WO2017154789A1 - 表示装置及びヘッドマウントディスプレイ - Google Patents

表示装置及びヘッドマウントディスプレイ Download PDF

Info

Publication number
WO2017154789A1
WO2017154789A1 PCT/JP2017/008564 JP2017008564W WO2017154789A1 WO 2017154789 A1 WO2017154789 A1 WO 2017154789A1 JP 2017008564 W JP2017008564 W JP 2017008564W WO 2017154789 A1 WO2017154789 A1 WO 2017154789A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
wiring
substrate
metal film
light shielding
Prior art date
Application number
PCT/JP2017/008564
Other languages
English (en)
French (fr)
Inventor
山本 圭一
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US16/082,706 priority Critical patent/US10845657B2/en
Publication of WO2017154789A1 publication Critical patent/WO2017154789A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel

Definitions

  • the present invention relates to a display device and a head mounted display.
  • the liquid crystal display device described in Patent Document 1 is a liquid crystal display device that displays an image in which an independent image can be visually recognized from oblique directions such as up, down, left, and right, and the liquid crystal panel includes a plurality of pixels.
  • the pixel includes sub-pixels at two positions in two directions orthogonal to each other. That is, subpixels are provided at two positions in the horizontal scanning direction, and subpixels are provided at two positions in the vertical scanning direction.
  • the light-shielding member which formed the opening part smaller than the said pixel in the location facing the center part of a pixel is provided.
  • the present invention has been completed based on the above circumstances, and an object thereof is to improve display quality.
  • the display device of the present invention includes a plurality of pixel units, an inter-pixel light-shielding unit arranged in a form that partitions the adjacent pixel units, and a plurality of the pixel units connected to the plurality of pixel units, respectively.
  • the plurality of pixel units are individually driven by the plurality of connected switching elements, thereby displaying a predetermined image or the like. Since adjacent pixel portions are partitioned by an inter-pixel light-shielding portion, independence of display by each pixel portion is ensured. And since the pixel part is divided into the some division
  • a second substrate having at least a first substrate having at least a pixel electrode constituting the pixel portion and the switching element, a coloring portion constituting the pixel portion, and an inter-pixel light shielding portion;
  • the section light shielding portion is arranged on the same layer as the inter-pixel light shielding portion in the second substrate.
  • the pixel electrode constituting the pixel portion is charged to a predetermined potential by the switching element. Based on the potential of the pixel electrode, the amount of light transmitted through the colored portion constituting the pixel portion is controlled, so that a predetermined gradation is displayed in the pixel portion.
  • the segmented light-shielding part is arranged on the same layer as the inter-pixel light-shielding part on the second substrate, and the segmented light-shielding part is exclusively provided on the second substrate, the first substrate having the conventional configuration is used. It becomes possible.
  • the pixel electrode constituting the pixel portion is charged to a predetermined potential by the switching element. Based on the potential of the pixel electrode, the amount of light transmitted through the colored portion constituting the pixel portion is controlled, so that a predetermined gradation is displayed in the pixel portion. Since the divided light-shielding portion is exclusively provided on the first substrate, it is possible to use the same configuration as the second substrate.
  • the first substrate includes a first metal film, an insulating film disposed on an upper layer side of the first metal film, a second metal film disposed on an upper layer side of the insulating film, and the switching element.
  • the partitioning light-shielding part is arranged so as to overlap with the inter-pixel light-shielding part, but not to overlap the first wiring and the second wiring. In this way, the segmented light shielding part is arranged so as to partially overlap with the inter-pixel light shielding part, so that a sufficient effect of improving the resolution can be sufficiently obtained.
  • segmented light shielding portion is arranged so as not to overlap the first wiring and the second wiring, for example, even when the segmented light shielding portion is made of a conductive material, it is not between the first wiring and the second wiring. Parasitic capacitance is unlikely to occur. This makes it difficult for signals transmitted to the first wiring and the second wiring to become dull.
  • the first substrate includes at least a third metal film disposed in a layer different from the first metal film and the second metal film, and the divided light shielding portion includes the third metal film. Consists of. According to this configuration, when the display device is manufactured, the divided light-shielding portion can be formed in a process different from the process of forming the first wiring and the second wiring. The manufacturing apparatus used in the step of forming the segmented light shielding portion is different from the manufacturing apparatus used in the step of forming the first wiring and the second wiring. There are fewer constraints.
  • segmentation light-shielding part consists of at least any one of a said 1st metal film and a said 2nd metal film. In this way, when manufacturing the display device, it is possible to form the divided light shielding portion in the process of forming the first wiring and the second wiring. This eliminates the need for a dedicated manufacturing apparatus for forming the segmented light-shielding portion, which is suitable for reducing the manufacturing cost.
  • the section light shielding portion extends in parallel with the extending direction of the first wiring and is parallel to the extending direction of the second wiring and the first wiring parallel portion made of the second metal film. And a second wiring parallel portion made of the first metal film.
  • the first wiring parallel part is made of the second metal film, it is possible to avoid the first wiring parallel part becoming a restriction when designing the interval between the adjacent first wirings.
  • the second wiring parallel part is made of the first metal film, it is possible to avoid the second wiring parallel part becoming a restriction when designing the interval between the adjacent second wirings.
  • a second substrate having at least a first substrate having at least a pixel electrode constituting the pixel portion and the switching element, a coloring portion constituting the pixel portion, and an inter-pixel light shielding portion;
  • the section light shielding portion is provided on both the first substrate and the second substrate.
  • the first substrate and the second substrate are compared with the case where the segmented light shielding portions are concentrated on either the first substrate or the second substrate.
  • the divided light-shielding portion is less likely to become a manufacturing restriction.
  • the first substrate includes a first metal film, an insulating film disposed on an upper layer side of the first metal film, a second metal film disposed on an upper layer side of the insulating film, and the switching element.
  • a parallel portion and a second wiring parallel portion that is provided on the first substrate and extends in parallel with the extending direction of the second wiring and made of the first metal film.
  • the inter-pixel light-shielding portion partitions between adjacent pixel portions, the inter-pixel light-shielding portion is disposed so as to overlap the first wiring and the second wiring.
  • the first wiring parallel portion is formed in the same layer as the inter-pixel light shielding portion in the second substrate. By arranging it, the first wiring parallel portion can be easily formed. Since the second wiring parallel part is made of the first metal film on the first substrate, it is possible to avoid the second wiring parallel part becoming a restriction when designing the interval between the adjacent second wirings.
  • the segmented light-shielding part is provided in the form of segmenting the colored part into a plurality of parts on the second substrate. In this way, the pixel electrode constituting the pixel portion is charged to a predetermined potential by the switching element.
  • the sorting light-shielding portion is arranged in such a manner that the coloring portion provided on the second substrate and constituting the pixel portion is divided into a plurality of portions. Since the divided light-shielding portion is exclusively provided on the second substrate, the first substrate having the conventional configuration can be used. Since the inter-pixel light-shielding portion is configured by the first wiring and the second wiring on the first substrate and is not provided on the second substrate, restrictions on designing the segmented light-shielding portion are reduced.
  • the section light shielding portion is formed narrower than the inter-pixel light shielding portion. In this way, it is possible to sufficiently obtain a resolution improvement effect while suppressing a decrease in the aperture ratio of the pixel portion due to the divided light shielding portion.
  • the pixel unit has a square planar shape, and the segmented light shielding unit segments the pixel unit so that the segmented pixel has four segments and the segmented pixel is similar to the pixel unit. is doing. In this way, the effect of improving the resolution obtained by the segmented light-shielding portion becomes higher, and the display quality can be further improved.
  • a head-mounted display includes the display device described above, a lens unit that forms an image displayed on the display device on a user's eye, and the display device. And a head-mounted device that has the lens unit and is mounted on the head of the user. According to the head-mounted display having such a configuration, when the user uses the head-mounted device mounted on the head, the image displayed on the display device is formed on the user's eye by the lens unit, Accordingly, the user can visually recognize the image displayed on the display device in an enlarged form.
  • the inter-pixel light-shielding portion is likely to be visually recognized as a black display portion. Since the portion is divided into a plurality of divided pixels, the inter-pixel light-shielding portion becomes difficult to stand out, and the inter-pixel light-shielding portion becomes difficult to be visually recognized as a black display portion, and an excellent display quality is obtained.
  • FIG. 1 is a schematic perspective view showing a state in which a user wears a head mounted display according to Embodiment 1 of the present invention on a head.
  • Schematic side view showing an optical relationship between a liquid crystal panel and a lens unit provided in a head mounted device constituting a head mounted display, and a user's eyeball Plan view of the array substrate constituting the liquid crystal panel Plan view of the CF substrate constituting the liquid crystal panel AA line sectional view of FIG. BB sectional view of FIG.
  • the top view of the array substrate which comprises the liquid crystal panel which concerns on Embodiment 2 of this invention Plan view of the CF substrate constituting the liquid crystal panel AA line sectional view of FIG. BB sectional view of FIG.
  • the top view of the array substrate which comprises the liquid crystal panel which concerns on Embodiment 3 of this invention AA line sectional view of FIG. BB sectional view of FIG.
  • the top view of the array substrate which comprises the liquid crystal panel which concerns on Embodiment 4 of this invention Plan view of the CF substrate constituting the liquid crystal panel AA line sectional view of FIG. BB sectional view of FIG.
  • Plan view of an array substrate constituting a liquid crystal panel according to Embodiment 5 of the present invention Plan view of the CF substrate constituting the liquid crystal panel AA line sectional view of FIG. BB sectional view of FIG.
  • a goggle-type head-mounted display (HMD) HMD and a liquid crystal panel (display device) 10 used therefor are exemplified.
  • a part of each drawing shows an X axis, a Y axis, and a Z axis, and each axis direction is drawn to be a direction shown in each drawing.
  • the goggle-type head-mounted display HMD includes a head-mounted device HMDa that is mounted so as to surround both eyes in the user's head HD.
  • the head-mounted device HMDa includes a liquid crystal panel 10 that displays an image, a lens unit RE that forms an image displayed on the liquid crystal panel 10 on a user's eyeball (eye) EY, Is at least built-in.
  • the liquid crystal panel 10 displays an image using light emitted from an external light source (not shown).
  • the lens part RE is arranged in a form interposed between the liquid crystal panel 10 and the user's eyeball EY, and imparts a refractive action to the transmitted light.
  • the image formed on the retina (eye) EYb via the crystalline lens EYa of the eyeball EY is farther than the actual distance L1 from the eyeball EY to the liquid crystal panel 10. It is possible to make the user recognize as displayed on the virtual display VD that apparently exists at the position of the distance L2 that is far away. As a result, the user is displayed on the virtual display VD having a screen size (for example, about several tens of inches to several hundred inches) much larger than the screen size of the liquid crystal panel 10 (for example, about several inches to several inches). The enlarged image (virtual image) is visually recognized.
  • head mounting device HMDa is equipped with the above-mentioned external light source, the earphone etc. which are addressed to a user's ear
  • the liquid crystal panel 10 is interposed between a pair of transparent (excellent light-transmitting) substrates 10a and 10b and both the substrates 10a and 10b, and its optical characteristics change as an electric field is applied.
  • a liquid crystal layer 10c containing liquid crystal molecules as a substance, and both substrates 10a and 10b are bonded together with a sealing agent (not shown) in a state where a cell gap corresponding to the thickness of the liquid crystal layer 10c is maintained.
  • Each of the substrates 10a and 10b includes a substantially transparent glass substrate GS, and a plurality of films are laminated on each glass substrate GS by a known photolithography method or the like.
  • the front side is a CF substrate (second substrate, counter substrate) 10a
  • the back side is an array substrate (first substrate, thin film transistor substrate, active matrix substrate) 10b.
  • the Polarizing plates 10f and 10g are attached to the outer surfaces of both substrates 10a and 10b, respectively.
  • alignment films 10d and 10e for aligning liquid crystal molecules contained in the liquid crystal layer 10c are formed on the inner surfaces of both the substrates 10a and 10b, respectively.
  • a plurality of TFTs (Thin Film Transistors) 11 and pixel electrodes 12 are provided in a matrix, and around the TFTs 11 and the pixel electrodes 12, a grid-shaped gate wiring (first wiring) is provided. 13 and the source wiring (second wiring) 14 are disposed so as to surround them.
  • the TFTs 11 and the pixel electrodes 12 are arranged in a matrix at intersections of the gate lines 13 and the source lines 14 that form a lattice shape.
  • the pixel electrode 12 has a vertically long rectangular shape (rectangular shape) in a plan view so as to fill a region surrounded by the gate wiring 13 and the source wiring 14.
  • the pixel electrode 12 is charged with a predetermined potential (specifically, a potential based on a signal supplied to the source wiring 14) by the TFT 11. Since both the gate wiring 13 and the source wiring 14 have light shielding properties, they also function as “inter-pixel light shielding portions” for partitioning adjacent pixel portions PX as in a black matrix 10i described later.
  • the formation region of the gate wiring 13 and the source wiring 14 is substantially coincident with the non-formation region of the pixel electrode 12, but the non-formation region of the pixel electrode 12 prevents light transmission, Since it functions as a light shielding region, it also functions as an “inter-pixel light shielding portion” that partitions adjacent pixel portions PX. It is possible to provide auxiliary capacitance wiring (not shown) parallel to the gate wiring 13 and across the pixel electrode 12 on the array substrate 10b.
  • red (R), green (G), blue (B ) 3 color filter (coloring portion) 10h is provided on the inner surface side of the display area of the CF substrate 10a (the liquid crystal layer 10c side and the surface facing the array substrate 10b).
  • a plurality of color filters 10h are arranged side by side in a matrix (matrix) along the row direction (X-axis direction) and the column direction (Y-axis direction).
  • the color filters 10h adjacent in the X-axis direction have different colors, but the color filters 10h adjacent in the Y-axis direction have the same color.
  • the plurality of color filters 10h arranged in a matrix are arranged so as to overlap each pixel electrode 12 on the array substrate 10b side in a plan view.
  • One pixel portion PX is configured by the pixel electrode 12 and the color filter 10h that are superposed on each other.
  • the pixel portion PX has three colors: a red pixel portion RPX having a red color filter 10h, a green pixel portion GPX having a green color filter 10h, and a blue pixel portion BPX having a blue color filter 10h. Is included.
  • These three color pixel portions RPX, GPX, and BPX constitute one display pixel that performs color display of a predetermined gradation.
  • the display pixels are arranged repeatedly along the row direction (X-axis direction) on the plate surface of the liquid crystal panel 10 to form a pixel group, and the pixel group is arranged in the column direction (Y-axis direction).
  • the adjacent color filters 10h are partitioned by a substantially grid-like black matrix (inter-pixel light-shielding portion) 10i for preventing color mixing.
  • the black matrix 10i is made of a light shielding material (for example, titanium (Ti)) and functions as an “inter-pixel light shielding portion” that partitions adjacent pixel portions PX. Accordingly, the pixel portions PX arranged adjacent to each other in the X-axis direction and the Y-axis direction are partitioned by the black matrix 10i, thereby ensuring the independence of display.
  • the black matrix 10i is arranged so as to overlap the above-described gate wiring 13 and source wiring 14 in a plan view.
  • Each colored portion constituting the color filter 10h is thicker than the black matrix 10i and is arranged so as to cover the black matrix 10i. Further, in the black matrix 10i, a portion overlapping with the source wiring 14 in a plan view (portion extending along the Y-axis direction) is disposed between the color filters 10h exhibiting different colors. The color mixing prevention function is mainly exhibited.
  • an overcoat film 10k is provided so as to overlap the inside.
  • the overcoat film 10k is formed in a solid shape over almost the entire area on the inner surface of the CF substrate 10a, and the film thickness thereof is equal to or greater than that of the color filter 10h.
  • a counter electrode 10j is provided so as to overlap the inside.
  • the counter electrode 10j is formed in a solid shape over almost the entire area of the inner surface of the CF substrate 10a.
  • the counter electrode 10j is made of a transparent electrode material such as ITO (Indium Tin Oxide).
  • the counter electrode 10j Since the counter electrode 10j is always maintained at a constant reference potential, when each pixel electrode 12 connected to each TFT 11 is charged as each TFT 11 is driven, the counter electrode 10j is connected to each pixel electrode 12. A potential difference is generated between them.
  • the alignment state of the liquid crystal molecules contained in the liquid crystal layer 10c changes based on the potential difference generated between the counter electrode 10j and each pixel electrode 12, and the polarization state of the transmitted light changes accordingly.
  • the transmitted light amount is individually controlled for each pixel unit PX, and a predetermined color image is displayed.
  • the array substrate 10b includes a first metal film (gate metal film) 15, a gate insulating film (insulating film) 16, a semiconductor film 17, and a second metal film in order from the lower layer (glass substrate GS) side.
  • a (source metal film) 18, an interlayer insulating film 19, a planarizing film 20, and a transparent electrode film 21 are laminated.
  • illustration of the alignment film 10e laminated on the upper layer side of the transparent electrode film 21 is omitted.
  • the first metal film 15 is composed of a two-layered film made of a metal material such as a tungsten (W) layer / tantalum nitride (TaN) layer, and mainly constitutes the gate wiring 13. As shown in FIG. 5, the gate insulating film 16 is laminated on the upper layer side of the first metal film 15.
  • the gate insulating film 16 is composed of a laminated film made of an inorganic material such as a silicon oxide (SiO 2 ) layer / silicon nitride (SiN x ) layer, for example, and a first metal film 15 (gate wiring 13 etc.) and a later-described film.
  • the second metal film 18 (the source wiring 14 and the like) to be insulated from each other.
  • the semiconductor film 17 is laminated on the upper layer side of the gate insulating film 16, and is made of a thin film using an oxide semiconductor, for example.
  • the TFT 11 using the semiconductor film 17 made of such an oxide semiconductor thin film has high mobility (more than 20 times that of an a-Si TFT) and low leakage current (less than 1/100 of that of an a-Si TFT). .
  • the second metal film 18 is stacked on the upper layer side of the oxide semiconductor film 17.
  • the second metal film 18 is constituted by a three-layered film made of a metal material such as titanium (Ti) layer / aluminum (Al) layer / titanium layer, and mainly constitutes the source wiring 14. .
  • the interlayer insulating film 19 is stacked at least on the upper layer side of the second metal film 18.
  • the interlayer insulating film 19 is made of an inorganic material such as silicon oxide (SiO 2 ).
  • the planarizing film 20 is stacked on the upper layer side of the interlayer insulating film 19.
  • the planarizing film 20 is made of an organic material such as acrylic resin (PMMA), for example, and the film thickness thereof is larger than the film thickness of the interlayer insulating film 19, thereby planarizing the surface of the array substrate 10b.
  • the interlayer insulating film 19 and the planarizing film 20 are interposed between the second metal film 18 and the oxide semiconductor film 17 and the transparent electrode film 21 to insulate each other.
  • the transparent electrode film 21 is laminated on the upper layer side of the planarizing film 20.
  • the transparent electrode film 21 is made of a transparent electrode material such as IZO (Indium Zinc Oxide), and mainly constitutes the pixel electrode 12.
  • the TFT 11 includes a gate electrode 11a, a channel part 11d, a source electrode 11b connected to one end side of the channel part 11d, and a drain connected to the other end side of the channel part 11d. And at least an electrode 11c.
  • the gate electrode 11a is made of the same first metal film 15 as the gate wiring 13, and is constituted by a part of the gate wiring 13 (a portion overlapping with the channel portion 11d).
  • the channel portion 11d is made of the semiconductor film 17, extends along the Y-axis direction so as to cross the gate electrode 11a, and is arranged so as to overlap the gate electrode 11a via the gate insulating film 16 on the upper layer side. Is done.
  • the source electrode 11b is formed of a second metal film 18 that is the same as the source wiring 14 and is disposed on the upper layer side of the semiconductor film 17, and projects from the source wiring 14 along the X-axis direction (extending direction of the gate wiring 13). And a part of which overlaps with the gate electrode 11a.
  • the drain electrode 11c is composed of a second metal film 18 disposed on the upper layer side of the semiconductor film 17 in the same manner as the source wiring 14 and the source electrode 11b, and is opposed to the source electrode 11b with an interval corresponding to the channel portion 11d. It is arranged in.
  • the pixel electrode 12 is connected to the end of the drain electrode 11c opposite to the channel 11d side through a contact hole CH formed in the interlayer insulating film 19 and the planarizing film 20.
  • the TFT 11 In the TFT 11 according to this embodiment, no etch stop layer is formed on the channel portion 11d, and the lower surface of the end portion of the source electrode 11b on the channel portion 11d side is disposed so as to be in contact with the upper surface of the semiconductor film 17. ing.
  • the head mounted display HMD as in the present embodiment allows the user to visually recognize the image displayed on the liquid crystal panel 10 and thus partitions the pixel portions PX.
  • the black matrix 10i was easily visually recognized as a mesh-like black display portion.
  • the refresh rate is 90 Hz or 120 Hz.
  • the head mounted display HMD may perform advanced image processing such as capturing a user's operation by various sensors and correcting an image to be displayed according to the captured operation. If the resolution of the panel 10 is simply increased, there is a problem that the load due to image processing becomes heavier.
  • the liquid crystal panel 10 includes a segmented light shielding unit 22 that segments the pixel unit PX into a plurality of segmented pixels PPX.
  • the outer shape of the segmented light shielding unit 22 and the black matrix 10 i is illustrated by a two-dot chain line.
  • the segmented light shielding unit 22 has a substantially cross shape when viewed in plan, and segments the pixel unit PX into four segmented pixels PPX.
  • the divided light shielding portion 22 includes a gate wiring parallel portion (first wiring parallel portion, short side portion) 22a extending linearly along the X axis direction, that is, the extending direction of the gate wiring 13, and the Y axis direction, that is, And a source wiring parallel part (second wiring parallel part, long side part) 22 b extending linearly along the extending direction of the source wiring 14.
  • the gate wiring parallel part 22a is arranged so as to cross the central position in the Y-axis direction in the pixel part PX
  • the source wiring parallel part 22b is arranged so as to cross the central position in the X-axis direction in the pixel part PX.
  • the gate wiring parallel part 22a is smaller in length than the source wiring parallel part 22b.
  • the ratio between the length dimension of the gate wiring parallel portion 22a and the length dimension of the source wiring parallel portion 22b is substantially equal to the ratio between the short side dimension and the long side dimension in the pixel portion PX.
  • the pixel unit PX is equally divided into four segmented pixels PPX by the segmented light shielding unit 22.
  • the four segmented pixels PPX equally divided by the segmented light shielding unit 22 have a vertically long rectangular shape when seen in a plane, and the ratio of the short side dimension to the long side dimension is substantially the same as the ratio in the pixel unit PX.
  • the segmented pixel PPX has a similar shape to the pixel portion PX when viewed in a plane.
  • the gate wiring parallel part 22a and the source wiring parallel part 22b constituting the divided light shielding part 22 have substantially the same width, they are smaller than the width of the black matrix 10i and relatively narrow in comparison with the black matrix 10i. It has become.
  • the segmented light shielding unit 22 is provided on the CF substrate 10 a side of the pair of substrates 10 a and 10 b constituting the liquid crystal panel 10, and is a black partitioning the adjacent color filters 10 h. It is arranged in the same layer as the matrix 10i. That is, the segmented light shielding portion 22 is made of the same light shielding material as that of the black matrix 10i, and both end portions in the length direction of the gate wiring parallel portions 22a and both end portions in the length direction of the source wiring parallel portions 22b are connected to the black matrix 10i. It has been.
  • the color filter 10h is divided into four divided color filters 10hS exhibiting the same color by such a divided light shielding portion 22.
  • Each of the four segmented color filters 10hS constitutes a segmented pixel PPX.
  • the four segmented pixels PPX constituting one pixel unit PX are segmented by the segmented light shielding unit 22, but are driven with a common gradation by the same TFT 11 connected to the pixel electrode 12 of the pixel unit PX.
  • the pixel unit PX is divided into the four divided pixels PPX by the divided light shielding unit 22, so that the resolution of the liquid crystal panel 10 is improved in a pseudo manner. That is, since the four segmented pixels PPX are easily seen by the user as pseudo pixel portions, the user feels the resolution about twice as high. Specifically, for example, when the actual resolution of the liquid crystal panel 10 is equivalent to FHD (1920 ⁇ 1080), the user recognizes it as if it is a resolution equivalent to 4K2K (3840 ⁇ 2160). It becomes possible to make it.
  • the black matrix 10i that partitions between the adjacent pixel portions PX is less noticeable. This makes it difficult for the black matrix 10 i to be visually recognized as a black display portion between the adjacent pixel portions PX, so that the display quality can be improved without increasing the actual resolution of the liquid crystal panel 10.
  • the resolution per eye is reduced to 1 ⁇ 2 of the resolution of the liquid crystal panel 10, and thus the configuration of the present embodiment is adopted. Very useful.
  • the array substrate 10b has the same configuration as before. Can be used. This reduces the manufacturing cost. Furthermore, since the segmented light shielding portion 22 is formed to be narrower than the black matrix 10i, the resolution of the pixel portion PX is reduced while suppressing the decrease in the aperture ratio caused by installing the segmented light shielding portion 22. A pseudo improvement effect can be sufficiently obtained.
  • the segmented light shielding unit 22 segments the pixel unit PX so that the segmented pixel PPX has four segmented pixels PPX and the segmented pixel PPX has a similar shape to the pixel unit PX, the resolution of the resolution obtained by the segmented light shielding unit 22 is simulated. As a result, the display quality can be further improved, and the display quality can be further improved.
  • the liquid crystal panel (display device) 10 includes a plurality of pixel portions PX and a black matrix (inter-pixel light shielding portion) 10i arranged in a manner of partitioning between adjacent pixel portions PX.
  • a plurality of TFTs (switching elements) 11 that are respectively connected to the plurality of pixel units PX and respectively drive the plurality of pixel units PX, and a divided light shielding unit 22 that is arranged so as to divide the pixel unit PX into a plurality of divided pixels PPX. And comprising.
  • the plurality of pixel portions PX are individually driven by the plurality of connected TFTs 11 to display a predetermined image or the like. Since the adjacent pixel portions PX are partitioned by the black matrix 10i, the independence of display by each pixel portion PX is ensured. And since the pixel part PX is divided into the some division
  • an array substrate (first substrate) 10b having at least a pixel electrode 12 constituting the pixel portion PX and a TFT 11, a color filter (coloring portion) 10h constituting the pixel portion PX, and a black matrix 10i
  • at least a CF substrate (second substrate) 10a, and the segmented light shielding portion 22 is arranged in the same layer as the black matrix 10i in the CF substrate 10a.
  • the pixel electrode 12 constituting the pixel unit PX is charged to a predetermined potential by the TFT 11. Based on the potential of the pixel electrode 12, the amount of light transmitted through the color filter 10h that constitutes the pixel portion PX is controlled, so that a predetermined gradation is displayed in the pixel portion PX.
  • the array substrate 10b Since the divided light shielding portion 22 is arranged in the same layer as the black matrix 10i in the CF substrate 10a, and the divided light shielding portion 22 is exclusively provided in the CF substrate 10a, the array substrate 10b has the same configuration as before. It can be used.
  • the divided light shielding portion 22 is formed narrower than the black matrix 10i. In this way, it is possible to obtain a sufficient resolution improvement effect while suppressing a decrease in the aperture ratio of the pixel unit PX due to the segmented light shielding unit 22.
  • the pixel portion PX has a square planar shape
  • the segmented light shielding unit 22 segments the pixel unit PX so that the segmented pixel PPX has four segments and the segmented pixel PPX is similar to the pixel unit PX. ing. By doing so, the effect of improving the resolution obtained by the divided light-shielding portion 22 becomes higher, and the display quality can be further improved.
  • the head mounted display HMD includes the liquid crystal panel 10 described above, a lens unit RE that forms an image displayed on the liquid crystal panel 10 on a user's eyeball (eye) EY, and the liquid crystal panel 10. And a head-mounted device HMDa that has a lens unit RE and is mounted on the user's head HD.
  • a head-mounted device HMDa that has a lens unit RE and is mounted on the user's head HD.
  • an image displayed on the liquid crystal panel 10 is displayed on the user's eyeball by the lens unit RE.
  • the image is formed on EY, so that the user can view the image displayed on the liquid crystal panel 10 in an enlarged form.
  • the black matrix 10i may be easily viewed as a black display unit, but the section light shielding unit 22 By dividing the pixel portion PX into a plurality of divided pixels PPX, the black matrix 10i becomes inconspicuous, so that the black matrix 10i becomes difficult to be visually recognized as a black display portion, and an excellent display quality is obtained.
  • the segmented light shielding unit 122 As shown in FIGS. 7 and 8, the segmented light shielding unit 122 according to the present embodiment is provided on the array substrate 110b side of the pair of substrates 110a and 110b constituting the liquid crystal panel 110. In FIG. 7, the outer shape of the segmented light shielding unit 122 is indicated by a broken line. Specifically, as shown in FIGS. 9 and 10, the segmented light shielding portion 122 includes a third metal film 23 disposed in a form interposed between the interlayer insulating film 119 and the planarizing film 120 in the array substrate 110 b. .
  • the third metal film 23 is a light-shielding conductive material, and is formed in a layer different from the first metal film 115 constituting the gate wiring 113 and the second metal film 118 constituting the source wiring 114 and the like in the array substrate 110b.
  • the insulating film 119 is insulated from the second metal film 118 by an interlayer insulating film 119 interposed therebetween, while insulated from the transparent electrode film 121 constituting the pixel electrode 112 by a planarizing film 120 interposed therebetween.
  • the material of the third metal film 23 is preferably the same as that of the first metal film 115 or the second metal film 118 in order to reduce the material procurement cost.
  • the two metal films 118 may not be the same. As shown in FIG.
  • the divided light shielding portion 122 is arranged so as to partially overlap the black matrix 110 i but not overlap the gate wiring 113 and the source wiring 114. Specifically, both end portions in the length direction of the gate wiring parallel portion 122a and the source wiring parallel portion 122b constituting the divided light shielding portion 122 are arranged so as to overlap with the black matrix 110i.
  • the segmented light shielding portion 122 is arranged at a position where both end portions in the length direction of the gate wiring parallel portion 122a are spaced apart from the source wiring 114 in a plan view and the length of the source wiring parallel portion 122b is long. Both end portions in the vertical direction are arranged at positions spaced apart from the gate wiring 113 in a plan view.
  • the segmented light shielding portion 122 is exclusively provided on the array substrate 110b side, the CF substrate 110a having the conventional configuration can be used. This reduces the manufacturing cost. Moreover, since the segmented light shielding portion 122 is made of the third metal film 23 different from the first metal film 115 and the second metal film 118, the process of forming the gate wiring 113 and the source wiring 114 in manufacturing the liquid crystal panel 110. The divided light shielding part 122 can be formed in another process.
  • the manufacturing apparatus used in the process of forming the segmented light shielding portion 122 is different from the manufacturing apparatus used in the process of forming the gate wiring 113 and the source wiring 114, the manufacturing apparatus is manufactured when forming the segmented light shielding section 122.
  • the above restrictions are reduced.
  • the segmented light-shielding part 122 is arranged so as to partially overlap the black matrix 110i, a sufficient resolution improvement effect can be obtained.
  • the divided light shielding portion 122 made of a conductive material is arranged so as not to overlap the gate wiring 113 and the source wiring 114, parasitic capacitance is hardly generated between the gate wiring 113 and the source wiring 114.
  • the signal transmitted to the gate wiring 113 and the source wiring 114 is less likely to be dull.
  • the color filter 110h of the CF substrate 110a has a non-divided structure as shown in FIG.
  • the array substrate 110b having at least the pixel electrode 112 constituting the pixel portion PX and the TFT 111, the color filter 110h constituting the pixel portion PX, the black matrix 110i, And the light shielding portion 122 is provided on the array substrate 110b.
  • the pixel electrode 112 constituting the pixel unit PX is charged to a predetermined potential by the TFT 111.
  • the amount of light transmitted through the color filter 110h that constitutes the pixel portion PX is controlled, so that a predetermined gradation is displayed in the pixel portion PX. Since the divided light shielding portion 122 is exclusively provided on the array substrate 110b, the CF substrate 110a having the conventional configuration can be used.
  • the array substrate 110 b includes a first metal film 115, a gate insulating film (insulating film) 116 disposed on the upper layer side of the first metal film 115, and a second metal disposed on the upper layer side of the gate insulating film 116.
  • Source light line (second line) 114, and the segmented light shielding part 122 is arranged so as to overlap with the black matrix 110 i but not overlap with the gate line 113 and the source line 114.
  • the section light shielding unit 122 is arranged so as to partially overlap the black matrix 110i, so that the effect of improving the resolution can be sufficiently obtained.
  • the segmented light shielding portion 122 is arranged so as not to overlap the gate wiring 113 and the source wiring 114, for example, even when the segmented light shielding portion 122 is made of a conductive material, It is difficult for parasitic capacitance to occur between the two. Accordingly, the signal transmitted to the gate wiring 113 and the source wiring 114 is less likely to be dull.
  • the array substrate 110b has at least a third metal film 23 arranged in a layer different from the first metal film 115 and the second metal film 118, and the divided light shielding portion 122 is formed from the third metal film 23.
  • the segmented light shielding portion 122 can be formed in a process different from the process of forming the gate wiring 113 and the source wiring 114. Since the manufacturing apparatus used in the process of forming the segmented light shielding portion 122 is different from the manufacturing apparatus used in the process of forming the gate wiring 113 and the source wiring 114, the manufacturing apparatus is manufactured when forming the segmented light shielding section 122. The above restrictions are reduced.
  • the segmented light shielding unit 222 includes the first metal film 215 and the second metal film 218 in the array substrate 210b.
  • the gate wiring parallel part 222 a constituting the segmented light shielding part 222 is made of the second metal film 218, whereas the source wiring parallel part 222 b is made of the first metal film 215.
  • the gate wiring parallel part 222a is made of the same second metal film 218 as the source wiring 214 orthogonal to itself rather than the gate wiring 213 parallel to itself, whereas the source wiring parallel part 222b is a source parallel to itself. It is made of the same first metal film 215 as the gate wiring 213 orthogonal to itself instead of the wiring 214.
  • the gate wiring 213 and the source wiring parallel part 222b are arranged in the same layer, and the source wiring 214 and the gate wiring parallel part 222a are arranged in the same layer.
  • the outer shape of the gate wiring parallel part 222 a constituting the section light shielding part 222 is illustrated by a relatively thick broken line, and the outer shape of the source wiring parallel part 222 b is illustrated by a relatively thin broken line.
  • the configuration of the CF substrate 210a according to the present embodiment is the same as that described in the second embodiment, and the plan view is omitted.
  • the segmented light shielding unit 222 includes the first metal film 215 and the second metal film 218, the segmented light shielding unit is formed in the process of forming the gate wiring 213 and the source wiring 214 when manufacturing the array substrate 210b in the liquid crystal panel 210. 222 can be formed. This eliminates the need for a dedicated manufacturing apparatus for forming the segmented light-shielding portion 222, which is suitable for reducing the manufacturing cost.
  • the gate wiring parallel part 222a is made of the second metal film 218, it is possible to avoid the gate wiring parallel part 222a becoming a restriction when designing the interval between the adjacent gate wirings 213.
  • the source line parallel part 222b is made of the first metal film 215, it is possible to avoid the source line parallel part 222b becoming a restriction when designing the interval between the adjacent source lines 214.
  • the segmented light shielding portion 222 includes at least one of the first metal film 215 and the second metal film 218. In this way, when manufacturing the liquid crystal panel 210, it is possible to form the divided light shielding portion 222 in the process of forming the gate wiring 213 and the source wiring 214. This eliminates the need for a dedicated manufacturing apparatus for forming the segmented light-shielding portion 222, which is suitable for reducing the manufacturing cost.
  • the divided light shielding portion 222 extends in parallel with the extending direction of the gate wiring 213, and extends in parallel with the gate wiring parallel portion (first wiring parallel portion) 222 a formed of the second metal film 218 and the source wiring 214.
  • a source wiring parallel part (second wiring parallel part) 222b extending in parallel with the direction and made of the first metal film 215.
  • the gate wiring parallel part 222a is made of the second metal film 218, it is possible to avoid the gate wiring parallel part 222a becoming a restriction when designing the interval between the adjacent gate wirings 213.
  • the source line parallel part 222b is made of the first metal film 215, it is possible to avoid the source line parallel part 222b becoming a restriction when designing the interval between the adjacent source lines 214.
  • Embodiment 4 A fourth embodiment of the present invention will be described with reference to FIGS.
  • this Embodiment 4 what changed the arrangement
  • the segmented light shielding unit 322 is provided on both the CF substrate 310 a and the array substrate 310 b constituting the liquid crystal panel 310, and the gate wiring parallel unit 322 a is the CF substrate.
  • Source wiring parallel portions 322b are provided on the array substrate 310b side on the 310a side, respectively.
  • the gate wiring parallel portion 322a is provided in the same layer as the black matrix 310i in the CF substrate 310a.
  • the gate wiring parallel part 322a is connected to the black matrix 310i at both ends in the length direction (X-axis direction).
  • the specific configuration of the gate wiring parallel portion 322a is the same as that described in the first embodiment.
  • the color filter 310h is divided into two divided color filters 310hS adjacent to each other with the gate wiring parallel part 322a interposed therebetween in the Y-axis direction.
  • the source wiring parallel portion 322b is made of the same first metal film 315 as the gate wiring 313 in the array substrate 310b.
  • the source line parallel part 322b is formed of the same first metal film 315 as the gate line 313 orthogonal to itself, not the source line 314 parallel to itself.
  • the specific configuration of the source line parallel portion 322b is the same as that described in the third embodiment.
  • the segmented light shielding portion 322 is provided on both the CF substrate 310a and the array substrate 310b, the segmented light shielding portion is either one of the CF substrate and the array substrate as in the first and second embodiments.
  • the divided light shielding portion 322 is less likely to be a manufacturing restriction in manufacturing the CF substrate 310a and the array substrate 310b.
  • the gate wiring 313 having a relatively wide arrangement pitch on the array substrate 310b is arranged in the same layer as the black matrix 310i which is arranged in a lattice shape on the CF substrate 310a so as to overlap the gate wiring 313 and the source wiring 314.
  • the gate wiring parallel part 322a is parallel to the gate wiring parallel part 322a, the gate wiring parallel part 322a can be easily formed. Furthermore, since the source wiring parallel part 322b is made of the same first metal film 315 as the gate wiring 313 in the array substrate 310b, the source wiring parallel part 322b becomes a restriction when designing the interval between the adjacent source wirings 314. Can be avoided.
  • the array substrate 310b having at least the pixel electrode 312 constituting the pixel unit PX and the TFT 311, the color filter 310h constituting the pixel unit PX, the black matrix 310i, And the divided light shielding section 322 is provided on both the array substrate 310b and the CF substrate 310a.
  • the pixel electrode 312 constituting the pixel unit PX is charged to a predetermined potential by the TFT 311.
  • the amount of light transmitted through the color filter 310 h constituting the pixel unit PX is controlled, so that the pixel unit PX displays a predetermined gradation.
  • the array substrate 310b and the divided light-shielding portions are compared with the case where the divided light-shielding portions are integrated into either the array substrate 310b or the CF substrate 310a.
  • the segmented light shielding portion 322 is less likely to be a manufacturing restriction.
  • the array substrate 310b includes a first metal film 315, a gate insulating film 316 disposed on the upper layer side of the first metal film 315, a second metal film 318 disposed on the upper layer side of the gate insulating film 316, At least a gate wiring 313 made of a first metal film 315 connected to the TFT 311 and a source wiring 314 made of a second metal film 318 connected to the TFT 311 and crossing the gate wiring 313.
  • the divided light shielding portion 322 is provided on the CF substrate 310a, extends in parallel with the extending direction of the gate wiring 313, and is arranged in the same layer as the black matrix 310i.
  • a source line parallel portion 322b that is provided in 310b and extends in parallel with the extending direction of the source line 314 and is formed of the first metal film 315. It is. Since the black matrix 310 i partitions between adjacent pixel portions PX, the black matrix 310 i overlaps with the gate wiring 313 and the source wiring 314. Here, since the interval between the adjacent gate lines 313 is generally wider than the interval between the adjacent source lines 314, the gate line parallel part 322a is arranged in the same layer as the black matrix 310i in the CF substrate 310a. Thus, the gate wiring parallel part 322a can be easily formed. Since the source line parallel part 322b is made of the first metal film 315 in the array substrate 310b, it is possible to avoid the source line parallel part 322b becoming a restriction when designing the interval between the adjacent source lines 314.
  • Embodiment 5 of the present invention will be described with reference to FIGS.
  • the function of the black matrix 410i is changed from the first embodiment described above.
  • action, and effect as above-mentioned Embodiment 1 is abbreviate
  • the black matrix 410i is arranged in such a manner that the pixel portion PX (pixel electrode 412 and color filter 410h) is divided into a plurality of divided pixels PPX, and is adjacent to each other. It is not arranged in the form of partitioning the pixel portions PX.
  • the black matrix 410i is arranged not to function as an “inter-pixel light-shielding portion” but to function as a “segmented light-shielding portion”.
  • the black matrix 410i includes a gate wiring parallel part (first wiring parallel part) 410i1 parallel to the extending direction (X-axis direction) of the gate wiring 413 and the extending direction (Y-axis direction) of the source wiring 414. ) In parallel with the source wiring parallel part (second wiring parallel part) 410i2, the gate wiring parallel part 410i1 is in the center position in the Y-axis direction in the pixel part PX, and the source wiring parallel part 410i2 is in the pixel part PX. They are arranged so as to cross the central position in the X-axis direction.
  • the color filter 410h is divided into four divided color filters 410hS exhibiting the same color as shown in FIG.
  • Each of the four segmented color filters 410hS constitutes a segmented pixel PPX.
  • the color filters 410h that are adjacent to each other and have different colors are arranged in direct contact with each other without passing through the black matrix 410i.
  • the gate wiring 413 and the source wiring 414 provided on the array substrate 410b are arranged in the form of partitioning between the adjacent pixel portions PX as shown in FIGS. As in the first mode, it functions as an “inter-pixel light blocking portion”. Specifically, the gate wiring 413 is interposed between the pixel electrodes 412 adjacent to each other in the Y-axis direction, and overlaps in a plan view with a boundary portion between the color filters 410h adjacent in the Y-axis direction and exhibiting the same color. It is arranged with.
  • the source wiring 414 is interposed between the pixel electrodes 412 adjacent to each other in the X-axis direction, and overlaps the boundary portion between the color filters 410h that are adjacent to each other in the X-axis direction and exhibit different colors in a plan view. It is arranged. Further, the black matrix 410 i that functions as the “division light shielding portion” is wider than the gate wiring 413 and the source wiring 414 that function as the “inter-pixel light shielding portion”.
  • the black matrix 410i functioning as the “partitioned light shielding portion” is exclusively provided on the CF substrate 410a, the array substrate 410b having a conventional configuration can be used. This reduces the manufacturing cost.
  • the black matrix 410i that functions as the “division light-shielding portion” is designed in the CF substrate 410a. There are fewer restrictions on the above.
  • the array substrate 410b is manufactured according to the conventional configuration, and the CF substrate 410a has the arrangement of the color filters 410h of the respective colors with respect to the black matrix 410i.
  • a device modified for exclusive use in the embodiment is manufactured, and when the substrates 410a and 410b are bonded, the black matrix 410i is short of the pixel portion PX in the X-axis direction and the Y-axis direction with respect to the gate wiring 413 and the source wiring 414. What is necessary is just to make it perform on the basis of the position shifted about the distance of half each of the side dimension and the long side dimension.
  • the pixel electrode 412 constituting the pixel portion PX, the TFT 411, the gate wiring 413 connected to the TFT 411, and the gate wiring 413 are arranged so as to intersect with the TFT 411.
  • the inter-pixel light shielding portion includes a gate wiring 413 and a source wiring.
  • the black matrix 410i which is configured by 414 and is a segmented light-shielding portion, is provided in such a manner that the color filter 410h is segmented into a plurality by the CF substrate 410a.
  • the pixel electrode 412 constituting the pixel unit PX is charged to a predetermined potential by the TFT 411. Based on the potential of the pixel electrode 412, the amount of light transmitted through the color filter 410 h constituting the pixel unit PX is controlled, so that the pixel unit PX displays a predetermined gradation.
  • the black matrix 410i which is a segmented light-shielding portion, is arranged in such a manner that the color filter 410h that is provided on the CF substrate 410a and forms the pixel unit PX is segmented into a plurality of segments.
  • the black matrix 410i that is the divided light shielding portion is exclusively provided on the CF substrate 410a, it is possible to use the array substrate 410b having the conventional configuration. Since the inter-pixel light-shielding portion is configured by the gate wiring 413 and the source wiring 414 in the array substrate 410b and is not provided in the CF substrate 410a, there is a restriction in designing the black matrix 410i that is the partitioned light-shielding portion. Less.
  • the present invention is not limited to the embodiments described with reference to the above description and drawings.
  • the following embodiments are also included in the technical scope of the present invention.
  • the pixel unit is equally divided into a plurality of segmented pixels by the segmented light shielding unit.
  • the pixels may include pixels having different sizes (areas).
  • the portion may be divided by a division light shielding portion.
  • the segmented pixel segmented by the segmented light shielding unit has a similar shape to the pixel unit.
  • the segmented light shielding unit is configured so that the segmented pixel has a dissimilar shape to the pixel unit.
  • the planar shape of the partitioned light shielding part may be a non-cross shape.
  • the planar shape of the pixel portion is a vertically long square
  • the planar shape of the segmented pixel may be a square, a rhombus, a parallelogram, a triangle, or the like.
  • the planar shape of the pixel portion may be a horizontally long square or a square.
  • segmented light-shielding portion is formed narrower than the black matrix.
  • segmented light-shielding portion is formed wider than the black matrix or has the same width. You may form so.
  • the segmented light shielding portion is made of the third metal film, which is a conductive material having light shielding properties, in the array substrate has been shown. It may be made of a non-conductive material that is not used. Further, the arrangement of the third metal film in the stacking direction on the array substrate can be changed other than between the interlayer insulating film and the planarizing film. In that case, a short circuit with another metal film or a transparent electrode film is possible. In order to avoid this, an insulating film may be added as necessary.
  • the segmented light shielding portion is formed of the third metal film in the array substrate.
  • either the gate wiring parallel portion or the source wiring parallel portion constituting the segmented light shielding portion is used.
  • One side may be made of a third metal film, and the other side may be made of a first metal film or a second metal film. Even in such a case, it is preferable to adopt a configuration in which the gate wiring parallel portion is made of the second metal film and a source wiring parallel portion is made of the first metal film.
  • the arrangement light shielding portion made of the third metal film in the array substrate is shown to be non-overlapping with respect to the gate wiring and the source wiring, but the light shielding portion made of the third metal film. It is also possible to adopt an arrangement in which is superimposed on one or both of the gate wiring and the source wiring.
  • Embodiments 2 and 3 described above the configuration in which the divided light-shielding portion provided on the array substrate side partially overlaps with the black matrix on the CF substrate side in a plan view is provided.
  • the segmented light shielding portion may be arranged so as not to overlap the black matrix on the CF substrate side.
  • the segmented light-shielding portion is formed by any metal film on the array substrate.
  • the pixel electrode is provided with a cross-shaped notch when viewed in plan.
  • the notch can be used as a “section light shielding portion”.
  • the pixel electrode non-formation region is prevented from transmitting light and functions as a light shielding region. Therefore, the notches of the pixel electrode as described above can function as a segmented light shielding portion. This configuration is also applicable to the fourth embodiment.
  • the gate wiring parallel portion constituting the partitioned light shielding portion is made of the same material as the black matrix, and in the array substrate, the source wiring parallel portion constituting the partitioned light shielding portion is used as the first metal.
  • the source wiring parallel portion constituting the segmented light shielding portion is made of the same material as the black matrix in the CF substrate, and the gate wiring parallel portion constituting the sectional light shielding portion is arranged in the array substrate. It is also possible to configure each with one metal film or a second metal film.
  • the drain electrode is formed of the same second metal film as the source wiring and the source electrode.
  • the resistance can be obtained by partially reducing the resistance of a semiconductor film formed of an oxide semiconductor.
  • the low resistance region can be used as the drain electrode.
  • the semiconductor film constituting the channel portion of the TFT is a thin film made of an oxide semiconductor is shown, but other than that, for example, polysilicon (polycrystallized silicon) It is also possible to use CG silicon (ContinuousconGrain Silicon), which is a kind of (polycrystalline silicon), or amorphous silicon as a semiconductor film material.
  • polysilicon polycrystallized silicon
  • CG silicon ContinuousconGrain Silicon
  • a right-eye image and a left-eye image are displayed on one liquid crystal panel in a head-mounted display, or a right-eye image and a left-eye image are displayed on two liquid crystal panels.
  • the present invention can also be applied to a head-mounted display in which a right-eye image or a left-eye image is displayed on one liquid crystal panel and the displayed image is formed on one eye of the user. is there.
  • the head mounted display having such a configuration is preferably a so-called glasses type.
  • the specific materials related to the insulating film such as the gate insulating film, the interlayer insulating film, and the planarizing film can be appropriately changed.
  • the specific transparent electrode material used for the transparent electrode film can be appropriately changed.
  • a transparent electrode material such as ITO (Indium Tin Oxide) or ZnO (Zinc Oxide) can be used.
  • the operation mode is the VA mode
  • the case where only one layer of the transparent electrode film is provided on the array substrate is shown.
  • a layer may be provided.
  • one transparent electrode film can constitute a pixel electrode
  • the other transparent electrode film can constitute an auxiliary capacitance electrode that forms a capacitance with the pixel electrode.
  • the etch stop layer is not formed on the channel portion of the TFT, and the lower surface of the end portion on the channel portion side of the source electrode is disposed so as to be in contact with the upper surface of the oxide semiconductor film.
  • an etch stop type TFT in which an etch stop layer is formed on the upper layer side of the channel portion may be used.
  • liquid crystal panel in which the operation mode is set to the VA mode has been illustrated.
  • the present invention is also applicable to TFTs of liquid crystal panels.
  • the liquid crystal panel pixel is exemplified by the three-color configuration of red, green, and blue.
  • the pixel having a four-color configuration by adding yellow or the like to red, green, and blue The present invention can also be applied to a liquid crystal panel provided with.
  • the present invention includes a configuration in which a functional panel such as a touch panel or a parallax barrier panel (switch liquid crystal panel) is attached to the liquid crystal panel described in the above embodiment.
  • a functional panel such as a touch panel or a parallax barrier panel (switch liquid crystal panel) is attached to the liquid crystal panel described in the above embodiment.
  • the liquid crystal panel is exemplified, but other types of display panels (PDP (plasma display panel), organic EL panel, EPD (electrophoretic display panel), MEMS (Micro Electro Electro Mechanical Systems) display
  • PDP plasma display panel
  • organic EL panel organic EL panel
  • EPD electrotrophoretic display panel
  • MEMS Micro Electro Electro Mechanical Systems
  • the head mounted display is shown.
  • the present invention is also applied to, for example, a head-up display or a projector as a device that enlarges and displays an image displayed on the liquid crystal panel using a lens or the like. Is possible.
  • the present invention is also applicable to liquid crystal display devices that do not have an enlarged display function (such as a television receiver, a tablet terminal, and a smartphone).
  • first metal film 16, 116, 316 ... gate insulating film (insulating film), 18, 118, 218, 318 ... second metal Membrane, 22, 22, 222, 322... Segmented light shielding part, 22 a, 122 a, 222 a, 322 a... Gate wiring parallel part (first wiring parallel part), 22 b, 122 b, 222 b, 322 b. 2 wiring parallel part), 23 ... third metal film, 410i ... black matrix (partitioned light shielding part), 410i1 ... gate wiring parallel part (first wiring parallel part), 410i2 ... source wiring parallel (Second wiring parallel part), 413 ... gate wiring (inter-pixel light shielding part), 414 ...

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)

Abstract

液晶パネル(表示装置)10は、複数の画素部PXと、隣り合う画素部PXの間を仕切る形で配されるブラックマトリクス(画素間遮光部)10iと、複数の画素部PXにそれぞれ接続されて複数の画素部PXをそれぞれ駆動する複数のTFT(スイッチング素子)11と、画素部PXを複数の区分画素PPXに区分する形で配される区分遮光部22と、を備える。

Description

表示装置及びヘッドマウントディスプレイ
 本発明は、表示装置及びヘッドマウントディスプレイに関する。
 従来、液晶表示装置の一例として下記特許文献1に記載されたものが知られている。特許文献1に記載された液晶表示装置は、上下左右等の斜めの各方向から夫々独立した画像を視認可能にした画像を表示する液晶表示装置であり、液晶パネルは、複数の画素を有し、画素は、互いに直交する2方向のそれぞれの2位置に副画素を備える。つまり、水平走査方向の2位置に副画素をそれぞれ備え、垂直走査方向の2位置に副画素をそれぞれ備える。そして、画素の中央部分に対向する箇所に前記画素より小さい開口部を形成した遮光部材を備えている。
特開2009-145426号公報
(発明が解決しようとする課題)
 上記した特許文献1に記載された液晶表示装置では、1つの画素を構成する4つの副画素に対して独立した画像情報を選択的に供給することで、それぞれ対応する副画素に別個の画像を表示するようにしている。
 ところで、近年、普及が進行しているヘッドマウントディスプレイでは、液晶パネルに表示された画像を、レンズを用いて拡大した形で使用者に視認させるシステムとなっているため、画素間を仕切るブラックマトリクスがメッシュ状の黒表示部として視認され易くなっていた。
 本発明は上記のような事情に基づいて完成されたものであって、表示品位を向上させることを目的とする。
(課題を解決するための手段)
 本発明の表示装置は、複数の画素部と、隣り合う前記画素部の間を仕切る形で配される画素間遮光部と、複数の前記画素部にそれぞれ接続されて複数の前記画素部をそれぞれ駆動する複数のスイッチング素子と、前記画素部を複数の区分画素に区分する形で配される区分遮光部と、を備える。
 このようにすれば、複数の画素部は、接続された複数のスイッチング素子によって個別に駆動されることで、所定の画像などが表示される。隣り合う画素部の間は、画素間遮光部により仕切られているので、各画素部による表示の独立性が担保される。そして、画素部は、区分遮光部によって複数の区分画素に区分されているので、当該表示装置に係る解像度が擬似的に向上し、画素間遮光部が目立ち難くなる。これにより、隣り合う画素部の間において画素間遮光部が黒表示部として視認され難くなり、もって表示品位の向上が図られる。
 本発明の実施態様として、次の構成が好ましい。
(1)前記画素部を構成する画素電極と、前記スイッチング素子と、を少なくとも有する第1基板と、前記画素部を構成する着色部と、前記画素間遮光部と、を少なくとも有する第2基板と、を備えており、前記区分遮光部は、前記第2基板において前記画素間遮光部と同じ層に配されている。このようにすれば、画素部を構成する画素電極は、スイッチング素子によって所定の電位に充電される。画素電極の電位に基づいて画素部を構成する着色部を透過する光量が制御され、もって画素部において所定の階調の表示がなされる。区分遮光部が第2基板において画素間遮光部と同じ層に配されており、区分遮光部が専ら第2基板に設けられることになるから、第1基板に関しては従前通りの構成のものを用いることが可能となる。
(2)前記画素部を構成する画素電極と、前記スイッチング素子と、を少なくとも有する第1基板と、前記画素部を構成する着色部と、前記画素間遮光部と、を少なくとも有する第2基板と、を備えており、前記区分遮光部は、前記第1基板に設けられている。このようにすれば、画素部を構成する画素電極は、スイッチング素子によって所定の電位に充電される。画素電極の電位に基づいて画素部を構成する着色部を透過する光量が制御され、もって画素部において所定の階調の表示がなされる。区分遮光部が専ら第1基板に設けられているから、第2基板に関しては従前通りの構成のものを用いることが可能となる。
(3)前記第1基板は、第1金属膜と、前記第1金属膜の上層側に配される絶縁膜と、前記絶縁膜の上層側に配される第2金属膜と、前記スイッチング素子に接続されて前記第1金属膜からなる第1配線と、前記第1配線に対して交差する形で配され前記スイッチング素子に接続されて前記第2金属膜からなる第2配線と、を少なくとも有しており、前記区分遮光部は、前記画素間遮光部と部分的に重畳するものの、前記第1配線及び前記第2配線とは非重畳となるよう配される。このようにすれば、区分遮光部が画素間遮光部と部分的に重畳する配置とされることで、解像度の擬似的向上効果を十分に得ることができる。しかも、区分遮光部が第1配線及び第2配線とは非重畳の配置とされることで、例えば区分遮光部が導電材料からなる場合であっても、第1配線や第2配線との間に寄生容量が生じ難いものとなる。これにより、第1配線及び第2配線に伝送される信号に鈍りなどが生じ難くなる。
(4)前記第1基板は、前記第1金属膜及び前記第2金属膜とは異なる層に配される第3金属膜を少なくとも有しており、前記区分遮光部は、前記第3金属膜からなる。このようにすれば、当該表示装置の製造に際して、第1配線や第2配線を形成する工程とは別の工程にて区分遮光部を形成することができる。区分遮光部を形成する工程にて用いられる製造装置は、第1配線や第2配線を形成する工程にて用いられる製造装置とは異なるものとなるので、区分遮光部を形成するに際して製造上の制約が少なくなる。
(5)前記区分遮光部は、前記第1金属膜及び前記第2金属膜の少なくともいずれか一方からなる。このようにすれば、当該表示装置の製造に際して、第1配線や第2配線を形成する工程において区分遮光部を形成することができる。これにより、区分遮光部を形成するための専用の製造装置が不要となるので、製造コストの低下を図る上で好適となる。
(6)前記区分遮光部は、前記第1配線の延在方向に並行する形で延在し前記第2金属膜からなる第1配線並行部と、前記第2配線の延在方向に並行する形で延在し前記第1金属膜からなる第2配線並行部と、により構成される。このようにすれば、第1配線並行部が第2金属膜からなるので、第1配線並行部が隣り合う第1配線の間の間隔を設計する際の制約となることが避けられる。同様に、第2配線並行部が第1金属膜からなるので、第2配線並行部が隣り合う第2配線の間の間隔を設計する際の制約となることが避けられる。
(7)前記画素部を構成する画素電極と、前記スイッチング素子と、を少なくとも有する第1基板と、前記画素部を構成する着色部と、前記画素間遮光部と、を少なくとも有する第2基板と、を備えており、前記区分遮光部は、前記第1基板及び前記第2基板の双方に設けられている。このようにすれば、画素部を構成する画素電極は、スイッチング素子によって所定の電位に充電される。画素電極の電位に基づいて画素部を構成する着色部を透過する光量が制御され、もって画素部において所定の階調の表示がなされる。区分遮光部が第1基板及び第2基板の双方に分散されているので、仮に区分遮光部を第1基板と第2基板とのいずれか一方に集約した場合に比べると、第1基板及び第2基板を製造する上で区分遮光部が製造上の制約となり難くなる。
(8)前記第1基板は、第1金属膜と、前記第1金属膜の上層側に配される絶縁膜と、前記絶縁膜の上層側に配される第2金属膜と、前記スイッチング素子に接続されて前記第1金属膜からなる第1配線と、前記第1配線に対して交差する形で配され前記スイッチング素子に接続されて前記第2金属膜からなる第2配線と、を少なくとも有しており、前記区分遮光部は、前記第2基板に設けられて前記第1配線の延在方向に並行する形で延在し前記画素間遮光部と同じ層に配される第1配線並行部と、前記第1基板に設けられて前記第2配線の延在方向に並行する形で延在し前記第1金属膜からなる第2配線並行部と、から構成される。画素間遮光部は、隣り合う画素部の間を仕切っているので、第1配線及び第2配線と重畳する配置となっている。ここで、一般的に隣り合う第1配線の間の間隔は、隣り合う第2配線の間の間隔よりも広いことから、第1配線並行部を第2基板において画素間遮光部と同じ層に配することで、第1配線並行部を容易に形成することができる。第2配線並行部が第1基板において第1金属膜からなるので、第2配線並行部が隣り合う第2配線の間の間隔を設計する際の制約となることが避けられる。
(9)前記画素部を構成する画素電極と、前記スイッチング素子と、前記スイッチング素子に接続される第1配線と、前記第1配線に対して交差する形で配され前記スイッチング素子に接続される第2配線と、を少なくとも有する第1基板と、前記画素部を構成する着色部を少なくとも有する第2基板と、を備えており、前記画素間遮光部は、前記第1配線及び前記第2配線により構成され、前記区分遮光部は、前記第2基板にて前記着色部を複数に区分する形で設けられている。このようにすれば、画素部を構成する画素電極は、スイッチング素子によって所定の電位に充電される。画素電極の電位に基づいて画素部を構成する着色部を透過する光量が制御され、もって画素部において所定の階調の表示がなされる。区分遮光部は、第2基板に設けられて画素部を構成する着色部を複数に区分する形で配される。区分遮光部が専ら第2基板に設けられることになるから、第1基板に関しては従前通りの構成のものを用いることが可能となる。画素間遮光部は、第1基板において第1配線及び第2配線により構成されており、第2基板には設けられていないので、区分遮光部の設計を行う上での制約が少なくなる。
(10)前記区分遮光部は、前記画素間遮光部よりも幅狭に形成されている。このようにすれば、区分遮光部による画素部の開口率の低下を抑制しつつ、解像度の擬似的向上効果を十分に得ることができる。
(11)前記画素部は、平面形状が方形状をなしており、前記区分遮光部は、前記区分画素が4つとなり且つ前記区分画素が前記画素部と相似形となるよう前記画素部を区分している。このようにすれば、区分遮光部によって得られる解像度の擬似的向上効果がより高いものとなり、表示品位のさらなる向上が図られる。
 次に、上記課題を解決するために、本発明のヘッドマウントディスプレイは、上記記載の表示装置と、前記表示装置に表示された画像を使用者の眼に結像させるレンズ部と、前記表示装置及び前記レンズ部を有していて前記使用者の頭部に装着される頭部装着器具と、を少なくとも備える。このような構成のヘッドマウントディスプレイによれば、使用者が頭部装着器具を頭部に装着した状態で使用すると、表示装置に表示された画像がレンズ部によって使用者の眼に結像し、もって使用者は表示装置に表示された画像を拡大した形で視認することが可能となる。このように表示装置に表示された画像が拡大した形で使用者に視認される場合には、画素間遮光部が黒表示部として視認され易くなることが懸念されるものの、区分遮光部によって画素部が複数の区分画素に区分されることで、画素間遮光部が目立ち難くなり、もって画素間遮光部が黒表示部として視認され難くなって優れた表示品位が得られる。
(発明の効果)
 本発明によれば、表示品位を向上させることができる。
本発明の実施形態1に係るヘッドマウントディスプレイを使用者が頭部に装着した状態を示す概略斜視図 ヘッドマウントディスプレイを構成する頭部装着器具に備わる液晶パネル及びレンズ部と、使用者の眼球と、の光学的関係を示す概略側面図 液晶パネルを構成するアレイ基板の平面図 液晶パネルを構成するCF基板の平面図 図3のA-A線断面図 図3のB-B線断面図 本発明の実施形態2に係る液晶パネルを構成するアレイ基板の平面図 液晶パネルを構成するCF基板の平面図 図7のA-A線断面図 図7のB-B線断面図 本発明の実施形態3に係る液晶パネルを構成するアレイ基板の平面図 図11のA-A線断面図 図11のB-B線断面図 本発明の実施形態4に係る液晶パネルを構成するアレイ基板の平面図 液晶パネルを構成するCF基板の平面図 図14のA-A線断面図 図14のB-B線断面図 本発明の実施形態5に係る液晶パネルを構成するアレイ基板の平面図 液晶パネルを構成するCF基板の平面図 図18のA-A線断面図 図18のB-B線断面図
 <実施形態1>
 本発明の実施形態1を図1から図6によって説明する。本実施形態では、ゴーグル型のヘッドマウントディスプレイ(HMD:Head-Mounted Display)HMD及びそれに用いられる液晶パネル(表示装置)10を例示する。なお、各図面の一部にはX軸、Y軸及びZ軸を示しており、各軸方向が各図面で示した方向となるように描かれている。
 ゴーグル型のヘッドマウントディスプレイHMDは、図1に示すように、使用者の頭部HDにおいて両方の眼を囲うような形で装着される頭部装着器具HMDaを備えている。頭部装着器具HMDaには、図2に示すように、画像を表示する液晶パネル10と、液晶パネル10に表示された画像を使用者の眼球(眼)EYに結像させるレンズ部REと、が少なくとも内蔵されている。液晶パネル10は、図示しない外部光源から照射される光を利用して画像の表示を行うものである。レンズ部REは、液晶パネル10と使用者の眼球EYとの間に介在する形で配されており、透過光に屈折作用を付与するものとされる。このレンズ部REの焦点距離を調整することで、眼球EYの水晶体EYaを介して網膜(眼)EYbに結像される像が、眼球EYから液晶パネル10までの実際の距離L1よりも遙かに遠い距離L2の位置に見かけ上存在する仮想ディスプレイVDに表示されているように、使用者に認識させることができる。これにより、使用者は、液晶パネル10の画面サイズ(例えば0.数インチから数インチ程度)よりも遙かに大きな画面サイズ(例えば数十インチから数百インチ程度)の仮想ディスプレイVDに表示された拡大画像(虚像)を視認するのである。頭部装着器具HMDaに液晶パネル10を1枚搭載し、その液晶パネル10に右目用画像と左目用画像とを表示させることも可能であるが、頭部装着器具HMDaに液晶パネル10を2枚搭載し、一方の液晶パネル10に右目用画像を、他方の液晶パネル10に左目用画像を、それぞれ表示させことも可能である。なお、頭部装着器具HMDaには、いずれも図示は省略するが、上記した外部光源や使用者の耳に宛てがわれて音声を発するイヤフォンなども備えられている。
 液晶パネル10の構成について詳しく説明する。液晶パネル10は、図5に示すように、一対の透明な(透光性に優れた)基板10a,10bと、両基板10a,10b間に介在し、電界印加に伴って光学特性が変化する物質である液晶分子を含む液晶層10cと、を備え、両基板10a,10bが液晶層10cの厚さ分のセルギャップを維持した状態で図示しないシール剤によって貼り合わせられている。両基板10a,10bは、それぞれほぼ透明なガラス基板GSを備えており、それぞれのガラス基板GS上に既知のフォトリソグラフィ法などによって複数の膜が積層された構成とされる。両基板10a,10bのうち表側(正面側)がCF基板(第2基板、対向基板)10aとされ、裏側(背面側)がアレイ基板(第1基板、薄膜トランジスタ基板、アクティブマトリクス基板)10bとされる。両基板10a,10bの外面には、それぞれ偏光板10f,10gが貼り付けられている。なお、両基板10a,10bの内面側には、液晶層10cに含まれる液晶分子を配向させるための配向膜10d,10eがそれぞれ形成されている。
 アレイ基板10bのうち、画像が表示される画面中央側の表示領域の内面側(液晶層10c側、CF基板10aとの対向面側)には、図3及び図5に示すように、スイッチング素子であるTFT(Thin Film Transistor:薄膜トランジスタ)11及び画素電極12が多数個ずつマトリクス状に並んで設けられるとともに、これらTFT11及び画素電極12の周りには、格子状をなすゲート配線(第1配線)13及びソース配線(第2配線)14が取り囲むようにして配設されている。言い換えると、格子状をなすゲート配線13及びソース配線14の交差部に、TFT11及び画素電極12が行列状に並んで配置されている。画素電極12は、ゲート配線13とソース配線14とに囲まれた領域を満たす形で平面に視て縦長の方形状(矩形状)をなしている。この画素電極12には、TFT11によって所定の電位(具体的には、ソース配線14に供給される信号に基づいた電位)が充電されるようになっている。ゲート配線13及びソース配線14は、共に遮光性を有していることから、後述するブラックマトリクス10iと同様に隣り合う画素部PXの間を仕切る「画素間遮光部」としても機能する。また、本実施形態では、ゲート配線13及びソース配線14の形成領域が画素電極12の非形成領域とほぼ一致しているが、この画素電極12の非形成領域は、光の透過が妨げられ、遮光領域として機能することから、隣り合う画素部PXの間を仕切る「画素間遮光部」としても機能する。なお、アレイ基板10bには、ゲート配線13に並行するとともに画素電極12を横切る補助容量配線(図示せず)を設けることも可能である。
 CF基板10aの表示領域の内面側(液晶層10c側、アレイ基板10bとの対向面側)には、図4から図6に示すように、赤色(R),緑色(G),青色(B)を呈する3色のカラーフィルタ(着色部)10hが設けられている。カラーフィルタ10hは、行方向(X軸方向)及び列方向(Y軸方向)に沿って行列状(マトリクス状)に並んで複数ずつ配列されている。X軸方向について隣り合うカラーフィルタ10hは、呈する色が互いに異なるものの、Y軸方向について隣り合うカラーフィルタ10hは、呈する色が同一とされる。行列状に並ぶ複数のカラーフィルタ10hは、それぞれがアレイ基板10b側の各画素電極12と平面に視て重畳する配置とされている。互いに重畳する画素電極12とカラーフィルタ10hとによって1つの画素部PXが構成されている。画素部PXには、赤色のカラーフィルタ10hを有する赤色画素部RPXと、緑色のカラーフィルタ10hを有する緑色画素部GPXと、青色のカラーフィルタ10hを有する青色画素部BPXと、の3色のものが含まれる。これら3色の画素部RPX,GPX,BPXによって所定の階調のカラー表示を行う1つの表示画素が構成されている。この表示画素は、液晶パネル10の板面において行方向(X軸方向)に沿って繰り返し並べて配されることで、画素群を構成しており、この画素群が列方向(Y軸方向)に沿って多数並んで配されている。隣り合うカラーフィルタ10hの間は、混色を防ぐための略格子状のブラックマトリクス(画素間遮光部)10iによって仕切られている。ブラックマトリクス10iは、遮光材料(例えばチタン(Ti)など)からなり、隣り合う画素部PXの間を仕切る「画素間遮光部」として機能する。従って、X軸方向及びY軸方向について隣り合って配される各画素部PXは、その間がブラックマトリクス10iによって仕切られることで、相互に表示の独立性が担保されるようになっている。ブラックマトリクス10iは、上記したゲート配線13及びソース配線14と平面に視て重畳する配置とされる。カラーフィルタ10hを構成する各着色部は、ブラックマトリクス10iよりも膜厚が厚くなっており、ブラックマトリクス10iを覆う形で配されている。また、ブラックマトリクス10iのうち、ソース配線14と平面に視て重畳する部分(Y軸方向に沿って延在する部分)は、異なる色を呈するカラーフィルタ10hの間に介在する配置となることで、混色防止機能を主体的に発揮するものとされる。
 カラーフィルタ10h及びブラックマトリクス10iの表面には、図4に示すように、オーバーコート膜10kが内側に重なって設けられている。オーバーコート膜10kは、CF基板10aの内面においてほぼ全域にわたってベタ状に形成されており、その膜厚がカラーフィルタ10hと同等またはそれ以上とされる。オーバーコート膜10kの表面には、対向電極10jが内側に重なって設けられている。対向電極10jは、CF基板10aの内面におけるほぼ全域にわたってベタ状に形成されている。対向電極10jは、例えばITO(Indium Tin Oxide)などの透明電極材料からなる。この対向電極10jは、常に一定の基準電位に保たれているので、各TFT11が駆動されるのに伴って各TFT11に接続された各画素電極12が充電されると、各画素電極12との間に電位差が生じるようになっている。そして、対向電極10jと各画素電極12との間に生じる電位差に基づいて液晶層10cに含まれる液晶分子の配向状態が変化し、それに伴って透過光の偏光状態が変化し、もって液晶パネル10の透過光量が各画素部PX毎に個別に制御されるとともに所定のカラー画像が表示されるようになっている。
 アレイ基板10bの内面側に積層形成された各種の膜について説明する。アレイ基板10bには、図4に示すように、下層(ガラス基板GS)側から順に第1金属膜(ゲート金属膜)15、ゲート絶縁膜(絶縁膜)16、半導体膜17、第2金属膜(ソース金属膜)18、層間絶縁膜19、平坦化膜20、透明電極膜21が積層形成されている。なお、図4では、透明電極膜21のさらに上層側に積層される配向膜10eの図示を省略している。
 第1金属膜15は、例えばタングステン(W)層/窒化タンタル(TaN)層などの、金属材料からなる2層の積層膜により構成されており、主にゲート配線13を構成している。ゲート絶縁膜16は、図5に示すように、第1金属膜15の上層側に積層される。ゲート絶縁膜16は、例えば酸化珪素(SiO)層/窒化珪素(SiN)層などの、無機材料からなる積層膜により構成されており、第1金属膜15(ゲート配線13など)と後述する第2金属膜18(ソース配線14など)との間に介在して相互を絶縁している。半導体膜17は、ゲート絶縁膜16の上層側に積層されるものであり、例えば酸化物半導体を用いた薄膜からなる。このような酸化物半導体の薄膜からなる半導体膜17を用いたTFT11は、高い移動度(a-SiTFTに比べ20倍超)および低いリーク電流(a-SiTFTに比べ100分の1未満)を有する。
 第2金属膜18は、図5に示すように、酸化物半導体膜17の上層側に積層される。第2金属膜18は、例えばチタン(Ti)層/アルミニウム(Al)層/チタン層などの、金属材料からなる3層の積層膜により構成されており、主にソース配線14を構成している。層間絶縁膜19は、少なくとも第2金属膜18の上層側に積層される。層間絶縁膜19は、例えば酸化珪素(SiO)などの無機材料からなる。平坦化膜20は、層間絶縁膜19の上層側に積層される。平坦化膜20は、例えばアクリル樹脂(PMMA)などの有機材料からなり、その膜厚が層間絶縁膜19の膜厚よりも厚くされ、それによりアレイ基板10bの表面を平坦化している。層間絶縁膜19及び平坦化膜20は、第2金属膜18及び酸化物半導体膜17と透明電極膜21との間に介在して相互を絶縁している。透明電極膜21は、平坦化膜20の上層側に積層される。透明電極膜21は、例えばIZO(Indium Zinc Oxide)などの透明電極材料からなり、主に画素電極12を構成している。
 TFT11の構成について詳しく説明する。TFT11は、図3及び図5に示すように、ゲート電極11aと、チャネル部11dと、チャネル部11dの一端側に接続されるソース電極11bと、チャネル部11dの他端側に接続されるドレイン電極11cと、を少なくとも有している。ゲート電極11aは、ゲート配線13と同じ第1金属膜15からなり、ゲート配線13の一部(チャネル部11dと重畳する部分)により構成されている。チャネル部11dは、半導体膜17からなり、ゲート電極11aを横切る形でY軸方向に沿って延在するとともに、ゲート電極11aに対してゲート絶縁膜16を介して上層側に重畳する形で配される。ソース電極11bは、ソース配線14と同じで半導体膜17の上層側に配される第2金属膜18からなり、ソース配線14からX軸方向(ゲート配線13の延在方向)に沿って突き出す形で分岐された枝状部により構成されるとともに、その一部がゲート電極11aと重畳する配置とされる。ドレイン電極11cは、ソース配線14及びソース電極11bと同じで半導体膜17の上層側に配される第2金属膜18からなり、ソース電極11bに対してチャネル部11d分の間隔を空けて対向状に配されている。ドレイン電極11cのうち、チャネル部11d側とは反対側の端部には、層間絶縁膜19及び平坦化膜20に開口形成されたコンタクトホールCHを通して画素電極12が接続されている。なお、本実施形態に係るTFT11では、チャネル部11d上にエッチストップ層が形成されておらず、ソース電極11bのチャネル部11d側の端部下面は、半導体膜17の上面と接するように配置されている。
 ところで、本実施形態のようなヘッドマウントディスプレイHMDは、図2に示すように、液晶パネル10に表示された画像を使用者に拡大した形で視認させるものであるため、画素部PX間を仕切るブラックマトリクス10iがメッシュ状の黒表示部として視認され易くなっていた。このようなメッシュ状の黒表示部を視認し難くするには、例えば液晶パネル10に表示される元の画像(拡大前の画像)に係る解像度を高くすることが考えられる。しかしながら、ヘッドマウントディスプレイHMDでは、液晶パネル10に表示される画像に残像や遅延が生じると、使用者が酔いを起こすおそれがあることから、リフレッシュレートが90Hzや120Hzなどのように、他の用途(テレビ受信装置やタブレット型端末やスマートフォンなど)の液晶パネルにおいて一般的な60Hzよりも高いものとなっている。このため、ヘッドマウントディスプレイHMDにおいて液晶パネル10の解像度を単純に高くすると、画像処理による負荷が重くなってしまう、という問題があった。また、ヘッドマウントディスプレイHMDでは、使用者の動作を各種センサによって捕捉し、その捕捉した動作に応じて表示する画像を補正する、といった高度な画像処理を行う場合もあり、そのような場合に液晶パネル10の解像度を単純に高くすると、画像処理による負荷が一層重くなってしまう、という問題もある。
 さて、本実施形態に係る液晶パネル10は、図3及び図4に示すように、画素部PXを複数の区分画素PPXに区分する区分遮光部22を備えている。なお、図3では、区分遮光部22及びブラックマトリクス10iの外形を二点鎖線にて図示している。具体的には、区分遮光部22は、平面に視て略十字形をなしていて、画素部PXを4つの区分画素PPXに区分している。区分遮光部22は、X軸方向、つまりゲート配線13の延在方向に沿って直線状に延在するゲート配線並行部(第1配線並行部、短辺部)22aと、Y軸方向、つまりソース配線14の延在方向に沿って直線状に延在するソース配線並行部(第2配線並行部、長辺部)22bと、からなる。ゲート配線並行部22aが画素部PXにおけるY軸方向についての中央位置を、ソース配線並行部22bが画素部PXにおけるX軸方向についての中央位置を、それぞれ横切る形で配されている。ゲート配線並行部22aは、ソース配線並行部22bよりも長さ寸法が小さい。ゲート配線並行部22aの長さ寸法とソース配線並行部22bの長さ寸法との比率は、画素部PXにおける短辺寸法と長辺寸法との比率とほぼ等しい。従って、画素部PXは、区分遮光部22によって4つの区分画素PPXに等分されている。区分遮光部22によって等分された4つの区分画素PPXは、平面に視て縦長の方形状をなしていて、その短辺寸法と長辺寸法との比率が、画素部PXにおける同比率とほぼ等しくなっている。つまり、区分画素PPXは、平面に視て画素部PXと相似形をなしている。区分遮光部22を構成するゲート配線並行部22a及びソース配線並行部22bは、幅寸法が互いにほぼ等しいものの、ブラックマトリクス10iの幅寸法よりは小さく、ブラックマトリクス10iとの比較において相対的に幅狭になっている。
 区分遮光部22は、図5及び図6に示すように、液晶パネル10を構成する一対の基板10a,10bのうち、CF基板10a側に設けられており、隣り合うカラーフィルタ10h間を仕切るブラックマトリクス10iと同じ層に配されている。つまり、区分遮光部22は、ブラックマトリクス10iと同じ遮光材料からなり、ゲート配線並行部22aの長さ方向の両端部及びソース配線並行部22bの長さ方向の両端部がそれぞれブラックマトリクス10iに連ねられている。このような区分遮光部22によってカラーフィルタ10hは、同色を呈する4つの区分カラーフィルタ10hSに区分されている。4つの区分カラーフィルタ10hSは、それぞれ区分画素PPXを構成している。なお、1つの画素部PXを構成する4つの区分画素PPXは、区分遮光部22によって区分されているものの、画素部PXの画素電極12に接続された同じTFT11によって共通の階調でもって駆動される。
 このように、画素部PXが区分遮光部22によって4つの区分画素PPXに区分されることで、液晶パネル10に係る解像度が擬似的に向上する。つまり、4つの区分画素PPXが擬似的な画素部として使用者に視認され易くなるので、使用者には解像度が2倍程度に感じられることになる。具体的には、例えば液晶パネル10における実際の解像度がFHD(1920×1080)相当であった場合には、擬似的に4K2K(3840×2160)相当の解像度であるかのように使用者に認識させることが可能となる。従って、液晶パネル10に表示される画像が、ヘッドマウントディスプレイHMDの使用者に拡大した形で視認されても、隣り合う画素部PXの間を仕切るブラックマトリクス10iが目立ち難くなる。これにより、隣り合う画素部PXの間においてブラックマトリクス10iが黒表示部として視認され難くなるので、液晶パネル10の実際の解像度を高めずとも、表示品位の向上を図ることができる。特に、ヘッドマウントディスプレイHMDに液晶パネル10を1枚のみ搭載する構成では、片目当たりの解像度が液晶パネル10の解像度の1/2にまで低下することから、本実施形態の構成を採用するのが極めて有用である。
 しかも、区分遮光部22がCF基板10aにおいてブラックマトリクス10iと同じ層に配されており、区分遮光部22が専らCF基板10aに設けられているので、アレイ基板10bに関しては従前通りの構成のものを用いることが可能となる。これにより、製造コストが低く済む。さらには、区分遮光部22は、ブラックマトリクス10iよりも幅狭に形成されているので、区分遮光部22を設置したことに伴って生じる画素部PXの開口率の低下を抑制しつつ、解像度の擬似的向上効果を十分に得ることができる。その上、区分遮光部22は、区分画素PPXが4つとなり且つ区分画素PPXが画素部PXと相似形となるよう画素部PXを区分しているので、区分遮光部22によって得られる解像度の擬似的向上効果がより高いものとなり、表示品位のさらなる向上が図られる。
 以上説明したように本実施形態の液晶パネル(表示装置)10は、複数の画素部PXと、隣り合う画素部PXの間を仕切る形で配されるブラックマトリクス(画素間遮光部)10iと、複数の画素部PXにそれぞれ接続されて複数の画素部PXをそれぞれ駆動する複数のTFT(スイッチング素子)11と、画素部PXを複数の区分画素PPXに区分する形で配される区分遮光部22と、を備える。
 このようにすれば、複数の画素部PXは、接続された複数のTFT11によって個別に駆動されることで、所定の画像などが表示される。隣り合う画素部PXの間は、ブラックマトリクス10iにより仕切られているので、各画素部PXによる表示の独立性が担保される。そして、画素部PXは、区分遮光部22によって複数の区分画素PPXに区分されているので、当該液晶パネル10に係る解像度が擬似的に向上し、ブラックマトリクス10iが目立ち難くなる。これにより、隣り合う画素部PXの間においてブラックマトリクス10iが黒表示部として視認され難くなり、もって表示品位の向上が図られる。
 また、画素部PXを構成する画素電極12と、TFT11と、を少なくとも有するアレイ基板(第1基板)10bと、画素部PXを構成するカラーフィルタ(着色部)10hと、ブラックマトリクス10iと、を少なくとも有するCF基板(第2基板)10aと、を備えており、区分遮光部22は、CF基板10aにおいてブラックマトリクス10iと同じ層に配されている。このようにすれば、画素部PXを構成する画素電極12は、TFT11によって所定の電位に充電される。画素電極12の電位に基づいて画素部PXを構成するカラーフィルタ10hを透過する光量が制御され、もって画素部PXにおいて所定の階調の表示がなされる。区分遮光部22がCF基板10aにおいてブラックマトリクス10iと同じ層に配されており、区分遮光部22が専らCF基板10aに設けられることになるから、アレイ基板10bに関しては従前通りの構成のものを用いることが可能となる。
 また、区分遮光部22は、ブラックマトリクス10iよりも幅狭に形成されている。このようにすれば、区分遮光部22による画素部PXの開口率の低下を抑制しつつ、解像度の擬似的向上効果を十分に得ることができる。
 また、画素部PXは、平面形状が方形状をなしており、区分遮光部22は、区分画素PPXが4つとなり且つ区分画素PPXが画素部PXと相似形となるよう画素部PXを区分している。このようにすれば、区分遮光部22によって得られる解像度の擬似的向上効果がより高いものとなり、表示品位のさらなる向上が図られる。
 また、本実施形態に係るヘッドマウントディスプレイHMDは、上記記載の液晶パネル10と、液晶パネル10に表示された画像を使用者の眼球(眼)EYに結像させるレンズ部REと、液晶パネル10及びレンズ部REを有していて使用者の頭部HDに装着される頭部装着器具HMDaと、を少なくとも備える。このような構成のヘッドマウントディスプレイHMDによれば、使用者が頭部装着器具HMDaを頭部HDに装着した状態で使用すると、液晶パネル10に表示された画像がレンズ部REによって使用者の眼球EYに結像し、もって使用者は液晶パネル10に表示された画像を拡大した形で視認することが可能となる。このように液晶パネル10に表示された画像が拡大した形で使用者に視認される場合には、ブラックマトリクス10iが黒表示部として視認され易くなることが懸念されるものの、区分遮光部22によって画素部PXが複数の区分画素PPXに区分されることで、ブラックマトリクス10iが目立ち難くなり、もってブラックマトリクス10iが黒表示部として視認され難くなって優れた表示品位が得られる。
 <実施形態2>
 本発明の実施形態2を図7から図10によって説明する。この実施形態2では、区分遮光部122の配置及び構成を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る区分遮光部122は、図7及び図8に示すように、液晶パネル110を構成する一対の基板110a,110bのうち、アレイ基板110b側に設けられている。なお、図7では、区分遮光部122の外形を破線にて図示している。詳しくは、区分遮光部122は、図9及び図10に示すように、アレイ基板110bにおいて層間絶縁膜119と平坦化膜120との間に介在する形で配される第3金属膜23からなる。第3金属膜23は、遮光性を有する導電材料であり、アレイ基板110bにおいてゲート配線113などを構成する第1金属膜115及びソース配線114などを構成する第2金属膜118とは異なる層に配されており、第2金属膜118とは間に介在する層間絶縁膜119により絶縁されるのに対し、画素電極112を構成する透明電極膜121とは間に介在する平坦化膜120により絶縁されている。なお、第3金属膜23の材料は、第1金属膜115または第2金属膜118と同一とされるのが、材料調達費の低減を図る上で好ましいが、必ずしも第1金属膜115または第2金属膜118と同一でなくても構わない。この区分遮光部122は、図7に示すように、ブラックマトリクス110iと部分的に重畳するものの、ゲート配線113及びソース配線114とは非重畳となるよう配されている。詳しくは、区分遮光部122を構成するゲート配線並行部122a及びソース配線並行部122bにおけるそれぞれの長さ方向の両端部は、ブラックマトリクス110iと重畳する配置とされている。一方、区分遮光部122は、ゲート配線並行部122aにおける長さ方向の両端部が平面に視てソース配線114との間に間隔を空けた位置に配されるとともに、ソース配線並行部122bにおける長さ方向の両端部が平面に視てゲート配線113との間に間隔を空けた位置に配されている。
 このように、本実施形態では、区分遮光部122が専らアレイ基板110b側に設けられているから、CF基板110aに関しては従前通りの構成のものを用いることが可能となる。これにより、製造コストが低く済む。しかも、区分遮光部122が第1金属膜115及び第2金属膜118とは異なる第3金属膜23からなるので、液晶パネル110の製造に際して、ゲート配線113やソース配線114を形成する工程とは別の工程にて区分遮光部122を形成することができる。区分遮光部122を形成する工程にて用いられる製造装置は、ゲート配線113やソース配線114を形成する工程にて用いられる製造装置とは異なるものとなるので、区分遮光部122を形成するに際して製造上の制約が少なくなる。さらには、区分遮光部122がブラックマトリクス110iと部分的に重畳する配置とされることで、解像度の擬似的向上効果を十分に得ることができる。しかも、導電材料からなる区分遮光部122がゲート配線113及びソース配線114とは非重畳の配置とされることで、ゲート配線113やソース配線114との間に寄生容量が生じ難いものとなる。これにより、ゲート配線113及びソース配線114に伝送される信号に鈍りなどが生じ難くなる。なお、区分遮光部122がアレイ基板110bに設けられるのに伴い、CF基板110aのカラーフィルタ110hは、図8に示すように、非分割構造とされている。
 以上説明したように本実施形態によれば、画素部PXを構成する画素電極112と、TFT111と、を少なくとも有するアレイ基板110bと、画素部PXを構成するカラーフィルタ110hと、ブラックマトリクス110iと、を少なくとも有するCF基板110aと、を備えており、区分遮光部122は、アレイ基板110bに設けられている。このようにすれば、画素部PXを構成する画素電極112は、TFT111によって所定の電位に充電される。画素電極112の電位に基づいて画素部PXを構成するカラーフィルタ110hを透過する光量が制御され、もって画素部PXにおいて所定の階調の表示がなされる。区分遮光部122が専らアレイ基板110bに設けられているから、CF基板110aに関しては従前通りの構成のものを用いることが可能となる。
 また、アレイ基板110bは、第1金属膜115と、第1金属膜115の上層側に配されるゲート絶縁膜(絶縁膜)116と、ゲート絶縁膜116の上層側に配される第2金属膜118と、TFT111に接続されて第1金属膜115からなるゲート配線(第1配線)113と、ゲート配線113に対して交差する形で配されTFT111に接続されて第2金属膜118からなるソース配線(第2配線)114と、を少なくとも有しており、区分遮光部122は、ブラックマトリクス110iと部分的に重畳するものの、ゲート配線113及びソース配線114とは非重畳となるよう配される。このようにすれば、区分遮光部122がブラックマトリクス110iと部分的に重畳する配置とされることで、解像度の擬似的向上効果を十分に得ることができる。しかも、区分遮光部122がゲート配線113及びソース配線114とは非重畳の配置とされることで、例えば区分遮光部122が導電材料からなる場合であっても、ゲート配線113やソース配線114との間に寄生容量が生じ難いものとなる。これにより、ゲート配線113及びソース配線114に伝送される信号に鈍りなどが生じ難くなる。
 また、アレイ基板110bは、第1金属膜115及び第2金属膜118とは異なる層に配される第3金属膜23を少なくとも有しており、区分遮光部122は、第3金属膜23からなる。このようにすれば、当該液晶パネル110の製造に際して、ゲート配線113やソース配線114を形成する工程とは別の工程にて区分遮光部122を形成することができる。区分遮光部122を形成する工程にて用いられる製造装置は、ゲート配線113やソース配線114を形成する工程にて用いられる製造装置とは異なるものとなるので、区分遮光部122を形成するに際して製造上の制約が少なくなる。
 <実施形態3>
 本発明の実施形態3を図11から図13によって説明する。この実施形態3では、上記した実施形態2から区分遮光部222の構成を変更したものを示す。なお、上記した実施形態2と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る区分遮光部222は、図11から図13に示すように、アレイ基板210bにおいて第1金属膜215及び第2金属膜218からなる。詳しくは、区分遮光部222を構成するゲート配線並行部222aは、第2金属膜218からなるのに対し、ソース配線並行部222bは、第1金属膜215からなる。つまり、ゲート配線並行部222aは、自身と並行するゲート配線213ではなく自身と直交するソース配線214と同じ第2金属膜218からなるのに対し、ソース配線並行部222bは、自身と並行するソース配線214ではなく自身と直交するゲート配線213と同じ第1金属膜215からなる。従って、ゲート配線213及びソース配線並行部222bが同一層に、ソース配線214及びゲート配線並行部222aが同一層に、それぞれ配置される。なお、図11では、区分遮光部222を構成するゲート配線並行部222aの外形を相対的に太い破線にて、ソース配線並行部222bの外形を相対的に細い破線にて、それぞれ図示している。また、本実施形態に係るCF基板210aの構成は、上記した実施形態2に記載されたものと同一であり、平面図の図示を省略している。
 このように、区分遮光部222が第1金属膜215及び第2金属膜218からなるので、液晶パネル210におけるアレイ基板210bの製造に際して、ゲート配線213及びソース配線214を形成する工程において区分遮光部222を形成することができる。これにより、区分遮光部222を形成するための専用の製造装置が不要となるので、製造コストの低下を図る上で好適となる。しかも、ゲート配線並行部222aが第2金属膜218からなるので、ゲート配線並行部222aが隣り合うゲート配線213の間の間隔を設計する際の制約となることが避けられる。同様に、ソース配線並行部222bが第1金属膜215からなるので、ソース配線並行部222bが隣り合うソース配線214の間の間隔を設計する際の制約となることが避けられる。
 以上説明したように本実施形態によれば、区分遮光部222は、第1金属膜215及び第2金属膜218の少なくともいずれか一方からなる。このようにすれば、当該液晶パネル210の製造に際して、ゲート配線213やソース配線214を形成する工程において区分遮光部222を形成することができる。これにより、区分遮光部222を形成するための専用の製造装置が不要となるので、製造コストの低下を図る上で好適となる。
 また、区分遮光部222は、ゲート配線213の延在方向に並行する形で延在し第2金属膜218からなるゲート配線並行部(第1配線並行部)222aと、ソース配線214の延在方向に並行する形で延在し第1金属膜215からなるソース配線並行部(第2配線並行部)222bと、により構成される。このようにすれば、ゲート配線並行部222aが第2金属膜218からなるので、ゲート配線並行部222aが隣り合うゲート配線213の間の間隔を設計する際の制約となることが避けられる。同様に、ソース配線並行部222bが第1金属膜215からなるので、ソース配線並行部222bが隣り合うソース配線214の間の間隔を設計する際の制約となることが避けられる。
 <実施形態4>
 本発明の実施形態4を図14から図17によって説明する。この実施形態4では、上記した実施形態1,3から区分遮光部322の配置及び構成を変更したものを示す。なお、上記した実施形態1,3と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る区分遮光部322は、図14及び図15に示すように、液晶パネル310を構成するCF基板310a及びアレイ基板310bの双方に設けられており、ゲート配線並行部322aがCF基板310a側に、ソース配線並行部322bがアレイ基板310b側に、それぞれ設けられている。ゲート配線並行部322aは、図15及び図16に示すように、CF基板310aにおいてブラックマトリクス310iと同一層に設けられている。ゲート配線並行部322aは、図15に示すように、その長さ方向(X軸方向)についての両端部がブラックマトリクス310iに連ねられている。このように、ゲート配線並行部322aの具体的な構成は、上記した実施形態1に記載されたものと同様である。カラーフィルタ310hは、Y軸方向についてゲート配線並行部322aを挟んで隣り合う2つの区分カラーフィルタ310hSに区分されている。一方、ソース配線並行部322bは、図14及び図17に示すように、アレイ基板310bにおいてゲート配線313と同じ第1金属膜315からなる。ソース配線並行部322bは、自身と並行するソース配線314ではなく自身と直交するゲート配線313と同じ第1金属膜315からなる。このように、ソース配線並行部322bの具体的な構成は、上記した実施形態3に記載されたものと同様である。
 このように、区分遮光部322は、CF基板310a及びアレイ基板310bの双方に設けられているから、上記した実施形態1,2のように区分遮光部をCF基板とアレイ基板とのいずれか一方に集約した場合に比べると、CF基板310a及びアレイ基板310bを製造する上で区分遮光部322が製造上の制約となり難くなる。しかも、CF基板310aにおいてゲート配線313及びソース配線314に対して重畳配置されて格子状をなすブラックマトリクス310iと同じ層に配するのを、アレイ基板310bにおける配列ピッチが相対的に広いゲート配線313に並行するゲート配線並行部322aとしているから、ゲート配線並行部322aを容易に形成することができる。さらには、ソース配線並行部322bがアレイ基板310bにおいてゲート配線313と同じ第1金属膜315からなるので、ソース配線並行部322bが隣り合うソース配線314の間の間隔を設計する際の制約となることが避けられる。
 以上説明したように本実施形態によれば、画素部PXを構成する画素電極312と、TFT311と、を少なくとも有するアレイ基板310bと、画素部PXを構成するカラーフィルタ310hと、ブラックマトリクス310iと、を少なくとも有するCF基板310aと、を備えており、区分遮光部322は、アレイ基板310b及びCF基板310aの双方に設けられている。このようにすれば、画素部PXを構成する画素電極312は、TFT311によって所定の電位に充電される。画素電極312の電位に基づいて画素部PXを構成するカラーフィルタ310hを透過する光量が制御され、もって画素部PXにおいて所定の階調の表示がなされる。区分遮光部322がアレイ基板310b及びCF基板310aの双方に分散されているので、仮に区分遮光部をアレイ基板310bとCF基板310aとのいずれか一方に集約した場合に比べると、アレイ基板310b及びCF基板310aを製造する上で区分遮光部322が製造上の制約となり難くなる。
 また、アレイ基板310bは、第1金属膜315と、第1金属膜315の上層側に配されるゲート絶縁膜316と、ゲート絶縁膜316の上層側に配される第2金属膜318と、TFT311に接続されて第1金属膜315からなるゲート配線313と、ゲート配線313に対して交差する形で配されTFT311に接続されて第2金属膜318からなるソース配線314と、を少なくとも有しており、区分遮光部322は、CF基板310aに設けられてゲート配線313の延在方向に並行する形で延在しブラックマトリクス310iと同じ層に配されるゲート配線並行部322aと、アレイ基板310bに設けられてソース配線314の延在方向に並行する形で延在し第1金属膜315からなるソース配線並行部322bと、から構成される。ブラックマトリクス310iは、隣り合う画素部PXの間を仕切っているので、ゲート配線313及びソース配線314と重畳する配置となっている。ここで、一般的に隣り合うゲート配線313の間の間隔は、隣り合うソース配線314の間の間隔よりも広いことから、ゲート配線並行部322aをCF基板310aにおいてブラックマトリクス310iと同じ層に配することで、ゲート配線並行部322aを容易に形成することができる。ソース配線並行部322bがアレイ基板310bにおいて第1金属膜315からなるので、ソース配線並行部322bが隣り合うソース配線314の間の間隔を設計する際の制約となることが避けられる。
 <実施形態5>
 本発明の実施形態5を図18から図21によって説明する。この実施形態5では、上記した実施形態1からブラックマトリクス410iの機能を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係るブラックマトリクス410iは、図18から図21に示すように、画素部PX(画素電極412及びカラーフィルタ410h)を複数の区分画素PPXに区分する形で配されており、隣り合う画素部PXの間を仕切る形では配されていない。つまり、本実施形態では、ブラックマトリクス410iが、「画素間遮光部」としてではなく、「区分遮光部」として機能するよう配されている。具体的には、ブラックマトリクス410iは、ゲート配線413の延在方向(X軸方向)に並行するゲート配線並行部(第1配線並行部)410i1と、ソース配線414の延在方向(Y軸方向)に並行するソース配線並行部(第2配線並行部)410i2と、からなり、ゲート配線並行部410i1が画素部PXにおけるY軸方向についての中央位置を、ソース配線並行部410i2が画素部PXにおけるX軸方向についての中央位置を、それぞれ横切る形で配されている。このような構成のブラックマトリクス410iにより、カラーフィルタ410hは、図19に示すように、同色を呈する4つの区分カラーフィルタ410hSに区分されている。4つの区分カラーフィルタ410hSは、それぞれ区分画素PPXを構成している。互いに隣り合うとともに異なる色を呈するカラーフィルタ410hは、図19及び図21に示すように、ブラックマトリクス410iを介することなく直接的に接する形で配されている。
 一方、アレイ基板410bに設けられたゲート配線413及びソース配線414は、図18,図19及び図20に示すように、隣り合う画素部PXの間を仕切る形で配されており、上記した実施形態1と同様に、「画素間遮光部」として機能する。詳しくは、ゲート配線413は、Y軸方向について隣り合う画素電極412の間に介在していてY軸方向について隣り合い且つ同色を呈するカラーフィルタ410hの間の境界部分と平面に視て重畳する形で配されている。ソース配線414は、X軸方向について隣り合う画素電極412の間に介在していてX軸方向について隣り合い且つ互いに異なる色を呈するカラーフィルタ410hの間の境界部分と平面に視て重畳する形で配されている。また、「区分遮光部」として機能するブラックマトリクス410iは、「画素間遮光部」として機能するゲート配線413及びソース配線414よりも幅広となっている。
 このように、「区分遮光部」として機能するブラックマトリクス410iは、専らCF基板410aに設けられているので、アレイ基板410bに関しては従前通りの構成のものを用いることが可能となる。これにより、製造コストが低く済む。しかも、「画素間遮光部」として機能するゲート配線413及びソース配線414は、専らアレイ基板410bに設けられているので、CF基板410aにおいて「区分遮光部」として機能するブラックマトリクス410iの設計を行う上での制約が少なくなる。なお、上記のような構成の液晶パネル410を製造するに際しては、アレイ基板410bに関しては従前通りの構成のものを製造し、CF基板410aに関してはブラックマトリクス410iに対する各色のカラーフィルタ410hの配置を本実施形態専用に変更したものを製造しておき、両基板410a,410bの貼り合わせに際して、ブラックマトリクス410iがゲート配線413及びソース配線414に対してX軸方向及びY軸方向について画素部PXの短辺寸法及び長辺寸法の半分ずつの距離分程度シフトした位置を基準にして行うようにすればよい。
 以上説明したように本実施形態によれば、画素部PXを構成する画素電極412と、TFT411と、TFT411に接続されるゲート配線413と、ゲート配線413に対して交差する形で配されTFT411に接続されるソース配線414と、を少なくとも有するアレイ基板410bと、画素部PXを構成するカラーフィルタ410hを少なくとも有するCF基板410aと、を備えており、画素間遮光部は、ゲート配線413及びソース配線414により構成され、区分遮光部であるブラックマトリクス410iは、CF基板410aにてカラーフィルタ410hを複数に区分する形で設けられている。このようにすれば、画素部PXを構成する画素電極412は、TFT411によって所定の電位に充電される。画素電極412の電位に基づいて画素部PXを構成するカラーフィルタ410hを透過する光量が制御され、もって画素部PXにおいて所定の階調の表示がなされる。区分遮光部であるブラックマトリクス410iは、CF基板410aに設けられて画素部PXを構成するカラーフィルタ410hを複数に区分する形で配される。区分遮光部であるブラックマトリクス410iが専らCF基板410aに設けられることになるから、アレイ基板410bに関しては従前通りの構成のものを用いることが可能となる。画素間遮光部は、アレイ基板410bにおいてゲート配線413及びソース配線414により構成されており、CF基板410aには設けられていないので、区分遮光部であるブラックマトリクス410iの設計を行う上での制約が少なくなる。
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
 (1)上記した各実施形態では、画素部が区分遮光部によって複数の区分画素に等分された場合を示したが、複数の区分画素に大きさ(面積)が異なるものが含まれるよう画素部を区分遮光部によって区分してもよい。
 (2)上記した各実施形態では、区分遮光部による画素部の区分数を4つとした場合を示したが、画素部の区分数が2つまたは3つまたは5つ以上となるよう区分遮光部を配することも可能である。その場合、区分遮光部によって区分された区分画素が画素部と相似形をなすよう、区分数を9,16などのように自然数の二乗とするのが好ましい。
 (3)上記した各実施形態では、区分遮光部によって区分された区分画素が画素部と相似形をなす場合を示したが、区分画素が画素部と非相似形をなすよう区分遮光部によって画素部を区分することも可能であり、その場合は区分遮光部の平面形状は非十字形となる可能性もある。例えば、画素部の平面形状が縦長の方形であるのに対し、区分画素の平面形状が正方形、菱形、平行四辺形、三角形などであっても構わない。なお、画素部の平面形状は、横長の方形や正方形であっても構わない。
 (4)上記した各実施形態では、区分遮光部によって区分された複数の区分画素の外形が同一とされる場合を示したが、複数の区分画素に外形が異なるものが含まれるよう区分遮光部によって画素部を区分することも可能である。
 (5)上記した実施形態1~4では、区分遮光部がブラックマトリクスよりも幅狭に形成された場合を示したが、区分遮光部をブラックマトリクスよりも幅広に形成したり、同一幅になるよう形成してもよい。
 (6)上記した実施形態1,4では、CF基板に設けた区分遮光部がブラックマトリクスに連なる形で配される場合を示したが、CF基板に設けた区分遮光部がブラックマトリクスとは連なることがなく、分離された構成を採ることも可能である。
 (7)上記した実施形態2では、アレイ基板において区分遮光部が遮光性を有する導電材料である第3金属膜からなる場合を示したが、区分遮光部が遮光性を有するものの導電性を有さない非導電材料からなるようにしても構わない。また、アレイ基板における積層方向についての第3金属膜の配置については、層間絶縁膜と平坦化膜との間以外にも変更可能であり、その場合は他の金属膜や透明電極膜との短絡を避けるために必要に応じて絶縁膜を追加すればよい。
 (8)上記した実施形態2では、アレイ基板において区分遮光部が第3金属膜からなる場合を示したが、例えば、区分遮光部を構成するゲート配線並行部とソース配線並行部とのいずれか一方側が第3金属膜からなり、他方側が第1金属膜または第2金属膜からなるようにしても構わない。その場合であっても、ゲート配線並行部を第2金属膜からなる構成やソース配線並行部が第1金属膜からなる構成を採るのが好ましい。
 (9)上記した実施形態2では、アレイ基板において第3金属膜からなる区分遮光部がゲート配線及びソース配線に対して非重畳となる配置を示したが、第3金属膜からなる区分遮光部がゲート配線とソース配線とのいずれか一方または両方に対して重畳する配置を採ることも可能である。
 (10)上記した実施形態3では、アレイ基板において区分遮光部を構成するゲート配線並行部が第2金属膜からなり、ソース配線並行部が第1金属膜からなる場合を示したが、区分遮光部を構成するゲート配線並行部が第1金属膜からなり、ソース配線並行部が第2金属膜からなるようにしてもよい。
 (11)上記した実施形態3では、アレイ基板において区分遮光部が第1金属膜及び第2金属膜の双方からなる場合を示したが、区分遮光部が第1金属膜のみからなる構成や区分遮光部が第2金属膜のみからなる構成を採ることも可能である。
 (12)上記した実施形態2,3では、アレイ基板側に設けた区分遮光部がCF基板側のブラックマトリクスと平面に視て部分的に重畳する構成を示したが、アレイ基板側に設けた区分遮光部がCF基板側のブラックマトリクスとは非重畳となる配置であっても構わない。
 (13)上記した実施形態2,3では、アレイ基板においていずれかの金属膜によって区分遮光部を形成した場合を示したが、例えば画素電極に平面に視て十字形の切り欠きを設けるようにし、その切り欠きを「区分遮光部」とすることも可能である。アレイ基板において画素電極の非形成領域は、光の透過が妨げられ、遮光領域として機能することから、上記のような画素電極の切り欠きが区分遮光部として機能し得る。この構成は、実施形態4にも適用可能である。
 (14)上記した実施形態4では、CF基板においては区分遮光部を構成するゲート配線並行部をブラックマトリクスと同じ材料により、アレイ基板においては区分遮光部を構成するソース配線並行部を第1金属膜により、それぞれ構成した場合を示したが、CF基板においては区分遮光部を構成するソース配線並行部をブラックマトリクスと同じ材料により、アレイ基板においては区分遮光部を構成するゲート配線並行部を第1金属膜または第2金属膜により、それぞれ構成することも可能である。
 (15)上記した実施形態4では、区分遮光部を構成するゲート配線並行部の全てをCF基板に、ソース配線並行部の全てをアレイ基板に、それぞれ形成した場合を示したが、ゲート配線並行部の一部をCF基板に、残りの部分をアレイ基板に形成したり、ソース配線並行部の一部をCF基板に、残りの部分をアレイ基板に形成したりすることも可能である。
 (16)上記した実施形態5では、区分遮光部がブラックマトリクスよりも幅広に形成された場合を示したが、区分遮光部をブラックマトリクスよりも幅狭に形成したり、同一幅になるよう形成してもよい。
 (17)上記した各実施形態では、液晶パネルに備えられる全ての画素部が区分遮光部によって区分される場合を示したが、液晶パネルに備えられる一部の画素部のみが区分遮光部によって区分され、区分遮光部によって区分されない画素部が存在していても構わない。
 (18)上記した各実施形態では、ドレイン電極がソース配線及びソース電極と同じ第2金属膜からなる場合を示したが、例えば酸化物半導体からなる半導体膜を部分的に低抵抗化させて得た低抵抗化領域をドレイン電極とすることも可能である。
 (19)上記した各実施形態では、TFTのチャネル部を構成する半導体膜が酸化物半導体からなる薄膜とされた場合を示したが、それ以外にも、例えばポリシリコン(多結晶化されたシリコン(多結晶シリコン)の一種であるCGシリコン(Continuous Grain Silicon))やアモルファスシリコンを半導体膜の材料として用いることも可能である。
 (20)上記した各実施形態では、ヘッドマウントディスプレイにおいて1枚の液晶パネルに右目用画像及び左目用画像を表示させたり、2枚の液晶パネルに右目用画像と左目用画像とを表示させる場合を示したが、1枚の液晶パネルに右目用画像または左目用画像を表示させ、その表示画像を使用者の片方の眼に結像させるようにしたヘッドマウントディスプレイにも本発明は適用可能である。このような構成のヘッドマウントディスプレイは、いわゆるメガネ型とされるのが好ましい。
 (21)上記した各実施形態以外にも、ヘッドマウントディスプレイの具体的な光学構成(レンズ部の使用数や配置など)は適宜に変更可能である。
 (22)上記した実施形態以外にも、ゲート絶縁膜、層間絶縁膜及び平坦化膜などの絶縁膜に係る具体的な材料は適宜に変更可能である。
 (23)上記した実施形態以外にも、第1金属膜、第2金属膜及び第3金属膜などの金属膜に係る具体的な材料も適宜に変更可能である。また各金属膜の積層構造についても適宜に変更可能であり、具体的には積層数を変更したり、また単層構造としたり、さらには合金構造としたりすることも可能である。
 (24)上記した実施形態以外にも、透明電極膜に用いる具体的な透明電極材料は適宜に変更可能である。具体的には、ITO(Indium Tin Oxide)やZnO(Zinc Oxide)などの透明電極材料を用いることが可能である。
 (25)上記した実施形態では、動作モードがVAモードとされた液晶パネルにおいて、アレイ基板に透明電極膜が1層のみ設けられる場合を示したが、透明電極膜が層間絶縁膜を介して2層設けられていてもよい。この場合、例えば一方の透明電極膜が画素電極を構成し、他方の透明電極膜が画素電極との間で静電容量を形成する補助容量電極を構成するようにすることが可能である。
 (26)上記した実施形態では、TFTのチャネル部上にエッチストップ層が形成されておらず、ソース電極のチャネル部側の端部下面は、酸化物半導体膜の上面と接するように配置される場合を示したが、チャネル部の上層側にエッチストップ層が形成されたエッチストップ型のTFTであっても構わない。
 (27)上記した実施形態では、動作モードがVAモードとされた液晶パネルについて例示したが、それ以外にもIPS(In-Plane Switching)モードやFFS(Fringe Field Switching)モードなどの他の動作モードとされた液晶パネルのTFTについても本発明は適用可能である。
 (28)上記した実施形態では、液晶パネルの画素が赤色、緑色及び青色の3色構成とされたものを例示したが、赤色、緑色及び青色に、黄色などを加えて4色構成とした画素を備えた液晶パネルにも本発明は適用可能である。
 (29)上記した実施形態に記載した液晶パネルに対して、タッチパネルや視差バリアパネル(スイッチ液晶パネル)などの機能性パネルを積層する形で取り付けるようにしたものも本発明に含まれる。
 (30)上記した実施形態では、液晶パネルを例示したが、他の種類の表示パネル(PDP(プラズマディスプレイパネル)、有機ELパネル、EPD(電気泳動ディスプレイパネル)、MEMS(Micro Electro Mechanical Systems)表示パネルなど)にも本発明は適用可能である。
 (31)上記した各実施形態では、ヘッドマウントディスプレイを示したが、液晶パネルに表示された画像をレンズなどを用いて拡大表示する機器として、例えばヘッドアップディスプレイやプロジェクターなどにも本発明は適用可能である。また、拡大表示機能を持たない液晶表示装置(テレビ受信装置、タブレット型端末、スマートフォンなど)にも本発明は適用可能である。
 10,110,210,310,410...液晶パネル(表示装置)、10a,110a,210a,310a,410a...CF基板(第2基板)、10b,110b,210b,310b,410b...アレイ基板(第1基板)、10h,310h,410h...カラーフィルタ(着色部)、10i,110i,310i...ブラックマトリクス(画素間遮光部)、11,111,311,411...TFT(スイッチング素子)、12,112,312,412...画素電極、13,113,213,313...ゲート配線(第1配線)、14,114,214,314...ソース配線(第2配線)、15,115,215,315...第1金属膜、16,116,316...ゲート絶縁膜(絶縁膜)、18,118,218,318...第2金属膜、22,122,222,322...区分遮光部、22a,122a,222a,322a...ゲート配線並行部(第1配線並行部)、22b,122b,222b,322b...ソース配線並行部(第2配線並行部)、23...第3金属膜、410i...ブラックマトリクス(区分遮光部)、410i1...ゲート配線並行部(第1配線並行部)、410i2...ソース配線並行部(第2配線並行部)、413...ゲート配線(画素間遮光部)、414...ソース配線(画素間遮光部)、EY...眼球(眼)、EYa...水晶体(眼)、EYb...網膜(眼)、HD...頭部、HMD...ヘッドマウントディスプレイ、HMDa...頭部装着器具、PX...画素部、PXX...区分画素、RE...レンズ部

Claims (13)

  1.  複数の画素部と、
     隣り合う前記画素部の間を仕切る形で配される画素間遮光部と、
     複数の前記画素部にそれぞれ接続されて複数の前記画素部をそれぞれ駆動する複数のスイッチング素子と、
     前記画素部を複数の区分画素に区分する形で配される区分遮光部と、を備える表示装置。
  2.  前記画素部を構成する画素電極と、前記スイッチング素子と、を少なくとも有する第1基板と、前記画素部を構成する着色部と、前記画素間遮光部と、を少なくとも有する第2基板と、を備えており、
     前記区分遮光部は、前記第2基板において前記画素間遮光部と同じ層に配されている請求項1記載の表示装置。
  3.  前記画素部を構成する画素電極と、前記スイッチング素子と、を少なくとも有する第1基板と、前記画素部を構成する着色部と、前記画素間遮光部と、を少なくとも有する第2基板と、を備えており、
     前記区分遮光部は、前記第1基板に設けられている請求項1記載の表示装置。
  4.  前記第1基板は、第1金属膜と、前記第1金属膜の上層側に配される絶縁膜と、前記絶縁膜の上層側に配される第2金属膜と、前記スイッチング素子に接続されて前記第1金属膜からなる第1配線と、前記第1配線に対して交差する形で配され前記スイッチング素子に接続されて前記第2金属膜からなる第2配線と、を少なくとも有しており、
     前記区分遮光部は、前記画素間遮光部と部分的に重畳するものの、前記第1配線及び前記第2配線とは非重畳となるよう配される請求項3記載の表示装置。
  5.  前記第1基板は、前記第1金属膜及び前記第2金属膜とは異なる層に配される第3金属膜を少なくとも有しており、
     前記区分遮光部は、前記第3金属膜からなる請求項4記載の表示装置。
  6.  前記区分遮光部は、前記第1金属膜及び前記第2金属膜の少なくともいずれか一方からなる請求項4記載の表示装置。
  7.  前記区分遮光部は、前記第1配線の延在方向に並行する形で延在し前記第2金属膜からなる第1配線並行部と、前記第2配線の延在方向に並行する形で延在し前記第1金属膜からなる第2配線並行部と、により構成される請求項6記載の表示装置。
  8.  前記画素部を構成する画素電極と、前記スイッチング素子と、を少なくとも有する第1基板と、前記画素部を構成する着色部と、前記画素間遮光部と、を少なくとも有する第2基板と、を備えており、
     前記区分遮光部は、前記第1基板及び前記第2基板の双方に設けられている請求項1記載の表示装置。
  9.  前記第1基板は、第1金属膜と、前記第1金属膜の上層側に配される絶縁膜と、前記絶縁膜の上層側に配される第2金属膜と、前記スイッチング素子に接続されて前記第1金属膜からなる第1配線と、前記第1配線に対して交差する形で配され前記スイッチング素子に接続されて前記第2金属膜からなる第2配線と、を少なくとも有しており、
     前記区分遮光部は、前記第2基板に設けられて前記第1配線の延在方向に並行する形で延在し前記画素間遮光部と同じ層に配される第1配線並行部と、前記第1基板に設けられて前記第2配線の延在方向に並行する形で延在し前記第1金属膜からなる第2配線並行部と、から構成される請求項8記載の表示装置。
  10.  前記画素部を構成する画素電極と、前記スイッチング素子と、前記スイッチング素子に接続される第1配線と、前記第1配線に対して交差する形で配され前記スイッチング素子に接続される第2配線と、を少なくとも有する第1基板と、前記画素部を構成する着色部を少なくとも有する第2基板と、を備えており、
     前記画素間遮光部は、前記第1配線及び前記第2配線により構成され、前記区分遮光部は、前記第2基板にて前記着色部を複数に区分する形で設けられている請求項1記載の表示装置。
  11.  前記区分遮光部は、前記画素間遮光部よりも幅狭に形成されている請求項2から請求項10のいずれか1項に記載の表示装置。
  12.  前記画素部は、平面形状が方形状をなしており、
     前記区分遮光部は、前記区分画素が4つとなり且つ前記区分画素が前記画素部と相似形となるよう前記画素部を区分している請求項1から請求項11のいずれか1項に記載の表示装置。
  13.  請求項1から請求項12のいずれか1項に記載の表示装置と、
     前記表示装置に表示された画像を使用者の眼に結像させるレンズ部と、
     前記表示装置及び前記レンズ部を有していて前記使用者の頭部に装着される頭部装着器具と、を少なくとも備えるヘッドマウントディスプレイ。
PCT/JP2017/008564 2016-03-10 2017-03-03 表示装置及びヘッドマウントディスプレイ WO2017154789A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/082,706 US10845657B2 (en) 2016-03-10 2017-03-03 Display device and head-mounted display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-046707 2016-03-10
JP2016046707 2016-03-10

Publications (1)

Publication Number Publication Date
WO2017154789A1 true WO2017154789A1 (ja) 2017-09-14

Family

ID=59790293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008564 WO2017154789A1 (ja) 2016-03-10 2017-03-03 表示装置及びヘッドマウントディスプレイ

Country Status (2)

Country Link
US (1) US10845657B2 (ja)
WO (1) WO2017154789A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136931A (ja) * 1994-11-10 1996-05-31 Nec Corp 液晶表示素子
US20080198308A1 (en) * 2007-02-16 2008-08-21 Samsung Electronics Co., Ltd. Display panel and display apparatus having the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5781262A (en) 1994-04-19 1998-07-14 Nec Corporation Liquid crystal display cell
JP2009145426A (ja) 2007-12-11 2009-07-02 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置
TWI386743B (zh) * 2009-12-01 2013-02-21 Au Optronics Corp 顯示面板
KR102224841B1 (ko) * 2014-06-11 2021-03-10 삼성디스플레이 주식회사 액정 표시 장치 및 이의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136931A (ja) * 1994-11-10 1996-05-31 Nec Corp 液晶表示素子
US20080198308A1 (en) * 2007-02-16 2008-08-21 Samsung Electronics Co., Ltd. Display panel and display apparatus having the same

Also Published As

Publication number Publication date
US20190079360A1 (en) 2019-03-14
US10845657B2 (en) 2020-11-24

Similar Documents

Publication Publication Date Title
US9244319B2 (en) Display device and terminal device
US9541765B2 (en) Image display device, including a black matrix, capable of displaying images in a plurality of view points for suppressing a problem originating from a light blocking portion arranged in a pixel aperture or a structural object and accomplishing a high aperture ratio
US9874770B2 (en) Display device
TWI537602B (zh) 影像顯示裝置、顯示面板及終端裝置
US9897816B2 (en) Glasses-free 3D liquid crystal display device and manufacturing method thereof
KR101649234B1 (ko) 액정 전계 렌즈 및 이를 이용한 입체 표시 장치
US9285641B2 (en) Liquid crystal display device and method of fabricating the same
US9274347B2 (en) Polarized glasses type stereoscopic image display device and method of fabricating the same
US9122107B2 (en) Liquid crystal display device
JP6091238B2 (ja) 液晶表示装置
KR102144733B1 (ko) 입체 영상 디스플레이 장치
WO2012169466A1 (ja) 表示装置
US9983445B2 (en) Liquid crystal lens panel and display device including liquid crystal lens panel
US9693047B2 (en) Transparent stereo display and operation method thereof
KR20130105777A (ko) 입체 표시장치
KR101859483B1 (ko) 입체 영상 표시 장치 및 그 제조 방법
WO2017154789A1 (ja) 表示装置及びヘッドマウントディスプレイ
JP2020134917A (ja) 画像表示装置及び当該画像表示装置に用いられる視差バリアシャッタパネルの製造方法
KR20220093876A (ko) 가변 패럴렉스 배리어 및 이를 구비한 입체영상 표시장치
JP2024037623A (ja) 表示装置及び表示システム
KR20160043634A (ko) 배경 투과 시인성을 향상한 투명 표시 패널

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763129

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP