WO2017155198A1 - Method for producing nickel powder - Google Patents

Method for producing nickel powder Download PDF

Info

Publication number
WO2017155198A1
WO2017155198A1 PCT/KR2017/000061 KR2017000061W WO2017155198A1 WO 2017155198 A1 WO2017155198 A1 WO 2017155198A1 KR 2017000061 W KR2017000061 W KR 2017000061W WO 2017155198 A1 WO2017155198 A1 WO 2017155198A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel powder
nickel
active material
alkali metal
present
Prior art date
Application number
PCT/KR2017/000061
Other languages
French (fr)
Korean (ko)
Inventor
왕제필
Original Assignee
부경대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부경대학교 산학협력단 filed Critical 부경대학교 산학협력단
Publication of WO2017155198A1 publication Critical patent/WO2017155198A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis

Definitions

  • An embodiment of the present invention relates to a method for producing nickel powder, and more particularly, to a method for producing nickel powder from waste lithium ion batteries.
  • nickel is applied to nickel steel, stainless steel, nichrome steel, as well as special alloys and plating materials.
  • magnetic fluid made of an alloy of nickel, iron, and cobalt is widely used as a shock absorbing filler.
  • the nickel nanoparticles since the nickel nanoparticles have a large surface area and high activity, they may be used as a catalyst in organic hydrogenation or exhaust gas treatment. In addition, it can also be used as a comburent in rocket solid fuel to increase the heat of combustion and combustion efficiency and to improve the oxidation stability.
  • Such nickel is also contained in lithium-based batteries, and the nickel-containing waste resources of lithium-based batteries generated in Korea are sent to foreign countries and recycled after being recycled.
  • solvent extraction, chemical precipitation, electrolytic precipitation, hydrogen reduction, and liquid reduction are mainly applied.
  • 1 is a flow chart showing a dry reduction process of a conventional method for producing nickel metal powder from a waste lithium ion battery.
  • the conventional nickel metal powder manufacturing method collects waste lithium ion batteries (S11), removes the cases of the collected waste lithium ion batteries, extracts cathode materials, and pulverizes and classifies the extracted cathode materials. And filtering (S12), obtaining LNO (Lithium Nickel Oxide) raw material from the cathode material (S13), heat treating the LNO raw material in an exhaust atmosphere (O2 atmosphere) (S14), and reducing the heat treated material ( S15), Ni powder is recovered (S16).
  • LNO Lithium Nickel Oxide
  • a liquid phase reduction process may be used instead of a dry reduction process.
  • the LNO raw material is dissolved after dissolving through a compound such as an acid, and the reduction is carried out, compared with the dry reduction process, while using the strong acid solution and other compounds that are harmful to the environment, while having the advantage of the speed and yield of the obtained reaction.
  • This causes a problem of environmental pollution, because a large amount of intermediate products are generated, the production process is complicated, and a large amount of waste is generated, so a facility for treating this is required, and as a result, the production cost is lowered as a whole.
  • Embodiments of the present invention to provide a nickel powder production method that can increase the purity of the final nickel powder.
  • embodiments of the present invention to provide an environmentally friendly method for producing nickel powder.
  • embodiments of the present invention is to provide a nickel powder production method that can reduce the production cost of nickel powder.
  • embodiments of the present invention is to provide a method for producing a nickel powder is a simple process is easy to commercialize.
  • the positive electrode active material is extracted from the waste lithium ion battery, and the positive electrode active material is pyrolyzed in a reducing gas atmosphere to oxidize.
  • a nickel powder production method is provided, which separates nickel and alkali metal carbonates, washes the nickel oxide and alkali metal carbonates to remove the alkali metal carbonates, and reduces the nickel oxide to form nickel powders. .
  • the nickel oxide may be NiO.
  • the cathode active material may be LiNiO 2 .
  • the alkali metal carbonate may be lithium carbonate (Li 2 CO 3 ).
  • the lithium carbonate removed in the washing process may be recovered with lithium metal.
  • the reducing gas atmosphere for the pyrolysis may include at least some of C, CO, CO 2 .
  • the nickel oxide may be hydrogen (H 2 ) reduced.
  • the alkali metal carbonate that can be removed by washing with water by pyrolysis in a reducing gas atmosphere becomes an intermediate product, thereby increasing the purity of the final nickel powder.
  • the overall process is simple and relatively easy to commercialize.
  • 1 is a flow chart showing a dry reduction process of a conventional method for producing nickel metal powder from a waste lithium ion battery.
  • FIG. 2 is a cross-sectional view showing a flow regulator according to an embodiment of the present invention
  • FIG. 3 is an exploded cross-sectional view of a flow regulator according to an embodiment of the present invention.
  • Figure 2 is a flow chart showing a nickel powder manufacturing method according to an embodiment of the present invention.
  • the nickel powder manufacturing method may relate to a method of manufacturing nickel powder from a cathode active material of a waste lithium ion battery.
  • the present nickel powder production method the step of extracting the positive electrode active material from the waste lithium ion battery (S1), the step of thermally decomposing the extracted positive electrode active material in a reducing gas atmosphere (S2), nickel oxide and alkali metal carbonate (S2), nickel oxide And washing the alkali metal carbonate with water to remove the alkali metal carbonate by dissolution (S3) and reducing the nickel oxide in a state where the alkali metal carbonate is removed (S4) to form a nickel powder. It may include (S5).
  • Step S11 in FIG. 1 a waste battery is collected (step S11 in FIG. 1), and the extracted cathode material is pulverized, classified and filtered (S12 in FIG. 1). Step) Step is omitted. That is, in FIG. 2, the nickel powder manufacturing method replacing the part A of FIG. 1 will be described.
  • the cathode active material of the spent lithium ion battery may be LiNiO 2
  • the reducing gas atmosphere may include at least some of C, CO, and CO 2 .
  • LiNiO 2 is pyrolyzed in a reducing gas atmosphere, Li 2 CO 3 and NiO may be generated. This is represented by the following formula.
  • Li 2 CO 3 and NiO When the produced Li 2 CO 3 and NiO are washed with water, Li 2 CO 3 can be dissolved in water and removed, leaving only NiO. Hydrogen reduction of the remaining NiO may form only Ni of the powder in powder form.
  • Nickel powder prepared in this manner may have a purity of 95 ⁇ 99%.
  • the conventional dry method that is, when LNO is heat-treated in an exhaust atmosphere (O 2 atmosphere), LiO and NiO are formed, and since it is difficult to remove LiO, the final nickel powder has a purity of 60 to 70%. It was only. Therefore, when the nickel powder is manufactured by the method according to an embodiment of the present invention, the purity of the nickel powder may be greatly increased as compared with the related art.
  • the harmful strong acid solution and other compounds should be used.
  • a substance harmful to the environment may not be used at all. Therefore, not only the nickel powder may be formed in an environmentally friendly manner, but a separate cost for treating a hazardous substance may not be generated, thereby reducing the production cost.
  • the method according to an embodiment of the present invention can be easily commercialized relatively simple process.
  • Figure 3 is a graph showing the phase of the material generated in each step of the nickel powder manufacturing method according to an embodiment of the present invention.
  • FIG. 3 (a) shows the material in the extracted cathode active material
  • FIG. 3 (b) shows the material after pyrolysis
  • FIG. 3 (c) shows the remaining material after washing with water
  • FIG. 3 (d) shows hydrogen. The material after reduction is shown.
  • LiNiO 2 and NiO may be included in the extracted cathode active material.
  • Li 2 CO 3 and NiO When pyrolyzed in a reducing gas atmosphere, Li 2 CO 3 and NiO may be generated (FIG. 3B). When the generated Li 2 CO 3 and NiO are washed with water, Li 2 CO 3 may be dissolved in water and removed, leaving only NiO (FIG. 3 (c)). Therefore, Ni metal may be generated by hydrogen reduction of the remaining NiO.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

A method for producing nickel powder is disclosed. According to an embodiment of the present invention, provided is a method for producing nickel powder from a positive electrode active material of a waste lithium ion battery, the method comprising: extracting the positive electrode active material from the waste lithium ion battery; pyrolyzing the positive electrode active material under a reducing gas atmosphere to separate the same into a nickel oxide and an alkali metal carbonate; washing the nickel oxide and the alkali metal carbonate with water to remove the alkali metal carbonate; and reducing the nickel oxide to form nickel powder.

Description

니켈 분말 제조 방법Nickel Powder Manufacturing Method
본 발명의 실시예는 니켈 분말 제조 방법에 관한 것으로서, 특히, 폐 리튬이온전지로부터 니켈 분말을 제조하는 방법에 관한 것이다.An embodiment of the present invention relates to a method for producing nickel powder, and more particularly, to a method for producing nickel powder from waste lithium ion batteries.
스테인리스 스틸(STS) 원료로 많이 사용되는 니켈(Ni)은 그 외에 다양한 용도로 사용되는 고가의 금속이다. 예를 들어, 니켈은 니켈강, 스테인리스 스틸, 니크롬강, 뿐만 아니라 특수합금 및 도금재료 등으로도 응용되고 있다. 특히 니켈, 철, 코발트의 합금으로 제조되는 자성유체(magnetic fluid)는 놓은 충격흡수 충진재로 폭넓게 사용된다. 또한, 니켈 나노 입자는 표면적이 크고 고활성이기 때문에 유기수소 첨가반응 또는 배기가스 처리 등에서의 촉매로 사용되기도 한다. 그리고, 로케트 고체연료에 조연제(comburent)로도 사용되어 연소열 및 연소효율을 증가시키고 산화 안정성을 향상시킬 수도 있다.Nickel (Ni), which is widely used as a raw material for stainless steel (STS), is an expensive metal used for various purposes. For example, nickel is applied to nickel steel, stainless steel, nichrome steel, as well as special alloys and plating materials. In particular, magnetic fluid made of an alloy of nickel, iron, and cobalt is widely used as a shock absorbing filler. In addition, since the nickel nanoparticles have a large surface area and high activity, they may be used as a catalyst in organic hydrogenation or exhaust gas treatment. In addition, it can also be used as a comburent in rocket solid fuel to increase the heat of combustion and combustion efficiency and to improve the oxidation stability.
이러한 니켈은 리튬계 전지에도 함유되는데 국내에서 발생하는 리튬계 전지의 니켈 함유 폐자원은 대부분 외국으로 보내지며 재활용된 후 재수입되고 있는 실정이다. 이차전지의 양극활물질 제조과정에서 불량으로 발생한 폐 LNO가 매년 다량 발생하고 있으며, 이를 황산티켈, 산화니켈 및 니켈 금속으로 제조하기 위한 연구가 계속 진행 중에 있다. 양극활물질 전구체를 통해 니켈 입자를 제조하는 방법으로는 용매추출법, 화학적 침전법, 전해석출법, 수소환원법, 액상환원법 등이 주로 적용되고 있다.Such nickel is also contained in lithium-based batteries, and the nickel-containing waste resources of lithium-based batteries generated in Korea are sent to foreign countries and recycled after being recycled. A large amount of waste LNO, which is caused by defects in the production of cathode active materials of secondary batteries, is generated every year, and research for manufacturing them from titanium sulfate, nickel oxide, and nickel metal is ongoing. As a method of preparing nickel particles through the positive electrode active material precursor, solvent extraction, chemical precipitation, electrolytic precipitation, hydrogen reduction, and liquid reduction are mainly applied.
도 1은 폐 리튬이온전지로부터 니켈 금속 분말을 제조하는 종래의 방법 중 건식 환원 공정을 나타내는 순서도이다.1 is a flow chart showing a dry reduction process of a conventional method for producing nickel metal powder from a waste lithium ion battery.
도 1을 참조하면, 종래의 니켈 금속 분말 제조 방법은 폐 리튬이온전지를 수거하고(S11), 수거된 폐 리튬이온전지의 케이스를 제거하고 양극재를 추출하여, 추출된 양극재를 분쇄, 분류, 여과하며(S12), 양극재로부터 LNO(Lithium Nickel Oxide) 원소재를 취득하고(S13), LNO 원소재를 배기 분위기(O2 분위기)에서 열처리를 행하며(S14), 열처리된 소재를 환원하여(S15), Ni 분말을 회수한다(S16). 이러한 종래의 건식 화원 공정의 경우에는 배기 분위기에서 열처리를 행함으로써 LNO 원소재로부터 LiO가 생성이 되는데, LiO는 환원이 불가능하여 니켈 분말을 회수함에 있어서 불순물로 잔류하게 된다. 따라서, 최종적으로 수득하는 니켈 분말의 순도를 저하시키는 원인이 되어 버린다.Referring to FIG. 1, the conventional nickel metal powder manufacturing method collects waste lithium ion batteries (S11), removes the cases of the collected waste lithium ion batteries, extracts cathode materials, and pulverizes and classifies the extracted cathode materials. And filtering (S12), obtaining LNO (Lithium Nickel Oxide) raw material from the cathode material (S13), heat treating the LNO raw material in an exhaust atmosphere (O2 atmosphere) (S14), and reducing the heat treated material ( S15), Ni powder is recovered (S16). In the conventional dry fire process, LiO is generated from the LNO raw material by performing heat treatment in an exhaust atmosphere. However, LiO cannot be reduced and remains as an impurity in recovering nickel powder. Therefore, it becomes the cause of reducing the purity of the nickel powder finally obtained.
폐 리튬이온전지로부터 니켈 분말을 제조하는 종래의 방법에 있어서, 건식 환원 공정 대신 액상 환원 공정을 사용될 수도 있다. 액상 환원 공정의 경우에는 산 등의 화합물을 통해 LNO 원소재를 용해한 후에 환원시키게 되는데, 건식 환원 공정에 비해서 수득 반응의 속도 및 수득율이 놓은 장점이 있는 반면에 환경에 유해한 강산 용액 및 기타 화합물을 사용함으로써 환경오염의 문제를 야기하게 되며, 중간 생성물이 다량 발생하여 생산 공정이 복잡하며 폐기물이 다량 발생하기 때문에 이를 처리할 시설이 필요하여 결국 전체적으로 보았을 때에는 생산 단가가 저하된다.In the conventional method for producing nickel powder from waste lithium ion batteries, a liquid phase reduction process may be used instead of a dry reduction process. In the case of the liquid phase reduction process, the LNO raw material is dissolved after dissolving through a compound such as an acid, and the reduction is carried out, compared with the dry reduction process, while using the strong acid solution and other compounds that are harmful to the environment, while having the advantage of the speed and yield of the obtained reaction. This causes a problem of environmental pollution, because a large amount of intermediate products are generated, the production process is complicated, and a large amount of waste is generated, so a facility for treating this is required, and as a result, the production cost is lowered as a whole.
따라서, 이러한 종래 니켈 분말 제조 공정을 개선하기 위한 신규한 공정이 필요하다.Therefore, there is a need for a novel process to improve this conventional nickel powder manufacturing process.
본 발명의 실시예들은 최종 니켈 분말의 순도를 높일 수 있는 니켈 분말 제조 방법을 제공하고자 한다.Embodiments of the present invention to provide a nickel powder production method that can increase the purity of the final nickel powder.
또한, 본 발명의 실시예들은 친환경적인 니켈 분말 제조 방법을 제공하고자 한다.In addition, embodiments of the present invention to provide an environmentally friendly method for producing nickel powder.
또한, 본 발명의 실시예들은 니켈 분말의 생산 단가를 절감할 수 있는 니켈 분말 제조 방법을 제공하기 위한 것이다.In addition, embodiments of the present invention is to provide a nickel powder production method that can reduce the production cost of nickel powder.
또한, 본 발명의 실시예들은 공정이 단순하여 상용화가 용이한 니켈 분말 제조 방법을 제공하기 위한 것이다.In addition, embodiments of the present invention is to provide a method for producing a nickel powder is a simple process is easy to commercialize.
본 발명의 일 실시예에 따르면, 폐 리튬이온전지의 양극활물질로부터 니켈 분말을 제조하는 방법에 있어서, 상기 양극활물질을 상기 폐 리튬이온전지로부터 추출하고, 상기 양극활물질을 환원가스 분위기에서 열분해하여 산화니켈과 알칼리금속 탄산물로 분리하며, 상기 산화니켈과 상기 알칼리금속 탄산물을 수세하여 상기 알칼리금속 탄산물을 제거하고, 상기 산화니켈을 환원하여 니켈 분말을 형성하는, 니켈 분말 제조 방법이 제공된다.According to an embodiment of the present invention, in the method for producing nickel powder from the positive electrode active material of a waste lithium ion battery, the positive electrode active material is extracted from the waste lithium ion battery, and the positive electrode active material is pyrolyzed in a reducing gas atmosphere to oxidize. A nickel powder production method is provided, which separates nickel and alkali metal carbonates, washes the nickel oxide and alkali metal carbonates to remove the alkali metal carbonates, and reduces the nickel oxide to form nickel powders. .
상기 산화니켈은 NiO일 수 있다.The nickel oxide may be NiO.
상기 양극활물질은 LiNiO2일 수 있다.The cathode active material may be LiNiO 2 .
상기 알칼리금속 탄산물은 탄산리튬(Li2CO3)일 수 있다.The alkali metal carbonate may be lithium carbonate (Li 2 CO 3 ).
상기 수세 공정에서 제거된 탄산리튬은 리튬금속으로 재회수될 수 있다.The lithium carbonate removed in the washing process may be recovered with lithium metal.
상기 열분해를 위한 상기 환원가스 분위기는 C, CO, CO2 중 적어도 일부를 포함할 수 있다.The reducing gas atmosphere for the pyrolysis may include at least some of C, CO, CO 2 .
상기 산화니켈은 수소(H2) 환원될 수 있다.The nickel oxide may be hydrogen (H 2 ) reduced.
본 발명의 실시예들에 의하면, 환원가스 분위기에서 열분해 함으로써 수세에 의해 제거 가능한 알칼리금속 탄산물이 중간 생성물로 됨으로써, 최종 니켈 분말의 순도를 높일 수 있다. According to embodiments of the present invention, the alkali metal carbonate that can be removed by washing with water by pyrolysis in a reducing gas atmosphere becomes an intermediate product, thereby increasing the purity of the final nickel powder.
또한, 본 발명의 실시예들에 의하면, 공정 중에 환경에 유해한 물질을 전혀 사용하지 않음으로써, 친환경적인 니켈 분말 제조 방법을 제공할 수 있다.In addition, according to embodiments of the present invention, it is possible to provide an environmentally friendly method for producing nickel powder by using no substances harmful to the environment during the process.
또한, 본 발명의 실시예들에 의하면, 유해 물질을 처리하기 위한 추가 비용이 발생하지 않기 때문에, 결과적으로 니켈 분말의 생산 단가를 절감할 수 있다. In addition, according to the embodiments of the present invention, since no additional cost for treating harmful substances is incurred, the production cost of nickel powder can be reduced as a result.
또한, 본 발명의 실시예들에 의하면, 전체 공정이 단순하여 상용화가 상대적으로 용이하다.In addition, according to embodiments of the present invention, the overall process is simple and relatively easy to commercialize.
도 1은 폐 리튬이온전지로부터 니켈 금속 분말을 제조하는 종래의 방법 중 건식 환원 공정을 나타내는 순서도1 is a flow chart showing a dry reduction process of a conventional method for producing nickel metal powder from a waste lithium ion battery.
도 2는 본 발명의 일 실시예에 따른 유량 조절기를 나타낸 단면도2 is a cross-sectional view showing a flow regulator according to an embodiment of the present invention
도 3은 본 발명의 일 실시예에 따른 유량 조절기의 분해 단면도3 is an exploded cross-sectional view of a flow regulator according to an embodiment of the present invention;
이하, 도면을 참조하여 본 발명의 구체적인 실시예들을 설명하기로 한다. 그러나 이는 예시적 실시예에 불과하며 본 발명은 이에 제한되지 않는다.Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. However, this is only an exemplary embodiment and the present invention is not limited thereto.
본 발명을 설명함에 있어서, 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In describing the present invention, when it is determined that the detailed description of the known technology related to the present invention may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, terms to be described below are terms defined in consideration of functions in the present invention, which may vary according to the intention or custom of a user or an operator. Therefore, the definition should be made based on the contents throughout the specification.
본 발명의 기술적 사상은 청구범위에 의해 결정되며, 이하 실시예는 진보적인 본 발명의 기술적 사상을 본 발명이 속하는 기술분야에서 통상의 지식을 가진자에게 효율적으로 설명하기 위한 일 수단일 뿐이다.The technical spirit of the present invention is determined by the claims, and the following embodiments are merely means for effectively explaining the technical spirit of the present invention to those skilled in the art to which the present invention pertains.
도 2는 본 발명의 일 실시예에 따른 니켈 분말 제조 방법을 나타낸 순서도이다. Figure 2 is a flow chart showing a nickel powder manufacturing method according to an embodiment of the present invention.
도 2를 참조하면, 본 발명의 일 실시예에 따른 니켈 분말 제조 방법은, 폐 리튬이온전지의 양극활물질로부터 니켈 분말을 제조하는 방법에 관한 것일 수 있다. 본 니켈 분말 제조 방법은, 양극활물질을 폐 리튬이온전지로부터 추출하는 단계(S1), 추출된 양극활물질을 환원가스 분위기에서 열분해하여 산화니켈과 알칼리금속 탄산물로 분리하는 단계(S2), 산화니켈과 알칼리금속 탄산물을 수세(water washing)하여 알칼리금속 탄산물을 용해에 의해 제거하는 단계(S3), 알칼리금속 탄산물이 제거된 상태의 산화니켈을 환원하여(S4) 니켈 분말을 형성하는 단계(S5)를 포함할 수 있다. 여기에서, 도 2에서 설명하고 있는 니켈 분말 제조 방법에서는, 종래의 니켈 분말 제조 방법 중 폐전지를 수거하고(도 1의 S11 단계), 추출된 양극재를 분쇄, 분류, 여과하는(도 1의 S12 단계) 단계는 생략되어 있다. 즉, 도 2에서는 도 1의 A 부분을 대신하는 니켈 분말 제조 방법을 설명한다.2, the nickel powder manufacturing method according to an embodiment of the present invention may relate to a method of manufacturing nickel powder from a cathode active material of a waste lithium ion battery. The present nickel powder production method, the step of extracting the positive electrode active material from the waste lithium ion battery (S1), the step of thermally decomposing the extracted positive electrode active material in a reducing gas atmosphere (S2), nickel oxide and alkali metal carbonate (S2), nickel oxide And washing the alkali metal carbonate with water to remove the alkali metal carbonate by dissolution (S3) and reducing the nickel oxide in a state where the alkali metal carbonate is removed (S4) to form a nickel powder. It may include (S5). Here, in the nickel powder production method described in FIG. 2, in the conventional nickel powder production method, a waste battery is collected (step S11 in FIG. 1), and the extracted cathode material is pulverized, classified and filtered (S12 in FIG. 1). Step) Step is omitted. That is, in FIG. 2, the nickel powder manufacturing method replacing the part A of FIG. 1 will be described.
폐 리튬이온전지의 양극활물질은 LiNiO2일 수 있고, 환원가스 분위기는 C, CO, CO2 중 적어도 일부를 포함할 수 있다. LiNiO2가 환원가스 분위기에서 열분해됨으로써, Li2CO3와 NiO가 생성될 수 있다. 이를 화학식으로 나타내면 다음과 같다.The cathode active material of the spent lithium ion battery may be LiNiO 2 , and the reducing gas atmosphere may include at least some of C, CO, and CO 2 . As LiNiO 2 is pyrolyzed in a reducing gas atmosphere, Li 2 CO 3 and NiO may be generated. This is represented by the following formula.
Figure PCTKR2017000061-appb-C000001
Figure PCTKR2017000061-appb-C000001
생성된 Li2CO3와 NiO를 수세하게 되면, Li2CO3는 물에 녹아서 제거될 수 있어서, NiO만 남도록 할 수 있다. 남은 NiO에 대해서 수소환원시키면 금속의 Ni 만이 분말 형태로 형성될 수 있다.When the produced Li 2 CO 3 and NiO are washed with water, Li 2 CO 3 can be dissolved in water and removed, leaving only NiO. Hydrogen reduction of the remaining NiO may form only Ni of the powder in powder form.
이와 같은 방법으로 제조된 니켈 분말은 95~99%의 순도를 가질 수 있다. 그에 반해, 종래의 건식 방법, 즉 LNO를 배기분위기(O2 분위기)에서 열처리하는 경우에는 LiO와 NiO가 형성되고, LiO를 제거하는데 어려움이 있기 때문에 결국 최종 니켈 분말의 순도가 60~70%에 불과하였다. 따라서, 본 발명의 일 실시예에 의한 방법으로 니켈 분말을 제조하게 되면 종래에 비해서 니켈 분말의 순도를 매우 높일 수 있다.Nickel powder prepared in this manner may have a purity of 95 ~ 99%. In contrast, in the conventional dry method, that is, when LNO is heat-treated in an exhaust atmosphere (O 2 atmosphere), LiO and NiO are formed, and since it is difficult to remove LiO, the final nickel powder has a purity of 60 to 70%. It was only. Therefore, when the nickel powder is manufactured by the method according to an embodiment of the present invention, the purity of the nickel powder may be greatly increased as compared with the related art.
또한, 종래의 액상환원공정의 경우에는 앞서 설명한 바와 같이 유해한 강산 용액 및 기타 화합물을 사용하여야 하는데, 본 발명의 일 실시예에 따른 방법에 의하면 환경에 유해한 물질을 전혀 사용하지 않을 수 있다. 따라서, 친환경적으로 니켈 분말을 형성할 수 있을 뿐만 아니라, 유해물질을 처리하기 위한 별도의 비용이 발생하지 않아서 생산 단가를 절감할 수도 있다. 그리고, 액상환원공정에 비해서, 본 발명의 일 실시예에 따른 방법은 공정이 단순하여 상대적으로 상용화도 용이할 수 있다.In addition, in the case of the conventional liquid reduction process, as described above, the harmful strong acid solution and other compounds should be used. According to the method according to the exemplary embodiment of the present invention, a substance harmful to the environment may not be used at all. Therefore, not only the nickel powder may be formed in an environmentally friendly manner, but a separate cost for treating a hazardous substance may not be generated, thereby reducing the production cost. And, compared to the liquid reduction process, the method according to an embodiment of the present invention can be easily commercialized relatively simple process.
도 3은 본 발명의 일 실시예에 따른 니켈 분말 제조 방법의 각 단계 별로 발생하는 물질의 상을 나타내는 그래프이다.Figure 3 is a graph showing the phase of the material generated in each step of the nickel powder manufacturing method according to an embodiment of the present invention.
도 3을 참조하면, 도 3(a)는 추출된 양극활물질 내의 물질, 도 3(b)는 열분해된 이후의 물질, 도 3(c)는 수세한 이후 남은 물질, 도 3(d)는 수소환원된 이후의 물질을 나타낸다.Referring to FIG. 3, FIG. 3 (a) shows the material in the extracted cathode active material, FIG. 3 (b) shows the material after pyrolysis, FIG. 3 (c) shows the remaining material after washing with water, and FIG. 3 (d) shows hydrogen. The material after reduction is shown.
도 3(a)에 의하면, 추출된 양극활물질 내에는 LiNiO2와 NiO가 포함되어 있을 수 있다. 이를 환원가스 분위기에서 열분해하면, Li2CO3와 NiO가 생성될 수 있다(도 3(b)). 생성된 Li2CO3와 NiO를 수세하게 되면, Li2CO3는 물에 녹아서 제거될 수 있어서, NiO만 남게 될 수 있다(도 3(c)). 그래서, 남은 NiO를 수소환원하게 되면 Ni 금속이 생성될 수 있다.Referring to FIG. 3A, LiNiO 2 and NiO may be included in the extracted cathode active material. When pyrolyzed in a reducing gas atmosphere, Li 2 CO 3 and NiO may be generated (FIG. 3B). When the generated Li 2 CO 3 and NiO are washed with water, Li 2 CO 3 may be dissolved in water and removed, leaving only NiO (FIG. 3 (c)). Therefore, Ni metal may be generated by hydrogen reduction of the remaining NiO.
이상에서 대표적인 실시예를 통하여 본 발명에 대하여 상세하게 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 상술한 실시예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. 그러므로 본 발명의 권리범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.Although the present invention has been described in detail with reference to exemplary embodiments above, those skilled in the art to which the present invention pertains can make various modifications to the above-described embodiments without departing from the scope of the present invention. Will understand. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the claims below and equivalents thereof.

Claims (7)

  1. 폐 리튬이온전지의 양극활물질로부터 니켈 분말을 제조하는 방법에 있어서,In the method for producing nickel powder from the positive electrode active material of the waste lithium ion battery,
    상기 양극활물질을 상기 폐 리튬이온전지로부터 추출하고,Extracting the positive electrode active material from the waste lithium ion battery,
    상기 양극활물질을 환원가스 분위기에서 열분해하여 산화니켈과 알칼리금속 탄산물로 분리하며,The cathode active material is thermally decomposed in a reducing gas atmosphere to separate nickel oxide and alkali metal carbonate,
    상기 산화니켈과 상기 알칼리금속 탄산물을 수세하여 상기 알칼리금속 탄산물을 제거하고,Washing the nickel oxide and the alkali metal carbonate to remove the alkali metal carbonate,
    상기 산화니켈을 환원하여 니켈 분말을 형성하는, 니켈 분말 제조 방법. The nickel powder is reduced to form nickel powder.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 산화니켈은 NiO인, 니켈 분말 제조 방법.The nickel oxide is NiO, nickel powder manufacturing method.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 양극활물질은 LiNiO2인, 니켈 분말 제조 방법.The cathode active material is LiNiO 2 , nickel powder manufacturing method.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 알칼리금속 탄산물은 탄산리튬(Li2CO3)인, 니켈 분말 제조 방법.The alkali metal carbonate is lithium carbonate (Li 2 CO 3 ), nickel powder manufacturing method.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 수세 공정에서 제거된 탄산리튬은 리튬금속으로 재회수되는, 니켈 분말 제조 방법.The lithium carbonate removed in the washing step is recovered with lithium metal, nickel powder manufacturing method.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 열분해를 위한 상기 환원가스 분위기는 C, CO, CO2 중 적어도 일부를 포함하는, 니켈 분말 제조 방법.The reducing gas atmosphere for the pyrolysis includes at least a portion of C, CO, CO 2 , nickel powder manufacturing method.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 산화니켈은 수소(H2) 환원되는, 니켈 분말 제조 방법.The nickel oxide is hydrogen (H 2 ) is reduced, nickel powder manufacturing method.
PCT/KR2017/000061 2016-03-11 2017-01-03 Method for producing nickel powder WO2017155198A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0029541 2016-03-11
KR1020160029541A KR20170106004A (en) 2016-03-11 2016-03-11 Nickel powder fabrication method

Publications (1)

Publication Number Publication Date
WO2017155198A1 true WO2017155198A1 (en) 2017-09-14

Family

ID=59789625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000061 WO2017155198A1 (en) 2016-03-11 2017-01-03 Method for producing nickel powder

Country Status (2)

Country Link
KR (1) KR20170106004A (en)
WO (1) WO2017155198A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102041180B1 (en) * 2018-01-29 2019-11-06 부경대학교 산학협력단 Nickel powder fabrication method
KR102349767B1 (en) 2019-03-27 2022-01-11 에스케이이노베이션 주식회사 Method of regenerating lithium precursor
KR20210082944A (en) * 2019-12-26 2021-07-06 에스케이이노베이션 주식회사 Method of recycling positive active material precursor
KR102332465B1 (en) * 2019-12-27 2021-11-30 (주)다원화학 Method for Collecting Valuable Metal from Cathode Materials of Waste Lithium Ion Battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000055084A (en) * 1999-02-03 2000-09-05 윤대근 Transition metal recovering method from positive active materials of lithium ion cell
KR100709082B1 (en) * 1999-11-19 2007-04-19 사까이가가꾸고오교가부시끼가이샤 Method for producing fine powder of metallic nickel comprised of fine spherical particles
KR20110060040A (en) * 2009-11-30 2011-06-08 한국지질자원연구원 Method for making nano-particle from spent lithium ion batteries
JP2013152854A (en) * 2012-01-25 2013-08-08 Jx Nippon Mining & Metals Corp Method of separating valuable metal from waste secondary battery, and method of recovering valuable metal using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000055084A (en) * 1999-02-03 2000-09-05 윤대근 Transition metal recovering method from positive active materials of lithium ion cell
KR100709082B1 (en) * 1999-11-19 2007-04-19 사까이가가꾸고오교가부시끼가이샤 Method for producing fine powder of metallic nickel comprised of fine spherical particles
KR20110060040A (en) * 2009-11-30 2011-06-08 한국지질자원연구원 Method for making nano-particle from spent lithium ion batteries
JP2013152854A (en) * 2012-01-25 2013-08-08 Jx Nippon Mining & Metals Corp Method of separating valuable metal from waste secondary battery, and method of recovering valuable metal using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM DAE WON ET AL.: "Recovery of Lithium and Leaching Behavior of NCM Powder by Carbon Reductive Treatment from Li(NCM)O2 System Secondary Battery Scraps", JOURNAL OF THE KOREAN INSTITUTE OF RESOURCES RECYCLING, vol. 22, no. 4, 2013, pages 43 - 49, XP055413943 *

Also Published As

Publication number Publication date
KR20170106004A (en) 2017-09-20

Similar Documents

Publication Publication Date Title
CN111206148B (en) Method for recycling and preparing ternary cathode material by using waste ternary lithium battery
EP3517641B2 (en) Method for the utilization of lithium batteries
CN105567978B (en) The method that copper zinc cobalt nickel is recycled from the various waste materials containing non-ferrous metal
WO2017155198A1 (en) Method for producing nickel powder
US9677152B2 (en) Method for recovering lithium
CN101871048B (en) Method for recovering cobalt, nickel and manganese from waste lithium cells
JP4865745B2 (en) Method for recovering valuable metals from lithium batteries containing Co, Ni, Mn
CN113444885B (en) Method for preferentially extracting metal lithium from waste ternary lithium ion battery and simultaneously obtaining battery-grade metal salt
CN110512080A (en) Valuable metal separation and recovery method in a kind of waste and old nickel cobalt manganese lithium ion battery
KR100930453B1 (en) How to Recover Metals from Battery Residues
JP6314814B2 (en) Method for recovering valuable metals from waste lithium-ion batteries
CN110668506A (en) Method for recycling and regenerating lithium cobaltate from waste lithium ion battery
CN107623152B (en) Applying waste lithium ionic power battery resource recycle method
JP5488376B2 (en) Lithium recovery method
CN105789724A (en) Treatment method for waste lithium-ion battery
CN111600090A (en) Process for recycling waste lithium batteries
CN108486378A (en) A kind of processing method of the leachate of waste material containing lithium electrode
CA3177071A1 (en) Method for recovering valuable metal from waste electrode material of lithium secondary battery by using lithium carbonate
KR20170061206A (en) Collection method of precursor material using disposed lithum-ion battery
CN108110358A (en) The recovery method of waste and old lithium ion battery binding agent
KR20230044244A (en) Methods for recovering cobalt ions, nickel ions and manganese ions from metal-bearing residues
JP2012041621A (en) Method for recovering lithium
WO2024040910A1 (en) Method for recovering valuable metals from waste lithium-ion battery
CN108400403A (en) A method of preparing lithium carbonate with waste material containing lithium electrode
CN110468281A (en) Valuable metal separation and recovery method in a kind of waste and old cobalt acid lithium battery

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763461

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763461

Country of ref document: EP

Kind code of ref document: A1