号,以指示该目标频域资源在该第三频域资源中的位置。
可选地,如图12所示,该终端设备还包括:第二收发单元660,用于在下行控制信道PDCCH信道接收下行控制信息,或在在该第一目标时间内,在该第一频域资源上接收下行控制信息。
可选地如图12所示,该终端设备600还包括:第三收发单元680,用于接收网络设备发送的以下信息中的至少一种:用于指示该第一资源的第一配置信息,用于指示该第二资源的第二配置信息,用于指示该终端设备采用该第一TTI发送或接收该第一物理信道的第三配置信息,和用于指示该终端设备采用该第二TTI发送或接收该第二物理信道的第四配置信息。
可选地,该第一物理信道为动态调度的PDSCH,该第二物理信道半持续调度的PDSCH;或者,该第一物理信道为动态调度的PUSCH,该第二物理信道为半持续调度的PUSCH;或者,该第一物理信道为动态调度的PUSCH,该第二物理信道为动态调度的PUSCH,该第一目标时间单元的时间长度小于该第二目标时间单元的时间长度。
可选地,在该第一物理信道为PUSCH时,该第一目标时间单元和该第二目标时间单元所属的子帧为上行子帧;和/或,在该第一物理信道为PDSCH时,该第一目标时间单元和该第二目标时间单元所属的子帧为下行子帧或TDD特征子帧。
应理解,终端设备600可以实现方法实施例中终端设备的相应功能,为了简洁,在此不再赘述。
图13是根据本申请实施例的网络设备700的示意性框图。如图13所示,该网络设备700包括第一确定单元710、第二确定单元720和第三确定单元730。其中,第一确定单元710,用于确定第一频域资源,该第一频域资源为预配置为支持采用第一传输时间间隔TTI在第一目标时间单元内传输第一物理信道的可用资源,其中,该第一TTI的时间长度等于该第一目标时间单元的时间长度;第二确定单元720,用于确定第二频域资源,该第二频域资源确定为用于在第二目标时间单元内采用第二TTI传输第二物理信道,其中,该第二TTI不小于该第一TTI,且该第二目标时间单元与该第一目标时 间单元至少部分重合;第三确定单元730,用于确定第三频域资源,该第三频域资源包含该第二频域资源的至少部分频域资源,且该第三频域资源为支持采用该第一TTI在该第一目标时间单元内传输该第一物理信道的最大可用频域资源。
可选地,该第三频域资源还包含该第一频域资源的至少部分频域资源。
可选地,如图13所示,该网络设备700还包括:第四确定单元740,用于从该第三频域资源中,确定目标频域资源;第一收发单元750,用于利用该目标频域资源,采用该第一TTI,在该第一目标时间单元内,向终端设备发送该第一物理信道,或接收终端设备发送的该第一物理信道。
可选地,如图13所示,该网络设备700还包括:第二收发单元760,用于向终端设备发送第一下行控制信息,该第一下行控制信息用于指示目标频域资源在该第三频域资源中的位置,以便于该终端设备基于该第一下行控制信息,确定该目标频域资源。
可选地,如图13所示,该网络设备700还包括:排序单元770,用于对该第三频域资源中的PRB重新连续排序;其中,该第一下行控制信息用于指示该目标频域资源对应的PRB的重新排序编号,以指示该目标频域资源在该第三频域资源中的位置。
可选地,如图13所示,该网络设备700还包括:第二收发单元760,用于在下行控制信道PDCCH信道发送下行控制信息,或在该第一目标时间内,在该第一频域资源上发送下行控制信息。
可选地,如图13所示,该网络设备700还包括:第三收发单元780,用于向终端设备发送以下信息中的至少一种:
用于指示该第一资源的第一配置信息,用于指示该第二资源的第二配置信息,用于指示该终端设备采用该第一TTI发送或接收该第一物理信道的第三配置信息,和用于指示该终端设备采用该第二TTI发送或接收该第二物理信道的第四配置信息。
可选地,该第一物理信道为动态调度的PDSCH,该第二物理信道半持续调度的PDSCH;或者,该第一物理信道为动态调度的PUSCH,该第二物理信道为半持续调度的PUSCH;或者,该第一物理信道为动态调度的PUSCH,该第二物理信道为动态调度的PUSCH,该第一目标时间单元的时间长度小于该第二目标时间单元的时间长度。
可选地,在该第一物理信道为PUSCH时,该第一目标时间单元和该第二目标时间单元所属的子帧为上行子帧;和/或,在该第一物理信道为PDSCH时,该第一目标时间单元和该第二目标时间单元所属的子帧为下行子帧或TDD特征子帧。
应理解,网络设备700可以实现方法实施例中网络设备的相应功能,为了简洁,在此不再赘述。
图14是根据本申请实施例的终端设备800的示意性框图。如图14所示,该终端设备800包括处理器810和存储器820。存储器820,用于存放程序指令。处理器810可以调用存储器820中存放的程序指令,可以方法实施例中终端设备的相应操作。可选地,该终端设备800还包括用于对外通信的收发器830,和用于将处理器810、存储器820和收发器830互连的总线系统840。
具体地,处理器810可以调用存储器820中存放的程序指令,执行以下处理:确定第一频域资源,该第一频域资源为预配置为支持采用第一传输时间间隔TTI在第一目标时间单元内传输第一物理信道的可用资源,其中,该第一TTI的时间长度等于该第一目标时间单元的时间长度;确定第二频域资源,该第二频域资源确定为用于在第二目标时间单元内采用第二TTI传输第二物理信道,其中,该第二TTI不小于该第一TTI,且该第二目标时间单元与该第一目标时间单元至少部分重合;确定第三频域资源,该第三频域资源包含该第二频域资源的至少部分频域资源,且该第三频域资源为支持采用该第一TTI在该第一目标时间单元内传输该第一物理信道的最大可用频域资源。
可选地,该第三频域资源还包括该第一频域资源的至少部分频域资源。
具体地,处理器810可以调用存储器820中存放的程序指令,执行以下处理:该终端设备从该第三频域资源中,确定目标频域资源;利用该目标频域资源,采用该第一TTI,在该第一目标时间单元内,向网络设备发送该第一物理信道,或接收该网络设备发送的该第一物理信道。
具体地,处理器810可以调用存储器820中存放的程序指令,执行以下处理:利用收发器830接收网络设备发送的第一下行控制信息,该第一下行控制信息用于指示目标频域资源在该第三频域资源中的位置;基于该下行控制信息,确定该目标频域资源。
具体地,处理器810可以调用存储器820中存放的程序指令,执行以下处理:对该第三频域资源中的PRB重新连续排序;其中,该第一下行控制信息用于指示该目标频域资源对应的PRB的重新排序编号,以指示该目标频域资源在该第三频域资源中的位置。
具体地,处理器810可以调用存储器820中存放的程序指令,执行以下处理:利用收发器830在下行控制信道PDCCH信道接收下行控制信息,或在在该第一目标时间内,在该第一频域资源上接收下行控制信息。
具体地,处理器810可以调用存储器820中存放的程序指令,执行以下处理:利用收发器830接收网络设备发送的以下信息中的至少一种:用于指示该第一资源的第一配置信息,用于指示该第二资源的第二配置信息,用于指示该终端设备采用该第一TTI发送或接收该第一物理信道的第三配置信息,和用于指示该终端设备采用该第二TTI发送或接收该第二物理信道的第四配置信息。
应理解,终端设备800可以实现方法实施例中终端设备的相应功能,为了简洁,在此不再赘述。
图15是根据本申请实施例的网络设备900的示意性框图。如图15所示,该终端设备900包括处理器910和存储器920。存储器920,用于存放程序指令。处理器910可以调用存储器920中存放的程序指令,可以执行方法实施例中网络设备的相应操作。可选地,该终端设备900还包括用于对外通信的收发器930,和用于将处理器910、存储器920和收发器930互连的总线系统940。
具体地,处理器910可以调用存储器920中存放的程序指令,执行以下处理:确定第一频域资源,该第一频域资源为预配置为支持采用第一传输时间间隔TTI在第一目标时间单元内传输第一物理信道的可用资源,其中,该第一TTI的时间长度等于该第一目标时间单元的时间长度;确定第二频域资源,该第二频域资源确定为用于在第二目标时间单元内采用第二TTI传输第二物理信道,其中,该第二TTI不小于该第一TTI,且该第二目标时间单元与该第一目标时间单元至少部分重合;确定第三频域资源,该第三频域资源包含该第二频域资源的至少部分频域资源,且该第三频域资源为支持采用该第一TTI在该第一目标时间单元内传输该第一物理信道的最大可用频域资源。
可选地,该第三频域资源还包含该第一频域资源的至少部分频域资源。
具体地,处理器910可以调用存储器920中存放的程序指令,执行以下处理:从该第三频域资源中,确定目标频域资源;利用该目标频域资源,采用该第一TTI,在该第一目标时间单元内,通过收发器930向终端设备发送该第一物理信道,或接收终端设备发送的该第一物理信道。
具体地,处理器910可以调用存储器920中存放的程序指令,执行以下处理:通过收发器930向终端设备发送第一下行控制信息,该第一下行控制信息用于指示目标频域资源在该第三频域资源中的位置,以便于该终端设备基于该第一下行控制信息,确定该目标频域资源。
具体地,处理器910可以调用存储器920中存放的程序指令,执行以下处理:对该第三频域资源中的PRB重新连续排序;其中,该第一下行控制信息用于指示该目标频域资源对应的PRB的重新排序编号,以指示该目标频域资源在该第三频域资源中的位置。
具体地,处理器910可以调用存储器920中存放的程序指令,执行以下处理:通过收发器930在下行控制信道PDCCH信道发送下行控制信息,或在该第一目标时间内,在该第一频域资源上发送下行控制信息。
具体地,处理器910可以调用存储器920中存放的程序指令,执行以下处理:通过收发器930向终端设备发送以下信息中的至少一种:用于指示该第一资源的第一配置信息,用于指示该第二资源的第二配置信息,用于指示该终端设备采用该第一TTI发送或接收该第一物理信道的第三配置信息,和用于指示该终端设备采用该第二TTI发送或接收该第二物理信道的第四配置信息。
应理解,网络设备900可以实现方法实施例中网络设备的相应功能,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应 过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (36)

  1. 一种通信方法,其特征在于,包括:
    终端设备确定第一频域资源,所述第一频域资源为预配置为支持采用第一传输时间间隔TTI在第一目标时间单元内传输第一物理信道的可用资源,其中,所述第一TTI的时间长度等于所述第一目标时间单元的时间长度;
    所述终端设备确定第二频域资源,所述第二频域资源确定为用于在第二目标时间单元内采用第二TTI传输第二物理信道,其中,所述第二TTI不小于所述第一TTI,且所述第二目标时间单元与所述第一目标时间单元至少部分重合;
    所述终端设备确定第三频域资源,所述第三频域资源包含所述第二频域资源的至少部分频域资源,且所述第三频域资源为支持采用所述第一TTI在所述第一目标时间单元内传输所述第一物理信道的最大可用频域资源。
  2. 根据权利要求1所述的方法,其特征在于,所述第三频域资源还包括所述第一频域资源的至少部分频域资源。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述第三频域资源中,确定目标频域资源;
    所述终端设备利用所述目标频域资源,采用所述第一TTI,在所述第一目标时间单元内,向网络设备发送所述第一物理信道,或接收所述网络设备发送的所述第一物理信道。
  4. 根据权利要求3所述的方法,其特征在于,所述终端设备从所述第三频域资源中,确定目标频域资源,包括:
    接收网络设备发送的第一下行控制信息,所述第一下行控制信息用于指示目标频域资源在所述第三频域资源中的位置;
    基于所述下行控制信息,确定所述目标频域资源。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    对所述第三频域资源中的PRB重新连续排序;
    其中,所述第一下行控制信息用于指示所述目标频域资源对应的PRB的重新排序编号,以指示所述目标频域资源在所述第三频域资源中的位置。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备在下行控制信道PDCCH信道接收下行控制信息,或在在 所述第一目标时间内,在所述第一频域资源上接收下行控制信息。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,在所述终端设备确定第三频域资源之前,所述方法还包括:
    接收网络设备发送的以下信息中的至少一种:
    用于指示所述第一资源的第一配置信息,用于指示所述第二资源的第二配置信息,用于指示所述终端设备采用所述第一TTI发送或接收所述第一物理信道的第三配置信息,和用于指示所述终端设备采用所述第二TTI发送或接收所述第二物理信道的第四配置信息。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,
    所述第一物理信道为动态调度的PDSCH,所述第二物理信道半持续调度的PDSCH;或者,
    所述第一物理信道为动态调度的PUSCH,所述第二物理信道为半持续调度的PUSCH;或者,
    所述第一物理信道为动态调度的PUSCH,所述第二物理信道为动态调度的PUSCH,所述第一目标时间单元的时间长度小于所述第二目标时间单元的时间长度。
  9. 根据权利要求8所述的方法,其特征在于,
    在所述第一物理信道为PUSCH时,所述第一目标时间单元和所述第二目标时间单元所属的子帧为上行子帧;和/或,
    在所述第一物理信道为PDSCH时,所述第一目标时间单元和所述第二目标时间单元所属的子帧为下行子帧或TDD特征子帧。
  10. 一种通信方法,其特征在于,包括:
    网络设备确定第一频域资源,所述第一频域资源为预配置为支持采用第一传输时间间隔TTI在第一目标时间单元内传输第一物理信道的可用资源,其中,所述第一TTI的时间长度等于所述第一目标时间单元的时间长度;
    所述网络设备确定第二频域资源,所述第二频域资源确定为用于在第二目标时间单元内采用第二TTI传输第二物理信道,其中,所述第二TTI不小于所述第一TTI,且所述第二目标时间单元与所述第一目标时间单元至少部分重合;
    所述网络设备确定第三频域资源,所述第三频域资源包含所述第二频域资源的至少部分频域资源,且所述第三频域资源为支持采用所述第一TTI在 所述第一目标时间单元内传输所述第一物理信道的最大可用频域资源。
  11. 根据权利要求10所述的方法,其特征在于,所述第三频域资源还包含所述第一频域资源的至少部分频域资源。
  12. 根据权利要求10或11所述的方法,其特征在于,所述方法还包括:
    所述网络设备从所述第三频域资源中,确定目标频域资源;
    所述网络设备利用所述目标频域资源,采用所述第一TTI,在所述第一目标时间单元内,向终端设备发送所述第一物理信道,或接收终端设备发送的所述第一物理信道。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述网络设备向终端设备发送第一下行控制信息,所述第一下行控制信息用于指示目标频域资源在所述第三频域资源中的位置,以便于所述终端设备基于所述第一下行控制信息,确定所述目标频域资源。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    对所述第三频域资源中的PRB重新连续排序;
    其中,所述第一下行控制信息用于指示所述目标频域资源对应的PRB的重新排序编号,以指示所述目标频域资源在所述第三频域资源中的位置。
  15. 根据权利要求10至14中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备在下行控制信道PDCCH信道发送下行控制信息,或在所述第一目标时间内,在所述第一频域资源上发送下行控制信息。
  16. 根据权利要求10至15中任一项所述的方法,其特征在于,所述方法还包括:
    向终端设备发送以下信息中的至少一种:
    用于指示所述第一资源的第一配置信息,用于指示所述第二资源的第二配置信息,用于指示所述终端设备采用所述第一TTI发送或接收所述第一物理信道的第三配置信息,和用于指示所述终端设备采用所述第二TTI发送或接收所述第二物理信道的第四配置信息。
  17. 根据权利要求10至16中任一项所述的方法,其特征在于,
    所述第一物理信道为动态调度的PDSCH,所述第二物理信道半持续调度的PDSCH;或者,
    所述第一物理信道为动态调度的PUSCH,所述第二物理信道为半持续 调度的PUSCH;或者,
    所述第一物理信道为动态调度的PUSCH,所述第二物理信道为动态调度的PUSCH,所述第一目标时间单元的时间长度小于所述第二目标时间单元的时间长度。
  18. 根据权利要求17所述的方法,其特征在于,
    在所述第一物理信道为PUSCH时,所述第一目标时间单元和所述第二目标时间单元所属的子帧为上行子帧;和/或,
    在所述第一物理信道为PDSCH时,所述第一目标时间单元和所述第二目标时间单元所属的子帧为下行子帧或TDD特征子帧。
  19. 一种终端设备,其特征在于,包括:
    第一确定单元,用于确定第一频域资源,所述第一频域资源为预配置为支持采用第一传输时间间隔TTI在第一目标时间单元内传输第一物理信道的可用资源,其中,所述第一TTI的时间长度等于所述第一目标时间单元的时间长度;
    第二确定单元,用于确定第二频域资源,所述第二频域资源确定为用于在第二目标时间单元内采用第二TTI传输第二物理信道,其中,所述第二TTI不小于所述第一TTI,且所述第二目标时间单元与所述第一目标时间单元至少部分重合;
    第三确定单元,用于确定第三频域资源,所述第三频域资源包含所述第二频域资源的至少部分频域资源,且所述第三频域资源为支持采用所述第一TTI在所述第一目标时间单元内传输所述第一物理信道的最大可用频域资源。
  20. 根据权利要求19所述的终端设备,其特征在于,所述第三频域资源还包括所述第一频域资源的至少部分频域资源。
  21. 根据权利要求19或20所述的终端设备,其特征在于,所述终端设备还包括:
    第四确定单元,用于从所述第三频域资源中,确定目标频域资源;
    第一收发单元,用于利用所述目标频域资源,采用所述第一TTI,在所述第一目标时间单元内,向网络设备发送所述第一物理信道,或接收所述网络设备发送的所述第一物理信道。
  22. 根据权利要求21所述的终端设备,其特征在于,
    所述终端设备还包括第二收发单元,用于接收网络设备发送的第一下行控制信息,所述第一下行控制信息用于指示目标频域资源在所述第三频域资源中的位置;
    所述第四确定单元,用于基于所述下行控制信息,确定所述目标频域资源。
  23. 根据权利要求22所述的终端设备,其特征在于,所述终端设备还包括:
    排序单元,用于对所述第三频域资源中的PRB重新连续排序;
    其中,所述第一下行控制信息用于指示所述目标频域资源对应的PRB的重新排序编号,以指示所述目标频域资源在所述第三频域资源中的位置。
  24. 根据权利要求19至23中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    第二收发单元,用于在下行控制信道PDCCH信道接收下行控制信息,或在在所述第一目标时间内,在所述第一频域资源上接收下行控制信息。
  25. 根据权利要求19至24中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    第三收发单元,用于接收网络设备发送的以下信息中的至少一种:
    用于指示所述第一资源的第一配置信息,用于指示所述第二资源的第二配置信息,用于指示所述终端设备采用所述第一TTI发送或接收所述第一物理信道的第三配置信息,和用于指示所述终端设备采用所述第二TTI发送或接收所述第二物理信道的第四配置信息。
  26. 根据权利要求19至25中任一项所述的终端设备,其特征在于,
    所述第一物理信道为动态调度的PDSCH,所述第二物理信道半持续调度的PDSCH;或者,
    所述第一物理信道为动态调度的PUSCH,所述第二物理信道为半持续调度的PUSCH;或者,
    所述第一物理信道为动态调度的PUSCH,所述第二物理信道为动态调度的PUSCH,所述第一目标时间单元的时间长度小于所述第二目标时间单元的时间长度。
  27. 根据权利要求26所述的终端设备,其特征在于,
    在所述第一物理信道为PUSCH时,所述第一目标时间单元和所述第二 目标时间单元所属的子帧为上行子帧;和/或,
    在所述第一物理信道为PDSCH时,所述第一目标时间单元和所述第二目标时间单元所属的子帧为下行子帧或TDD特征子帧。
  28. 一种网络设备,其特征在于,包括:
    第一确定单元,用于确定第一频域资源,所述第一频域资源为预配置为支持采用第一传输时间间隔TTI在第一目标时间单元内传输第一物理信道的可用资源,其中,所述第一TTI的时间长度等于所述第一目标时间单元的时间长度;
    第二确定单元,用于确定第二频域资源,所述第二频域资源确定为用于在第二目标时间单元内采用第二TTI传输第二物理信道,其中,所述第二TTI不小于所述第一TTI,且所述第二目标时间单元与所述第一目标时间单元至少部分重合;
    第三确定单元,用于确定第三频域资源,所述第三频域资源包含所述第二频域资源的至少部分频域资源,且所述第三频域资源为支持采用所述第一TTI在所述第一目标时间单元内传输所述第一物理信道的最大可用频域资源。
  29. 根据权利要求28所述的网络设备,其特征在于,所述第三频域资源还包含所述第一频域资源的至少部分频域资源。
  30. 根据权利要求28或29所述的网络设备,其特征在于,所述网络设备还包括:
    第四确定单元,用于从所述第三频域资源中,确定目标频域资源;
    第一收发单元,用于利用所述目标频域资源,采用所述第一TTI,在所述第一目标时间单元内,向终端设备发送所述第一物理信道,或接收终端设备发送的所述第一物理信道。
  31. 根据权利要求30所述的网络设备,其特征在于,所述网络设备还包括:
    第二收发单元,用于向终端设备发送第一下行控制信息,所述第一下行控制信息用于指示目标频域资源在所述第三频域资源中的位置,以便于所述终端设备基于所述第一下行控制信息,确定所述目标频域资源。
  32. 根据权利要求31所述的网络设备,其特征在于,所述网络设备还包括:
    排序单元,用于对所述第三频域资源中的PRB重新连续排序;
    其中,所述第一下行控制信息用于指示所述目标频域资源对应的PRB的重新排序编号,以指示所述目标频域资源在所述第三频域资源中的位置。
  33. 根据权利要求28至32中任一项所述的网络设备,其特征在于,所述网络设备还包括:
    第二收发单元,用于在下行控制信道PDCCH信道发送下行控制信息,或在所述第一目标时间内,在所述第一频域资源上发送下行控制信息。
  34. 根据权利要求28至33中任一项所述的网络设备,其特征在于,所述网络设备还包括:
    第三收发单元,用于向终端设备发送以下信息中的至少一种:
    用于指示所述第一资源的第一配置信息,用于指示所述第二资源的第二配置信息,用于指示所述终端设备采用所述第一TTI发送或接收所述第一物理信道的第三配置信息,和用于指示所述终端设备采用所述第二TTI发送或接收所述第二物理信道的第四配置信息。
  35. 根据权利要求28至34中任一项所述的网络设备,其特征在于,
    所述第一物理信道为动态调度的PDSCH,所述第二物理信道半持续调度的PDSCH;或者,
    所述第一物理信道为动态调度的PUSCH,所述第二物理信道为半持续调度的PUSCH;或者,
    所述第一物理信道为动态调度的PUSCH,所述第二物理信道为动态调度的PUSCH,所述第一目标时间单元的时间长度小于所述第二目标时间单元的时间长度。
  36. 根据权利要求35所述的网络设备,其特征在于,
    在所述第一物理信道为PUSCH时,所述第一目标时间单元和所述第二目标时间单元所属的子帧为上行子帧;和/或,
    在所述第一物理信道为PDSCH时,所述第一目标时间单元和所述第二目标时间单元所属的子帧为下行子帧或TDD特征子帧。
PCT/CN2016/076804 2016-03-18 2016-03-18 通信方法、终端设备和网络设备 WO2017156787A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020187015719A KR20180124832A (ko) 2016-03-18 2016-03-18 통신 방법, 단말 장치 및 네트워크 장치
CN201680067547.0A CN108293250B (zh) 2016-03-18 2016-03-18 通信方法、终端设备和网络设备
JP2018530067A JP6678743B2 (ja) 2016-03-18 2016-03-18 通信方法、端末デバイス及びネットワークデバイス
PCT/CN2016/076804 WO2017156787A1 (zh) 2016-03-18 2016-03-18 通信方法、终端设备和网络设备
US15/779,770 US10798709B2 (en) 2016-03-18 2016-03-18 Communications method, terminal device, and network device
EP16893952.8A EP3364701B1 (en) 2016-03-18 2016-03-18 Communications method, terminal device, and network device
TW106109057A TWI703841B (zh) 2016-03-18 2017-03-20 通訊方法、終端設備和網絡設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/076804 WO2017156787A1 (zh) 2016-03-18 2016-03-18 通信方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2017156787A1 true WO2017156787A1 (zh) 2017-09-21

Family

ID=59850644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076804 WO2017156787A1 (zh) 2016-03-18 2016-03-18 通信方法、终端设备和网络设备

Country Status (7)

Country Link
US (1) US10798709B2 (zh)
EP (1) EP3364701B1 (zh)
JP (1) JP6678743B2 (zh)
KR (1) KR20180124832A (zh)
CN (1) CN108293250B (zh)
TW (1) TWI703841B (zh)
WO (1) WO2017156787A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111642015A (zh) * 2017-12-14 2020-09-08 Oppo广东移动通信有限公司 确定传输资源的方法、终端设备、网络设备和计算机可读介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3454621A4 (en) * 2016-05-06 2019-12-25 NTT DoCoMo, Inc. USER TERMINAL AND WIRELESS COMMUNICATION METHOD
US11071127B2 (en) * 2016-11-04 2021-07-20 Telefonaktiebolaget Lm Ericsson (Publ) Semi-persistent transmission scheduling
CN111479328B (zh) * 2016-11-24 2023-04-07 上海朗帛通信技术有限公司 一种用于多天线系统的ue、基站中的方法和装置
CN110474736B (zh) * 2018-05-11 2021-07-16 华为技术有限公司 通信方法和通信装置
CN110933761B (zh) * 2018-09-20 2022-02-15 成都华为技术有限公司 资源调度方法及设备
WO2020087446A1 (zh) * 2018-11-01 2020-05-07 Oppo广东移动通信有限公司 传输数据的方法和终端设备
EP4135284A4 (en) * 2020-04-29 2023-06-07 Huawei Technologies Co., Ltd. DATA TRANSMISSION METHOD AND COMMUNICATION APPARATUS

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104468030A (zh) * 2014-08-26 2015-03-25 上海华为技术有限公司 一种数据传输方法、用户设备及基站
WO2015179136A1 (en) * 2014-05-19 2015-11-26 Qualcomm Incorporated Apparatus and method for synchronous multiplexing and multiple access for different latency targets utilizing thin control

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101262279B (zh) 2007-03-07 2012-09-26 中兴通讯股份有限公司 一种时分同步码分多址接入系统的上行调度接入控制方法
US9130912B2 (en) 2010-03-05 2015-09-08 International Business Machines Corporation System and method for assisting virtual machine instantiation and migration
US20110230219A1 (en) * 2010-03-16 2011-09-22 Motorola, Inc. Method and apparatus forinter-cell itnerference mitgation through enhanced preferred frequency reuse mechanisms
US9246620B2 (en) * 2010-12-15 2016-01-26 Lg Electronics Inc. Method and apparatus for transmitting ACK/NACK in a TDD-based wireless communication system
WO2014121489A1 (zh) * 2013-02-07 2014-08-14 华为技术有限公司 数据传输方法及装置
CN105228248B (zh) 2014-06-13 2019-06-07 上海朗帛通信技术有限公司 一种d2d传输中的资源分配方法和装置
WO2016064039A1 (ko) * 2014-10-21 2016-04-28 엘지전자(주) 저 지연을 지원하는 무선 통신 시스템에서 데이터 송수신 방법 및 이를 위한 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015179136A1 (en) * 2014-05-19 2015-11-26 Qualcomm Incorporated Apparatus and method for synchronous multiplexing and multiple access for different latency targets utilizing thin control
CN104468030A (zh) * 2014-08-26 2015-03-25 上海华为技术有限公司 一种数据传输方法、用户设备及基站

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Overview of TTI Shortening", 3GPPTSG RAN WG1 MEETING #84 RL-160596, 14 February 2016 (2016-02-14), XP051053927, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/Meetings_3GPP_SYNC/RAN1/Docs/> *
"Study on Latency reduction techniques for LTE", 3GPP TSG RAN WG1 MEETING #71 RP-160206, 6 March 2016 (2016-03-06), XP051076163, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/Meetings_3GPP_SYNC/RAN/Docs/> *
See also references of EP3364701A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111642015A (zh) * 2017-12-14 2020-09-08 Oppo广东移动通信有限公司 确定传输资源的方法、终端设备、网络设备和计算机可读介质
CN111642015B (zh) * 2017-12-14 2022-09-02 Oppo广东移动通信有限公司 确定传输资源的方法、终端设备、网络设备和计算机可读介质
US11678310B2 (en) 2017-12-14 2023-06-13 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for determining transmission resources, terminal device and network device

Also Published As

Publication number Publication date
CN108293250A (zh) 2018-07-17
CN108293250B (zh) 2020-11-03
US10798709B2 (en) 2020-10-06
TWI703841B (zh) 2020-09-01
EP3364701A4 (en) 2019-05-22
TW201735591A (zh) 2017-10-01
EP3364701A1 (en) 2018-08-22
EP3364701B1 (en) 2022-02-23
US20200015217A1 (en) 2020-01-09
JP2019512896A (ja) 2019-05-16
JP6678743B2 (ja) 2020-04-08
KR20180124832A (ko) 2018-11-21

Similar Documents

Publication Publication Date Title
US11864222B2 (en) Method and apparatus for transmitting a high priority uplink transmission
WO2017156787A1 (zh) 通信方法、终端设备和网络设备
US20200344804A1 (en) Resource configuration method and communications apparatus
US11711808B2 (en) Method, mobile station, and network apparatus for transmitting service
WO2019140666A1 (zh) 探测参考信号传输方法、网络设备和终端设备
US11088804B2 (en) Reference signal transmission method, apparatus, and system
KR20210151233A (ko) 데이터 전송 방법, 단말기 디바이스 및 네트워크 디바이스
WO2018082043A1 (zh) 通信方法、终端和网络设备
WO2019113898A1 (zh) 无线通信方法、终端和网络设备
TW202041072A (zh) 通訊方法和終端設備
US11229019B2 (en) Wireless communication method, network device and terminal device
US10779298B2 (en) Uplink data sending method, uplink data scheduling method, and apparatus
AU2021319714B2 (en) Transmission method for physical uplink control channel, terminal, and base station
WO2017121213A1 (zh) 一种通信传输方法、终端设备及基站
WO2018082173A1 (zh) 传输上行控制信号的方法和装置
WO2018145532A1 (zh) 传输下行控制信息的方法和装置
WO2023024930A1 (zh) 信道调度方法、设备、装置及存储介质
CN110268772B (zh) 信息传输的方法和设备
CN115701782A (zh) 针对多载波侧链路通信的反馈

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016893952

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20187015719

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018530067

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE