WO2017154690A1 - Method for manufacturing vanadium lithium phosphate - Google Patents

Method for manufacturing vanadium lithium phosphate Download PDF

Info

Publication number
WO2017154690A1
WO2017154690A1 PCT/JP2017/008049 JP2017008049W WO2017154690A1 WO 2017154690 A1 WO2017154690 A1 WO 2017154690A1 JP 2017008049 W JP2017008049 W JP 2017008049W WO 2017154690 A1 WO2017154690 A1 WO 2017154690A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
vanadium phosphate
lithium vanadium
reaction precursor
source
Prior art date
Application number
PCT/JP2017/008049
Other languages
French (fr)
Japanese (ja)
Inventor
純也 深沢
淳史 ▲高▼▲崎▼
Original Assignee
日本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016255249A external-priority patent/JP6345227B2/en
Application filed by 日本化学工業株式会社 filed Critical 日本化学工業株式会社
Priority to CN201780016103.9A priority Critical patent/CN108778990A/en
Priority to EP17763030.8A priority patent/EP3415467B1/en
Publication of WO2017154690A1 publication Critical patent/WO2017154690A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing lithium vanadium phosphate particularly useful as a positive electrode active material for lithium secondary batteries.
  • Lithium ion batteries are used as batteries for portable devices, notebook computers, electric vehicles, and hybrid vehicles. Lithium ion batteries are generally said to have excellent capacity and energy density, and currently LiCoO 2 is mainly used for the positive electrode, but LiMnO 2 , LiNiO 2 and the like have been actively developed due to Co resource problems. ing. At present, LiFePO 4 is attracting attention as a further alternative material, and research and development is progressing in each organization. Fe is excellent in terms of resources, and LiFePO 4 using this is expected to be a positive electrode material for lithium ion batteries for electric vehicles because it has a low energy density but is excellent in high temperature characteristics.
  • LiFePO 4 has a slightly lower operating voltage
  • lithium vanadium phosphate (Li 3 V 2 (PO 4 ) 3 ) having a NASICON (Na Super Ionic Conductor) structure using V instead of Fe has attracted attention. Yes.
  • a method for producing lithium vanadium phosphate for example, a method has been proposed in which a lithium source, a vanadium compound and a phosphorus source are pulverized and mixed, the resulting uniform mixture is formed into a pellet, and then the molded product is fired (for example, see Patent Documents 1 and 2).
  • Patent Document 3 vanadium oxide (V) is dissolved in an aqueous solution containing lithium hydroxide, a phosphorus source and carbon and / or a nonvolatile organic compound are added, and the resulting raw material mixture solution is dried.
  • a method has been proposed in which a precursor is obtained, and the precursor is heat-treated in an inert atmosphere to obtain a composite of Li 3 V 2 (PO 4 ) 3 and a conductive carbon material.
  • the present applicant also previously mixed a lithium source, a pentavalent or tetravalent vanadium compound, a phosphorus source, and a conductive carbon material source in which carbon is generated by thermal decomposition in an aqueous solvent.
  • a first step of preparing a raw material mixture a second step of heating the raw material mixture to perform a precipitation reaction to obtain a reaction solution containing a precipitation product, and a reaction solution containing the precipitation product as a media mill
  • a method for producing a lithium vanadium phosphate carbon composite that is fired at 600 to 1300 ° C. in an active gas atmosphere or a reducing atmosphere has been proposed.
  • Li 3 V 2 (PO 4 ) 3 is known to have a high theoretical capacity of 197 mAhg ⁇ 1 .
  • the conventional lithium secondary battery using Li 3 V 2 (PO 4 ) 3 as the positive electrode active material has a low discharge capacity, and according to the method for producing lithium vanadium phosphate disclosed in Patent Document 4, the discharge capacity is low.
  • a precipitation reaction or a pulverization treatment with a media mill is required, and the production process becomes complicated, which is not industrially advantageous.
  • an object of the present invention is to provide X-ray diffractive single-phase lithium vanadium phosphate particularly useful as a positive electrode active material of a lithium secondary battery in an industrially advantageous manner.
  • the inventors of the present invention performed a reduction reaction of a vanadium compound by heat-treating a mixed slurry containing a tetravalent or pentavalent vanadium compound, a phosphorus source, and a reducing sugar.
  • the reaction precursor obtained by spray-drying a raw material mixture prepared by adding a lithium source to a solution is excellent in reactivity, and single phase highly crystalline lithium vanadium phosphate is obtained even at a low temperature of about 600 ° C. Be done.
  • the present inventors have found that a lithium secondary battery using lithium vanadium phosphate obtained by using the reaction precursor as a positive electrode active material has excellent battery performance, and completed the present invention. It was.
  • the present invention is a method for producing lithium vanadium phosphate having a NASICON structure, in which a tetravalent or pentavalent vanadium compound, a phosphorus source, and a reducing sugar are mixed in an aqueous solvent to form a mixed slurry.
  • a first step to prepare a second step in which the mixed slurry is heated to form a solution, a third step in which a lithium source is added to the solution to prepare a raw material mixture, and then the raw material mixture Vanadium phosphate, characterized in that it has a fourth step of obtaining a reaction precursor by spray-drying and then a fifth step of calcining the reaction precursor at 500 to 1300 ° C. in an inert gas atmosphere or a reducing atmosphere.
  • a method for producing lithium is provided.
  • an X-ray diffraction single phase lithium vanadium phosphate useful in an industrially advantageous manner, particularly as a positive electrode active material of a lithium secondary battery.
  • a lithium secondary battery using lithium vanadium oxide as a positive electrode active material has excellent battery performance.
  • FIG. 2 is an SEM photograph of the reaction precursor obtained in Example 1.
  • FIG. 2 is an SEM photograph of lithium vanadium phosphate obtained in Example 1.
  • FIG. 4 is an SEM photograph of the reaction precursor obtained in Example 5.
  • FIG. 4 is an SEM photograph of a lithium vanadium phosphate sample obtained in Example 5.
  • the lithium vanadium phosphate obtained by the production method of the present invention is a lithium vanadium phosphate having a NASICON structure (hereinafter, simply referred to as “vanadium lithium phosphate”).
  • the lithium vanadium phosphate is represented by the following general formula (1): Li x V y (PO 4 ) 3 (1) (Wherein x represents 2.5 to 3.5 and y represents 1.8 to 2.2), or lithium vanadium phosphate represented by the general formula (1) Further, it is lithium vanadium phosphate which is doped with a Me element (Me represents a metal element or a transition metal element having an atomic number of 11 or more other than V) as necessary.
  • X in the formula (1) is preferably 2.5 or more and 3.5 or less, particularly preferably 2.8 or more and 3.2 or less.
  • y is preferably 1.8 or more and 2.2 or less, and particularly preferably 1.9 or more and 2.1 or less.
  • the Me element to be doped is preferably one or more selected from Mg, Ca, Al, Mn, Co, Ni, Fe, Ti, Zr, Bi, Cr, Nb, Mo, and Cu.
  • the method for producing lithium vanadium phosphate according to the present invention comprises mixing a tetravalent or pentavalent vanadium compound (hereinafter sometimes simply referred to as “vanadium compound”), a phosphorus source and a reducing sugar in an aqueous solvent.
  • the first step according to the present invention is a step of obtaining a mixed slurry in which each raw material is mixed by mixing a vanadium compound, a phosphorus source, and a reducing sugar in an aqueous solvent.
  • vanadium pentoxide vanadium trioxide, ammonium vanadate, vanadium oxyoxalate, or the like can be used.
  • vanadium pentoxide is preferable from the viewpoint of being industrially available at a low cost and having excellent reactivity.
  • phosphoric acid As the phosphorus source, phosphoric acid, polyphosphoric acid, anhydrous phosphoric acid, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, ammonium phosphate, and the like can be used. Among these, phosphoric acid is preferable from the viewpoint of being industrially available at low cost and obtaining a reaction precursor having excellent reactivity.
  • the addition amount of the vanadium compound and the phosphorus source is such that the addition amount of the vanadium compound is 0.50 to 0.80 in terms of the molar ratio (V / P) of the V atom in the vanadium compound to the P atom in the phosphorus source, preferably A value of 0.60 to 0.73 is preferable from the viewpoint of easily obtaining single-phase lithium vanadium phosphate as the final product.
  • the reducing sugar one in which carbon is isolated by heat decomposition in an inert or reducing atmosphere at least in the baking in the fifth step is used.
  • the reducing sugar promotes the reduction reaction of the vanadium compound in the second step, and in addition to making the obtained solution a reaction solution having a good viscosity that can be stirred, it prevents the oxidation of vanadium in the fifth step. It becomes a necessary ingredient.
  • Excess reducing sugar is converted to conductive carbon by firing in the fifth step. Therefore, in this production method, excessive reducing sugar is added as a component of a conductive carbon source that imparts conductivity of lithium vanadium phosphate. It can also function.
  • reducing sugars examples include glucose, fructose, lactose, maltose, sucrose, and the like.
  • lactose and sucrose are preferable from the viewpoint of obtaining a reaction precursor having excellent reactivity.
  • the amount of reducing sugar added is preferably 0 to 20% by mass in terms of C atoms with respect to the lithium vanadium phosphate produced.
  • the amount of C atoms contained in the reducing sugar decrease after baking as compared to before baking. Therefore, in the first step, when the reducing sugar is added in an amount of 0.3 to 40 parts by mass in terms of C atoms with respect to 100 parts by mass of lithium vanadium phosphate produced, The compounding amount of conductive carbon converted from reducing sugar tends to be 0 to 20 parts by mass in terms of C atoms.
  • the lithium secondary battery Excellent performance can be imparted.
  • 100 parts by mass of lithium vanadium phosphate is added by adding a reducing sugar to 100 to 40 parts by mass of lithium vanadium phosphate so that the amount of C is 0.5 to 40 parts by mass, preferably 5 to 30 parts by mass.
  • the amount of conductive carbon converted from the reducing sugar is 0.1 to 20 parts by weight, preferably 0.5 to 15 parts by weight, and sufficient conductivity can be imparted by the conductive carbon.
  • the internal resistance of the lithium secondary battery can be lowered, and the discharge capacity per mass or volume is increased.
  • the amount of reducing sugar added to 100 parts by mass of lithium vanadium phosphate is less than the above range, it is difficult to obtain single-phase lithium vanadium phosphate, which is not preferable. Further, when the amount of reducing sugar added exceeds the above range, the discharge capacity per mass or volume tends to be low.
  • the production history of the vanadium compound, the phosphorus source, and the reducing sugar is not limited.
  • the content of impurities is as small as possible. It is preferable.
  • the aqueous solvent used in the first step according to the present invention is not limited to water and may be a mixed solvent of water and a hydrophilic organic solvent.
  • the order in which the vanadium compound, the phosphorus source, and the reducing sugar are added to the aqueous solvent, and the mixing means are not particularly limited, and are performed so as to obtain a mixed slurry in which the respective raw materials are uniformly dispersed.
  • the second step according to the present invention is a step in which the mixed slurry obtained in the first step is heat-treated and at least a reduction reaction of the vanadium compound is performed to convert the mixed slurry into a solution in which each component is dissolved.
  • the temperature of the heat treatment according to the second step is 60 to 100 ° C., preferably 80 to 100 ° C. The reason is that if the temperature of the heat treatment is lower than 60 ° C., the reaction time becomes longer, which is industrially disadvantageous, and a pressure vessel must be used to raise the temperature of the heat treatment higher than 100 ° C. It is not industrially advantageous. Therefore, the second step can be performed under atmospheric pressure.
  • the time for the reduction reaction is not critical in this production method. In general, a satisfactory solution can be obtained by heat treatment for 0.2 hours or more, particularly 0.5 to 2 hours.
  • the third step according to the present invention is a step of obtaining a raw material mixture by adding a lithium source to the solution obtained in the second step.
  • the raw material mixture may be a solution or a slurry.
  • lithium source examples include lithium carbonate, lithium hydroxide, lithium oxide, lithium nitrate, and organic acid lithium such as lithium oxalate. These may be hydrated or anhydrous. Among these, lithium carbonate and lithium hydroxide are preferred from the viewpoint of being industrially available at low cost and obtaining a reaction precursor having excellent reactivity. These lithium sources may be added to the solution obtained in the second step as a solution dissolved in an aqueous solvent.
  • the addition amount of the lithium source is 0.70 to 1.30, preferably 0.83 to 1.17 in terms of a molar ratio (Li / P) of Li atoms in the lithium source to P atoms in the phosphorus source. Is preferable from the viewpoint of easily obtaining single-phase lithium vanadium phosphate as the final product.
  • the production history of the lithium source described above is not limited, but in order to produce high purity lithium vanadium phosphate, it is preferable that the impurity content is as low as possible.
  • the addition temperature of the lithium source is not particularly limited, but a precipitate is observed when it exceeds 35 ° C., and in this production method, a slurry-like raw material mixture containing this precipitate is subjected to a fourth step described later.
  • the raw material mixture obtained in the third step is preferably in the form of a solution from the viewpoint of obtaining a reaction precursor that is more uniform and excellent in reactivity.
  • the addition temperature of the lithium source is less than 35 ° C., preferably 30 ° C. or less, particularly preferably 0 to 30 ° C.
  • an aging reaction can be performed as necessary for the purpose of obtaining a reaction precursor having further improved physical properties such as powder characteristics such as particle size distribution.
  • the raw material mixture after the aging reaction can be obtained as a slurry in which each component is uniformly mixed. However, unlike Patent Document 4, the slurry contains finer particles.
  • the spray precursor is spray-dried in the fourth step of the next step as it is, and a reaction precursor having excellent reactivity can be obtained.
  • the temperature of the ripening reaction is 60 to 100 ° C., preferably 80 to 100 ° C.
  • the aging time is 0.5 hours or more, preferably 0.5 to 10 hours.
  • the fourth step according to the present invention is a step of obtaining a reaction precursor by spray drying the raw material mixture obtained in the third step.
  • the reaction precursor is obtained by atomizing the liquid by a predetermined means and drying fine droplets generated thereby.
  • the liquid atomization includes a method using a rotating disk and a method using a pressure nozzle. Any method can be used in this step.
  • the size of the droplets of the atomized liquid affects stable drying and the properties of the resulting dry powder.
  • the size of the atomized droplet is preferably 5 to 100 ⁇ m, particularly 10 to 50 ⁇ m. It is desirable to determine the supply amount of the liquid to the spray drying apparatus in consideration of this viewpoint.
  • the reaction precursor obtained by the spray drying method is subjected to calcination in the next step, but the powder properties such as the average particle diameter of the secondary particles of lithium vanadium phosphate obtained generally take over the reaction precursor. .
  • spray drying is performed so that the secondary particles of the reaction precursor have a particle diameter of 5 to 100 ⁇ m, particularly 10 to 50 ⁇ m, as determined by observation with a scanning electron microscope (SEM). This is preferable from the viewpoint of controlling the particle size of lithium vanadium oxide.
  • the drying temperature in the spray drying apparatus is adjusted so that the hot air inlet temperature is 180 to 250 ° C., preferably 200 to 240 ° C., and the powder temperature is 90 to 150 ° C., preferably 100 to 130 ° C. Adjustment is preferable because it prevents moisture absorption of the powder and facilitates collection of the powder.
  • reaction precursor used in Patent Document 4 contains a crystalline substance, whereas the reaction precursor used in the present invention is amorphous.
  • the present inventors presume that since the reaction precursor is amorphous, the reaction precursor is superior in reactivity, sintered at a low temperature, and has higher crystallinity than the reaction precursor of Patent Document 4. Yes.
  • the reaction precursor thus obtained is then subjected to a fifth step of baking at 500 to 1300 ° C. in an inert gas atmosphere or a reducing atmosphere to obtain the target lithium vanadium phosphate.
  • the fifth step according to the present invention is a step in which the reaction precursor obtained in the fourth step is fired at 500 to 1300 ° C. to obtain single-phase lithium vanadium phosphate by X-ray diffraction.
  • the firing temperature in the fifth step is 500 to 1300 ° C., preferably 600 to 1000 ° C. This is because if the firing temperature is lower than 500 ° C., the firing time until it becomes a single phase becomes longer, while if the firing temperature is higher than 1300 ° C., lithium vanadium phosphate is melted.
  • the firing atmosphere is performed in an inert gas atmosphere or a reducing atmosphere because vanadium is prevented from being oxidized and melted.
  • the inert gas that can be used in the fifth step is not particularly limited, and examples thereof include nitrogen gas, helium gas, and argon gas.
  • Calcination time is not critical in this production method. In general, by baking for 2 hours or more, particularly 3 to 24 hours, single-phase lithium vanadium phosphate can be obtained by X-ray diffraction.
  • the lithium vanadium phosphate thus obtained may be subjected to a plurality of firing steps as necessary.
  • a Me source (Me is a metal element having an atomic number of 11 or more other than V or a transition, if necessary) Metal element) is mixed with the mixed slurry of the first step according to the production method of the present invention, and then the second to fifth steps of the production method of the present invention are performed, whereby the general formula (1) It is possible to obtain the lithium vanadium phosphate shown by doping with Me element.
  • the Me element is substituted for the Li site or / and the V site of lithium vanadium phosphate represented by the general formula (1).
  • Me in the Me source is a metal element or a transition metal element having an atomic number of 11 or more other than V, and preferable Me elements include Mg, Ca, Al, Mn, Co, Ni, Fe, Ti, Zr, Bi, Cr, Nb, Mo, Cu, etc. are mentioned, These may be single 1 type or the combination of 2 or more types.
  • the Me source include oxides, hydroxides, halides, carbonates, nitrates, carbonates, and organic acid salts having the Me element. Note that the Me source may be dissolved in the mixed slurry in the first step or may be present as a solid.
  • the Me source is present as a solid in the mixed slurry, it is preferable from the viewpoint of obtaining a reaction precursor having excellent reactivity that an average particle size of 100 ⁇ m or less, preferably 0.1 to 50 ⁇ m is used.
  • an amount that is preferably greater than 0 and less than or equal to 0.1 is preferred.
  • the sixth step of adjusting the amount of conductive carbon contained in the lithium vanadium phosphate by further heat-treating the lithium vanadium phosphate obtained in the fifth step is performed. It can.
  • the specific operation of the sixth step is performed by subjecting the lithium vanadium phosphate containing the conductive carbon obtained in the fifth step to a heat treatment to oxidize the conductive carbon.
  • the heat treatment according to the sixth step is preferably performed in an oxygen-containing atmosphere.
  • the oxygen concentration is preferably 5 Vol% or more, and preferably 10 to 30 Vol%, from the viewpoint of oxidizing the conductive carbon with high efficiency.
  • the temperature of the heat treatment according to the sixth step is preferably 250 to 450 ° C., more preferably 300 to 400 ° C., from the viewpoint of oxidizing the conductive carbon with high efficiency.
  • the time for the heat treatment according to the sixth step is not critical in this production method. The longer the heat treatment time, the lower the conductive carbon content contained in the lithium vanadium phosphate. It is preferable to carry out by appropriately setting suitable conditions in advance so as to obtain a desired conductive carbon content.
  • the lithium vanadium phosphate thus obtained is a single-phase lithium vanadium phosphate in terms of X-ray diffraction, and as a preferred physical property, a large number of primary particles having an average primary particle diameter of 10 ⁇ m or less, preferably 0.01 to 5 ⁇ m are aggregated.
  • the obtained lithium vanadium phosphate may be further crushed or crushed as necessary, and further classified.
  • the lithium vanadium phosphate obtained by the present production method may be a vanadium lithium phosphate carbon composite in which the particles are coated with conductive carbon resulting from a reducing sugar, and the vanadium lithium lithium carbon composite By using as a positive electrode active material, a lithium secondary battery having a higher discharge capacity can be obtained. Moreover, the lithium vanadium phosphate obtained by this manufacturing method can be used also for the use with a solid electrolyte.
  • Example 1 2 L of ion-exchanged water was placed in a 5 L beaker, and 605 g of 85% phosphoric acid, 320 g of vanadium pentoxide and 170 g of sucrose (sucrose) were added thereto and stirred at room temperature (25 ° C.) to obtain an ocher mixed slurry. .
  • ⁇ Third step> The reaction solution was cooled to room temperature (25 ° C.). Next, a solution in which 220 g of lithium hydroxide monohydrate was dissolved in 1.5 L of ion-exchanged water was prepared, and this solution was added to the reaction solution at room temperature to obtain a dark blue raw material mixture solution. ⁇ 4th process> Subsequently, the liquid was supplied to the spray drying apparatus which set outlet temperature to 120 degreeC, and the reaction precursor was obtained. The average secondary particle diameter obtained by the SEM observation method of the reaction precursor was 12 ⁇ m. When the obtained reaction precursor was used as a radiation source and X-ray diffraction measurement was performed using CuK ⁇ rays, it was confirmed that the reaction precursor was amorphous.
  • FIG. 3 shows an X-ray diffraction pattern of the obtained lithium vanadium phosphate sample.
  • the electron micrograph (SEM image) of the obtained lithium vanadium phosphate sample is shown in FIG. Further, the residual carbon content of the obtained lithium vanadium phosphate sample was measured as a C atom content by measuring with a TOC total organic carbon meter (TOC-5000A manufactured by Shimadzu Corporation).
  • Examples 2 to 4 ⁇ a reaction was carried out in the same manner as in Example 1 except that the firing temperature was 700 to 900 ° C. to obtain a lithium vanadium phosphate sample. Moreover, as a result of X-ray diffraction analysis of the obtained lithium vanadium phosphate sample, it was confirmed that all were single-phase lithium vanadium phosphate. Further, the amount of residual carbon was determined in the same manner as in Example 1. Note) 1) “Molar ratio of V / P” in the first step indicates the molar ratio of V atom in vanadium pentoxide to P atom in added phosphoric acid. 2) “Molar ratio of Li / P” in the third step indicates a molar ratio of Li atoms in lithium hydroxide added in the third step to P atoms in phosphoric acid added in the first step.
  • the X-ray diffraction pattern of the reaction precursor is also shown in FIG.
  • the obtained reaction precursor was put in a mullite slag and baked at 600 ° C. for 10 hours in a nitrogen atmosphere to obtain a lithium vanadium phosphate sample.
  • the X-ray diffraction analysis diagram of the obtained lithium vanadium phosphate sample is also shown in FIG.
  • As a result of X-ray diffraction analysis the presence of a different phase other than lithium vanadium phosphate was confirmed.
  • the amount of residual carbon was calculated
  • the obtained reaction precursor was placed in a mullite slag and baked at 900 ° C. for 12 hours in a nitrogen atmosphere.
  • the fired product was pulverized by a jet mill to obtain a lithium vanadium phosphate sample.
  • As a result of X-ray diffraction analysis of the obtained lithium vanadium phosphate sample it was confirmed to be a single-phase lithium vanadium phosphate.
  • the amount of residual carbon was calculated
  • ⁇ Example 5 ⁇ First step> Put 2.5 L of ion-exchanged water in a 5 L beaker, add 854.7 g of 85% phosphoric acid, 457.7 g of vanadium pentoxide and 156.6 g of lactose monohydrate, and stir at room temperature (25 ° C.). As a result, an ocher mixed slurry was obtained.
  • ⁇ Example 6 ⁇ First step> Put 2.5 L of ion-exchanged water in a 5 L beaker, add 854.7 g of 85% phosphoric acid, 457.7 g of vanadium pentoxide and 156.6 g of lactose monohydrate, and stir at room temperature (25 ° C.). As a result, an ocher mixed slurry was obtained.
  • the positive electrode agent was prepared by mixing 91% by mass of the lithium vanadium phosphate sample of Example 4, Example 5 and Comparative Example 2 manufactured as described above, 6% by mass of graphite powder, and 3% by mass of polyvinylidene fluoride.
  • a kneaded paste was prepared by dispersing in -methyl-2-pyrrolidinone. The obtained kneaded paste was applied to an aluminum foil, dried, pressed and punched into a disk having a diameter of 15 mm to obtain a positive electrode plate.
  • a lithium secondary battery was manufactured using each member such as a separator, a negative electrode, a positive electrode, a current collector plate, a mounting bracket, an external terminal, and an electrolytic solution.
  • a metal lithium foil was used for the negative electrode, and 1 mol of LiPF 6 dissolved in 1 liter of a 1: 1 kneaded solution of ethylene carbonate and methyl ethyl carbonate was used for the electrolyte.
  • Capacity maintenance rate (%) ((20th cycle discharge capacity) / (1st cycle discharge capacity)) ⁇ 100
  • Example 7 ⁇ ⁇ 6th process> The lithium vanadium phosphate sample (residual carbon content 1.6 mass%) obtained in Example 3 was heat-treated at 350 ° C. for 15 hours in an electric furnace in an air atmosphere (oxygen concentration 20 Vol%). As a result of X-ray diffraction analysis of the obtained lithium vanadium phosphate sample, it was confirmed to be a single-phase lithium vanadium phosphate. Further, when the residual carbon content of the obtained lithium vanadium phosphate sample was measured with a TOC total organic carbon meter (TOC-5000A manufactured by Shimadzu Corporation), it was 0.1% by mass. The BET specific surface area was 7.1 m 2 / g.

Abstract

In order to provide vanadium lithium phosphate which is single-phase by X-ray diffraction and useful particularly as a positive-electrode active material or the like for a lithium secondary cell by an industrially advantageous method, the present invention is a method for manufacturing vanadium lithium phosphate having a NASICON structure, the method for manufacturing vanadium lithium phosphate characterized by having a first step for mixing a tetravalent or pentavalent vanadium compound, a phosphorus source, and a reducing sugar in an aqueous medium and preparing a mixed slurry, a second step for then heating the mixed slurry and forming a solution, a third step for then adding a lithium source to the solution and preparing a starting material mixture, a fourth step for spray drying the starting material mixture and obtaining a reaction precursor, and a fifth step for then firing the reaction precursor at a temperature of 500-1300°C in an inert gas atmosphere or a reducing atmosphere.

Description

リン酸バナジウムリチウムの製造方法Method for producing lithium vanadium phosphate
 本発明は、特にリチウム二次電池の正極活物質として有用なリン酸バナジウムリチウムの製造方法に関するものである。 The present invention relates to a method for producing lithium vanadium phosphate particularly useful as a positive electrode active material for lithium secondary batteries.
 携帯機器、ノート型パソコン、電気自動車、ハイブリッド自動車向けの電池としてリチウムイオン電池が活用されている。リチウムイオン電池は一般に容量、エネルギー密度に優れているとされ、現在その正極にはLiCoO2が主に使用されているが、Coの資源問題からLiMnO2、LiNiO2などの開発も盛んに行われている。
 現在、さらなる代替材料としてLiFePO4が着目され各機関で研究開発が進んでいる。Feは資源的に優れ、これを用いたLiFePO4はエネルギー密度がやや低いものの、高温特性に優れていることから電動車両向けのリチウムイオン電池用正極材料として期待されている。
Lithium ion batteries are used as batteries for portable devices, notebook computers, electric vehicles, and hybrid vehicles. Lithium ion batteries are generally said to have excellent capacity and energy density, and currently LiCoO 2 is mainly used for the positive electrode, but LiMnO 2 , LiNiO 2 and the like have been actively developed due to Co resource problems. ing.
At present, LiFePO 4 is attracting attention as a further alternative material, and research and development is progressing in each organization. Fe is excellent in terms of resources, and LiFePO 4 using this is expected to be a positive electrode material for lithium ion batteries for electric vehicles because it has a low energy density but is excellent in high temperature characteristics.
 しかし,LiFePO4は動作電圧がやや低く,Feの代わりにVを用いたナシコン(NASICON;Na Super Ionic Conductor)構造を有するリン酸バナジウムリチウム(Li32(PO43)が着目されている。 However, LiFePO 4 has a slightly lower operating voltage, and lithium vanadium phosphate (Li 3 V 2 (PO 4 ) 3 ) having a NASICON (Na Super Ionic Conductor) structure using V instead of Fe has attracted attention. Yes.
 リン酸バナジウムリチウムの製造方法としては、例えば、リチウム源、バナジウム化合物及びリン源を粉砕混合し、得られる均一混合物をピレット状に成形し、次いでこの成形品を焼成する方法が提案されている(例えば、特許文献1及び2参照)。また、下記特許文献3には酸化バナジウム(V)を、水酸化リチウムを含む水溶液に溶解し、さらにリン源と炭素及び/又は不揮発性有機化合物を添加し、得られる原料混合溶液を乾燥して前駆体を得、この前駆体を不活性雰囲気にて熱処理してLi32(PO43と導電性炭素材料との複合体を得る方法が提案されている。 As a method for producing lithium vanadium phosphate, for example, a method has been proposed in which a lithium source, a vanadium compound and a phosphorus source are pulverized and mixed, the resulting uniform mixture is formed into a pellet, and then the molded product is fired ( For example, see Patent Documents 1 and 2). In Patent Document 3 below, vanadium oxide (V) is dissolved in an aqueous solution containing lithium hydroxide, a phosphorus source and carbon and / or a nonvolatile organic compound are added, and the resulting raw material mixture solution is dried. A method has been proposed in which a precursor is obtained, and the precursor is heat-treated in an inert atmosphere to obtain a composite of Li 3 V 2 (PO 4 ) 3 and a conductive carbon material.
 また、本出願人も先に、下記特許文献4で、リチウム源、5価又は4価のバナジウム化合物、リン源及び加熱分解により炭素が生じる導電性炭素材料源とを水溶媒中で混合して原料混合液を調製する第1工程と、該原料混合液を加熱して沈殿生成反応を行い、沈殿生成物を含む反応液を得る第2工程と、該沈殿生成物を含む反応液をメディアミルにより湿式粉砕処理して、粉砕処理物を含むスラリーを得る第3工程と、該粉砕処理物を含むスラリーを噴霧乾燥処理して、反応前駆体を得る第4工程と、該反応前駆体を不活性ガス雰囲気中又は還元雰囲気中で600~1300℃で焼成するリン酸バナジウムリチウム炭素複合体の製造方法を提案した。 In addition, the present applicant also previously mixed a lithium source, a pentavalent or tetravalent vanadium compound, a phosphorus source, and a conductive carbon material source in which carbon is generated by thermal decomposition in an aqueous solvent. A first step of preparing a raw material mixture, a second step of heating the raw material mixture to perform a precipitation reaction to obtain a reaction solution containing a precipitation product, and a reaction solution containing the precipitation product as a media mill A third step of obtaining a slurry containing the pulverized product by spray-drying, a fourth step of obtaining a reaction precursor by spray drying the slurry containing the pulverized product, and a step of removing the reaction precursor. A method for producing a lithium vanadium phosphate carbon composite that is fired at 600 to 1300 ° C. in an active gas atmosphere or a reducing atmosphere has been proposed.
特表2001-500665号公報JP-T-2001-500665 特表2002-530835号公報Japanese translation of PCT publication No. 2002-530835 特開2008-052970号公報JP 2008-052970 A 国際公開第2012/043367号パンフレットInternational Publication No. 2012/043367 Pamphlet
 Li32(PO43は、理論容量が197mAhg-1という高いものであることが知られている。
 しかしながら、従来のLi32(PO43を正極活物質に用いたリチウム二次電池は、放電容量が低く、また、特許文献4のリン酸バナジウムリチウムの製造方法によれば、放電容量が高いものが得られるが、反応性に優れた反応前駆体を得るのに、沈殿生成反応やメディアミルによる粉砕処理を必要とし、製造工程が複雑となり、工業的に有利でない。
Li 3 V 2 (PO 4 ) 3 is known to have a high theoretical capacity of 197 mAhg −1 .
However, the conventional lithium secondary battery using Li 3 V 2 (PO 4 ) 3 as the positive electrode active material has a low discharge capacity, and according to the method for producing lithium vanadium phosphate disclosed in Patent Document 4, the discharge capacity is low. However, in order to obtain a reaction precursor having excellent reactivity, a precipitation reaction or a pulverization treatment with a media mill is required, and the production process becomes complicated, which is not industrially advantageous.
 従って、本発明の目的は、特にリチウム二次電池の正極活物質等として有用なX線回折的に単相のリン酸バナジウムリチウムを工業的に有利な方法で提供することにある。 Therefore, an object of the present invention is to provide X-ray diffractive single-phase lithium vanadium phosphate particularly useful as a positive electrode active material of a lithium secondary battery in an industrially advantageous manner.
 本発明者らは、上記課題に鑑みて鋭意研究を重ねた結果、4価又は5価のバナジウム化合物、リン源及び還元糖とを含む混合スラリーを加熱処理してバナジウム化合物の還元反応を行った溶液に、リチウム源を添加して調製した原料混合液を噴霧乾燥して得られる反応前駆体は、反応性に優れ、600℃程度の低温でも単相の高結晶性のリン酸バナジウムリチウムが得られること。また、該反応前駆体を用いて得られるリン酸バナジウムリチウムを正極活物質とするリチウム二次電池は、優れた電池性能を有したものになることを知見し、本発明を完成するに到った。 As a result of intensive studies in view of the above problems, the inventors of the present invention performed a reduction reaction of a vanadium compound by heat-treating a mixed slurry containing a tetravalent or pentavalent vanadium compound, a phosphorus source, and a reducing sugar. The reaction precursor obtained by spray-drying a raw material mixture prepared by adding a lithium source to a solution is excellent in reactivity, and single phase highly crystalline lithium vanadium phosphate is obtained even at a low temperature of about 600 ° C. Be done. In addition, the present inventors have found that a lithium secondary battery using lithium vanadium phosphate obtained by using the reaction precursor as a positive electrode active material has excellent battery performance, and completed the present invention. It was.
 即ち、本発明は、ナシコン(NASICON)構造を有するリン酸バナジウムリチウムの製造方法であって、4価又は5価のバナジウム化合物、リン源及び還元糖とを水溶媒中で混合して混合スラリーを調製する第1工程、次に該混合スラリーを加熱処理して溶液化する第2工程、次に該溶液にリチウム源を添加して原料混合液を調製する第3工程、次に該原料混合液を噴霧乾燥処理して反応前駆体を得る第4工程、次に該反応前駆体を不活性ガス雰囲気又は還元雰囲気で500~1300℃で焼成する第5工程を有することを特徴とするリン酸バナジウムリチウムの製造方法を提供するものである。 That is, the present invention is a method for producing lithium vanadium phosphate having a NASICON structure, in which a tetravalent or pentavalent vanadium compound, a phosphorus source, and a reducing sugar are mixed in an aqueous solvent to form a mixed slurry. A first step to prepare, a second step in which the mixed slurry is heated to form a solution, a third step in which a lithium source is added to the solution to prepare a raw material mixture, and then the raw material mixture Vanadium phosphate, characterized in that it has a fourth step of obtaining a reaction precursor by spray-drying and then a fifth step of calcining the reaction precursor at 500 to 1300 ° C. in an inert gas atmosphere or a reducing atmosphere. A method for producing lithium is provided.
 本発明によれば、工業的に有利な方法で、特にリチウム二次電池の正極活物質等として有用なX線回折的に単相のリン酸バナジウムリチウムを提供することができ、また、該リン酸バナジウムリチウムを正極活物質とするリチウム二次電池は、優れた電池性能を有したものになる。 According to the present invention, it is possible to provide an X-ray diffraction single phase lithium vanadium phosphate useful in an industrially advantageous manner, particularly as a positive electrode active material of a lithium secondary battery. A lithium secondary battery using lithium vanadium oxide as a positive electrode active material has excellent battery performance.
実施例1、比較例1及び比較例2で得られた反応前駆体のX線回折図。The X-ray diffraction pattern of the reaction precursor obtained in Example 1, Comparative Example 1, and Comparative Example 2. FIG. 実施例1で得られた反応前駆体のSEM写真。2 is an SEM photograph of the reaction precursor obtained in Example 1. 実施例1及び比較例1で得られたリン酸バナジウムリチウム試料のX線回折図。The X-ray-diffraction figure of the lithium vanadium phosphate sample obtained in Example 1 and Comparative Example 1. FIG. 実施例1で得られたリン酸バナジウムリチウムのSEM写真。2 is an SEM photograph of lithium vanadium phosphate obtained in Example 1. FIG. 実施例5で得られた反応前駆体のSEM写真。4 is an SEM photograph of the reaction precursor obtained in Example 5. 実施例5で得られたリン酸バナジウムリチウム試料のX線回折図。The X-ray-diffraction figure of the lithium vanadium phosphate sample obtained in Example 5. FIG. 実施例5で得られたリン酸バナジウムリチウム試料のSEM写真。4 is an SEM photograph of a lithium vanadium phosphate sample obtained in Example 5. FIG. 実施例6で得られたリン酸バナジウムリチウム試料のX線回折図。The X-ray-diffraction figure of the lithium vanadium phosphate sample obtained in Example 6. FIG. 実施例6で得られたリン酸バナジウムリチウム試料のSEM写真。The SEM photograph of the lithium vanadium phosphate sample obtained in Example 6.
 以下、本発明をその好ましい実施形態に基づき説明する。
 本発明の製造方法で得られるリン酸バナジウムリチウムは、ナシコン(NASICON)構造を有するリン酸バナジウムリチウム(以下、単に「リン酸バナジウムリチウム」と呼ぶ。)である。
Hereinafter, the present invention will be described based on preferred embodiments thereof.
The lithium vanadium phosphate obtained by the production method of the present invention is a lithium vanadium phosphate having a NASICON structure (hereinafter, simply referred to as “vanadium lithium phosphate”).
 本発明において、前記リン酸バナジウムリチウムは、下記一般式(1)
   Lixy(PO43   (1)
(式中、xは2.5以上3.5以下、yは1.8以上2.2以下を示す。)で表わされるリン酸バナジウムリチウム、或いは一般式(1)で表わされるリン酸バナジウムリチウムに、必要によりMe元素(Meは、V以外の原子番号11以上の金属元素又は遷移金属元素を示す。)をドープして含有させたリン酸バナジウムリチウムである。
 式(1)中のxは、好ましくは2.5以上3.5以下、特に好ましくは2.8以上3.2以下である。yは、好ましくは1.8以上2.2以下、特に好ましくは1.9以上2.1以下である。
 ドープするMe元素は、好ましくはMg、Ca、Al、Mn、Co、Ni、Fe、Ti、Zr、Bi、Cr、Nb、Mo及びCuから選ばれる1種又は2種以上が挙げられる。
In the present invention, the lithium vanadium phosphate is represented by the following general formula (1):
Li x V y (PO 4 ) 3 (1)
(Wherein x represents 2.5 to 3.5 and y represents 1.8 to 2.2), or lithium vanadium phosphate represented by the general formula (1) Further, it is lithium vanadium phosphate which is doped with a Me element (Me represents a metal element or a transition metal element having an atomic number of 11 or more other than V) as necessary.
X in the formula (1) is preferably 2.5 or more and 3.5 or less, particularly preferably 2.8 or more and 3.2 or less. y is preferably 1.8 or more and 2.2 or less, and particularly preferably 1.9 or more and 2.1 or less.
The Me element to be doped is preferably one or more selected from Mg, Ca, Al, Mn, Co, Ni, Fe, Ti, Zr, Bi, Cr, Nb, Mo, and Cu.
 本発明の前記リン酸バナジウムリチウムの製造方法は、4価又は5価のバナジウム化合物(以下、単に「バナジウム化合物」と言うことがある)、リン源及び還元糖とを水溶媒中で混合して混合スラリーを調製する第1工程、次に得られた混合スラリーを加熱処理して溶液化する第2工程、次に得られた溶液にリチウム源を添加して原料混合液を調製する第3工程、次に得られた原料混合液を噴霧乾燥処理して反応前駆体を得る第4工程、次に得られた反応前駆体を不活性ガス雰囲気又は還元雰囲気で500~1300℃で焼成する第5工程を有することを特徴とするものである。 The method for producing lithium vanadium phosphate according to the present invention comprises mixing a tetravalent or pentavalent vanadium compound (hereinafter sometimes simply referred to as “vanadium compound”), a phosphorus source and a reducing sugar in an aqueous solvent. The first step for preparing the mixed slurry, the second step for heat-treating the obtained mixed slurry, and the third step for preparing the raw material mixture by adding a lithium source to the next solution. Next, a fourth step of obtaining a reaction precursor by subjecting the obtained raw material mixture to spray drying, and then a step of baking the obtained reaction precursor at 500 to 1300 ° C. in an inert gas atmosphere or a reducing atmosphere. It has the process, It is characterized by the above-mentioned.
 本発明に係る第1工程は、バナジウム化合物、リン源、及び還元糖を水溶媒中で混合処理して各原料が混在した混合スラリーを得る工程である。 The first step according to the present invention is a step of obtaining a mixed slurry in which each raw material is mixed by mixing a vanadium compound, a phosphorus source, and a reducing sugar in an aqueous solvent.
 前記バナジウム化合物としては、五酸化バナジウム、三酸化バナジウム、バナジン酸アンモニウム、オキシシュウ酸バナジウム等を用いることが出来る。この中、五酸化バナジウムが工業的に安価に入手でき、また、優れた反応性を有する観点で好ましい。 As the vanadium compound, vanadium pentoxide, vanadium trioxide, ammonium vanadate, vanadium oxyoxalate, or the like can be used. Among these, vanadium pentoxide is preferable from the viewpoint of being industrially available at a low cost and having excellent reactivity.
 前記リン源としては、リン酸、ポリリン酸、無水リン酸、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸アンモニウム等を用いることができる。この中、リン酸が工業的に安価に入手でき、また、優れた反応性を有する反応前駆体が得られる観点から好ましい。 As the phosphorus source, phosphoric acid, polyphosphoric acid, anhydrous phosphoric acid, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, ammonium phosphate, and the like can be used. Among these, phosphoric acid is preferable from the viewpoint of being industrially available at low cost and obtaining a reaction precursor having excellent reactivity.
 前記バナジウム化合物及びリン源の添加量は、バナジウム化合物の添加量が、バナジウム化合物中のV原子とリン源中のP原子のモル比(V/P)で0.50~0.80、好ましくは0.60~0.73であることが最終生成物として単相のリン酸バナジウムリチウムが得られやすくなる観点から好ましい。 The addition amount of the vanadium compound and the phosphorus source is such that the addition amount of the vanadium compound is 0.50 to 0.80 in terms of the molar ratio (V / P) of the V atom in the vanadium compound to the P atom in the phosphorus source, preferably A value of 0.60 to 0.73 is preferable from the viewpoint of easily obtaining single-phase lithium vanadium phosphate as the final product.
 前記還元糖は、少なくとも第5工程の焼成で不活性又は還元雰囲気で加熱分解し炭素が単離するものが用いられる。該還元糖は第2工程においてバナジウム化合物の還元反応を促進し、また、得られる溶液が撹拌可能な良好な粘度を有する反応溶液とすることに加えて、第5工程においてバナジウムの酸化の防止に必要な成分となる。余剰の還元糖は、第5工程の焼成により導電性炭素に転換するため、本製造方法において、還元糖を過剰に添加しリン酸バナジウムリチウムの導電性を付与する導電性炭素源の成分としても機能させることもできる。 As the reducing sugar, one in which carbon is isolated by heat decomposition in an inert or reducing atmosphere at least in the baking in the fifth step is used. The reducing sugar promotes the reduction reaction of the vanadium compound in the second step, and in addition to making the obtained solution a reaction solution having a good viscosity that can be stirred, it prevents the oxidation of vanadium in the fifth step. It becomes a necessary ingredient. Excess reducing sugar is converted to conductive carbon by firing in the fifth step. Therefore, in this production method, excessive reducing sugar is added as a component of a conductive carbon source that imparts conductivity of lithium vanadium phosphate. It can also function.
 用いることができる還元糖としては、例えば、グルコース、フルクトース、ラクトース、マルトース、スクロース等が挙げられ、このうち、ラクトース、スクロースが優れた反応性を有する反応前駆体が得られる観点から好ましい。 Examples of reducing sugars that can be used include glucose, fructose, lactose, maltose, sucrose, and the like. Among these, lactose and sucrose are preferable from the viewpoint of obtaining a reaction precursor having excellent reactivity.
 還元糖の添加量は、生成されるリン酸バナジウムリチウムに対してC原子換算で0~20質量%となるように添加することが好ましい。
 焼成前に比べて焼成後では還元糖に含まれるC原子の量が減少する傾向がある。そのため、第1工程において、生成されるリン酸バナジウムリチウム100質量部に対する還元糖の配合量が、C原子換算で0.3~40質量部であると、リン酸バナジウムリチウム100質量部に対して還元糖から転換する導電性炭素の配合量が、C原子換算で0~20質量部となり易い。生成されるリン酸バナジウムリチウム100質量部に対する還元糖の配合量が、上記範囲内にあることにより、リン酸バナジウムリチウムをリチウム二次電池の正極活物質として用いた場合に、リチウム二次電池に優れた性能を付与することが出来る。特に、リン酸バナジウムリチウム100質量部に対して還元糖をC原子換算で0.5~40質量部、好ましくは5~30質量部となるように添加することにより、リン酸バナジウムリチウム100質量部に対して還元糖から転換する導電性炭素の配合量が、0.1~20重量部、好ましくは0.5~15質量部になり、導電性炭素により十分な導電性を付与することができるため、リチウム二次電池の内部抵抗を低くすることができ、且つ、質量或いは体積当たりの放電容量が高くなる。一方、生成されるリン酸バナジウムリチウム100質量部に対する還元糖の配合量が、上記範囲未満だと、単相のリン酸バナジウムリチウムが得られにくくなる傾向があり、好ましくない。また、還元糖の添加量が上記範囲を超えると、質量或いは体積当たりの放電容量が低くなり易い。
The amount of reducing sugar added is preferably 0 to 20% by mass in terms of C atoms with respect to the lithium vanadium phosphate produced.
There is a tendency for the amount of C atoms contained in the reducing sugar to decrease after baking as compared to before baking. Therefore, in the first step, when the reducing sugar is added in an amount of 0.3 to 40 parts by mass in terms of C atoms with respect to 100 parts by mass of lithium vanadium phosphate produced, The compounding amount of conductive carbon converted from reducing sugar tends to be 0 to 20 parts by mass in terms of C atoms. When the amount of reducing sugar compounded with respect to 100 parts by mass of lithium vanadium phosphate is within the above range, when lithium vanadium phosphate is used as the positive electrode active material of a lithium secondary battery, the lithium secondary battery Excellent performance can be imparted. In particular, 100 parts by mass of lithium vanadium phosphate is added by adding a reducing sugar to 100 to 40 parts by mass of lithium vanadium phosphate so that the amount of C is 0.5 to 40 parts by mass, preferably 5 to 30 parts by mass. The amount of conductive carbon converted from the reducing sugar is 0.1 to 20 parts by weight, preferably 0.5 to 15 parts by weight, and sufficient conductivity can be imparted by the conductive carbon. Therefore, the internal resistance of the lithium secondary battery can be lowered, and the discharge capacity per mass or volume is increased. On the other hand, if the amount of reducing sugar added to 100 parts by mass of lithium vanadium phosphate is less than the above range, it is difficult to obtain single-phase lithium vanadium phosphate, which is not preferable. Further, when the amount of reducing sugar added exceeds the above range, the discharge capacity per mass or volume tends to be low.
 本発明に係る第1工程で、前記したバナジウム化合物、リン源、及び還元糖の製造履歴は問わないが、高純度のリン酸バナジウムリチウムを製造するために、可及的に不純物含有量が少ないものであることが好ましい。 In the first step according to the present invention, the production history of the vanadium compound, the phosphorus source, and the reducing sugar is not limited. However, in order to produce high purity lithium vanadium phosphate, the content of impurities is as small as possible. It is preferable.
 本発明に係る第1工程で用いる水溶媒としては、水のみに限らず水と親水性の有機溶媒との混合溶媒であってもよい。 The aqueous solvent used in the first step according to the present invention is not limited to water and may be a mixed solvent of water and a hydrophilic organic solvent.
 バナジウム化合物、リン源、及び還元糖を水溶媒へ添加する順序、混合手段は、特に制限されるものではなく、上記各原料が均一に分散した混合スラリーとなるように行われる。 The order in which the vanadium compound, the phosphorus source, and the reducing sugar are added to the aqueous solvent, and the mixing means are not particularly limited, and are performed so as to obtain a mixed slurry in which the respective raw materials are uniformly dispersed.
 本発明に係る第2工程は、前記第1工程で得られた混合スラリーを加熱処理して、少なくともバナジウム化合物の還元反応を行って混合スラリーを各成分が溶解した溶液に転換する工程である。第2工程に係る加熱処理の温度は、60~100℃、好ましくは80~100℃である。この理由は、加熱処理の温度が60℃より低いと反応時間が長くなるため工業的に不利であり、また加熱処理の温度を100℃より高くするには加圧容器を使用しなければならず、工業的に有利でない。従って、第2工程は、大気圧下に実施することが出来る。 The second step according to the present invention is a step in which the mixed slurry obtained in the first step is heat-treated and at least a reduction reaction of the vanadium compound is performed to convert the mixed slurry into a solution in which each component is dissolved. The temperature of the heat treatment according to the second step is 60 to 100 ° C., preferably 80 to 100 ° C. The reason is that if the temperature of the heat treatment is lower than 60 ° C., the reaction time becomes longer, which is industrially disadvantageous, and a pressure vessel must be used to raise the temperature of the heat treatment higher than 100 ° C. It is not industrially advantageous. Therefore, the second step can be performed under atmospheric pressure.
 還元反応の時間は、本製造方法において臨界的ではない。一般に0.2時間以上、特に0.5~2時間加熱処理すれば、満足すべき溶液を得ることができる。 The time for the reduction reaction is not critical in this production method. In general, a satisfactory solution can be obtained by heat treatment for 0.2 hours or more, particularly 0.5 to 2 hours.
 本発明に係る第3工程は、前記第2工程で得られた溶液にリチウム源を添加して原料混合液を得る工程である。
 なお、原料混合液は、溶液であってもスラリーであってもよい。
The third step according to the present invention is a step of obtaining a raw material mixture by adding a lithium source to the solution obtained in the second step.
Note that the raw material mixture may be a solution or a slurry.
 前記リチウム源としは、炭酸リチウム、水酸化リチウム、酸化リチウム、硝酸リチウム或いはシュウ酸リチウム等の有機酸リチウム等を用いることが出来、これらは含水物であっても無水物であってもよい。この中、炭酸リチウム及び水酸化リチウムが工業的に安価に入手でき、また、優れた反応性を有する反応前駆体が得られる観点から好ましい。
 また、これらリチウム源は水溶媒に溶解させた溶液として第2工程で得られた溶液に添加してもよい。
Examples of the lithium source include lithium carbonate, lithium hydroxide, lithium oxide, lithium nitrate, and organic acid lithium such as lithium oxalate. These may be hydrated or anhydrous. Among these, lithium carbonate and lithium hydroxide are preferred from the viewpoint of being industrially available at low cost and obtaining a reaction precursor having excellent reactivity.
These lithium sources may be added to the solution obtained in the second step as a solution dissolved in an aqueous solvent.
 前記リチウム源の添加量は、リチウム源中のLi原子とリン源中のP原子のモル比(Li/P)で0.70~1.30、好ましくは0.83~1.17であることが最終生成物として単相のリン酸バナジウムリチウムが得られやすくなる観点から好ましい。 The addition amount of the lithium source is 0.70 to 1.30, preferably 0.83 to 1.17 in terms of a molar ratio (Li / P) of Li atoms in the lithium source to P atoms in the phosphorus source. Is preferable from the viewpoint of easily obtaining single-phase lithium vanadium phosphate as the final product.
 本発明に係る第3工程で、前記したリチウム源の製造履歴は問わないが、高純度のリン酸バナジウムリチウムを製造するために、可及的に不純物含有量が少ないものであることが好ましい。 In the third step according to the present invention, the production history of the lithium source described above is not limited, but in order to produce high purity lithium vanadium phosphate, it is preferable that the impurity content is as low as possible.
 リチウム源の添加温度は、特に制限されるものではないが、35℃を超えると析出物が観察され、本製造方法ではこの析出物を含むスラリー状の原料混合液を後述する第四工程に付してもよいが、より均一で反応性に優れた反応前駆体を得る観点から第3工程で得られる原料混合液は溶液状であることが好ましい。この観点からリチウム源の添加温度は、35℃未満、好ましくは30℃以下、特に0~30℃とすることが特に好ましい。 The addition temperature of the lithium source is not particularly limited, but a precipitate is observed when it exceeds 35 ° C., and in this production method, a slurry-like raw material mixture containing this precipitate is subjected to a fourth step described later. However, the raw material mixture obtained in the third step is preferably in the form of a solution from the viewpoint of obtaining a reaction precursor that is more uniform and excellent in reactivity. From this point of view, the addition temperature of the lithium source is less than 35 ° C., preferably 30 ° C. or less, particularly preferably 0 to 30 ° C.
 リチウム源の添加後、更に粒度分布等の粉体特性等の諸物性が向上した反応前駆体を得ることを目的として必要により熟成反応を行うことが出来る。
 熟成反応を行った後の原料混合液は、各成分が均一混合されたスラリーが得られるが、特許文献4とは異なり、より微細な粒子を含むスラリーとなるため、メディアミルによる粉砕を行うことなく、本製造方法では、そのまま次工程の第4工程で噴霧乾燥を行い、反応性に優れた反応前駆体を得ることが出来る。
 熟成反応の温度は、60~100℃、好ましくは80~100℃である。また、熟成時間は0.5時間以上、好ましくは0.5~10時間である。
After the addition of the lithium source, an aging reaction can be performed as necessary for the purpose of obtaining a reaction precursor having further improved physical properties such as powder characteristics such as particle size distribution.
The raw material mixture after the aging reaction can be obtained as a slurry in which each component is uniformly mixed. However, unlike Patent Document 4, the slurry contains finer particles. Instead, in this production method, the spray precursor is spray-dried in the fourth step of the next step as it is, and a reaction precursor having excellent reactivity can be obtained.
The temperature of the ripening reaction is 60 to 100 ° C., preferably 80 to 100 ° C. The aging time is 0.5 hours or more, preferably 0.5 to 10 hours.
 本発明に係る第4工程は、第3工程で得られた原料混合液を噴霧乾燥して反応前駆体を得る工程である。 The fourth step according to the present invention is a step of obtaining a reaction precursor by spray drying the raw material mixture obtained in the third step.
 液の乾燥方法には噴霧乾燥法以外の方法も知られているが、本製造方法においては噴霧乾燥法を選択することが有利であるとの知見に基づき、この乾燥方法を採用している。
 詳細には、噴霧乾燥法を用いると各成分が均一に分散し密に詰まった粒状物が得られることから、この粒状物を本発明では反応前駆体とし、該反応前駆体を用いて後述する第5工程で焼成を行うことにより、X線回折的に単相のリン酸バナジウムリチウムを得ることができる。
Although methods other than the spray drying method are known as the liquid drying method, this drying method is adopted based on the knowledge that it is advantageous to select the spray drying method in this production method.
In detail, when the spray drying method is used, each component is uniformly dispersed and a densely packed granular material is obtained. This granular material is used as a reaction precursor in the present invention, and will be described later using the reaction precursor. By firing in the fifth step, single-phase lithium vanadium phosphate can be obtained in X-ray diffraction.
 噴霧乾燥法においては、所定手段によって液を霧化し、それによって生じた微細な液滴を乾燥させることで反応前駆体を得る。液の霧化には、例えば回転円盤を用いる方法と、圧力ノズルを用いる方法がある。本工程においてはいずれの方法を用いることもできる。 In the spray drying method, the reaction precursor is obtained by atomizing the liquid by a predetermined means and drying fine droplets generated thereby. For example, the liquid atomization includes a method using a rotating disk and a method using a pressure nozzle. Any method can be used in this step.
 噴霧乾燥法においては、霧化された液の液滴の大きさが、安定した乾燥や、得られる乾燥粉の性状に影響を与える。この観点から、霧化された液滴の大きさは、5~100μm、特に10~50μmであることが好ましい。噴霧乾燥装置への液の供給量は、この観点を考慮して決定することが望ましい。 In the spray drying method, the size of the droplets of the atomized liquid affects stable drying and the properties of the resulting dry powder. From this point of view, the size of the atomized droplet is preferably 5 to 100 μm, particularly 10 to 50 μm. It is desirable to determine the supply amount of the liquid to the spray drying apparatus in consideration of this viewpoint.
 噴霧乾燥法により得られる反応前駆体は、次工程により焼成に付されが、得られるリン酸バナジウムリチウムの二次粒子の平均粒子径等の粉体特性は、反応前駆体を概ね引き継ぐようになる。このため、噴霧乾燥は、反応前駆体の二次粒子が走査型電子顕微鏡(SEM)観察により求められる粒子径で5~100μm、特に10~50μmとなるように行われることが、目的とするリン酸バナジウムリチウムの粒子径の制御の点から好ましい。
 なお、噴霧乾燥装置における乾燥温度は、熱風入口温度が180~250℃、好ましくは200~240℃に調整して、粉体の温度が90~150℃、好ましくは100~130℃となるように調整することが粉体の吸湿を防ぎ粉体の回収が容易になることから好ましい。
The reaction precursor obtained by the spray drying method is subjected to calcination in the next step, but the powder properties such as the average particle diameter of the secondary particles of lithium vanadium phosphate obtained generally take over the reaction precursor. . For this reason, spray drying is performed so that the secondary particles of the reaction precursor have a particle diameter of 5 to 100 μm, particularly 10 to 50 μm, as determined by observation with a scanning electron microscope (SEM). This is preferable from the viewpoint of controlling the particle size of lithium vanadium oxide.
The drying temperature in the spray drying apparatus is adjusted so that the hot air inlet temperature is 180 to 250 ° C., preferably 200 to 240 ° C., and the powder temperature is 90 to 150 ° C., preferably 100 to 130 ° C. Adjustment is preferable because it prevents moisture absorption of the powder and facilitates collection of the powder.
 特許文献4で使用する反応前駆体は、結晶性の物質が含まれているのに対して、本発明で用いる反応前駆体は非晶質であることも特徴の一つである。本発明者らは、反応前駆体が非晶質となっているため、特許文献4の反応前駆体と比べて、反応性に優れ、低温で焼結し、更に結晶性も高くなると推測している。 One feature is that the reaction precursor used in Patent Document 4 contains a crystalline substance, whereas the reaction precursor used in the present invention is amorphous. The present inventors presume that since the reaction precursor is amorphous, the reaction precursor is superior in reactivity, sintered at a low temperature, and has higher crystallinity than the reaction precursor of Patent Document 4. Yes.
 このようにして得られた反応前駆体は、次に不活性ガス雰囲気又は還元雰囲気で500~1300℃で焼成する第5工程に付して、目的とするリン酸バナジウムリチウムを得る。 The reaction precursor thus obtained is then subjected to a fifth step of baking at 500 to 1300 ° C. in an inert gas atmosphere or a reducing atmosphere to obtain the target lithium vanadium phosphate.
 本発明に係る第5工程は、前記第4工程で得られた反応前駆体を500~1300℃で焼成を行って、X線回折的に単相のリン酸バナジウムリチウムを得る工程である。 The fifth step according to the present invention is a step in which the reaction precursor obtained in the fourth step is fired at 500 to 1300 ° C. to obtain single-phase lithium vanadium phosphate by X-ray diffraction.
 第5工程に係る焼成温度は500~1300℃、好ましくは600~1000℃である。この理由は、焼成温度が500℃より小さくなると単相になるまでの焼成時間が長くなり、一方、焼成温度が1300℃より大きくなるとリン酸バナジウムリチウムが融解するためである。 The firing temperature in the fifth step is 500 to 1300 ° C., preferably 600 to 1000 ° C. This is because if the firing temperature is lower than 500 ° C., the firing time until it becomes a single phase becomes longer, while if the firing temperature is higher than 1300 ° C., lithium vanadium phosphate is melted.
 焼成雰囲気は、バナジウムの酸化を防ぎ、かつ溶融を防ぐという理由から不活性ガス雰囲気又は還元雰囲気で行う。
 第5工程で用いることが出来る不活性ガスとしては、特に制限はなく、例えば窒素ガス、ヘリウムガス、アルゴンガス等が挙がられる。
The firing atmosphere is performed in an inert gas atmosphere or a reducing atmosphere because vanadium is prevented from being oxidized and melted.
The inert gas that can be used in the fifth step is not particularly limited, and examples thereof include nitrogen gas, helium gas, and argon gas.
 焼成時間は本製造方法において臨界的ではない。一般に2時間以上、特に3~24時間焼成すれば、X線回折的に単相のリン酸バナジウムリチウムを得ることができる。 Calcination time is not critical in this production method. In general, by baking for 2 hours or more, particularly 3 to 24 hours, single-phase lithium vanadium phosphate can be obtained by X-ray diffraction.
 このようにして得られるリン酸バナジウムリチウムは、必要に応じて複数回の焼成工程に付してもよい。 The lithium vanadium phosphate thus obtained may be subjected to a plurality of firing steps as necessary.
 本発明において、リン酸バナジウムリチウムの結晶構造を安定化し、サイクル特性等の電池性能をいっそう向上させることを目的として、必要によりMe源(Meは、V以外の原子番号11以上の金属元素又は遷移金属元素を示す。)を本発明の製造方法に係る第1工程の混合スラリーに混合し、引き続き本発明の製造方法の第2工程~第5工程を行うことにより、前記一般式(1)で示されるリン酸バナジウムリチウムにMe元素をドープして含有させたものを得ることができる。なお、本発明において、Me元素は、前記一般式(1)で示されるリン酸バナジウムリチウムのLiサイト又は/及びVサイトに置換されて存在する。
 Me源中のMeは、V以外の原子番号11以上の金属元素又は遷移金属元素であり、好ましいMe元素としては、Mg、Ca、Al、Mn、Co、Ni、Fe、Ti、Zr、Bi、Cr、Nb、Mo、Cu等が挙げられ、これらは1種単独又は2種以上の組み合わせであってもよい。
 Me源としては、Me元素を有する酸化物、水酸化物、ハロゲン化物、炭酸塩、硝酸塩、炭酸塩、有機酸塩等が挙げられる。なお、Me源は第1工程の混合スラリー中に溶解させて存在させてもよく、固形物として存在させてもよい。混合スラリー中に固形物としてMe源を存在させる場合には、平均粒子径が100μm以下、好ましくは0.1~50μmのものを用いることが優れた反応性を有する反応前駆体を得る観点から好ましい。
 また、Me源を混合する場合には、Me源の混合量は、ドープさせるMe元素の種類にもよるが、多くの場合、バナジウム化合物のV原子とMe源中のMe原子の合計(V+Me=M)とリン源中のP原子のモル比(M/P)で0.5~0.80、好ましくは0.60~0.73で、Me/Vのモル比が0より大きく0.45以下、好ましくは0より大きく0.1以下となる量が好ましい。
In the present invention, for the purpose of stabilizing the crystal structure of lithium vanadium phosphate and further improving battery performance such as cycle characteristics, a Me source (Me is a metal element having an atomic number of 11 or more other than V or a transition, if necessary) Metal element) is mixed with the mixed slurry of the first step according to the production method of the present invention, and then the second to fifth steps of the production method of the present invention are performed, whereby the general formula (1) It is possible to obtain the lithium vanadium phosphate shown by doping with Me element. In the present invention, the Me element is substituted for the Li site or / and the V site of lithium vanadium phosphate represented by the general formula (1).
Me in the Me source is a metal element or a transition metal element having an atomic number of 11 or more other than V, and preferable Me elements include Mg, Ca, Al, Mn, Co, Ni, Fe, Ti, Zr, Bi, Cr, Nb, Mo, Cu, etc. are mentioned, These may be single 1 type or the combination of 2 or more types.
Examples of the Me source include oxides, hydroxides, halides, carbonates, nitrates, carbonates, and organic acid salts having the Me element. Note that the Me source may be dissolved in the mixed slurry in the first step or may be present as a solid. In the case where the Me source is present as a solid in the mixed slurry, it is preferable from the viewpoint of obtaining a reaction precursor having excellent reactivity that an average particle size of 100 μm or less, preferably 0.1 to 50 μm is used. .
When mixing the Me source, the mixing amount of the Me source depends on the type of Me element to be doped, but in many cases, the sum of the V atom of the vanadium compound and the Me atom in the Me source (V + Me = The molar ratio of M) to the P atom in the phosphorus source (M / P) is 0.5 to 0.80, preferably 0.60 to 0.73, and the molar ratio of Me / V is larger than 0 to 0.45. Hereinafter, an amount that is preferably greater than 0 and less than or equal to 0.1 is preferred.
 また、本製造方法では、第5工程で得られるリン酸バナジウムリチウムに対して、更に加熱処理を施して、リン酸バナジウムリチウムに含有される導電性炭素量を調整する第6工程を施すことができる。
 具体的な第6工程の操作は、第5工程で得られる導電性炭素を含有するリン酸バナジウムリチウムに加熱処理を施して導電性炭素を酸化処理することにより行う。
 第6工程に係る加熱処理は、酸素含有雰囲気下に行うことが好ましい。前記酸素濃度は5Vol%以上、好ましくは10~30Vol%とすることが導電性炭素を高効率で酸化処理するという観点から好ましい。
 第6工程に係る加熱処理の温度は、250~450℃、好ましくは300~400℃とすることが導電性炭素を高効率で酸化処理するという観点から好ましい。
 第6工程に係る加熱処理の時間は、本製造方法おいて臨界的ではない。加熱処理の時間が長くなるほどリン酸バナジウムリチウムに含有される導電性炭素の含有量が低くなる。所望の導電性炭素の含有量となるよう予め適宜好適な条件を設定して行うことが好ましい。
In this production method, the sixth step of adjusting the amount of conductive carbon contained in the lithium vanadium phosphate by further heat-treating the lithium vanadium phosphate obtained in the fifth step is performed. it can.
The specific operation of the sixth step is performed by subjecting the lithium vanadium phosphate containing the conductive carbon obtained in the fifth step to a heat treatment to oxidize the conductive carbon.
The heat treatment according to the sixth step is preferably performed in an oxygen-containing atmosphere. The oxygen concentration is preferably 5 Vol% or more, and preferably 10 to 30 Vol%, from the viewpoint of oxidizing the conductive carbon with high efficiency.
The temperature of the heat treatment according to the sixth step is preferably 250 to 450 ° C., more preferably 300 to 400 ° C., from the viewpoint of oxidizing the conductive carbon with high efficiency.
The time for the heat treatment according to the sixth step is not critical in this production method. The longer the heat treatment time, the lower the conductive carbon content contained in the lithium vanadium phosphate. It is preferable to carry out by appropriately setting suitable conditions in advance so as to obtain a desired conductive carbon content.
 かくして得られるリン酸バナジウムリチウムは、X線回折的に単相のリン酸バナジウムリチウムであり、好ましい物性としては、平均一次粒子径が10μm以下、好ましくは0.01~5μmの一次粒子が多数集合して、平均粒子径が5~100μm、好ましくは10~50μmの二次粒子を形成する凝集状のリン酸バナジウムリチウムであることが好ましい。
 本製造方法では、得られるリン酸バナジウムリチウムに対して、更に必要に応じて解砕処理、又は粉砕処理し、更に分級を行ってもよい。
The lithium vanadium phosphate thus obtained is a single-phase lithium vanadium phosphate in terms of X-ray diffraction, and as a preferred physical property, a large number of primary particles having an average primary particle diameter of 10 μm or less, preferably 0.01 to 5 μm are aggregated. Thus, it is preferable to use agglomerated lithium vanadium phosphate that forms secondary particles having an average particle diameter of 5 to 100 μm, preferably 10 to 50 μm.
In this production method, the obtained lithium vanadium phosphate may be further crushed or crushed as necessary, and further classified.
 また、本製造方法で得られるリン酸バナジウムリチウムは、該粒子が還元糖に起因した導電性炭素でコーティングされたリン酸バナジウムリチウム炭素複合体であってもよく、該リン酸バナジウムリチウム炭素複合体を正極活物質として用いることにより、いっそう高い放電容量のリチウム二次電池を得ることができる。
 また、本製造方法で得られるリン酸バナジウムリチウムは、固体電解質での用途にも用いることができる。
Further, the lithium vanadium phosphate obtained by the present production method may be a vanadium lithium phosphate carbon composite in which the particles are coated with conductive carbon resulting from a reducing sugar, and the vanadium lithium lithium carbon composite By using as a positive electrode active material, a lithium secondary battery having a higher discharge capacity can be obtained.
Moreover, the lithium vanadium phosphate obtained by this manufacturing method can be used also for the use with a solid electrolyte.
 以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 {実施例1}
<第1工程>
 5Lビーカーにイオン交換水2Lを入れ、これに85%リン酸605gと五酸化バナジウム320gとスクロース(ショ糖)170gを投入し室温(25℃)で攪拌することにより黄土色の混合スラリーを得た。
<第2工程>
 得られた混合スラリーを95℃で1時間、攪拌下に加熱し還元反応を行い、濃青色の反応溶液を得た。
<第3工程>
 反応溶液を室温(25℃)まで冷却した。次いで水酸化リチウム・1水塩220gをイオン交換水1.5Lに溶解させた溶液を調製し、室温でこの溶液を反応溶液に添加し、濃青色の原料混合液の溶液を得た。
<第4工程>
 次いで、出口温度を120℃に設定した噴霧乾燥装置に液を供給し、反応前駆体を得た。反応前駆体のSEM観察法により求められる平均二次粒子径は12μmであった。
 得られた反応前駆体を線源としてCuKα線を用いてX線回折測定を行ったところ、該反応前駆体は、非晶質であることが確認できた。また、反応前駆体のX線回折図を図1に示す。また、反応前駆体の電子顕微鏡写真(SEM像)を図2に示す。
<第5工程>
 得られた反応前駆体をムライト製匣鉢に入れ,窒素雰囲気下600℃で10時間焼成した。得られたリン酸バナジウムリチウム試料をX線回折分析した結果、単相のリン酸バナジウムリチウムであることを確認した。得られたリン酸バナジウムリチウム試料のX線回折図を図3に示す。また、得られたリン酸バナジウムリチウム試料の電子顕微鏡写真(SEM像)を図4に示す。
 また、得られたリン酸バナジウムリチウム試料の残存炭素量を、TOC全有機炭素計(島津製作所製TOC-5000A)にて測定することによりC原子の含有量として求めた。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.
{Example 1}
<First step>
2 L of ion-exchanged water was placed in a 5 L beaker, and 605 g of 85% phosphoric acid, 320 g of vanadium pentoxide and 170 g of sucrose (sucrose) were added thereto and stirred at room temperature (25 ° C.) to obtain an ocher mixed slurry. .
<Second step>
The obtained mixed slurry was heated with stirring at 95 ° C. for 1 hour to carry out a reduction reaction to obtain a dark blue reaction solution.
<Third step>
The reaction solution was cooled to room temperature (25 ° C.). Next, a solution in which 220 g of lithium hydroxide monohydrate was dissolved in 1.5 L of ion-exchanged water was prepared, and this solution was added to the reaction solution at room temperature to obtain a dark blue raw material mixture solution.
<4th process>
Subsequently, the liquid was supplied to the spray drying apparatus which set outlet temperature to 120 degreeC, and the reaction precursor was obtained. The average secondary particle diameter obtained by the SEM observation method of the reaction precursor was 12 μm.
When the obtained reaction precursor was used as a radiation source and X-ray diffraction measurement was performed using CuKα rays, it was confirmed that the reaction precursor was amorphous. An X-ray diffraction pattern of the reaction precursor is shown in FIG. Further, an electron micrograph (SEM image) of the reaction precursor is shown in FIG.
<5th process>
The obtained reaction precursor was placed in a mullite slag and baked at 600 ° C. for 10 hours in a nitrogen atmosphere. As a result of X-ray diffraction analysis of the obtained lithium vanadium phosphate sample, it was confirmed to be a single-phase lithium vanadium phosphate. FIG. 3 shows an X-ray diffraction pattern of the obtained lithium vanadium phosphate sample. Moreover, the electron micrograph (SEM image) of the obtained lithium vanadium phosphate sample is shown in FIG.
Further, the residual carbon content of the obtained lithium vanadium phosphate sample was measured as a C atom content by measuring with a TOC total organic carbon meter (TOC-5000A manufactured by Shimadzu Corporation).
 {実施例2~4}
 第5工程において、焼成温度を700~900℃とする以外は、実施例1と同様に反応を行ってリン酸バナジウムリチウム試料を得た。
 また、得られたリン酸バナジウムリチウム試料のX線回折分析した結果、何れも単相のリン酸バナジウムリチウムであることを確認した。また、実施例1と同様にして残存炭素量を求めた。
Figure JPOXMLDOC01-appb-T000001
注)1)第一工程の「V/Pのモル比」は添加したリン酸中のP原子に対する五酸化バナジウム中のV原子のモル比を示す。
2)第三工程の「Li/Pのモル比」は、第一工程で添加したリン酸中のP原子に対する第三工程で添加した水酸化リチウム中のLi原子のモル比を示す。
{Examples 2 to 4}
In the fifth step, a reaction was carried out in the same manner as in Example 1 except that the firing temperature was 700 to 900 ° C. to obtain a lithium vanadium phosphate sample.
Moreover, as a result of X-ray diffraction analysis of the obtained lithium vanadium phosphate sample, it was confirmed that all were single-phase lithium vanadium phosphate. Further, the amount of residual carbon was determined in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000001
Note) 1) “Molar ratio of V / P” in the first step indicates the molar ratio of V atom in vanadium pentoxide to P atom in added phosphoric acid.
2) “Molar ratio of Li / P” in the third step indicates a molar ratio of Li atoms in lithium hydroxide added in the third step to P atoms in phosphoric acid added in the first step.
 {比較例1}
 5Lビーカーにイオン交換水3.5Lを入れ、これに水酸化リチウム・1水塩220gと五酸化バナジウム320gと85%リン酸605gとスクロース170gを加えた後、95℃で1時間、攪拌下に加熱して緑色のスラリーを得た。次いで、出口温度を120℃に設定した噴霧乾燥装置に、該スラリーを供給し、反応前駆体を得た。得られた反応前駆体をX線回折分析を行ったところ、該反応前駆体は、明確な回折ピークが確認できた。また、反応前駆体のX線回折図を図1に併記した。
 得られた反応前駆体をムライト製匣鉢に入れ、窒素雰囲気下600℃で10時間焼成して、リン酸バナジウムリチウム試料を得た。
 得られたリン酸バナジウムリチウム試料のX線回折分析図を図3に併記した。X線回折分析の結果、リン酸バナジウムリチウム以外の異相の存在が確認できた。また、実施例1と同様にして残存炭素量を求めたところ、残存炭素量は1.9質量%であった。
{Comparative Example 1}
Into a 5 L beaker, 3.5 L of ion-exchanged water was added, 220 g of lithium hydroxide monohydrate, 320 g of vanadium pentoxide, 605 g of 85% phosphoric acid, and 170 g of sucrose were added, and the mixture was stirred at 95 ° C. for 1 hour. A green slurry was obtained upon heating. Next, the slurry was supplied to a spray drying apparatus whose outlet temperature was set to 120 ° C. to obtain a reaction precursor. When the obtained reaction precursor was subjected to X-ray diffraction analysis, a clear diffraction peak could be confirmed for the reaction precursor. The X-ray diffraction pattern of the reaction precursor is also shown in FIG.
The obtained reaction precursor was put in a mullite slag and baked at 600 ° C. for 10 hours in a nitrogen atmosphere to obtain a lithium vanadium phosphate sample.
The X-ray diffraction analysis diagram of the obtained lithium vanadium phosphate sample is also shown in FIG. As a result of X-ray diffraction analysis, the presence of a different phase other than lithium vanadium phosphate was confirmed. Moreover, when the amount of residual carbon was calculated | required like Example 1, the amount of residual carbon was 1.9 mass%.
 {比較例2}
 5Lビーカーにイオン交換水2Lを入れ、これに水酸化リチウム・1水塩252gを加えて溶解した。この溶液に五酸化バナジウム364gを加えて1h攪拌した。この液にグルコース(ブドウ糖)72gと85%リン酸692gを加えて1時間攪拌して原料混合液を得た。次いで、熱風入り口の温度を230℃、出口温度を120℃に設定した噴霧乾燥装置に、原料混合液を供給し、反応前駆体を得た。また、反応前駆体のX線回折図を図1に併記した。
 得られた反応前駆体をムライト製匣鉢に入れ、窒素雰囲気下900℃で12時間焼成した。焼成物をジェットミルにより解砕してリン酸バナジウムリチウム試料を得た。得られたリン酸バナジウムリチウム試料のX線回折分析した結果、単相のリン酸バナジウムリチウムであることを確認した。また、実施例1と同様にして残存炭素量を求めたところ、残存炭素量は0.1質量%であった。
{Comparative Example 2}
2 L of ion-exchanged water was put into a 5 L beaker, and 252 g of lithium hydroxide monohydrate was added thereto and dissolved. To this solution, 364 g of vanadium pentoxide was added and stirred for 1 h. To this solution, 72 g of glucose (glucose) and 692 g of 85% phosphoric acid were added and stirred for 1 hour to obtain a raw material mixture. Next, the raw material mixture was supplied to a spray drying apparatus in which the hot air inlet temperature was set to 230 ° C. and the outlet temperature set to 120 ° C. to obtain a reaction precursor. The X-ray diffraction pattern of the reaction precursor is also shown in FIG.
The obtained reaction precursor was placed in a mullite slag and baked at 900 ° C. for 12 hours in a nitrogen atmosphere. The fired product was pulverized by a jet mill to obtain a lithium vanadium phosphate sample. As a result of X-ray diffraction analysis of the obtained lithium vanadium phosphate sample, it was confirmed to be a single-phase lithium vanadium phosphate. Moreover, when the amount of residual carbon was calculated | required like Example 1, the amount of residual carbon was 0.1 mass%.
 {実施例5}
<第1工程>
 5Lビーカーにイオン交換水2.5Lを入れ、これに85%リン酸864.7gと五酸化バナジウム457.7gとラクトース・1水和物156.6gを投入し室温(25℃)で攪拌することにより黄土色の混合スラリーを得た。
<第2工程>
 得られた混合スラリーを95℃で1時間、攪拌下に加熱し還元反応を行い、濃青色の反応溶液を得た。
 <第3工程>
 反応溶液を室温(25℃)まで冷却した。次いで水酸化リチウム・1水塩314.7gをイオン交換水1.5Lに溶解させた溶液を調製し、室温でこの溶液を反応溶液に添加し、濃青色の原料混合液の溶液を得た。
<第4工程>
 次いで、出口温度を120℃に設定した噴霧乾燥装置に液を供給し、反応前駆体を得た。得られた反応前駆体を線源としてCuKα線を用いてX線回折測定を行ったところ、該反応前駆体は、非晶質であることが確認できた。また、反応前駆体の電子顕微鏡写真(SEM像)を図5に示す。
<第5工程>
 得られた反応前駆体をムライト製匣鉢に入れ,窒素雰囲気下800℃で10時間焼成した。得られたリン酸バナジウムリチウム試料をX線回折分析した結果、単相のリン酸バナジウムリチウムであることを確認した。また、リン酸バナジウムリチウム試料のX線回折図を図6に示す。得られたリン酸バナジウムリチウム試料の電子顕微鏡写真(SEM像)を図7に示す。
 また、得られたリン酸バナジウムリチウム試料の残存炭素量を、TOC全有機炭素計(島津製作所製TOC-5000A)にて測定したところ、1.5質量%であった。また、BET比表面積は9.8m2/gであった。
{Example 5}
<First step>
Put 2.5 L of ion-exchanged water in a 5 L beaker, add 854.7 g of 85% phosphoric acid, 457.7 g of vanadium pentoxide and 156.6 g of lactose monohydrate, and stir at room temperature (25 ° C.). As a result, an ocher mixed slurry was obtained.
<Second step>
The obtained mixed slurry was heated with stirring at 95 ° C. for 1 hour to carry out a reduction reaction to obtain a dark blue reaction solution.
<Third step>
The reaction solution was cooled to room temperature (25 ° C.). Next, a solution in which 314.7 g of lithium hydroxide monohydrate was dissolved in 1.5 L of ion-exchanged water was prepared, and this solution was added to the reaction solution at room temperature to obtain a dark blue raw material mixture solution.
<4th process>
Subsequently, the liquid was supplied to the spray drying apparatus which set outlet temperature to 120 degreeC, and the reaction precursor was obtained. When the obtained reaction precursor was used as a radiation source and X-ray diffraction measurement was performed using CuKα rays, it was confirmed that the reaction precursor was amorphous. An electron micrograph (SEM image) of the reaction precursor is shown in FIG.
<5th process>
The obtained reaction precursor was placed in a mullite slag and baked at 800 ° C. for 10 hours in a nitrogen atmosphere. As a result of X-ray diffraction analysis of the obtained lithium vanadium phosphate sample, it was confirmed to be a single-phase lithium vanadium phosphate. Moreover, the X-ray-diffraction figure of a lithium vanadium phosphate sample is shown in FIG. An electron micrograph (SEM image) of the obtained lithium vanadium phosphate sample is shown in FIG.
Further, when the residual carbon content of the obtained lithium vanadium phosphate sample was measured with a TOC total organic carbon meter (TOC-5000A manufactured by Shimadzu Corporation), it was 1.5% by mass. The BET specific surface area was 9.8 m 2 / g.
 {実施例6}
<第1工程>
 5Lビーカーにイオン交換水2.5Lを入れ、これに85%リン酸864.7gと五酸化バナジウム457.7gとラクトース・1水和物156.6gを投入し室温(25℃)で攪拌することにより黄土色の混合スラリーを得た。
<第2工程>
 得られた混合スラリーを95℃で1時間、攪拌下に加熱し還元反応を行い、濃青色の反応溶液を得た。
 <第3工程>
 反応溶液を室温(25℃)まで冷却した。次いで炭酸リチウム277.1gをイオン交換水1.5Lに溶解させた溶液を調製し、室温でこの溶液を反応溶液に添加し、濃青色の原料混合液の溶液を得た。
<第4工程>
 次いで、出口温度を120℃に設定した噴霧乾燥装置に液を供給し、反応前駆体を得た。得られた反応前駆体を線源としてCuKα線を用いてX線回折測定を行ったところ、該反応前駆体は、非晶質であることが確認できた。
<第5工程>
 得られた反応前駆体をムライト製匣鉢に入れ,窒素雰囲気下800℃で10時間焼成した。得られたリン酸バナジウムリチウム試料をX線回折分析した結果、単相のリン酸バナジウムリチウムであることを確認した。また、リン酸バナジウムリチウム試料のX線回折図を図8に示す。得られたリン酸バナジウムリチウム試料の電子顕微鏡写真(SEM像)を図9に示す。
 また、得られたリン酸バナジウムリチウム試料の残存炭素量を、TOC全有機炭素計(島津製作所製TOC-5000A)にて測定したところ、1.2質量%であった。また、BET比表面積は9.2m2/gであった。
{Example 6}
<First step>
Put 2.5 L of ion-exchanged water in a 5 L beaker, add 854.7 g of 85% phosphoric acid, 457.7 g of vanadium pentoxide and 156.6 g of lactose monohydrate, and stir at room temperature (25 ° C.). As a result, an ocher mixed slurry was obtained.
<Second step>
The obtained mixed slurry was heated with stirring at 95 ° C. for 1 hour to carry out a reduction reaction to obtain a dark blue reaction solution.
<Third step>
The reaction solution was cooled to room temperature (25 ° C.). Next, a solution in which 277.1 g of lithium carbonate was dissolved in 1.5 L of ion-exchanged water was prepared, and this solution was added to the reaction solution at room temperature to obtain a dark blue raw material mixture solution.
<4th process>
Subsequently, the liquid was supplied to the spray drying apparatus which set outlet temperature to 120 degreeC, and the reaction precursor was obtained. When the obtained reaction precursor was used as a radiation source and X-ray diffraction measurement was performed using CuKα rays, it was confirmed that the reaction precursor was amorphous.
<5th process>
The obtained reaction precursor was placed in a mullite slag and baked at 800 ° C. for 10 hours in a nitrogen atmosphere. As a result of X-ray diffraction analysis of the obtained lithium vanadium phosphate sample, it was confirmed to be a single-phase lithium vanadium phosphate. Moreover, the X-ray-diffraction figure of a lithium vanadium phosphate sample is shown in FIG. An electron micrograph (SEM image) of the obtained lithium vanadium phosphate sample is shown in FIG.
Further, when the residual carbon content of the obtained lithium vanadium phosphate sample was measured with a TOC total organic carbon meter (TOC-5000A manufactured by Shimadzu Corporation), it was 1.2% by mass. The BET specific surface area was 9.2 m 2 / g.
<電池性能の評価>
<電池性能試験>
(I)リチウム二次電池の作製;
 上記のように製造した実施例4、実施例5及び比較例2のリン酸バナジウムリチウム試料91質量%、黒鉛粉末6質量%、ポリフッ化ビニリデン3質量%を混合して正極剤とし、これをN-メチル-2-ピロリジノンに分散させて混練ペーストを調製した。得られた混練ペーストをアルミ箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて正極板を得た。
 この正極板を用いて、セパレーター、負極、正極、集電板、取り付け金具、外部端子、電解液等の各部材を使用してリチウム二次電池を製作した。このうち、負極は金属リチウム箔を用い、電解液にはエチレンカーボネートとメチルエチルカーボネートの1:1混練液1リットルにLiPF61モルを溶解したものを使用した。
<Evaluation of battery performance>
<Battery performance test>
(I) Production of lithium secondary battery;
The positive electrode agent was prepared by mixing 91% by mass of the lithium vanadium phosphate sample of Example 4, Example 5 and Comparative Example 2 manufactured as described above, 6% by mass of graphite powder, and 3% by mass of polyvinylidene fluoride. A kneaded paste was prepared by dispersing in -methyl-2-pyrrolidinone. The obtained kneaded paste was applied to an aluminum foil, dried, pressed and punched into a disk having a diameter of 15 mm to obtain a positive electrode plate.
Using this positive electrode plate, a lithium secondary battery was manufactured using each member such as a separator, a negative electrode, a positive electrode, a current collector plate, a mounting bracket, an external terminal, and an electrolytic solution. Among these, a metal lithium foil was used for the negative electrode, and 1 mol of LiPF 6 dissolved in 1 liter of a 1: 1 kneaded solution of ethylene carbonate and methyl ethyl carbonate was used for the electrolyte.
(2)電池の性能評価
 作製したリチウム二次電池を下記条件で作動させ、電池性能を評価した。
<サイクル特性の評価>
 0.5Cで4.2Vまで充電させ、引き続いて4.2Vで保持させる全充電時間5時間の定電流定電圧(CCCV)充電により充電させた後、0.1Cで2.0Vまで放電させる定電流(CC)放電を行い、これらの操作を1サイクルとして1サイクル毎に放電容量を測定した。このサイクルを20サイクル繰り返し、1サイクル目と20サイクル目のそれぞれの放電容量から、下記式により容量維持率を算出した。なお、1サイクル目の放電容量を初期放電容量とした。
(2) Battery performance evaluation The produced lithium secondary battery was operated on the following conditions, and battery performance was evaluated.
<Evaluation of cycle characteristics>
After charging with constant current and constant voltage (CCCV) charging for 5 hours with a total charging time of 5 hours, charging to 4.2 V at 0.5 C, and then holding at 4.2 V, discharging to 2.0 V at 0.1 C Current (CC) discharge was performed, and these operations were regarded as one cycle, and the discharge capacity was measured every cycle. This cycle was repeated 20 times, and the capacity retention rate was calculated from the discharge capacity of the first cycle and the 20th cycle according to the following formula. The discharge capacity at the first cycle was defined as the initial discharge capacity.
 容量維持率(%)=
((20サイクル目の放電容量)/(1サイクル目の放電容量))×100
Capacity maintenance rate (%) =
((20th cycle discharge capacity) / (1st cycle discharge capacity)) × 100
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
   {実施例7}
  <第6工程>
 実施例3で得られたリン酸バナジウムリチウム試料(残存炭素量1.6質量%)を電気炉で大気雰囲気下(酸素濃度20Vol%)、350℃で15時間加熱処理を行った。
 得られたリン酸バナジウムリチウム試料をX線回折分析した結果、単相のリン酸バナジウムリチウムであることを確認した。また、得られたリン酸バナジウムリチウム試料の残存炭素量を、TOC全有機炭素計(島津製作所製TOC-5000A)にて測定したところ、0.1質量%であった。また、BET比表面積は7.1m/gであった。
 
{Example 7}
<6th process>
The lithium vanadium phosphate sample (residual carbon content 1.6 mass%) obtained in Example 3 was heat-treated at 350 ° C. for 15 hours in an electric furnace in an air atmosphere (oxygen concentration 20 Vol%).
As a result of X-ray diffraction analysis of the obtained lithium vanadium phosphate sample, it was confirmed to be a single-phase lithium vanadium phosphate. Further, when the residual carbon content of the obtained lithium vanadium phosphate sample was measured with a TOC total organic carbon meter (TOC-5000A manufactured by Shimadzu Corporation), it was 0.1% by mass. The BET specific surface area was 7.1 m 2 / g.

Claims (10)

  1.  ナシコン(NASICON)構造を有するリン酸バナジウムリチウムの製造方法であって、
     4価又は5価のバナジウム化合物、リン源及び還元糖とを水溶媒中で混合して混合スラリーを調製する第1工程、次に該混合スラリーを加温処理して溶液化する第2工程、次に該溶液にリチウム源を添加して原料混合液を調製する第3工程、次に該原料混合液を噴霧乾燥処理して反応前駆体を得る第4工程、次に該反応前駆体を不活性ガス雰囲気又は還元雰囲気で500~1300℃で焼成する第5工程を有することを特徴とするリン酸バナジウムリチウムの製造方法。
    A method for producing lithium vanadium phosphate having a NASICON structure,
    A first step of preparing a mixed slurry by mixing a tetravalent or pentavalent vanadium compound, a phosphorus source and a reducing sugar in an aqueous solvent, and then a second step of heating the mixed slurry to form a solution; Next, a third step of preparing a raw material mixture by adding a lithium source to the solution, then a fourth step of obtaining a reaction precursor by spray drying the raw material mixture, and then removing the reaction precursor. A method for producing lithium vanadium phosphate, comprising a fifth step of firing at 500 to 1300 ° C. in an active gas atmosphere or a reducing atmosphere.
  2.  第2工程の加温処理の温度が60~100℃であることを特徴とする請求項1記載のリン酸バナジウムリチウムの製造方法。 The method for producing lithium vanadium phosphate according to claim 1, wherein the temperature of the heating treatment in the second step is 60 to 100 ° C.
  3.  リチウム源が、水酸化リチウム及び炭酸リチウムであることを特徴とする請求項1記載のリン酸バナジウムリチウムの製造方法。 The method for producing lithium vanadium phosphate according to claim 1, wherein the lithium source is lithium hydroxide or lithium carbonate.
  4.  バナジウム化合物が、五酸化バナジウムであることを特徴とする請求項1記載のリン酸バナジウムリチウムの製造方法。 The method for producing lithium vanadium phosphate according to claim 1, wherein the vanadium compound is vanadium pentoxide.
  5.  リン源が、リン酸であることを特徴とする請求項1記載のリン酸バナジウムリチウムの製造方法。 The method for producing lithium vanadium phosphate according to claim 1, wherein the phosphorus source is phosphoric acid.
  6.  還元糖が、スクロース及びラクトースから選ばれることを特徴とする請求項1記載のリン酸バナジウムリチウムの製造方法。 The method for producing lithium vanadium phosphate according to claim 1, wherein the reducing sugar is selected from sucrose and lactose.
  7.  前記第1工程において、更にMe源(MeはV以外の原子番号11以上の金属元素又は遷移金属元素を示す。)を前記混合スラリーに混合することを特徴とする請求項1記載のリン酸バナジウムリチウムの製造方法。 2. The vanadium phosphate according to claim 1, wherein in the first step, a Me source (Me represents a metal element or a transition metal element other than V having an atomic number of 11 or more) is further mixed with the mixed slurry. Method for producing lithium.
  8.  更に、第5工程後に得られるリン酸バナジウムリチウムを加熱処理する第6工程を設けることを特徴とする請求項1乃至7記載の何れか一項に記載のリン酸バナジウムリチウムの製造方法。 Furthermore, the 6th process of heat-processing lithium vanadium phosphate obtained after a 5th process is provided, The manufacturing method of the lithium vanadium phosphate as described in any one of Claim 1 thru | or 7 characterized by the above-mentioned.
  9.  加熱処理は、酸素含有雰囲気中で行うことを特徴とする請求項8記載のリン酸バナジウムリチウムの製造方法。 The method for producing lithium vanadium phosphate according to claim 8, wherein the heat treatment is performed in an oxygen-containing atmosphere.
  10.  加熱処理温度が、250~450℃であることを特徴とする請求項8又は9の何れか一項に記載のリン酸バナジウムリチウムの製造方法。 The method for producing lithium vanadium phosphate according to any one of claims 8 and 9, wherein the heat treatment temperature is 250 to 450 ° C.
PCT/JP2017/008049 2016-03-08 2017-03-01 Method for manufacturing vanadium lithium phosphate WO2017154690A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780016103.9A CN108778990A (en) 2016-03-08 2017-03-01 The manufacturing method of phosphoric acid vanadium lithium
EP17763030.8A EP3415467B1 (en) 2016-03-08 2017-03-01 Method for manufacturing vanadium lithium phosphate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-044535 2016-03-08
JP2016044535 2016-03-08
JP2016-255249 2016-12-28
JP2016255249A JP6345227B2 (en) 2016-03-08 2016-12-28 Method for producing lithium vanadium phosphate

Publications (1)

Publication Number Publication Date
WO2017154690A1 true WO2017154690A1 (en) 2017-09-14

Family

ID=59790209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008049 WO2017154690A1 (en) 2016-03-08 2017-03-01 Method for manufacturing vanadium lithium phosphate

Country Status (1)

Country Link
WO (1) WO2017154690A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001500665A (en) 1996-09-23 2001-01-16 バレンス テクノロヂー、インコーポレイテッド Lithium-containing phosphate intercalating lithium and its use as positive or negative electrode material in lithium secondary batteries
JP2002530835A (en) 1998-11-19 2002-09-17 ヴェイランス・テクノロジー・インコーポレーテッド Lithium-based phosphate for use in lithium-ion batteries
JP2008052970A (en) 2006-08-23 2008-03-06 Sumitomo Osaka Cement Co Ltd Manufacturing method of electrode material, positive electrode material, and battery
JP2010535402A (en) * 2007-08-01 2010-11-18 ヴァレンス テクノロジー インコーポレーテッド Synthesis of cathode active material
WO2011102358A1 (en) * 2010-02-17 2011-08-25 株式会社Gsユアサ Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2012043367A1 (en) 2010-09-27 2012-04-05 日本化学工業株式会社 Process for production of (vanadium phosphate)-lithium-carbon complex
WO2014006948A1 (en) * 2012-07-04 2014-01-09 富士重工業株式会社 Nonaqueous-solvent type electricity storage device
WO2015016190A1 (en) * 2013-07-29 2015-02-05 富士フイルム株式会社 Nonaqueous secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001500665A (en) 1996-09-23 2001-01-16 バレンス テクノロヂー、インコーポレイテッド Lithium-containing phosphate intercalating lithium and its use as positive or negative electrode material in lithium secondary batteries
JP2002530835A (en) 1998-11-19 2002-09-17 ヴェイランス・テクノロジー・インコーポレーテッド Lithium-based phosphate for use in lithium-ion batteries
JP2008052970A (en) 2006-08-23 2008-03-06 Sumitomo Osaka Cement Co Ltd Manufacturing method of electrode material, positive electrode material, and battery
JP2010535402A (en) * 2007-08-01 2010-11-18 ヴァレンス テクノロジー インコーポレーテッド Synthesis of cathode active material
WO2011102358A1 (en) * 2010-02-17 2011-08-25 株式会社Gsユアサ Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2012043367A1 (en) 2010-09-27 2012-04-05 日本化学工業株式会社 Process for production of (vanadium phosphate)-lithium-carbon complex
WO2014006948A1 (en) * 2012-07-04 2014-01-09 富士重工業株式会社 Nonaqueous-solvent type electricity storage device
WO2015016190A1 (en) * 2013-07-29 2015-02-05 富士フイルム株式会社 Nonaqueous secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANPING TANG ET AL.: "Electrochemical Performance of alpha-LiVOPO4/Carbon Composite Material Synthesized by Sol-Gel Method", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 161, no. 1, 2014, pages A10 - A13, XP055421629 *

Similar Documents

Publication Publication Date Title
JP4894969B1 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
KR101369658B1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP4522683B2 (en) Method for producing electrode material powder, electrode material powder and electrode, and lithium battery
JP5165515B2 (en) Lithium ion secondary battery
WO2007034823A1 (en) Method for producing positive electrode active material and nonaqueous electrolyte battery using same
JP5245084B2 (en) Olivine-type compound ultrafine particles and method for producing the same
JP2009120480A (en) Cobalt oxide particle powder and process for producing the same, cathode active material for non-aqueous electrolyte secondary cell and process for producing the same, and non-aqueous electrolyte secondary cell
JP5612392B2 (en) Method for producing lithium vanadium phosphate carbon composite
JP5364523B2 (en) Method for synthesizing olivine-type lithium M silicate and lithium ion secondary battery
JP5741143B2 (en) Active material, method for producing active material, electrode, lithium ion secondary battery, and method for producing lithium ion secondary battery
JP5120523B1 (en) Ammonium manganese iron magnesium phosphate and its production method, positive electrode active material for lithium secondary battery using said ammonium manganese iron magnesium magnesium, its production method, and lithium secondary battery using said positive electrode active material
JP7464102B2 (en) Metal composite hydroxide and its manufacturing method, positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery using the same
JP5810587B2 (en) Active material for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery
JP6345227B2 (en) Method for producing lithium vanadium phosphate
JP5839227B2 (en) Lithium secondary battery and manufacturing method thereof
JP5505868B2 (en) Precursor of positive electrode active material for lithium secondary battery and method for producing the same
JP2004259471A (en) Manufacturing method of positive electrode active material for lithium ion battery
JP5381115B2 (en) Lithium phosphate powder and lithium phosphate-containing slurry, method for producing electrode active material, and lithium ion battery
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP5708939B2 (en) Lithium titanate particle powder and method for producing the same, negative electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2017002933A1 (en) Lithium titanate powder for power storage device electrode, active material, and electrode sheet and power storage device using same
JP7144785B2 (en) Method for producing lithium vanadium phosphate
JP5769140B2 (en) Method for producing positive electrode active material for lithium secondary battery
WO2017154690A1 (en) Method for manufacturing vanadium lithium phosphate
JP6064309B2 (en) Precursor of positive electrode active material for lithium secondary battery and method for producing the same, positive electrode active material for lithium secondary battery using the precursor and method for producing the same, and lithium secondary battery using the positive electrode active material

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017763030

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017763030

Country of ref document: EP

Effective date: 20180914

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763030

Country of ref document: EP

Kind code of ref document: A1