WO2017156312A1 - Liants et revêtements à base de polysilocarb - Google Patents
Liants et revêtements à base de polysilocarb Download PDFInfo
- Publication number
- WO2017156312A1 WO2017156312A1 PCT/US2017/021641 US2017021641W WO2017156312A1 WO 2017156312 A1 WO2017156312 A1 WO 2017156312A1 US 2017021641 W US2017021641 W US 2017021641W WO 2017156312 A1 WO2017156312 A1 WO 2017156312A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coating
- liquid composition
- composition
- substrate
- forming
- Prior art date
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 285
- 239000011230 binding agent Substances 0.000 title description 28
- 239000007788 liquid Substances 0.000 claims abstract description 127
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 30
- 239000010703 silicon Substances 0.000 claims abstract description 28
- 239000000203 mixture Substances 0.000 claims description 320
- 239000002243 precursor Substances 0.000 claims description 208
- 239000011248 coating agent Substances 0.000 claims description 184
- 238000009472 formulation Methods 0.000 claims description 146
- -1 methyl hydrogen Chemical compound 0.000 claims description 127
- 239000000758 substrate Substances 0.000 claims description 92
- 239000000945 filler Substances 0.000 claims description 70
- 239000007787 solid Substances 0.000 claims description 64
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 34
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 31
- 229920002554 vinyl polymer Polymers 0.000 claims description 26
- 150000004678 hydrides Chemical class 0.000 claims description 20
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 16
- 230000007797 corrosion Effects 0.000 claims description 13
- 238000005260 corrosion Methods 0.000 claims description 13
- 229910052739 hydrogen Inorganic materials 0.000 claims description 13
- 239000011521 glass Substances 0.000 claims description 12
- 239000001257 hydrogen Substances 0.000 claims description 12
- 239000003112 inhibitor Substances 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 12
- 125000000217 alkyl group Chemical group 0.000 claims description 11
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 11
- 150000003839 salts Chemical class 0.000 claims description 11
- 125000003545 alkoxy group Chemical group 0.000 claims description 10
- 239000010445 mica Substances 0.000 claims description 10
- 229910052618 mica group Inorganic materials 0.000 claims description 10
- 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 claims description 10
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 claims description 9
- 239000012530 fluid Substances 0.000 claims description 9
- 239000000080 wetting agent Substances 0.000 claims description 9
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 8
- 230000015556 catabolic process Effects 0.000 claims description 8
- 238000006731 degradation reaction Methods 0.000 claims description 8
- 239000007921 spray Substances 0.000 claims description 8
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims description 7
- 125000003118 aryl group Chemical group 0.000 claims description 7
- 230000007935 neutral effect Effects 0.000 claims description 7
- 239000000454 talc Substances 0.000 claims description 7
- 229910052623 talc Inorganic materials 0.000 claims description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 6
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 claims description 6
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims description 6
- 229910007161 Si(CH3)3 Inorganic materials 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 238000006555 catalytic reaction Methods 0.000 claims description 5
- UBHZUDXTHNMNLD-UHFFFAOYSA-N dimethylsilane Chemical compound C[SiH2]C UBHZUDXTHNMNLD-UHFFFAOYSA-N 0.000 claims description 5
- XVSBWQYHSLNOCU-UHFFFAOYSA-N ethenyl(dimethyl)silicon Chemical compound C[Si](C)C=C XVSBWQYHSLNOCU-UHFFFAOYSA-N 0.000 claims description 5
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 claims description 5
- 125000004469 siloxy group Chemical group [SiH3]O* 0.000 claims description 5
- DCERHCFNWRGHLK-UHFFFAOYSA-N C[Si](C)C Chemical compound C[Si](C)C DCERHCFNWRGHLK-UHFFFAOYSA-N 0.000 claims description 4
- 229910052582 BN Inorganic materials 0.000 claims description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 claims description 3
- 150000001642 boronic acid derivatives Chemical group 0.000 claims description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 3
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical class [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 claims description 3
- 239000001023 inorganic pigment Substances 0.000 claims description 3
- MSRJTTSHWYDFIU-UHFFFAOYSA-N octyltriethoxysilane Chemical compound CCCCCCCC[Si](OCC)(OCC)OCC MSRJTTSHWYDFIU-UHFFFAOYSA-N 0.000 claims description 3
- 229960003493 octyltriethoxysilane Drugs 0.000 claims description 3
- 229910052851 sillimanite Inorganic materials 0.000 claims description 3
- 239000004408 titanium dioxide Substances 0.000 claims description 3
- 239000010456 wollastonite Substances 0.000 claims description 3
- 229910052882 wollastonite Inorganic materials 0.000 claims description 3
- 235000019352 zinc silicate Nutrition 0.000 claims description 3
- 229910052903 pyrophyllite Inorganic materials 0.000 claims description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims 2
- 239000000463 material Substances 0.000 abstract description 151
- 238000000034 method Methods 0.000 abstract description 101
- 229920000642 polymer Polymers 0.000 abstract description 45
- 239000000919 ceramic Substances 0.000 abstract description 39
- 229910052799 carbon Inorganic materials 0.000 abstract description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052760 oxygen Inorganic materials 0.000 abstract description 8
- 239000001301 oxygen Substances 0.000 abstract description 8
- 230000008569 process Effects 0.000 description 80
- 239000002585 base Substances 0.000 description 62
- 239000000049 pigment Substances 0.000 description 50
- 238000006243 chemical reaction Methods 0.000 description 48
- 229910052751 metal Inorganic materials 0.000 description 40
- 229920005989 resin Polymers 0.000 description 40
- 239000011347 resin Substances 0.000 description 40
- 239000002184 metal Substances 0.000 description 39
- 239000003054 catalyst Substances 0.000 description 38
- 239000000654 additive Substances 0.000 description 34
- 238000002156 mixing Methods 0.000 description 34
- 239000010410 layer Substances 0.000 description 30
- 239000002904 solvent Substances 0.000 description 29
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 28
- 239000008199 coating composition Substances 0.000 description 27
- 230000000996 additive effect Effects 0.000 description 26
- 229910010293 ceramic material Inorganic materials 0.000 description 24
- 238000010438 heat treatment Methods 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- 239000007795 chemical reaction product Substances 0.000 description 19
- 239000000047 product Substances 0.000 description 19
- 239000010408 film Substances 0.000 description 18
- 239000007789 gas Substances 0.000 description 18
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 16
- 229910000077 silane Inorganic materials 0.000 description 16
- 238000011068 loading method Methods 0.000 description 15
- 239000003086 colorant Substances 0.000 description 14
- 239000000835 fiber Substances 0.000 description 14
- 150000002739 metals Chemical class 0.000 description 14
- 239000000843 powder Substances 0.000 description 14
- 239000004205 dimethyl polysiloxane Substances 0.000 description 13
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 13
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 13
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 13
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 13
- 229910052723 transition metal Inorganic materials 0.000 description 13
- 150000003624 transition metals Chemical class 0.000 description 13
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- 239000003607 modifier Substances 0.000 description 12
- 239000003973 paint Substances 0.000 description 12
- 229920003023 plastic Polymers 0.000 description 12
- 239000004033 plastic Substances 0.000 description 12
- 238000000197 pyrolysis Methods 0.000 description 12
- 238000006757 chemical reactions by type Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 239000000178 monomer Substances 0.000 description 11
- 229920001296 polysiloxane Polymers 0.000 description 11
- 239000012855 volatile organic compound Substances 0.000 description 11
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 10
- 239000012298 atmosphere Substances 0.000 description 10
- 229920001169 thermoplastic Polymers 0.000 description 10
- 239000004416 thermosoftening plastic Substances 0.000 description 10
- HECLRDQVFMWTQS-UHFFFAOYSA-N Dicyclopentadiene Chemical compound C1C2C3CC=CC3C1C=C2 HECLRDQVFMWTQS-UHFFFAOYSA-N 0.000 description 9
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 8
- 239000002131 composite material Substances 0.000 description 8
- 229910052736 halogen Inorganic materials 0.000 description 8
- 150000002367 halogens Chemical class 0.000 description 8
- 230000004224 protection Effects 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 8
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 7
- 239000004593 Epoxy Substances 0.000 description 7
- 239000002318 adhesion promoter Substances 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 7
- 238000005336 cracking Methods 0.000 description 7
- 239000003431 cross linking reagent Substances 0.000 description 7
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 7
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 7
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 7
- 239000000976 ink Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 229910052697 platinum Inorganic materials 0.000 description 7
- 238000006116 polymerization reaction Methods 0.000 description 7
- 229920005862 polyol Polymers 0.000 description 7
- 239000012779 reinforcing material Substances 0.000 description 7
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000007613 environmental effect Effects 0.000 description 6
- 239000011152 fibreglass Substances 0.000 description 6
- 231100001244 hazardous air pollutant Toxicity 0.000 description 6
- 229910052741 iridium Inorganic materials 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 238000010943 off-gassing Methods 0.000 description 6
- 150000002978 peroxides Chemical class 0.000 description 6
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 6
- 229910052703 rhodium Inorganic materials 0.000 description 6
- 239000010948 rhodium Substances 0.000 description 6
- 229910010271 silicon carbide Inorganic materials 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 239000003963 antioxidant agent Substances 0.000 description 5
- 235000006708 antioxidants Nutrition 0.000 description 5
- 239000004305 biphenyl Substances 0.000 description 5
- 235000010290 biphenyl Nutrition 0.000 description 5
- 239000006229 carbon black Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 238000004132 cross linking Methods 0.000 description 5
- 239000002086 nanomaterial Substances 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 229910052763 palladium Inorganic materials 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- 229920001187 thermosetting polymer Polymers 0.000 description 5
- 239000012745 toughening agent Substances 0.000 description 5
- VMAWODUEPLAHOE-UHFFFAOYSA-N 2,4,6,8-tetrakis(ethenyl)-2,4,6,8-tetramethyl-1,3,5,7,2,4,6,8-tetraoxatetrasilocane Chemical compound C=C[Si]1(C)O[Si](C)(C=C)O[Si](C)(C=C)O[Si](C)(C=C)O1 VMAWODUEPLAHOE-UHFFFAOYSA-N 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 4
- 239000004925 Acrylic resin Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 4
- 239000004970 Chain extender Substances 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- 230000000712 assembly Effects 0.000 description 4
- 238000000429 assembly Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000011231 conductive filler Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000003365 glass fiber Substances 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 239000003999 initiator Substances 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 229920000620 organic polymer Polymers 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 4
- 229910052707 ruthenium Inorganic materials 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 239000008096 xylene Substances 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 239000004971 Cross linker Substances 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 3
- 108700031620 S-acetylthiorphan Proteins 0.000 description 3
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- 229920000180 alkyd Polymers 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- GZUXJHMPEANEGY-UHFFFAOYSA-N bromomethane Chemical compound BrC GZUXJHMPEANEGY-UHFFFAOYSA-N 0.000 description 3
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- BITPLIXHRASDQB-UHFFFAOYSA-N ethenyl-[ethenyl(dimethyl)silyl]oxy-dimethylsilane Chemical compound C=C[Si](C)(C)O[Si](C)(C)C=C BITPLIXHRASDQB-UHFFFAOYSA-N 0.000 description 3
- 230000009970 fire resistant effect Effects 0.000 description 3
- NYMPGSQKHIOWIO-UHFFFAOYSA-N hydroxy(diphenyl)silicon Chemical group C=1C=CC=CC=1[Si](O)C1=CC=CC=C1 NYMPGSQKHIOWIO-UHFFFAOYSA-N 0.000 description 3
- 229920000592 inorganic polymer Polymers 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229910052762 osmium Inorganic materials 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000011253 protective coating Substances 0.000 description 3
- 150000004756 silanes Chemical class 0.000 description 3
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- RHUYHJGZWVXEHW-UHFFFAOYSA-N 1,1-Dimethyhydrazine Chemical compound CN(C)N RHUYHJGZWVXEHW-UHFFFAOYSA-N 0.000 description 2
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 0 CCC(CC)(N(*)*)OC Chemical compound CCC(CC)(N(*)*)OC 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- NIQCNGHVCWTJSM-UHFFFAOYSA-N Dimethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OC NIQCNGHVCWTJSM-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- RWNKSTSCBHKHTB-UHFFFAOYSA-N Hexachloro-1,3-butadiene Chemical compound ClC(Cl)=C(Cl)C(Cl)=C(Cl)Cl RWNKSTSCBHKHTB-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 229910008051 Si-OH Inorganic materials 0.000 description 2
- 229910006358 Si—OH Inorganic materials 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229920003180 amino resin Polymers 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical compound C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 2
- 125000006267 biphenyl group Chemical group 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000006085 branching agent Substances 0.000 description 2
- DIKBFYAXUHHXCS-UHFFFAOYSA-N bromoform Chemical compound BrC(Br)Br DIKBFYAXUHHXCS-UHFFFAOYSA-N 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 239000003518 caustics Substances 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- JEWCZPTVOYXPGG-UHFFFAOYSA-N ethenyl-ethoxy-dimethylsilane Chemical compound CCO[Si](C)(C)C=C JEWCZPTVOYXPGG-UHFFFAOYSA-N 0.000 description 2
- RSIHJDGMBDPTIM-UHFFFAOYSA-N ethoxy(trimethyl)silane Chemical compound CCO[Si](C)(C)C RSIHJDGMBDPTIM-UHFFFAOYSA-N 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 239000011133 lead Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000011344 liquid material Substances 0.000 description 2
- 229920001684 low density polyethylene Polymers 0.000 description 2
- 239000004702 low-density polyethylene Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- UMFJAHHVKNCGLG-UHFFFAOYSA-N n-Nitrosodimethylamine Chemical compound CN(C)N=O UMFJAHHVKNCGLG-UHFFFAOYSA-N 0.000 description 2
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- RNVCVTLRINQCPJ-UHFFFAOYSA-N o-toluidine Chemical compound CC1=CC=CC=C1N RNVCVTLRINQCPJ-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000006072 paste Substances 0.000 description 2
- IZUPBVBPLAPZRR-UHFFFAOYSA-N pentachlorophenol Chemical compound OC1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl IZUPBVBPLAPZRR-UHFFFAOYSA-N 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920002959 polymer blend Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000008707 rearrangement Effects 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 229910052702 rhenium Inorganic materials 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 235000015096 spirit Nutrition 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 2
- 239000002966 varnish Substances 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- LDVVMCZRFWMZSG-OLQVQODUSA-N (3ar,7as)-2-(trichloromethylsulfanyl)-3a,4,7,7a-tetrahydroisoindole-1,3-dione Chemical compound C1C=CC[C@H]2C(=O)N(SC(Cl)(Cl)Cl)C(=O)[C@H]21 LDVVMCZRFWMZSG-OLQVQODUSA-N 0.000 description 1
- OGQVROWWFUXRST-FNORWQNLSA-N (3e)-hepta-1,3-diene Chemical compound CCC\C=C\C=C OGQVROWWFUXRST-FNORWQNLSA-N 0.000 description 1
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical group C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- IAKOZHOLGAGEJT-UHFFFAOYSA-N 1,1,1-trichloro-2,2-bis(p-methoxyphenyl)-Ethane Chemical compound C1=CC(OC)=CC=C1C(C(Cl)(Cl)Cl)C1=CC=C(OC)C=C1 IAKOZHOLGAGEJT-UHFFFAOYSA-N 0.000 description 1
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- NALFRYPTRXKZPN-UHFFFAOYSA-N 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane Chemical compound CC1CC(C)(C)CC(OOC(C)(C)C)(OOC(C)(C)C)C1 NALFRYPTRXKZPN-UHFFFAOYSA-N 0.000 description 1
- APQIUTYORBAGEZ-UHFFFAOYSA-N 1,1-dibromoethane Chemical compound CC(Br)Br APQIUTYORBAGEZ-UHFFFAOYSA-N 0.000 description 1
- WMIQCCDZARURRI-UHFFFAOYSA-N 1,1-dichloroethane Chemical compound CC(Cl)Cl.CC(Cl)Cl WMIQCCDZARURRI-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- PAAZPARNPHGIKF-UHFFFAOYSA-N 1,2-dibromoethane Chemical compound BrCCBr PAAZPARNPHGIKF-UHFFFAOYSA-N 0.000 description 1
- KNKRKFALVUDBJE-UHFFFAOYSA-N 1,2-dichloropropane Chemical compound CC(Cl)CCl KNKRKFALVUDBJE-UHFFFAOYSA-N 0.000 description 1
- NGFUWANGZFFYHK-UHFFFAOYSA-N 1,3,3a,4,6,6a-hexahydroimidazo[4,5-d]imidazole-2,5-dione;formaldehyde Chemical compound O=C.N1C(=O)NC2NC(=O)NC21 NGFUWANGZFFYHK-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- QYLFHLNFIHBCPR-UHFFFAOYSA-N 1-ethynylcyclohexan-1-ol Chemical compound C#CC1(O)CCCCC1 QYLFHLNFIHBCPR-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical group C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- ANZPUCVQARFCDW-UHFFFAOYSA-N 2,2,4,4,6,6-hexamethyl-1,3,5,7,2,4,6,8-tetraoxatetrasilocane Chemical compound C[Si]1(C)O[SiH2]O[Si](C)(C)O[Si](C)(C)O1 ANZPUCVQARFCDW-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- USPMMJODHSTVIM-UHFFFAOYSA-N 2,3-dimethyl-6-phenyldiazenylaniline Chemical compound NC1=C(C)C(C)=CC=C1N=NC1=CC=CC=C1 USPMMJODHSTVIM-UHFFFAOYSA-N 0.000 description 1
- 239000005631 2,4-Dichlorophenoxyacetic acid Substances 0.000 description 1
- RMBFBMJGBANMMK-UHFFFAOYSA-N 2,4-dinitrotoluene Chemical compound CC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O RMBFBMJGBANMMK-UHFFFAOYSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- OZDGMOYKSFPLSE-UHFFFAOYSA-N 2-Methylaziridine Chemical compound CC1CN1 OZDGMOYKSFPLSE-UHFFFAOYSA-N 0.000 description 1
- FGLBSLMDCBOPQK-UHFFFAOYSA-N 2-nitropropane Chemical compound CC(C)[N+]([O-])=O FGLBSLMDCBOPQK-UHFFFAOYSA-N 0.000 description 1
- IBOFVQJTBBUKMU-UHFFFAOYSA-N 4,4'-methylene-bis-(2-chloroaniline) Chemical compound C1=C(Cl)C(N)=CC=C1CC1=CC=C(N)C(Cl)=C1 IBOFVQJTBBUKMU-UHFFFAOYSA-N 0.000 description 1
- BAJQRLZAPXASRD-UHFFFAOYSA-N 4-Nitrobiphenyl Chemical group C1=CC([N+](=O)[O-])=CC=C1C1=CC=CC=C1 BAJQRLZAPXASRD-UHFFFAOYSA-N 0.000 description 1
- MVXMNHYVCLMLDD-UHFFFAOYSA-N 4-methoxynaphthalene-1-carbaldehyde Chemical compound C1=CC=C2C(OC)=CC=C(C=O)C2=C1 MVXMNHYVCLMLDD-UHFFFAOYSA-N 0.000 description 1
- INYHZQLKOKTDAI-UHFFFAOYSA-N 5-ethenylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(C=C)CC1C=C2 INYHZQLKOKTDAI-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 235000011437 Amygdalus communis Nutrition 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 239000005745 Captan Substances 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 239000004803 Di-2ethylhexylphthalate Substances 0.000 description 1
- YXHKONLOYHBTNS-UHFFFAOYSA-N Diazomethane Chemical compound C=[N+]=[N-] YXHKONLOYHBTNS-UHFFFAOYSA-N 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- PDQAZBWRQCGBEV-UHFFFAOYSA-N Ethylenethiourea Chemical compound S=C1NCCN1 PDQAZBWRQCGBEV-UHFFFAOYSA-N 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920000715 Mucilage Polymers 0.000 description 1
- ZRKWMRDKSOPRRS-UHFFFAOYSA-N N-Methyl-N-nitrosourea Chemical compound O=NN(C)C(N)=O ZRKWMRDKSOPRRS-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052781 Neptunium Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000269799 Perca fluviatilis Species 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 241000220304 Prunus dulcis Species 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- ISRUGXGCCGIOQO-UHFFFAOYSA-N Rhoden Chemical compound CNC(=O)OC1=CC=CC=C1OC(C)C ISRUGXGCCGIOQO-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910008284 Si—F Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 208000013201 Stress fracture Diseases 0.000 description 1
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical compound C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 239000004830 Super Glue Substances 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- CRPUJAZIXJMDBK-UHFFFAOYSA-N Toxaphene Natural products C1CC2C(=C)C(C)(C)C1C2 CRPUJAZIXJMDBK-UHFFFAOYSA-N 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 229920010346 Very Low Density Polyethylene (VLDPE) Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 229920004482 WACKER® Polymers 0.000 description 1
- FCZGJKXPQZAAKC-UHFFFAOYSA-N [SiH4].CCOCOCC Chemical compound [SiH4].CCOCOCC FCZGJKXPQZAAKC-UHFFFAOYSA-N 0.000 description 1
- 206010000210 abortion Diseases 0.000 description 1
- 231100000176 abortion Toxicity 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 229910052768 actinide Inorganic materials 0.000 description 1
- 150000001255 actinides Chemical class 0.000 description 1
- 229910052767 actinium Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- 239000000809 air pollutant Substances 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- IYABWNGZIDDRAK-UHFFFAOYSA-N allene Chemical compound C=C=C IYABWNGZIDDRAK-UHFFFAOYSA-N 0.000 description 1
- 235000020224 almond Nutrition 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- INJRKJPEYSAMPD-UHFFFAOYSA-N aluminum;silicic acid;hydrate Chemical compound O.[Al].[Al].O[Si](O)(O)O INJRKJPEYSAMPD-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000011013 aquamarine Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910000062 azane Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 1
- 229940073608 benzyl chloride Drugs 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- INLLPKCGLOXCIV-UHFFFAOYSA-N bromoethene Chemical compound BrC=C INLLPKCGLOXCIV-UHFFFAOYSA-N 0.000 description 1
- 229950005228 bromoform Drugs 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- RFAZFSACZIVZDV-UHFFFAOYSA-N butan-2-one Chemical compound CCC(C)=O.CCC(C)=O RFAZFSACZIVZDV-UHFFFAOYSA-N 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229940117949 captan Drugs 0.000 description 1
- 229960005286 carbaryl Drugs 0.000 description 1
- CVXBEEMKQHEXEN-UHFFFAOYSA-N carbaryl Chemical compound C1=CC=C2C(OC(=O)NC)=CC=CC2=C1 CVXBEEMKQHEXEN-UHFFFAOYSA-N 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000005524 ceramic coating Methods 0.000 description 1
- 239000011153 ceramic matrix composite Substances 0.000 description 1
- 239000012700 ceramic precursor Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- BIWJNBZANLAXMG-YQELWRJZSA-N chloordaan Chemical compound ClC1=C(Cl)[C@@]2(Cl)C3CC(Cl)C(Cl)C3[C@]1(Cl)C2(Cl)Cl BIWJNBZANLAXMG-YQELWRJZSA-N 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- JGDFBJMWFLXCLJ-UHFFFAOYSA-N copper chromite Chemical compound [Cu]=O.[Cu]=O.O=[Cr]O[Cr]=O JGDFBJMWFLXCLJ-UHFFFAOYSA-N 0.000 description 1
- 150000001896 cresols Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000001162 cycloheptenyl group Chemical group C1(=CCCCCC1)* 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 150000004826 dibenzofurans Chemical class 0.000 description 1
- ZZNQQQWFKKTOSD-UHFFFAOYSA-N diethoxy(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](OCC)(OCC)C1=CC=CC=C1 ZZNQQQWFKKTOSD-UHFFFAOYSA-N 0.000 description 1
- DENRZWYUOJLTMF-UHFFFAOYSA-N diethyl sulfate Chemical compound CCOS(=O)(=O)OCC DENRZWYUOJLTMF-UHFFFAOYSA-N 0.000 description 1
- 229940008406 diethyl sulfate Drugs 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- FBSAITBEAPNWJG-UHFFFAOYSA-N dimethyl phthalate Natural products CC(=O)OC1=CC=CC=C1OC(C)=O FBSAITBEAPNWJG-UHFFFAOYSA-N 0.000 description 1
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 1
- JFYVSVZSPWHVHN-UHFFFAOYSA-N dimethyl-[methyl(trimethylsilyloxy)silyl]oxy-trimethylsilyloxysilane Chemical compound C[Si](C)(C)O[SiH](C)O[Si](C)(C)O[Si](C)(C)C JFYVSVZSPWHVHN-UHFFFAOYSA-N 0.000 description 1
- YYLGKUPAFFKGRQ-UHFFFAOYSA-N dimethyldiethoxysilane Chemical compound CCO[Si](C)(C)OCC YYLGKUPAFFKGRQ-UHFFFAOYSA-N 0.000 description 1
- 229960001826 dimethylphthalate Drugs 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- VDCSGNNYCFPWFK-UHFFFAOYSA-N diphenylsilane Chemical compound C=1C=CC=CC=1[SiH2]C1=CC=CC=C1 VDCSGNNYCFPWFK-UHFFFAOYSA-N 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- HGAAMSNBONEKLE-UHFFFAOYSA-N ethenyl-[ethenyl(dimethyl)silyl]oxy-[[ethenyl(dimethyl)silyl]oxy-dimethylsilyl]oxy-methylsilane Chemical compound C=C[Si](C)(C)O[Si](C)(C)O[Si](C)(O[Si](C)(C)C=C)C=C HGAAMSNBONEKLE-UHFFFAOYSA-N 0.000 description 1
- MBGQQKKTDDNCSG-UHFFFAOYSA-N ethenyl-diethoxy-methylsilane Chemical compound CCO[Si](C)(C=C)OCC MBGQQKKTDDNCSG-UHFFFAOYSA-N 0.000 description 1
- MOSXLDGILGBOSZ-UHFFFAOYSA-N ethenyl-methyl-phenylsilicon Chemical compound C=C[Si](C)C1=CC=CC=C1 MOSXLDGILGBOSZ-UHFFFAOYSA-N 0.000 description 1
- FIHCECZPYHVEJO-UHFFFAOYSA-N ethoxy-dimethyl-phenylsilane Chemical compound CCO[Si](C)(C)C1=CC=CC=C1 FIHCECZPYHVEJO-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000011552 falling film Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000006261 foam material Substances 0.000 description 1
- MSYLJRIXVZCQHW-UHFFFAOYSA-N formaldehyde;6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound O=C.NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 MSYLJRIXVZCQHW-UHFFFAOYSA-N 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- JLYXXMFPNIAWKQ-GNIYUCBRSA-N gamma-hexachlorocyclohexane Chemical compound Cl[C@H]1[C@H](Cl)[C@@H](Cl)[C@@H](Cl)[C@H](Cl)[C@H]1Cl JLYXXMFPNIAWKQ-GNIYUCBRSA-N 0.000 description 1
- JLYXXMFPNIAWKQ-UHFFFAOYSA-N gamma-hexachlorocyclohexane Natural products ClC1C(Cl)C(Cl)C(Cl)C(Cl)C1Cl JLYXXMFPNIAWKQ-UHFFFAOYSA-N 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- CKAPSXZOOQJIBF-UHFFFAOYSA-N hexachlorobenzene Chemical compound ClC1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl CKAPSXZOOQJIBF-UHFFFAOYSA-N 0.000 description 1
- VHHHONWQHHHLTI-UHFFFAOYSA-N hexachloroethane Chemical compound ClC(Cl)(Cl)C(Cl)(Cl)Cl VHHHONWQHHHLTI-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000003845 household chemical Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical class [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- PQPVPZTVJLXQAS-UHFFFAOYSA-N hydroxy-methyl-phenylsilicon Chemical compound C[Si](O)C1=CC=CC=C1 PQPVPZTVJLXQAS-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052909 inorganic silicate Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- CUSDLVIPMHDAFT-UHFFFAOYSA-N iron(3+);manganese(2+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Mn+2].[Fe+3].[Fe+3] CUSDLVIPMHDAFT-UHFFFAOYSA-N 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- GVILRDNUHSXADM-UHFFFAOYSA-N iron;oxoantimony Chemical compound [Fe].[Sb]=O GVILRDNUHSXADM-UHFFFAOYSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 239000010443 kyanite Substances 0.000 description 1
- 229910052850 kyanite Inorganic materials 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 229960002809 lindane Drugs 0.000 description 1
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical class CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000011156 metal matrix composite Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 229940102396 methyl bromide Drugs 0.000 description 1
- 229940050176 methyl chloride Drugs 0.000 description 1
- HAMGRBXTJNITHG-UHFFFAOYSA-N methyl isocyanate Chemical compound CN=C=O HAMGRBXTJNITHG-UHFFFAOYSA-N 0.000 description 1
- OKHRRIGNGQFVEE-UHFFFAOYSA-N methyl(diphenyl)silicon Chemical compound C=1C=CC=CC=1[Si](C)C1=CC=CC=C1 OKHRRIGNGQFVEE-UHFFFAOYSA-N 0.000 description 1
- QRLBICHXRCOJDU-UHFFFAOYSA-N methyl(phenyl)silane Chemical compound C[SiH2]C1=CC=CC=C1 QRLBICHXRCOJDU-UHFFFAOYSA-N 0.000 description 1
- NFWSQSCIDYBUOU-UHFFFAOYSA-N methylcyclopentadiene Chemical compound CC1=CC=CC1 NFWSQSCIDYBUOU-UHFFFAOYSA-N 0.000 description 1
- 230000001343 mnemonic effect Effects 0.000 description 1
- 229910000096 monohydride Inorganic materials 0.000 description 1
- HDZGCSFEDULWCS-UHFFFAOYSA-N monomethylhydrazine Chemical compound CNN HDZGCSFEDULWCS-UHFFFAOYSA-N 0.000 description 1
- KBJFYLLAMSZSOG-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)aniline Chemical compound CO[Si](OC)(OC)CCCNC1=CC=CC=C1 KBJFYLLAMSZSOG-UHFFFAOYSA-N 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 239000010434 nepheline Substances 0.000 description 1
- 229910052664 nepheline Inorganic materials 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- SJYNFBVQFBRSIB-UHFFFAOYSA-N norbornadiene Chemical compound C1=CC2C=CC1C2 SJYNFBVQFBRSIB-UHFFFAOYSA-N 0.000 description 1
- 125000003518 norbornenyl group Chemical group C12(C=CC(CC1)C2)* 0.000 description 1
- VMPITZXILSNTON-UHFFFAOYSA-N o-anisidine Chemical compound COC1=CC=CC=C1N VMPITZXILSNTON-UHFFFAOYSA-N 0.000 description 1
- 150000002884 o-xylenes Chemical class 0.000 description 1
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 1
- LCCNCVORNKJIRZ-UHFFFAOYSA-N parathion Chemical compound CCOP(=S)(OCC)OC1=CC=C([N+]([O-])=O)C=C1 LCCNCVORNKJIRZ-UHFFFAOYSA-N 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- LKPLKUMXSAEKID-UHFFFAOYSA-N pentachloronitrobenzene Chemical compound [O-][N+](=O)C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl LKPLKUMXSAEKID-UHFFFAOYSA-N 0.000 description 1
- IMACFCSSMIZSPP-UHFFFAOYSA-N phenacyl chloride Chemical compound ClCC(=O)C1=CC=CC=C1 IMACFCSSMIZSPP-UHFFFAOYSA-N 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-N phosphoramidic acid Chemical compound NP(O)(O)=O PTMHPRAIXMAOOB-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 238000007539 photo-oxidation reaction Methods 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 1
- 239000002984 plastic foam Substances 0.000 description 1
- 239000011120 plywood Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 239000006254 rheological additive Substances 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000003335 secondary amines Chemical group 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- 239000012686 silicon precursor Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 239000010435 syenite Substances 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 238000012956 testing procedure Methods 0.000 description 1
- 150000003527 tetrahydropyrans Chemical group 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 1
- JCVQKRGIASEUKR-UHFFFAOYSA-N triethoxy(phenyl)silane Chemical compound CCO[Si](OCC)(OCC)C1=CC=CC=C1 JCVQKRGIASEUKR-UHFFFAOYSA-N 0.000 description 1
- UDUKMRHNZZLJRB-UHFFFAOYSA-N triethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OCC)(OCC)OCC)CCC2OC21 UDUKMRHNZZLJRB-UHFFFAOYSA-N 0.000 description 1
- QQQSFSZALRVCSZ-UHFFFAOYSA-N triethoxysilane Chemical compound CCO[SiH](OCC)OCC QQQSFSZALRVCSZ-UHFFFAOYSA-N 0.000 description 1
- AJSTXXYNEIHPMD-UHFFFAOYSA-N triethyl borate Chemical compound CCOB(OCC)OCC AJSTXXYNEIHPMD-UHFFFAOYSA-N 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- LTOKKZDSYQQAHL-UHFFFAOYSA-N trimethoxy-[4-(oxiran-2-yl)butyl]silane Chemical compound CO[Si](OC)(OC)CCCCC1CO1 LTOKKZDSYQQAHL-UHFFFAOYSA-N 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 125000004417 unsaturated alkyl group Chemical group 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- ORGHESHFQPYLAO-UHFFFAOYSA-N vinyl radical Chemical class C=[CH] ORGHESHFQPYLAO-UHFFFAOYSA-N 0.000 description 1
- UKRDPEFKFJNXQM-UHFFFAOYSA-N vinylsilane Chemical compound [SiH3]C=C UKRDPEFKFJNXQM-UHFFFAOYSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
- CHJMFFKHPHCQIJ-UHFFFAOYSA-L zinc;octanoate Chemical compound [Zn+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O CHJMFFKHPHCQIJ-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
- C04B35/571—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62222—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/14—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3272—Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3409—Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3427—Silicates other than clay, e.g. water glass
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3427—Silicates other than clay, e.g. water glass
- C04B2235/3436—Alkaline earth metal silicates, e.g. barium silicate
- C04B2235/3445—Magnesium silicates, e.g. forsterite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3427—Silicates other than clay, e.g. water glass
- C04B2235/3436—Alkaline earth metal silicates, e.g. barium silicate
- C04B2235/3454—Calcium silicates, e.g. wollastonite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3427—Silicates other than clay, e.g. water glass
- C04B2235/3463—Alumino-silicates other than clay, e.g. mullite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3427—Silicates other than clay, e.g. water glass
- C04B2235/3463—Alumino-silicates other than clay, e.g. mullite
- C04B2235/3472—Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/36—Glass starting materials for making ceramics, e.g. silica glass
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/386—Boron nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/402—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/424—Carbon black
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/442—Carbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/12—Polysiloxanes containing silicon bound to hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/20—Polysiloxanes containing silicon bound to unsaturated aliphatic groups
Definitions
- the present inventions relate to polyorganic compositions, structures and materials; polymer derived preceramsc and ceramic materials; and in particular po!ysi!ocarb compositions, structures and materials.
- the present inventions further relate to coatings, films and coating bases made from these compositions and materials.
- embodiments of the present inventions include: black ceramics having silicon, oxygen and carbon; polysilocarb coatings; polysilocarb coatings having these black ceramics; polysilocarb coatings having other additives, colorants and colored pigments; polymer derived ceramic coatings; and, polysilocarb coatings that are free from having any pigments, fillers or other additives; methods of making these; and devices, structures and apparatus that have, or are coated with, or otherwise utilize, these compositions as for example paints, inks, coatings, layers and adhesives.
- color As used herein, unless stated otherwise, the terms “color,” “colors” “coloring” and similar such terms are be given their broadest possible meaning and would include, among other things, the appearance of the object or material, the color imparted to an object or material by an additive, methods of changing, modifying or affecting color, the reflected refracted and transmitted wavelength(s) of light detected or observed from an object or material, the reflected refracted and transmitted spectrum(s) of light detected or observed from an object or material, all colors, e.g.
- the terms “black”, “blackness”, and similar such terms are to be given there broadest possible meanings, and would include among other things, the appearance of an object, color, or material: that is substantially the darkest color owing to the absence, or essential absence of, or absorption, or essential abortion of light; where the reflected refracted and transmitted spectrum(s) of light detected or observed from an object or material has no, substantially no, and essentially no light in the visible wavelengths; the colors that are considered generally black in any color space characterization scheme, including the colors that are considered generally black in L a b color space, the colors that are considered generally black in the Hunter color space, the colors that are considered generally black in the CIE color space, and the colors that are considered generally black in the CIELAB color space; any color, or object or material, that matches or
- gloss is to be given its broadest possible meaning, and would include the appearance from specular reflection. Generally the reflection at the specular angle is the greatest amount of light reflected for any specific angle. In general, glossy surfaces appear darker and more chromatic, while matte surfaces appear lighter and less chromatic.
- the term “Jetness” is to be given its broadest possible meaning, and would include among other things, a Color independent blackness value as measured by M y (which may also be called the “blackness value”), or M c , the color dependent blackness value, and M y and c values obtained from following DIN 55979 (the entire disclosure of which is incorporated herein by reference).
- visual light refers to light having a wavelength that is visible, e.g., perceptible, to the human eye, and includes light generally in the wave length of about 390 nm to about 770 nm.
- paint is to be given its broadest possible meaning, and would include among other things, a liquid composition that after application as a thin layer to a substrate upon drying forms a thin film on that substrate, and includes all types of paints such as oil, acrylic, latex, enamels, varnish, water reducible, alkyds, epoxy, poiyester-epoxy, acrylic-epoxy, polyamide-epoxy, urethane-modified alkyds, and acrylic-urethane.
- paints such as oil, acrylic, latex, enamels, varnish, water reducible, alkyds, epoxy, poiyester-epoxy, acrylic-epoxy, polyamide-epoxy, urethane-modified alkyds, and acrylic-urethane.
- plastic is to be given its broadest possible meaning, and would include among other things, synthetic or semi-synthetic organic polymeric materials that are capable of being molded or shaped, thermosetting, thermoforming, thermoplastic, orientable, biaxially orientable, polyolefins, polyamide, engineering plastics, textile adhesives coatings (TAC), plastic foams, styrenic alloys, acrylonitrile butadiene styrene (ABS), polyurethanes, polystyrenes, acrylics, polycarbonates (PC), epoxies, polyesters, nylon, polyethylene, high density polyethylene (HDPE), very low density polyethylene (VLDPE), low density polyethylene (LDPE), polypropylene (PP), polyvinyl chloride (PVC), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), poly ether ethyl ketone (PEEK), poly
- the term "ink” is to be given its broadest possible meaning, and would include among other things, a colored liquid for marking or writing, toner (solid, powder, liquid, etc) for printers and copiers, and colored solids that are used for marking materials, pigment ink, dye ink, tattoo ink, pastes, water-based, oil-based, rubber-based, and acrylic- based.
- nail polish and similar such terms, are to be given its broadest term, and would include all types of materials, coatings and paints that can be applied to, or form a film, e.g., a thin film, on the surface of a nail, including natural human nails, synthetic "fake” nails, and animal nails.
- adheresive is to be given its broadest possible meaning, and would include among other things, substances (e.g., liquids, solids, plastics, etc.) that are applied to the surface of materials to hold them together, a substance that when applied to a surface of a material imparts tack or stickiness to that surface, and includes ail types of adhesives, such as naturally occurring, synthetic, glues, cements, paste, mucilage, rigid, semi-rigid, flexible, epoxy, urethane, methacrylate, instant adhesives, super glue, permanent, removable, and expanding.
- substances e.g., liquids, solids, plastics, etc.
- a substance that when applied to a surface of a material imparts tack or stickiness to that surface
- ail types of adhesives such as naturally occurring, synthetic, glues, cements, paste, mucilage, rigid, semi-rigid, flexible, epoxy, urethane, methacrylate, instant adhesives, super glue, permanent, removable, and
- the term “coating” is to be given its broadest possible meaning, and would include among other things, the act of applying a layer to a substrate, any material that is applied as a layer, film, or covering (partial or total) to a surface of a substrate, and includes inks, paints, and adhesives, powder coatings, foam coatings, liquid coatings.
- the term “coating” includes the layer, film, or thin covering (partial or total) and any layer like volumetric structure, that is formed on a surface, a surface of a substrate, a substrate or is formed for later application to a substrate or surface.
- the substrates can essentially be any object, shape, material, apparatus, structure, device, etc., and can have many different forms and shapes.
- sparkle is to be given its broadest possible meaning, and would include among other things, multi angle reflections simultaneously imparted from the surface facets.
- room temperature is 25°C.
- standard ambient temperature and pressure is 25°C and 1 atmosphere. Unless expressly stated otherwise all tests, test results, physical properties, and values that are temperature dependent, pressure dependent, or both, are provided at standard ambient temperature and pressure, this would include viscosities.
- %, weight % and mass % are used interchangeably and refer to the weight of a first component as a percentage of the weight of the total, e.g., formulation, mixture, material or product.
- volume % and % volume refer to the volume of a first component as a percentage of the volume of the total, e.g., formulation, material or product.
- liquid composition for forming high temperature crack resistant coatings having: methyl hydrogen fluid; a polysilocarb having vinyl groups; a filler; a wetting agent for the filler; and, a catalysis; wherein the composition is capable of forming a coating on a substrate, whereby the coating will not have visible cracks under 25x magnification when heated to 300 °C.
- compositions and methods having one or more of the following features: wherein the composition is essentially VOC free; wherein the composition is VOC free; wherein the composition is essentially HAP free; wherein the composition is HAP free;
- composition is essentially TAP free; wherein the composition is TAP free; having at least about 50% by volume filler; having at least about 30% by volume filler; having at least about 20% by volume filler; wherein the liquid composition is at least about 90 percent solids; wherein the liquid composition is at least about 95 percent solids; wherein the liquid composition is at least about 99 percent solids; wherein the liquid composition is 100 percent solids; whereby the coating will not have visible cracks under 25x magnification when heated to 400 °C; whereby the coating will not have visible cracks under 40x magnification when heated to 400 °C; whereby the coating will not have visible cracks under 75x magnification when heated to 400 °C; whereby the coating will not have visible cracks under 25x magnification when heated to 500 °C; whereby the coating will not have visible cracks under 40x magnification when heated to 500 °C; and, whereby the coating will not have visible cracks under 75x magnification when heated to 500 °C (the absence of cracks in
- liquid composition for forming high temperature crack resistant coatings, the liquid composition having: methyl hydrogen fluid; a polysilocarb having vinyl groups; at least about 40% by volume of a filler; wherein the coating is at least about 95 percent solids; and, the liquid composition defining a viscosity profile of from about 4,000 to 6000 cps at 10 rpm, about 2000 to about 5000 at 20 rpm, about 2000 to about 5000 at 50 rpm, and about 1 ,500 to about 4000 at 100 rpm.
- liquids, compositions and methods having one or more of the following features: wherein the liquid composition is about 98 percent solids; wherein the composition is capable of forming a coating on a substrate, whereby the coating will not have visible cracks under 25x magnification when heated to 300 °C; whereby the coating will not have visible cracks under 25x magnification when heated to 300 °C; whereby the coating will not have visible cracks under 40x magnification when heated to 300 °C; whereby the coating will not have visible cracks under 75x magnification when heated to 300 °C; and wherein the polysilocarb having vinyl groups is selected from the group consisting of a polysilocarb having the formula
- liquids, compositions and methods having one or more of the following features: wherein the polysilocarb having vinyl groups is a dimethyl polysiloxane; wherein the polysilocarb having vinyl groups is a vinyl methyl polysiloxane; having a filler wetting agent: wherein the filler wetting agent has an octyl triethoxysilane having the chemical formula of Ci 4 H 32 03Si: and, wherein the filler wetting agent has an ethyl trieoxysilane having the chemical formula of CsH oOsSi.
- liquid composition for forming high temperature crack resistant coatings, the liquid composition having: a polysilocarb precursor; and, at least about 0% filler; wherein the liquid
- composition is at least about 95 percent solids; and, wherein the composition is capable of forming a coating on a substrate, whereby the coating will not have visible cracks under 25x magnification when heated to 300 °C.
- liquids, compositions and methods having one or more of the following features: wherein the liquid composition defines a viscosity profile of from about 4,000 to 8000 cps at 10 rpm, about 2000 to about 5000 cps at 20 rpm, about 2000 to about 5000 cps at 50 rpm, and about 1 ,500 to about 4000 cps at 100 rpm.
- liquids, compositions and methods having one or more of the following features: wherein the polysilocarb precursor is selected from the group consisting of a polysilocarb having the formula
- liquid composition for forming high temperature crack resistant coatings, the liquid composition having: a polysilocarb precursor; and, at least about 10% filler; wherein the liquid composition is at least about 95 percent solids; and, wherein the liquid
- composition defining a viscosity profile of from about 4,000 to 6000 cps at 10 rpm, about 2000 to about 5000 cps at 20 rpm, about 2000 to about 5000 cps at 50 rpm, and about 1 ,500 to about 4000 cps at 100 rpm.
- liquids, compositions and methods having one or more of the following features: having at least about 25% filler; and having at least about 40% filler.
- liquid composition for forming high temperature crack resistant coatings, the liquid composition having: a polysilocarb precursor formulation; a filler; and wherein the liquid composition is at least 98 percent solids.
- compositions and methods having one or more of the following features: wherein the composition is capable of forming a coating on a substrate, whereby the coating withstands at least 1 ,000 hours of continuous exposure to a neutral salt spray at 40 °C without degradation; wherein the composition is capable of forming a coating on a substrate, whereby the coating can withstand a temperature up to at least 1 ,200 °F with a DE of less than 1 .5 color difference; wherein the composition is capable of forming a coating on a substrate, whereby the coating has a pencil hardness of at least 9h; wherein the composition is capable of forming a coating on a substrate, whereby the coating has a pencil hardness of at least 6h; wherein the composition is capable of forming a coating on a substrate, whereby the coating has a pencil hardness of form about 9h to bout 6h; wherein the composition is capable of forming a coating on a substrate, whereby the coating has a scratch resistance
- composition is capable of forming a coating on a substrate, whereby the coating can withstand a temperature up to at least 1 ,200 °F with a DE of less than 1 .5 color difference; wherein the composition is capable of forming a coating on a substrate, whereby the coating withstands at least 1 ,000 hours of continuous exposure to a neutral salt spray at 40 °C without degradation; and, wherein the composition is capable of forming a coating on a substrate, whereby the coating can withstand a temperature up to at least 1 ,200 °F with a DE of less than 1 ,5 color difference,
- liquids, compositions and methods having one or more of the following features; wherein the filler is selected from the group consisting of muliite, pyrophyllite, sillimanite,
- wollastonite calcium carbonate, mica, diatomite, talc, titanium dioxide, and inorganic pigments.
- liquids, compositions and methods having one or more of the following features; wherein the filler is selected from the group consisting of borates, boronic acid, chromates, mica, glass flake, talc, micaceous iron oxide, boron nitride, aluminum flake, corrosion inhibitors, zinc dust, and zinc silicates.
- the filler is selected from the group consisting of borates, boronic acid, chromates, mica, glass flake, talc, micaceous iron oxide, boron nitride, aluminum flake, corrosion inhibitors, zinc dust, and zinc silicates.
- FIG. 1 is a perspective view of an embodiment of a furnace unit with high temperature doors, both having high temperature coatings utilizing the poiysiiocarb binder in accordance with the present inventions.
- FIG, 2 is a perspective view of an embodiment of an exhaust manifold having a high temperature coating utilizing the polysilocarb binder in accordance with the present inventions.
- FIG. 3 is a perspective view of an embodiment of a BBQ grill having a high temperature coating utilizing the polysilocarb binder in accordance with the present inventions.
- the present inventions relate to unique and novel silicon (Si) based materials that are easy to manufacture, handle and have surprising and unexpected properties and applications.
- Si silicon
- These silicon based materials have applications and utilizations as a liquid material, a cured material, e.g., a plastic, a preceramic, and a pyrolized material, e.g., a ceramic.
- a cured material e.g., a plastic
- a preceramic e.g., a preceramic
- a pyrolized material e.g., a ceramic
- embodiments of these Si based compositions have applications as coatings, both neat and filled, and further such coatings have applications as high temperature coatings.
- PDC polymer derived ceramic
- Embodiments the PDC based coatings of the present inventions, and in particular high temperature embodiments, have good, and excellent elasticity properties, e.g., they can deform with their substrate without cracking or pealing off, they are hard and very hard, and they are abrasive resistant, among other features and properties.
- Embodiments of these high temperature coatings preferably are "polysilocarb” materials, e.g., material containing silicon (Si), oxygen (O) and carbon (C), and embodiments of such materials that have been cured, and embodiments of such materials that have been pyrolized. Polysilocarb materials may also contain other elements. Polysilocarb materials are made from one or more polysilocarb precursor formulation or precursor formulation. The
- polysilocarb precursor formulation contains one or more functionalized silicon polymers, or monomers, non-silicon based cross linkers, as well as, potentially other ingredients, such as for example, inhibitors, catalysts, fillers, dopants, modifiers, initiators, reinforcers, fibers, particles, colorants, pigments, dies, polymer derived ceramics ("PDC”), ceramics, metals, metal complexes, and combinations and variations of these and other materials and additives.
- PDC polymer derived ceramics
- the coating in use or during curing in the presence of Oxygen, the coating may be heated to a temperature where the carbon is removed from the formulation, e.g., 300 °C, at which point the polysilocarb coating becomes, is essential, and in preferred cases entirely silicon and oxygen, e.g., having an -Si- O-Si- back bone, cross-linked, and both structure.
- a polysilocarb coating is applied to a substrate and during use in a high
- the polysilocarb coating is transitioned while on the substrate into a polysiloxane film, and provides thermal and other protections to the substrate.
- a polysilocarb containing coating that is capable of being transition to a silica, a siloxane, and polysiloxane film during intended high temperature use of the coated substrate.
- the coating can consist of silica embedded with fillers and pigment, typically a black pigment.
- preferred embodiments of the high temperature SiOC coatings can be heid at these temperatures in the range of about 30 min to 2 days, in the range of about 30 min to 1 day, in the range of about 1 hr to about 1 day, in the range of 1 hr to about 4 hr, for more than 30 min., more than 1 hr., more than 2 hrs,, more than 4 hrs,, more than 1 day, and more than a week, without showing cracking, peeling, or discoloration, or diminution of performance.
- Embodiments of these coatings can be in the range of about 1 mil thick to about 400 mils, in the range of about 1 mil thick to about 50 mils, in the range of about 10 mils thick to about 300 mils, from about 1 mil thick and greater, (1 mil is about 0,0254 mm), about 10 mils thick and greater, about 100 mils thick and greater, from about 0.01 mils to about 400 mils, and greater and thinner thickness.
- the coating can be a single layer, having any of these thicknesses, or can be one, two, three, tens, or more layers.
- the layers can be the same or different thickness.
- the layers can be the same of different SiOC formulation, or can include non-SiOC formulations.
- the elastic properties of the SiOC coatings, as cured, provides the ability for excellent single and multi-layer adhesion to surfaces and between layers during heating and cooling cycles of the substrate, e.g., adhesion to the substrate, as well as, layer to layer adhesion during thermal expansion and contraction.
- the elastic properties of the SiOC further provides the ability to have thicker single layers that was obtainable by some prior coats.
- the ability of a coating to expand and contract similarly to the substrate can be an important features in applications, and in some application is a preferred and most preferred propperty. This property helps to keep the coating on the surface.
- the adhesion of the surface in embodiments can come from the silane in the formulation
- the silane in embodiments of the formulations has an affinitly to the metal oxide on the surface of a metal substrate, on one end of the sllane and an affinity to the silicone based resins on the other end.
- the one end of the silane is attached to the surface of the metail substrate and the other to the coating's silianes.
- the blend of silanes, that is preselected or predetermined, to match embodiments of the present polysilocarb resins can enhance, and in embodiments be important, to the success of the binder as a whole.
- Embodiments of these coatings are crack resistant. Thus, they do not crack when exposed to high temperature, and further do not crack when the substrate is subject to deformation, e.g., it is bent or vibrated. Further the avoid cracking under acid, UV or harsh environmental conditions.
- SiOC binders that are mixed with up to 50% pigment by volume concentration of filler materials, such as clay, talc, wollastantse, glass flake or mica, as well as other additives, provide SiOC coatings that can be highly crack resistant.
- an SiOC coating includes any coatings that have, or include, an SiOC binder, base, or resin as part of their composition or formulation.
- Embodiments of these coatings have good and excellent adhesion properties to many substrates.
- These substrates will include for example, metals, ceramics, plastics, refractory materials, wood, composites (e.g., carbon fiber composites, glass fiber composites, ceramic-matrix composites, metal matrix composites, etc.), and further include stainless steel, mild steel, cast iron, aluminum, titanium, Inconel, mnemonic, copper, brass, fiber glass, carbon composites, and carbon fiber.
- the SiOC coatings will readily adhere to metals substrates.
- the SiOC coatings can be further modified, or have specific adhesion promoters added to them so that the can adhere to these non-metal substrates.
- Embodiments of these coatings including the high temperature SiOC coatings can find applications on articles such as valves, pipes, valve seats, tank linings, cooking equipment (e.g., BBQs, or pots and pans), exhaust systems, engine parts, automotive parts, flange surfaces, slip joints, bolt holes, breaks, motors, high temperature parts, aviation components, rocket
- Embodiments of these coatings including the high temperature SiOC coatings, have thermal properties that allow for rapid temperature shock without cracking and have enough flexibility to not crack when the component vibrates or twists due to natural causes.
- Embodiments of these coatings are oxidation resistant, and for the high temperature coating embodiments, will have lower or less oxidation than non-SiOC based coatings, and preferably will not noticeably (e.g., as preserved by the eye, through a greying color change) oxidize at these temperatures, thickness and times set forth in this specification.
- an SiOC coating resists color deterioration to a delta E of less than 1 ,5 after 1 ,000 hours of exposure at 1200'F of a (new) film exposed for only 20 hours to 650'C using the testing procedures of ASTM D4587, the entire dsslcosure of which is incorporated herein by reference,
- Embodiments of these coatings can be solvent free, or can be solvent based, with the solvents preferably including water, and solvents classified or listed as HAP free, TAP free and both, and can have 60 percent solids or more, 90 percent solids or more, 95 percent solids or more, 99 percent solids or more, and preferably 100 percent solids.
- percent solids refers to the final yield content of the liquid coating formulation to the solid, e.g., dried/cured, coating.
- 100 percent solids solids means no solvent or component is lost during cure, so everything that is put down, stays down on the coated substrate during and after curing.
- 100 percent solids is the preferred embodiment for low VOC's, HAP's, TAP's in the practice.
- the denominator in a percentage solvents calculation is ⁇ the mass of formulated component input on the substrate, ⁇ and the numerator is the ⁇ mass of post-cured coating output remaining on the same substrate.
- the term cured yield % can also be used to describe percent solids, with a cured yield of 100% being equivalent to 100 percent solids.
- Embodiments of these coatings include the high temperature SiOC coatings, have less than about 10%, less than about 5%, less than about 2%, less than about 1 %, and less than about 0.01 % VOCs (Volatile Organic Compounds); and can be fully VOC compliant, under any governmental standard, industrial guideline, or regulatory requirement relating to VOCs, including 40 C.F.R. ⁇ 51 et. seq.
- VOCs would include any compound of carbon, excluding carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, and ammonium carbonate, which participates in atmospheric photochemical reactions.
- VOCs examples include among other things, Acetone, Benzene, Ethylene glycol, Formaldehyde, Methylene chloride, Perchloroethylene, Toluene, Xylene and 1 ,3-butadiene
- Embodiments of these coatings include the high temperature SiOC coatings, have less than about 10%, less than about 5%, less than about 2%, less than about 1 %, and less than about 0.01 % HAPs (Hazardous Air Pollutants); and can be fully HAP complainant, under any governmental standard, industrial guideline, or regulatory requirement relating to HAPs.
- HAPs Hazardous Air Pollutants
- HAPs can include among other things, the substances the following Table:
- Embodiments of these coatings include the high temperature SiOC coatings, have less than about 10%, less than about 5%, less than about 2%, less than about 1 %, and less than about 0.01 % TAPs (Toxic Air Pollutants); and can be fully TAP complainant, under any governmental standard, industrial guideline, or regulatory requirement relating to TAPs.
- TAPs Total Air Pollutants
- Embodiments of the high temperature SiOC coatings do not have burn offs at the temperatures, thickness, and times set forth in this specification.
- Embodiments of these coatings are rust inhibiting.
- Embodiments of these coatings, including the high temperature SiOC coatings can meet, one, two, or more, and all of the following AST features, or performance criteria.
- ASTM B1 17 salt fog corrosion testing - need to pass 1 ,000 hours to 5000 hours of continuous exposure to a Nuetral Salt Spray at 40'C by having no defect in the coating outside of the scribe.
- Embodiments of the present coatings preferably also meet more aggressive cyclic corrosion testing which is conducted by the customer in their own equipment to demonstrate corrosion resistance more closely aligned with actual end use conditions,
- ASTM D13008 must not have permanent deformation when exposed to household chemicals, solvents, acids or bases.
- Cross hatch ASTM D3359 must not have any film removed with tape pull, 4b.
- Pull tab ASTM D4541 must not have any film removed.
- the present inventions relate to coatings, paint bases, and film forming materials that meet one, two, three, or more, and all of the above ASTM standards, and are made from or include the precursors to preceramic materials, inorganic polymers, inorganic semi-organic polymers, organosiicon materials and polymers, mixtures of such precursors, preceramic materials, cured preceramic materials, cured mixtures of precursors, cured inorganic polymers, cured inorganic semi-organic polymers, ceramic materials, and methods and processes for making these precursors, inorganic polymers, inorganic semi-organic polymers, mixtures, preceramic materials, cured materials and ceramic materials.
- embodiments of the coatings, paint bases, and film forming materials of the present inventions include polymer derived ceramic materials, polymer derived cured preceramic materials, precursors to polymer derived preceramic and ceramic materials, mixtures of precursors to polymer derived preceramic and ceramic materials, and methods and processes relating to these materials,
- the polysilocarb precursor formulation is cured to form a solid or semi-sold coating, e.g., layer, or film, on a substrate.
- the polysilocarb precursor formulation may be processed through an initial cure, to provide a partially cured material, which may also be referred to, for example, as a green material, or green cure (not implying anything about the material's color).
- the green material may then be further cured.
- one or more curing steps may be used.
- the material may be "end cured," i.e., being cured to that point at which the coating has the necessary physical strength and other properties for its intended purpose.
- the amount of curing may be to a final cure (or "hard cure"), i.e., that point at which all, or essentially all, of the chemical reaction has stopped (as measured, for example, by the absence of reactive groups in the material, or the leveling off of the decrease in reactive groups over time).
- a layer of the material may be cured to varying degrees, for example in a multi-layer
- the layers can be green cured to promote layer adhesion, then finally cured to a hard cure.
- the end cure and the hard cure may be the same.
- Each layer in a multi-layer coating can be cured to the same degree of cure, to different degrees of cure, subject to one, two, three or more curing steps, and combinations and variations of these.
- the curing may be done at standard ambient temperature and pressure ("SATP", 1 atmosphere, 25° C), at temperatures above or below that temperature, at pressures above or below that pressure, and over varying time periods (both continuous and cycled, e.g., heating followed by cooling and reheating), from less than a minute, to minutes, to hours, to days (or potentially longer), and in air, in liquid, or in a preselected atmosphere, e.g., Argon (Ar) or nitrogen (Na), the atmosphere can be flow, can have off gasses removed or can be sealed.
- Curing can be done, in multi-layer embodiments on a layer-by-layer basis, on all layers at once, and combinations and variations of these.
- the the polysilocarb coating material e.g., precursor batch, precursor, formulation, bulk liquid, etc.
- the polysilocarb coating material can have sufficient inhibitors present, or the absence of a catalyst, to provide the required shelf life for the material in storage.
- steps can be taken to cause curing at the desired and preferably predetermined rate.
- a two part system can be used where a catalyst is added to the polysilocarb material prior to application to the substrate, in this embodiment the catalyzed formulation as applied can preferably be cured at room
- the formulation in bulk can be such (e.g., amounts of vinyls, hydrides or other reactive groups, catalyst, and inhibitors to name a few) that curing does not occur until an exotherm is reached at which point the curing carries forward to completion, in this embodiment a heat source can be applied to heat the coating and initiate the exotherm.
- a heat source can be applied to heat the coating and initiate the exotherm.
- an initiator maybe present on the substrate that initiates or regulates the curing of the coating.
- the formulation itself may be such that curing can be accomplished at a predetermined temperature without the need for a catalyst, or the addition of catalyst prior to or during the application of the formulation as a coating, e.g., a one component system.
- the atmosphere present during curing and in contact with the coating can promote, regulate, cause or initiate the curing.
- Heating sources can be light, e.g., broad spectrum while light, UV light, !R light, coherent electromagnetic radiation (e.g. lasers) convection heating, and other source of paint, ink and coating drying and curing know to the arts.
- the bulk polysilocarb precursor formulation can be applied as a coating, layer or film, to a structure, part, intermediate, or end product, the polysilocarb formulation can be, for example, sprayed, flowed, thermal sprayed, painted, brushed, formed, rolled, extruded, roll coated, knife coated, or otherwise manipulated into essentially any coating, layer, and planer shape (which still has a volume, but is more akin to a coating, skin, film, or even a counter top, where the thickness is significantly smaller, if not orders of magnitude smaller, than the shapes other dimensions), and combinations and variations of these.
- the polysilocarb precursor formulations can be made into non- reinforced, non-filled, composite, reinforced, and filled coatings on structures, intermediates and end products, and combinations and variations of these and other types of materials.
- the precursor formulations may be used to form a "neat” material, (by “neat” material it is meant that all, and essentially ail of the structure is made from the precursor material or unfilled formulation; and thus, there are no fillers or reinforcements) to be used as a part of, or as a coating. They may be used to form composite materials, e.g., reinforced coatings. They may be used to form non-reinforced coatings, which are coatings that are made of primarily, essentially, and preferably only from the precursor materials, for example a pigmented polysiloxane coating having only precursor material and a colorant would be considered non-reinforced coating.
- the polysilocarb precursor formulations may be used with reinforcing materials to form composite layers or coatings.
- the formulation may be flowed into, impregnated into, absorbed by or otherwise combined with a thin reinforcing material, such as carbon fibers, glass fiber, woven fabric, non-woven fabric, copped fibers, fibers, rope, braided structures, ceramic powders, glass powders, carbon powders, graphite powders, ceramic fibers, metal powders, carbide pellets or components, staple fibers, tow, nanostructures of the above, PDCs, any other materlal that meets the
- the reinforcing materials may be any of the high temperature resistant reinforcing materials currently used, or capable of being used with, existing plastics and ceramic composite materials.
- the polysilocarb precursor formulation may be formulated for a lower temperature cure (e.g., SATP) or a cure temperature of for example about 100° F to about 400 * F
- the reinforcing material may be polymers, organic polymers, such as nylons, polypropylene, and polyethylene, as well as aramid fibers, such as NO EX or KEVLAR.
- the reinforcing material may also be made from, or derived from the same material as the formulation that has been formed into a fiber, cured into a solid, pyrolized into a ceramic, or it may be made from a different precursor formulation material, which has been formed into a fiber, pyrolized into a ceramic and combinations and variations of these, in addition to ceramic fibers derived from the precursor formulation materials that may be used as reinforcing material, other porous, substantially porous, and non-porous ceramic structures derived from a precursor formulation material may be used.
- the presently preferred embodiments of the present coatings, and in particular the high temperature coatings are essentially non-porous and form barriers to, and protect the substrate from, environmental conditions, such as oxidation, the environment, caustics or acids, etc. Porous coatings, including high temperature porous coatings are also contemplated. Thus, an essentially non-porous coating has less than 0,01 volume % porosity, less than 0.001 % volume porosity.
- an essentially non-porous coating has an average pore size in the range from about 0,01 jm to about 0.0001 ⁇ , in the range from about 0.01 ⁇ to about 0.005 ⁇ , in the range from about 0.01 ⁇ to about 0.001 ⁇ , of less than about 0.01 ⁇ , less than about 0,001 ⁇ and less than about 0.0001 ⁇ .
- the polysilocarb precursor formulation may be used to form a filled coating.
- a filled coating would be any coating having other solid, or semisolid, materials added to the polysilocarb precursor formulation.
- the filler material may be selected to provide certain features to the cured coating, the ceramic product or both.
- the filler material may not affect the strength of the cured or ceramic material, it may add strength, or could even reduce strength in some situations.
- the filler material could impart color, magnetic capabilities, fire resistances, flame retardance, heat resistance, electrical conductivity, anti-static, optical properties (e.g., reflectivity, refractivity and iridescence), aesthetic properties (such as stone like appearance in building products), chemical resistivity, corrosion resistance, wear resistance, abrasions resistance, thermal insulation, UV stability, UV protective, and other features that may be desirable, necessary, and both, in the end product or material.
- filler materials could include copper lead wires, thermal conductive fillers, electrically conductive fillers, lead, optical fibers, ceramic colorants, pigments, oxides, dyes, powders, ceramic fines, PDC particles, pore-formers, carbosilanes, silanes, silazanes, silicon carbide, carbosilazanes, siloxane, powders, ceramic powders, metals, metal complexes, carbon, tow, fibers, staple fibers, boron containing materials, milled fibers, glass, glass fiber, fiber glass, and nanostructures (including nanostructures of the forgoing) to name a few.
- crushed, PDC particles e.g., fines or beads, can be added to a polysilocarb formulation and then cured to form a filled cured plastic material, which has significant fire resistant properties as a coating or structural material.
- flame retardant As used herein, unless specifically provided otherwise, the terms flame retardant, fire retardant, flame resistant, fire resistant, flame protection, fire protection, flame suppression, fire suppression, and similar such terms are to be given their broadest possible meanings, and would include all burning, fire, combustion or flame related meanings that are found, described or set forth in standards, codes, certifications, regulations, and guidelines, and would include the lessening, reduction, and avoidance of fire, combustion or smoke.
- the fill material may also be made from, or derived from the same material as the formulation that has been formed into a cured or pyrolized solid, or it may be made from a different precursor formulation material, which has been formed into a cured solid or semi-solid, or pyrolized solid.
- the polysilocarb formulation and products derived or made from that formulation may have metals and metal complexes.
- metals as oxides, carbides or silicides can be introduced into precursor formulations, and thus into a silica matrix in a controlled fashion.
- the filler material could impart, regulate or enhance, for example, electrical resistance, magnetic capabilities, band gap features, p-n junction features, p-type features, n-type features, dopants, electrical
- filler materials could include copper lead wires, thermal conductive fillers, electrically conductive fillers, lead, optical fibers, ceramic colorants, pigments, oxides, dyes, powders, ceramic fines, polymer derived ceramic particles, pore-formers, carbosilanes, silanes, siiazanes, silicon carbide, carbosilazanes, siloxane, metal powders, ceramic powders, metals, metal complexes, carbon, tow, fibers, staple fibers, boron containing materials, milled fibers, glass, glass fiber, fiber glass, and nanostructu es (including
- crushed, polymer derived ceramic particles e.g., fines or beads
- a polysilocarb formulation can be added to a polysilocarb formulation and then cured to form a filled cured plastic material, which has significant fire resistant properties as a coating or in a device or component of a device.
- Adhesion promoters can be added to the po!ysi!ocarb coating formulations.
- Adhesion promoters are materials that are selected to enhance and improve the coating's wettability to the substrate surface, to promote or cause the adhesion of the costing to the substrate and both.
- Adhesion promoters can be specifically tailored to a particular substrate. Examples of promoters, and promoter-substrate combinations are:
- pormoters-carbon steel octyl triethoxy silane, vinyipropyitrimethoxy silane, vinyl triethoxy silane, methyitrimethoxy silane, 3-isocyanatopropy!triethoxysilane, phenylaminopropyltrimethoxysilane, as well as, triethoxy- and trimetboxy-si!anes having R groups of: vinyl, phenyl, alkyl (methyl, ethyl, propyl, octyl, etc) , allyl, aminopropyl or primary or secondary amine functionality, methacrylate functionality, ssocyanyl functionality, glycsdylpropyl or epoxy functionality, and hydride.
- fillers and additives that can be used for bases can include for example Kaolin, mu!lite, pyrophy!lite, kyanite, sillimanite, wollastonite, calcium carbonate, Nepheline Syenite, Silica, Barium sulphate, mica, diatomite, talc, Titanium dioxide, orthophosphates, polyphosphates, inorganic pigments including copper chromite, iron oxide, iron antimony oxide, manganese iron oxide, borates, boronic acid, chromates, leads, molybdates, phosphates, phosphites and silicates, high aspect ratio fillers and platelets such as mica, glass flake, talc, micaceous iron oxide, boron nitride, aluminum flake, corrosion inhibitors, zinc dust, zinc silicates, rheology modifiers, adhesion promoters, wetting agents, surfactants, anti-oxidants, UV absorbers, HALS, pigments, sintering aid
- the liquid polysilocarb binder precursor coating formulation can be used in formulations having antioxidants. It is theorized that the polysilocarb precursors may provide added anti-oxidation protection to these antioxidant containing formulations.
- Typical antioxidants include for example preventive antioxidants, peroxide decomposers, sulfides, phosphites, metal complex agents, and others.
- liquid polysilocarb binder precursor coating formulation can be used in, with, or as a component of, or as, formulations having hinder amine light stabilizers ("HALS"), which function to prevent the photo oxidative
- the polysilocarb precursors may provide added photo-oxidation protection to these HALS containing formulations.
- the liquid polysilocarb binder precursor coating formulation can be used in, with, or as a component of, many types of coating or formulations, such as for example thermoplastic acrylic resins, thermosetting acrylic resins, hydroxy-functional acrylic resins, water reducible thermosetting acrylic resins, waterborne coatings (i.e., any coating with an aqueous media, e.g., latex coatings), water reducible coatings (i.e., a waterborne coating based on a resin having hydrophilic groups in most or all of its molecules), water soluble coatings (i.e., are soluble in water), latexes, acrylic latexes, vinyl ester latexes,
- thermosetting latexes polyester resins, hydroxy-terminated polyester resins, amino resins, aminoplast resins, baked thermosetting coatings, melamsne- formaldehyde resins (e.g., class I and class !!), urea-formaldehyde resins, benzoguanamine-formaldehyde resins, glycoluril-formaldehyde resins,
- poly(meth)acrylamide-formaldehyde resins polyurethane resins, two package solvent borne urethane coatings, epoxy resins, waterborne epoxy-amine systems, drying oil based resins, varnishes, alkyd resins, silicones, silicone rubber resins, and tetraethylorthosilicate (TEOS) based resins, among others.
- TEOS tetraethylorthosilicate
- liquid polysilocarb binder precursor coating formulations may further be used in, with, as a part of, or combined with, high temperature coatings of siloxanes, silsesquioxanes, sol-gel coatings.
- the combinations may be emulsions.
- the polysslocarb component would be the oil phase of the emulsion.
- the liquid polysslocarb binder precursor coating formulation may be used in a mill base, and may be used with dispersants such as polymeric dispersants, A-B copolymer dispersants, hyperdispersants, superdispersants, and others may be used.
- dispersants such as polymeric dispersants, A-B copolymer dispersants, hyperdispersants, superdispersants, and others may be used.
- the polysilocarb mill base can be prepared and stored for later use, shipped, or used Immediately. Further the step of making a mill base may be combined with, a part of, or otherwise incorporated into the process of formulation and making the coating.
- a polysilocarb binder precursor coating formulation having a viscosity of greater than 5,000 cps, 100 percent solids, HAP free, and having 85/15 HF/DCPD.
- a polysilocarb binder precursor coating formulation having a viscosity of less than 15,000 cps, 90 percent solids, substantially HAP free, and 82/13/4 MHF/DCPD/TV.
- a polysilocarb binder precursor coating formulation having a viscosity of greater than 2,000 - 20,000 cps, 70 percent solids - 100 percent solids, and having a 48/48/4 MHF/DCPD/TV,
- a polysilocarb binder precursor coating formulation having a viscosity of greater than 5,000 - 15,000 cps, 90 percent solids - 100 percent solids, and having 70/30 MH/TV.
- a polysilocarb binder precursor coating formulation having a viscosity of greater than 5,000 - 15,000 cps, 90 percent solids - 100 percent solids, and having 70/20/10 MH/TVA T.
- the binder precursor coating formulations of Examples 1 to 6 is made into a coating for application to a substrate by adding a catalyst (e.g., 2% "P01 ", which is a 2% Pt(0) tetravinylcyclotetrasiloxane complex (e.g.,
- the filler can be one or more of any of the fillers identified in this specification, the pigments disclosed and taught in US patent application serial number 14/634,828 and 14/634,819 the entire disclosure of each of which is incorporated herein by reference, carbon black, or any other pigment, effects pigment, additive or filler known to those of skill in the arts.
- the binder precursor coating formulations of Examples 1 to 6 is made into a coating for application to a substrate by adding a catalyst (e.g., 1 % catalyst having 10 ppm platinum and 0.5% Luperox 231 peroxide), and by adding 50% by volume of filler and by adding an adhesion promoter (e.g, 2%
- the filler can be one or more of any of the fillers identified in this specification, the pigments disclosed and taught in US patent application serial number 14/634,828 and 14/634,819 the entire disclosure of each of which is incorporated herein by reference, carbon black, or any other pigment, effects pigment, additive or filler known to those of skill in the arts.
- the binder precursor coating formulations of Examples 1 to 6 is made into a coating for application to a substrate by adding a catalyst (e.g., 1 %, 2%, 3% or more, of one or more of the catalysts set forth in this specification, known to the art, or later discovered), and by adding 40% by volume of filler.
- the filler can be one or more of any of the fillers identified in this specification, the pigments disclosed and taught in US patent application serial number 14/634,828 and 14/634,819 the entire disclosure of each of which is incorporated herein by reference, carbon black, or any other pigment, effects pigment, additive or filler known to those of skill in the arts.
- the binder precursor coating formulations of Examples 1 to 6 is made into a coating for application to a substrate by adding a catalyst (e.g., 1 %, 2%, 3% or more, of one or more of the catalysts set forth in this specification, known to the art, or later discovered), and by adding 60% by volume filler.
- the filler can be one or more of any of the fillers identified in this specification, the pigments disclosed and taught in US patent application serial number 14/634,828 and 14/634,819 the entire disclosure of each of which is incorporated herein by reference, carbon black, or any other pigment, effects pigment, additive or filler known to those of skill in the arts,
- the formulations of Examples 9 and 10 have 1 %, 2%, 4% or more of an adhesion promoter added to them.
- the formulations of Examples 7 to 1 1 the filler type and volume % addition is selected, such that a solvent is added to the formulation to provide for a predetermined viscosity, e.g., below 15,000 cps, below 10,000 cps.
- the coating provides protection from fire to the structural building components, such that the polysilocarb coated structural component meets or exceeds the requirements of ASTM E-1 19, the entire disclosure of which is incorporated herein by reference. These coatings are also UV stable, corrosion resistance and are water repellent.
- the coatings can be applied to, or utilized with, for example, assemblies of masonry units and composite assemblies of structural materials for buildings, including bearing and other walls and partitions, columns, girders, beams, slabs, and composite slab and beam assemblies for floors and roofs, as well as other assemblies and structural units that constitute permanent integral parts of a finished building.
- the coatings of Example 15 can impart or provide Standard Fire Test performance exposures of at least about 1 ⁇ 2-h, about 2-h, about 4-h and about 6-h or more.
- the polysilocarb protective coating is non-ha!ogenated, e.g., it does not contain any halogens.
- the protective coating can be substantially free from halogens, i.e., the amount of halogens in any off gassing is so low as to render the level acceptable or permissible for human exposure; can be
- halogens i.e., the amount of halogens is so low as to render their presence in any off gassing undetectable by normal gas sensing devices used by those of skill in the art to test for the presence of halogens; and, can be free from halogens, i.e., the off gases contain no detectable or measurable presence of halogens.
- This polysilocarb protective coating is also non-toxic and will not produce toxic or dangerous gasses during exposure to fire or high temperatures. Thus, it is a non-toxic off gassing coating. Additionally, it will not produce any harmful or toxic degradation products. Essentially, upon exposure to extreme heat or flame, the polysilocarb coating goes through further curing and hardening, or a pyrolysis reaction eventually, and typically, turning the coating into a ceramic.
- the polysilocarb coating, or additive can also impart, or enhance, the thermal barrier properties of a material.
- Such coated steel or concrete structures for example, may have the fire or temperature resistance properties set out in Table I, or they more preferably may exceed those properties
- a polysilocarb binder precursor coating formulation having a viscosity of greater than 5,000 - 15,000 cps, 90 percent solids - 100 percent solids, and having 41 % MHF and 59% TV.
- a polysilocarb binder precursor coating formulation having a viscosity of greater than 5,000 - 15,000 cps, 90 percent solids - 100 percent solids, and having 41 % MHF and 59% MVF.
- a polysilocarb binder precursor coating formulation having a viscosity of greater than 5,000 - 15,000 cps, 90 percent solids - 100 percent solids, and having having from about 40% MHF to about 55% MHF and from about 60% MVF to about 55% MVF.
- a polysilocarb formulation is applied in liquid form to a substrate to form a coating.
- the coating is then cured increasing the ability of the substrate to resisting burning when subject to a fire.
- the formulation may be catalyzed or uncatalyzed.
- the coating may be one, two, three or more coats (e.g., layers) of the polysilocarb formulation.
- the coating cures, to a hard cure, in less than 2 days under ambient conditions.
- external heat source can be used to cure the coating.
- the substrates may be existing articles such as for example, the interior walls of a house or building, the wood frame of a building prior to installation of the walls, floors, roofs, decks, the exterior of a structure (e.g., house, office or barn), the ground or brush (e.g., to form a fire break), and they may be building supply materials such as dry wall, plywood and 2 x 4s that are coated before being used in a building.
- a polysilocarb binder precursor coating formulation having a viscosity of greater than 5,000 - 15,000 cps, 90 percent solids - 100 percent solids, and having from about 40% MHF to about 55% MHF and from about 60% MVF to about 55% MVF.
- a polysilocarb formulation is coated onto the surface of a pipe and soft cured.
- the polysilocarb formulation is filled, for example, with pyrolized polysilocarb ceramic fines. This process is repeated until the desired thickness of the coating is obtained. Once the desired thickness of the coating has been obtained the soft cured layers are end cured.
- a coating along the exterior of the pipe can provide thermal insulation to the pipe, as well as, corrosion resistance.
- An internal coating to the pipe may also provide thermal insulation for the materials in the pipe, and provides corrosion resistance. The corrosion resistance provided by the cured polysilocarb internal coating can enable the replacement of more expensive stainless steel and other high priced alloys with lower priced metals.
- a polysilocarb formulation is coated on a wall material and cured.
- the coating provides a vapor barrier, reducing and preferably preventing, for example, odors in the wall from fire damage, from being smelled in the room.
- the mill base has a polysilocarb base of Examples 1 to 13B, a thermoplastic acrylic polyol resin, a solvent Methyl amyl ketone and has a pigment loading of 1 .5 to 6.0 pounds per gallon.
- the mill bases exhibits Newtonian flow characteristics.
- the mill base has a polysilocarb base of Examples 1 to 13B, a thermoplastic acrylic polyol resin, a solvent Methyl Amyl ketone and has a pigment loading of 1 .5 to 6.0 pounds/gallon.
- the mill bases exhibits Newtonian flow characteristics.
- the mill base has a polysilocarb base of Examples 1 to 13B, a thermoplastic acrylic polyol resin, a solvent methyl amyl ketone and has a pigment loading of 1 .5 to 6,0 pounds per gallon.
- the mill bases exhibits Newtonian flow characteristics.
- the mill base has a polysilocarb base of Examples 1 to 13B, a thermoplastic acrylic polyol resin, a solvent methyl amyl ketone and has a pigment loading of 1 .5 to 6.0 pounds/gallon.
- the mill base has a polysilocarb base of Examples 1 to 13B, a thermoplastic acrylic emulsion, a solvent water and has a pigment loading of 1 .5 to 6 pounds/gallon
- the mill base has a polysilocarb base of Examples 1 to 13B, a low molecular weight Bisphenol A diglycidal ether resin, a solvent xylene, and has a pigment loading of 1 .5 to 6.0 pounds/gallon
- the mill base has a polysilocarb base of Examples 1 to 13B, a modified hydroxyl ethyl cellulose, surfactant, and water and has a pigment loading of 1 .5 to 8.0 pounds/gallon
- the mill base has a polysilocarb base of Examples 1 to 13B, a silicone resin, a solvent xylene and has a pigment loading of 1 .5 to 5.0 pounds/gallon
- the mill base has a polysilocarb base of Examples 1 to 13B, a mineral oil based resin, a solvent mineral spirits and has a pigment loading of 1 .5 to 8 pounds/gallon.
- the mill base has a polysilocarb base of Examples 1 to 13B, a mineral oil based resin, a solvent mineral spirits and has a pigment loading of 2 pounds/gallon.
- a mill base has a polysilocarb base of Examples 1 to 13B, a thermoplastic acrylic polyol resin, a solvent Methyl amyl ketone and has a pigment loading of 1 .5 to 6.0 pounds per gallon.
- the mill bases exhibits
- a mill base has a polysilocarb base of Examples 1 to 13B, a thermoplastic acrylic polyol resin, a solvent Methyl Amyl ketone and has a pigment loading of 1 .5 to 6,0 pounds/gallon.
- the mill bases exhibits Newtonian flow characteristics.
- a mill base has a polysilocarb base of Examples 1 to 13, a thermoplastic acrylic polyol resin, a solvent methyl amyl ketone and has a pigment loading of 1 .5 to 6.0 pounds per gallon.
- the mill bases exhibits
- a polysilocarb mil! bases using platelets disclosed and taught In US Patent Nos. 9,499,677, 9,481 ,781 and US Patent Application Serial No. 15/002,773, 14/634,819 and 14/634,828 the entire disclosures of each of which are incorporated herein by reference.
- the mil! base has a polysilocarb base of Examples 1 to 13B, a modified hydroxyl ethyl cellulose, surfactant, and water and has a platelet loading of 1 ,5 to 8.0 pounds/gallon
- a high temperature liquid resin that when applied to a substrate forms a high temperature crack resistant coating.
- the resin can also service as a base or other component in a paint and more complex coating formulations having pigments and other components.
- the liquid resin has a polysilocarb part that has 303.2 lbs/ 36.49 gals/ 58.83 wt.% polysilocarb precursor formulation.
- the polysilocarb precursor formulation has 55% by weight MHF and 45% Vinyl Methyl Fluid (VMF).
- VMF is a copolymer having 50 mo!% dimethyl polysiloxane and 50 mo!% vinyl methyl polysiloxane repeat units in the siloxane backbone (although other ratios are contemplated).
- Various a high temperature liquid resins that when applied to a substrate form a high temperature crack resistant coating.
- the resin can also service as a base or other component in a paint and more complex coating formulations having pigments and other components.
- the resins had the following formulations.
- the high temperature liquid resin Ex 40a was cured into a 4 mil thick coating on a substrate.
- the coating has a pencil hardness of HB, a Gloss 20' of 1 .8 and a Gloss 60" of 14,5.
- the high temperature liquid resin Ex 40b was cured into a 4.5 mil thick coating on a substrate.
- the coating has a pencil hardness of B, a Gloss 20' of 1 .9 and a Gloss 60" of 13.8.
- EXAMPLE 44 [00211] The high temperature liquid resin Ex 40d was cured into a 4 mil thick coating on a substrate.
- the coating has a pencil hardness of 5B, a Gloss 20' of 2 and a Gloss 60" of 14.
- the high temperature liquid resin Ex 40e was cured into a 5 mil thick coating on a substrate.
- the coating has a pencil hardness of 6B, a Gloss 20' of 1 .8 and a Gloss 60" of 13,3.
- the high temperature liquid resin Ex 40f was cured into a 5 mil thick coating on a substrate.
- the coating has a pencil hardness of 6B, a Gloss 20' of 2 and a Gloss 60" of 15.
- a high temperature liquid resin that when applied to a substrate forms a high temperature crack resistant coating.
- the resin can also service as a base or other component in a paint and more complex coating formulations having pigments and other components.
- the liquid resin has a polysilocarb based part that is 65/35 MHF/VMF. To this part 10%, 20% and 30 by weight of a filler can be added. The filler being 50:50 mica:glass flake.
- a high temperature liquid resin that when applied to a substrate forms a high temperature crack resistant coating.
- the resin can also service as a base or other component in a paint and more complex coating formulations having pigments and other components.
- the liquid resin has a polysilocarb based part that is 60/40 MHF/VMF. To this part 10%, 20% and 40% by weight of a filler can be added. The filler being 50:50 mica:glass flake.
- polymer derived ceramic precursor formulations can generally be made by three types of processes, although other processes, and variations and combinations of these processes may be utilized. These processes generally involve combining precursors to form a precursor formulation.
- One type of process generally involves the mixing together of precursor materials in preferably a solvent free process with essentially no chemical reactions taking place, e.g., "the mixing process.”
- the other type of process generally involves chemical reactions, e.g., "the reaction type process,” to form specific, e.g., custom, precursor formulations, which could be monomers, dimers, trimers and polymers.
- a third type of process has a chemical reaction of two or more components in a solvent free environment, e.g., "the reaction blending type process.”
- the reaction blending type process essentially all, and preferably all, of the chemical reactions take place during subsequent processing, such as during curing, pyrolysis and both.
- reaction type process reaction blending type process
- mixing type process mixing type process
- reaction process can be used to create a precursor material that is then used in the mixing process with another precursor material.
- a formulation from the mixing type process may be used as a precursor, or component in the reaction type process, or the reaction blending type process.
- a formulation from the reaction type process may be used in the mixing type process and the reaction blending process.
- a formulation from the reaction blending type process may be used in the mixing type process and the reaction type process.
- Precursor materials may be methyl hydrogen, and substituted and modified methyl hydrogens, siloxane backbone additives, reactive
- the precursors are preferably liquids at room temperature, although they may be solids that are melted, or that are soluble in one of the other precursors.
- the precursors are mixed together in a vessel, preferably at room temperature.
- little, and more preferably no solvents e.g., water, organic solvents, polar solvents, non-polar solvents, hexane, THF, toluene, are added to this mixture of precursor materials.
- each precursor material is msscible with the others, e.g., they can be mixed at any relative amounts, or in any proportions, and will not separate or precipitate.
- fillers and reinforcers may be added to the formulation, in preferred embodiments of the formulation, essentially no, and more preferably no chemical reactions, e.g., crosslinking or polymerization, takes place within the formulation, when the formulation is mixed, or when the formulation is being held in a vessel, on a prepreg, or over a time period, prior to being cured.
- the precursors can be mixed under numerous types of atmospheres and conditions, e.g., air, inert, 2 , Argon, flowing gas, static gas, reduced pressure, elevated pressure, ambient pressure, and combinations and variations of these.
- atmospheres and conditions e.g., air, inert, 2 , Argon, flowing gas, static gas, reduced pressure, elevated pressure, ambient pressure, and combinations and variations of these.
- inhibitors such as cyclohexane, 1 -Ethynyl-1 - cyclohexanol (which may be obtained from ALDRICH),
- Octamethylcyclotetrasiloxane, and tetramethyltetravinylcyclotetrasiloxane may be added to the polysilocarb precursor formulation, e.g., an inhibited polysilocarb precursor formulation.
- tetramethyltetravinylcyclotetrasiloxane may act as both a reactant and a reaction retardant (e.g., an inhibitor), depending upon the amount present and
- the po!ysi!ocarb precursor formulation e.g., a filled polysilocarb precursor
- formulation at this point in processing, including fillers such as SiC powder, carbon black, sand, polymer de ived ceramic particles, pigments, particles, nano- tubes, whiskers, or other materials, discussed in this specification or otherwise known to the arts. Further, a formulation with both inhibitors and fillers would be considered an inhibited, filled polysilocarb precursor formulation.
- a catalyst or initiator may be used, and can be added at the time of, prior to, shortly before, or at an earlier time before the precursor formulation is formed or made into a structure, prior to curing.
- the catalysis assists in, advances, and promotes the curing of the precursor formulation to form a preform.
- the catalyst can be any platinum (Pt) based catalyst, which can, for example, be diluted to a ranges of: about 0.01 parts per million (ppm) Pt to about 250 ppm Pt, about 0,03 ppm Pt, about 0.1 ppm Pt, about 0.2 ppm Pt, about 0.5 ppm Pt, about 0.02 to 0.5 ppm Pt, about 1 ppm to 200 ppm Pt and preferably, for some applications and embodiments, about 5 ppm to 50 ppm Pt,
- the catalyst can be a peroxide based catalyst with, for example, a 10 hour half life above 90 C at a concentration of between 0.1 % to 3% peroxide, and about 0.5% and 2% peroxide.
- It can be an organic based peroxide. It can be any organometallic catalyst capable of reacting with Si-H bonds, Si-OH bonds, or unsaturated carbon bonds, these catalysts may include: dibutyltsn dilaurate, zinc octoate, peroxides, organometallic compounds of for example titanium, zirconium, rhodium, iridium, palladium, cobalt or nickel. Catalysts may also be any other rhodium, rhenium, iridium, palladium, nickel, and ruthenium type or based catalysts. Combinations and variations of these and other catalysts may be used.
- Catalysts may be obtained from ARKE A under the trade name LUPEROX, e.g., LUPEROX 231 ; and from Johnson Matthey under the trade names: Karstedt's catalyst, Ashby's catalyst, Speier's catalyst.
- LUPEROX trade name
- Johnson Matthey under the trade names: Karstedt's catalyst, Ashby's catalyst, Speier's catalyst.
- custom and specific combinations of these and other catalysts may be used, such that they are matched to specific formulations, and in this way selectively and specifically catalyze the reaction of specific constituents.
- the use of these types of matched catalyst-formulations systems may be used to provide predetermined product features, such as for example, pore structures, porosity, densities, density profiles, high purity, ultra high purity, and other morphologies or features of cured structures and ceramics.
- this mixing type process for making a precursor formulation preferably chemical reactions or molecular rearrangements only take place during the making of the starting materials, the curing process, and in the pyrolszing process.
- polymerization, crosslinking or other chemical reactions take place primarily, preferably essentially, and more preferably solely during the curing process.
- the precursor may be a siloxane backbone additive, such as methyl terminated hydride substituted polysiloxane, which can be referred to herein as methyl hydrogen (MH), having the formula shown below.
- siloxane backbone additive such as methyl terminated hydride substituted polysiloxane, which can be referred to herein as methyl hydrogen (MH), having the formula shown below.
- the MH may have a molecular weight ("mw” which can be measured as weight averaged molecular weight in amu or as g/mol) from about 400 mw to about 10,000 mw, from about 600 mw to about 3,000 mw, and may have a viscosity preferably from about 20 cps to about 60 cps.
- the percentage of methy!siloxane units "X" may be from 1 % to 100%.
- the percentage of the dimethylsiloxane units ⁇ " may be from 0% to 99%.
- This precursor may be used to provide the backbone of the cross-linked structures, as well as, other features and characteristics to the cured preform and ceramic material. This precursor may also, among other things, be modified by reacting with unsaturated carbon compounds to produce new, or additional, precursors.
- methyl hydrogen fluid (MHF) has minimal amounts of ⁇ ', and more preferably "Y" is for all practical purposes zero.
- the precursor may be a siloxane backbone additive, such as vinyl substituted polydimethy! siloxane, which formula is shown below.
- This precursor may have a molecular weight (mw) from about 400 mw to about 10,000 mw, and may have a viscosity preferably from about 50 cps to about 2,000 cps.
- the percentage of methylvinylsiloxane units "X" may be from 1 % to 100%.
- the percentage of the dimethylsiloxane units ⁇ " may be from 0% to 99%.
- X is about 100%.
- This precursor may be used to decrease cross-link density and improve toughness, as well as, other features and characteristics to the cured preform and ceramic material.
- the precursor may be a siloxane backbone additive, such as vinyl substituted and vinyl terminated polydimethyl siloxane, which formula is shown below.
- This precursor may have a molecular weight (mw) from about 500 mw to about 15,000 mw, and may preferably have a molecular weight from about 500 mw to 1 ,000 mw, and may have a viscosity preferably from about 10 cps to about 200 cps.
- the percentage of methylvinylsiloxane units "X" may be from 1 % to 100%.
- the percentage of the dimethylsiloxane units ⁇ " may be from 0% to 99%.
- This precursor may be used to provide branching and decrease the cure temperature, as well as, other features and characteristics to the cured preform and ceramic material,
- the precursor may be a siloxane backbone additive, such as vinyl substituted and hydrogen terminated po!ydirnethyi siloxane, which formula is shown below.
- This precursor may have a molecular weight (mw) from about 300 mw to about 10,000 mw, and may preferably have a molecular weight from about 400 mw to 800 mw, and may have a viscosity preferably from about 20 cps to about 300 cps.
- the percentage of methylvinylsiloxane units "X" may be from 1 % to 100%.
- the percentage of the dimethylsiloxane units "Y” may be from 0% to 99%.
- This precursor may be used to provide branching and decrease the cure temperature, as well as, other features and characteristics to the cured preform and ceramic material.
- the precursor may be a siloxane backbone additive, such as allyl terminated polydimethyl siloxane, which formula is shown below.
- This precursor may have a molecular weight (mw) from about 400 mw to about 10,000 mw, and may have a viscosity preferably from about 40 cps to about 400 cps.
- the repeating units are the same.
- This precursor may be used to provide UV curability and to extend the polymeric chain, as well as, other features and characteristics to the cured preform and ceramic material.
- the precursor may be a siloxane backbone additive, such as vinyl terminated polydimethyl siloxane ("VT”), which formula is shown below.
- VT vinyl terminated polydimethyl siloxane
- This precursor may have a molecular weight (mw) from about 200 mw to about 5,000 mw, and may preferably have a molecular weight from about 400 mw to 1 ,500 mw, and may have a viscosity preferably from about 10 cps to about 400 cps.
- the repeating units are the same.
- This precursor may be used to provide a polymeric chain extender, improve toughness and to lower cure temperature down to for example room temperature curing, as well as, other features and characteristics to the cured preform and ceramic material.
- the precursor may be a siloxane backbone additive, such as silanol (hydroxy) terminated polydimethyl siloxane, which formula is shown below.
- This precursor may have a molecular weight (mw) from about 400 mw to about 10,000 mw, and may preferably have a molecular weight from about 600 mw to 1 ,000 mw, and may have a viscosity preferably from about 30 cps to about 400 cps.
- the repeating units are the same.
- This precursor may be used to provide a polymeric chain extender, a toughening mechanism, can generate nano- and micro- scale porosity, and allows curing at room
- the precursor may be a siloxane backbone additive, such as si!anol (hydroxy) terminated vinyl substituted dimethyl siloxane, which formula is shown below.
- This precursor may have a molecular weight (mw) from about 400 mw to about 10,000 mw, and may preferably have a molecular weight from about 600 mw to 1 ,000 mw, and may have a viscosity preferably from about 30 cps to about 400 cps.
- the percentage of methylvinylsiloxane units "X" may be from 1 % to 100%.
- the percentage of the dimethylsiloxane units ⁇ " may be from 0% to 99%.
- This precursor may be used, among other things, in a dual-cure system; in this manner the dual-cure can allow the use of multiple cure mechanisms in a single formulation. For example, both condensation type cure and addition type cure can be utilized. This, in turn, provides the ability to have complex cure profiles, which for example may provide for an initial cure via one type of curing and a final cure via a separate type of curing.
- the precursor may be a siloxane backbone additive, such as hydrogen (hydride) terminated polydimethyl siloxane, which formula is shown below.
- This precursor may have a molecular weight (mw) from about 200 mw to about 10,000 mw, and may preferably have a molecular weight from about 500 mw to 1 ,500 mw, and may have a viscosity preferably from about 20 cps to about 400 cps.
- the repeating units are the same.
- This precursor may be used to provide a polymeric chain extender, as a toughening agent, and it allows lower temperature curing, e.g., room temperature, as well as, other features and characteristics to the cured preform and ceramic material.
- the precursor may be a siloxane backbone additive, such as di- phenyl terminated siloxane (which may also be referred to as phenyl terminated), which formula is shown below.
- R is a reactive group, such as vinyl, hydroxy, or hydride.
- This precursor may have a molecular weight (mw) from about 500 mw to about 2,000 mw, and may have a viscosity preferably from about 80 cps to about 300 cps.
- the percentage of methyl - R - siloxane units "X" may be from 1 % to 100%.
- the percentage of the dimethylsiloxane units "Y" may be from 0% to 99%.
- This precursor may be used to provide a toughening agent, and to adjust the refractive index of the polymer to match the refractive index of various types of glass, to provide for example transparent fiberglass, as well as, other features and characteristics to the cured preform and ceramic material.
- the precursor may be a siloxane backbone additive, such as a mono-phenyl terminated siloxane (which may also be referred to as trimethyl terminated, phenyl terminated siloxane), which formulas are shown below.
- a siloxane backbone additive such as a mono-phenyl terminated siloxane (which may also be referred to as trimethyl terminated, phenyl terminated siloxane), which formulas are shown below.
- R is a reactive group, such as vinyl, hydroxy, or hydride.
- This precursor may have a molecular weight (mw) from about 500 mw to about 2,000 mw, and may have a viscosity preferably from about 80 cps to about 300 cps.
- the percentage of methyl - R - siloxane units "X" may be from 1 % to 00%, The percentage of the dimethylsiloxane units ⁇ " may be from 0% to 99%.
- This precursor may be used to provide a toughening agent and to adjust the refractive index of the polymer to match the refractive index of various types of glass, to provide for example transparent fiberglass, as well as, other features and characteristics to the cured preform and ceramic material.
- the precursor may be a siloxane backbone additive, such as diphenyl dimeth l polysiloxane, which formula is shown below.
- This precursor may have a molecular weight (mw) from about 500 mw to about 20,000 mw, and may have a molecular weight from about 800 to about 4,000, and may have a viscosity preferably from about 100 cps to about 800 cps.
- the percentage of dimethylsiloxane units "X" may be from 25% to 95%.
- the percentage of the diphenyl siloxane units "Y” may be from 5% to 75%.
- This precursor may be used to provide similar characteristics to the mono-phenyl terminated siloxane, as well as, other features and characteristics to the cured preform and ceramic material,
- the precursor may be a siloxane backbone additive, such as vinyl terminated diphenyl dimethyl polysiloxane, which formula is shown below.
- This precursor may have a molecular weight (mw) from about 400 mw to about 20,000 mw, and may have a molecular weight from about 800 to about 2,000, and may have a viscosity preferably from about 80 cps to about 600 cps.
- the percentage of dimethy!si!oxane units "X" may be from 25% to 95%,
- the percentage of the diphenyl siloxane units "Y” may be from 5% to 75%.
- This precursor may be used to provide chain extension, toughening agent, changed or altered refractive index, and improvements to high temperature thermal stability of the cured material, as well as, other features and characteristics to the cured preform and ceramic material.
- the precursor may be a siloxane backbone additive, such as hydroxy terminated diphenyl dimethyl po!ysi!oxane, which formula is shown below.
- This precursor may have a molecular weight (mw) from about 400 mw to about 20,000 mw, and may have a molecular weight from about 800 to about 2,000, and may have a viscosity preferably from about 80 cps to about 400 cps.
- the percentage of dimethylsiloxane units "X" may be from 25% to 95%.
- the percentage of the diphenyl siloxane units ⁇ " may be from 5% to 75%,
- This precursor may be used to provide chain extension, toughening agent, changed or altered refractive index, and improvements to high temperature thermal stability of the cured material, can generate nano- and micro- scale porosity, as well as other features and characteristics to the cured preform and ceramic material.
- This precursor may be a siloxane backbone additive, such as methyl terminated phenylethyl polysiioxane, (which may also be referred to as styrene vinyl benzene dimethyl polysiioxane), which formula is shown below.
- siloxane backbone additive such as methyl terminated phenylethyl polysiioxane, (which may also be referred to as styrene vinyl benzene dimethyl polysiioxane), which formula is shown below.
- This precursor may have a molecular weight (mw) may be from about 800 mw to at least about 0,000 mw to at least about 20,000 mw, and may have a viscosity preferably from about 50 cps to about 350 cps.
- the percentage of styrene vinyl benzene siloxane units "X" may be from 1 % to 60%.
- the percentage of the dimethylsiloxane units ⁇ " may be from 40% to 99%.
- This precursor may be used to provide improved toughness, decreases reaction cure exotherm, may change or alter the refractive index, adjust the refractive index of the polymer to match the refractive index of various types of glass, to provide for example transparent fiberglass, as well as, other features and characteristics to the cured preform and ceramic material.
- the precursor batch may also contain non-silicon based cross- linking agents, be the reaction product of a non-silicon based cross linking agent and a siloxane backbone additive, and combinations and variation of these.
- the non-silicon based cross-linking agents are intended to, and provide, the capability to cross-link during curing.
- non-silicon based cross- linking agents that can be used include: cyclopentadiene (CP),
- eCP methylcyclopentadiene
- DCPD dicyc!opentadiene
- eDCPD methyldicyclopentadiene
- TCPD trscyclopentadiene
- piperylene divnylbenzene, isoprene, norbornadiene, vinylnorbornene, propeny!norbomene, ssopropeny!norbornene, metbylviny!norbornene, bicyclononadiene, methy!bicyc!ononadiene, propadiene, 4-viny!cyclobexene, 1 ,3-heptadiene, cyclobeptadiene, 1 ,3-butadiene, cyclooctadsene and isomers thereof.
- Some organic materials containing oxygen, nitrogen, and sulphur may also function as cross-linking moieties.
- the amount of the non-si!icon based cross-linking agent precursor to the silicon backbone based precursor materials can be from about: (i) 10% to 90% non-silicon based cross-linker; to (ii) 90% to 10% silicon backbone based precursor material.
- DCPD/MHF from 10/90 to 90/10, about 40/60 to 60/40, and about 50/50, among other ratios, are contemplated.
- a third and fourth precursor materia! may also be used.
- the ratio of Non-silicon cross linker/Silicon backbone/third precursor can be from about 10/20/70 to 70/20/10, from about 10/20/70 to 10/70/20, and from about 45/55/10 to about 55/45/10 and combinations and variations of these ratios.
- the precursor may be a reactive monomer. These would include molecules, such as tetramethyltetravinylcyclotetrasiloxane ("TV”), which formula is shown below.
- TV tetramethyltetravinylcyclotetrasiloxane
- This precursor may be used to provide a branching agent, a three-dimensional cross-linking agent, as well as, other features and
- this precursor may act as an inhibitor to cross-!inking, e.g., in may inhibit the cross-linking of hydride and vinyi groups.
- the precursor may be a reactive monomer, for example, such as trivinyi cyciotetrasiloxane,
- the precursor may be a silane modifier, such as vinyl phenyl methyl silane, diphenyl silane, dipheny! methyl sslane, and phenyl methyl silane (some of which may be used as an end capper or end termination group).
- silane modifiers can provide chain extenders and branching agents. They also improve toughness, alter refractive index, and improve high temperature cure stability of the cured material, as well as improving the strength of the cured material, among other things.
- a precursor, such as diphenyl methyl silane may function as an end capping agent, that may also improve toughness, alter refractive index, and improve high temperature cure stability of the cured material, as well as, improving the strength of the cured material, among other things.
- the precursor may be a reaction product of a silane modifier with a vinyl terminated siloxane backbone additive.
- the precursor may be a reaction product of a silane modifier with a hydroxy terminated siloxane backbone additive.
- the precursor may be a reaction product of a silane modifier with a hydride terminated siloxane backbone additive.
- the precursor may be a reaction product of a silane modifier with TV.
- the precursor may be a reaction product of a silane.
- the precursor may be a reaction product of a si!ane modifier with a cyciosi!oxane, taking into consideration steric hindrances.
- the precursor may be a partially hydrolyzed tertraethyl orthosilscate, such as TES 40 or Silbond 40.
- the precursor may also be a methylsesquisiioxane such as SR-350 available from Gener l Electric Company, Wilton, Conn.
- the precursor may also be a phenyl methyl siloxane such as 604 from VVacker Chemie AG.
- the precursor may also be a methyiphenylvinylsi!oxane, such a H82 C from Wacker Chemie AG.
- the precursors may also be selected from the following:
- SiSESQUIOXANE HYDROGEN-TERMINATED 68952-30-7; SiSiB® VF8080 VINYLDIMETHYL TERMINATED VINYLMETHYL DIMETHYL POLYSILOXANE COPOLYMERS 68083-18-1 ; SiSsB® VF6862 VINYLDIMETHYL TERMINATED DIMETHYL DIPHENYL POLYSILOXANE COPOLYMER 68951 -96-2; SiSiB® VF6872 VINYLDIMETHYL TERMINATED DIMETHYL-METHYLVINYL- DIPHENYL POLYSILOXANE COPOLYMER; SiSiB® PC9401 1 ,1 ,3,3- TETRAMETHYL-1 ,3-DIVINYLDISILOXANE 2627-95-4; SiSiB® PF1070
- SILANOL TERMINATED POLYDIMETHYLSILOXANE (OF1070) 70131 -67-8; SiSiB® OF1070 SILANOL TERMINATED PO LYD I M ET H YS I LOXAN E 70131 -67- 8; OH-ENDCAPPED POLYDIMETHYLSILOXANE HYDROXY TERMINATED O LYD I ETHYLS I LOXAN E 73138-87-1 ; SiSiB® VF6030 VINYL TERMINATED POLYDIMETHYL SILOXANE 68083-19-2; and, SiSiB® HF2030 HYDROGEN TERMINATED POLYDIMETHYLSILOXANE FLUID 70900-21 -9.
- a precursor may be a compound of the following genera formula.
- the R groups Ri , R 2 , R 3 , and R 4 may all be different, or one or more may be the same.
- R2 is the same as R 3
- R 3 is the same as R 4
- Ri and R 2 are different with R3 and R 4 being the same, etc.
- embodiments of formulations for polysilocarb formulations may for example have from about 0% to 50% MH, about 20% to about 99% MH, about 0% to about 30% siloxane backbone additives, about 1 % to about 60% reactive monomers, about 30% to about 100% TV, and, about 0% to about 90% reaction products of a siloxane backbone additives with a silane modifier or an organic modifier reaction products.
- a chemical reaction is used to combine one, two or more precursors, typically in the presence of a solvent, to form a precursor formulation that is essentially made up of a single polymer that can then be, catalyzed, cured and pyrolized.
- This process provides the ability to build custom precursor formulations that when cured can provide plastics having unique and desirable features such as high temperature, flame resistance and retardation, strength and other features.
- the cured materials can also be pyrolized to form ceramics having unique features.
- the reaction type process allows for the predetermined balancing of different types of functionality in the end product by selecting functional groups for incorporation into the polymer that makes up the precursor formulation, e.g., phenyls which typically are not used for ceramics but have benefits for providing high temperature capabilities for plastics, and styrene which typically does not provide high temperature features for plastics but provides benefits for ceramics.
- functional groups for incorporation into the polymer that makes up the precursor formulation e.g., phenyls which typically are not used for ceramics but have benefits for providing high temperature capabilities for plastics, and styrene which typically does not provide high temperature features for plastics but provides benefits for ceramics.
- a custom polymer for use as a precursor formulation is made by reacting precursors in a condensation reaction to form the polymer precursor formulation. This precursor formulation is then cured into a preform through a hydrolysis reaction. The condensation reaction forms a polymer of the type shown below.
- Ri and R2 may be the same or different.
- the custom precursor polymers can have several different polymeric units, e.g., Ai , A 2 , A n , and may include as many as 10, 20 or more units, or it may contain only a single unit, for example, HF made by the reaction process may have only a single unit.
- Embodiments may include precursors, which include among others, a triethoxy methyl silane, a diethoxy methyl phenyl si!ane, a diethoxy methyl hydride silane, a diethoxy methyl vinyl silane, a dimethyl ethoxy vinyl silane, a diethoxy dimethyl silane, an ethoxy dimethyl phenyl sslane, a diethoxy dihydride silane, a triethoxy phenyl silane, a diethoxy hydride trimethyl siloxane, a diethoxy methyl trimethyl siloxane, a trimethyl ethoxy silane, a diphenyl diethoxy silane, a dimethyl ethoxy hydride siloxane, and combinations and variations of these and other precursors, including other precursors set forth in this specification.
- the end units, Si End 1 and Si End 2 can come from the precursors of dimethyl ethoxy vinyl silane, ethoxy dimethyl phenyl silane, and trimethyl ethoxy silane. Additionally, if the polymerization process is properly controlled a hydroxy end cap can be obtained from the precursors used to provide the repeating units of the polymer.
- the precursors are added to a vessel with ethanol (or other material to absorb heat, e.g., to provide thermal mass), an excess of water, and hydrochloric acid (or other proton source).
- ethanol or other material to absorb heat, e.g., to provide thermal mass
- hydrochloric acid or other proton source
- This mixture is heated until it reaches its activation energy, after which the reaction typically is exothermic.
- the water reacts with an ethoxy group of the silicon of the precursor monomer, forming a hydroxy (with ethanol as the byproduct).
- this hydroxy becomes subject to reaction with an ethoxy group on the silicon of another precursor monomer, resulting in a polymerization reaction. This polymerization reaction is continued until the desired chain length(s) is built.
- Control factors for determining chain length are: the monomers chosen (generally, the smaller the monomers the more that can be added before they begin to coil around and bond to themselves); the amount and point in the reaction where end cappers are introduced; and the amount of water and the rate of addition, among others.
- the chain lengths can be from about 180 mw (viscosity about 5 cps) to about 65,000 mw (viscosity of about 10,000 cps), greater than about 1000 mw, greater than about 10,000 mw, greater than about 50,000 mw and greater.
- the polymerized precursor formulation may, and typically does, have polymers of different molecular weights, which can be predetermined to provide formulation, cured, and ceramic product performance features.
- the material Upon completion of the polymerization reaction the material is transferred into a separation apparatus, e.g., a separation funnel, which has an amount of deionized water that, for example, is from about 1 .2x to about 1 ,5x the mass of the material.
- This mixture is vigorously stirred for about less than 1 minute and preferably from about 5 to 30 seconds. Once stirred the material is allowed to settle and separate, which may take from about 1 to 2 hours.
- the polymer is the higher density material and is removed from the vessel. This removed polymer is then dried by either warming in a shallow tray at 90 °C for about two hours; or, preferably, is passed through a wiped film distillation apparatus, to remove any residual water and ethanol.
- sodium bicarbonate sufficient to buffer the aqueous layer to a pH of about 4 to about 7 is added, it is further understood that other, and commercial, manners of mixing, reacting and separating the polymer from the material may be employed.
- a catalyst is used in the curing process of the polymer precursor formulations from the reaction type process.
- the same polymers, as used for curing the precursor formulations from the mixing type process can be used. It is noted that, generally unlike the mixing type formulations, a catalyst is not necessarily required to cure a reaction type polymer. Inhibitors may also be used. However, if a catalyst is not used, reaction time and rates will be slower.
- the curing and the pyrolysis of the cured material from the reaction process is essentially the same as the curing and pyrolysis of the cured material from the mixing process and the reaction blending process.
- reaction type process can be conducted under numerous types of atmospheres and conditions, e.g., air, inert, N2, Argon, flowing gas, static gas, reduced pressure, ambient pressure, elevated pressure, and combinations and variations of these.
- atmospheres and conditions e.g., air, inert, N2, Argon, flowing gas, static gas, reduced pressure, ambient pressure, elevated pressure, and combinations and variations of these.
- reaction blending type process precursor are reacted to from a precursor formulation, in the absence of a solvent.
- a reaction blending type process has a precursor formulation that is prepared from HF and Dicyclopentadsene ("DCPD").
- DCPD Dicyclopentadsene
- MHF/DCPD polymer is created and this polymer is used as a precursor formulation.
- MHF of known molecular weight and hydride equivalent mass; " ⁇ 0 " (P01 is a 2% Pt(0)
- tetravinylcyclotetrasiioxane complex in tetravinylcyclotetrasiioxane diluted 20x with tetravinylcyclotetrasiioxane to 0.1 % of Pt(0) complex.
- 10 ppm Pt is provided for every 1 % loading of bulk cat.) catalyst 0.20 wt% of MHF starting material (with known active equivalent weight), from 40 to 90%; and Dicyclopentadsene with ⁇ 83% purity, from 10 to 60% are utilized.
- a sealable reaction vessel with a mixer, can be used for the reaction. The reaction is conducted in the sealed vessel, in air; although other types of atmosphere can be utilized.
- the reaction is conducted at atmospheric pressure, but higher and lower pressures can be utilized.
- the reaction blending type process can be conducted under numerous types of atmospheres and conditions, e.g., air, inert, N 2 , Argon, flowing gas, static gas, reduced pressure, ambient pressure, elevated pressure, and combinations and variations of these.
- 850 grams of HF 85% of total polymer mixture is added to reaction vessel and heated to about 50 °C. Once this temperature is reached the heater is turned off, and 0.20% by weight P01 Platinum catalyst is added to the MHF in the reaction vessel. Typically, upon addition of the catalyst bubbles will form and temp will initially rise approximately 2-20 °C.
- the temperature of the reaction vessel is controlled to, maintain a predetermined temperature profile over time, and to manage the temperature increase that may be accompanied by an exotherm.
- the temperature of the reaction vessel is regulated, monitored and controlled throughout the process.
- the temperature profile can be as follows: let temperature reach about 80 °C (may take -15-40 min, depending upon the amount of materials present); temperature will then increase and peak at -104 °C, as soon as temperature begins to drop, the heater set temperature is increased to 100 °C and the temperature of the reaction mixture is monitored to ensure the polymer temp stays above 80 °C for a minimum total of about 2 hours and a maximum total of about 4 hours. After 2-4 hours above 80 °C, the heater is turn off, and the polymer is cooled to ambient. It being understood that in larger and smaller batches, continuous, semi-continuous, and other type processes the temperature and time profile may be different.
- the "degree of polymerization” is the number of monomer units, or repeat units, that are attached together to from the polymer.
- Equivalents /mol refers to the molar equivalents.
- Grams/mole of vinyl refers to the amount of a given polymer needed to provide 1 molar equivalent of vinyl functionality.
- V H refers to methyl vinyl fluid, a linear vinyl material from the ethoxy process, which can be a substitute for TV.
- the numbers "0200” etc. for VT are the viscosity in centiposse for that particular VT.
- Precursor formulations including the polysiocarb precursor formulations from the above types of processes, as well as others, can be cured to form a solid, semi-sold, or plastic like material.
- the precursor formulations are spread, shaped, or otherwise formed into a preform, which would include any volumetric structure, or shape, including thin and thick films.
- the po!ysi!ocarb precursor formulation may be processed through an initial cure, to provide a partially cured material, which may also be referred to, for example, as a preform, green material, or green cure (not implying anything about the material's color).
- the green material may then be further cured.
- one or more curing steps may be used.
- the material may be "end cured,” i.e., being cured to that point at which the material has the necessary physical strength and other properties for its intended purpose.
- the amount of curing may be to a final cure (or "hard cure"), i.e., that point at which all, or essentially all, of the chemical reaction has stopped (as measured, for example, by the absence of reactive groups in the material, or the leveling off of the decrease in reactive groups over time).
- a final cure or "hard cure”
- the material may be cured to varying degrees, depending upon its intended use and purpose. For example, in some situations the end cure and the hard cure may be the same. Curing conditions such as atmosphere and temperature may effect the composition of the cured material.
- the curing may be done at standard ambient temperature and pressure ("SATP", 1 atmosphere, 25 °C), at temperatures above or below that temperature, at pressures above or below that pressure, and over varying time periods.
- SATP standard ambient temperature and pressure
- the curing can be conducted over various heatings, rate of heating, and temperature profiles (e.g., hold times and temperatures, continuous temperature change, cycled temperature change, e.g., heating followed by maintaining, cooling, reheating, etc.).
- the time for the curing can be from a few seconds (e.g., less than about 1 second, less than 5 seconds), to less than a minute, to minutes, to hours, to days (or potentially longer).
- the curing may also be conducted in any type of surrounding environment, including for example, gas, liquid, air, water, surfactant containing liquid, inert atmospheres, N2, Argon, flowing gas (e.g., sweep gas), static gas, reduced 0 2 , reduced pressure, elevated pressure, ambient pressure, controlled partial pressure and combinations and variations of these and other processing conditions.
- gas e.g., sweep gas
- static gas e.g., static gas
- reduced 0 2 e.g., reduced pressure
- elevated pressure e.g., ambient pressure
- controlled partial pressure e.g., controlled partial pressure
- the curing environment e.g., the furnace, the atmosphere, the container and combinations and variations of these can have materials that contribute to or effect, for example, the composition, catalysis, stoichiometry, features, performance and combinations and variations of these in the preform, the ceramic and the final applications or products.
- the curing takes place at temperatures in the range of from about 5°C or more, from about 20°C to about 250°C, from about 20°C to about 150°C, from about 75°C to about 125°C, and from about 80°C to 90°C.
- temperatures in the range of from about 5°C or more, from about 20°C to about 250°C, from about 20°C to about 150°C, from about 75°C to about 125°C, and from about 80°C to 90°C.
- rate of temperature change over time e.g., ⁇ degrees/time
- hold times e.g., hold times, and temperatures
- the cure conditions may be dependent upon, and in some embodiments can be predetermined, in whole or in part, by the formulation to match, for example the size of the preform, the shape of the preform, or the mold holding the preform to prevent stress cracking, off gassing, or other phenomena associated with the curing process.
- the curing conditions may be such as to take advantage of, preferably in a controlled manner, what may have previously been perceived as problems associated with the curing process.
- off gassing may be used to create a foam material having either open or closed structure.
- curing conditions can be used to create or control the microstructure and the nanostructure of the material.
- the curing conditions can be used to affect, control or modify the kinetics and thermodynamics of the process, which can affect morphology, performance, features and functions, among other things.
- a cross linking reaction takes place that provides in some embodiments a cross-linked structure having, among other things, an -RrSi-C-C-Si-O-Si-C-C-Si-F where Ri and Ra vary depending upon, and are based upon, the precursors used in the formulation.
- Ri and Ra vary depending upon, and are based upon, the precursors used in the formulation.
- the cured materials may have a cross-linked structure having, among other things, an -RrSi-C-C-Si-O-Si-C-C-Si-F where Ri and Ra vary depending upon, and are based upon, the precursors used in the formulation.
- the cured materials may have a cross-
- some formulations may exhibit an exotherm, i.e., a self heating reaction, that can produce a small amount of heat to assist or drive the curing reaction, or that may produce a large amount of heat that may need to be managed and removed in order to avoid problems, such as stress fractures.
- a self heating reaction i.e., a self heating reaction
- the cure off gassing typically occurs and results in a loss of material, which loss is defined generally by the amount of material remaining, e.g., cure yield.
- Embodiments of the formulations, cure conditions, and polysilocarb precursor formulations of embodiments of the present inventions can have cure yields of at least about 90%, about 92%, about 100%. In fact, with air cures the materials may have cure yields above 100%, e.g., about 101 -105%, as a result of oxygen being absorbed from the air. Additionally, during curing the material typically shrinks, this shrinkage may be, depending upon the
- Curing of the coating may be accomplished by any type of heating apparatus, or mechanisms, techniques, or morphologies that has the requisite level of temperature and environmental control, for example, heated water baths, electric furnaces, microwaves, gas furnaces, furnaces, forced heated air, towers, spray drying, falling film reactors, fluidized bed reactors, lasers, indirect heating elements, direct heating, infrared heating, UV irradiation, RF furnace, in-situ during emuisification via high shear mixing, in-situ during emulsificatson via ultrasonscation.
- curing may also occur under ambient conditions for an embodiment having a sufficient amount of catalyst.
- the cured material can be for example heated to about 600 °C to about 2,300 °C; from about 650 °C to about 1 ,200 °C, from about 800°C to about 1300°C, from about 900°C to about 1200°C and from about 950°C to 1 150°C.
- At these temperatures typically all organic structures are either removed or combined with the inorganic constituents to form a ceramic.
- the resulting materia! is an amorphous glassy ceramic.
- the material When heated above about 1 ,200 °C the material typically may from nano crystalline structures, or micro crystalline structures, such as SiC, S13 4 , SsCN, ⁇ SiC, and above 1 ,900 °C an a SiC structure may form, and at and above 2,200 °C a SiC is typically formed.
- the pyrolized, e.g., ceramic materials can be single crystal, polycrystalline, amorphous, and combinations, variations and subgroups of these and other types of morphologies.
- the pyrolysis may be conducted under may different heating and environmental conditions, which preferably include thermo control, kinetic control and combinations and variations of these, among other things.
- the pyrolysis may have various heating ramp rates, heating cycles and environmental conditions, in some embodiments, the temperature may be raised, and held a predetermined temperature, to assist with known transitions (e.g., gassing, volatilization, molecular rearrangements, etc.) and then elevated to the next hold temperature corresponding to the next known transition.
- known transitions e.g., gassing, volatilization, molecular rearrangements, etc.
- the pyrolysis may take place in reducing atmospheres, oxidative atmospheres, low Oa, gas rich (e.g., within or directly adjacent to a flame), inert, 2, Argon, air, reduced pressure, ambient pressure, elevated pressure, flowing gas (e.g., sweep gas, having a flow rate for example of from about from about 15.0 GHSV to about 0.1 GHSV, from about 6,3 GHSV to about 3.1 GHSV, and at about 3.9 GHSV), static gas, and combinations and variations of these.
- gas rich e.g., within or directly adjacent to a flame
- inert 2, Argon
- air reduced pressure
- ambient pressure ambient pressure
- elevated pressure elevated pressure
- flowing gas e.g., sweep gas, having a flow rate for example of from about from about 15.0 GHSV to about 0.1 GHSV, from about 6,3 GHSV to about 3.1 GHSV, and at about 3.9 GHSV
- flowing gas e.g., sweep gas, having a flow rate for example
- Si-O-C ceramic upon pyrolization, graphenic, graphitic, amorphous carbon structures and combinations and variations of these are present in the Si-O-C ceramic.
- a distribution of silicon species, consisting of SiOxCy structures, which result in Si04, Si03C, S102C2, SIOC3, and SiC4 are formed in varying ratios, arising from the precursor choice and their processing history.
- Carbon is generally bound between neighboring carbons and/or to a Silicon atom. In general, in the ceramic state, carbon is largely not coordinated to an oxygen atom, thus oxygen is largely coordinated to silicon
- the pyrolysis may be conducted in any heating apparatus, that maintains the request temperature and environmental controls; or upon embodiments of the present coating being expose to flame, or high heat conditions.
- pyrolysis may be done with gas fired furnaces, electric furnaces, direct heating, indirect heating, fluidized beds, kilns, tunnel kilns, box kilns, shuttle kilns, coking type apparatus, lasers, microwaves, and combinations and variations of these and other heating apparatus and systems that can obtain the request temperatures for pyrolysis.
- Cyclopentadienyl complexes that can be utilized with precursor formulations and in products, can include: bis-cyclopentadienyl metal complexes of first row transition metals (Titanium, Vanadium, Chromium, Iron, Cobalt, Nickel); second row transition metals (Zirconium, Molybdenum, Ruthenium, Rhodium, Palladium); third row transition metals (Hafnium, Tantalum, Tungsten, Iridium, Osmium, Platinum); Lanthanide series (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho); and Actinide series (Ac, Th, Pa, U, Np).
- first row transition metals Tianium, Vanadium, Chromium, Iron, Cobalt, Nickel
- second row transition metals Zirconium, Molybdenum, Ruthenium, Rhodium, Palladium
- third row transition metals Hafnium, Tantalum, T
- Monocyclopentadienyl complexes may also be utilized to provide metal functionality to precursor formulations and would include
- first row transition metals Tianium, Vanadium, Chromium, Iron, Cobalt, Nickel
- second row transition metals Zirconium, Molybdenum, Ruthenium, Rhodium, Palladium
- third row transition metals Hafnium, Tantalum, Tungsten, Iridium, Osmium, Platinum
- proper ligands for instance Chloride or Carbonyl
- Alky complexes of metals may also be used to provide metal functionality to precursor formulations and products.
- the Si center has an alkyl group (ethyl, propyl, butyl, vinyl, propenyl, butenyl) which can bond to transition metal direct through a sigma bond. Further, this would be more common with later transition metals such as Pd, Rh, Pt, Ir.
- Coordination complexes of metals may also be used to provide metal functionality to precursor formulations and products.
- the Si center has an unsaturated alkyl group (vinyl, propenyl, butenyl, acetylene, butadienyl) which can bond to carbonyl complexes or ene complexes of Cr, Mo, W, n, Re, Fe, Ru, Os, Co, Rh, Ir, Ni.
- the Si center may also be attached to a phenyl, substituted phenyl or other aryl compound (pyridine, pyrimidine) and the phenyl or aryl group can displace carbonyls on the metal centers.
- Metal a!koxides may also be used to provide metal functionality to precursor formulations and products.
- Metal alkoxide compounds can be mixed with the Silicon precursor compounds and then treated with water to form the oxides at the same time as the polymer, copolymerize. This can also be done with metal halides and metal amides. Preferably, this may be done using early transition metals along with Aluminum, Gallium and Indium, later transition metals: Fe, Mn, Cu, and alkaline earth metals: Ca, Sr, Ba, Mg.
- the metal and metal complexes may be the continuous phase after pyrolysis, or subsequent heat treatment.
- Formulations can be specifically designed to react with selected metals to in situ form metal carbides, oxides and other metal compounds, generally known as cermets (e.g., ceramic metallic compounds).
- the formulations can be reacted with selected metals to form in situ compounds such as mu!iite, alumino silicate, and others.
- the amount of metal relative to the amount of silica in the formulation or end product can be from about 0.1 mole % to 99.9 mole %, about 1 mole % or greater, about 10 mole % or greater, and about 20 mole percent or greater.
- the forgoing use of metals with the present precursor formulas can be used to control and provide predetermined
- embodiments may be used with: existing systems, articles, components, coatings, bases, operations or activities; may be used with systems, articles, components, coatings, bases, operations or activities that may be developed in the future; and with such systems, articles, components, operations, coatings, bases, or activities that may be modified, in-part, based on the teachings of this specification. Further, the various embodiments and examples set forth in this specification may be used with each other, in whole or in part, and in different and various combinations.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Inorganic Chemistry (AREA)
- Paints Or Removers (AREA)
Abstract
L'invention concerne des revêtements et des matériaux de base à haute température à base de silicium (Si) et des procédés de fabrication de ces matériaux. Plus particulièrement, l'invention concerne des procédés et des matériaux comprenant un polymère contenant des atomes de silicium, d'oxygène et de carbone, dérivé de liquides céramiques qui forment des revêtements remplis et non remplis, y compris des revêtements résistants aux fissures à haute température.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17764129.7A EP3426716A4 (fr) | 2016-03-10 | 2017-03-09 | Liants et revêtements à base de polysilocarb |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662306460P | 2016-03-10 | 2016-03-10 | |
US62/306,460 | 2016-03-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017156312A1 true WO2017156312A1 (fr) | 2017-09-14 |
Family
ID=59789849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2017/021641 WO2017156312A1 (fr) | 2016-03-10 | 2017-03-09 | Liants et revêtements à base de polysilocarb |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3426716A4 (fr) |
WO (1) | WO2017156312A1 (fr) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050196605A1 (en) * | 2004-03-08 | 2005-09-08 | Ecology Coatings, Inc. | Environmentally friendly coating compositions for coating metal objects, coated objects therefrom, and methods, processes and assemblages for coating thereof |
US20110033708A1 (en) * | 2008-01-30 | 2011-02-10 | Yukinari Harimoto | Silicon-Containing Particle, Process For Producing The Same, Organic-Polymer Composition, Ceramic, And Process For Producing The Same |
US20120082791A1 (en) * | 2010-10-04 | 2012-04-05 | Robert Richard Liversage | Coating Composition Amenable to Elastomeric Substrates |
WO2015131167A1 (fr) * | 2014-02-28 | 2015-09-03 | Melior Innovations, Inc. | Additifs, pigments et formulations de céramique noire |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5640021B2 (ja) * | 2009-03-12 | 2014-12-10 | ダウ コーニング コーポレーションDow Corning Corporation | 熱界面材料、並びに、その調製及び使用方法 |
-
2017
- 2017-03-09 EP EP17764129.7A patent/EP3426716A4/fr not_active Withdrawn
- 2017-03-09 WO PCT/US2017/021641 patent/WO2017156312A1/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050196605A1 (en) * | 2004-03-08 | 2005-09-08 | Ecology Coatings, Inc. | Environmentally friendly coating compositions for coating metal objects, coated objects therefrom, and methods, processes and assemblages for coating thereof |
US20110033708A1 (en) * | 2008-01-30 | 2011-02-10 | Yukinari Harimoto | Silicon-Containing Particle, Process For Producing The Same, Organic-Polymer Composition, Ceramic, And Process For Producing The Same |
US20120082791A1 (en) * | 2010-10-04 | 2012-04-05 | Robert Richard Liversage | Coating Composition Amenable to Elastomeric Substrates |
WO2015131167A1 (fr) * | 2014-02-28 | 2015-09-03 | Melior Innovations, Inc. | Additifs, pigments et formulations de céramique noire |
Non-Patent Citations (1)
Title |
---|
See also references of EP3426716A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3426716A4 (fr) | 2019-10-23 |
EP3426716A1 (fr) | 2019-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11351652B2 (en) | Polysilocarb binders and coatings | |
US10590256B2 (en) | Black ceramic additives, pigments, and formulations | |
US9499677B2 (en) | Black ceramic additives, pigments, and formulations | |
US11692067B2 (en) | Polysilocarb materials, methods and uses | |
US10738206B2 (en) | Black ceramic additives, pigments, and formulations | |
US20150252170A1 (en) | Black ceramic additives, pigments, and formulations | |
EP3110896A1 (fr) | Additifs, pigments et formulations de céramique noire | |
US10787574B2 (en) | Polymer derived ceramic effects particles, uses and methods of making | |
AU2009225926B2 (en) | Low temperature curable coating compositions and related methods | |
EP1583802B1 (fr) | Composition a base de silicone utile dans des applications d'ignifugation | |
US20040050297A1 (en) | Silicone resin composition for water repellent coating | |
JP6361624B2 (ja) | 活性エネルギー線硬化型シリコーンコーティング組成物及び被覆物品 | |
CN101802114A (zh) | 包含有机功能的聚硅氧烷聚合物的涂料组合物及其应用 | |
US10633400B2 (en) | Nanocomposite silicon oxygen carbon materials and uses | |
EP3286277B1 (fr) | Revêtement extérieur antidérapant/non glissant durable à base de siloxane | |
US20210323865A1 (en) | SiOC Ceramic And Plastic Additives For Cements, Concretes And Structural Decorative Materials | |
US20190315969A1 (en) | High Temperature Boron Black Ceramic Additives, Pigments, and Formulations | |
CA2420319C (fr) | Methode de protection des surfaces contre l'incendie | |
WO2017156312A1 (fr) | Liants et revêtements à base de polysilocarb | |
WO2018049223A2 (fr) | Particules à effets en céramiques dérivées de polymère, utilisations et procédés de fabrication | |
WO2017197180A1 (fr) | Matériaux nanocomposites à base de silicium, d'oxygène et de carbone et leurs utilisations | |
WO2022138627A1 (fr) | Composition de polyorganosiloxane adhésive résistant à l'eau | |
US20050148706A1 (en) | Method for protecting surfaces from effects of fire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017764129 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017764129 Country of ref document: EP Effective date: 20181010 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17764129 Country of ref document: EP Kind code of ref document: A1 |