WO2017154720A1 - Electromagnetic actuator and switch device - Google Patents

Electromagnetic actuator and switch device Download PDF

Info

Publication number
WO2017154720A1
WO2017154720A1 PCT/JP2017/008236 JP2017008236W WO2017154720A1 WO 2017154720 A1 WO2017154720 A1 WO 2017154720A1 JP 2017008236 W JP2017008236 W JP 2017008236W WO 2017154720 A1 WO2017154720 A1 WO 2017154720A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
electromagnetic actuator
armature
amateur
magnetic
Prior art date
Application number
PCT/JP2017/008236
Other languages
French (fr)
Japanese (ja)
Inventor
雄大 相良
貢 森
和希 高橋
幸本 茂樹
智也 出口
匠 藤原
洋介 仲西
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017540664A priority Critical patent/JP6381819B2/en
Publication of WO2017154720A1 publication Critical patent/WO2017154720A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/28Power arrangements internal to the switch for operating the driving mechanism
    • H01H33/38Power arrangements internal to the switch for operating the driving mechanism using electromagnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements

Definitions

  • the present invention relates to an electromagnetic actuator used for opening and closing operations such as an electromagnetically operated switching device.
  • Patent Document 1 describes an electromagnet device for closing a circuit breaker that opens and closes a vacuum circuit breaker corresponding to a current interrupting unit that conducts and interrupts current via a link mechanism.
  • the electromagnetic device for insertion described in FIG. 7 of Patent Document 1 is arranged around a solenoid coil, an armature of a magnetic material that can reciprocate in the axial direction of the solenoid coil (plunger 3 of Patent Document 1), and a solenoid coil.
  • the core (the yoke 5 of Patent Document 1) serving as a magnetic flux path, the magnetic support plate of the magnetic material that supports the lower surface of the armature, and the magnetic support plate and the lower end portion of the core (the lower end plate 5C of Patent Document 1) are connected.
  • the electromagnetic actuator described in Patent Document 1 causes the armature to move away from the magnetic support plate by causing a current to flow through the solenoid coil when the circuit breaker is turned on.
  • a current is applied by applying a voltage to the solenoid coil
  • the magnetic flux passing through the armature flows mainly through the magnetic support plate and the magnetic column because there are nonmagnetic spacers and air gaps when the current value at the initial energization is small.
  • the amateur is attracted to the magnetic support plate by this magnetic flux.
  • This suction force is a force that works in a direction that cancels the driving force that drives the amateur, and is an initial load force that acts as a load in the early stage of amateur driving.
  • the magnetic support plate is composed of a relatively thin plate, so that magnetic saturation is reached immediately, and the attractive force between the amateur and the magnetic support plate is kept almost constant.
  • the magnetic flux flowing from the amateur through the air gap into the lower end of the core increases as the current value of the solenoid coil increases, so the driving force that lifts the amateur away from the magnetic support plate and pulls it upward is the current. Increases with increasing value.
  • the upward driving force of the amateur exceeds the attractive force between the amateur and the magnetic support plate, the amateur moves away from the magnetic support plate and moves upward, and the shaft (rod) fixed to the upper surface of the amateur Is delivered and the electromagnetic actuator turns on the circuit breaker.
  • the electromagnetic actuator described in Patent Document 1 has an attractive force generated between the armature and the magnetic support plate until the coil current becomes sufficiently large as compared with the case where the magnetic support plate is not provided. I was able to hold an amateur. Therefore, since the electromagnetic actuator described in Patent Document 1 moves the armature after the coil current is sufficiently large, the driving force of the armature can be increased, and the armature can be reliably moved to a predetermined position. It becomes possible.
  • an initial load force acting in a direction to cancel out the driving force of the amateur is applied by an attractive force generated between the amateur and a magnetic support plate disposed below the amateur.
  • the magnetic circuit that generates the initial load force faces the outside of the electromagnetic actuator, when this magnetic circuit is magnetically saturated, leakage magnetic flux is generated outside the electromagnetic actuator.
  • the electromagnetic actuator described in Patent Document 1 is assumed from a peripheral magnetic body via a magnetic support plate when a device including a magnetic body or a jig such as a fastening member of the electromagnetic actuator is disposed around the electromagnetic actuator.
  • the above magnetic flux may flow to the amateur, and the initial load force in the direction opposite to the driving force for driving the amateur increases, so that the amateur cannot be driven.
  • the magnetic circuit that generates the initial load force faces the outside of the electromagnetic actuator.
  • this magnetic circuit is magnetically saturated, a leakage magnetic flux is generated outside the electromagnetic actuator. If a magnetic material is disposed around the peripheral device, it may cause a failure or malfunction of a peripheral device including the magnetic material, and even a peripheral device that does not include magnetism may cause a failure or malfunction due to strong magnetic flux leakage. Cause.
  • the present invention solves the above-described problems, and an object of the present invention is to obtain an electromagnetic actuator that can give a stable initial load force to an amateur when driving the amateur without leaking magnetic flux outside the electromagnetic actuator. .
  • the electromagnetic actuator of the present invention drives a magnetic armature that is movably disposed inside a coil by magnetic flux generated by the coil.
  • the electromagnetic actuator is disposed on the outside of the coil, the root portion, the armature that extends from the root portion in the direction of the coil axis of the coil and has an extending portion having a smaller outer diameter than the root portion, and the coil.
  • a magnetic core that forms a magnetic path through which the magnetic flux generated by the coil passes with the armature, and the armature has a circumferentially extending portion that extends in the circumferential direction perpendicular to the coil axis from the outer periphery of the extending portion.
  • the core is provided opposite to the circumferential extension portion of the amateur, and has a suction portion that generates an attractive force between the core and the circumferential extension portion when the magnetic flux passes, It has the armature opposing part which forms the 2nd magnetic path which opposes an amateur and passes a magnetic flux outside the 1st magnetic path through which a magnetic flux passes an attraction
  • the electromagnetic actuator of the present invention includes a first magnetic path through which a magnetic flux passes through an attraction portion provided inside a core, and a second magnetic path through which the magnetic flux passes while facing the armature outside the first magnetic path. Therefore, a stable initial load force can be applied to the armature when driving the armature without leaking the magnetic flux to the outside of the electromagnetic actuator.
  • FIG. 21 is a partial view of the core and amateur of FIG. 20. It is a figure of the shock absorbing material of FIG. It is a fragmentary figure of the 2nd electromagnetic actuator by Embodiment 7 of this invention. It is a figure of the shock absorbing material of FIG. It is a fragmentary view of the 3rd electromagnetic actuator by Embodiment 7 of this invention.
  • FIG. 1 and 2 are diagrams showing an electromagnetic actuator and a switchgear according to Embodiment 1 of the present invention.
  • FIG. 1 shows a first state of the electromagnetic actuator
  • FIG. 2 shows a second state of the electromagnetic actuator.
  • FIG. 3 is a schematic cross-sectional view of the electromagnetic actuator according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic cross-sectional view showing the main part of the electromagnetic actuator of FIG.
  • the electromagnetic actuator 1 includes a magnetic core 2, a magnetic armature 3 movably provided inside the core 2, a coil 4 that generates a magnetic flux in a magnetic path formed by the core 2 and the armature 3, and A magnetic force generated by the coil 4 passes between the shaft 5 fixed to the amateur 3 and penetrating the core 2 and between the core 2 and the armature 3 to generate an attraction force.
  • suction portions 15 and 16 for applying a load force acting in a direction to cancel the drive force for driving in the direction in which 5 is delivered.
  • the core 2 and the armature 3 form a magnetic path through which the magnetic flux generated by the coil 4 passes.
  • the opening / closing device 50 includes the electromagnetic actuator 1, the link mechanism 24, and the current interrupting unit 21.
  • the shaft 5 is connected to the current interrupting part 21 of the switching device 50 via the link mechanism 24.
  • the current interrupting unit 21 includes a movable contact 22 and a fixed contact 23 inside.
  • the switchgear 50 moves the movable contact 22 of the current interrupting part 21 so as to be connected to the fixed contact 23 via the link mechanism 24, and performs a closing operation to bring the current interrupting part 21 into a closed state.
  • the shaft 5 is disposed so that the central axis passing in the extending direction coincides with the coil axis 4 a passing through the opening center of the coil 4.
  • the load force that works in the direction that cancels the drive force that drives the amateur 3 in the direction in which the shaft 5 is delivered is generated in the early stage of driving of the amateur 3, and is therefore referred to as the initial load force as appropriate.
  • the direction in which the amateur 3 moves to the exposed end 5a of the shaft 5 is also the direction in which the amateur 3 changes from the first state to the second state, so the driving force that drives the amateur 3 in the direction in which the shaft 5 is delivered is This is a driving force for driving the amateur 3 from the first state to the second state.
  • the electromagnetic actuator 1 When the electromagnetic actuator 1 is in the first state shown in FIG. 1, that is, when the exposed end portion 5a of the shaft 5 is approaching the core 2, the movable contact 22 and the fixed contact 23 of the current interrupting portion 21 are separated from each other. ing. When the electromagnetic actuator 1 is in the second state shown in FIG. 2, that is, when the exposed end 5 a of the shaft 5 is away from the core 2, the movable contact 22 and the fixed contact 23 of the current interrupter 21 are mutually connected. In contact. 1 and 2, the electromagnetic actuator 1 shows a configuration example in which an opening / closing operation for opening or closing the current interrupting portion 21 of the opening / closing device 50 is performed.
  • FIGS. 1 and 4 cross-sectional views of the electromagnetic actuator 1 and the current interrupting unit 21 are shown, but hatching is omitted in the cross-section so as not to make it difficult to see the lead lines and the like.
  • 3 and 4 also show cross-sectional views of the electromagnetic actuator 1, but hatching is omitted in the cross-section so as not to make it difficult to see the lead lines and the like.
  • the outer peripheral line (the outer peripheral line in the direction perpendicular to the moving direction of the shaft 5) that is originally visible from the cross section of the left and right coils 4 on the back side of the drawing surface is not easily visible. Omitted.
  • hatching is omitted in the cross section, and an outer peripheral line in a direction perpendicular to the moving direction of the shaft 5 in the coil 4 is omitted.
  • the core 2 includes a core body portion 7 that surrounds the outer peripheral surface of the coil 4, a core lid portion 8 that covers the upper side of the coil 4 (side on which the shaft 5 is disposed), and a lower side (core lid portion 8) of the core body portion 7. And the core opening end portion 9 which extends in the direction of the shaft 5 from the side where the armature 3 is not disposed and forms an opening 14 where the armature extending portion 12 of the armature 3 is exposed to the outside.
  • the core opening end portion 9 forms an opening 14 through which the amateur extending portion 12 of the amateur 3 can be inserted.
  • the core lid portion 8 faces the core opening end portion 9 at a position away from the core opening end portion 9 in the direction of the coil shaft 4a.
  • the core body portion 7 connects the core lid portion 8 and the core opening end portion 9.
  • the amateur 3 includes an amateur root portion 11 to which the shaft 5 is connected, and an amateur extending portion 12 provided so as to extend from the amateur root portion 11 to the opening 14 side of the core 2 and having an outer diameter smaller than that of the amateur root portion 11.
  • a through hole is formed in the core lid portion 8 of the core 2, and the shaft 5 moves through the through hole in the vertical direction in the figure (the vertical direction of the coil shaft 4 a).
  • the through hole of the core lid part 8 is formed so that the central axis thereof coincides with the coil axis 4a. Further, the central axis of the shaft 5 coincides with the central axis of the amateur 3.
  • the armature 3 is disposed inside the coil 4 and the core 2 so that the central axis of the shaft 5 and the armature 3 coincides with the coil axis 4 a.
  • Each of the shaft 5, the amateur root portion 11, and the amateur extending portion 12 has a cylindrical shape, for example.
  • the coil 4 has, for example, a cylindrical shape with an opening
  • the outer shape of the core 2 has, for example, a cylindrical shape in which a through hole is formed in the upper part and an opening 14 is formed in the lower part.
  • the outer peripheral surface 11 a of the amateur root portion 11 faces the inner peripheral surface of the coil 4, and the outer peripheral surface 12 a of the amateur extension portion 12 faces the inner peripheral surface 9 a of the core opening end 9 in the core 2.
  • the inner peripheral surface 9a is an amateur facing portion that forms a magnetic path M2 that faces the outer peripheral surface 12a of the armature 3 and through which the magnetic flux generated by the coil 4 passes.
  • the outer diameter of the amateur extending portion 12 is smaller than the outer diameter of the amateur root portion 11.
  • a circumferentially extending portion 11b extending in the circumferential direction from the outer periphery of the amateur extending portion 12 is formed.
  • a portion of the circumferentially extending portion 11 b in the amateur root portion 11 faces a portion of the inner side surface 9 b of the core opening end portion 9 in the core 2.
  • the portions where the circumferentially extending portion 11 b and the inner side surface 9 b of the core opening end portion 9 face each other are suction portions 15 and 16. That is, the suction portion 15 of the core opening end portion 9 in the core 2 and the suction portion 16 of the circumferential extension portion 11b in the armature 3 face each other.
  • the suction portion 15 of the core 2 has an end on the coil shaft 4 a side (inner peripheral side) that is the inner peripheral surface 9 a of the core opening end portion 9, and an outer peripheral end that extends from the outer peripheral surface 11 a of the amateur root portion 11 in the armature 3. This is a position through which a broken line 31 extending parallel to the coil axis 4a passes.
  • the suction part 16 of the amateur 3 has an outer peripheral end that is the outer peripheral face 11 a of the amateur base 11, and an end on the coil shaft 4 a side (inner peripheral side) that extends from the inner peripheral face 9 a of the core opening end 9 in the core 2. This is a position through which a broken line 30 extending parallel to the coil axis 4a passes. In FIG.
  • the gap between the attracting portion 16 of the armature 3 and the attracting portion 15 of the core 2 is a magnetic gap G1
  • the outer peripheral surface 12a of the armature extending portion 12 in the armature 3 and the core opening end portion in the core 2 9 shows an example in which the gap between the inner surface 9a and the inner peripheral surface 9 is a magnetic gap G2.
  • the magnetic gap G1 is smaller than the magnetic gap G2.
  • 1 and 2 show an example in which the magnetic gap G2 in the electromagnetic actuator 1 does not change between the first state and the second state, and the magnetic gap G1 in the first state changes to the magnetic gap G3 in the second state. It was.
  • the link mechanism 24 may be provided with a return spring for returning the electromagnetic actuator 1 from the second state shown in FIG. 2 to the first state shown in FIG.
  • iron, cobalt, nickel etc. can be used as a magnetic material of the core 2 and the armature 3, and you may comprise as a laminated
  • the operation of the electromagnetic actuator 1 will be described, in which the movable contact 22 and the fixed contact 23 of the current interrupting part 21 change from the open state where they are separated from each other to the closed state where the movable contact 22 and the fixed contact 23 are in contact with each other.
  • a current flows to the coil 4 of the electromagnetic actuator 1 in the first state shown in FIG. 1 toward the exposed end 5a of the shaft 5 a magnetic flux directed toward the exposed end 5a of the shaft 5 is generated inside the coil 4.
  • the current flowing through the coil 4 is referred to as a coil current.
  • the amateur 3 is driven by the magnetic flux so that the exposed end 5a of the shaft 5 is separated from the core 2.
  • the magnetic flux generated by the coil 4 passes around the coil 4.
  • the magnetic path M1 is a magnetic path formed on the side close to the coil 4, and the magnetic path M2 is a magnetic path formed outside the magnetic path M1.
  • the magnetic resistance of the magnetic path M 1 becomes smaller than the magnetic resistance of the magnetic path M 2, and the coil current flows through the coil 4.
  • the magnetic flux concentrates and passes through the magnetic path M1 having a small magnetic resistance. Since the current value is small at the initial stage of energization when current begins to flow through the coil 4, the magnetic flux mainly passes through the magnetic path M1.
  • the attracting portion 16 of the armature 3 and the attracting portion 15 of the core 2 are magnetized in the same direction along the direction of the magnetic flux, so the attracting portion 16 of the amateur 3 and the core 2 Are attracted to each other, and a suction force is generated between the suction portion 16 and the suction portion 15.
  • the direction of the suction force by which the movable armature 3 is attracted to the core 2 is opposite to the direction in which the armature 3 is driven in the direction of the shaft 5. That is, a load force opposite to the driving force that drives the armature 3 in the direction of the shaft 5 is applied to the armature 3.
  • the direction of the driving force by which the amateur 3 is driven in the direction of the shaft 5 is the direction from the amateur extending portion 12 of the amateur 3 to the exposed end portion 5a of the shaft 5, and is upward in FIGS.
  • the direction of the load force applied to the amateur 3 is the direction from the suction part 16 of the amateur 3 to the suction part 15 of the core 2 and is downward in FIGS. 1 to 4.
  • the suction portions 15 and 16 for applying a load force acting in a direction to cancel the driving force for driving the armature 3 in the direction in which the shaft 5 is sent between the core 2 and the armature 3 are provided.
  • the magnetic support plate corresponding to the attracting portion 15 is disposed outside the core because it is formed inside the core 2
  • the magnetic flux generated by the coil current is a magnetic path.
  • the inside of the electromagnetic actuator 1 is reliably closed by M1 and the magnetic path M2.
  • the electromagnetic actuator 1 according to the first embodiment is configured such that the magnetic flux passing through the core 2 and the armature 3, that is, the magnetic flux passing through the magnetic paths M1 and M2, does not depend on the presence or absence of the surrounding magnetic body. Therefore, magnetic flux does not act. Therefore, the electromagnetic actuator 1 of the first embodiment is free from fluctuations in load force caused by leakage of magnetic flux generated by the coil current to the outside of the electromagnetic actuator 1, that is, the load force is constant and the armature 3 is reliably set to a predetermined value. It is possible to move to the position.
  • the electromagnetic actuator 1 can maintain a constant load force acting in a direction to cancel the driving force for driving the armature 3 in the direction in which the shaft 5 is delivered, and a large current after the coil current of the coil 4 has sufficiently increased.
  • the amateur 3 can be driven, so that the operating characteristics of the amateur 3 are stabilized and the peripheral device is not damaged or malfunctioned.
  • the suction portions 15 and 16 are not formed as separate parts but are formed as a part of the core 2 and the armature 3, so that integration errors such as assembly errors and dimensional errors are reduced. Therefore, the magnetic gap G1 of the attracting portions 15 and 16 and the area where the load force (attraction force) is generated are stable, and the operation variation of the electromagnetic actuator can be reduced. Further, since the electromagnetic actuator 1 according to the first embodiment does not require a separate part, the cost can be reduced and the size can be reduced by reducing the number of parts.
  • the electromagnetic actuator 1 of Embodiment 1 adjusts the suction part width A1 of the suction part 16 of the armature 3 and the suction part width A2 of the suction part 15 of the core 2 shown in FIG. ) Can be easily changed, so that the load force can be freely adjusted without increasing the outer shape of the electromagnetic actuator 1.
  • the suction part width A1 and the suction part width A2 for example, the outer diameter of the armature extension part 12 and the diameter of the opening 14 of the core opening end part 9 are increased, or the outer diameter of the amateur root part 11 is reduced. Good.
  • suction part width A1 and the suction part width A2 are increased, for example, the outer diameter of the armature extension part 12 and the diameter of the opening 14 of the core opening end part 9 are reduced, or the outer diameter of the amateur root part 11 is increased. do it.
  • the magnetic gap G1 is smaller than the magnetic gap G2. Therefore, as described above, the magnetic resistance of the magnetic path M1 is smaller than the magnetic resistance of the magnetic path M2, and the coil 4 is coiled.
  • the magnetic flux concentrates and passes through the magnetic path M1 having a small magnetic resistance.
  • the magnetization of the armature 3 and the core 2 proceeds in the magnetic path M1 and the magnetic resistance of the magnetic path M1 increases, the magnetic flux passes from the magnetic path M1 to the magnetic path M2. Even when a deviation such as dimensional tolerance or installation error occurs in one or both of the amateur 3 and the core 2, it is possible to reliably pass the magnetic flux preferentially over the magnetic path M1 where the small magnetic gap G1 exists.
  • the initial load force in the direction opposite to the driving direction in which the shaft 3 is driven in the direction in which the shaft 5 is delivered can be stabilized, and the operation variation of the amateur 3 can be reduced. Furthermore, the electromagnetic actuator 1 according to the first embodiment can change the magnetic resistance of the magnetic path M1 and the magnetic path M2 even by adjusting the magnetic gap G1 and the magnetic gap G2, so that the outer shape of the electromagnetic actuator 1 is not increased. The initial load force can be adjusted freely.
  • the electromagnetic actuator 1 forms at least one magnetic path, that is, one magnetic path M2 outside the magnetic path M1 passing through the attracting portion 16 of the armature 3 and the attracting portion 15 of the core 2. Therefore, it is possible to stabilize the initial load force in the opposite direction to the driving force that the armature 3 is driven in the direction of the shaft 5 regardless of the presence or absence of the surrounding magnetic material, and it is possible to cause failure or malfunction of the peripheral device. In addition to being able to prevent this, the cost can be reduced and the size can be reduced by reducing the number of parts.
  • the electromagnetic actuator 1 has shown the example in which the suction part 15 of the core 2 and the suction part 16 of the amateur 3 are not in contact in the first state, the suction part 15 of the core 2 and the suction of the amateur 3 are shown. The same effect can be obtained also when the part 16 is in contact.
  • the magnetic gap of the magnetic path M2 has been described as an example, it is not essential that the magnetic gap of the magnetic path M2 is constant. For example, the magnetic gap of the magnetic path M2 may be reduced as the amateur 3 moves.
  • the electromagnetic actuator 1 according to the first embodiment is an electromagnetic actuator that drives the magnetic armature 3 movably disposed inside the coil 4 by the magnetic flux generated by the coil 4.
  • the electromagnetic actuator 1 according to the first embodiment is provided with a coil 4, a root part (amateur root part 11), a base part (amateur root part 11) extending from the root part (amateur root part 11) in the direction of the coil shaft 4 a and a root part.
  • a magnetic core 2 that forms a path.
  • the armature 3 of the electromagnetic actuator 1 includes a circumferentially extending portion 11b that extends in the circumferential direction perpendicular to the coil shaft 4a from the outer periphery of the extending portion (the amateur extending portion 12).
  • the suction portion 15 is provided on the inner side of the core 3 so as to generate an attractive force between the circumferential extension portion 11b and the circumferential extension portion 11b when the magnetic flux passes.
  • 15 has an armature facing portion (inner peripheral surface 9a) that forms a second magnetic path M2 that faces the armature 3 and passes the magnetic flux outside the first magnetic path M1 through which the flux passes. To do.
  • the electromagnetic actuator 1 includes a first magnetic path M1 through which a magnetic flux passes through an attractive portion 15 provided inside the core 2, and an armature 3 that faces the armature 3 outside the first magnetic path M1.
  • the second magnetic path M2 through which the armature passes is formed, so that a stable initial load force can be applied to the armature 3 when the armature 3 is driven without leaking the magnetic flux outside the electromagnetic actuator 1.
  • the switching device 50 is configured to connect the current interrupting unit 21 having the movable contact 22 and the fixed contact 23 therein, and the movable contact 22 of the current interrupting unit 21 to the fixed contact 23 via the link mechanism 24.
  • the electromagnetic actuator 1 to be moved is provided.
  • the electromagnetic actuator 1 is provided to extend from the coil 4, the root portion (amateur root portion 11), the root portion (amateur root portion 11) to the coil axis 4 a of the coil 4, and the root portion (amateur root portion 11).
  • the armature 3 having a stretched portion (amateur stretched portion 12) having a smaller outer diameter than the armature 3) and a magnetism that forms a magnetic path through which the magnetic flux generated by the coil 4 passes with the armature 3.
  • a core 2 of the body is configured to connect the current interrupting unit 21 having the movable contact 22 and the fixed contact 23 therein, and the movable contact 22 of the current interrupting unit 21 to the fixed contact 23 via the link mechanism 24.
  • the electromagnetic actuator 1 to be moved is provided
  • the armature 3 of the electromagnetic actuator 1 has a circumferentially extending portion 11b that extends in the circumferential direction perpendicular to the coil shaft 4a from the outer periphery of the extending portion (the amateur extending portion 12), and the core 3 is a circumferentially extending portion of the amateur 3
  • the suction portion 15 is provided on the inner side of the core 3 so as to generate a suction force with respect to the circumferential extension portion 11b when the magnetic flux passes and the magnetic flux passes through the suction portion 15.
  • the armature facing part (inner peripheral surface 9a) which forms the 2nd magnetic path M2 which opposes the armature 3 and the magnetic flux passes outside of the 1st magnetic path M1 to perform is characterized by the above-mentioned.
  • the opening / closing device 50 includes a first magnetic path M1 through which the magnetic flux passes through the attracting portion 15 provided inside the core 2, and the magnetic flux that faces the armature 3 outside the first magnetic path M1. Since the electromagnetic actuator 1 that forms the second magnetic path M2 through which the armature passes is provided, a stable initial load force is applied to the armature 3 when the armature 3 is driven without leaking the magnetic flux outside the electromagnetic actuator 1. Thus, the closing operation for closing the current interrupting portion 21 can be reliably performed.
  • FIG. FIG. 5 is a schematic cross-sectional view of an electromagnetic actuator according to Embodiment 2 of the present invention
  • FIG. 6 is a schematic cross-sectional view showing the main part of the electromagnetic actuator of FIG.
  • FIG. 7 is a schematic cross-sectional view of another electromagnetic actuator according to Embodiment 2 of the present invention
  • FIG. 8 is a schematic cross-sectional view showing a main part of the electromagnetic actuator of FIG.
  • FIG. 9 is a diagram illustrating an example of the applying force of the electromagnetic actuator according to the second embodiment of the present invention. 5 to 8 show the configuration of the electromagnetic actuator 1 in the first state.
  • FIG. 5 is a schematic cross-sectional view of an electromagnetic actuator according to Embodiment 2 of the present invention
  • FIG. 6 is a schematic cross-sectional view showing the main part of the electromagnetic actuator of FIG.
  • FIG. 7 is a schematic cross-sectional view of another electromagnetic actuator according to Embodiment 2 of the present invention
  • FIG. 8 is a schematic cross-sectional view showing
  • the electromagnetic actuator 1 compares the applying force of the electromagnetic actuator 1 of the first embodiment and the applying force of the electromagnetic actuator 1 of the first embodiment when the initial load force is the same.
  • the electromagnetic actuator 1 according to the second embodiment at least one of the core 2 or the armature 3 is formed in a protruding shape in the attracting portions 15 and 16, and the magnetic flux passing area S1 through which the magnetic flux passes through the attracting portions 15 and 16 is defined as the magnetic path M1.
  • the magnetic path M2 provided outside is smaller than the magnetic flux passage area S2 through which the magnetic flux passes between the core 2 and the armature 3.
  • the electromagnetic actuator 1 shown in FIG. 5 and FIG. 6 is an example in which a protrusion 9 c that protrudes toward the suction portion 16 is provided on the inner side surface 9 b of the core opening end 9.
  • the electromagnetic actuator 1 shown in FIGS. 7 and 8 is an example in which a protrusion 11 c that protrudes toward the suction portion 15 is provided on the circumferential extension portion 11 b of the amateur base portion 11.
  • the magnitude of the initial load force in the direction opposite to the driving direction in which the amateur 3 is driven in the direction of the shaft 5 is the product of the square of the magnetic flux density B of the suction portions 15 and 16 and the magnetic flux passage area S of the suction portions 15 and 16. It is proportional to B 2 S.
  • B 2 S the absolute value of the magnitude of the initial load force may be made equal, so the characteristics of the applied force applied to the amateur 3 in FIG.
  • FIG. 9 the vertical axis represents the coil current or the applied force applied to the amateur 3, and the horizontal axis represents time.
  • a characteristic 32 is a coil current characteristic.
  • Characteristics 33 and 34 are the imparting force characteristic in the first embodiment and the imparting force characteristic in the second embodiment, respectively.
  • the maximum value of the initial load force is when the magnetic flux flows only in the magnetic flux M1. If the coil currents flowing in the coil 4 are the same, the intensity of the magnetic flux generated by the coil 4 is also the same. Therefore, when the suction part width A4 of the second embodiment is smaller than the suction part width A2 of the first embodiment, The magnetic flux passing area S1 through which the magnetic flux passes through the magnetic path M1, that is, the attracting portions 15 and 16, is reduced, and the magnetic flux density B passing through the attracting portions 15 and 16 is increased.
  • the magnetic flux M1 that is, the magnetic flux passage area S1 that passes through the attracting portions 15 and 16 is decreased and the magnetic flux density B is increased, so that the coil current is the same as in the first embodiment.
  • An initial load force equivalent to that of the electromagnetic actuator 1 is generated.
  • the rate of decrease of the magnetic flux density B accompanying the increase in the magnetic gap of the attracting portions 15 and 16 after the movement of the armature 3 is lower than that of the electromagnetic actuator 1 of the first embodiment. growing. Therefore, compared with the first embodiment, the electromagnetic actuator 1 according to the second embodiment has a larger reduction rate of the product B 2 S in the initial load force, and the applied force applied to the amateur 3 as shown in FIG.
  • the increase rate of the driving force which is a positive force, can be increased, and the driving characteristics can be improved. It should be noted that the applied force when the applied force applied to the amateur 3 is negative is a load force opposite to the driving force.
  • the attracting portion widths A3 and A4 may be reduced. It is not necessary to provide the protruding portion 9c protruding to the suction portion 16 side on the inner side surface 9b of 9 or the protruding portion 11c protruding to the suction portion 15 side on the circumferential extension portion 11b of the amateur root portion 11. . However, by providing the protrusion 9c and the protrusion 11c, the magnetic flux M1 passes through the magnetic path M1, that is, the magnetic flux passage area S1 through which the magnetic flux M passes through the magnetic path M2. Can be easily done.
  • the magnetic flux passing through the magnetic path M2 is reduced by reducing the magnetic flux passing area S1 through which the magnetic flux passes through the magnetic path M1, that is, the attracting portions 15 and 16, to the magnetic flux passing area S2 through which the magnetic flux passes through the magnetic path M2.
  • the applied force characteristic 34 in FIG. 9 increases, the increase rate of the driving force can be increased and the driving characteristic can be improved.
  • the magnetic flux passage area S ⁇ b> 2 that passes through the magnetic path M ⁇ b> 2 is equal to the inner peripheral surface width B ⁇ b> 1 that is the width of the inner peripheral surface 9 a of the core opening end portion 9. It is the product of the peripheral length of the peripheral surface 9a.
  • the suction part width A4 which is the circumferential width of the suction part 15 of the core opening end 9
  • the magnetic path M1 is changed.
  • the passing magnetic flux passage area S1 is the same as that of the electromagnetic actuator 1 of the first embodiment.
  • the magnetic flux passing area S1 through which the magnetic flux passes through the magnetic path M1 that is, the suction portions 15, 16 is provided.
  • the magnetic flux passage area S2 passing through the magnetic path M2 is equal to the end inner peripheral surface width B1 which is the width of the inner peripheral surface 9a of the core opening end portion 9. It is the product of the peripheral length of the peripheral surface 9a.
  • the magnetic flux passage area S2 passing through the magnetic path M2 is the same as the electromagnetic actuator 1 of the first embodiment in the electromagnetic actuator 1 of the second embodiment when the end inner peripheral surface width B1 is the same.
  • the suction portion width A3 which is the width in the circumferential direction of the suction portion 16 of the circumferential extension portion 11b in the amateur root portion 11, is provided with the projection portion 11c, so that the armature root portion 11 having the same diameter is provided.
  • the magnetic flux passage area S1 passing through the magnetic path M1 is smaller in the electromagnetic actuator 1 of the second embodiment than in the electromagnetic actuator 1 of the first embodiment.
  • the magnetic flux passage area through which the magnetic flux passes through the magnetic path M1 that is, the attracting portions 15 and 16 is provided.
  • S1 can be made smaller than the magnetic flux passage area S2 where the magnetic flux passes through the magnetic path M2.
  • the same effect as in the first embodiment can be obtained.
  • a stable initial load force can be applied to the armature 3 when the shaft 5 is delivered without leaking the magnetic flux outside the electromagnetic actuator 1.
  • the electromagnetic actuator 1 of Embodiment 2 has at least one or more magnetic paths M2 formed outside the magnetic path M1 passing through the attracting portions 15 and 16, it does not depend on the presence or absence of a surrounding magnetic body. It is possible to stabilize the initial load force that is opposite to the driving force in which the armature 3 is driven in the direction of the shaft 5, and it is possible to prevent peripheral devices from malfunctioning or malfunctioning, and to reduce the cost by reducing the number of parts.
  • the magnetic gap G1 smaller than the magnetic gap G2, it is possible to reduce the operational variation of the armature 3 due to dimensional tolerances and installation errors, and to reduce the magnetic gap G1 and the magnetic gap.
  • the initial load force can be easily adjusted without increasing the size of the electromagnetic actuator 1.
  • FIG. FIG. 10 is a schematic cross-sectional view of an electromagnetic actuator according to Embodiment 3 of the present invention
  • FIG. 11 is a schematic cross-sectional view showing the main part of the electromagnetic actuator of FIG. 10 and 11 show the configuration of the electromagnetic actuator 1 in the first state.
  • the armature 3 or the projections of the core 2 are integrated with a tolerance L1 so that the suction part widths A1 and A2 of the suction parts 15 and 16 are constant.
  • the above is an example of moving the outer side in the circumferential direction.
  • the electromagnetic actuator 1 according to the third embodiment can keep the suction section widths A1 and A2 constant even if the armature 3 is displaced in the horizontal direction in FIGS. 10 and 11 due to installation errors and dimensional tolerances. Therefore, it becomes possible to keep constant the initial load force in the direction opposite to the driving force in which the armature 3 is driven in the direction of the shaft 5, and the operation variation of the armature 3 can be reduced.
  • the electromagnetic actuator 1 shown in FIG. 10 and FIG. 11 is an example in which a protrusion 11c that protrudes toward the suction portion 15 is provided on the circumferential extension 11b of the amateur base 11.
  • a protrusion 11c that protrudes toward the suction portion 15 is provided on the circumferential extension 11b of the amateur base 11.
  • the same effect as in the first embodiment can be obtained.
  • a stable initial load force can be applied to the armature 3 when the shaft 5 is delivered without leaking the magnetic flux outside the electromagnetic actuator 1.
  • the electromagnetic actuator 1 of Embodiment 3 has at least one or more magnetic paths M2 formed outside the magnetic path M1 passing through the attracting portions 15 and 16, it does not depend on the presence or absence of a surrounding magnetic body. It is possible to stabilize the initial load force that is opposite to the driving force in which the armature 3 is driven in the direction of the shaft 5, and it is possible to prevent peripheral devices from malfunctioning or malfunctioning, and to reduce the cost by reducing the number of parts.
  • the magnetic gap G1 smaller than the magnetic gap G2, it is possible to reduce the operational variation of the armature 3 due to dimensional tolerances and installation errors, and to reduce the magnetic gap G1 and the magnetic gap.
  • the initial load force can be easily adjusted without increasing the size of the electromagnetic actuator 1.
  • FIG. FIG. 12 is a schematic sectional view of an electromagnetic actuator according to Embodiment 4 of the present invention
  • FIG. 13 is a schematic sectional view of another electromagnetic actuator according to Embodiment 4 of the present invention. 12 and 13 show the configuration of the electromagnetic actuator 1 in the first state.
  • the electromagnetic actuator 1 according to the fourth embodiment is an example in which a nonmagnetic material 6 a is disposed between the suction part 15 and the suction part 16. The nonmagnetic material 6 a is fixed to the suction part 15 or the suction part 16.
  • the nonmagnetic material 6 a is disposed between the circumferentially extending portion 11 b of the armature 3 and the inner side surface 9 b of the core opening end portion 9 in the core 2.
  • the electromagnetic actuator 1 of FIGS. 12 and 13 has a nonmagnetic material 6a inserted between the circumferentially extending portion 11b of the armature 3 and the inner surface 9b of the core opening end portion 9 of the core 2. It becomes possible to keep the magnetic gap between the circumferentially expanded portion 11b of the amateur 3 and the inner side surface 9b of the core opening end 9 in the core 2, that is, the magnetic gap between the attracting portion 15 and the attracting portion 16. Can be kept constant.
  • a magnetic gap different from the magnetic gap between the attracting portion 15 and the attracting portion 16 that is, the inner peripheral surface 9 a of the core opening end 9 in the core 2 and the outer peripheral surface of the amateur extending portion 12 in the amateur 3.
  • the same effect as in the first embodiment can be obtained.
  • a stable initial load force can be applied to the armature 3 when the shaft 5 is delivered without leaking the magnetic flux outside the electromagnetic actuator 1.
  • the electromagnetic actuator 1 of Embodiment 4 has at least one or more magnetic paths M2 formed outside the magnetic path M1 passing through the attracting portions 15 and 16, it does not depend on the presence or absence of a surrounding magnetic body. It is possible to stabilize the initial load force that is opposite to the driving force in which the armature 3 is driven in the direction of the shaft 5, and it is possible to prevent peripheral devices from malfunctioning or malfunctioning, and to reduce the cost by reducing the number of parts.
  • the magnetic gap G1 smaller than the magnetic gap G2, it is possible to reduce the operational variation of the armature 3 due to dimensional tolerances and installation errors, and to reduce the magnetic gap G1 and the magnetic gap.
  • the initial load force can be easily adjusted without increasing the size of the electromagnetic actuator 1.
  • FIG. FIG. 14 is a schematic sectional view of an electromagnetic actuator according to Embodiment 5 of the present invention
  • FIG. 15 is a schematic sectional view of another electromagnetic actuator according to Embodiment 5 of the present invention. 14 and 15 show the configuration of the electromagnetic actuator 1 in the first state.
  • the electromagnetic actuator 1 according to the fifth embodiment is an example in which opposing surfaces of the suction portions 15 and 16 facing each other are arranged at an angle with respect to the driving direction of the armature 3, that is, the coil shaft 4a. Opposing surfaces of the suction portions 15 and 16 facing each other are inclined with respect to the coil shaft 4a.
  • FIG. 14 and 15 show an example in which the opposing surfaces of the suction portions 15 and 16 facing each other are inclined at the same angle with respect to the coil shaft 4a.
  • FIG. 14 shows an example in which the opposing surfaces of the suction portions 15 and 16 are inclined so as to advance toward the shaft 5 as they approach the coil shaft 4a.
  • FIG. 15 shows an example in which the opposing surfaces of the suction portions 15 and 16 are inclined so as to advance toward the opposite side of the shaft 5, that is, toward the armature extension portion 12 side and the opening 14 side as approaching the coil shaft 4 a.
  • the armature 3 repeatedly collides and repels between the suction portion 16 provided on the armature 3 and the suction portion 15 of the core 2, and stops in the first state shown in FIG. Thereby, a large impact is applied several times to the suction part 16 of the amateur 3 and the suction part 15 of the core 2, causing deformation of the suction parts 15 and 16.
  • the suction portions 15 and 16 are arranged at an angle with respect to a plane (horizontal plane) perpendicular to the coil axis 4a, and thus are generated in the suction portions 15 and 16 when returning to the first state.
  • the direction in which the impact is applied can be dispersed in directions other than the direction of the coil shaft 4a, that is, in the direction parallel to the opposing surfaces of the suction portions 15 and 16, and the number of collisions and repulsions can be reduced. The number of times the impact is applied is reduced, and the period (deformation life) until the deformation of the suction portions 15 and 16 exceeds the allowable range can be extended.
  • the electromagnetic actuator 1 according to the fifth embodiment can extend the deformation life of the suction portions 15 and 16, the variation of the initial load force in the direction opposite to the driving direction due to the deformation of the suction portions 15 and 16 is suppressed. It is possible to reduce the operational variation of the amateur 3, and to prolong the product life.
  • the armature 3 When the coil 4 is not energized and the coil 4 is not energized, the armature 3 has a load force opposite to the driving direction in which the armature 3 is driven in the direction of the shaft 5 due to the weight of the armature 3 (or the resultant force with the return spring).
  • the suction part 15 and the suction part 16 come into contact with each other.
  • the suction portions 15 and 16 are arranged at an angle with respect to the horizontal plane.
  • the electromagnetic actuator 1 is arranged so that the central axis of the armature 3 and the coil axis 4a coincide with each other through the through-hole of the core 2.
  • the electromagnetic actuator 1 can prevent the center axis of the armature 3 from being displaced in the circumferential direction (left and right direction on the paper surface) from the coil shaft 4a even when the coil is not energized.
  • the distortion of the hole can be prevented, the variation in the initial load force opposite to the driving direction in which the armature 3 is driven in the direction of the shaft 5 can be reduced, and the operation variation of the armature 3 can be reduced.
  • the same effect as in the first embodiment can be obtained.
  • a stable initial load force can be applied to the armature 3 when the shaft 5 is delivered without leaking the magnetic flux outside the electromagnetic actuator 1.
  • at least one or more magnetic paths M2 are formed outside the magnetic path M1 that passes through the attracting portions 15 and 16, and therefore, regardless of the presence or absence of the surrounding magnetic material. It is possible to stabilize the initial load force that is opposite to the driving force in which the armature 3 is driven in the direction of the shaft 5, and it is possible to prevent peripheral devices from malfunctioning or malfunctioning, and to reduce the cost by reducing the number of parts.
  • the magnetic gap G1 smaller than the magnetic gap G2, it is possible to reduce the operational variation of the armature 3 due to dimensional tolerances and installation errors, and to reduce the magnetic gap G1 and the magnetic gap.
  • the initial load force can be easily adjusted without increasing the size of the electromagnetic actuator 1.
  • FIG. FIG. 16 is a schematic cross-sectional view of an electromagnetic actuator according to Embodiment 6 of the present invention
  • FIG. 17 is a diagram showing an example of coil current of the electromagnetic actuator according to Embodiment 6 of the present invention.
  • FIG. 16 shows the configuration of the electromagnetic actuator 1 in the first state.
  • the coil current of the electromagnetic actuator 1 in Embodiment 1 is also shown for comparison.
  • the electromagnetic actuator 1 according to the sixth embodiment is an example in which opposing surfaces of the suction portions 15 and 16 facing each other are provided on the coil driving direction side, that is, on the shaft 5 side.
  • the core 2 according to the sixth embodiment includes a core extension portion 10 provided to extend toward the coil shaft 4 a side on the core lid portion 8 side of the core body portion 7.
  • a part of the circumferentially extending portion 11 b in the amateur root portion 11 faces a portion of the shaft direction surface 10 a that is a surface on the shaft 5 side in the core extension portion 10 of the core 2.
  • the portions where the circumferentially extending portion 11 b and the shaft direction surface 10 a of the core extending portion 10 face each other are suction portions 15 and 16. That is, the suction part 15 of the core extension part 10 in the core 2 and the suction part 16 of the circumferential extension part 11b in the armature 3 face each other.
  • the inner side surface 8a of the core lid portion 8 is an amateur facing portion that forms a magnetic path M2 that faces the armature 3 and through which the magnetic flux generated by the coil 4 passes.
  • the suction portion 15 of the core 2 has a coil shaft 4 a side (inner peripheral side) end that is the inner peripheral surface 10 b of the core extension 10, and an outer peripheral end that is coiled from the outer peripheral surface 11 a of the amateur root portion 11 in the armature 3. This is a position through which a broken line 31 extending parallel to the axis 4a passes.
  • the suction portion 16 of the amateur 3 has an outer peripheral end that is the outer peripheral surface 11a of the amateur base 11, and a coil shaft 4a side (inner peripheral side) end that is coiled from the inner peripheral surface 10b of the core extension 10 in the core 2. This is a position through which a broken line 30 extending parallel to the axis 4a passes.
  • the gap between the attraction portion 16 of the armature 3 and the attraction portion 15 of the core 2 is a magnetic gap G1
  • the outer peripheral surface 12a of the armature extension portion 12 in the armature 3 and the core opening end portion 9 in the core 2 is the magnetic gap G2
  • the gap between the shaft direction surface 11d which is the surface on the shaft 5 side of the armature root portion 11 of the armature 3 and the inner surface 8a of the core lid portion 8 in the core 2 is the magnetic gap.
  • G4 is shown.
  • the magnetic gap G1 is smaller than the magnetic gap G2 and the magnetic gap G4.
  • the magnetic gap G2 in the electromagnetic actuator 1 does not change between the first state and the second state
  • the magnetic gap G1 in the first state increases in the second state
  • An example of decrease in two states is shown.
  • the magnetic flux generated by the coil 4 passes around the coil 4.
  • the magnetic path M3 is a magnetic path formed on the side close to the coil 4, and the magnetic path M2 is a magnetic path formed outside the magnetic path M3.
  • the magnetic flux generated by the coil 4 passes through a magnetic path M3 that passes through the attracting portions 15 and 16 provided on the driving direction side and a magnetic path M2 that does not pass through the attracting portions 15 and 16.
  • the value of the coil current supplied to the coil 4 is increased. There is a need.
  • the vertical axis in FIG. 17 is the coil current, and the horizontal axis is the stroke that is the length that the armature 3 moves.
  • a characteristic 37 is a coil current characteristic in the electromagnetic actuator 1 of the sixth embodiment, and a characteristic 36 is a coil current characteristic in the electromagnetic actuator 1 of the first embodiment.
  • P1 is a stroke corresponding to the initial position of the amateur 3 in the first state
  • P2 is a stroke corresponding to the position of the amateur 3 in the second state.
  • the magnetic gap G1 is smaller than the magnetic gap G4
  • the magnetic resistance of the magnetic path M3 is smaller than the magnetic resistance of the magnetic path M2, and when a coil current flows through the coil 4, the magnetic flux passes through the magnetic path M3 having a small magnetic resistance. You will pass in a concentrated manner. Since the current value is small at the initial stage of energization when current begins to flow through the coil 4, the magnetic flux mainly passes through the magnetic path M3. Since the magnetic flux M passes through the magnetic path M3, the attracting portion 16 of the amateur 3 and the attracting portion 15 of the core 2 are both magnetized in the same direction along the direction of the magnetic flux. Are attracted to each other, and a suction force is generated between the suction portion 16 and the suction portion 15.
  • the direction of the suction force by which the movable armature 3 is attracted to the core 2 is opposite to the direction in which the armature 3 is driven in the direction of the shaft 5. That is, a load force opposite to the driving force that drives the armature 3 in the direction of the shaft 5 is applied to the armature 3.
  • the direction of the driving force by which the amateur 3 is driven in the direction of the shaft 5 is the direction from the amateur extending portion 12 of the amateur 3 to the exposed end portion 5a of the shaft 5, and is upward in FIG.
  • the direction of the load force applied to the amateur 3 is the direction from the suction part 16 of the amateur 3 to the suction part 15 of the core 2, and is downward in FIG.
  • the driving force for driving the armature 3 in the direction of the shaft 5 and the load force opposite to this driving force also increase.
  • the suction part width of the suction parts 16 and 15 is smaller than the outer diameter of the armature extension part 12, when the suction parts 15 and 16 are magnetically saturated, the suction force is saturated, and the magnitude of the driving force is the magnitude of the suction force.
  • the armature 3 moves upward in the direction in which the suction part 16 moves away from the suction part 15 of the core 2.
  • the link mechanism 24 has a return spring
  • the armature 3 when the magnitude of the driving force exceeds the magnitude of the resultant force of the suction force and the attractive force of the return spring, the armature 3 has the suction portion 16 as the suction portion 15 of the core 2. Move away from, upward in the figure.
  • the electromagnetic actuator 1 of the sixth embodiment has magnetic attraction portions 15 and 16 that apply a load force by concentrating magnetic flux on the magnetic path M3 formed near the coil 4. Even if it is saturated, the magnetic flux passes through the magnetic path M2, and the driving force is continuously applied to the amateur 3. Therefore, similarly to the electromagnetic actuator 1 of the first embodiment, the electromagnetic actuator 1 of the sixth embodiment can operate the armature 3 from the first state to the second state after the coil current of the coil 4 has sufficiently increased. Thus, the armature 3 can be driven with a large current, that is, the driving force of the armature 3 can be increased and the driving characteristics can be improved.
  • the magnetic gap G1 between the suction portion 16 and the suction portion 15 is made smaller than the magnetic gap between the suction portion 16 and the suction portion 15 in the first embodiment.
  • magnetic resistance of the magnetic path M3 is smaller than that of the magnetic path M1 in the first embodiment, and the magnetic flux passes through the armature 3, that is, the armature extending portion 12 and the armature root portion 11, as compared with the electromagnetic actuator 1 of the first embodiment. Will increase. Since the reverse voltage of the coil 4 with respect to the power supply voltage is proportional to the time change of the magnetic flux passing through the armature 3, the armature 3 is more magnetized at the initial position (first state position) as shown in FIG.
  • the electromagnetic actuator 1 of the sixth embodiment can increase the driving force for driving the armature 3 in the direction in which the shaft 5 is sent out by reducing the magnetic gap G1 between the attraction unit 16 and the attraction unit 15.
  • the driving characteristics of the amateur 3 can be improved.
  • the driving characteristics of the amateur 3 can be improved.
  • the same effect as in the first embodiment is obtained.
  • a stable initial load force can be applied to the armature 3 when the shaft 5 is delivered without leaking the magnetic flux outside the electromagnetic actuator 1.
  • the magnetic gap G1 smaller than the magnetic gap G2 and the magnetic gap G4, as described with reference to FIG. 4 of the first embodiment, it is possible to reduce variation in operation due to dimensional tolerances and installation errors and to reduce the magnetic gap G1.
  • the initial load force can be easily adjusted without increasing the size of the electromagnetic actuator 1.
  • the electromagnetic actuator 1 has shown the example in which the suction part 15 of the core 2 and the suction part 16 of the amateur 3 are not in contact in the first state, the suction part 15 of the core 2 and the suction of the amateur 3 are shown. The same effect can be obtained also when the part 16 is in contact.
  • the magnetic gap of the magnetic path M2 has been described as an example, it is not essential that the magnetic gap of the magnetic path M2 is constant. For example, the magnetic gap of the magnetic path M2 may be reduced as the amateur 3 moves.
  • FIG. 18 and 19 are diagrams showing an electromagnetic actuator and a switching device according to the seventh embodiment.
  • FIG. 18 shows a first state and an open state (OFF state) of the electromagnetic actuator
  • FIG. 19 shows a second state and a closed state (ON state) of the electromagnetic actuator.
  • FIG. 20 is a partial view of the first electromagnetic actuator according to the seventh embodiment of the present invention.
  • FIG. 21 is a partial view of the core and amateur of FIG. 20, and
  • FIG. 22 is a view of the cushioning material of FIG.
  • FIG. 20 is a view showing a part of the core 2 and the amateur 3 in the middle of the opening.
  • the suction portion 16 of the circumferential extension portion 11b in the armature 3 and the suction portion 15 of the core 2 are connected to the suction portion 15 of the core 2 to which the opening impact is applied.
  • a cushioning material 41 shown in FIG. 22 is disposed so as to be interposed therebetween, and an opening impact is applied to the cushioning material.
  • the opening impact is caused when the armature 3 and the core 2 collide when the electromagnetic actuator 1 returns from the second state (see FIG. 19) to the first state (see FIG. 18). It is an impact caused by. 20 and 21, a recess for arranging the buffer material 41 is formed in the suction portion 15 of the core 2.
  • the portion on the coil shaft 4 a side of the cushioning material 41 is between the suction portion 16 of the amateur 3 and the suction portion 15 of the core 2. It is a part of the buffer material 41 arrange
  • the switchgear is generally switched from a closed state (ON state) to an open state (OFF state) using a stored energy such as an open spring.
  • a stored energy such as an open spring.
  • the opening impact is applied to the suction portion 15 of the core 2 and the suction portion 16 of the armature 3 which give the initial load force in the opposite direction.
  • the part 15 may be plastically deformed.
  • 20 and 21 exemplify the case where the core 2 and the armature 3 are prisms, the same applies to the case of a cylinder.
  • the first electromagnetic actuator 1 according to the seventh embodiment arranges the buffer material 41 in the suction portion 15 of the core 2 to which the opening shock is applied, and applies the opening shock to the buffer material. It has a configuration. As a result, the first electromagnetic actuator 1 according to the seventh embodiment can prevent plastic deformation of the suction portion 15 of the core 2 that gives an initial load force in the opposite direction, and can suppress variations in the initial load force. The drive characteristics do not deteriorate.
  • the buffer material 41 a non-magnetic metal such as stainless steel that is relatively hard to be plastically deformed or an elastic member such as rubber or resin that can absorb an impact can be used.
  • the buffer material 41 a non-magnetic metal such as stainless steel that is relatively hard to be plastically deformed or an elastic member such as rubber or resin that can absorb an impact can be used.
  • a method of arranging the buffer material 41 in the core 2 the case of FIG.
  • FIG. 23 is a partial view of a second electromagnetic actuator according to the seventh embodiment of the present invention
  • FIG. 24 is a view of the cushioning material of FIG.
  • the second electromagnetic actuator 1 of the seventh embodiment shown in FIG. 23 is an example in which the area of the suction portion 15 of the core 2 is made smaller than that of the first electromagnetic actuator 1 of the seventh embodiment shown in FIG. .
  • the magnetic gap between the attracting portion 15 of the core 2 and the attracting portion 16 of the amateur 3 that gives an initial load force in the opposite direction can be adjusted, and the magnitude of the reverse initial load force can be adjusted. Can be adjusted easily. Therefore, it is possible to stabilize the drive characteristics of the electromagnetic actuator 1 that change in accordance with component variations and assembly variations by adjusting the initial load force in the opposite direction by changing the thickness of the buffer material 41.
  • FIG. 25 is a partial view of a third electromagnetic actuator according to Embodiment 7 of the present invention
  • FIG. 26 is a view showing the cushioning material of FIG. 27 is a partial view of a fourth electromagnetic actuator according to the seventh embodiment of the present invention
  • FIG. 28 is a view of the cushioning material of FIG.
  • the electromagnetic actuator 1 according to the seventh embodiment shown in FIGS. 25 and 27 includes at least a part of the suction part 16 of the circumferential extension 11b in the amateur 3 and the suction part 16 of the amateur 3 to which the opening impact is applied.
  • a buffer material 41 is arranged so as to be interposed between the suction portion 15 of the core 2 and a contact opening shock is applied to the buffer material.
  • suction part 16 of the amateur 3 is formed. Since the portion of the circumferentially extending portion 11b in the armature 3 facing the core 2 is the suction portion 16, the portion of the cushioning material 41 opposite to the coil shaft 4a (portion on the outer peripheral side) is the suction portion 16 of the armature 3 and the core 2 It is a part of the buffer material 41 arrange
  • the electromagnetic actuator 1 according to the seventh embodiment includes a first magnetic path M1 through which a magnetic flux passes through an attracting portion 15 provided inside the core 2, and an armature 3 on the outside of the first magnetic path M1 and a magnetic flux.
  • the second magnetic path M2 through which the armature passes is formed, so that a stable initial load force can be applied to the armature 3 when the armature 3 is driven without leaking the magnetic flux outside the electromagnetic actuator 1.
  • the electromagnetic actuator 1 according to the seventh embodiment includes the buffer material 41 between the suction portions 15 of the core 2 or the suction portion 16 of the armature 3, even if the rigidity of the suction portion 15 of the core 2 is small, the core 2.
  • the plastic deformation of the suction portion 15 can be prevented, and variations in the initial load force can be suppressed.
  • the electromagnetic actuator 1 of Embodiment 7 can maintain the drive characteristic of an electromagnetic actuator with favorable. That is, the electromagnetic actuator 1 of Embodiment 7 can extend the product life.
  • the opening / closing device 50 according to the seventh embodiment includes a first magnetic path M1 through which the magnetic flux passes through the attracting portion 15 provided inside the core 2, and an armature 3 that faces the armature 3 outside the first magnetic path M1. Since the electromagnetic actuator 1 that forms the second magnetic path M2 through which the armature passes is provided, a stable initial load force is applied to the armature 3 when the armature 3 is driven without leaking the magnetic flux outside the electromagnetic actuator 1. Thus, the closing operation for closing the current interrupting portion 21 can be reliably performed.
  • the opening / closing device 50 according to the seventh embodiment includes the buffer material 41 between the suction part 15 of the core 2 or the suction part 16 of the amateur 3 in the electromagnetic actuator 1.
  • the opening / closing device 50 according to the seventh embodiment can maintain the drive characteristics of the electromagnetic actuator in good condition, and can reliably perform the closing operation for closing the current interrupting unit 21 for a long period of time.
  • FIG. 29 and 30 are diagrams illustrating coil current control of the electromagnetic actuator according to the eighth embodiment of the present invention.
  • FIG. 29 is a diagram for explaining the current value control of the coil current
  • FIG. 30 is a diagram for explaining the timing of the coil current value control.
  • 31, FIG. 32 and FIG. 33 are diagrams showing examples of the current supply device according to the eighth embodiment of the present invention.
  • 34 and 35 are schematic cross-sectional views of the electromagnetic actuator according to the eighth embodiment of the present invention.
  • FIG. 34 shows the second state of the electromagnetic actuator 1, that is, the closing state of the switching device 50 (see FIG. 2).
  • FIG. 35 shows the first state of the electromagnetic actuator 1, that is, the opening state of the switching device 50 (see FIG. 1). ).
  • the basic configuration of the electromagnetic actuator 1 and the opening / closing device 50 according to the eighth embodiment is the same as FIGS. 1 to 4 showing the first embodiment.
  • the electromagnetic actuator 1 of the eighth embodiment differs from the electromagnetic actuator 1 of the first embodiment in that it includes a current supply device 43 that performs coil current control that reduces or prevents bounce of the armature 3 due to the opening impact.
  • the electromagnetic actuator 1 closes the contacts (movable contact 22 and fixed contact 23) of the current interrupting part 21 via the link mechanism 24.
  • the electromagnetic actuator 1 when the current interrupting portion 21 of the switchgear 50 is opened, the opening impact caused by the collision between the armature 3 and the core 2 is applied to the armature 3, and the armature 3 is shown in FIGS. 34 and 35. Bounce upwards.
  • the bounce of the amateur 3 moves the movable contact 22 through the link mechanism 24 in a direction (downward in the drawing in FIG. 1) that closes the contact (movable contact 22, fixed contact 23) of the current interrupting portion 21.
  • the separation distance between them that is, the separation distance between the movable contact 22 and the fixed contact 23 is reduced, and the breaking performance of the switchgear 50 is lowered.
  • FIG. 29 shows an example of drive characteristics of the electromagnetic actuator 1 at the opening position (see FIG. 1) in the first embodiment.
  • the vertical axis represents the applied force
  • the horizontal axis represents the coil current.
  • the coil current is supplied from the coil power supply 45 or another coil power supply.
  • the magnetic flux passing through the magnetic path M1 is larger than the magnetic flux passing through the magnetic path M2.
  • the magnetic gap that provides the attractive force in the opening direction (downward direction in FIG. 1) in the magnetic path M1 is small. It is possible to make the output of the actuator 1 negative (downward in FIG. 1).
  • a certain coil current for example, a coil current having a current value Ic2 is applied so that the negative applying force shown in FIG. 29 is generated immediately before the armature 3 is bounced when an opening shock is applied to the armature 3.
  • an attractive force in the opening direction of the opening / closing device 50 (downward in the drawing in FIG. 1) is generated in the amateur 3, and it is possible to reduce bounce of the amateur 3 due to the opening impact.
  • the electromagnetic actuator 1 according to the eighth embodiment can suppress the decrease in the separation distance between the contacts of the current interrupting portion 21, that is, the separation distance between the movable contact 22 and the fixed contact 23, and the current interruption of the switching device 50. Performance degradation can be prevented.
  • FIG. 30 shows the stroke characteristics of the armature 3 when the contact of the current interrupting part 21 is changed from the closed state to the open state.
  • the vertical axis is an amateur stroke
  • the horizontal axis is time. The stroke value of the armature 3 shown in FIG.
  • the electromagnetic actuator 1 of the eighth embodiment includes a coil power supply 45 having a timer 46, for example (FIG. 31).
  • the coil power supply 45 energizes a certain coil current, for example, a coil current having a current value Ic2, when the time counted by the timer after the opening operation of the current interrupting unit 21 is started becomes T1.
  • the coil power supply 45 is the current supply device 43 described above.
  • the second energization method As the second energization method, as shown in FIG. 32, the armature stroke shown in FIG. 30 is measured using a stroke detector 47 such as a laser displacement meter or a potentiometer, and the final opening position (maximum opening) of the current interrupting unit 21 is measured. Just before the stroke value St1 that is the pole position), a control to energize a certain coil current, for example, the coil current having the current value Ic2, may be performed.
  • a current supply device 43 that executes the second energization method shown in FIG. 32 is an example including a coil power supply 45 and a stroke detector 47.
  • a change in acceleration is measured with an acceleration sensor 48 or the like attached to the core 2 or the amateur 3, and an inflection that occurs at the moment when the opening impact is applied to the amateur 3.
  • a control method of energizing a certain coil current for example, a coil current having a current value Ic2 is also conceivable.
  • a current supply device 43 that executes the third energization method shown in FIG. 33 is an example including a coil power supply 45 and an acceleration sensor 48. Still other methods are possible.
  • the switch 51 is forcibly turned on (ON) by the stroke of the armature 3, and a certain current, for example, a coil current having a current value Ic2 is energized to the coil. Configuration is also conceivable.
  • the electromagnetic actuator 1 includes, for example, a mechanically operated switch 51 and a DC power source 52 that energizes a certain coil current, for example, a coil current having a current value Ic2. ing.
  • the switch 51 is disposed at a position where the switch 51 is turned on immediately before or when the armature 3 collides with the core 2. Once the switch 51 is turned on, it remains on even if the amateur 3 bounces. The switch 51 is turned off when the current interrupting unit 21 is switched to the closed state, that is, the switching device 50 is closed. Note that the DC power supply 52 stops energization of the current when the current interrupting unit 21 is completely opened.
  • a current supply device 43 that executes the fourth energization method shown in FIGS. 34 and 35 is an example including a switch 51 and a DC power supply 52.
  • 34 and 35 show cross-sectional views of the electromagnetic actuator 1, but hatching is omitted in the cross-section so as not to make it difficult to see the lead lines and the like.
  • the outer peripheral lines that are originally visible from the cross section of the left and right coils 4 are omitted so that the lead lines and the like are not easily seen.
  • the electromagnetic actuator 1 according to the eighth embodiment when the opening / closing device 50 is opened, a negative applying force shown in FIG. 29 is generated immediately before the opening impact is applied to the armature 3 and the armature 3 bounces. Since a constant coil current, for example, a coil current having a current value Ic2 is applied, the armature 3 generates an attractive force in the opening direction of the switchgear 50 (downward in the drawing in FIG. 1), and the armature 3 due to the opening shock. Bounce can be reduced. As a result, the electromagnetic actuator 1 according to the eighth embodiment can suppress the decrease in the separation distance between the contacts of the current interrupting portion 21, that is, the separation distance between the movable contact 22 and the fixed contact 23, and the current interruption of the switching device 50. Performance degradation can be prevented.
  • the negative applying force shown in FIG. 29 is applied immediately before the armature 3 bounces when an opening impact is applied to the armature 3. Since a certain coil current to be generated, for example, a coil current having a current value Ic2, is applied, bounce of the armature 3 due to the opening impact can be reduced, and the separation distance between the contacts of the current interrupting portion 21, that is, the movable contact 22 And the contact distance between the fixed contact 23 can be suppressed, and the current interruption performance of the switching device 50 can be prevented from being lowered.
  • a certain coil current to be generated for example, a coil current having a current value Ic2
  • the switch 51 is not limited to a mechanically operated switch pushed by the amateur 3, and may be another switch. For example, it may be turned on with a trigger signal indicating that signals from the stroke detector 47 and the acceleration sensor 48 have exceeded a predetermined threshold.
  • the coil current control method for reducing the bounce of the armature 3 due to the opening impact shown in the eighth embodiment can also be applied to the electromagnetic actuator 1 and the switchgear 50 according to the second to seventh embodiments.
  • Electromagnetic actuator 2 ... Core, 3 ... Amateur, 4 ... Coil, 4a ... Coil shaft, 6a ... Nonmagnetic material, 7 ... Core body part, 8 ... Core lid part, 8a ... Inner side surface, 9 ... Core open end 9a ... inner peripheral surface, 9b ... inner side surface, 9c ... projection, 10 ... core extension, 11 ... amateur root, 11b ... circumferential extension, 11c ... projection, 12 ... amateur extension, 14 ... Opening, 15 ... suction part, 21 ... current interrupting part, 22 ... movable contact, 23 ... fixed contact, 24 ... link mechanism, 41 ... buffer material, 43 ... current supply device, 50 ... switchgear, G1, G2, G4 ... Magnetic gap, L1 ... Accumulation tolerance, M1, M2, M3 ... Magnetic path

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnets (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

The objective of the invention is to obtain an electromagnetic actuator capable of, when driving an armature, applying a stable initial loading force onto the armature without leaking magnetic flux to the exterior. This electromagnetic actuator (1) comprises: a root base portion (armature root base portion (11)); an armature (3) having an extension portion (armature extension portion (12)) whereof the external diameter is smaller than the root base portion (11) and provided so as to extend from the root base portion (11) in the direction of a coil axis (4a) of a coil (4); and a core (2), which is a magnetic body forming together with the armature (3) a magnetic path wherethrough a magnetic flux generated by the coil (4) passes. The core (2) has: on the inner side thereof, an attraction portion (15) generating an attractive force between the core and a peripherally extending portion (11b) due to the passage of magnetic flux therethrough; and, facing the armature (3), an armature-facing portion (inner peripheral surface (9a)) forming a second magnetic path (M2) wherethrough magnetic flux passes, on the outer side of a first magnetic path (M1) wherein magnetic flux passes through the suction portion (15).

Description

電磁アクチュエータ及び開閉装置Electromagnetic actuator and switchgear
 本発明は、電磁操作型開閉装置などの開閉操作に用いられる電磁アクチュエータに関するものである。 The present invention relates to an electromagnetic actuator used for opening and closing operations such as an electromagnetically operated switching device.
 電磁操作型開閉装置などでは、電流遮断部を開路状態にしたり、閉路状態にしたりする開閉操作において、電磁アクチュエータが使用されている。特許文献1には、電流の通電及び遮断を行う電流遮断部に相当する真空遮断器を、リンク機構を介して開閉操作する遮断器投入用の電磁石装置が記載されている。 In an electromagnetically operated switchgear or the like, an electromagnetic actuator is used in an opening / closing operation that opens or closes the current interrupting portion. Patent Document 1 describes an electromagnet device for closing a circuit breaker that opens and closes a vacuum circuit breaker corresponding to a current interrupting unit that conducts and interrupts current via a link mechanism.
 特許文献1の図7に記載された投入用の電磁石装置は、ソレノイドコイル、ソレノイドコイルの軸方向に往復動自在な磁性体のアマチュア(特許文献1のプランジャー3)、ソレノイドコイルの周囲に配置され磁束の経路となるコア(特許文献1のヨーク5)、アマチュアの下面を支持する磁性体の磁性支持板、磁性支持板とコアの下端部(特許文献1の下端板5C)とを接続する磁性体の磁性支柱を備えた電磁アクチュエータである。また、コアの下端部とアマチュアとの間には、ソレノイドコイルの軸方向の上下に非磁性体のスペーサで挟まれた空隙が形成されている。 The electromagnetic device for insertion described in FIG. 7 of Patent Document 1 is arranged around a solenoid coil, an armature of a magnetic material that can reciprocate in the axial direction of the solenoid coil (plunger 3 of Patent Document 1), and a solenoid coil. The core (the yoke 5 of Patent Document 1) serving as a magnetic flux path, the magnetic support plate of the magnetic material that supports the lower surface of the armature, and the magnetic support plate and the lower end portion of the core (the lower end plate 5C of Patent Document 1) are connected. It is an electromagnetic actuator provided with the magnetic support | pillar of a magnetic body. Further, a gap sandwiched between non-magnetic spacers is formed between the lower end portion of the core and the amateur in the axial direction of the solenoid coil.
 特許文献1に記載された電磁アクチュエータは、遮断器を投入する際にソレノイドコイルに電流を流すことで、アマチュアを磁性支持板から離脱させて上方向に移動させる。ソレノイドコイルに電圧を印加して電流を流すと、通電初期における電流値の小さいときは、非磁性体のスペーサ及び空隙があるため、アマチュアを通る磁束は主として磁性支持板および磁性支柱を通して流れる。この磁束によってアマチュアは、磁性支持板に吸引される。この吸引力は、アマチュアを駆動する駆動力を打ち消す方向に働く力であり、アマチュア駆動の初期に負荷として働く初期負荷力である。時間の経過とともにソレノイドコイルの電流が増大すると、磁性支持板は比較的薄い板で構成されているので直ぐに磁気飽和に達し、アマチュアと磁性支持板との間の吸引力はほぼ一定に抑えられる。これに対して、アマチュアから空隙を介してコアの下端部に流入する磁束は、ソレノイドコイルの電流値の増大とともに大きくなるため、アマチュアを磁性支持板から離脱させて上方向に引き上げる駆動力は電流値の増大とともに増加する。このアマチュアの上方向の駆動力がアマチュアと磁性支持板との間の吸引力を越えると、アマチュアは磁性支持板から離脱して上方向に移動し、アマチュアの上面に固定されたシャフト(ロッド)が送出されて、この電磁アクチュエータは遮断器を投入する。 The electromagnetic actuator described in Patent Document 1 causes the armature to move away from the magnetic support plate by causing a current to flow through the solenoid coil when the circuit breaker is turned on. When a current is applied by applying a voltage to the solenoid coil, the magnetic flux passing through the armature flows mainly through the magnetic support plate and the magnetic column because there are nonmagnetic spacers and air gaps when the current value at the initial energization is small. The amateur is attracted to the magnetic support plate by this magnetic flux. This suction force is a force that works in a direction that cancels the driving force that drives the amateur, and is an initial load force that acts as a load in the early stage of amateur driving. When the current of the solenoid coil increases with the passage of time, the magnetic support plate is composed of a relatively thin plate, so that magnetic saturation is reached immediately, and the attractive force between the amateur and the magnetic support plate is kept almost constant. On the other hand, the magnetic flux flowing from the amateur through the air gap into the lower end of the core increases as the current value of the solenoid coil increases, so the driving force that lifts the amateur away from the magnetic support plate and pulls it upward is the current. Increases with increasing value. When the upward driving force of the amateur exceeds the attractive force between the amateur and the magnetic support plate, the amateur moves away from the magnetic support plate and moves upward, and the shaft (rod) fixed to the upper surface of the amateur Is delivered and the electromagnetic actuator turns on the circuit breaker.
 このような構成にすることで、特許文献1に記載された電磁アクチュエータは、磁性支持板を設けない場合に比べて、コイル電流が十分大きくなるまで、アマチュアと磁性支持板間に生じる吸引力によってアマチュアを保持できるようにしていた。したがって、特許文献1に記載された電磁アクチュエータは、コイル電流が十分大きなってからアマチュアを移動させるので、アマチュアの駆動力を増加することができ、アマチュアを所定の位置まで確実に移動させることが可能となる。 By adopting such a configuration, the electromagnetic actuator described in Patent Document 1 has an attractive force generated between the armature and the magnetic support plate until the coil current becomes sufficiently large as compared with the case where the magnetic support plate is not provided. I was able to hold an amateur. Therefore, since the electromagnetic actuator described in Patent Document 1 moves the armature after the coil current is sufficiently large, the driving force of the armature can be increased, and the armature can be reliably moved to a predetermined position. It becomes possible.
特開平7-37460号公報(段落0002~0003、図7)Japanese Unexamined Patent Publication No. 7-37460 (paragraphs 0002 to 0003, FIG. 7)
 前述の電磁アクチュエータでは、アマチュアとアマチュアの下側に配置された磁性支持板との間に発生する吸引力によって、このアマチュアの駆動力を打ち消す方向に働く初期負荷力を付与している。しかし、初期負荷力を生じさせる磁気回路が電磁アクチュエータの外部に面しているので、この磁気回路が磁気飽和すると、電磁アクチュエータの外部には漏れ磁束が生じる。このため、特許文献1に記載された電磁アクチュエータは、周辺に磁性体を含む機器あるいは電磁アクチュエータの締結部材などの治具が配置されると、周辺の磁性体から磁性支持板を経由して想定以上の磁束がアマチュアに流れることがあり、アマチュアを駆動する駆動力と逆向きの初期負荷力が増大しアマチュアを駆動できない。すなわち、特許文献1に記載された電磁アクチュエータは、磁気回路が磁気飽和すると、電磁アクチュエータの外部に磁束が漏れるので、周辺に磁性体が配置された場合にアマチュアに付与される初期負荷力が変動してしまい、電磁アクチュエータの駆動特性が悪化する問題がある。 In the electromagnetic actuator described above, an initial load force acting in a direction to cancel out the driving force of the amateur is applied by an attractive force generated between the amateur and a magnetic support plate disposed below the amateur. However, since the magnetic circuit that generates the initial load force faces the outside of the electromagnetic actuator, when this magnetic circuit is magnetically saturated, leakage magnetic flux is generated outside the electromagnetic actuator. For this reason, the electromagnetic actuator described in Patent Document 1 is assumed from a peripheral magnetic body via a magnetic support plate when a device including a magnetic body or a jig such as a fastening member of the electromagnetic actuator is disposed around the electromagnetic actuator. The above magnetic flux may flow to the amateur, and the initial load force in the direction opposite to the driving force for driving the amateur increases, so that the amateur cannot be driven. That is, in the electromagnetic actuator described in Patent Document 1, when the magnetic circuit is magnetically saturated, the magnetic flux leaks to the outside of the electromagnetic actuator, so that the initial load force applied to the amateur varies when a magnetic body is disposed around the electromagnetic actuator. As a result, there is a problem that the drive characteristics of the electromagnetic actuator deteriorate.
 特許文献1に記載された電磁アクチュエータは、初期負荷力を生じさせる磁気回路が電磁アクチュエータの外部に面しているので、この磁気回路が磁気飽和すると、電磁アクチュエータの外部には漏れ磁束が生じるので、周辺に磁性体が配置された場合には、この磁性体を含む周辺機器の故障または誤動作を招き、また、磁性を含んでいない周辺機器であっても強力な漏れ磁束により故障または誤動作が生じる原因となる。 In the electromagnetic actuator described in Patent Document 1, the magnetic circuit that generates the initial load force faces the outside of the electromagnetic actuator. When this magnetic circuit is magnetically saturated, a leakage magnetic flux is generated outside the electromagnetic actuator. If a magnetic material is disposed around the peripheral device, it may cause a failure or malfunction of a peripheral device including the magnetic material, and even a peripheral device that does not include magnetism may cause a failure or malfunction due to strong magnetic flux leakage. Cause.
 本発明は、上述の課題を解決するものであり、電磁アクチュエータの外部に磁束を漏らすことなく、アマチュアを駆動する際に安定した初期負荷力をアマチュアに付与できる電磁アクチュエータを得ることを目的とする。 The present invention solves the above-described problems, and an object of the present invention is to obtain an electromagnetic actuator that can give a stable initial load force to an amateur when driving the amateur without leaking magnetic flux outside the electromagnetic actuator. .
 本発明の電磁アクチュエータは、コイルの内部に可動自在に配置された磁性体のアマチュアを、コイルにより発生させた磁束により駆動する。電磁アクチュエータは、コイルと、根元部と、根元部からコイルのコイル軸の方向に延伸して設けられると共に根元部よりも外径の小さな延伸部を有するアマチュアと、コイルの外側に配置されており、アマチュアと共にコイルにより発生された磁束が通過する磁路を形成する磁性体のコアと、を備え、アマチュアは、延伸部の外周からコイル軸に垂直な周方向に延伸した周方向拡張部を有し、コアは、アマチュアの周方向拡張部に対向して設けられると共に、磁束が通過することにより周方向拡張部との間に吸引力を発生させる吸引部、を当該コアの内側に有し、吸引部を磁束が通過する第一の磁路の外側に、アマチュアに対向すると共に磁束が通過する第二の磁路を形成するアマチュア対向部を有することを特徴とする。 The electromagnetic actuator of the present invention drives a magnetic armature that is movably disposed inside a coil by magnetic flux generated by the coil. The electromagnetic actuator is disposed on the outside of the coil, the root portion, the armature that extends from the root portion in the direction of the coil axis of the coil and has an extending portion having a smaller outer diameter than the root portion, and the coil. A magnetic core that forms a magnetic path through which the magnetic flux generated by the coil passes with the armature, and the armature has a circumferentially extending portion that extends in the circumferential direction perpendicular to the coil axis from the outer periphery of the extending portion. The core is provided opposite to the circumferential extension portion of the amateur, and has a suction portion that generates an attractive force between the core and the circumferential extension portion when the magnetic flux passes, It has the armature opposing part which forms the 2nd magnetic path which opposes an amateur and passes a magnetic flux outside the 1st magnetic path through which a magnetic flux passes an attraction | suction part.
 本発明の電磁アクチュエータは、コアの内側に設けられた吸引部を磁束が通過する第一の磁路と、第一の磁路の外側にアマチュアに対向すると共に磁束が通過する第二の磁路を形成するので、電磁アクチュエータの外部に磁束を漏らすことなく、アマチュアを駆動する際に安定した初期負荷力をアマチュアに付与することができる。 The electromagnetic actuator of the present invention includes a first magnetic path through which a magnetic flux passes through an attraction portion provided inside a core, and a second magnetic path through which the magnetic flux passes while facing the armature outside the first magnetic path. Therefore, a stable initial load force can be applied to the armature when driving the armature without leaking the magnetic flux to the outside of the electromagnetic actuator.
本発明の実施の形態1による電磁アクチュエータ及び開閉装置を示す図である。It is a figure which shows the electromagnetic actuator and switchgear by Embodiment 1 of this invention. 本発明の実施の形態1による電磁アクチュエータ及び開閉装置を示す図である。It is a figure which shows the electromagnetic actuator and switchgear by Embodiment 1 of this invention. 本発明の実施の形態1による電磁アクチュエータの概略断面図である。It is a schematic sectional drawing of the electromagnetic actuator by Embodiment 1 of this invention. 図3の電磁アクチュエータの要部を示す概略断面図である。It is a schematic sectional drawing which shows the principal part of the electromagnetic actuator of FIG. 本発明の実施の形態2による電磁アクチュエータの概略断面図である。It is a schematic sectional drawing of the electromagnetic actuator by Embodiment 2 of this invention. 図5の電磁アクチュエータの要部を示す概略断面図である。It is a schematic sectional drawing which shows the principal part of the electromagnetic actuator of FIG. 本発明の実施の形態2による他の電磁アクチュエータの概略断面図である。It is a schematic sectional drawing of the other electromagnetic actuator by Embodiment 2 of this invention. 図7の電磁アクチュエータの要部を示す概略断面図である。It is a schematic sectional drawing which shows the principal part of the electromagnetic actuator of FIG. 本発明の実施の形態2による電磁アクチュエータの付与力の例を示す図である。It is a figure which shows the example of the provision force of the electromagnetic actuator by Embodiment 2 of this invention. 本発明の実施の形態3による電磁アクチュエータの概略断面図である。It is a schematic sectional drawing of the electromagnetic actuator by Embodiment 3 of this invention. 図10の電磁アクチュエータの要部を示す概略断面図である。It is a schematic sectional drawing which shows the principal part of the electromagnetic actuator of FIG. 本発明の実施の形態4による電磁アクチュエータの概略断面図である。It is a schematic sectional drawing of the electromagnetic actuator by Embodiment 4 of this invention. 本発明の実施の形態4による他の電磁アクチュエータの概略断面図である。It is a schematic sectional drawing of the other electromagnetic actuator by Embodiment 4 of this invention. 本発明の実施の形態5による電磁アクチュエータの概略断面図である。It is a schematic sectional drawing of the electromagnetic actuator by Embodiment 5 of this invention. 本発明の実施の形態5による他の電磁アクチュエータの概略断面図である。It is a schematic sectional drawing of the other electromagnetic actuator by Embodiment 5 of this invention. 本発明の実施の形態6による電磁アクチュエータの概略断面図である。It is a schematic sectional drawing of the electromagnetic actuator by Embodiment 6 of this invention. 本発明の実施の形態6による電磁アクチュエータのコイル電流の例を示す図である。It is a figure which shows the example of the coil current of the electromagnetic actuator by Embodiment 6 of this invention. 本発明の実施の形態7による電磁アクチュエータ及び開閉装置を示す図である。It is a figure which shows the electromagnetic actuator and switchgear by Embodiment 7 of this invention. 本発明の実施の形態7による電磁アクチュエータ及び開閉装置を示す図である。It is a figure which shows the electromagnetic actuator and switchgear by Embodiment 7 of this invention. 本発明の実施の形態7による第一の電磁アクチュエータの部分図である。It is a fragmentary view of the 1st electromagnetic actuator by Embodiment 7 of this invention. 図20のコア及びアマチュアの部分図である。FIG. 21 is a partial view of the core and amateur of FIG. 20. 図20の緩衝材の図である。It is a figure of the shock absorbing material of FIG. 本発明の実施の形態7による第二の電磁アクチュエータの部分図である。It is a fragmentary figure of the 2nd electromagnetic actuator by Embodiment 7 of this invention. 図23の緩衝材の図である。It is a figure of the shock absorbing material of FIG. 本発明の実施の形態7による第三の電磁アクチュエータの部分図である。It is a fragmentary view of the 3rd electromagnetic actuator by Embodiment 7 of this invention. 図25の緩衝材を示す図である。It is a figure which shows the shock absorbing material of FIG. 本発明の実施の形態7による第四の電磁アクチュエータの部分図である。It is a fragmentary figure of the 4th electromagnetic actuator by Embodiment 7 of this invention. 図27の緩衝材の図である。It is a figure of the shock absorbing material of FIG. 本発明の実施の形態8の電磁アクチュエータのコイル電流制御を説明する図である。It is a figure explaining the coil current control of the electromagnetic actuator of Embodiment 8 of this invention. 本発明の実施の形態8の電磁アクチュエータのコイル電流制御を説明する図である。It is a figure explaining the coil current control of the electromagnetic actuator of Embodiment 8 of this invention. 本発明の実施の形態8による電流供給装置の例を示す図である。It is a figure which shows the example of the electric current supply apparatus by Embodiment 8 of this invention. 本発明の実施の形態8による電流供給装置の例を示す図である。It is a figure which shows the example of the electric current supply apparatus by Embodiment 8 of this invention. 本発明の実施の形態8による電流供給装置の例を示す図である。It is a figure which shows the example of the electric current supply apparatus by Embodiment 8 of this invention. 本発明の実施の形態8による電磁アクチュエータの概略断面図である。It is a schematic sectional drawing of the electromagnetic actuator by Embodiment 8 of this invention. 本発明の実施の形態8による電磁アクチュエータの概略断面図である。It is a schematic sectional drawing of the electromagnetic actuator by Embodiment 8 of this invention.
実施の形態1.
 図1及び図2は、本発明の実施の形態1による電磁アクチュエータ及び開閉装置を示す図である。図1は電磁アクチュエータの第一状態を示しており、図2は電磁アクチュエータの第二状態を示している。図3は本発明の実施の形態1による電磁アクチュエータの概略断面図であり、図4は図3の電磁アクチュエータの要部を示す概略断面図である。電磁アクチュエータ1は、磁性体のコア2と、コア2の内部に可動自在に設けられた磁性体のアマチュア3と、コア2とアマチュア3により形成された磁路に磁束を発生させるコイル4と、アマチュア3に固定されると共にコア2を貫通するシャフト5と、コア2とアマチュア3との間に、コイル4が発生させた磁束が通過することにより互いに吸引力を発生させて、アマチュア3をシャフト5が送出される方向に駆動する駆動力を打ち消す方向に働く負荷力を付与する吸引部15、16を備える。コア2は、アマチュア3と共にコイル4により発生された磁束が通過する磁路を形成する。開閉装置50は、電磁アクチュエータ1と、リンク機構24と、電流遮断部21を備える。シャフト5はリンク機構24を介して開閉装置50の電流遮断部21に接続されている。電流遮断部21は、内部に可動接点22と固定接点23を備えている。開閉装置50は、電流遮断部21の可動接点22をリンク機構24を介して、固定接点23に接続するように移動させて、電流遮断部21を閉路状態にする閉路操作を行う。シャフト5は、延伸方向に通過する中心軸がコイル4の開口中心を通過するコイル軸4aと一致するように配置されている。なお、アマチュア3がシャフト5の露出端部5aへ移動し、吸引部15と吸引部16との磁気ギャップが増大すると、吸引部15と吸引部16との間の吸引力は急激に小さくなり、アマチュア3をシャフト5が送出される方向に駆動する駆動力を打ち消す方向に働く負荷力は、アマチュア3の駆動初期に発生するので、適宜、初期負荷力と称する。アマチュア3がシャフト5の露出端部5aへ移動する方向は、アマチュア3が第一状態から第二状態になる方向でもあるので、アマチュア3をシャフト5が送出される方向に駆動する駆動力は、アマチュア3を第一状態から第二状態に駆動する駆動力である。
Embodiment 1 FIG.
1 and 2 are diagrams showing an electromagnetic actuator and a switchgear according to Embodiment 1 of the present invention. FIG. 1 shows a first state of the electromagnetic actuator, and FIG. 2 shows a second state of the electromagnetic actuator. FIG. 3 is a schematic cross-sectional view of the electromagnetic actuator according to Embodiment 1 of the present invention, and FIG. 4 is a schematic cross-sectional view showing the main part of the electromagnetic actuator of FIG. The electromagnetic actuator 1 includes a magnetic core 2, a magnetic armature 3 movably provided inside the core 2, a coil 4 that generates a magnetic flux in a magnetic path formed by the core 2 and the armature 3, and A magnetic force generated by the coil 4 passes between the shaft 5 fixed to the amateur 3 and penetrating the core 2 and between the core 2 and the armature 3 to generate an attraction force. There are provided suction portions 15 and 16 for applying a load force acting in a direction to cancel the drive force for driving in the direction in which 5 is delivered. The core 2 and the armature 3 form a magnetic path through which the magnetic flux generated by the coil 4 passes. The opening / closing device 50 includes the electromagnetic actuator 1, the link mechanism 24, and the current interrupting unit 21. The shaft 5 is connected to the current interrupting part 21 of the switching device 50 via the link mechanism 24. The current interrupting unit 21 includes a movable contact 22 and a fixed contact 23 inside. The switchgear 50 moves the movable contact 22 of the current interrupting part 21 so as to be connected to the fixed contact 23 via the link mechanism 24, and performs a closing operation to bring the current interrupting part 21 into a closed state. The shaft 5 is disposed so that the central axis passing in the extending direction coincides with the coil axis 4 a passing through the opening center of the coil 4. When the armature 3 moves to the exposed end 5a of the shaft 5 and the magnetic gap between the suction part 15 and the suction part 16 increases, the attractive force between the suction part 15 and the suction part 16 decreases rapidly, The load force that works in the direction that cancels the drive force that drives the amateur 3 in the direction in which the shaft 5 is delivered is generated in the early stage of driving of the amateur 3, and is therefore referred to as the initial load force as appropriate. The direction in which the amateur 3 moves to the exposed end 5a of the shaft 5 is also the direction in which the amateur 3 changes from the first state to the second state, so the driving force that drives the amateur 3 in the direction in which the shaft 5 is delivered is This is a driving force for driving the amateur 3 from the first state to the second state.
 電磁アクチュエータ1が図1に示す第一状態の場合、すなわちシャフト5の露出端部5aがコア2に対して近づいている場合は、電流遮断部21の可動接点22及び固定接点23は互いに開離している。また、電磁アクチュエータ1が図2に示す第二状態の場合、すなわちシャフト5の露出端部5aがコア2に対して離れている場合は、電流遮断部21の可動接点22及び固定接点23は互いに接触している。図1及び図2において、電磁アクチュエータ1は、開閉装置50の電流遮断部21を開路状態にしたり、閉路状態にしたりする開閉操作を行う構成例を示した。図1及び図2において、電磁アクチュエータ1及び電流遮断部21の断面図を示しているが、引き出し線等が見えにくくならないように、断面においてハッチングを省略した。図3及び図4においても、電磁アクチュエータ1の断面図を示しているが、引き出し線等が見えにくくならないように、断面においてハッチングを省略した。また、図1から図4において、左右のコイル4の断面から紙面奥側に本来見える外周線(シャフト5の移動方向に垂直な方向の外周線)も、引き出し線等が見えにくくならないように、省略した。他の断面図においても、同様に断面においてハッチングを省略し、コイル4におけるシャフト5の移動方向に垂直な方向の外周線を省略した。 When the electromagnetic actuator 1 is in the first state shown in FIG. 1, that is, when the exposed end portion 5a of the shaft 5 is approaching the core 2, the movable contact 22 and the fixed contact 23 of the current interrupting portion 21 are separated from each other. ing. When the electromagnetic actuator 1 is in the second state shown in FIG. 2, that is, when the exposed end 5 a of the shaft 5 is away from the core 2, the movable contact 22 and the fixed contact 23 of the current interrupter 21 are mutually connected. In contact. 1 and 2, the electromagnetic actuator 1 shows a configuration example in which an opening / closing operation for opening or closing the current interrupting portion 21 of the opening / closing device 50 is performed. 1 and 2, cross-sectional views of the electromagnetic actuator 1 and the current interrupting unit 21 are shown, but hatching is omitted in the cross-section so as not to make it difficult to see the lead lines and the like. 3 and 4 also show cross-sectional views of the electromagnetic actuator 1, but hatching is omitted in the cross-section so as not to make it difficult to see the lead lines and the like. In addition, in FIGS. 1 to 4, the outer peripheral line (the outer peripheral line in the direction perpendicular to the moving direction of the shaft 5) that is originally visible from the cross section of the left and right coils 4 on the back side of the drawing surface is not easily visible. Omitted. Similarly, in other cross-sectional views, hatching is omitted in the cross section, and an outer peripheral line in a direction perpendicular to the moving direction of the shaft 5 in the coil 4 is omitted.
 コア2は、コイル4の外周面を囲むコア胴体部7と、コイル4の上側(シャフト5が配置される側)を覆うコア蓋部8と、コア胴体部7の下側(コア蓋部8が配置されない側)からシャフト5の方向に延伸すると共にアマチュア3のアマチュア延伸部12が外部に露出する開口14を形成するコア開口端部9とを備える。コア開口端部9は、アマチュア3のアマチュア延伸部12が挿通可能な開口14を形成している。コア蓋部8は、コア開口端部9からコイル軸4aの方向に離れた位置でコア開口端部9に対向している。コア胴体部7は、コア蓋部8とコア開口端部9を接続している。アマチュア3は、シャフト5が接続されたアマチュア根元部11と、アマチュア根元部11からコア2の開口14側に延伸するように設けられると共にアマチュア根元部11よりも外径の小さなアマチュア延伸部12を備える。コア2のコア蓋部8には貫通孔が形成されており、この貫通孔をシャフト5が図の上下方向(コイル軸4aの上下方向)に移動する。コア蓋部8の貫通孔は、その中心軸がコイル軸4aと一致するように形成されている。また、シャフト5の中心軸はアマチュア3の中心軸と一致している。シャフト5がコア蓋部8の貫通孔に挿入されることで、シャフト5及びアマチュア3の中心軸がコイル軸4aと一致するように、アマチュア3がコイル4及びコア2の内側に配置される。シャフト5、アマチュア根元部11、アマチュア延伸部12は、それぞれ例えば円柱形状である。コイル4は例えば開口が設けられた円筒形状であり、コア2の外形は例えば上部に貫通孔が形成され、下部に開口14が形成された円柱形状である。 The core 2 includes a core body portion 7 that surrounds the outer peripheral surface of the coil 4, a core lid portion 8 that covers the upper side of the coil 4 (side on which the shaft 5 is disposed), and a lower side (core lid portion 8) of the core body portion 7. And the core opening end portion 9 which extends in the direction of the shaft 5 from the side where the armature 3 is not disposed and forms an opening 14 where the armature extending portion 12 of the armature 3 is exposed to the outside. The core opening end portion 9 forms an opening 14 through which the amateur extending portion 12 of the amateur 3 can be inserted. The core lid portion 8 faces the core opening end portion 9 at a position away from the core opening end portion 9 in the direction of the coil shaft 4a. The core body portion 7 connects the core lid portion 8 and the core opening end portion 9. The amateur 3 includes an amateur root portion 11 to which the shaft 5 is connected, and an amateur extending portion 12 provided so as to extend from the amateur root portion 11 to the opening 14 side of the core 2 and having an outer diameter smaller than that of the amateur root portion 11. Prepare. A through hole is formed in the core lid portion 8 of the core 2, and the shaft 5 moves through the through hole in the vertical direction in the figure (the vertical direction of the coil shaft 4 a). The through hole of the core lid part 8 is formed so that the central axis thereof coincides with the coil axis 4a. Further, the central axis of the shaft 5 coincides with the central axis of the amateur 3. By inserting the shaft 5 into the through hole of the core lid portion 8, the armature 3 is disposed inside the coil 4 and the core 2 so that the central axis of the shaft 5 and the armature 3 coincides with the coil axis 4 a. Each of the shaft 5, the amateur root portion 11, and the amateur extending portion 12 has a cylindrical shape, for example. The coil 4 has, for example, a cylindrical shape with an opening, and the outer shape of the core 2 has, for example, a cylindrical shape in which a through hole is formed in the upper part and an opening 14 is formed in the lower part.
 アマチュア3は、アマチュア根元部11の外周面11aがコイル4の内周面に対向しており、アマチュア延伸部12の外周面12aがコア2におけるコア開口端部9の内周面9aに対向して配置されている。内周面9aは、アマチュア3の外周面12aに対向すると共にコイル4により発生された磁束が通過する磁路M2を形成するアマチュア対向部である。アマチュア延伸部12の外径はアマチュア根元部11の外径よりも小さくなっている。アマチュア根元部11のアマチュア延伸部12側には、アマチュア延伸部12の外周から周方向に延伸した周方向拡張部11bが形成されている。アマチュア根元部11における周方向拡張部11bの一部は、コア2におけるコア開口端部9の内側面9bの一部に対向している。周方向拡張部11bとコア開口端部9の内側面9bとが対向する部分が吸引部15、16である。すなわち、コア2におけるコア開口端部9の吸引部15と、アマチュア3における周方向拡張部11bの吸引部16は互いに対向している。 In the amateur 3, the outer peripheral surface 11 a of the amateur root portion 11 faces the inner peripheral surface of the coil 4, and the outer peripheral surface 12 a of the amateur extension portion 12 faces the inner peripheral surface 9 a of the core opening end 9 in the core 2. Are arranged. The inner peripheral surface 9a is an amateur facing portion that forms a magnetic path M2 that faces the outer peripheral surface 12a of the armature 3 and through which the magnetic flux generated by the coil 4 passes. The outer diameter of the amateur extending portion 12 is smaller than the outer diameter of the amateur root portion 11. On the amateur extending portion 12 side of the amateur root portion 11, a circumferentially extending portion 11b extending in the circumferential direction from the outer periphery of the amateur extending portion 12 is formed. A portion of the circumferentially extending portion 11 b in the amateur root portion 11 faces a portion of the inner side surface 9 b of the core opening end portion 9 in the core 2. The portions where the circumferentially extending portion 11 b and the inner side surface 9 b of the core opening end portion 9 face each other are suction portions 15 and 16. That is, the suction portion 15 of the core opening end portion 9 in the core 2 and the suction portion 16 of the circumferential extension portion 11b in the armature 3 face each other.
 コア2の吸引部15は、コイル軸4a側(内周側)の端がコア開口端部9の内周面9aであり、外周側の端がアマチュア3におけるアマチュア根元部11の外周面11aからコイル軸4aに平行に伸ばした破線31が通過する位置である。アマチュア3の吸引部16は、外周側の端がアマチュア根元部11の外周面11aであり、コイル軸4a側(内周側)の端がコア2におけるコア開口端部9の内周面9aからコイル軸4aに平行に伸ばした破線30が通過する位置である。図1から図4では、アマチュア3の吸引部16とコア2の吸引部15との隙間が磁気ギャップG1であり、アマチュア3におけるアマチュア延伸部12の外周面12aと、コア2におけるコア開口端部9の内周面9aとの隙間が磁気ギャップG2である例を示した。磁気ギャップG1は磁気ギャップG2より小さくなっている。また、図1及び図2では、電磁アクチュエータ1における磁気ギャップG2は第一状態及び第二状態で変化せず、第一状態における磁気ギャップG1が第二状態では磁気ギャップG3に変化する例を示した。 The suction portion 15 of the core 2 has an end on the coil shaft 4 a side (inner peripheral side) that is the inner peripheral surface 9 a of the core opening end portion 9, and an outer peripheral end that extends from the outer peripheral surface 11 a of the amateur root portion 11 in the armature 3. This is a position through which a broken line 31 extending parallel to the coil axis 4a passes. The suction part 16 of the amateur 3 has an outer peripheral end that is the outer peripheral face 11 a of the amateur base 11, and an end on the coil shaft 4 a side (inner peripheral side) that extends from the inner peripheral face 9 a of the core opening end 9 in the core 2. This is a position through which a broken line 30 extending parallel to the coil axis 4a passes. In FIG. 1 to FIG. 4, the gap between the attracting portion 16 of the armature 3 and the attracting portion 15 of the core 2 is a magnetic gap G1, and the outer peripheral surface 12a of the armature extending portion 12 in the armature 3 and the core opening end portion in the core 2 9 shows an example in which the gap between the inner surface 9a and the inner peripheral surface 9 is a magnetic gap G2. The magnetic gap G1 is smaller than the magnetic gap G2. 1 and 2 show an example in which the magnetic gap G2 in the electromagnetic actuator 1 does not change between the first state and the second state, and the magnetic gap G1 in the first state changes to the magnetic gap G3 in the second state. It was.
 なお、図示はしていないが、リンク機構24に電磁アクチュエータ1を図2で示した第二状態から図1に示した第一状態に復帰する復帰ばねを設けてもよい。また、本実施の形態において、コア2及びアマチュア3の磁性材として鉄、コバルト、ニッケルなどを使用でき、薄板の積層あるいは一体ものとして構成してもよい。 Although not shown, the link mechanism 24 may be provided with a return spring for returning the electromagnetic actuator 1 from the second state shown in FIG. 2 to the first state shown in FIG. Moreover, in this Embodiment, iron, cobalt, nickel etc. can be used as a magnetic material of the core 2 and the armature 3, and you may comprise as a laminated | stacked or integrated thing of a thin plate.
 電磁アクチュエータ1内の磁束が外部に漏れない原理について説明する。まず、電流遮断部21の可動接点22及び固定接点23は互いに開離している開路状態から、可動接点22及び固定接点23は互いに接触する閉路状態に変化する、電磁アクチュエータ1の動作を説明する。図1で示す第一状態の電磁アクチュエータ1のコイル4に、シャフト5の露出端部5aに向かって右向きに電流が流れると、コイル4の内部においてシャフト5の露出端部5a側に向かう磁束が発生する。適宜、コイル4に流れる電流をコイル電流と称する。アマチュア3は、この磁束によりシャフト5の露出端部5aがコア2から離れるように駆動される。コイル4により発生された磁束は、コイル4の周りを通過する。実施の形態1の電磁アクチュエータ1におけるアマチュア3及びコア2を磁束が通過する経路、すなわち磁路は、2つの磁路M1と磁路M2が存在する。磁路M1はコイル4に近い側に形成された磁路であり、磁路M2は磁路M1よりも外側に形成された磁路である。 The principle that the magnetic flux in the electromagnetic actuator 1 does not leak outside will be described. First, the operation of the electromagnetic actuator 1 will be described, in which the movable contact 22 and the fixed contact 23 of the current interrupting part 21 change from the open state where they are separated from each other to the closed state where the movable contact 22 and the fixed contact 23 are in contact with each other. When a current flows to the coil 4 of the electromagnetic actuator 1 in the first state shown in FIG. 1 toward the exposed end 5a of the shaft 5, a magnetic flux directed toward the exposed end 5a of the shaft 5 is generated inside the coil 4. appear. As appropriate, the current flowing through the coil 4 is referred to as a coil current. The amateur 3 is driven by the magnetic flux so that the exposed end 5a of the shaft 5 is separated from the core 2. The magnetic flux generated by the coil 4 passes around the coil 4. There are two magnetic paths M1 and M2 as paths through which the magnetic flux passes through the armature 3 and the core 2 in the electromagnetic actuator 1 of the first embodiment. The magnetic path M1 is a magnetic path formed on the side close to the coil 4, and the magnetic path M2 is a magnetic path formed outside the magnetic path M1.
 図1から図4に示した例では、磁気ギャップG1が磁気ギャップG2より小さくなっているので、磁路M1の磁気抵抗は磁路M2の磁気抵抗より小さくなり、コイル4にコイル電流が流れると、磁束は磁気抵抗が小さい磁路M1を集中して通過することになる。コイル4に電流が流れ始めた通電初期は、電流値が小さいので、磁束は主に磁路M1を通過する。磁路M1を磁束が通過することで、アマチュア3の吸引部16とコア2の吸引部15は、共に磁束の向きに沿って同じ向きに磁化されるので、アマチュア3の吸引部16とコア2の吸引部15とが互いに引き合い、吸引部16と吸引部15との間に吸引力が発生する。可動自在のアマチュア3がコア2に吸引される吸引力の向きは、アマチュア3がシャフト5の方向に駆動される向きと逆である。すなわち、アマチュア3には、アマチュア3がシャフト5の方向に駆動される駆動力と逆向きの負荷力が付与される。アマチュア3がシャフト5の方向に駆動される駆動力の向きは、アマチュア3のアマチュア延伸部12からシャフト5の露出端部5aへの向きであり、図1から図4における上向きである。アマチュア3に付与される負荷力の向きは、アマチュア3の吸引部16からコア2の吸引部15への向きであり、図1から図4における下向きである。 In the example shown in FIGS. 1 to 4, since the magnetic gap G 1 is smaller than the magnetic gap G 2, the magnetic resistance of the magnetic path M 1 becomes smaller than the magnetic resistance of the magnetic path M 2, and the coil current flows through the coil 4. The magnetic flux concentrates and passes through the magnetic path M1 having a small magnetic resistance. Since the current value is small at the initial stage of energization when current begins to flow through the coil 4, the magnetic flux mainly passes through the magnetic path M1. Since the magnetic flux M passes through the magnetic path M1, the attracting portion 16 of the armature 3 and the attracting portion 15 of the core 2 are magnetized in the same direction along the direction of the magnetic flux, so the attracting portion 16 of the amateur 3 and the core 2 Are attracted to each other, and a suction force is generated between the suction portion 16 and the suction portion 15. The direction of the suction force by which the movable armature 3 is attracted to the core 2 is opposite to the direction in which the armature 3 is driven in the direction of the shaft 5. That is, a load force opposite to the driving force that drives the armature 3 in the direction of the shaft 5 is applied to the armature 3. The direction of the driving force by which the amateur 3 is driven in the direction of the shaft 5 is the direction from the amateur extending portion 12 of the amateur 3 to the exposed end portion 5a of the shaft 5, and is upward in FIGS. The direction of the load force applied to the amateur 3 is the direction from the suction part 16 of the amateur 3 to the suction part 15 of the core 2 and is downward in FIGS. 1 to 4.
 コイル電流が増大すると、コイル4が発生する磁束は増大し、これに伴いアマチュア3がシャフト5の方向に駆動される駆動力及び、この駆動力と逆向きの負荷力も増大する。この際、吸引部16の吸引部幅A1及び吸引部15の吸引部幅A2は、アマチュア延伸部12の外径よりも小さいので、吸引部15、16が磁気飽和すると吸引力も飽和し、駆動力の大きさが吸引力の大きさを超えると、アマチュア3は、吸引部16がコア2の吸引部15から離れる向き、図における上向きに移動する。アマチュア3が移動し、吸引部15と吸引部16との磁気ギャップが増大すると、吸引部15と吸引部16との間の吸引力は急激に小さくなる。なお、リンク機構24に復帰ばねがある場合は、駆動力の大きさが吸引力と復帰ばねの引力との合力の大きさを超えると、アマチュア3は、吸引部16がコア2の吸引部15から離れる向き、図における上向きに移動する。 When the coil current increases, the magnetic flux generated by the coil 4 increases, and accordingly, the driving force for driving the armature 3 in the direction of the shaft 5 and the load force opposite to this driving force also increase. At this time, since the suction part width A1 of the suction part 16 and the suction part width A2 of the suction part 15 are smaller than the outer diameter of the armature extension part 12, when the suction parts 15 and 16 are magnetically saturated, the suction force is also saturated, and the driving force When the size of the armor exceeds the size of the suction force, the armature 3 moves in the direction in which the suction part 16 is separated from the suction part 15 of the core 2 and upward in the figure. When the amateur 3 moves and the magnetic gap between the suction part 15 and the suction part 16 increases, the attractive force between the suction part 15 and the suction part 16 decreases rapidly. In the case where the link mechanism 24 has a return spring, when the magnitude of the driving force exceeds the magnitude of the resultant force of the suction force and the attractive force of the return spring, the armature 3 has the suction portion 16 as the suction portion 15 of the core 2. Move away from, upward in the figure.
 磁路M1に磁束が集中し負荷力を付与する吸引部15、16が磁気飽和したとしても、磁束は磁路M2を通過することになり、駆動力が継続してアマチュア3に付与される。したがって、特許文献1の電磁アクチュエータと同様に、コイル4のコイル電流が十分増加した後にアマチュア3を第一状態から第二状態に動作させることが可能となり、大きな電流でアマチュア3を駆動でき、すなわちアマチュア3の駆動力を増加でき駆動特性を改善できる。 Even if the magnetic flux M concentrates on the magnetic path M1 and the attracting portions 15 and 16 that apply load force are magnetically saturated, the magnetic flux passes through the magnetic path M2, and the driving force is continuously applied to the amateur 3. Therefore, similarly to the electromagnetic actuator of Patent Document 1, it is possible to operate the armature 3 from the first state to the second state after the coil current of the coil 4 has sufficiently increased, and the armature 3 can be driven with a large current. The driving force of amateur 3 can be increased and the driving characteristics can be improved.
 電流遮断部21の可動接点22及び固定接点23は互いに接触する閉路状態から、可動接点22及び固定接点23は互いに開離している開路状態に変化する、電磁アクチュエータ1の動作を説明する。例えば、図2で示す第二状態の電磁アクチュエータ1のコイル4に、シャフト5の露出端部5aに向かって左向きに電流が流れると、コイル4の内部においてシャフト5の露出端部5aからアマチュア延伸部12の側に向かう磁束が発生する。アマチュア3は、この磁束によりシャフト5の露出端部5aがコア2に近づくように駆動され、電磁アクチュエータ1は図1で示す第一状態に戻る。また、図1及図2のように、アマチュア3を重力と反対向きに駆動する場合は、第二状態を維持しているコイル4のコイル電流を遮断すると、アマチュア3の自重(あるいは復帰ばねとの合力)によって、電磁アクチュエータ1は図1で示す第一状態に戻るようにすることもできる。 The operation of the electromagnetic actuator 1 that changes from the closed state in which the movable contact 22 and the fixed contact 23 of the current interrupting unit 21 are in contact with each other to the open state in which the movable contact 22 and the fixed contact 23 are separated from each other will be described. For example, when a current flows to the left side of the coil 4 of the electromagnetic actuator 1 in the second state shown in FIG. 2 toward the exposed end portion 5 a of the shaft 5, the armature extends from the exposed end portion 5 a of the shaft 5 inside the coil 4. Magnetic flux toward the part 12 side is generated. The amateur 3 is driven by this magnetic flux so that the exposed end 5a of the shaft 5 approaches the core 2, and the electromagnetic actuator 1 returns to the first state shown in FIG. Further, as shown in FIGS. 1 and 2, when the armature 3 is driven in the direction opposite to the gravity, if the coil current of the coil 4 maintaining the second state is interrupted, the weight of the armature 3 (or the return spring and 1), the electromagnetic actuator 1 can be returned to the first state shown in FIG.
 実施の形態1の電磁アクチュエータ1は、コア2とアマチュア3との間にアマチュア3をシャフト5が送出される方向に駆動する駆動力を打ち消す方向に働く負荷力を付与する吸引部15、16がコア2の内側に形成されているので、この吸引部15に相当する磁性支持板がコアの外部に露出して配置された特許文献1の電磁アクチュエータと異なり、コイル電流によって発生する磁束が磁路M1と磁路M2により確実に電磁アクチュエータ1の内部で閉じられる。このため、実施の形態1の電磁アクチュエータ1は、コア2とアマチュア3を通過する磁束、すなわち磁路M1、M2を通過する磁束は周辺の磁性体の有無に依らず、周辺機器に電磁アクチュエータ1から磁束が作用することもない。したがって、実施の形態1の電磁アクチュエータ1は、コイル電流によって発生する磁束が電磁アクチュエータ1の外部に漏れることで生じる負荷力の変動がなく、すなわち負荷力は一定になり、アマチュア3を確実に所定の位置まで動作できる。実施の形態1の電磁アクチュエータ1は、アマチュア3をシャフト5が送出される方向に駆動する駆動力を打ち消す方向に働く負荷力を一定にでき、かつコイル4のコイル電流が十分増加した後に大きな電流でアマチュア3を駆動できるので、アマチュア3の動作特性が安定するうえ、周辺機器に故障や誤動作が生じることもない。 In the electromagnetic actuator 1 according to the first embodiment, the suction portions 15 and 16 for applying a load force acting in a direction to cancel the driving force for driving the armature 3 in the direction in which the shaft 5 is sent between the core 2 and the armature 3 are provided. Unlike the electromagnetic actuator of Patent Document 1 in which the magnetic support plate corresponding to the attracting portion 15 is disposed outside the core because it is formed inside the core 2, the magnetic flux generated by the coil current is a magnetic path. The inside of the electromagnetic actuator 1 is reliably closed by M1 and the magnetic path M2. For this reason, the electromagnetic actuator 1 according to the first embodiment is configured such that the magnetic flux passing through the core 2 and the armature 3, that is, the magnetic flux passing through the magnetic paths M1 and M2, does not depend on the presence or absence of the surrounding magnetic body. Therefore, magnetic flux does not act. Therefore, the electromagnetic actuator 1 of the first embodiment is free from fluctuations in load force caused by leakage of magnetic flux generated by the coil current to the outside of the electromagnetic actuator 1, that is, the load force is constant and the armature 3 is reliably set to a predetermined value. It is possible to move to the position. The electromagnetic actuator 1 according to the first embodiment can maintain a constant load force acting in a direction to cancel the driving force for driving the armature 3 in the direction in which the shaft 5 is delivered, and a large current after the coil current of the coil 4 has sufficiently increased. Thus, the amateur 3 can be driven, so that the operating characteristics of the amateur 3 are stabilized and the peripheral device is not damaged or malfunctioned.
 また、実施の形態1の電磁アクチュエータ1は、吸引部15、16を別部品ではなく、コア2とアマチュア3の一部として形成しているので、組立誤差や寸法誤差などの集積誤差が小さくなるため、吸引部15、16の磁気ギャップG1および負荷力(吸引力)が発生する面積は安定し、電磁アクチュエータの動作ばらつきを低減できる。また、実施の形態1の電磁アクチュエータ1は、別部品が必要ないため、部品点数の削減による低コスト化及び小形化が可能となる。さらに、実施の形態1の電磁アクチュエータ1は、図3に示すアマチュア3の吸引部16の吸引部幅A1とコア2の吸引部15の吸引部幅A2を調整することで、負荷力(吸引力)が発生する面積が容易に変更可能なため、電磁アクチュエータ1の外形を大きくすることなく負荷力を自在に調整できる。吸引部幅A1及び吸引部幅A2を小さくする場合は、例えばアマチュア延伸部12の外径及びコア開口端部9の開口14の径を大きくするか、アマチュア根元部11の外径を小さくすればよい。また、吸引部幅A1及び吸引部幅A2を大きくする場合は、例えばアマチュア延伸部12の外径及びコア開口端部9の開口14の径を小さくするか、アマチュア根元部11の外径を大きくすればよい。 Further, in the electromagnetic actuator 1 according to the first embodiment, the suction portions 15 and 16 are not formed as separate parts but are formed as a part of the core 2 and the armature 3, so that integration errors such as assembly errors and dimensional errors are reduced. Therefore, the magnetic gap G1 of the attracting portions 15 and 16 and the area where the load force (attraction force) is generated are stable, and the operation variation of the electromagnetic actuator can be reduced. Further, since the electromagnetic actuator 1 according to the first embodiment does not require a separate part, the cost can be reduced and the size can be reduced by reducing the number of parts. Furthermore, the electromagnetic actuator 1 of Embodiment 1 adjusts the suction part width A1 of the suction part 16 of the armature 3 and the suction part width A2 of the suction part 15 of the core 2 shown in FIG. ) Can be easily changed, so that the load force can be freely adjusted without increasing the outer shape of the electromagnetic actuator 1. When reducing the suction part width A1 and the suction part width A2, for example, the outer diameter of the armature extension part 12 and the diameter of the opening 14 of the core opening end part 9 are increased, or the outer diameter of the amateur root part 11 is reduced. Good. Further, when the suction part width A1 and the suction part width A2 are increased, for example, the outer diameter of the armature extension part 12 and the diameter of the opening 14 of the core opening end part 9 are reduced, or the outer diameter of the amateur root part 11 is increased. do it.
 実施の形態1の電磁アクチュエータ1は、磁気ギャップG1が磁気ギャップG2より小さくなっているので、前述したように、磁路M1の磁気抵抗は磁路M2の磁気抵抗より小さくなり、コイル4にコイル電流が流れると、磁束は磁気抵抗が小さい磁路M1を集中して通過することになる。磁路M1におけるアマチュア3及びコア2の磁化が進み、磁路M1の磁気抵抗が上昇すると、磁束は磁路M1から磁路M2を通過する。アマチュア3、コア2の一方又は両方に寸法公差や設置誤差などのズレが生じた場合も、確実に小さな磁気ギャップG1が存在する磁路M1から優先して磁束を通過させることが可能となり、アマチュア3をシャフト5が送出される方向に駆動する駆動方向と逆向きの初期負荷力を安定でき、アマチュア3の動作ばらつきを低減できる。さらに、実施の形態1の電磁アクチュエータ1は、磁気ギャップG1及び磁気ギャップG2を調整することでも、磁路M1と磁路M2の磁気抵抗を変更できるため、電磁アクチュエータ1の外形を大きくすることなく、初期負荷力を自在に調整できる。 In the electromagnetic actuator 1 according to the first embodiment, the magnetic gap G1 is smaller than the magnetic gap G2. Therefore, as described above, the magnetic resistance of the magnetic path M1 is smaller than the magnetic resistance of the magnetic path M2, and the coil 4 is coiled. When a current flows, the magnetic flux concentrates and passes through the magnetic path M1 having a small magnetic resistance. When the magnetization of the armature 3 and the core 2 proceeds in the magnetic path M1 and the magnetic resistance of the magnetic path M1 increases, the magnetic flux passes from the magnetic path M1 to the magnetic path M2. Even when a deviation such as dimensional tolerance or installation error occurs in one or both of the amateur 3 and the core 2, it is possible to reliably pass the magnetic flux preferentially over the magnetic path M1 where the small magnetic gap G1 exists. The initial load force in the direction opposite to the driving direction in which the shaft 3 is driven in the direction in which the shaft 5 is delivered can be stabilized, and the operation variation of the amateur 3 can be reduced. Furthermore, the electromagnetic actuator 1 according to the first embodiment can change the magnetic resistance of the magnetic path M1 and the magnetic path M2 even by adjusting the magnetic gap G1 and the magnetic gap G2, so that the outer shape of the electromagnetic actuator 1 is not increased. The initial load force can be adjusted freely.
 実施の形態1の電磁アクチュエータ1は、アマチュア3の吸引部16及びコア2の吸引部15を通過する磁路M1の外側に、少なくとも1つ以上の磁路、すなわち1つの磁路M2を形成しているため、周辺の磁性体の有無に依らず、アマチュア3がシャフト5の方向に駆動される駆動力と逆向きの初期負荷力を安定させることが可能であり、周辺機器の故障や誤動作を防止できるうえ、部品点数の削減による低コスト化及び小形化が可能となる。 The electromagnetic actuator 1 according to the first embodiment forms at least one magnetic path, that is, one magnetic path M2 outside the magnetic path M1 passing through the attracting portion 16 of the armature 3 and the attracting portion 15 of the core 2. Therefore, it is possible to stabilize the initial load force in the opposite direction to the driving force that the armature 3 is driven in the direction of the shaft 5 regardless of the presence or absence of the surrounding magnetic material, and it is possible to cause failure or malfunction of the peripheral device. In addition to being able to prevent this, the cost can be reduced and the size can be reduced by reducing the number of parts.
 なお、ここでは、電磁アクチュエータ1は第一状態において、コア2の吸引部15とアマチュア3の吸引部16とが接触していない例を示したが、コア2の吸引部15とアマチュア3の吸引部16とが接触している場合も同様の効果を得ることができる。また、磁路M2の磁気ギャップが一定の例で説明したが、磁路M2の磁気ギャップは一定であることは必須ではない。例えば、アマチュア3の移動に伴って磁路M2の磁気ギャップが縮小してもよい。 Here, although the electromagnetic actuator 1 has shown the example in which the suction part 15 of the core 2 and the suction part 16 of the amateur 3 are not in contact in the first state, the suction part 15 of the core 2 and the suction of the amateur 3 are shown. The same effect can be obtained also when the part 16 is in contact. Moreover, although the magnetic gap of the magnetic path M2 has been described as an example, it is not essential that the magnetic gap of the magnetic path M2 is constant. For example, the magnetic gap of the magnetic path M2 may be reduced as the amateur 3 moves.
 以上のように、実施の形態1の電磁アクチュエータ1は、コイル4の内部に可動自在に配置された磁性体のアマチュア3を、コイル4により発生させた磁束により駆動する電磁アクチュエータである。実施の形態1の電磁アクチュエータ1は、コイル4と、根元部(アマチュア根元部11)と、根元部(アマチュア根元部11)からコイル4のコイル軸4aの方向に延伸して設けられると共に根元部(アマチュア根元部11)よりも外径の小さな延伸部(アマチュア延伸部12)を有するアマチュア3と、コイル4の外側に配置されており、アマチュア3と共にコイル4により発生された磁束が通過する磁路を形成する磁性体のコア2と、を備える。実施の形態1の電磁アクチュエータ1のアマチュア3は、延伸部(アマチュア延伸部12)の外周からコイル軸4aに垂直な周方向に延伸した周方向拡張部11bを有し、コア3は、アマチュア3の周方向拡張部11bに対向して設けられると共に、磁束が通過することにより周方向拡張部11bとの間に吸引力を発生させる吸引部15、を当該コア3の内側に有し、吸引部15を磁束が通過する第一の磁路M1の外側に、アマチュア3に対向すると共に磁束が通過する第二の磁路M2を形成するアマチュア対向部(内周面9a)を有することを特徴とする。実施の形態1の電磁アクチュエータ1は、コア2の内側に設けられた吸引部15を磁束が通過する第一の磁路M1と、第一の磁路M1の外側にアマチュア3に対向すると共に磁束が通過する第二の磁路M2を形成するので、電磁アクチュエータ1の外部に磁束を漏らすことなく、アマチュア3を駆動する際に安定した初期負荷力をアマチュア3に付与することができる。 As described above, the electromagnetic actuator 1 according to the first embodiment is an electromagnetic actuator that drives the magnetic armature 3 movably disposed inside the coil 4 by the magnetic flux generated by the coil 4. The electromagnetic actuator 1 according to the first embodiment is provided with a coil 4, a root part (amateur root part 11), a base part (amateur root part 11) extending from the root part (amateur root part 11) in the direction of the coil shaft 4 a and a root part. An armature 3 having a stretched portion (amateur stretched portion 12) having an outer diameter smaller than that of the (amateur root portion 11), and a magnet that is disposed outside the coil 4 and through which the magnetic flux generated by the coil 4 along with the armature 3 passes. And a magnetic core 2 that forms a path. The armature 3 of the electromagnetic actuator 1 according to the first embodiment includes a circumferentially extending portion 11b that extends in the circumferential direction perpendicular to the coil shaft 4a from the outer periphery of the extending portion (the amateur extending portion 12). The suction portion 15 is provided on the inner side of the core 3 so as to generate an attractive force between the circumferential extension portion 11b and the circumferential extension portion 11b when the magnetic flux passes. 15 has an armature facing portion (inner peripheral surface 9a) that forms a second magnetic path M2 that faces the armature 3 and passes the magnetic flux outside the first magnetic path M1 through which the flux passes. To do. The electromagnetic actuator 1 according to the first embodiment includes a first magnetic path M1 through which a magnetic flux passes through an attractive portion 15 provided inside the core 2, and an armature 3 that faces the armature 3 outside the first magnetic path M1. The second magnetic path M2 through which the armature passes is formed, so that a stable initial load force can be applied to the armature 3 when the armature 3 is driven without leaking the magnetic flux outside the electromagnetic actuator 1.
 実施の形態1の開閉装置50は、内部に可動接点22及び固定接点23を有する電流遮断部21と、電流遮断部21の可動接点22をリンク機構24を介して、固定接点23に接続するように移動させる電磁アクチュエータ1を備える。電磁アクチュエータ1は、コイル4と、根元部(アマチュア根元部11)と、根元部(アマチュア根元部11)からコイル4のコイル軸4aの方向に延伸して設けられると共に根元部(アマチュア根元部11)よりも外径の小さな延伸部(アマチュア延伸部12)を有するアマチュア3と、コイル4の外側に配置されており、アマチュア3と共にコイル4により発生された磁束が通過する磁路を形成する磁性体のコア2と、を備える。電磁アクチュエータ1のアマチュア3は、延伸部(アマチュア延伸部12)の外周からコイル軸4aに垂直な周方向に延伸した周方向拡張部11bを有し、コア3は、アマチュア3の周方向拡張部11bに対向して設けられると共に、磁束が通過することにより周方向拡張部11bとの間に吸引力を発生させる吸引部15、を当該コア3の内側に有し、吸引部15を磁束が通過する第一の磁路M1の外側に、アマチュア3に対向すると共に磁束が通過する第二の磁路M2を形成するアマチュア対向部(内周面9a)を有することを特徴とする。実施の形態1の開閉装置50は、コア2の内側に設けられた吸引部15を磁束が通過する第一の磁路M1と、第一の磁路M1の外側にアマチュア3に対向すると共に磁束が通過する第二の磁路M2を形成する電磁アクチュエータ1を備えるので、電磁アクチュエータ1の外部に磁束を漏らすことなく、アマチュア3を駆動する際に安定した初期負荷力をアマチュア3に付与することができ、電流遮断部21を閉路状態にする閉路操作を確実に実行することができる。 The switching device 50 according to the first embodiment is configured to connect the current interrupting unit 21 having the movable contact 22 and the fixed contact 23 therein, and the movable contact 22 of the current interrupting unit 21 to the fixed contact 23 via the link mechanism 24. The electromagnetic actuator 1 to be moved is provided. The electromagnetic actuator 1 is provided to extend from the coil 4, the root portion (amateur root portion 11), the root portion (amateur root portion 11) to the coil axis 4 a of the coil 4, and the root portion (amateur root portion 11). The armature 3 having a stretched portion (amateur stretched portion 12) having a smaller outer diameter than the armature 3) and a magnetism that forms a magnetic path through which the magnetic flux generated by the coil 4 passes with the armature 3. A core 2 of the body. The armature 3 of the electromagnetic actuator 1 has a circumferentially extending portion 11b that extends in the circumferential direction perpendicular to the coil shaft 4a from the outer periphery of the extending portion (the amateur extending portion 12), and the core 3 is a circumferentially extending portion of the amateur 3 The suction portion 15 is provided on the inner side of the core 3 so as to generate a suction force with respect to the circumferential extension portion 11b when the magnetic flux passes and the magnetic flux passes through the suction portion 15. The armature facing part (inner peripheral surface 9a) which forms the 2nd magnetic path M2 which opposes the armature 3 and the magnetic flux passes outside of the 1st magnetic path M1 to perform is characterized by the above-mentioned. The opening / closing device 50 according to the first embodiment includes a first magnetic path M1 through which the magnetic flux passes through the attracting portion 15 provided inside the core 2, and the magnetic flux that faces the armature 3 outside the first magnetic path M1. Since the electromagnetic actuator 1 that forms the second magnetic path M2 through which the armature passes is provided, a stable initial load force is applied to the armature 3 when the armature 3 is driven without leaking the magnetic flux outside the electromagnetic actuator 1. Thus, the closing operation for closing the current interrupting portion 21 can be reliably performed.
実施の形態2.
 図5は本発明の実施の形態2による電磁アクチュエータの概略断面図であり、図6は図5の電磁アクチュエータの要部を示す概略断面図である。図7は本発明の実施の形態2による他の電磁アクチュエータの概略断面図であり、図8は図7の電磁アクチュエータの要部を示す概略断面図である。図9は、本発明の実施の形態2による電磁アクチュエータの付与力の例を示す図である。図5から図8では、第一状態における電磁アクチュエータ1の構成を示している。図9では、初期負荷力が同じ場合における本実施の形態1の電磁アクチュエータ1の付与力と実施の形態1の電磁アクチュエータ1の付与力を比較している。実施の形態2の電磁アクチュエータ1は、吸引部15、16において、コア2あるいはアマチュア3の少なくとも一方を突起形状にし、吸引部15、16を磁束が通過する磁束通過面積S1を、磁路M1の外側に設けた磁路M2におけるコア2とアマチュア3間を磁束が通過する磁束通過面積S2より小さくしている例である。
Embodiment 2. FIG.
FIG. 5 is a schematic cross-sectional view of an electromagnetic actuator according to Embodiment 2 of the present invention, and FIG. 6 is a schematic cross-sectional view showing the main part of the electromagnetic actuator of FIG. FIG. 7 is a schematic cross-sectional view of another electromagnetic actuator according to Embodiment 2 of the present invention, and FIG. 8 is a schematic cross-sectional view showing a main part of the electromagnetic actuator of FIG. FIG. 9 is a diagram illustrating an example of the applying force of the electromagnetic actuator according to the second embodiment of the present invention. 5 to 8 show the configuration of the electromagnetic actuator 1 in the first state. FIG. 9 compares the applying force of the electromagnetic actuator 1 of the first embodiment and the applying force of the electromagnetic actuator 1 of the first embodiment when the initial load force is the same. In the electromagnetic actuator 1 according to the second embodiment, at least one of the core 2 or the armature 3 is formed in a protruding shape in the attracting portions 15 and 16, and the magnetic flux passing area S1 through which the magnetic flux passes through the attracting portions 15 and 16 is defined as the magnetic path M1. In this example, the magnetic path M2 provided outside is smaller than the magnetic flux passage area S2 through which the magnetic flux passes between the core 2 and the armature 3.
 図5及び図6に示した電磁アクチュエータ1は、コア開口端部9の内側面9bに、吸引部16の側に突出した突起部9cが設けられた例である。図7及び図8に示した電磁アクチュエータ1は、アマチュア根元部11の周方向拡張部11bに、吸引部15の側に突出した突起部11cが設けられた例である。 The electromagnetic actuator 1 shown in FIG. 5 and FIG. 6 is an example in which a protrusion 9 c that protrudes toward the suction portion 16 is provided on the inner side surface 9 b of the core opening end 9. The electromagnetic actuator 1 shown in FIGS. 7 and 8 is an example in which a protrusion 11 c that protrudes toward the suction portion 15 is provided on the circumferential extension portion 11 b of the amateur base portion 11.
 アマチュア3がシャフト5の方向に駆動される駆動方向と逆向きの初期負荷力の大きさは、吸引部15、16の磁束密度Bの2乗と吸引部15、16の磁束通過面積Sの積BSに比例する。ここで、後述するように、磁束通過面積Sを小さくしても初期負荷力の大きさの絶対値が同等にできる場合があるので、図9のアマチュア3に付与される付与力の特性では、初期負荷力が同等になる例を示した。図9において、縦軸はコイル電流又はアマチュア3に付与される付与力であり、横軸は時間である。特性32は、コイル電流特性である。特性33、34は、それぞれ実施の形態1における付与力特性、実施の形態2における付与力特性である。 The magnitude of the initial load force in the direction opposite to the driving direction in which the amateur 3 is driven in the direction of the shaft 5 is the product of the square of the magnetic flux density B of the suction portions 15 and 16 and the magnetic flux passage area S of the suction portions 15 and 16. It is proportional to B 2 S. Here, as will be described later, even if the magnetic flux passage area S is reduced, the absolute value of the magnitude of the initial load force may be made equal, so the characteristics of the applied force applied to the amateur 3 in FIG. An example in which the initial load force is equivalent is shown. In FIG. 9, the vertical axis represents the coil current or the applied force applied to the amateur 3, and the horizontal axis represents time. A characteristic 32 is a coil current characteristic. Characteristics 33 and 34 are the imparting force characteristic in the first embodiment and the imparting force characteristic in the second embodiment, respectively.
 初期負荷力の大きさの最大値は、磁束が磁束M1のみに流れる場合である。コイル4に流れるコイル電流が同一であれば、コイル4が発生する磁束の強度も同じになるので、実施の形態1の吸引部幅A2よりも実施の形態2の吸引部幅A4が小さい場合は、磁束が磁路M1、すなわち吸引部15、16を通過する磁束通過面積S1が小さくなると共に、吸引部15、16を通過する磁束密度Bが増大する。したがって、コイル4に流れるコイル電流が同一の場合に、磁束が磁路M1、すなわち吸引部15、16を通過する磁束通過面積S1を小さくしても、大きな磁束通過面積の吸引部15、16と同等の初期負荷力を得ることができる。 The maximum value of the initial load force is when the magnetic flux flows only in the magnetic flux M1. If the coil currents flowing in the coil 4 are the same, the intensity of the magnetic flux generated by the coil 4 is also the same. Therefore, when the suction part width A4 of the second embodiment is smaller than the suction part width A2 of the first embodiment, The magnetic flux passing area S1 through which the magnetic flux passes through the magnetic path M1, that is, the attracting portions 15 and 16, is reduced, and the magnetic flux density B passing through the attracting portions 15 and 16 is increased. Therefore, when the coil currents flowing through the coil 4 are the same, even if the magnetic flux M1, that is, the magnetic flux passage area S1 passing through the suction portions 15 and 16 is reduced, the suction portions 15 and 16 having a large magnetic flux passage area An equivalent initial load force can be obtained.
 本実施の形態2では、磁束が磁路M1、すなわち吸引部15、16を通過する磁束通過面積S1を減少させ、磁束密度Bを増加させることで、コイル電流が同じ場合における実施の形態1の電磁アクチュエータ1と同等の初期負荷力を発生させている。このため、本実施の形態2の電磁アクチュエータ1では、実施の形態1の電磁アクチュエータ1に比べて、アマチュア3の移動後における吸引部15、16の磁気ギャップ増加に伴う磁束密度Bの低下率が大きくなる。このため実施の形態1に比べて、実施の形態2の電磁アクチュエータ1は、初期負荷力における積BSの減少率が大きくなり、図9で示すように、アマチュア3に付与される付与力が正になっている力である、駆動力の増加率を大きくでき駆動特性を改善できる。なお、アマチュア3に付与される付与力が負になっている場合の付与力は、駆動力と逆向きの負荷力である。 In the second embodiment, the magnetic flux M1, that is, the magnetic flux passage area S1 that passes through the attracting portions 15 and 16 is decreased and the magnetic flux density B is increased, so that the coil current is the same as in the first embodiment. An initial load force equivalent to that of the electromagnetic actuator 1 is generated. For this reason, in the electromagnetic actuator 1 of the second embodiment, the rate of decrease of the magnetic flux density B accompanying the increase in the magnetic gap of the attracting portions 15 and 16 after the movement of the armature 3 is lower than that of the electromagnetic actuator 1 of the first embodiment. growing. Therefore, compared with the first embodiment, the electromagnetic actuator 1 according to the second embodiment has a larger reduction rate of the product B 2 S in the initial load force, and the applied force applied to the amateur 3 as shown in FIG. The increase rate of the driving force, which is a positive force, can be increased, and the driving characteristics can be improved. It should be noted that the applied force when the applied force applied to the amateur 3 is negative is a load force opposite to the driving force.
 磁束が磁路M1、すなわち吸引部15、16を通過する磁束通過面積S1を減少させ、磁束密度Bを増加させるには、吸引部幅A3、A4を小さくすればよいので、必ずしもコア開口端部9の内側面9bに、吸引部16の側に突出した突起部9cを設けたり、アマチュア根元部11の周方向拡張部11bに、吸引部15の側に突出した突起部11cを設ける必要はない。しかし、突起部9cや突起部11cを設けることで、磁束が磁路M1、すなわち吸引部15、16を通過する磁束通過面積S1を、磁束が磁路M2を通過する磁束通過面積S2よりも減少させていることが容易にできる。磁束が磁路M1、すなわち吸引部15、16を通過する磁束通過面積S1を、磁束が磁路M2を通過する磁束通過面積S2よりも減少させていることで、磁路M2を通過する磁束が多くなり、図9の付与力特性34のように、駆動力の増加率を大きくでき駆動特性を改善できる。 In order to decrease the magnetic flux passage area S1 through which the magnetic flux passes through the magnetic path M1, that is, the attracting portions 15 and 16 and increase the magnetic flux density B, the attracting portion widths A3 and A4 may be reduced. It is not necessary to provide the protruding portion 9c protruding to the suction portion 16 side on the inner side surface 9b of 9 or the protruding portion 11c protruding to the suction portion 15 side on the circumferential extension portion 11b of the amateur root portion 11. . However, by providing the protrusion 9c and the protrusion 11c, the magnetic flux M1 passes through the magnetic path M1, that is, the magnetic flux passage area S1 through which the magnetic flux M passes through the magnetic path M2. Can be easily done. The magnetic flux passing through the magnetic path M2 is reduced by reducing the magnetic flux passing area S1 through which the magnetic flux passes through the magnetic path M1, that is, the attracting portions 15 and 16, to the magnetic flux passing area S2 through which the magnetic flux passes through the magnetic path M2. As the applied force characteristic 34 in FIG. 9 increases, the increase rate of the driving force can be increased and the driving characteristic can be improved.
 図5及び図6の例では、図6に示すように、磁路M2を通過する磁束通過面積S2は、コア開口端部9の内周面9aの幅である端部内周面幅B1と内周面9aの周囲長との積である。これに対して、コア開口端部9の吸引部15の周方向の幅である吸引部幅A4は、実施の形態1の電磁アクチュエータ1の吸引部幅A2と同一の場合は、磁路M1を通過する磁束通過面積S1は実施の形態1の電磁アクチュエータ1と同じである。このように、コア開口端部9の内側面9bに、吸引部16の側に突出した突起部9cを設けることにより、磁束が磁路M1、すなわち吸引部15、16を通過する磁束通過面積S1を、磁束が磁路M2を通過する磁束通過面積S2よりも減少させることができる。 In the example of FIGS. 5 and 6, as shown in FIG. 6, the magnetic flux passage area S <b> 2 that passes through the magnetic path M <b> 2 is equal to the inner peripheral surface width B <b> 1 that is the width of the inner peripheral surface 9 a of the core opening end portion 9. It is the product of the peripheral length of the peripheral surface 9a. On the other hand, when the suction part width A4, which is the circumferential width of the suction part 15 of the core opening end 9, is the same as the suction part width A2 of the electromagnetic actuator 1 of the first embodiment, the magnetic path M1 is changed. The passing magnetic flux passage area S1 is the same as that of the electromagnetic actuator 1 of the first embodiment. Thus, by providing the inner surface 9b of the core opening end 9 with the protrusion 9c protruding toward the suction portion 16, the magnetic flux passing area S1 through which the magnetic flux passes through the magnetic path M1, that is, the suction portions 15, 16 is provided. Can be made smaller than the magnetic flux passage area S2 through which the magnetic flux passes through the magnetic path M2.
 図7及び図8の例では、図8に示すように、磁路M2を通過する磁束通過面積S2は、コア開口端部9の内周面9aの幅である端部内周面幅B1と内周面9aの周囲長との積である。磁路M2を通過する磁束通過面積S2は、端部内周面幅B1が同一の場合には、実施の形態2の電磁アクチュエータ1も実施の形態1の電磁アクチュエータ1と同じである。これに対して、アマチュア根元部11における周方向拡張部11bの吸引部16の周方向の幅である吸引部幅A3は、突起部11cを設けるので、同一径のアマチュア根元部11を有する実施の形態1の電磁アクチュエータ1の吸引部幅A2よりも小さくなる。したがって、磁路M1を通過する磁束通過面積S1は、実施の形態2の電磁アクチュエータ1は実施の形態1の電磁アクチュエータ1よりも小さい。このように、アマチュア根元部11の周方向拡張部11bに、吸引部15の側に突出した突起部11cを設けることにより、磁束が磁路M1、すなわち吸引部15、16を通過する磁束通過面積S1を、磁束が磁路M2を通過する磁束通過面積S2よりも減少させることができる。 In the example of FIGS. 7 and 8, as shown in FIG. 8, the magnetic flux passage area S2 passing through the magnetic path M2 is equal to the end inner peripheral surface width B1 which is the width of the inner peripheral surface 9a of the core opening end portion 9. It is the product of the peripheral length of the peripheral surface 9a. The magnetic flux passage area S2 passing through the magnetic path M2 is the same as the electromagnetic actuator 1 of the first embodiment in the electromagnetic actuator 1 of the second embodiment when the end inner peripheral surface width B1 is the same. On the other hand, the suction portion width A3, which is the width in the circumferential direction of the suction portion 16 of the circumferential extension portion 11b in the amateur root portion 11, is provided with the projection portion 11c, so that the armature root portion 11 having the same diameter is provided. It becomes smaller than the suction part width A2 of the electromagnetic actuator 1 of the first mode. Therefore, the magnetic flux passage area S1 passing through the magnetic path M1 is smaller in the electromagnetic actuator 1 of the second embodiment than in the electromagnetic actuator 1 of the first embodiment. Thus, by providing the protrusion 11c protruding toward the attracting portion 15 on the circumferentially extending portion 11b of the amateur root portion 11, the magnetic flux passage area through which the magnetic flux passes through the magnetic path M1, that is, the attracting portions 15 and 16 is provided. S1 can be made smaller than the magnetic flux passage area S2 where the magnetic flux passes through the magnetic path M2.
 また、本実施の形態2においても、吸引部15、16を通過する磁路M1の外側に少なくとも1つ以上の磁路M2を形成しているため、実施の形態1と同様の効果が得られ、電磁アクチュエータ1の外部に磁束を漏らすことなく、シャフト5が送出される際に安定した初期負荷力をアマチュア3に付与することができる。また、実施の形態2の電磁アクチュエータ1は、吸引部15、16を通過する磁路M1の外側に少なくとも1つ以上の磁路M2を形成しているため、周辺の磁性体の有無に依らず、アマチュア3がシャフト5の方向に駆動される駆動力と逆向きの初期負荷力を安定させることが可能であり、周辺機器の故障や誤動作を防止できるうえ、部品点数の削減による低コスト化及び小形化が可能となる。さらに、実施の形態1の図4で説明したように、磁気ギャップG1を磁気ギャップG2より小さくすることで、寸法公差や設置誤差によるアマチュア3の動作ばらつきを低減できるうえ、磁気ギャップG1及び磁気ギャップG2を調整することで、電磁アクチュエータ1を大形化することなく初期負荷力の調整が容易となる。 Also in the second embodiment, since at least one magnetic path M2 is formed outside the magnetic path M1 passing through the attracting portions 15 and 16, the same effect as in the first embodiment can be obtained. A stable initial load force can be applied to the armature 3 when the shaft 5 is delivered without leaking the magnetic flux outside the electromagnetic actuator 1. Moreover, since the electromagnetic actuator 1 of Embodiment 2 has at least one or more magnetic paths M2 formed outside the magnetic path M1 passing through the attracting portions 15 and 16, it does not depend on the presence or absence of a surrounding magnetic body. It is possible to stabilize the initial load force that is opposite to the driving force in which the armature 3 is driven in the direction of the shaft 5, and it is possible to prevent peripheral devices from malfunctioning or malfunctioning, and to reduce the cost by reducing the number of parts. Miniaturization is possible. Furthermore, as described with reference to FIG. 4 of the first embodiment, by making the magnetic gap G1 smaller than the magnetic gap G2, it is possible to reduce the operational variation of the armature 3 due to dimensional tolerances and installation errors, and to reduce the magnetic gap G1 and the magnetic gap. By adjusting G2, the initial load force can be easily adjusted without increasing the size of the electromagnetic actuator 1.
実施の形態3.
 図10は本発明の実施の形態3による電磁アクチュエータの概略断面図であり、図11は図10の電磁アクチュエータの要部を示す概略断面図である。図10及び図11では、第一状態における電磁アクチュエータ1の構成を示している。実施の形態3の電磁アクチュエータ1は、吸引部15、16の吸引部幅A1、A2が一定となるように、アマチュア3あるいはコア2の突起部(突起部9c、突起部11c)を集積公差L1以上、周方向の外側に移動させている例である。これにより、実施の形態3の電磁アクチュエータ1は、アマチュア3が設置誤差や寸法公差で図10、図11の紙面左右方向にずれたとしても、吸引部幅A1、A2を一定に保つことができるため、アマチュア3がシャフト5の方向に駆動される駆動力と逆方向の初期負荷力を一定に保つことが可能となり、アマチュア3の動作ばらつきを低減できる。
Embodiment 3 FIG.
FIG. 10 is a schematic cross-sectional view of an electromagnetic actuator according to Embodiment 3 of the present invention, and FIG. 11 is a schematic cross-sectional view showing the main part of the electromagnetic actuator of FIG. 10 and 11 show the configuration of the electromagnetic actuator 1 in the first state. In the electromagnetic actuator 1 according to the third embodiment, the armature 3 or the projections of the core 2 (projection 9c, projection 11c) are integrated with a tolerance L1 so that the suction part widths A1 and A2 of the suction parts 15 and 16 are constant. The above is an example of moving the outer side in the circumferential direction. As a result, the electromagnetic actuator 1 according to the third embodiment can keep the suction section widths A1 and A2 constant even if the armature 3 is displaced in the horizontal direction in FIGS. 10 and 11 due to installation errors and dimensional tolerances. Therefore, it becomes possible to keep constant the initial load force in the direction opposite to the driving force in which the armature 3 is driven in the direction of the shaft 5, and the operation variation of the armature 3 can be reduced.
 図10及び図11に示した電磁アクチュエータ1は、アマチュア根元部11の周方向拡張部11bに、吸引部15の側に突出した突起部11cが設けられた例である。なお、図では示さないが、コア開口端部9の内側面9bに、吸引部16の側に突出した突起部9cが設けられた場合も、吸引部15の内周側の端をコア開口端部9の内周面9aから周方向の外側に移動させればよい。このようにすることで、コア開口端部9の内側面9bに、吸引部16の側に突出した突起部9cが設けられた場合も、図10及び図11に示した電磁アクチュエータ1と同様に、アマチュア3が設置誤差や寸法公差で図10、図11の紙面左右方向にずれたとしても、吸引部幅A1、A2を一定に保つことができるため、アマチュア3がシャフト5の方向に駆動される駆動力と逆方向の初期負荷力を一定に保つことが可能となり、アマチュア3の動作ばらつきを低減できる。 The electromagnetic actuator 1 shown in FIG. 10 and FIG. 11 is an example in which a protrusion 11c that protrudes toward the suction portion 15 is provided on the circumferential extension 11b of the amateur base 11. Although not shown in the figure, even when the inner surface 9b of the core opening end portion 9 is provided with a protrusion 9c protruding toward the suction portion 16, the end on the inner peripheral side of the suction portion 15 is the core opening end. What is necessary is just to move to the outer side of the circumferential direction from the internal peripheral surface 9a of the part 9. FIG. By doing in this way, also when the projection part 9c which protruded in the suction part 16 side is provided in the inner surface 9b of the core opening end part 9, it is the same as that of the electromagnetic actuator 1 shown in FIG.10 and FIG.11. The armature 3 is driven in the direction of the shaft 5 because the suction section widths A1 and A2 can be kept constant even if the armature 3 is displaced in the horizontal direction of the paper in FIGS. Therefore, it is possible to keep the initial load force in the opposite direction to the driving force to be constant, and to reduce the operation variation of the amateur 3.
 また、本実施の形態3においても、吸引部15、16を通過する磁路M1の外側に少なくとも1つ以上の磁路M2を形成しているため、実施の形態1と同様の効果が得られ、電磁アクチュエータ1の外部に磁束を漏らすことなく、シャフト5が送出される際に安定した初期負荷力をアマチュア3に付与することができる。また、実施の形態3の電磁アクチュエータ1は、吸引部15、16を通過する磁路M1の外側に少なくとも1つ以上の磁路M2を形成しているため、周辺の磁性体の有無に依らず、アマチュア3がシャフト5の方向に駆動される駆動力と逆向きの初期負荷力を安定させることが可能であり、周辺機器の故障や誤動作を防止できるうえ、部品点数の削減による低コスト化及び小形化が可能となる。さらに、実施の形態1の図4で説明したように、磁気ギャップG1を磁気ギャップG2より小さくすることで、寸法公差や設置誤差によるアマチュア3の動作ばらつきを低減できるうえ、磁気ギャップG1及び磁気ギャップG2を調整することで、電磁アクチュエータ1を大形化することなく初期負荷力の調整が容易となる。 Also in the third embodiment, since at least one magnetic path M2 is formed outside the magnetic path M1 passing through the attracting portions 15 and 16, the same effect as in the first embodiment can be obtained. A stable initial load force can be applied to the armature 3 when the shaft 5 is delivered without leaking the magnetic flux outside the electromagnetic actuator 1. Moreover, since the electromagnetic actuator 1 of Embodiment 3 has at least one or more magnetic paths M2 formed outside the magnetic path M1 passing through the attracting portions 15 and 16, it does not depend on the presence or absence of a surrounding magnetic body. It is possible to stabilize the initial load force that is opposite to the driving force in which the armature 3 is driven in the direction of the shaft 5, and it is possible to prevent peripheral devices from malfunctioning or malfunctioning, and to reduce the cost by reducing the number of parts. Miniaturization is possible. Furthermore, as described with reference to FIG. 4 of the first embodiment, by making the magnetic gap G1 smaller than the magnetic gap G2, it is possible to reduce the operational variation of the armature 3 due to dimensional tolerances and installation errors, and to reduce the magnetic gap G1 and the magnetic gap. By adjusting G2, the initial load force can be easily adjusted without increasing the size of the electromagnetic actuator 1.
実施の形態4.
 図12は本発明の実施の形態4による電磁アクチュエータの概略断面図であり、図13は本発明の実施の形態4による他の電磁アクチュエータの概略断面図である。図12及び図13では、第一状態における電磁アクチュエータ1の構成を示している。実施の形態4の電磁アクチュエータ1は、吸引部15と吸引部16との間に非磁性材6aを配置している例である。非磁性材6aは吸引部15または吸引部16に固定されている。図12及び図13の電磁アクチュエータ1は、第一状態において、アマチュア3の周方向拡張部11bとコア2におけるコア開口端部9の内側面9bとの間に非磁性材6aが配置されている。図12及び図13の電磁アクチュエータ1は、第一状態において、アマチュア3の周方向拡張部11bとコア2におけるコア開口端部9の内側面9bとの間に挿入された非磁性材6aにより、アマチュア3の周方向拡張部11bとコア2におけるコア開口端部9の内側面9bとの間の磁気ギャップを一定に保つことが可能となり、すなわち吸引部15と吸引部16との間の磁気ギャップを一定に保つことが可能となる。図12及び図13の電磁アクチュエータ1は、非磁性材6aが第一状態における吸引部15と吸引部16との間の磁気ギャップを一定に保つので、アマチュア3をシャフト5が送出される方向に駆動する駆動力と逆向きの初期負荷力を一定に保つことが可能となり、アマチュア3の動作ばらつき、すなわち初期負荷力のばらつきを低減できる。
Embodiment 4 FIG.
FIG. 12 is a schematic sectional view of an electromagnetic actuator according to Embodiment 4 of the present invention, and FIG. 13 is a schematic sectional view of another electromagnetic actuator according to Embodiment 4 of the present invention. 12 and 13 show the configuration of the electromagnetic actuator 1 in the first state. The electromagnetic actuator 1 according to the fourth embodiment is an example in which a nonmagnetic material 6 a is disposed between the suction part 15 and the suction part 16. The nonmagnetic material 6 a is fixed to the suction part 15 or the suction part 16. 12 and 13, in the first state, the nonmagnetic material 6 a is disposed between the circumferentially extending portion 11 b of the armature 3 and the inner side surface 9 b of the core opening end portion 9 in the core 2. . In the first state, the electromagnetic actuator 1 of FIGS. 12 and 13 has a nonmagnetic material 6a inserted between the circumferentially extending portion 11b of the armature 3 and the inner surface 9b of the core opening end portion 9 of the core 2. It becomes possible to keep the magnetic gap between the circumferentially expanded portion 11b of the amateur 3 and the inner side surface 9b of the core opening end 9 in the core 2, that is, the magnetic gap between the attracting portion 15 and the attracting portion 16. Can be kept constant. The electromagnetic actuator 1 of FIGS. 12 and 13 keeps the armature 3 in the direction in which the shaft 5 is sent out, because the nonmagnetic material 6a keeps the magnetic gap between the suction part 15 and the suction part 16 in the first state constant. The initial load force in the direction opposite to the driving force to be driven can be kept constant, and the operation variation of the amateur 3, that is, the variation of the initial load force can be reduced.
 さらに図13のように、吸引部15と吸引部16との間の磁気ギャップと異なる磁気ギャップ、すなわちコア2におけるコア開口端部9の内周面9aとアマチュア3におけるアマチュア延伸部12の外周面12aとの間の磁気ギャップに非磁性材6bを追加することで、非磁性材6aによるアマチュア3の動作ばらつき低減効果に加えて、アマチュア3の回転や、アマチュア3の中心軸がコイル軸4aからの周方向(紙面左右方向)にずれる軸ずれを防止できるため、さらに安定したアマチュア3の動作が可能となる。 Further, as shown in FIG. 13, a magnetic gap different from the magnetic gap between the attracting portion 15 and the attracting portion 16, that is, the inner peripheral surface 9 a of the core opening end 9 in the core 2 and the outer peripheral surface of the amateur extending portion 12 in the amateur 3. By adding the nonmagnetic material 6b to the magnetic gap between the armature 12a and the armature 3a, the rotation of the armature 3 and the central axis of the armature 3 are removed from the coil shaft 4a. Therefore, the armature 3 can be operated more stably.
 また、本実施の形態4においても、吸引部15、16を通過する磁路M1の外側に少なくとも1つ以上の磁路M2を形成しているため、実施の形態1と同様の効果が得られ、電磁アクチュエータ1の外部に磁束を漏らすことなく、シャフト5が送出される際に安定した初期負荷力をアマチュア3に付与することができる。また、実施の形態4の電磁アクチュエータ1は、吸引部15、16を通過する磁路M1の外側に少なくとも1つ以上の磁路M2を形成しているため、周辺の磁性体の有無に依らず、アマチュア3がシャフト5の方向に駆動される駆動力と逆向きの初期負荷力を安定させることが可能であり、周辺機器の故障や誤動作を防止できるうえ、部品点数の削減による低コスト化及び小形化が可能となる。さらに、実施の形態1の図4で説明したように、磁気ギャップG1を磁気ギャップG2より小さくすることで、寸法公差や設置誤差によるアマチュア3の動作ばらつきを低減できるうえ、磁気ギャップG1及び磁気ギャップG2を調整することで、電磁アクチュエータ1を大形化することなく初期負荷力の調整が容易となる。 Also in the fourth embodiment, since at least one magnetic path M2 is formed outside the magnetic path M1 passing through the attracting portions 15 and 16, the same effect as in the first embodiment can be obtained. A stable initial load force can be applied to the armature 3 when the shaft 5 is delivered without leaking the magnetic flux outside the electromagnetic actuator 1. Moreover, since the electromagnetic actuator 1 of Embodiment 4 has at least one or more magnetic paths M2 formed outside the magnetic path M1 passing through the attracting portions 15 and 16, it does not depend on the presence or absence of a surrounding magnetic body. It is possible to stabilize the initial load force that is opposite to the driving force in which the armature 3 is driven in the direction of the shaft 5, and it is possible to prevent peripheral devices from malfunctioning or malfunctioning, and to reduce the cost by reducing the number of parts. Miniaturization is possible. Furthermore, as described with reference to FIG. 4 of the first embodiment, by making the magnetic gap G1 smaller than the magnetic gap G2, it is possible to reduce the operational variation of the armature 3 due to dimensional tolerances and installation errors, and to reduce the magnetic gap G1 and the magnetic gap. By adjusting G2, the initial load force can be easily adjusted without increasing the size of the electromagnetic actuator 1.
実施の形態5.
 図14は本発明の実施の形態5による電磁アクチュエータの概略断面図であり、図15は本発明の実施の形態5による他の電磁アクチュエータの概略断面図である。図14及び図15では、第一状態における電磁アクチュエータ1の構成を示している。実施の形態5の電磁アクチュエータ1は、吸引部15、16における互いに対向する対向面をアマチュア3の駆動方向、すなわちコイル軸4aに対して角度を設けて配置している例である。吸引部15、16おける互いに対向する対向面がコイル軸4aに対して傾斜している。なお、図14及び図15では、吸引部15、16おける互いに対向する対向面がコイル軸4aに対して同じ角度で傾斜している例を示した。図14では、吸引部15、16の対向面がコイル軸4aに近づくにつれてシャフト5側に進むように傾斜している例を示した。図15では、吸引部15、16の対向面がコイル軸4aに近づくにつれてシャフト5の反対側、すなわちアマチュア延伸部12側、開口14側に進むように傾斜している例を示した。アマチュア3は、図2で示した第二状態から図1で示した第一状態に戻る際、アマチュア3の自重(あるいは復帰ばねとの合力)によって加速され、大きな速度が生じる。この結果、アマチュア3はアマチュア3に設けられた吸引部16とコア2の吸引部15との間で衝突と反発を繰り返し、図1で示した第一状態で静止する。これにより、アマチュア3の吸引部16とコア2の吸引部15には、大きな衝撃が数回加わり、吸引部15、16に変形が生じる原因となる。
Embodiment 5 FIG.
FIG. 14 is a schematic sectional view of an electromagnetic actuator according to Embodiment 5 of the present invention, and FIG. 15 is a schematic sectional view of another electromagnetic actuator according to Embodiment 5 of the present invention. 14 and 15 show the configuration of the electromagnetic actuator 1 in the first state. The electromagnetic actuator 1 according to the fifth embodiment is an example in which opposing surfaces of the suction portions 15 and 16 facing each other are arranged at an angle with respect to the driving direction of the armature 3, that is, the coil shaft 4a. Opposing surfaces of the suction portions 15 and 16 facing each other are inclined with respect to the coil shaft 4a. 14 and 15 show an example in which the opposing surfaces of the suction portions 15 and 16 facing each other are inclined at the same angle with respect to the coil shaft 4a. FIG. 14 shows an example in which the opposing surfaces of the suction portions 15 and 16 are inclined so as to advance toward the shaft 5 as they approach the coil shaft 4a. FIG. 15 shows an example in which the opposing surfaces of the suction portions 15 and 16 are inclined so as to advance toward the opposite side of the shaft 5, that is, toward the armature extension portion 12 side and the opening 14 side as approaching the coil shaft 4 a. When the amateur 3 returns from the second state shown in FIG. 2 to the first state shown in FIG. 1, the amateur 3 is accelerated by its own weight (or the resultant force with the return spring), and a large speed is generated. As a result, the armature 3 repeatedly collides and repels between the suction portion 16 provided on the armature 3 and the suction portion 15 of the core 2, and stops in the first state shown in FIG. Thereby, a large impact is applied several times to the suction part 16 of the amateur 3 and the suction part 15 of the core 2, causing deformation of the suction parts 15 and 16.
 本実施の形態5では、吸引部15、16をコイル軸4aに垂直な面(水平面)に対して角度を設けて配置しているため、第一状態に戻る際の吸引部15、16に生じる衝撃が加わる方向をコイル軸4aの方向以外、すなわち吸引部15、16の対向面に平行な方向にも分散することが可能となり、衝突と反発の回数を低減できるため、吸引部15、16に衝撃が加わる回数が少なくなり、吸引部15、16の変形が許容範囲を超えるまでの期間(変形寿命)を延ばすことができる。このため、実施の形態5の電磁アクチュエータ1は、吸引部15、16の変形寿命を延ばすことができるので、吸引部15、16の変形による、駆動方向と逆向きの初期負荷力の変動を抑制でき、アマチュア3の動作ばらつきを低減できると共に製品寿命を長くすることが可能となる。 In the fifth embodiment, the suction portions 15 and 16 are arranged at an angle with respect to a plane (horizontal plane) perpendicular to the coil axis 4a, and thus are generated in the suction portions 15 and 16 when returning to the first state. The direction in which the impact is applied can be dispersed in directions other than the direction of the coil shaft 4a, that is, in the direction parallel to the opposing surfaces of the suction portions 15 and 16, and the number of collisions and repulsions can be reduced. The number of times the impact is applied is reduced, and the period (deformation life) until the deformation of the suction portions 15 and 16 exceeds the allowable range can be extended. For this reason, since the electromagnetic actuator 1 according to the fifth embodiment can extend the deformation life of the suction portions 15 and 16, the variation of the initial load force in the direction opposite to the driving direction due to the deformation of the suction portions 15 and 16 is suppressed. It is possible to reduce the operational variation of the amateur 3, and to prolong the product life.
 また、コイル4に通電されないコイル無通電時に、アマチュア3は、アマチュア3の自重(あるいは復帰ばねとの合力)により、アマチュア3がシャフト5の方向に駆動される駆動方向と逆向きの負荷力が加わり、吸引部15と吸引部16とが互いに接触する。実施の形態5の電磁アクチュエータ1では、吸引部15、16を水平面に対して角度を設けて配置しているため、コイル無通電時であっても、アマチュア3の自重(あるいは復帰ばねの合力)により、アマチュア3の吸引部16が対向するコア2の吸引部15の傾斜に沿って接触するので、アマチュア3の中心軸がコイル軸4aからの周方向(紙面左右方向)に軸ずれすることを防止できる。電磁アクチュエータ1は、コア2の貫通孔によりアマチュア3の中心軸とコイル軸4aとが一致するように配置されているが、コイル無通電時にコア2とアマチュア3が接触した際に、アマチュア3の中心軸とコイル軸4aがずれた場合には、コア2の貫通孔にコイル軸4aに垂直な方向の力が働く。電磁アクチュエータ1の稼働により、この力が働く累積期間が長くなると、貫通孔にゆがみが生じる可能性もある。しかし、実施の形態5の電磁アクチュエータ1は、コイル無通電時であっても、アマチュア3の中心軸がコイル軸4aからの周方向(紙面左右方向)に軸ずれすることを防止できるので、貫通孔のゆがみを防止でき、アマチュア3がシャフト5の方向に駆動される駆動方向と逆向きの初期負荷力のばらつきを低減でき、アマチュア3の動作ばらつきを低減できる。 When the coil 4 is not energized and the coil 4 is not energized, the armature 3 has a load force opposite to the driving direction in which the armature 3 is driven in the direction of the shaft 5 due to the weight of the armature 3 (or the resultant force with the return spring). In addition, the suction part 15 and the suction part 16 come into contact with each other. In the electromagnetic actuator 1 according to the fifth embodiment, the suction portions 15 and 16 are arranged at an angle with respect to the horizontal plane. Therefore, even when the coil is not energized, the weight of the amateur 3 (or the resultant force of the return spring) As a result, the suction part 16 of the armature 3 contacts along the inclination of the suction part 15 of the opposing core 2, so that the central axis of the armature 3 is displaced in the circumferential direction (left and right direction on the paper surface) from the coil shaft 4a. Can be prevented. The electromagnetic actuator 1 is arranged so that the central axis of the armature 3 and the coil axis 4a coincide with each other through the through-hole of the core 2. However, when the core 2 and the armature 3 come into contact with each other when the coil is not energized, When the center axis and the coil axis 4a are shifted, a force in a direction perpendicular to the coil axis 4a acts on the through hole of the core 2. If the cumulative period during which this force is applied becomes longer due to the operation of the electromagnetic actuator 1, the through hole may be distorted. However, the electromagnetic actuator 1 according to the fifth embodiment can prevent the center axis of the armature 3 from being displaced in the circumferential direction (left and right direction on the paper surface) from the coil shaft 4a even when the coil is not energized. The distortion of the hole can be prevented, the variation in the initial load force opposite to the driving direction in which the armature 3 is driven in the direction of the shaft 5 can be reduced, and the operation variation of the armature 3 can be reduced.
 また、本実施の形態5においても、吸引部15、16を通過する磁路M1の外側に少なくとも1つ以上の磁路M2を形成しているため、実施の形態1と同様の効果が得られ、電磁アクチュエータ1の外部に磁束を漏らすことなく、シャフト5が送出される際に安定した初期負荷力をアマチュア3に付与することができる。また、実施の形態5の電磁アクチュエータ1は、吸引部15、16を通過する磁路M1の外側に少なくとも1つ以上の磁路M2を形成しているため、周辺の磁性体の有無に依らず、アマチュア3がシャフト5の方向に駆動される駆動力と逆向きの初期負荷力を安定させることが可能であり、周辺機器の故障や誤動作を防止できるうえ、部品点数の削減による低コスト化及び小形化が可能となる。さらに、実施の形態1の図4で説明したように、磁気ギャップG1を磁気ギャップG2より小さくすることで、寸法公差や設置誤差によるアマチュア3の動作ばらつきを低減できるうえ、磁気ギャップG1及び磁気ギャップG2を調整することで、電磁アクチュエータ1を大形化することなく初期負荷力の調整が容易となる。 Also in the fifth embodiment, since at least one magnetic path M2 is formed outside the magnetic path M1 passing through the attracting portions 15 and 16, the same effect as in the first embodiment can be obtained. A stable initial load force can be applied to the armature 3 when the shaft 5 is delivered without leaking the magnetic flux outside the electromagnetic actuator 1. Further, in the electromagnetic actuator 1 according to the fifth embodiment, at least one or more magnetic paths M2 are formed outside the magnetic path M1 that passes through the attracting portions 15 and 16, and therefore, regardless of the presence or absence of the surrounding magnetic material. It is possible to stabilize the initial load force that is opposite to the driving force in which the armature 3 is driven in the direction of the shaft 5, and it is possible to prevent peripheral devices from malfunctioning or malfunctioning, and to reduce the cost by reducing the number of parts. Miniaturization is possible. Furthermore, as described with reference to FIG. 4 of the first embodiment, by making the magnetic gap G1 smaller than the magnetic gap G2, it is possible to reduce the operational variation of the armature 3 due to dimensional tolerances and installation errors, and to reduce the magnetic gap G1 and the magnetic gap. By adjusting G2, the initial load force can be easily adjusted without increasing the size of the electromagnetic actuator 1.
実施の形態6.
 図16は本発明の実施の形態6による電磁アクチュエータの概略断面図であり、図17は本発明の実施の形態6による電磁アクチュエータのコイル電流の例を示す図である。図16では、第一状態における電磁アクチュエータ1の構成を示している。図17では、比較のために実施の形態1における電磁アクチュエータ1のコイル電流も記載した。実施の形態6の電磁アクチュエータ1は、吸引部15、16における互いに対向する対向面をコイルの駆動方向側、すなわちシャフト5側に設けている例である。実施の形態6のコア2は、コア胴体部7のコア蓋部8側においてコイル軸4a側に延伸して設けられたコア延長部10を備えている。アマチュア根元部11における周方向拡張部11bの一部は、コア2のコア延長部10におけるシャフト5側の面であるシャフト方向面10aの一部に対向している。周方向拡張部11bとコア延長部10のシャフト方向面10aとが対向する部分が吸引部15、16である。すなわち、コア2におけるコア延長部10の吸引部15と、アマチュア3における周方向拡張部11bの吸引部16は互いに対向している。コア蓋部8の内側面8aは、アマチュア3に対向すると共にコイル4により発生された磁束が通過する磁路M2を形成するアマチュア対向部である。
Embodiment 6 FIG.
FIG. 16 is a schematic cross-sectional view of an electromagnetic actuator according to Embodiment 6 of the present invention, and FIG. 17 is a diagram showing an example of coil current of the electromagnetic actuator according to Embodiment 6 of the present invention. FIG. 16 shows the configuration of the electromagnetic actuator 1 in the first state. In FIG. 17, the coil current of the electromagnetic actuator 1 in Embodiment 1 is also shown for comparison. The electromagnetic actuator 1 according to the sixth embodiment is an example in which opposing surfaces of the suction portions 15 and 16 facing each other are provided on the coil driving direction side, that is, on the shaft 5 side. The core 2 according to the sixth embodiment includes a core extension portion 10 provided to extend toward the coil shaft 4 a side on the core lid portion 8 side of the core body portion 7. A part of the circumferentially extending portion 11 b in the amateur root portion 11 faces a portion of the shaft direction surface 10 a that is a surface on the shaft 5 side in the core extension portion 10 of the core 2. The portions where the circumferentially extending portion 11 b and the shaft direction surface 10 a of the core extending portion 10 face each other are suction portions 15 and 16. That is, the suction part 15 of the core extension part 10 in the core 2 and the suction part 16 of the circumferential extension part 11b in the armature 3 face each other. The inner side surface 8a of the core lid portion 8 is an amateur facing portion that forms a magnetic path M2 that faces the armature 3 and through which the magnetic flux generated by the coil 4 passes.
 コア2の吸引部15は、コイル軸4a側(内周側)の端がコア延長部10の内周面10bであり、外周側の端がアマチュア3におけるアマチュア根元部11の外周面11aからコイル軸4aに平行に伸ばした破線31が通過する位置である。アマチュア3の吸引部16は、外周側の端がアマチュア根元部11の外周面11aであり、コイル軸4a側(内周側)の端がコア2におけるコア延長部10の内周面10bからコイル軸4aに平行に伸ばした破線30が通過する位置である。図16では、アマチュア3の吸引部16とコア2の吸引部15との隙間が磁気ギャップG1であり、アマチュア3におけるアマチュア延伸部12の外周面12aと、コア2におけるコア開口端部9の内周面9aとの隙間が磁気ギャップG2であり、アマチュア3のアマチュア根元部11におけるシャフト5側の面であるシャフト方向面11dとコア2におけるコア蓋部8の内側面8aとの隙間が磁気ギャップG4である例を示した。磁気ギャップG1は、磁気ギャップG2及び磁気ギャップG4より小さくなっている。また、図16では、電磁アクチュエータ1における磁気ギャップG2は第一状態及び第二状態で変化せず、第一状態における磁気ギャップG1が第二状態では増加し、第一状態における磁気ギャップG4が第二状態では減少する例を示した。 The suction portion 15 of the core 2 has a coil shaft 4 a side (inner peripheral side) end that is the inner peripheral surface 10 b of the core extension 10, and an outer peripheral end that is coiled from the outer peripheral surface 11 a of the amateur root portion 11 in the armature 3. This is a position through which a broken line 31 extending parallel to the axis 4a passes. The suction portion 16 of the amateur 3 has an outer peripheral end that is the outer peripheral surface 11a of the amateur base 11, and a coil shaft 4a side (inner peripheral side) end that is coiled from the inner peripheral surface 10b of the core extension 10 in the core 2. This is a position through which a broken line 30 extending parallel to the axis 4a passes. In FIG. 16, the gap between the attraction portion 16 of the armature 3 and the attraction portion 15 of the core 2 is a magnetic gap G1, and the outer peripheral surface 12a of the armature extension portion 12 in the armature 3 and the core opening end portion 9 in the core 2 The gap with the peripheral surface 9a is the magnetic gap G2, and the gap between the shaft direction surface 11d which is the surface on the shaft 5 side of the armature root portion 11 of the armature 3 and the inner surface 8a of the core lid portion 8 in the core 2 is the magnetic gap. An example of G4 is shown. The magnetic gap G1 is smaller than the magnetic gap G2 and the magnetic gap G4. In FIG. 16, the magnetic gap G2 in the electromagnetic actuator 1 does not change between the first state and the second state, the magnetic gap G1 in the first state increases in the second state, and the magnetic gap G4 in the first state becomes the first. An example of decrease in two states is shown.
 図16に示すように、コイル4により発生された磁束は、コイル4の周りを通過する。実施の形態6の電磁アクチュエータ1におけるアマチュア3及びコア2を磁束が通過する経路、すなわち磁路は、2つの磁路M3と磁路M2が存在する。磁路M3はコイル4に近い側に形成された磁路であり、磁路M2は磁路M3よりも外側に形成された磁路である。コイル4により発生された磁束は駆動方向側に設けられた吸引部15、16を通る磁路M3と吸引部15、16を通らない磁路M2を通過する。 As shown in FIG. 16, the magnetic flux generated by the coil 4 passes around the coil 4. In the electromagnetic actuator 1 of the sixth embodiment, there are two magnetic paths M3 and M2 as paths through which the magnetic flux passes through the armature 3 and the core 2, that is, magnetic paths. The magnetic path M3 is a magnetic path formed on the side close to the coil 4, and the magnetic path M2 is a magnetic path formed outside the magnetic path M3. The magnetic flux generated by the coil 4 passes through a magnetic path M3 that passes through the attracting portions 15 and 16 provided on the driving direction side and a magnetic path M2 that does not pass through the attracting portions 15 and 16.
 実施の形態6の電磁アクチュエータ1では、磁路M3、磁路M2のいずれおいても磁束が磁気ギャップG2を通過するので、図17に示すように、コイル4に通電するコイル電流の値を増やす必要がある。図17の縦軸はコイル電流であり、横軸はアマチュア3が移動する長さであるストロークである。特性37が実施の形態6の電磁アクチュエータ1におけるコイル電流特性であり、特性36が実施の形態1の電磁アクチュエータ1におけるコイル電流特性である。P1は第一状態におけるアマチュア3の初期位置に対応するストロークであり、P2は第二状態におけるアマチュア3の位置に対応するストロークである。 In the electromagnetic actuator 1 according to the sixth embodiment, since the magnetic flux passes through the magnetic gap G2 in both the magnetic path M3 and the magnetic path M2, as shown in FIG. 17, the value of the coil current supplied to the coil 4 is increased. There is a need. The vertical axis in FIG. 17 is the coil current, and the horizontal axis is the stroke that is the length that the armature 3 moves. A characteristic 37 is a coil current characteristic in the electromagnetic actuator 1 of the sixth embodiment, and a characteristic 36 is a coil current characteristic in the electromagnetic actuator 1 of the first embodiment. P1 is a stroke corresponding to the initial position of the amateur 3 in the first state, and P2 is a stroke corresponding to the position of the amateur 3 in the second state.
 磁気ギャップG1が磁気ギャップG4より小さくなっているので、磁路M3の磁気抵抗は磁路M2の磁気抵抗より小さくなり、コイル4にコイル電流が流れると、磁束は磁気抵抗が小さい磁路M3を集中して通過することになる。コイル4に電流が流れ始めた通電初期は、電流値が小さいので、磁束は主に磁路M3を通過する。磁路M3を磁束が通過することで、アマチュア3の吸引部16とコア2の吸引部15は、共に磁束の向きに沿って同じ向きに磁化されるので、アマチュア3の吸引部16とコア2の吸引部15とが互いに引き合い、吸引部16と吸引部15との間に吸引力が発生する。可動自在のアマチュア3がコア2に吸引される吸引力の向きは、アマチュア3がシャフト5の方向に駆動される向きと逆である。すなわち、アマチュア3には、アマチュア3がシャフト5の方向に駆動される駆動力と逆向きの負荷力が付与される。アマチュア3がシャフト5の方向に駆動される駆動力の向きは、アマチュア3のアマチュア延伸部12からシャフト5の露出端部5aへの向きであり、図16における上向きである。アマチュア3に付与される負荷力の向きは、アマチュア3の吸引部16からコア2の吸引部15への向きであり、図16における下向きである。 Since the magnetic gap G1 is smaller than the magnetic gap G4, the magnetic resistance of the magnetic path M3 is smaller than the magnetic resistance of the magnetic path M2, and when a coil current flows through the coil 4, the magnetic flux passes through the magnetic path M3 having a small magnetic resistance. You will pass in a concentrated manner. Since the current value is small at the initial stage of energization when current begins to flow through the coil 4, the magnetic flux mainly passes through the magnetic path M3. Since the magnetic flux M passes through the magnetic path M3, the attracting portion 16 of the amateur 3 and the attracting portion 15 of the core 2 are both magnetized in the same direction along the direction of the magnetic flux. Are attracted to each other, and a suction force is generated between the suction portion 16 and the suction portion 15. The direction of the suction force by which the movable armature 3 is attracted to the core 2 is opposite to the direction in which the armature 3 is driven in the direction of the shaft 5. That is, a load force opposite to the driving force that drives the armature 3 in the direction of the shaft 5 is applied to the armature 3. The direction of the driving force by which the amateur 3 is driven in the direction of the shaft 5 is the direction from the amateur extending portion 12 of the amateur 3 to the exposed end portion 5a of the shaft 5, and is upward in FIG. The direction of the load force applied to the amateur 3 is the direction from the suction part 16 of the amateur 3 to the suction part 15 of the core 2, and is downward in FIG.
 コイル電流が増大すると、コイル4が発生する磁束は増大し、これに伴いアマチュア3がシャフト5の方向に駆動される駆動力及び、この駆動力と逆向きの負荷力も増大する。この際、吸引部16、15の吸引部幅は、アマチュア延伸部12の外径よりも小さいので、吸引部15、16が磁気飽和すると吸引力も飽和し、駆動力の大きさが吸引力の大きさを超えると、アマチュア3は、吸引部16がコア2の吸引部15から離れる向き、図における上向きに移動する。アマチュア3が移動し、吸引部15と吸引部16との磁気ギャップが増大すると、吸引部15と吸引部16との間の吸引力は急激に小さくなる。なお、リンク機構24に復帰ばねがある場合は、駆動力の大きさが吸引力と復帰ばねの引力との合力の大きさを超えると、アマチュア3は、吸引部16がコア2の吸引部15から離れる向き、図における上向きに移動する。 When the coil current increases, the magnetic flux generated by the coil 4 increases, and accordingly, the driving force for driving the armature 3 in the direction of the shaft 5 and the load force opposite to this driving force also increase. At this time, since the suction part width of the suction parts 16 and 15 is smaller than the outer diameter of the armature extension part 12, when the suction parts 15 and 16 are magnetically saturated, the suction force is saturated, and the magnitude of the driving force is the magnitude of the suction force. Beyond that, the armature 3 moves upward in the direction in which the suction part 16 moves away from the suction part 15 of the core 2. When the amateur 3 moves and the magnetic gap between the suction part 15 and the suction part 16 increases, the attractive force between the suction part 15 and the suction part 16 decreases rapidly. In the case where the link mechanism 24 has a return spring, when the magnitude of the driving force exceeds the magnitude of the resultant force of the suction force and the attractive force of the return spring, the armature 3 has the suction portion 16 as the suction portion 15 of the core 2. Move away from, upward in the figure.
 実施の形態6の電磁アクチュエータ1は、実施の形態1の電磁アクチュエータ1と同様に、コイル4の近くに形成される磁路M3に磁束が集中し負荷力を付与する吸引部15、16が磁気飽和したとしても、磁束は磁路M2を通過することになり、駆動力が継続してアマチュア3に付与される。したがって、実施の形態6の電磁アクチュエータ1は、実施の形態1の電磁アクチュエータ1と同様に、コイル4のコイル電流が十分増加した後にアマチュア3を第一状態から第二状態に動作させることが可能となり、大きな電流でアマチュア3を駆動でき、すなわちアマチュア3の駆動力を増加でき駆動特性を改善できる。 As in the electromagnetic actuator 1 of the first embodiment, the electromagnetic actuator 1 of the sixth embodiment has magnetic attraction portions 15 and 16 that apply a load force by concentrating magnetic flux on the magnetic path M3 formed near the coil 4. Even if it is saturated, the magnetic flux passes through the magnetic path M2, and the driving force is continuously applied to the amateur 3. Therefore, similarly to the electromagnetic actuator 1 of the first embodiment, the electromagnetic actuator 1 of the sixth embodiment can operate the armature 3 from the first state to the second state after the coil current of the coil 4 has sufficiently increased. Thus, the armature 3 can be driven with a large current, that is, the driving force of the armature 3 can be increased and the driving characteristics can be improved.
 また、実施の形態6の電磁アクチュエータ1は、吸引部16と吸引部15との間の磁気ギャップG1を実施の形態1における吸引部16と吸引部15との間の磁気ギャップよりも小さくすることで、磁路M3は実施の形態1における磁路M1より磁気抵抗が小さくなり、実施の形態1の電磁アクチュエータ1よりもアマチュア3内、すなわちアマチュア延伸部12及びアマチュア根元部11内を通過する磁束が増加する。電源電圧に対するコイル4の逆電圧はアマチュア3内を通過する磁束の時間変化に比例するため、図16に示す構成のように、アマチュア3を初期位置(第一状態の位置)でより磁化させたほうがコイル4の逆電圧を低減でき、コイル電流の低下を防止できる。実施の形態6の電磁アクチュエータ1は、吸引部16と吸引部15との間の磁気ギャップG1を小さくすることで、アマチュア3をシャフト5が送出される方向に駆動する駆動力を増加することが可能となり、アマチュア3の駆動特性を改善できる。なお、他の実施の形態で示した電磁アクチュエータ1でも、吸引部16と吸引部15との間の磁気ギャップG1を小さくすることで、アマチュア3をシャフト5が送出される方向に駆動する駆動力を増加することが可能となり、アマチュア3の駆動特性を改善できる。 Further, in the electromagnetic actuator 1 according to the sixth embodiment, the magnetic gap G1 between the suction portion 16 and the suction portion 15 is made smaller than the magnetic gap between the suction portion 16 and the suction portion 15 in the first embodiment. Thus, magnetic resistance of the magnetic path M3 is smaller than that of the magnetic path M1 in the first embodiment, and the magnetic flux passes through the armature 3, that is, the armature extending portion 12 and the armature root portion 11, as compared with the electromagnetic actuator 1 of the first embodiment. Will increase. Since the reverse voltage of the coil 4 with respect to the power supply voltage is proportional to the time change of the magnetic flux passing through the armature 3, the armature 3 is more magnetized at the initial position (first state position) as shown in FIG. This can reduce the reverse voltage of the coil 4 and prevent the coil current from decreasing. The electromagnetic actuator 1 of the sixth embodiment can increase the driving force for driving the armature 3 in the direction in which the shaft 5 is sent out by reducing the magnetic gap G1 between the attraction unit 16 and the attraction unit 15. The driving characteristics of the amateur 3 can be improved. In the electromagnetic actuator 1 shown in the other embodiments, the driving force for driving the armature 3 in the direction in which the shaft 5 is sent out by reducing the magnetic gap G1 between the attraction unit 16 and the attraction unit 15. The driving characteristics of the amateur 3 can be improved.
 また、本実施の形態6においても、吸引部15、16を通過する磁路M3の外側に少なくとも1つ以上の磁路M2を形成しているため、実施の形態1と同様の効果が得られ、電磁アクチュエータ1の外部に磁束を漏らすことなく、シャフト5が送出される際に安定した初期負荷力をアマチュア3に付与することができる。また、実施の形態6の電磁アクチュエータ1は、吸引部15、16を通過する磁路M3の外側に少なくとも1つ以上の磁路M2を形成しているため、周辺の磁性体の有無に依らず、アマチュア3がシャフト5の方向に駆動される駆動力と逆向きの初期負荷力を安定させることが可能であり、周辺機器の故障や誤動作を防止できるうえ、部品点数の削減による低コスト化及び小形化が可能となる。さらに、磁気ギャップG1を磁気ギャップG2及び磁気ギャップG4より小さくすることで、実施の形態1の図4で説明したのと同様に、寸法公差や設置誤差による動作ばらつきを低減できるうえ、磁気ギャップG1と磁気ギャップG2及び磁気ギャップG4を調整することで、電磁アクチュエータ1を大形化することなく初期負荷力の調整が容易となる。 Also in the sixth embodiment, since at least one magnetic path M2 is formed outside the magnetic path M3 passing through the attracting portions 15 and 16, the same effect as in the first embodiment is obtained. A stable initial load force can be applied to the armature 3 when the shaft 5 is delivered without leaking the magnetic flux outside the electromagnetic actuator 1. Further, in the electromagnetic actuator 1 according to the sixth embodiment, since at least one magnetic path M2 is formed outside the magnetic path M3 passing through the attracting portions 15 and 16, regardless of the presence or absence of a surrounding magnetic body. It is possible to stabilize the initial load force that is opposite to the driving force in which the armature 3 is driven in the direction of the shaft 5, and it is possible to prevent peripheral devices from malfunctioning or malfunctioning, and to reduce the cost by reducing the number of parts. Miniaturization is possible. Further, by making the magnetic gap G1 smaller than the magnetic gap G2 and the magnetic gap G4, as described with reference to FIG. 4 of the first embodiment, it is possible to reduce variation in operation due to dimensional tolerances and installation errors and to reduce the magnetic gap G1. By adjusting the magnetic gap G2 and the magnetic gap G4, the initial load force can be easily adjusted without increasing the size of the electromagnetic actuator 1.
 なお、ここでは、電磁アクチュエータ1は第一状態において、コア2の吸引部15とアマチュア3の吸引部16とが接触していない例を示したが、コア2の吸引部15とアマチュア3の吸引部16とが接触している場合も同様の効果を得ることができる。また、磁路M2の磁気ギャップが一定の例で説明したが、磁路M2の磁気ギャップは一定であることは必須ではない。例えば、アマチュア3の移動に伴って磁路M2の磁気ギャップが縮小してもよい。 Here, although the electromagnetic actuator 1 has shown the example in which the suction part 15 of the core 2 and the suction part 16 of the amateur 3 are not in contact in the first state, the suction part 15 of the core 2 and the suction of the amateur 3 are shown. The same effect can be obtained also when the part 16 is in contact. Moreover, although the magnetic gap of the magnetic path M2 has been described as an example, it is not essential that the magnetic gap of the magnetic path M2 is constant. For example, the magnetic gap of the magnetic path M2 may be reduced as the amateur 3 moves.
実施の形態7.
 図18及び図19は、実施の形態7における電磁アクチュエータ及び開閉装置を示す図である。図18は電磁アクチュエータの第一状態及び開極状態(OFF状態)を示しており、図19は電磁アクチュエータの第二状態及び閉極状態(ON状態)を示している。図20は、本発明の実施の形態7による第一の電磁アクチュエータの部分図である。図21は図20のコア及びアマチュアの部分図であり、図22は図20の緩衝材の図である。図20は、開極途中のコア2とアマチュア3の一部を示した図である。実施の形態7の電磁アクチュエータ1は、開極衝撃が印加されるコア2の吸引部15に、少なくとも一部がアマチュア3における周方向拡張部11bの吸引部16とコア2の吸引部15との間に介在するように、図22に示す緩衝材41が配置され、開極衝撃を緩衝材に印加する構成にしている。開極衝撃は、実施の形態4で説明したように、電磁アクチュエータ1が第二状態(図19参照)から第一状態(図18参照)に戻る際に、アマチュア3とコア2が衝突することで生じる衝撃である。なお、図20、図21ではコア2の吸引部15において緩衝材41が配置するための凹部が形成されている。アマチュア3における周方向拡張部11bと対向するコア2の部分が吸引部15なので、緩衝材41のコイル軸4a側の部分は、アマチュア3の吸引部16とコア2の吸引部15との間に介在するように配置された緩衝材41の部分である。図18及び図19において、電磁アクチュエータ1及び電流遮断部21の断面図を示しているが、引き出し線等が見えにくくならないように、断面においてハッチングを省略した。また、図18及び図19において、左右のコイル4の断面から紙面奥側に本来見える外周線(シャフト5の移動方向に垂直な方向の外周線)も、引き出し線等が見えにくくならないように、省略した。
Embodiment 7 FIG.
18 and 19 are diagrams showing an electromagnetic actuator and a switching device according to the seventh embodiment. FIG. 18 shows a first state and an open state (OFF state) of the electromagnetic actuator, and FIG. 19 shows a second state and a closed state (ON state) of the electromagnetic actuator. FIG. 20 is a partial view of the first electromagnetic actuator according to the seventh embodiment of the present invention. FIG. 21 is a partial view of the core and amateur of FIG. 20, and FIG. 22 is a view of the cushioning material of FIG. FIG. 20 is a view showing a part of the core 2 and the amateur 3 in the middle of the opening. In the electromagnetic actuator 1 according to the seventh embodiment, at least a portion of the suction portion 16 of the circumferential extension portion 11b in the armature 3 and the suction portion 15 of the core 2 are connected to the suction portion 15 of the core 2 to which the opening impact is applied. A cushioning material 41 shown in FIG. 22 is disposed so as to be interposed therebetween, and an opening impact is applied to the cushioning material. As described in the fourth embodiment, the opening impact is caused when the armature 3 and the core 2 collide when the electromagnetic actuator 1 returns from the second state (see FIG. 19) to the first state (see FIG. 18). It is an impact caused by. 20 and 21, a recess for arranging the buffer material 41 is formed in the suction portion 15 of the core 2. Since the portion of the core 2 facing the circumferentially extending portion 11 b in the amateur 3 is the suction portion 15, the portion on the coil shaft 4 a side of the cushioning material 41 is between the suction portion 16 of the amateur 3 and the suction portion 15 of the core 2. It is a part of the buffer material 41 arrange | positioned so that it may interpose. 18 and 19, cross-sectional views of the electromagnetic actuator 1 and the current interrupting unit 21 are shown, but hatching is omitted in the cross-section so as not to make it difficult to see the lead lines and the like. Further, in FIGS. 18 and 19, an outer peripheral line (peripheral line in a direction perpendicular to the moving direction of the shaft 5) that is originally visible from the cross section of the left and right coils 4 does not become difficult to see a lead line or the like. Omitted.
 開閉装置は一般的に、開放バネ等の蓄勢力を利用して閉極状態(ON状態)から開極状態(OFF状態)に切り替える。その際に、開極衝撃は逆向きの初期負荷力を与えるコア2の吸引部15とアマチュア3の吸引部16に印加されるため、開閉装置の多頻度開閉に伴い剛性の小さいコア2の吸引部15が塑性変形する場合がある。この塑性変形が発生した場合には、この塑性変形に伴い初期負荷力がバラつき、電磁アクチュエータの駆動特性は悪化する。なお、図20、図21ではコア2とアマチュア3が角柱の場合を例として挙げているが、円柱の場合も同様である。 The switchgear is generally switched from a closed state (ON state) to an open state (OFF state) using a stored energy such as an open spring. At that time, the opening impact is applied to the suction portion 15 of the core 2 and the suction portion 16 of the armature 3 which give the initial load force in the opposite direction. The part 15 may be plastically deformed. When this plastic deformation occurs, the initial load force varies with this plastic deformation, and the drive characteristics of the electromagnetic actuator deteriorate. 20 and 21 exemplify the case where the core 2 and the armature 3 are prisms, the same applies to the case of a cylinder.
 実施の形態7の第一の電磁アクチュエータ1は、図20に示すように、開極衝撃が印加されるコア2の吸引部15に緩衝材41を配置し、開極衝撃を緩衝材に印加する構成にしている。これにより、実施の形態7の第一の電磁アクチュエータ1は、逆向きの初期負荷力を与えるコア2の吸引部15の塑性変形を防止でき、初期負荷力のバラつきを抑制できるため、電磁アクチュエータの駆動特性は悪化することはない。緩衝材41としては、塑性変形しにくい比較的剛性の大きいステンレスなどの非磁性金属や、衝撃を吸収できるゴムや樹脂などの弾性部材を用いることができる。なお、コア2における緩衝材41の配置方法としては、図23の場合も考えられる。 As shown in FIG. 20, the first electromagnetic actuator 1 according to the seventh embodiment arranges the buffer material 41 in the suction portion 15 of the core 2 to which the opening shock is applied, and applies the opening shock to the buffer material. It has a configuration. As a result, the first electromagnetic actuator 1 according to the seventh embodiment can prevent plastic deformation of the suction portion 15 of the core 2 that gives an initial load force in the opposite direction, and can suppress variations in the initial load force. The drive characteristics do not deteriorate. As the buffer material 41, a non-magnetic metal such as stainless steel that is relatively hard to be plastically deformed or an elastic member such as rubber or resin that can absorb an impact can be used. In addition, as a method of arranging the buffer material 41 in the core 2, the case of FIG.
 図23は本発明の実施の形態7による第二の電磁アクチュエータの部分図であり、図24は図23の緩衝材の図である。図23に示した実施の形態7の第二の電磁アクチュエータ1は、図20に示した実施の形態7の第一の電磁アクチュエータ1よりもコア2の吸引部15の面積を小さくした例である。 FIG. 23 is a partial view of a second electromagnetic actuator according to the seventh embodiment of the present invention, and FIG. 24 is a view of the cushioning material of FIG. The second electromagnetic actuator 1 of the seventh embodiment shown in FIG. 23 is an example in which the area of the suction portion 15 of the core 2 is made smaller than that of the first electromagnetic actuator 1 of the seventh embodiment shown in FIG. .
 また、緩衝材41の厚みを変更することで、逆向きの初期負荷力を与えるコア2の吸引部15、アマチュア3の吸引部16の磁気ギャップを調整でき、逆向きの初期負荷力の大きさを容易に調整できる。したがって、部品バラつきや組立バラつきに応じて変化する電磁アクチュエータ1の駆動特性を、緩衝材41の厚み変更により逆向きの初期負荷力を調整することで、安定させることが可能となる。 In addition, by changing the thickness of the buffer material 41, the magnetic gap between the attracting portion 15 of the core 2 and the attracting portion 16 of the amateur 3 that gives an initial load force in the opposite direction can be adjusted, and the magnitude of the reverse initial load force can be adjusted. Can be adjusted easily. Therefore, it is possible to stabilize the drive characteristics of the electromagnetic actuator 1 that change in accordance with component variations and assembly variations by adjusting the initial load force in the opposite direction by changing the thickness of the buffer material 41.
 なお、図20及び図23では、緩衝材41をコア2の側に配置したが、図25及び図27のようにアマチュア3の側に配置してもよい。図25は本発明の実施の形態7による第三の電磁アクチュエータの部分図であり、図26は図25の緩衝材を示す図である。図27は本発明の実施の形態7による第四の電磁アクチュエータの部分図であり、図28は図27の緩衝材の図である。図25、図27に示した実施の形態7の電磁アクチュエータ1は、開極衝撃が印加されるアマチュア3の吸引部16に、少なくとも一部がアマチュア3における周方向拡張部11bの吸引部16とコア2の吸引部15との間に介在するように、緩衝材41が配置され、開極衝撃を緩衝材に印加する構成にしている。図25、図27ではアマチュア3の吸引部16において緩衝材41が配置するための凹部が形成されている。コア2と対向するアマチュア3における周方向拡張部11bの部分が吸引部16なので、緩衝材41のコイル軸4aと反対側の部分(外周側の部分)は、アマチュア3の吸引部16とコア2の吸引部15との間に介在するように配置された緩衝材41の部分である。 20 and 23, the cushioning material 41 is disposed on the core 2 side, but may be disposed on the amateur 3 side as illustrated in FIGS. 25 and 27. FIG. 25 is a partial view of a third electromagnetic actuator according to Embodiment 7 of the present invention, and FIG. 26 is a view showing the cushioning material of FIG. 27 is a partial view of a fourth electromagnetic actuator according to the seventh embodiment of the present invention, and FIG. 28 is a view of the cushioning material of FIG. The electromagnetic actuator 1 according to the seventh embodiment shown in FIGS. 25 and 27 includes at least a part of the suction part 16 of the circumferential extension 11b in the amateur 3 and the suction part 16 of the amateur 3 to which the opening impact is applied. A buffer material 41 is arranged so as to be interposed between the suction portion 15 of the core 2 and a contact opening shock is applied to the buffer material. In FIG. 25 and FIG. 27, the recessed part for arrange | positioning the shock absorbing material 41 in the attraction | suction part 16 of the amateur 3 is formed. Since the portion of the circumferentially extending portion 11b in the armature 3 facing the core 2 is the suction portion 16, the portion of the cushioning material 41 opposite to the coil shaft 4a (portion on the outer peripheral side) is the suction portion 16 of the armature 3 and the core 2 It is a part of the buffer material 41 arrange | positioned so that it may interpose between the suction parts 15 of this.
 実施の形態7の電磁アクチュエータ1は、コア2の内側に設けられた吸引部15を磁束が通過する第一の磁路M1と、第一の磁路M1の外側にアマチュア3に対向すると共に磁束が通過する第二の磁路M2を形成するので、電磁アクチュエータ1の外部に磁束を漏らすことなく、アマチュア3を駆動する際に安定した初期負荷力をアマチュア3に付与することができる。また、実施の形態7の電磁アクチュエータ1は、コア2の吸引部15の間又はアマチュア3の吸引部16に緩衝材41を備えたので、コア2の吸引部15の剛性が小さい場合でもコア2の吸引部15の塑性変形を防止でき、初期負荷力のバラつきを抑制できる。このため、実施の形態7の電磁アクチュエータ1は、電磁アクチュエータの駆動特性を良好のまま維持することができる。すなわち、実施の形態7の電磁アクチュエータ1は、製品寿命を長くすることが可能となる。 The electromagnetic actuator 1 according to the seventh embodiment includes a first magnetic path M1 through which a magnetic flux passes through an attracting portion 15 provided inside the core 2, and an armature 3 on the outside of the first magnetic path M1 and a magnetic flux. The second magnetic path M2 through which the armature passes is formed, so that a stable initial load force can be applied to the armature 3 when the armature 3 is driven without leaking the magnetic flux outside the electromagnetic actuator 1. Moreover, since the electromagnetic actuator 1 according to the seventh embodiment includes the buffer material 41 between the suction portions 15 of the core 2 or the suction portion 16 of the armature 3, even if the rigidity of the suction portion 15 of the core 2 is small, the core 2. The plastic deformation of the suction portion 15 can be prevented, and variations in the initial load force can be suppressed. For this reason, the electromagnetic actuator 1 of Embodiment 7 can maintain the drive characteristic of an electromagnetic actuator with favorable. That is, the electromagnetic actuator 1 of Embodiment 7 can extend the product life.
 実施の形態7の開閉装置50は、コア2の内側に設けられた吸引部15を磁束が通過する第一の磁路M1と、第一の磁路M1の外側にアマチュア3に対向すると共に磁束が通過する第二の磁路M2を形成する電磁アクチュエータ1を備えるので、電磁アクチュエータ1の外部に磁束を漏らすことなく、アマチュア3を駆動する際に安定した初期負荷力をアマチュア3に付与することができ、電流遮断部21を閉路状態にする閉路操作を確実に実行することができる。また、実施の形態7の開閉装置50は、電磁アクチュエータ1における、コア2の吸引部15の間又はアマチュア3の吸引部16の間に緩衝材41を備えたので、コア2の吸引部15の剛性が小さい場合でもコア2の吸引部15の塑性変形を防止でき、初期負荷力のバラつきを抑制できる。このため、実施の形態7の開閉装置50は、電磁アクチュエータの駆動特性を良好のまま維持することができ、電流遮断部21を閉路状態にする閉路操作を長期間確実に実行することができる。 The opening / closing device 50 according to the seventh embodiment includes a first magnetic path M1 through which the magnetic flux passes through the attracting portion 15 provided inside the core 2, and an armature 3 that faces the armature 3 outside the first magnetic path M1. Since the electromagnetic actuator 1 that forms the second magnetic path M2 through which the armature passes is provided, a stable initial load force is applied to the armature 3 when the armature 3 is driven without leaking the magnetic flux outside the electromagnetic actuator 1. Thus, the closing operation for closing the current interrupting portion 21 can be reliably performed. In addition, the opening / closing device 50 according to the seventh embodiment includes the buffer material 41 between the suction part 15 of the core 2 or the suction part 16 of the amateur 3 in the electromagnetic actuator 1. Even when the rigidity is small, plastic deformation of the suction portion 15 of the core 2 can be prevented, and variations in the initial load force can be suppressed. For this reason, the opening / closing device 50 according to the seventh embodiment can maintain the drive characteristics of the electromagnetic actuator in good condition, and can reliably perform the closing operation for closing the current interrupting unit 21 for a long period of time.
実施の形態8.
 図29及び図30は本発明の実施の形態8の電磁アクチュエータのコイル電流制御を説明する図である。図29はコイル電流の電流値制御を説明する図であり、図30はコイル電流値制御のタイミングを説明する図である。図31、図32及び図33は、本発明の実施の形態8による電流供給装置の例を示す図である。図34及び図35は、本発明の実施の形態8による電磁アクチュエータの概略断面図である。図34は電磁アクチュエータ1の第二状態すなわち開閉装置50の閉極状態(図2参照)を示しており、図35は電磁アクチュエータ1の第一状態すなわち開閉装置50の開極状態(図1参照)を示している。実施の形態8における電磁アクチュエータ1及び開閉装置50の基本構成を示す図は、実施の形態1を示す図1~4と同様である。実施の形態8の電磁アクチュエータ1は、開極衝撃によるアマチュア3のバウンスを低減又は防止するコイル電流制御を行う電流供給装置43を備える点で実施の形態1の電磁アクチュエータ1と異なる。
Embodiment 8 FIG.
29 and 30 are diagrams illustrating coil current control of the electromagnetic actuator according to the eighth embodiment of the present invention. FIG. 29 is a diagram for explaining the current value control of the coil current, and FIG. 30 is a diagram for explaining the timing of the coil current value control. 31, FIG. 32 and FIG. 33 are diagrams showing examples of the current supply device according to the eighth embodiment of the present invention. 34 and 35 are schematic cross-sectional views of the electromagnetic actuator according to the eighth embodiment of the present invention. FIG. 34 shows the second state of the electromagnetic actuator 1, that is, the closing state of the switching device 50 (see FIG. 2). FIG. 35 shows the first state of the electromagnetic actuator 1, that is, the opening state of the switching device 50 (see FIG. 1). ). The basic configuration of the electromagnetic actuator 1 and the opening / closing device 50 according to the eighth embodiment is the same as FIGS. 1 to 4 showing the first embodiment. The electromagnetic actuator 1 of the eighth embodiment differs from the electromagnetic actuator 1 of the first embodiment in that it includes a current supply device 43 that performs coil current control that reduces or prevents bounce of the armature 3 due to the opening impact.
 電磁アクチュエータ1は、リンク機構24を介して電流遮断部21の接点(可動接点22、固定接点23)を閉極する。また、電磁アクチュエータ1は、開閉装置50の電流遮断部21の開極の際には、アマチュア3とコア2との衝突による開極衝撃がアマチュア3に印加され、アマチュア3は図34、図35の紙面上方向にバウンスする。アマチュア3のバウンスは、リンク機構24を介して電流遮断部21の接点(可動接点22、固定接点23)を閉極させる方向(図1における紙面下方向)に可動接点22を移動させるため、接点間の開離距離、すなわち可動接点22と固定接点23との開離距離を減少させ開閉装置50の遮断性能を低下させる。 The electromagnetic actuator 1 closes the contacts (movable contact 22 and fixed contact 23) of the current interrupting part 21 via the link mechanism 24. In the electromagnetic actuator 1, when the current interrupting portion 21 of the switchgear 50 is opened, the opening impact caused by the collision between the armature 3 and the core 2 is applied to the armature 3, and the armature 3 is shown in FIGS. 34 and 35. Bounce upwards. The bounce of the amateur 3 moves the movable contact 22 through the link mechanism 24 in a direction (downward in the drawing in FIG. 1) that closes the contact (movable contact 22, fixed contact 23) of the current interrupting portion 21. The separation distance between them, that is, the separation distance between the movable contact 22 and the fixed contact 23 is reduced, and the breaking performance of the switchgear 50 is lowered.
 図29は、実施の形態1における開極位置(図1参照)での電磁アクチュエータ1の駆動特性の例を示している。図29において、縦軸は付与力であり、横軸はコイル電流である。コイル電流はコイル電源45又は他のコイル電源から供給される。電流値Ic2以下で0以上の電流域における、ある一定のコイル電流値では、磁路M1を通る磁束が磁路M2を通る磁束より多い。電流値Ic2以下で0以上の電流域では、磁路M1において開極方向の吸引力(図1の紙面下方向)を与える磁気ギャップが小さいため、図29の付与力特性101が示すように電磁アクチュエータ1の出力を負(図1の紙面下方向)にすることが可能である。開極の際に、アマチュア3に開極衝撃が印加されアマチュア3がバウンスする直前から、図29の負の付与力が発生するようにある一定のコイル電流、例えば電流値Ic2のコイル電流を通電することで、アマチュア3には開閉装置50の開極方向の吸引力(図1の紙面下方向)が発生し、開極衝撃によるアマチュア3のバウンスを低減することが可能である。これにより、実施の形態8の電磁アクチュエータ1は、電流遮断部21の接点間の開離距離、すなわち可動接点22と固定接点23との開離距離の減少を抑制でき、開閉装置50の電流遮断性能の低下を防止できる。 FIG. 29 shows an example of drive characteristics of the electromagnetic actuator 1 at the opening position (see FIG. 1) in the first embodiment. In FIG. 29, the vertical axis represents the applied force, and the horizontal axis represents the coil current. The coil current is supplied from the coil power supply 45 or another coil power supply. In a certain coil current value in a current region that is equal to or smaller than the current value Ic2 and equal to or greater than 0, the magnetic flux passing through the magnetic path M1 is larger than the magnetic flux passing through the magnetic path M2. In the current region of current value Ic2 or less and 0 or more, the magnetic gap that provides the attractive force in the opening direction (downward direction in FIG. 1) in the magnetic path M1 is small. It is possible to make the output of the actuator 1 negative (downward in FIG. 1). At the time of opening, a certain coil current, for example, a coil current having a current value Ic2 is applied so that the negative applying force shown in FIG. 29 is generated immediately before the armature 3 is bounced when an opening shock is applied to the armature 3. As a result, an attractive force in the opening direction of the opening / closing device 50 (downward in the drawing in FIG. 1) is generated in the amateur 3, and it is possible to reduce bounce of the amateur 3 due to the opening impact. As a result, the electromagnetic actuator 1 according to the eighth embodiment can suppress the decrease in the separation distance between the contacts of the current interrupting portion 21, that is, the separation distance between the movable contact 22 and the fixed contact 23, and the current interruption of the switching device 50. Performance degradation can be prevented.
 開極の際に、アマチュア3に開極衝撃が印加されアマチュア3がバウンスする直前に、ある一定のコイル電流を通電する方法において、例えば、図30に示すように開極時間T1を事前に測定し、開極時間T1の到達直前にある一定のコイル電流、例えば電流値Ic2のコイル電流を通電する制御(第一通電方法)を行えばよい。図30は、電流遮断部21の接点の閉極状態から開極状態になる際のアマチュア3のストローク特性を示している。図30において、縦軸はアマチュアストロークであり、横軸は時間である。図30に示したアマチュア3のストローク値は、電流遮断部21が閉極状態のときに0であり、電流遮断部21が最大に開極した状態(最終開極状態、最大開極状態)のときにSt1になる。図30に示したアマチュア3のストロークは、正の方向が図1の紙面下方向である。 In the method of energizing a certain coil current immediately before the armature 3 is bounced when an opening shock is applied to the armature 3 at the time of the opening, for example, the opening time T1 is measured in advance as shown in FIG. Then, a control (first energization method) for energizing a certain coil current, for example, a coil current having a current value Ic2, just before reaching the opening time T1 may be performed. FIG. 30 shows the stroke characteristics of the armature 3 when the contact of the current interrupting part 21 is changed from the closed state to the open state. In FIG. 30, the vertical axis is an amateur stroke, and the horizontal axis is time. The stroke value of the armature 3 shown in FIG. 30 is 0 when the current interrupting part 21 is in a closed state, and the current interrupting part 21 is in the maximum open state (final open state, maximum open state). Sometimes St1. In the stroke of the armature 3 shown in FIG. 30, the positive direction is the downward direction on the page of FIG.
 開極時間T1の到達直前にある一定のコイル電流、例えば電流値Ic2のコイル電流を通電するために、実施の形態8の電磁アクチュエータ1は例えばタイマ46を有するコイル電源45を備えている(図31参照)。コイル電源45は、電流遮断部21の開極動作が開始されてからタイマによりカウントされた時間がT1になったときに、ある一定のコイル電流、例えば電流値Ic2のコイル電流を通電する。コイル電源45は、前述した電流供給装置43である。 In order to energize a certain coil current, for example, a coil current having a current value Ic2, immediately before reaching the opening time T1, the electromagnetic actuator 1 of the eighth embodiment includes a coil power supply 45 having a timer 46, for example (FIG. 31). The coil power supply 45 energizes a certain coil current, for example, a coil current having a current value Ic2, when the time counted by the timer after the opening operation of the current interrupting unit 21 is started becomes T1. The coil power supply 45 is the current supply device 43 described above.
 また、第一通電方法と別の通電方法もある。第二通電方法として、図32に示すように、レーザー変位計やポテンショメータ等のストローク検出器47を用いて、図30に示すアマチュアストロークを測定し、電流遮断部21の最終開極位置(最大開極位置)であるストローク値St1の直前に、ある一定のコイル電流、例えば電流値Ic2のコイル電流を通電する制御を行えばよい。図32に示した第二通電方法を実行する電流供給装置43は、コイル電源45とストローク検出器47を備えた例である。 Also, there is a different energization method from the first energization method. As the second energization method, as shown in FIG. 32, the armature stroke shown in FIG. 30 is measured using a stroke detector 47 such as a laser displacement meter or a potentiometer, and the final opening position (maximum opening) of the current interrupting unit 21 is measured. Just before the stroke value St1 that is the pole position), a control to energize a certain coil current, for example, the coil current having the current value Ic2, may be performed. A current supply device 43 that executes the second energization method shown in FIG. 32 is an example including a coil power supply 45 and a stroke detector 47.
 また、第三通電方法として、図33に示すように、コア2もしくはアマチュア3に貼付した加速度センサ48等で加速度の変化を測定し、アマチュア3に開極衝撃が印加された瞬間に生じる変曲点で、ある一定のコイル電流、例えば電流値Ic2のコイル電流を通電する制御方法も考えられる。図33に示した第三通電方法を実行する電流供給装置43は、コイル電源45と加速度センサ48を備えた例である。更に他の方法も考えられる。第四通電方法として、図34、図35に示すようにアマチュア3のストロークによって、強制的にスイッチ51をオン(ON)し、ある一定の電流、例えば電流値Ic2のコイル電流をコイルに通電する構成も考えられる。 Further, as a third energization method, as shown in FIG. 33, a change in acceleration is measured with an acceleration sensor 48 or the like attached to the core 2 or the amateur 3, and an inflection that occurs at the moment when the opening impact is applied to the amateur 3. In terms of this point, a control method of energizing a certain coil current, for example, a coil current having a current value Ic2 is also conceivable. A current supply device 43 that executes the third energization method shown in FIG. 33 is an example including a coil power supply 45 and an acceleration sensor 48. Still other methods are possible. As a fourth energization method, as shown in FIGS. 34 and 35, the switch 51 is forcibly turned on (ON) by the stroke of the armature 3, and a certain current, for example, a coil current having a current value Ic2 is energized to the coil. Configuration is also conceivable.
 第四通電方法を実行するために、実施の形態8の電磁アクチュエータ1は、例えば機械動作式のスイッチ51と、ある一定のコイル電流、例えば電流値Ic2のコイル電流を通電する直流電源52を備えている。スイッチ51は、アマチュア3がコア2に衝突する直前又は衝突したときにスイッチ51がオンする位置に配置されている。スイッチ51は、一度オンするとアマチュア3がバウンスしたとしてもオン状態が維持される。そして、スイッチ51は、電流遮断部21の閉極状態すなわち開閉装置50の閉極状態に移行する際にオフされる。なお、直流電源52は、電流遮断部21が完全に開極された場合に電流の通電を停止するようになっている。図34、図35に示した第四通電方法を実行する電流供給装置43は、スイッチ51と直流電源52を備えた例である。図34及び図35において、電磁アクチュエータ1の断面図を示しているが、引き出し線等が見えにくくならないように、断面においてハッチングを省略した。また、図34及び図35において、左右のコイル4の断面から紙面奥側に本来見える外周線も、引き出し線等が見えにくくならないように、省略した。 In order to execute the fourth energization method, the electromagnetic actuator 1 according to the eighth embodiment includes, for example, a mechanically operated switch 51 and a DC power source 52 that energizes a certain coil current, for example, a coil current having a current value Ic2. ing. The switch 51 is disposed at a position where the switch 51 is turned on immediately before or when the armature 3 collides with the core 2. Once the switch 51 is turned on, it remains on even if the amateur 3 bounces. The switch 51 is turned off when the current interrupting unit 21 is switched to the closed state, that is, the switching device 50 is closed. Note that the DC power supply 52 stops energization of the current when the current interrupting unit 21 is completely opened. A current supply device 43 that executes the fourth energization method shown in FIGS. 34 and 35 is an example including a switch 51 and a DC power supply 52. 34 and 35 show cross-sectional views of the electromagnetic actuator 1, but hatching is omitted in the cross-section so as not to make it difficult to see the lead lines and the like. In FIGS. 34 and 35, the outer peripheral lines that are originally visible from the cross section of the left and right coils 4 are omitted so that the lead lines and the like are not easily seen.
 実施の形態8の電磁アクチュエータ1は、開閉装置50の開極の際に、アマチュア3に開極衝撃が印加されアマチュア3がバウンスする直前から、図29の負の付与力が発生するようにある一定のコイル電流、例えば電流値Ic2のコイル電流を通電するので、アマチュア3には開閉装置50の開極方向の吸引力(図1の紙面下方向)を発生させて、開極衝撃によるアマチュア3のバウンスを低減することができる。これにより、実施の形態8の電磁アクチュエータ1は、電流遮断部21の接点間の開離距離、すなわち可動接点22と固定接点23との開離距離の減少を抑制でき、開閉装置50の電流遮断性能の低下を防止できる。 In the electromagnetic actuator 1 according to the eighth embodiment, when the opening / closing device 50 is opened, a negative applying force shown in FIG. 29 is generated immediately before the opening impact is applied to the armature 3 and the armature 3 bounces. Since a constant coil current, for example, a coil current having a current value Ic2 is applied, the armature 3 generates an attractive force in the opening direction of the switchgear 50 (downward in the drawing in FIG. 1), and the armature 3 due to the opening shock. Bounce can be reduced. As a result, the electromagnetic actuator 1 according to the eighth embodiment can suppress the decrease in the separation distance between the contacts of the current interrupting portion 21, that is, the separation distance between the movable contact 22 and the fixed contact 23, and the current interruption of the switching device 50. Performance degradation can be prevented.
 実施の形態8の開閉装置50は、電磁アクチュエータ1が、開閉装置50の開極の際に、アマチュア3に開極衝撃が印加されアマチュア3がバウンスする直前から、図29の負の付与力が発生するようにある一定のコイル電流、例えば電流値Ic2のコイル電流を通電するので、開極衝撃によるアマチュア3のバウンスを低減でき、電流遮断部21の接点間の開離距離、すなわち可動接点22と固定接点23との開離距離の減少を抑制でき、開閉装置50の電流遮断性能の低下を防止できる。 In the switchgear 50 according to the eighth embodiment, when the electromagnetic actuator 1 opens the switchgear 50, the negative applying force shown in FIG. 29 is applied immediately before the armature 3 bounces when an opening impact is applied to the armature 3. Since a certain coil current to be generated, for example, a coil current having a current value Ic2, is applied, bounce of the armature 3 due to the opening impact can be reduced, and the separation distance between the contacts of the current interrupting portion 21, that is, the movable contact 22 And the contact distance between the fixed contact 23 can be suppressed, and the current interruption performance of the switching device 50 can be prevented from being lowered.
 なお、スイッチ51は、アマチュア3により押される機械動作式のスイッチに限らず、他のスイッチでも構わない。例えば、ストローク検出器47や加速度センサ48からの信号が予め定めた閾値を超えたことを示すトリガ信号でオンするようにしてもよい。また、実施の形態8に示した、開極衝撃によるアマチュア3のバウンスを低減するコイル電流の制御方法は、実施の形態2~7の電磁アクチュエータ1及び開閉装置50にも適用できる。 Note that the switch 51 is not limited to a mechanically operated switch pushed by the amateur 3, and may be another switch. For example, it may be turned on with a trigger signal indicating that signals from the stroke detector 47 and the acceleration sensor 48 have exceeded a predetermined threshold. The coil current control method for reducing the bounce of the armature 3 due to the opening impact shown in the eighth embodiment can also be applied to the electromagnetic actuator 1 and the switchgear 50 according to the second to seventh embodiments.
 なお、本発明は、矛盾のない範囲内において、各実施の形態の内容を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。 In the present invention, it is possible to freely combine the contents of the respective embodiments or to appropriately modify and omit the respective embodiments within a consistent range.
 1…電磁アクチュエータ、2…コア、3…アマチュア、4…コイル、4a…コイル軸、6a…非磁性材、7…コア胴体部、8…コア蓋部、8a…内側面、9…コア開口端部、9a…内周面、9b…内側面、9c…突起部、10…コア延長部、11…アマチュア根元部、11b…周方向拡張部、11c…突起部、12…アマチュア延伸部、14…開口、15…吸引部、21…電流遮断部、22…可動接点、23…固定接点、24…リンク機構、41…緩衝材、43…電流供給装置、50…開閉装置、G1、G2、G4…磁気ギャップ、L1…集積公差、M1、M2、M3…磁路 DESCRIPTION OF SYMBOLS 1 ... Electromagnetic actuator, 2 ... Core, 3 ... Amateur, 4 ... Coil, 4a ... Coil shaft, 6a ... Nonmagnetic material, 7 ... Core body part, 8 ... Core lid part, 8a ... Inner side surface, 9 ... Core open end 9a ... inner peripheral surface, 9b ... inner side surface, 9c ... projection, 10 ... core extension, 11 ... amateur root, 11b ... circumferential extension, 11c ... projection, 12 ... amateur extension, 14 ... Opening, 15 ... suction part, 21 ... current interrupting part, 22 ... movable contact, 23 ... fixed contact, 24 ... link mechanism, 41 ... buffer material, 43 ... current supply device, 50 ... switchgear, G1, G2, G4 ... Magnetic gap, L1 ... Accumulation tolerance, M1, M2, M3 ... Magnetic path

Claims (12)

  1.  コイルの内部に可動自在に配置された磁性体のアマチュアを、前記コイルにより発生させた磁束により駆動する電磁アクチュエータであって、
    前記コイルと、
    根元部と、前記根元部から前記コイルのコイル軸の方向に延伸して設けられると共に前記根元部よりも外径の小さな延伸部を有する前記アマチュアと、
    前記コイルの外側に配置されており、前記アマチュアと共に前記コイルにより発生された前記磁束が通過する磁路を形成する磁性体のコアと、を備え、
    前記アマチュアは、前記延伸部の外周から前記コイル軸に垂直な周方向に延伸した周方向拡張部を有し、
    前記コアは、
    前記アマチュアの前記周方向拡張部に対向して設けられると共に、前記磁束が通過することにより前記周方向拡張部との間に吸引力を発生させる吸引部、を当該コアの内側に有し、
    前記吸引部を前記磁束が通過する第一の磁路の外側に、前記アマチュアに対向すると共に前記磁束が通過する第二の磁路を形成するアマチュア対向部を有することを特徴とする電磁アクチュエータ。
    An electromagnetic actuator for driving an armature of a magnetic body movably disposed inside a coil by a magnetic flux generated by the coil,
    The coil;
    A base part, and the armature having an extension part that extends from the base part in the direction of the coil axis of the coil and has an outer diameter smaller than the base part, and
    A magnetic core disposed on the outside of the coil and forming a magnetic path through which the magnetic flux generated by the coil passes with the armature, and
    The amateur has a circumferentially extending portion extending in a circumferential direction perpendicular to the coil axis from the outer periphery of the extending portion,
    The core is
    The armature has a suction portion that is provided opposite to the circumferential extension portion of the amateur and generates an attractive force between the circumferential extension portion when the magnetic flux passes,
    An electromagnetic actuator comprising an armature facing portion that forms a second magnetic path that faces the armature and that passes the magnetic flux outside the first magnetic path through which the magnetic flux passes through the attraction portion.
  2.  前記コアは、前記アマチュアの前記延伸部が挿通可能な開口を形成するコア開口端部を有し、
    前記アマチュア対向部は、前記コア開口端部における前記アマチュアの前記延伸部に対向する内周面であり、
    前記吸引部は、前記コア開口端部における前記周方向拡張部に対向する内側面に形成されていることを特徴とする請求項1記載の電磁アクチュエータ。
    The core has a core opening end that forms an opening through which the extension of the amateur can be inserted;
    The amateur facing portion is an inner peripheral surface facing the extending portion of the amateur at the core opening end portion,
    The electromagnetic actuator according to claim 1, wherein the suction portion is formed on an inner surface facing the circumferentially extending portion at the core opening end.
  3.  前記コアは、前記アマチュアの前記延伸部が挿通可能な開口を形成するコア開口端部と、前記コア開口端部から前記コイル軸の方向に離れた位置で前記コア開口端部に対向するコア蓋部と、前記コア蓋部と前記コア開口端部を接続するコア胴体部と、前記コア胴体部における前記コア蓋部の側に前記コイル軸側に延伸して設けられたコア延長部を有し、
    前記アマチュア対向部は、前記アマチュアの前記根元部に対向する前記コア蓋部の内側面であり、
    前記吸引部は、前記周方向拡張部に対向する前記コア延長部に形成されていることを特徴とする請求項1記載の電磁アクチュエータ。
    The core includes a core opening end portion that forms an opening through which the extension portion of the armature can be inserted, and a core lid that faces the core opening end portion at a position away from the core opening end portion in the direction of the coil axis. A core body part that connects the core lid part and the core opening end, and a core extension part that extends toward the coil shaft side on the core lid part side of the core body part. ,
    The amateur facing portion is an inner surface of the core lid portion facing the root portion of the amateur,
    The electromagnetic actuator according to claim 1, wherein the suction portion is formed in the core extension portion facing the circumferential extension portion.
  4.  前記第一の磁路における前記磁束が通過する前記吸引部と前記吸引部に対向する前記アマチュアとの磁気ギャップは、前記第二の磁路における前記磁束が通過する前記アマチュア対向部と前記アマチュア対向部に対向する前記アマチュアとの磁気ギャップよりも小さいことを特徴とする請求項1から3のいずれか1項に記載の電磁アクチュエータ。 The magnetic gap between the attracting portion through which the magnetic flux passes in the first magnetic path and the amateur facing the attracting portion is the amateur facing portion through which the magnetic flux passes through the second magnetic path and the amateur facing The electromagnetic actuator according to any one of claims 1 to 3, wherein the electromagnetic actuator is smaller than a magnetic gap between the armature and the armature.
  5.  前記コアの前記吸引部を前記磁束が通過する磁束通過面積は、前記第二の磁路における前記アマチュア対向部を前記磁束が通過する磁束通過面積よりも小さいことを特徴とする請求項1から4のいずれか1項に記載の電磁アクチュエータ。 5. The magnetic flux passage area through which the magnetic flux passes through the attraction portion of the core is smaller than the magnetic flux passage area through which the magnetic flux passes through the amateur facing portion in the second magnetic path. The electromagnetic actuator according to any one of the above.
  6.  前記コアの前記吸引部、及び前記吸引部に対向する前記アマチュアの前記周方向拡張部の少なくとも一方は、対向する相手側に突出した突起部を有することを特徴とする請求項1から5のいずれか1項に記載の電磁アクチュエータ。 The at least one of the suction part of the core and the circumferential extension part of the amateur facing the suction part has a projecting part protruding to the opposite side of the core. The electromagnetic actuator of Claim 1.
  7.  前記突起部は、前記相手側である突起対向部における前記コイル軸側の内周面よりも周方向の外側に、前記コア及び前記アマチュアの集積公差以上離して配置されたことを特徴とする請求項6記載の電磁アクチュエータ。 The projecting portion is arranged on the outer side in the circumferential direction from the inner peripheral surface on the coil shaft side in the projecting facing portion which is the counterpart side, and is spaced apart from the integration tolerance of the core and the amateur. Item 7. The electromagnetic actuator according to Item 6.
  8.  前記コアの前記吸引部と前記アマチュアの前記周方向拡張部との間に、非磁性材を備えたことを特徴とする請求項1から7のいずれか1項に記載の電磁アクチュエータ。 The electromagnetic actuator according to any one of claims 1 to 7, wherein a non-magnetic material is provided between the suction portion of the core and the circumferential extension portion of the amateur.
  9.  前記コアの前記吸引部及び前記アマチュアの前記周方向拡張部は、互いに対向するそれぞれの対向面が、前記コイル軸に対して傾斜していることを特徴とする請求項1から8のいずれか1項に記載の電磁アクチュエータ。 9. The suction portion of the core and the circumferentially extending portion of the armature, each facing surface facing each other is inclined with respect to the coil axis. The electromagnetic actuator according to item.
  10.  前記アマチュアが前記コアの方へ移動する際に、前記アマチュアの前記周方向拡張部と前記コアの吸引部との間に吸引力を発生させる電流を、前記アマチュアが前記コアに衝突する時またはその直前に前記コイルへ供給する電流供給装置を備えたことを特徴とする請求項1から9のいずれか1項に記載の電磁アクチュエータ。 When the amateur moves toward the core, a current that generates a suction force between the circumferential extension portion of the amateur and the suction portion of the core is applied when the amateur collides with the core, or The electromagnetic actuator according to claim 1, further comprising a current supply device that supplies the coil to the coil immediately before.
  11.  前記コアの前記吸引部と前記アマチュアの前記周方向拡張部との間に、緩衝材を備えたことを特徴とする請求項1から10のいずれか1項に記載の電磁アクチュエータ。 The electromagnetic actuator according to any one of claims 1 to 10, wherein a buffer material is provided between the suction portion of the core and the circumferential extension portion of the amateur.
  12.  内部に可動接点及び固定接点を有する電流遮断部と、前記電流遮断部の前記可動接点をリンク機構を介して、前記固定接点に接続するように移動させる、請求項1から11のいずれか1項の電磁アクチュエータを備えたことを特徴とする開閉装置。 The current interruption part which has a movable contact and a fixed contact inside, and the movable contact of the current interruption part is moved so that it may connect to the fixed contact via a link mechanism. Opening and closing device comprising an electromagnetic actuator.
PCT/JP2017/008236 2016-03-11 2017-03-02 Electromagnetic actuator and switch device WO2017154720A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017540664A JP6381819B2 (en) 2016-03-11 2017-03-02 Electromagnetic actuator and switchgear

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016047770 2016-03-11
JP2016-047770 2016-03-11

Publications (1)

Publication Number Publication Date
WO2017154720A1 true WO2017154720A1 (en) 2017-09-14

Family

ID=59790651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008236 WO2017154720A1 (en) 2016-03-11 2017-03-02 Electromagnetic actuator and switch device

Country Status (2)

Country Link
JP (1) JP6381819B2 (en)
WO (1) WO2017154720A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108812582A (en) * 2018-08-07 2018-11-16 广东顺德斗禾电子科技有限公司 Sucking type mosquito killer
KR20230093200A (en) * 2018-10-08 2023-06-27 한국전력공사 Actuator for circuit breaker using thomson coil

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60192306A (en) * 1984-03-13 1985-09-30 Canon Inc Solenoid apparatus
JPS6177312A (en) * 1984-09-25 1986-04-19 Matsushita Electric Works Ltd Electromagnetic solenoid
JPS63108606U (en) * 1986-12-29 1988-07-13
JPH0737460A (en) * 1993-07-21 1995-02-07 Fuji Electric Co Ltd Electromagnetic device for making circuit breaker
JP2007227766A (en) * 2006-02-24 2007-09-06 Toshiba Corp Electromagnetic actuator
JP2010287674A (en) * 2009-06-10 2010-12-24 Mitsubishi Electric Corp Release type electromagnetic device
JP2011146676A (en) * 2009-12-18 2011-07-28 Fuji Electric Fa Components & Systems Co Ltd Electromagnet device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075611Y2 (en) * 1989-10-19 1995-02-08 株式会社明電舎 Electromagnetic device
JP2002260918A (en) * 2001-02-28 2002-09-13 Toyota Industries Corp Electromagnetic actuator, its manufacturing method, and control valve of variable capacity compressor using the same
JP2006261260A (en) * 2005-03-16 2006-09-28 Hitachi Ltd Electromagnetic solenoid and circuit breaker driver using the same
JP5750903B2 (en) * 2011-01-20 2015-07-22 富士電機機器制御株式会社 Electromagnet device
JP2014067960A (en) * 2012-09-27 2014-04-17 Keihin Corp Electromagnetic actuator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60192306A (en) * 1984-03-13 1985-09-30 Canon Inc Solenoid apparatus
JPS6177312A (en) * 1984-09-25 1986-04-19 Matsushita Electric Works Ltd Electromagnetic solenoid
JPS63108606U (en) * 1986-12-29 1988-07-13
JPH0737460A (en) * 1993-07-21 1995-02-07 Fuji Electric Co Ltd Electromagnetic device for making circuit breaker
JP2007227766A (en) * 2006-02-24 2007-09-06 Toshiba Corp Electromagnetic actuator
JP2010287674A (en) * 2009-06-10 2010-12-24 Mitsubishi Electric Corp Release type electromagnetic device
JP2011146676A (en) * 2009-12-18 2011-07-28 Fuji Electric Fa Components & Systems Co Ltd Electromagnet device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108812582A (en) * 2018-08-07 2018-11-16 广东顺德斗禾电子科技有限公司 Sucking type mosquito killer
KR20230093200A (en) * 2018-10-08 2023-06-27 한국전력공사 Actuator for circuit breaker using thomson coil
KR20230093201A (en) * 2018-10-08 2023-06-27 한국전력공사 Actuator for circuit breaker using thomson coil
KR20230095042A (en) * 2018-10-08 2023-06-28 한국전력공사 Actuator for circuit breaker using thomson coil
KR102636325B1 (en) 2018-10-08 2024-02-16 한국전력공사 Actuator for circuit breaker using thomson coil
KR102636324B1 (en) 2018-10-08 2024-02-16 한국전력공사 Actuator for circuit breaker using thomson coil
KR102636326B1 (en) 2018-10-08 2024-02-16 한국전력공사 Actuator for circuit breaker using thomson coil

Also Published As

Publication number Publication date
JPWO2017154720A1 (en) 2018-03-15
JP6381819B2 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
JP6235374B2 (en) Switch operating mechanism
US6819209B2 (en) Magnetic damper and actuator having the same
JP5649738B2 (en) Electromagnetic operation device and switchgear using the same
US8272622B2 (en) Electromagnetic actuator
JP5314197B2 (en) Electromagnetic operation device
JP2012511823A (en) Multi-stable electromagnetic actuator
US9607746B2 (en) Electromagnetic actuator device
JP6381819B2 (en) Electromagnetic actuator and switchgear
EP2551881A1 (en) Actuator for a circuit breaker
JP2015028979A (en) Electromagnet device
JP6321371B2 (en) Solenoid valve device
JP5602969B1 (en) Electromagnetic actuator
US8556194B2 (en) Fuel injector
EP2434503B1 (en) Magnetic actuator with a non-magnetic insert
JP6301013B2 (en) Switch
JP6422457B2 (en) Electromagnetic actuator and electromagnetic relay using the same
JP5858946B2 (en) Electromagnetic switchgear
JP5635207B1 (en) Electromagnetic actuator
JP5627475B2 (en) Switch operating mechanism
JP6329781B2 (en) Solenoid device
JP5750903B2 (en) Electromagnet device
WO2023243121A1 (en) Electromagnetically operated switching device
JP2023167540A (en) solenoid
JP2006313694A (en) Electromagnetic actuator and switch
JP2021150595A (en) Linear solenoid and solenoid proportional valve

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017540664

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763060

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763060

Country of ref document: EP

Kind code of ref document: A1