KR20110060040A - Method for making nano-particle from spent lithium ion batteries - Google Patents

Method for making nano-particle from spent lithium ion batteries Download PDF

Info

Publication number
KR20110060040A
KR20110060040A KR1020090116508A KR20090116508A KR20110060040A KR 20110060040 A KR20110060040 A KR 20110060040A KR 1020090116508 A KR1020090116508 A KR 1020090116508A KR 20090116508 A KR20090116508 A KR 20090116508A KR 20110060040 A KR20110060040 A KR 20110060040A
Authority
KR
South Korea
Prior art keywords
lithium ion
active material
ion battery
waste lithium
positive electrode
Prior art date
Application number
KR1020090116508A
Other languages
Korean (ko)
Inventor
신선명
장한권
강진구
손정수
장희동
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to KR1020090116508A priority Critical patent/KR20110060040A/en
Publication of KR20110060040A publication Critical patent/KR20110060040A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE: A nanopowder producing method from waste lithium ion batteries is provided to heat-treating a metal ion solution obtained from the waste lithium ion batteries. CONSTITUTION: A nanopowder producing method from waste lithium ion batteries comprises the following steps: separating a metal ion solution from the waste lithium ion batteries(S100); spraying the metal ion solution in a micro-droplets(S200); passing the micro-droplets through fire for obtaining the nanopowder(S300); and heat processing the obtained nanopowder at 700~1,000deg C(S400). The metal ion solution is obtained from a positive electrode active material.

Description

폐리튬이온전지로부터 나노분말 제조 방법{METHOD FOR MAKING NANO-PARTICLE FROM SPENT LITHIUM ION BATTERIES}Method of manufacturing nano powder from waste lithium ion battery {METHOD FOR MAKING NANO-PARTICLE FROM SPENT LITHIUM ION BATTERIES}

본 발명은 폐리튬이온전지로부터 나노분말을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing nanopowders from waste lithium ion batteries.

리튬이온전지는 모바일IT와 미래형 자동차 분야의 용도에 가장 최적의 특성을 갖고 있다. 리튬이온전지가 이 두 분야에서 적합한 것은 특정 충전상태의 범위에서 간헐적이고도 반복적인 충전에도 성능 감소 없이 사용할 수 있기 때문이다. Lithium-ion batteries have the most optimal characteristics for mobile IT and future automotive applications. Lithium-ion batteries are suitable in these two fields because they can be used without intermittent and repetitive charging without any loss of performance in a range of specific states of charge.

수요 상승에 따라 폐기되는 폐리튬이온전지의 양도 매년 기하급수적으로 증가할 것으로 예상된다. As the demand rises, the amount of waste lithium-ion batteries discarded is expected to increase exponentially every year.

폐리튬이온전지에는 양극활물질을 포함하여 여러 유가금속이 있으나, 이 금속이 적절히 회수되지 않고 폐기되고 있다. There are various valuable metals in the lithium ion battery including the positive electrode active material, but these metals are not properly recovered and disposed of.

본 발명의 목적은, 폐리튬이온전지로부터 유용한 나노분말을 제조하는 방법을 제공하는 것이다. It is an object of the present invention to provide a method for producing useful nanopowders from spent lithium ion batteries.

본 발명의 목적은 폐리튬이온전지에서 금속성분을 분리하여 얻는 단계; 상기 금속성분을 환원성분위기에서 산침출하여 금속이온 수용액을 얻는 단계; 상기 금속이온 수용액을 미세액적으로 분무시키는 단계; 및 상기 미세액적을 화염에 통과시켜 나노 분말을 얻는 단계를 포함하는 폐리튬이온전지로부터 나노분말 제조방법에 의해 달성될 수 있다.An object of the present invention is to obtain a step of separating the metal component in the waste lithium ion battery; Acid leaching the metal component in a reducing component atmosphere to obtain a metal ion aqueous solution; Spraying the aqueous metal ion solution into microdroplets; And it can be achieved by a method for producing a nano-powder from a waste lithium ion battery comprising the step of passing the microdroplets through a flame to obtain a nano powder.

상기 금속성분은 양극활물질로부터 얻어질 수 있다.The metal component may be obtained from a cathode active material.

상기 나노 분말을 열처리하는 단계를 더 포함할 수 있다., The method may further include heat treating the nano powder.

상기 열처리는 700℃ 내지 1000℃ 에서 산소를 공급하면서 수행될 수 있다.The heat treatment may be performed while supplying oxygen at 700 ° C to 1000 ° C.

상기 나노 분말은 리튬, 코발트, 니켈 및 망간을 포함하는 3원계 양극활물질일 수 있다.The nano powder may be a ternary cathode active material including lithium, cobalt, nickel and manganese.

상기 양극활물질 성분을 얻는 단계는, 상기 양극활물질이 유기바인더를 이용해 고정되어 있는 양극판을 1차 분쇄하는 단계; 분쇄된 상기 양극판 및 상기 양극활물질을 열처리하여 상기 유기바인더를 제거하는 단계; 및 열처리 후 2차 분쇄하여 상기 양극판과 상기 양극활물질을 단체분리하는 단계를 포함할 수 있다. The obtaining of the positive electrode active material component may include: pulverizing a positive electrode plate in which the positive electrode active material is fixed using an organic binder; Heat-treating the pulverized positive electrode plate and the positive electrode active material to remove the organic binder; And separating the positive electrode plate and the positive electrode active material by a second crushing after heat treatment.

상기 화염을 일으키는 화염장치는 5개의 동심관을 포함하며, 중심관으로부터 이송가스 및 상기 미세액적, 불활성가스, 수소, 산소, 공기 순으로 공급될 수 있다.The flame-generating flame apparatus includes five concentric tubes, and may be supplied from a central tube in the order of a transport gas and the microdroplets, inert gas, hydrogen, oxygen, and air.

상기 산침출은 질산을 이용하고, 상기 환원은 과산화수소를 이용할 수 있다.The acid leaching may use nitric acid, and the reduction may use hydrogen peroxide.

상기 목적은 폐리튬이온전지로부터 3원계 양극활물질을 얻는 단계; 상기 3원계 양극활물질을 환원성분위기에서 산 침출하여 금속이온 수용액을 얻는 단계; 상 기 금속이온 수용액을 초음파를 이용하여 분무시킨 후 화염처리하여 나노분말을 제조하는 단계; 및 상기 나노분말을 700℃ 내지 1000℃ 에서 산소를 공급하여 열처리하는 단계를 포함하는 폐리튬이온전지로부터 나노분말 제조방법에 의해서도 달성될 수 있다. The object is to obtain a ternary positive electrode active material from a waste lithium ion battery; Acid leaching the ternary cathode active material in a reducing component atmosphere to obtain a metal ion aqueous solution; Preparing a nanopowder by spraying the aqueous metal ion solution using ultrasonic waves, followed by flame treatment; And it can also be achieved by a method for producing a nano-powder from the waste lithium ion battery comprising the step of heat-treating the nano-powder at 700 ℃ to 1000 ℃.

상기 3원계 양극활물질은 LiCo1/3Ni1/3Mn1/3O2일 수 있다. The ternary cathode active material may be LiCo 1/3 Ni 1/3 Mn 1/3 O 2 .

본 발명에 따르면, 폐기되던 폐리튬이온전지로부터 유용한 나노분말을 얻을 수 있다. According to the present invention, useful nanopowders can be obtained from waste lithium ion batteries.

도 1은 본 발명에 따른 폐리튬이온전지로부터 나노분말을 제조하는 방법을 나타낸 것이다.Figure 1 shows a method for producing a nano-powder from the waste lithium ion battery according to the present invention.

먼저 폐리튬이온전지로부터 금속성분을 회수한다(S100). 이 과정은 폐리튬이온전지의 분쇄(절단)과정을 포함할 수 있으며, 분쇄는 여러 차례에 걸쳐 행해질 수 있다. 도 2와 같이 양극집전체(양극판)인 알루미늄 호일에 고정되어 있는 양극활물질을 회수할 경우, 양극판에 양극활물질을 고정하는 유기바인더를 제거하기 위해 열처리를 거칠 수 있다. 열처리는 200℃ 내지 500℃에서 수행될 수 있다.First, a metal component is recovered from the waste lithium ion battery (S100). This process may include the grinding (cutting) process of the waste lithium ion battery, and the grinding may be performed several times. When recovering the positive electrode active material fixed to the aluminum foil, which is a positive electrode current collector (anode plate) as shown in FIG. Heat treatment may be carried out at 200 ℃ to 500 ℃.

다음으로 회수된 금속분말을 환원성분위기에서 산침출하여 금속이온 수용액을 얻는다(S200). 산용액은 질산용액, 염산용액, 황산용액 등이 사용될 수 있다. 환원제는 과산화수소를 사용할 수 있으며, 이 외에도 H2, H2S, NH3, N2H4를 사용할 수도 있다. 환원제는 침출과정에서 산에 의한 금속의 용해속도를 빠르게 증가시킨다. 시료, 산용액 및 환원제의 혼합순서는 다양하게 변화할 수 있다.Next, the acid metal leached from the recovered metal powder to obtain a metal ion aqueous solution (S200). The acid solution may be a nitric acid solution, hydrochloric acid solution, sulfuric acid solution and the like. The reducing agent may use hydrogen peroxide, in addition to H 2 , H 2 S, NH 3 , N 2 H 4 It may be used. The reducing agent rapidly increases the dissolution rate of the metal by acid during leaching. The order of mixing the sample, acid solution and reducing agent can vary.

이후, 화염처리하여 1차 나노분말을 얻는다(S300). 화염처리는 금속이온 수용액을 미세액적으로 분무시킨 후 화염에 통과시키는 과정을 포함한다. 미세액적으로의 분무는 초음파 분무장치를 이용할 수 있으며, 이 때 액적의 크기는 약 10㎛정도, 더 구체적으로는 5㎛ 내지 20㎛정도일 수 있다. 화염의 온도는 800℃ 내지 1700℃일 수 있다. Thereafter, the flame treatment to obtain a primary nanopowder (S300). The flame treatment involves spraying the metal ion aqueous solution into the microdroplets and then passing the flame through the flame. Spraying into the microdroplets may use an ultrasonic atomizer, wherein the droplet size may be about 10 μm, more specifically about 5 μm to 20 μm. The temperature of the flame may be between 800 ° C and 1700 ° C.

미세액적은 아르곤과 같은 이송가스에 의해 화염으로 이동하며, 나노분말로 합성된다. 합성된 나노분말은 화염장치 전방에 있으며 내부에 냉각수가 흐르는 유리관 표면에 열영동현상(thermophoresis)에 의해 부착될 수 있다.The microdroplets move to the flame by a transport gas such as argon and are synthesized into nanopowders. The synthesized nanopowders may be attached by thermophoresis to the surface of the glass tube in front of the flame device and the cooling water flowing therein.

이상 설명한 미세액적 분무, 화염 처리 및 부착은 본 출원인의 한국출원번호 제2002-0031167에 개시된 장치를 이용할 수 있다.The microdroplet spray, flame treatment and attachment described above may use the apparatus disclosed in the present applicant's Korean application No. 2002-0031167.

장치는 5개의 동심관을 포함하며, 내부로부터 미세액적 및 이송가스, 불활성가스, 수소, 산소 및 공기가 공급될 수 있다. 이송가스 및 불활성가스로는 아르곤을 사용할 수 있다. The apparatus includes five concentric tubes and can be supplied with microdroplets and transfer gas, inert gas, hydrogen, oxygen and air from the inside. Argon may be used as the carrier gas and the inert gas.

다음으로, 얻어진 1차 나노분말을 열처리한다(S400). 열처리는 700℃ 내지 1000℃ 에서 산소 또는 공기를 공급하면서 수행될 수 있으며, 30분 내지 2시간 동안 수행될 수 있다. 금속분말이 3원계 양극활물질인 경우, 이에 의해 얻어지는 2차 나노분말은 양극활물질로 사용할 수 있는 물성을 가지게 된다. Next, the obtained primary nanopowder is heat treated (S400). The heat treatment may be performed while supplying oxygen or air at 700 ° C. to 1000 ° C., and may be performed for 30 minutes to 2 hours. When the metal powder is a ternary cathode active material, the secondary nanopowder obtained thereby has physical properties that can be used as the cathode active material.

이하 본 발명을 실험예를 통해 자세히 설명한다. 실험에서는 리튬, 코발트, 니켈 및 망간을 포함하는 층상구조의 3원계 양극활물질을 회수대상으로 하나, 본 발명은 이에 한정되지 않는다. 3원계 촉매의 구체적인 조성은 LiCo1/3Ni1/3Mn1/3O2일 수 있다.Hereinafter, the present invention will be described in detail through experimental examples. In the experiment, a ternary positive electrode active material having a layered structure including lithium, cobalt, nickel, and manganese is to be recovered, but the present invention is not limited thereto. The specific composition of the ternary catalyst may be LiCo 1/3 Ni 1/3 Mn 1/3 O 2 .

<양극활물질 분말 회수><Anode Powder Recovery>

폐리튬이온전지에서 양극활물질은 파우더 형태로 양극판인 알루미늄 호일에 유기 바인더를 이용해 고정되어 있다. 양극활물질이 고정되어 있는 양극판을 파쇄(절단)하여 분쇄한 후 300℃ 전기로에서 열처리하여 바인더를 제거하였다. 이 후 2개의 회전날이 설치된 분쇄기를 이용하여 재분쇄 후 입도분리를 통해 양극판과 양극활물질을 단체분리하였다.In the waste lithium ion battery, the positive electrode active material is fixed in a powder form using an organic binder on aluminum foil, which is a positive electrode. The positive electrode plate on which the positive electrode active material is fixed is crushed (cut) and pulverized, and then heat-treated in an electric furnace at 300 ° C. to remove the binder. After that, using a grinder equipped with two rotary blades, the positive electrode plate and the positive electrode active material were separated into pieces by particle size separation.

분리된 양극활물질의 성분을 분석한 결과는 표 1과 같다. 분석은 시료를 왕수로 녹인 후 원자흡광분석기(Analyst440, PerkinElmer)를 이용하여 수행하였다.The results of analyzing the components of the separated cathode active material are shown in Table 1. The analysis was performed using an atomic absorption spectrometer (Analyst440, PerkinElmer) after the sample was dissolved in aqua regia.

표 1.Table 1.

CoCo LiLi NiNi FeFe MnMn CuCu AlAl CaCa balancebalance %% 19.8 19.8 7.3 7.3 19.9 19.9 00 18.318.3 00 00 0.0080.008 34.7 34.7

표 1에서 볼 수 있는 바와 같이 유가금속은 Co, Li, Ni, Mn로 이루어져 있으며 성분함량은 19.8% Co, 7.3% Li, 19.9% Ni, 18.3% Mn임을 확인하였다. Li : Co : Ni : Mn의 몰 비율은 1 : 0.33 : 0.33 : 0.33 이었다.As can be seen in Table 1, the valuable metals were made of Co, Li, Ni, and Mn, and the component contents were 19.8% Co, 7.3% Li, 19.9% Ni, and 18.3% Mn. The molar ratio of Li: Co: Ni: Mn was 1: 0.33: 0.33: 0.33.

회수된 3원계 양극활물질의 화학결정구조를 XRD를 이용하여 분석하였다. 그 결과를 도 3에 표시하였으며, 비교분석을 위해 LiCoO2 시약과의 XRD 패턴을 분석해본 결과 회수된 3원계 양극활물질의 결정형은 시약급 LiCoO2의 결정형과 동일함을 확인하였다. The chemical crystal structure of the recovered ternary cathode active material was analyzed using XRD. The results are shown in FIG. 3, and XRD patterns with LiCoO 2 reagents for comparative analysis showed that the crystalline form of the recovered ternary positive electrode active material was the same as that of the reagent grade LiCoO 2 .

<질산환원침출><Nitrate reduction leaching>

이후 얻어진 양극활물질 분말을 질산 및 과산화수소를 이용해 용해하여 금속이온 수용액(질산금속혼합용액)을 얻었다.The obtained cathode active material powder was dissolved using nitric acid and hydrogen peroxide to obtain a metal ion aqueous solution (metal nitrate mixed solution).

사용된 실험장치는 도 4와 같다. 100ml용량의 워터자켓 파이렉스 반응조에서 환원침출이 이루어졌다. 용액의 증발을 막기 위해 콘덴서를 반응조 상부에 설치하였으며, 마그네틱 바로 교반하였다. The experimental apparatus used is shown in FIG. Reduction of leaching was carried out in a 100 ml water jacketed Pyrex reactor. A condenser was installed on top of the reactor to prevent evaporation of the solution and stirred with a magnetic bar.

침출용액과 양극활물질 분말을 고액비 1:10으로 하여 가열하면서 교반하였다. 그 후 용액을 가열하면서 과산화수소를 테프론 관을 통해 일정량 투입하였다. 실험과 달리 과산화수소와 양극활물질 분말을 혼합한 후 질산용액을 가할 수도 있다.The leaching solution and the positive electrode active material powder were stirred while heating to a solid solution ratio of 1:10. Thereafter, while the solution was heated, a certain amount of hydrogen peroxide was introduced through a Teflon tube. Unlike the experiments, nitric acid solution may be added after mixing hydrogen peroxide and the positive electrode active material powder.

질산 2M, 10 vol.% H2O2, 60℃, 200rpm, 1시간동안 진행한 침출환원실험에서의 실험결과는 표 2와 같다. The results of the leaching reduction experiments conducted for 2 hours in nitric acid, 10 vol.% H 2 O 2 , 60 ° C., 200 rpm, and 1 hour are shown in Table 2.

표 2 Table 2

CoCo NiNi LiLi MnMn mg/Lmg / L 91009100 92009200 50005000 93009300 mol/Lmol / L 1.01.0 1.01.0 4.74.7 1.11.1

<화염분무를 이용한 1차 나노분말 제조><Preparation of primary nanopowder using flame spraying>

초음파 분무장치를 이용해 질산금속혼합용액을 약 10㎛정도의 미세액적으로 분무시킨 후 운반가스인 아르곤 가스를 주입시켜 화염방사기 중심관을 거쳐 화염으로 주입시켰다. 분무량을 일정하게 유지시키기 위해 주사펌프를 이용하여 분무장치 내 분무용액의 부피를 일정하게 유지시켰다. 내부중심관으로부터의 유량은 아르곤 이송가스 1 liter/min, 아르곤 가스 1 liter/min, 수소 5 liter/min, 산소 6 liter/min, 공기 15 liter/min이었다. 화염온도는 약 1200℃였다.After spraying the metal nitrate mixed solution into the fine droplet of about 10㎛ using the ultrasonic spray device, argon gas, which is a carrier gas, was injected into the flame through the center of the flamethrower. In order to maintain a constant spray volume, the injection pump was used to maintain a constant volume of the spray solution in the spray apparatus. The flow rates from the inner core were 1 liter / min of argon feed gas, 1 liter / min of argon gas, 5 liter / min of hydrogen, 6 liter / min of oxygen, and 15 liter / min of air. The flame temperature was about 1200 ° C.

화염에 의해 형성된 나노분말은 표면이 냉각된 유리관에 열영동현상으로 회수하였다.The nanopowder formed by the flame was recovered by thermophoresis in a glass tube whose surface was cooled.

도 5는 질산환원침출액으로부터 화염분무를 이용하여 제조한 LiCo1/3Ni1/3Mn1/3O2 (Co, Ni, Mn의 비는 변할 수 있다) 나노분말의 투과전자현미경 사진이다. 투과전자현미경 사진으로부터 입자의 평균입경은 약 10 nm이며, 균일한 입자크기임을 확인하였다FIG. 5 is a transmission electron microscope photograph of LiCo 1/3 Ni 1/3 Mn 1/3 O 2 (the ratio of Co, Ni, and Mn may be changed) prepared by flame spraying from a nitric acid leachate. From the transmission electron micrograph, the average particle diameter was about 10 nm, and it was confirmed that the particle size was uniform.

<열처리><Heat treatment>

나노분말을 800oC로 예열된 관형 전기로 내부에 넣고 공기를 1 liter/min의 유량으로 유입시키면서 1시간동안 열처리를 수행하였다. 열처리에 의해 나노분말의 결정성이 향상된다.The nanopowder was placed inside a tubular electric furnace preheated to 800 ° C. and heat-treated for 1 hour while introducing air at a flow rate of 1 liter / min. The heat treatment improves the crystallinity of the nanopowder.

도 6에 열처리 전후 나노분말의 XRD 결과를 나타내었다. 열처리 전과 비교하여 열처리 후의 분말의 XRD 강도는 월등히 증가하였다. 층상구조의 LiCo1/3Ni1/3Mn1/3O2 분말이 제조되었다는 것과 도 4의 상용분말인 LiCoO2의 XRD 패턴과 동일함을 확인하였으며, 이는 열처리된 나노분말은 리튬이온전지의 3원계 양극활물질로 사용가능함을 의미한다.6 shows the XRD results of the nanopowder before and after the heat treatment. Compared to before heat treatment, the XRD strength of the powder after heat treatment was significantly increased. It was confirmed that the LiCo 1/3 Ni 1/3 Mn 1/3 O 2 powder having a layered structure was prepared and the same as the XRD pattern of LiCoO 2 , which is a commercial powder of FIG. 4. It can be used as a ternary cathode active material.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통 상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. Having described the specific part of the present invention in detail, it will be apparent to those skilled in the art that such a specific description is merely a preferred embodiment, thereby not limiting the scope of the present invention. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

도 1은 본 발명에 따른 폐리튬이온전지로부터 나노분말 제조방법을 나타낸 공정도이고,        1 is a process chart showing a method for manufacturing nano-powder from the waste lithium ion battery according to the present invention,

도 2는 양극판에 고정되어 있는 3원계 양극활물질의 사진이고,       2 is a photograph of a ternary positive electrode active material fixed to a positive electrode plate,

도 3은 LiCoO2 시약 및 회수된 3원계 양극활물질의 XRD 분석 결과이고,3 is an XRD analysis result of LiCoO 2 reagent and recovered tertiary cathode active material,

도 4는 침출환원에 사용되는 장치를 나타낸 도면이고,       4 is a view showing a device used for leaching reduction,

도 5는 화염분무과정을 거쳐 얻어진 나노분말의 투과전자현미경 사진이고,       5 is a transmission electron micrograph of the nanopowder obtained through the flame spraying process,

도 6은 열처리 전후의 나노분말의 XRD 분석 결과이다.        6 shows XRD analysis results of nanopowders before and after heat treatment.

Claims (10)

폐리튬이온전지에서 금속성분을 분리하여 얻는 단계;Separating and obtaining a metal component from a waste lithium ion battery; 상기 금속성분을 환원성분위기에서 산침출하여 금속이온 수용액을 얻는 단계;Acid leaching the metal component in a reducing component atmosphere to obtain a metal ion aqueous solution; 상기 금속이온 수용액을 미세액적으로 분무시키는 단계;Spraying the aqueous metal ion solution into microdroplets; 상기 미세액적을 화염에 통과시켜 나노 분말을 얻는 단계를 포함하는 폐리튬이온전지로부터 나노분말 제조방법. Passing the microdroplets through the flame to obtain nanopowders comprising the steps of obtaining nanopowders from the waste lithium ion battery. 제1항에 있어서, The method of claim 1, 상기 금속성분은 양극활물질로부터 얻어지는 것을 특징으로 하는 폐리튬이온전지로부터 나노분말 제조방법. The metal component is a nano-powder manufacturing method from a waste lithium ion battery, characterized in that obtained from a cathode active material. 제2항에 있어서, The method of claim 2, 상기 나노 분말을 열처리하는 단계를 더 포함하는 것을 특징으로 하는 폐리튬이온전지로부터 나노분말 제조방법. The nano-powder manufacturing method from the waste lithium ion battery, characterized in that it further comprises the step of heat-treating the nano-powder. 제3항에 있어서, The method of claim 3, wherein 상기 열처리는 700℃ 내지 1000℃ 에서 산소를 공급하면서 수행되는 것을 특징으로 하는 폐리튬이온전지로부터 나노분말 제조방법. The heat treatment is a nano-powder manufacturing method from the waste lithium ion battery, characterized in that is carried out while supplying oxygen at 700 ℃ to 1000 ℃. 제2항에 있어서, The method of claim 2, 상기 나노 분말은 리튬, 코발트, 니켈 및 망간을 포함하는 3원계 양극활물질인 것을 특징으로 하는 폐리튬이온전지로부터 나노분말 제조방법. The nano-powder is a nano-powder manufacturing method from the waste lithium ion battery, characterized in that the ternary cathode active material containing lithium, cobalt, nickel and manganese. 제2항에 있어서, The method of claim 2, 상기 양극활물질 성분을 얻는 단계는,Obtaining the positive electrode active material component, 상기 양극활물질이 유기바인더를 이용해 고정되어 있는 양극판을 1차 분쇄하는 단계;Primary grinding of the positive electrode plate to which the positive electrode active material is fixed using an organic binder; 분쇄된 상기 양극판 및 상기 양극활물질을 열처리하여 상기 유기바인더를 제거하는 단계; 및Heat-treating the pulverized positive electrode plate and the positive electrode active material to remove the organic binder; And 열처리 후 2차 분쇄하여 상기 양극판과 상기 양극활물질을 단체분리하는 단계를 포함하는 폐리튬이온전지로부터 나노분말 제조방법. Secondary grinding after heat treatment, the method for producing a nano-powder from the waste lithium ion battery comprising the step of separating the positive electrode plate and the positive electrode active material. 제2항에 있어서, The method of claim 2, 상기 화염을 일으키는 화염장치는 5개의 동심관을 포함하며, The flame generating device comprises five concentric tubes, 중심관으로부터 이송가스 및 상기 미세액적, 불활성가스, 수소, 산소, 공기 순으로 공급되는 것을 특징으로 하는 폐리튬이온전지로부터 나노분말 제조방법. A method for producing nanopowder from a waste lithium ion battery, characterized in that the feed gas and the fine droplets, inert gas, hydrogen, oxygen, air are supplied from a central tube in this order. 제2항에 있어서, The method of claim 2, 상기 산침출은 질산을 이용하고, 상기 환원은 과산화수소를 이용하는 것을 특징으로 하는 폐리튬이온전지로부터 나노분말 제조방법. The acid leaching is nitric acid, the reduction is hydrogen peroxide, characterized in that the nano-powder manufacturing method from a lithium ion battery. 폐리튬이온전지로부터 3원계 양극활물질을 얻는 단계;Obtaining a ternary positive electrode active material from a waste lithium ion battery; 상기 3원계 양극활물질을 환원성분위기에서 산 침출하여 금속이온 수용액을 얻는 단계;Acid leaching the ternary cathode active material in a reducing component atmosphere to obtain a metal ion aqueous solution; 상기 금속이온 수용액을 초음파를 이용하여 분무시킨 후 화염처리하여 나노분말을 제조하는 단계; 및Preparing a nanopowder by spraying the aqueous metal ion solution using ultrasonic waves and then performing flame treatment; And 상기 나노분말을 700℃ 내지 1000℃ 에서 산소를 공급하여 열처리하는 단계를 포함하는 폐리튬이온전지로부터 나노분말 제조방법. Method of producing a nanopowder from a waste lithium ion battery comprising the step of heat-treating the nanopowder at 700 ℃ to 1000 ℃. 제9항에 있어서, 10. The method of claim 9, 상기 3원계 양극활물질은 LiCo1/3Ni1/3Mn1/3O2인 것을 특징으로 하는 폐리튬이온전지로부터 나노분말 제조방법.The ternary cathode active material is LiCo 1/3 Ni 1/3 Mn 1/3 O 2 The method for producing nano-powder from the waste lithium ion battery, characterized in that.
KR1020090116508A 2009-11-30 2009-11-30 Method for making nano-particle from spent lithium ion batteries KR20110060040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090116508A KR20110060040A (en) 2009-11-30 2009-11-30 Method for making nano-particle from spent lithium ion batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090116508A KR20110060040A (en) 2009-11-30 2009-11-30 Method for making nano-particle from spent lithium ion batteries

Publications (1)

Publication Number Publication Date
KR20110060040A true KR20110060040A (en) 2011-06-08

Family

ID=44394877

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090116508A KR20110060040A (en) 2009-11-30 2009-11-30 Method for making nano-particle from spent lithium ion batteries

Country Status (1)

Country Link
KR (1) KR20110060040A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017155198A1 (en) * 2016-03-11 2017-09-14 부경대학교 산학협력단 Method for producing nickel powder
KR20230046524A (en) 2021-09-30 2023-04-06 조영기 Apparatus for powdering lithium hydroxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017155198A1 (en) * 2016-03-11 2017-09-14 부경대학교 산학협력단 Method for producing nickel powder
KR20230046524A (en) 2021-09-30 2023-04-06 조영기 Apparatus for powdering lithium hydroxide

Similar Documents

Publication Publication Date Title
Chen et al. Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid
Yang et al. Recovery and regeneration of LiFePO 4 from spent lithium-ion batteries via a novel pretreatment process
KR101271669B1 (en) Method for reusing valuable metal of used battery
JP7462570B2 (en) Method for recovering lithium and transition metals using heat
EP4004242A1 (en) Method for recycling lithium batteries
WO2021166755A1 (en) Method for treating alloy
Assefi et al. Recycling of Ni-Cd batteries by selective isolation and hydrothermal synthesis of porous NiO nanocuboid
US11613475B2 (en) Process for recycling spent cathode materials
Bhandari et al. Investigation of hydrogen reduction of LiCoO2 cathode material for the recovery of Li and Co values
Zhang et al. Extraction of valuable metals from spent cathode materials by reductive roasting in methane atmosphere
Rostami et al. Recovery of lithium, cobalt, nickel, and manganese from spent lithium-ion batteries through a wet-thermal process
JP2023518880A (en) Reuse of batteries by reduction and carbonylation
Zhu et al. Recycling of waste carbon residue from spent lithium-ion batteries via constant-pressure acid leaching
Bhandari et al. Gaseous reduction of NMC-type cathode materials using hydrogen for metal recovery
Yu et al. Cobalt recovery and microspherical cobalt tetroxide preparation from ammonia leaching solution of spent lithium-ion batteries
Liu et al. Microwave low-temperature treatment–Step leaching process for recovering black mass from spent lithium-ion batteries
Purwanto et al. High performance nickel based electrodes in state-of-the-art lithium-ion batteries: morphological perspectives
KR100828933B1 (en) Cobalt nano particles and preparation method thereof
KR20110060040A (en) Method for making nano-particle from spent lithium ion batteries
Yasa et al. Recycling valuable materials from the cathodes of spent lithium-ion batteries: A comprehensive review
Chu et al. Rapid leaching of valuable metals from spent lithium-ion batteries with microwave irradiation using organic and inorganic acid
CN115210935A (en) Apparatus for recovering active material and method of reusing active material using the same
JP2011225395A (en) Nickel oxide fine powder, and method for producing the same
EP4098617A1 (en) Method for recovering active metal of lithium secondary battery
WO2013055792A1 (en) Size and morphologically controlled nanostructures for energy storage

Legal Events

Date Code Title Description
A201 Request for examination
E601 Decision to refuse application