WO2017154617A1 - Electrostatic capacity sensor - Google Patents

Electrostatic capacity sensor Download PDF

Info

Publication number
WO2017154617A1
WO2017154617A1 PCT/JP2017/007071 JP2017007071W WO2017154617A1 WO 2017154617 A1 WO2017154617 A1 WO 2017154617A1 JP 2017007071 W JP2017007071 W JP 2017007071W WO 2017154617 A1 WO2017154617 A1 WO 2017154617A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
shield wiring
wiring
proximal
display unit
Prior art date
Application number
PCT/JP2017/007071
Other languages
French (fr)
Japanese (ja)
Inventor
笹川 英人
朝川 隆司
威史 大坂
裕 高島
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2017154617A1 publication Critical patent/WO2017154617A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to a capacitance type sensor, and more particularly to a capacitance type sensor capable of improving electrostatic discharge resistance.
  • Patent Document 1 discloses a portable electronic device having a metal decoration layer on the back surface facing the bottom surface of a recessed portion of a display transparent window.
  • a communication hole penetrating into the housing is formed in the wall portion that forms the bottom surface of the recess.
  • a conductive portion electrically connected to the ground conductor of the circuit board is disposed on the inner wall surface side opposite to the concave bottom surface of the wall portion.
  • the metal decoration layer is disposed on the side of the display translucent window as viewed from the communication hole. Moreover, the distance between the edge part of the light transmission window for a display and a metal decoration layer is shorter than the distance between the edge part of the light transmission window for a display, and the edge part of a communicating hole. Therefore, when ESD (Electro Static Discharge) occurs and creeping discharge occurs along the end face of the display light transmission window, electricity generated by ESD may pass through the metal decoration layer before passing through the communication hole. There is. When electricity generated by ESD flows to the communication hole via the metal decoration layer, the metal decoration layer undergoes a state change based on the flow of electricity, and is visually recognized as a discoloration of the metal decoration layer. There is.
  • ESD Electro Static Discharge
  • the present invention is for solving the above-described conventional problems, and can take measures against ESD and suppress discoloration of a display unit (corresponding to the metal decoration layer of Patent Document 1) including a conductive material.
  • An object of the present invention is to provide a capacitive sensor.
  • the capacitive sensor of the present invention has a light-transmitting panel having one light-transmitting surface as an operation surface, and a light-transmitting base material provided with a transparent electrode on at least one main surface. And the base material is disposed opposite to a main surface opposite to the operation surface of the panel, and the capacitance sensor is a method of operating the panel.
  • a detection region that can detect an operation on the operation surface when viewed from the direction along the line, and a non-detection region located on the outer peripheral side of the detection region, and the panel and the base material in the non-detection region
  • a decorative layer that reduces the light transmittance of the non-detection region, a display portion including a conductive material, and a shield wiring that can be electrically connected to a portion that is conductive and set to a ground potential.
  • the end of the panel closest to the display The distance between the most proximal end surface and the end proximal to the most proximal end surface of the display portion is between the proximal end end closest to the most proximal end surface and the most proximal end surface of the shield wiring. It is longer than the distance.
  • a member is provided on a surface (including a case where the member is a part of the surface)” means that the member adheres (deposits) to the member constituting the surface. This means not only the case where the member is in contact with the surface but also the case where another member is interposed between the member and the surface.
  • the shield wiring is located closer to the display unit than the display unit, as viewed from the nearest end surface of the panel located at the nearest position of the display unit. For this reason, ESD (Electro Static Discharge) occurs in the capacitive sensor due to, for example, an operator's finger touching the operation surface of the panel. Even when creeping discharge occurs, electricity that tries to flow between the panel and the base material flows preferentially to the shield wiring rather than to the display section. . In this way, electricity generated by ESD flows through the shield wiring to a portion set to the ground potential, so that the electricity generated by ESD can be prevented from flowing through the display portion by the shield wiring.
  • ESD Electro Static Discharge
  • the display unit may be located between the panel and the decorative layer. In this case, when viewed from the operation surface side, the display unit is arranged with the decoration layer as a background, and thus the design of the display unit may be improved.
  • the shield wiring may be located between the base material and the decorative layer. In this case, when viewed from the operation surface side, the shield wiring is hidden by the decorative layer and is not visually recognized, so the degree of freedom in selecting the material of the shield wiring is increased.
  • the decoration layer and the display unit may be provided on a main surface of the panel opposite to the operation surface.
  • various members such as wiring may be provided on the surface of the base material facing the panel. it can.
  • the distance between the proximal end surface of the display unit proximal to the proximal end surface and the proximal end surface is the distance from the proximal end surface of the shield wiring to the distal end surface. It may be longer than the distance between the nearest end face. In this case, since the entire display unit is farther from the most proximal end face than the shield wiring, when electricity generated by ESD flows between the panel and the substrate from the nearest end face, The possibility of electricity flowing is reduced more stably.
  • the shield wiring may include a first shield wiring provided on a surface of the base material facing the panel, or provided on a main surface of the panel opposite to the operation surface.
  • the second shield wiring may be included. Since the shield wiring has both the first shield wiring and the second shield wiring, when electricity generated by ESD flows between the panel and the base material from the nearest end face, the electricity is displayed on the display unit. In some cases, the possibility of flowing into the tank is reduced in a particularly stable manner.
  • the electrostatic capacitance sensor may further include a wiring portion that is positioned between the decorative layer and the base material and electrically connects the transparent electrode and the external connection portion.
  • the distance between the end portion proximal to the nearest end face and the nearest end face in the wiring portion is such that the end portion proximal to the nearest end face and the nearest end face in the shield wire are It is preferable that it is longer than the distance between. According to this, the shielding effect with respect to a wiring part can be improved.
  • the wiring portion has a portion overlapping with the display portion when viewed from the direction along the normal line of the operation surface of the panel. Also good.
  • the wiring portion is protected from ESD by the shield wiring, it is appropriately suppressed that an excessive current flows in the wiring portion. Therefore, even if there is a portion overlapping with the wiring portion, electricity generated by ESD hardly flows through the display portion. Therefore, the arrangement relationship between the wiring portion and the display portion can be set more freely.
  • the shield wiring may have at least one of a portion provided on the end surface of the base material and a portion provided on the end surface of the panel. Even when a creeping discharge based on ESD occurs, a part where the shield wiring is provided on the end face of the base material and / or the panel rather than electricity flowing between the panel and the base material from the nearest end face Preferentially flows into the portion provided on the end face. For this reason, it can suppress that electricity flows into the display part located between a panel and a base material.
  • the electrostatic capacitance type sensor which can suppress the discoloration of the display part containing an electroconductive material while taking an ESD countermeasure is provided.
  • FIG. 5 is a schematic cross-sectional view taken along a cutting plane C1-C1 shown in FIG.
  • FIG. 5 is a schematic cross-sectional view taken along a cutting plane C2-C2 shown in FIG.
  • It is a typical top view showing other shield wiring of this embodiment.
  • It is a typical sectional view showing other shield wiring of this embodiment.
  • It is a typical top view showing other shield wiring of this embodiment.
  • It is a typical top view showing other shield wiring of this embodiment.
  • It is a typical sectional view showing other shield wiring of this embodiment.
  • It is a typical top view showing other shield wiring of this embodiment.
  • It is a typical sectional view showing other shield wiring of this embodiment.
  • FIG. 1 is a schematic perspective view showing a capacitive sensor according to the present embodiment.
  • FIG. 2 is a schematic plan view showing the capacitive sensor according to the present embodiment.
  • FIG. 3 is a schematic enlarged view showing the area A shown in FIG. 2 in an enlarged manner.
  • transparent and “translucent” refer to a state where the visible light transmittance is 50% or more (preferably 80% or more). Furthermore, the haze value is preferably 6% or less. In the present specification, “light shielding” and “light shielding” refer to a state where the visible light transmittance is less than 50% (preferably less than 20%).
  • the capacitive sensor 1 includes a base material 2 and a panel 3.
  • the base material 2 has translucency and is formed of a film-like transparent base material such as polyethylene terephthalate (PET), a glass base material, or the like.
  • PET polyethylene terephthalate
  • a transparent electrode or the like is provided on one main surface of the substrate 2. Details of this will be described later.
  • the panel 3 has translucency.
  • the material of the panel 3 is not particularly limited. As a material of the panel 3, a glass substrate or a plastic substrate is preferably applied.
  • the capacitive sensor 1 includes a detection region 11 and a non-detection region 25 when viewed from the direction along the normal of the surface on the panel 3 side.
  • the detection area 11 is an area where an operation body such as a finger can be operated
  • the non-detection area 25 is a frame-shaped area located on the outer peripheral side of the detection area 11.
  • the non-detection region 25 is shielded by a decorative layer 9 described later, and light (external light is exemplified) from the surface on the panel 3 side to the surface on the base material 2 side in the capacitive sensor 1 and the base material.
  • a display unit 41 is provided in the non-detection area 25.
  • the display part 41 is provided as a logo part (logotype (logotype)), for example, and includes a conductive material.
  • the material of the display unit 41 include conductive materials such as Cu-based, Al-based, Cr-based, Au-based, and Ag-based materials.
  • an example of the material of the display unit 41 is a conductive material having a metal mirror effect. Thereby, a mirror effect is obtained in the display unit 41 and a high-class feeling is obtained.
  • a shield wiring 18 is provided in the non-detection region 25.
  • the shield wiring 18 has conductivity and is formed of a material having a metal such as Cu, Cu alloy, CuNi alloy, Ni, Ag, or Au.
  • the shield wiring 18 is formed of an ink containing a metal material, for example, by screen printing.
  • the shield wiring 18 may be formed of a material having a metal by sputtering or vapor deposition.
  • the shield wiring 18 may be formed of ink containing a carbon-based conductive material, for example, by screen printing.
  • the shield wiring 18 is provided on the outer side (the side away from the detection region 11) when viewed from the display unit 41, and can be electrically connected to a portion of the flexible printed circuit board 29 that is set to a ground potential as a reference potential, for example. Has been. This will be further described with reference to the drawings.
  • FIG. 4 is a schematic plan view showing the configuration of the capacitive sensor according to the present embodiment. Although the transparent electrode is transparent and cannot be visually recognized, FIG. 4 shows the outer shape of the transparent electrode for easy understanding.
  • FIG. 5 is a schematic cross-sectional view taken along the cutting plane C1-C1 shown in FIG.
  • FIG. 6 is a schematic cross-sectional view taken along the section C2-C2 shown in FIG.
  • the capacitive sensor 1 includes a base material 2, a first electrode 8, a second electrode 12, a panel 3, a shield wiring 18, a display unit 41, and a decoration layer 9. And comprising.
  • the first electrode 8 is disposed in the detection region 11 and has a plurality of first transparent electrodes 4.
  • the plurality of first transparent electrodes 4 are principal surfaces located on the Z1 side (hereinafter referred to as “O”) of the principal surfaces having the direction along the Z1-Z2 direction in the substrate 2 as a normal line. It may be abbreviated as “front surface”.) 2a.
  • Each first transparent electrode 4 is connected in the Y1-Y2 direction (first direction) via an elongated connecting portion 7.
  • the first electrodes 8 having a plurality of first transparent electrodes 4 connected in the Y1-Y2 direction are arranged at intervals in the X1-X2 direction.
  • the first transparent electrode 4 and the connecting portion 7 are made of a transparent conductive material such as ITO (Indium Tin Oxide) by sputtering or vapor deposition.
  • a transparent conductive material such as ITO (Indium Tin Oxide) by sputtering or vapor deposition.
  • the transparent conductive material include, besides ITO, metal nanowires typified by silver nanowires, thin metals formed in a mesh shape, or conductive polymers. This also applies to the transparent conductive material described later.
  • the second electrode 12 is disposed in the detection region 11 and has a plurality of second transparent electrodes 5. As shown in FIG. 6, the plurality of second transparent electrodes 5 are provided on the front surface 2 a of the substrate 2. Thus, the 2nd transparent electrode 5 is provided in the same surface (front surface 2a of the base material 2) as the 1st transparent electrode 4.
  • FIG. 6 each second transparent electrode 5 is connected to the X1-X2 direction (second direction) via the elongated bridge wiring 10.
  • the second electrodes 12 having a plurality of second transparent electrodes 5 connected in the X1-X2 direction are arranged at intervals in the Y1-Y2 direction. Note that the X1-X2 direction intersects the Y1-Y2 direction. For example, the X1-X2 direction intersects the Y1-Y2 direction perpendicularly.
  • the second transparent electrode 5 is formed of a transparent conductive material such as ITO by sputtering or vapor deposition.
  • the bridge wiring 10 is formed of a transparent conductive material such as ITO.
  • the bridge wiring 10 may have a first layer containing a transparent conductive material such as ITO and a second layer made of a transparent metal having a lower resistance than the first layer.
  • the second layer is preferably formed of any one selected from the group consisting of Au, Au alloy, CuNi, and Ni. It is. Among these, it is more preferable to select Au.
  • the bridge wiring 10 can obtain good environmental resistance (humidity resistance, heat resistance).
  • an insulating layer 20 is provided on the surface of the connecting portion 7 that connects the first transparent electrodes 4 to each other. As shown in FIG. 6, the insulating layer 20 fills the space between the connecting portion 7 and the second transparent electrode 5, and is slightly on the surface of the second transparent electrode 5. As the insulating layer 20, for example, a novolac resin (resist) is used.
  • the bridge wiring 10 is provided from the surface 20a of the insulating layer 20 to the surface of each second transparent electrode 5 located on both sides of the insulating layer 20 in the X1-X2 direction.
  • the bridge wiring 10 electrically connects the second transparent electrodes 5.
  • an insulating layer 20 is provided on the surface of the connecting portion 7 that connects the first transparent electrodes 4, and each second transparent electrode 5 is provided on the surface of the insulating layer 20.
  • a bridge wiring 10 is provided to connect the two.
  • the insulating layer 20 is interposed between the connecting portion 7 and the bridge wiring 10, and the first transparent electrode 4 and the second transparent electrode 5 are electrically insulated.
  • the capacitive sensor 1 can be thinned. realizable.
  • connecting portion 7, the insulating layer 20, and the bridge wiring 10 are all located in the detection region 11, and have translucency similarly to the first transparent electrode 4 and the second transparent electrode 5.
  • each wiring unit 6 is connected to an external connection unit 27 that is electrically connected to the flexible printed circuit board 29. That is, each wiring part 6 electrically connects the first electrode 8 and the second electrode 12 and the external connection part 27.
  • the external connection unit 27 is electrically connected to the flexible printed circuit board 29 through, for example, a conductive paste.
  • Each wiring part 6 is formed of a material having a metal such as Cu, Cu alloy, CuNi alloy, Ni, Ag, or Au.
  • the connection wiring 16 is made of a transparent conductive material such as ITO, and extends from the detection region 11 to the non-detection region 25.
  • the wiring portion 6 is stacked on the connection wiring 16 in the non-detection region 25 and is electrically connected to the connection wiring 16.
  • the wiring part 6 is provided in the part located in the non-detection area
  • the external connection portion 27 is also provided in a portion located in the non-detection region 25 on the front surface 2 a of the base material 2.
  • FIG. 4 for ease of understanding, the wiring portion 6 and the external connection portion 27 are displayed so as to be visually recognized.
  • FIGS. A panel 3 is provided so as to face the front surface 2a.
  • the panel 3 has translucency.
  • the main surface located on the Z1 side (the main surface opposite to the main surface 3b facing the front surface 2a of the substrate 2) ) 3a is a surface on the side where the capacitive sensor 1 is operated, and is also referred to as an “operation surface” in this specification.
  • the material which comprises the panel 3 is not limited. Examples of such materials include organic materials such as polycarbonate and inorganic materials such as glass.
  • the panel 3 may have a laminated structure.
  • a specific example of the laminated structure is a laminated structure in which a hard coat layer made of an inorganic material is formed on a film made of an organic material.
  • the shape of the panel 3 may be a flat plate shape or another shape.
  • the operation surface 3a of the panel 3 may be a curved surface, and the surface shape of the operation surface 3a of the panel 3 and the Z2 side of the main surface with the direction along the Z1-Z2 direction in the panel 3 as a normal line.
  • the surface shape of the positioned main surface (in other words, the main surface opposite to the operation surface 3a and may be abbreviated as “back surface” hereinafter) 3b may be different.
  • a decorative layer 9 having a light-shielding property is provided in a portion located in the non-detection region 25 on the back surface 3b of the panel 3.
  • the decoration layer 9 is provided on the entire portion located in the non-detection region 25 on the back surface 3 b of the panel 3. For this reason, when the capacitive sensor 1 is viewed from the operation surface 3 a side of the panel 3, the wiring portion 6 and the external connection portion 27 are hidden by the decorative layer 9 and are not visually recognized.
  • the material which comprises the decoration layer 9 is arbitrary as long as it has light-shielding property.
  • the decorative layer 9 may have insulating properties.
  • the panel 3 is joined to the base material 2 via an optical transparent adhesive layer (OCA) 30 provided between the base material 2 and the panel 3.
  • OCA optical transparent adhesive layer
  • the optical transparent adhesive layer (OCA) 30 is made of an acrylic adhesive, a double-sided adhesive tape, or the like.
  • the capacitive sensor 1 shown in FIG. 1 when a finger F is brought into contact with the operation surface 3 a of the panel 3 as an example of an investigation team as shown in FIG. 6, the first transparent electrode close to the finger F and the finger F is used. 4 and between the finger F and the second transparent electrode 5 close to the finger F, capacitance occurs.
  • the capacitive sensor 1 can calculate the contact position of the finger F based on the capacitance change at this time.
  • the capacitance type sensor 1 detects the X coordinate of the position of the finger F based on the capacitance change between the finger F and the first electrode 8, and detects the X coordinate between the finger F and the second electrode 12.
  • the Y coordinate of the position of the finger F is detected based on the capacitance change (self-capacitance detection type).
  • the capacitance type sensor 1 may be a mutual capacitance detection type.
  • the capacitive sensor 1 applies a driving voltage to one of the first electrode 8 and the second electrode 12, and either the first electrode 8 or the second electrode 12 is applied.
  • a change in capacitance between the other electrode and the finger F may be detected.
  • the capacitive sensor 1 detects the Y coordinate of the position of the finger F by the other electrode, and detects the X coordinate of the position of the finger F by the one electrode.
  • the arrangement of the first transparent electrode 4 and the second transparent electrode 5 shown in FIGS. 4 to 6 is an example, and is not limited to this.
  • the capacitance type sensor 1 only needs to detect a change in capacitance between the operation body such as the finger F and the transparent electrode, and calculate the contact position of the operation body with respect to the operation surface 3a.
  • the first transparent electrode 4 and the second transparent electrode 5 may be provided on different main surfaces of the substrate 2.
  • a display portion 41 is provided in a portion located in the non-display area 25 on the back surface 3 b of the panel 3.
  • the display unit 41 is provided as a logo unit, for example, and includes a conductive material.
  • the display unit 41 is located between the back surface 3 b of the panel 3 and the decoration layer 9.
  • the display part 41 is arrange
  • the design of the display unit 41 may be improved.
  • the capacitive sensor 1 can give a higher sense of quality.
  • the display part 41 may be located between the back surface 3b of the panel 3 and the decoration layer 9, or between the back surface 3b of the panel 3 and the decoration layer 9. It may have a part which is not located in.
  • the shield wiring 18 is located between the base material 2 and the decorative layer 9 in the non-detection region 25 and is provided on the outer peripheral side (side away from the detection region 11) from the wiring unit 6 and the display unit 41. As described above with reference to FIGS. 1 to 3, the shield wiring 18 has conductivity, and can be electrically connected to a portion of the flexible printed circuit board 29 that is set to a ground potential, for example, as a reference potential. .
  • the distance D ⁇ b> 1 between the closest end surface 3 c that is the end surface of the panel 3 closest to the display unit 41 and the end portion of the display unit 41 that is proximal to the closest end surface 3 c of the panel 3 is The distance D2 between the most proximal end face 3c of the panel 3 and the end portion of the shield wiring 18 that is proximal to the nearest end face 3c of the panel 3 is longer.
  • the distance D1 between the most proximal end surface 3c of the panel 3 and the end portion of the display unit 41 that is proximal to the nearest end surface 3c of the panel 3 is the distance between the most proximal end surface 3c of the panel 3 and the panel 3 in the shield wiring 18. It is longer than the distance D11 between the distal end face 3c and the distal end (end proximal to the detection region 11). That is, an end portion of the shield wiring 18 that is distal from the most proximal end face 3c of the panel 3 (between the nearest end face 3c of the panel 3 and an end portion of the display unit 41 that is proximal to the nearest end face 3c of the panel 3). That is, the end portion proximal to the detection region 11 is located. According to this, the display unit 41 is located inside the shield wiring 18 (proximal to the detection region 11).
  • ESD Electro Static Discharge
  • the display unit 41 is located inside the shield wiring 18 (proximal to the detection region 11)
  • the electricity flowing between the panel 3 and the base material 2 due to creeping discharge is It flows preferentially to the shield wiring 18 over 41.
  • the electricity generated by the ESD flows to the portion of the flexible printed circuit board 29 that is set to the ground potential, for example, as the reference potential via the shield wiring 18 and is prevented from flowing to the display unit 41.
  • the shield wiring 18 and the display unit 41 it is possible to take measures against ESD and suppress discoloration of the display unit 41 including a conductive material.
  • the shield wiring 18 is provided on the front surface 2a of the base material 2. Therefore, in the step of forming the first transparent electrode 4 and the second transparent electrode 5 on the front surface 2a of the base material 2, the shield wiring 18 can be formed on the front surface 2a of the base material 2. it can. Thereby, the efficiency of the process which forms the shield wiring 18 can be improved, and manufacturing cost can be reduced.
  • the wiring part 6 may be provided at a position closer to the detection region 11 than the shield wiring 18, like the two-dot chain line wiring part 6 shown in the cross-sectional view of FIG. 5.
  • the distance D12 between the most proximal end surface 3c of the panel 3 and the end portion of the wiring portion 6 that is proximal to the most proximal end surface 3c is the most proximal position of the panel 3.
  • the distance D2 is longer than the distance D2 between the end face 3c and the end of the shield wiring 18 that is proximal to the most proximal end face 3c of the panel 3.
  • the wiring portion 6 when viewed from the direction along the normal line of the operation surface 3a of the panel 3 (Z1-Z2 direction in FIG. 5), the wiring portion 6 has a portion overlapping the display portion 41.
  • the shielding effect with respect to the wiring part 6 can be enhanced.
  • the end portion of the wiring portion 6 that is proximal to the most proximal end surface 3c of the panel 3 is inside the end portion of the shield wiring 18 that is proximal to the most proximal end surface portion 3c of the panel 3 (in the detection region 11). (Proximal). Therefore, even when creeping discharge based on ESD occurs, the electricity that flows between the panel 3 and the base material 2 from the nearest end face 3c flows preferentially to the shield wiring 18 rather than the wiring portion 6. It is suppressed that the electric current which flows through the wiring part 6 becomes excessive, and the wiring part 6 is damaged.
  • the wiring unit 6 has a portion overlapping the display unit 41 as described above, the arrangement relationship between the wiring unit 6 and the display unit 41 can be set more freely.
  • the wiring part 6 and the display part 41 have overlapping portions as described above, if an excessive current flows in the wiring part 6, electricity from the wiring part 6 may flow into the display part 41 in the overlapping part. There is.
  • the wiring part 6 is protected from ESD by the shield wiring 18 as described above, an excessive current is prevented from flowing through the wiring part 18 appropriately. Therefore, even if there is an overlapping part with the wiring part 6, it is difficult for electricity generated by ESD to flow through the display part 41.
  • the shield wiring 18 is not limited to being directly connected to the portion set to the ground potential as long as electricity can flow through the portion set to the ground potential. That is, the shield wiring 18 only needs to be able to flow electricity to the portion set to the ground potential when the electricity generated by the ESD flows, and is electrically floating before the electricity generated by the ESD flows. Also good.
  • the shield wiring 18 may have at least one of a portion provided on the end surface 2 c of the substrate 2 and a portion provided on the end surface of the panel 3. Even in the case where creeping discharge based on ESD occurs in the capacitance type sensor 1, the electricity generated by ESD is generated in the portion of the shield wiring 18 provided on the end surface 2 c of the substrate 2 or in the shield wiring 18. A portion provided on the end face such as the nearest end face 3c of the panel 3 preferentially flows, and electricity generated by ESD is suppressed from flowing between the panel 3 and the base material 2 to reach the display unit 41. . Thereby, the display part 41 containing an electroconductive material can be efficiently protected from ESD, and the discoloration of the display part 41 can be suppressed more.
  • FIG. 7 is a schematic plan view showing another shield wiring of this embodiment.
  • FIG. 7 corresponds to a schematic enlarged view in which the area A shown in FIG. 2 is enlarged.
  • the shield wiring 18 of the capacitive sensor 1 shown in FIG. 3 is arranged linearly in the vicinity of the display unit 41, whereas the shield wiring 18A of the capacitive sensor 1A shown in FIG. In the vicinity of the display 41, it has a bent portion.
  • the distance D1 between the proximal end surface 3c of the panel 3 and the end portion proximal to the proximal end surface 3c of the panel 3 in the display unit 41 is the shield 3 of the panel 3 and the shield. It is longer than the distance D3 between the end of the wiring 18A and the proximal end to the most proximal end face 3c of the panel 3. Since the shield wiring 18A and the display unit 41 are arranged in this manner, the electricity generated by ESD is suppressed from flowing to the display unit 41 as in the case of the capacitive sensor 1 shown in FIG.
  • the shield wiring 18A and the display unit 41 are arranged in this manner, the electricity generated by ESD is suppressed from flowing to the display unit 41 as in the case of the capac
  • the distance D1 between the nearest end surface 3c of the panel 3 and the end portion of the display unit 41 proximal to the nearest end surface 3c of the panel 3 is The distance D9 is shorter than the distance D9 between the most proximal end surface 3c of the panel 3 and the end of the shield wiring 18A that is proximal to the most proximal end surface 3c of the panel 3. That is, the shield wiring 18 ⁇ / b> A is disposed so as to surround the display unit 41 at the bent portion. Since the shield wiring 18 ⁇ / b> A has such a bent portion, it is possible to achieve both suppression of the electricity generated by ESD flowing to the display unit 41 and securing the degree of freedom of arrangement of the shield wiring 18.
  • FIG. 8 is a schematic cross-sectional view showing still another shield wiring of the present embodiment.
  • FIG. 8 corresponds to a schematic cross-sectional view taken along the cutting plane C1-C1 shown in FIG.
  • the shield wiring 18 ⁇ / b> B is provided on the surface 9 a proximal to the base material 2 of the decorative layer 9. Since the decoration layer 9 is provided on the back surface 3b of the panel, in other words, the shield wiring 18B is provided on the back surface 3b of the panel with the decoration layer 9 as an intervening member.
  • the shield wiring provided on the front surface 2a of the substrate 2 is referred to as “first shield wiring” (the shield wiring 18 shown in FIG. 5 corresponds).
  • the shield wiring provided on the back surface 3b of the panel 3 may be referred to as “second shield wiring” (the shield wiring 18B shown in FIG. 8 corresponds).
  • the distance D1 between the most proximal end face 3c of the panel 3 and the end proximal to the nearest end face 3c of the panel 3 in the display unit 41 is the nearest end face 3c of the panel 3.
  • a distance D4 between the shield wiring 18B and the end portion proximal to the nearest end face 3c of the panel 3 in the shield wiring 18B is the distance between the most proximal end surface 3c of the panel 3 and the panel 3 in the shield wiring 18B.
  • the display part 41 will be located inside the shield wiring 18B (proximal to the detection region 11).
  • the other structure is the same as the structure of the capacitive sensor 1 described above with reference to FIGS.
  • the shield wiring 18B can be positioned closer to the display unit 41 than when the shield wiring is provided on the front surface 2a of the base member 2. Therefore, even when creeping discharge based on ESD occurs in the capacitive sensor 1B, the electricity flowing between the base material 2 and the panel 3 is more preferential to the shield wiring 18B than the display unit 41. Flowing into. For this reason, electricity generated by ESD more stably flows through the shield wiring 18B to the portion of the flexible printed circuit board 29 that is set to the ground potential, for example, as the reference potential. Therefore, electricity generated by ESD flows to the display unit 41 more stably by the shield wiring 18B. Thus, by appropriately setting the arrangement of the shield wiring 18B and the display unit 41, it is possible to take ESD countermeasures and more stably suppress discoloration of the display unit 41 including a conductive material.
  • FIG. 9 is a schematic cross-sectional view showing still another shield wiring of the present embodiment.
  • FIG. 9 corresponds to a schematic cross-sectional view taken along the cutting plane C1-C1 shown in FIG.
  • the capacitive sensor 1C shown in the sectional view of FIG. 9 has a first shield wiring 18C and a second shield wiring 18D.
  • the first shield wiring 18C is a shield wiring provided on the front surface 2a of the base material 2 as described above.
  • the distance D1 between the end portion 3c of the panel 3 and the end portion of the display unit 41 that is proximal to the nearest end surface 3c of the panel 3 is the nearest end surface 3c of the panel 3 and the nearest distance of the panel 3 in the first shield wiring 18C. It is longer than the distance D5 between the end portion proximal to the distal end surface 3c.
  • the distance D1 between the most proximal end surface 3c of the panel 3 and the end portion of the display unit 41 proximal to the nearest end surface 3c of the panel 3 is the panel at the most proximal end surface 3c of the panel 3 and the first shield wiring 18C. 3 is longer than the distance D14 between the distal end (the end proximal to the detection region 11) from the most proximal end face 3c. That is, an end of the first shield wiring 18 ⁇ / b> C distal from the most proximal end surface 3 c of the panel 3 between the most proximal end surface 3 c of the panel 3 and the end of the display unit 41 proximal to the most proximal end surface 3 c of the panel 3. (The end proximal to the detection region 11) is located. According to this, the display part 41 will be located inside (proximal to the detection area
  • the second shield wiring 18 ⁇ / b> D is provided on the surface 9 a proximal to the base material 2 in the decorative layer 9. Since the decoration layer 9 is provided on the back surface 3b of the panel, in other words, the second shield wiring 18D is provided on the back surface 3b of the panel 3 with the decoration layer 9 as an interposed member. Similar to the first shield wiring 18C, the second shield wiring 18D has conductivity and is formed of a material having a metal such as Cu, Cu alloy, CuNi alloy, Ni, Ag, or Au. The second shield wiring 18D is formed of ink containing a metal material, for example, by screen printing.
  • the second shield wiring 18D may be formed of a material having a metal by sputtering, vapor deposition, or the like.
  • the second shield wiring 18D may be formed of an ink containing a carbon-based conductive material, for example, by screen printing.
  • the second shield wiring 18D has conductivity, and can be electrically connected to a portion of the flexible printed circuit board 29 that is set to a ground potential, for example, as a reference potential.
  • a ground potential for example, as a reference potential.
  • the distance D ⁇ b> 1 between the most proximal end surface 3 c of the panel 3 and the end portion 3 c proximal to the end portion 3 c of the display unit 41 is the distance from the most proximal end surface 3 c of the panel 3. It is longer than the distance D6 between the second shield wiring 18D and the end portion proximal to the most proximal end face 3c of the panel 3.
  • the distance D1 between the most proximal end surface 3c of the panel 3 and the end portion of the display unit 41 that is proximal to the most proximal end surface 3c is the panel at the most proximal end surface 3c of the panel 3 and the second shield wiring 18D. 3 is longer than a distance D15 between the distal end (the end proximal to the detection region 11) from the most proximal end face 3c. That is, an end of the second shield wiring 18D that is distal to the most proximal end surface 3c of the panel 3 is located between the most proximal end surface 3c of the panel 3 and an end of the display unit 41 that is proximal to the most proximal end surface 3c.
  • the end proximal to the detection region 11 is located.
  • the other structure is the same as the structure of the capacitive sensor 1 described above with reference to FIGS. According to this, the display unit 41 is located on the inner side (proximal to the detection region 11) than the second shield wiring 18D.
  • the display unit 41 is located on the inner side (proximal to the detection region 11) than the first shield wiring 18C and the second shield wiring 18D. Therefore, the electricity flowing between the panel 3 and the base material 2 flows preferentially to at least one of the first shield wiring 18C and the second shield wiring 18D rather than the display unit 41. For this reason, the electricity generated by the ESD flows through the first shield wiring 18C and / or the second shield wiring 18D to the portion of the flexible printed circuit board 29 that is set to the ground potential as the reference potential, for example, and is generated by the ESD. It is suppressed that the electricity which flowed to the display part 41 flows.
  • the first shield wiring 18 ⁇ / b> C and the second shield wiring 18 ⁇ / b> D are arranged so as to have overlapping portions when viewed from the operation surface 3 a side of the panel 3.
  • the present invention is not limited to this.
  • the first shield wiring 18C and the second shield wiring 18D do not have an overlapping portion, and the shield wiring is disposed so as to protect the display unit 41 as a double wall when viewed from the nearest end face 3c. May be.
  • FIG. 10 is a schematic plan view showing still another shield wiring of the present embodiment.
  • FIG. 11 is a schematic cross-sectional view showing still another shield wiring of the present embodiment.
  • FIG. 10 corresponds to a schematic enlarged view in which the region A shown in FIG. 2 is enlarged.
  • FIG. 11 corresponds to a schematic cross-sectional view taken along the cutting plane C1-C1 shown in FIG.
  • the capacitive sensor 1D shown in FIGS. 10 and 11 includes a first shield wiring 18E and a second shield wiring 18F.
  • the first shield wiring 18E is a portion of the non-detection region 25 other than the portion where the display unit 41 is provided.
  • 2 is provided on the front surface 2a of the substrate 2.
  • the second shield wiring 18F is a portion of the non-detection region 25 where the display unit 41 is provided.
  • the surface 9a of the decorative layer 9 proximal to the substrate 2 is, in other words, provided on the back surface 3b of the panel 3 with the decorative layer 9 as an intervening member.
  • the first shield wiring 18E can be electrically connected to a portion of the flexible printed circuit board 29 that is set to a ground potential as a reference potential, for example.
  • the second shield wiring 18F is not directly and electrically connected to the first shield wiring 18E. However, when a large current flows, the second shield wiring 18F is electrically connected between the first shield wiring 18E and the second shield wiring 18F. The relative position with respect to the 2nd shield wiring 18F is set so that it may arise. Therefore, the second shield wiring 18F can be electrically connected to the portion set to the ground potential via the first shield wiring 18E.
  • the distance D1 is longer than the distance D7 between the closest end surface 3c of the panel 3 and the end portion of the first shield wiring 18E proximal to the end portion 3c of the panel 3.
  • the distance D1 between the most proximal end surface 3c of the panel 3 and the end portion proximal to the most proximal end surface 3c of the panel 3 in the display unit 41 is the panel at the most proximal end surface 3c of the panel 3 and the second shield wiring 18F. 3 is longer than the distance D8 between the proximal end to the most proximal end face 3c.
  • the other structure is the same as that of the capacitive sensor 1 described above with reference to FIG.
  • the display unit 41 is located on the inner side (proximal to the detection region 11) than the second shield wiring 18F.
  • the current that flows into the material 2 preferentially flows to the second shield wiring 18 ⁇ / b> F rather than the display unit 41.
  • the electricity that has flowed to the second shield wiring 18F flows to the first shield wiring 18E, and flows through the first shield wiring 18E to a portion of the flexible printed circuit board 29 that is set to the ground potential, for example, as the reference potential. . Therefore, the first shield wiring 18E and the second shield wiring 18F suppress the electricity generated by the ESD from flowing to the display unit 41.
  • At least one of the first shield wiring 18E and the second shield wiring 18F specifically, a large current is applied to the shield wiring that directly protects the display unit 41 (receiving preferentially electricity generated by ESD). As long as it is arranged so that electrical connection can occur between the first shield wiring 18E and the second shield wiring 18F, electricity from the shield wiring that directly protects the display unit 41 can be obtained.
  • Arrangement of the shield wiring for flowing is arbitrary.
  • the second shield wiring 18F is a shield wiring that directly protects the display unit 41, and the first shield wiring 18E allows electricity from the second shield wiring 18F to flow. Therefore, the relationship between the distance D1 and the distance D7 is arbitrary. Therefore, in the capacitive sensor 1D, the degree of freedom of arrangement of the first shield wiring 18E can be increased.
  • the first shield wiring 18E is a shield wiring that directly protects the display unit 41
  • the second shield wiring 18F is the first shield wiring 18F.
  • a configuration may be adopted in which electricity from the one shield wiring 18E is received and supplied to a portion set to the ground potential. In this case, it may be possible to reduce the distance D1.
  • the second shield wiring 18F may be electrically connectable to a portion set to the ground potential without passing through the first shield wiring 18E.
  • the decorative layer 9 is provided on the entire portion located in the non-detection region 25 on the back surface 3b of the panel 3, and the entire non-detection region 25 is shielded from light. It is not limited to. There may be a portion where the decorative layer 9 is not provided in the portion located in the non-detection region 25 of the back surface 3 b of the panel 3. Moreover, although the decoration layer 9 is provided in the back surface 3b of the panel 3, it is not limited to this, What is necessary is just to be located between the panel 3 and the base material 2. FIG. For example, it may be embedded in the optical transparent adhesive layer 30.
  • the display unit 41 is located between the back surface 3b of the panel 3 and the decorative layer 9, the design of the display unit 41 is enhanced, which is preferable. If at least a part of the shield wiring 18 and the wiring part 6 is located between the base material 2 and the decorative layer 9, when the capacitive sensor 1 is viewed from the operation surface 3a side, the part is added. Since it is concealed by the decoration layer 9 and is not visually recognized, the design of the non-detection region 25 may be increased.
  • the second shield wiring 18D is provided on the back surface 3b of the panel 3 with the decorative layer 9 as an interposed member.
  • the second shield wiring 18D is provided directly on the back surface 3b of the panel 3, and the back surface 3b of the panel 3 is provided.
  • the decorative layer 9. it may be preferable that the second shield wiring 18D is made of a transparent conductive material.

Abstract

As an electrostatic capacity sensor capable of providing ESD countermeasures and suppressing discoloration of a display part containing an electroconductive material, the provided electrostatic capacity sensor 1 has, in a non-detection area 25 at a part between a panel 3 and a base material 2, a display part 41 which contains an electroconductive material and shield wiring 18 which can be electrically connected to an electroconductive part set to the ground potential, wherein a distance D1 between the most proximal end face 3c of the panel 3 closest to the display part 41 and the end of the display part 41 proximal to the most proximal end face 3c is longer than a distance D2 between the end of the shield wiring 18 proximal to the most proximal end face 3c and the most proximal end face 3c.

Description

静電容量式センサCapacitive sensor
 本発明は、静電容量式センサに関し、特に静電気放電耐性を向上させることができる静電容量式センサに関する。 The present invention relates to a capacitance type sensor, and more particularly to a capacitance type sensor capable of improving electrostatic discharge resistance.
 特許文献1には、表示用透光窓の凹部底面と対向する裏面に金属加飾層を備えた携帯電子機器が開示されている。特許文献1に記載された携帯電話機器においては、凹部底面を構成する壁部に筐体内へ貫通する連通孔が形成されている。また、壁部の凹部底面と反対側の内壁面側に回路基板のグランド導体と電気的に接続された導電部が配置されている。 Patent Document 1 discloses a portable electronic device having a metal decoration layer on the back surface facing the bottom surface of a recessed portion of a display transparent window. In the mobile phone device described in Patent Document 1, a communication hole penetrating into the housing is formed in the wall portion that forms the bottom surface of the recess. In addition, a conductive portion electrically connected to the ground conductor of the circuit board is disposed on the inner wall surface side opposite to the concave bottom surface of the wall portion.
 特許文献1に記載された携帯電話機器によれば、表示用透光窓と凹部との間に静電気が流れ込んだとしても、連通孔を介して回路基板のグランド導体に静電気を逃がすことができる。 According to the cellular phone device described in Patent Document 1, even if static electricity flows between the display transparent window and the recess, the static electricity can be released to the ground conductor of the circuit board through the communication hole.
特開2005-322994号公報JP 2005-322994 A
 しかし、特許文献1に記載された携帯電話機器では、金属加飾層は、連通孔からみて表示用透光窓の側に配置されている。また、表示用透光窓の端部と金属加飾層との間の距離は、表示用透光窓の端部と連通孔の端部との間の距離よりも短い。そのため、ESD(Electro Static Discharge:静電気放電)が生じて表示用透光窓の端面を伝う沿面放電が発生すると、ESDにより生じた電気が連通孔を通過する前に金属加飾層を通過するおそれがある。ESDにより生じた電気が金属加飾層を経由して連通孔に流れると、金属加飾層には電気が流れたことに基づく状態変化が生じ、金属加飾層の変色として視認されてしまうことがある。 However, in the mobile phone device described in Patent Document 1, the metal decoration layer is disposed on the side of the display translucent window as viewed from the communication hole. Moreover, the distance between the edge part of the light transmission window for a display and a metal decoration layer is shorter than the distance between the edge part of the light transmission window for a display, and the edge part of a communicating hole. Therefore, when ESD (Electro Static Discharge) occurs and creeping discharge occurs along the end face of the display light transmission window, electricity generated by ESD may pass through the metal decoration layer before passing through the communication hole. There is. When electricity generated by ESD flows to the communication hole via the metal decoration layer, the metal decoration layer undergoes a state change based on the flow of electricity, and is visually recognized as a discoloration of the metal decoration layer. There is.
 本発明は、上記従来の課題を解決するためのものであり、ESD対策を施すとともに導電性材料を含む表示部(特許文献1の金属加飾層が相当する。)の変色を抑えることができる静電容量式センサを提供することを目的とする。 The present invention is for solving the above-described conventional problems, and can take measures against ESD and suppress discoloration of a display unit (corresponding to the metal decoration layer of Patent Document 1) including a conductive material. An object of the present invention is to provide a capacitive sensor.
 本発明の静電容量式センサは、一態様において、透光性を有し一方の主面が操作面となるパネルと、少なくとも一方の主面に透明電極が設けられ透光性を有する基材とを備え、前記基材は前記パネルの前記操作面とは反対側の主面に対向配置される静電容量式センサであって、前記静電容量式センサは、前記パネルの操作面の法線に沿った方向からみて、前記操作面に対する操作を検出しうる検出領域と、前記検出領域の外周側に位置する非検出領域とからなり、前記非検出領域における前記パネルと前記基材との間の部分に、前記非検出領域の光透過率を低減させる加飾層、導電性材料を含む表示部、および導電性を有しグラウンド電位に設定された部分に電気的に接続可能なシールド配線を備え、前記表示部に最近位な前記パネルの端面である最近位端面と前記表示部における前記最近位端面に近位な端部との間の距離は、前記シールド配線における前記最近位端面に近位な端部と前記最近位端面との間の距離よりも長いことを特徴とする。 In one aspect, the capacitive sensor of the present invention has a light-transmitting panel having one light-transmitting surface as an operation surface, and a light-transmitting base material provided with a transparent electrode on at least one main surface. And the base material is disposed opposite to a main surface opposite to the operation surface of the panel, and the capacitance sensor is a method of operating the panel. A detection region that can detect an operation on the operation surface when viewed from the direction along the line, and a non-detection region located on the outer peripheral side of the detection region, and the panel and the base material in the non-detection region A decorative layer that reduces the light transmittance of the non-detection region, a display portion including a conductive material, and a shield wiring that can be electrically connected to a portion that is conductive and set to a ground potential. The end of the panel closest to the display The distance between the most proximal end surface and the end proximal to the most proximal end surface of the display portion is between the proximal end end closest to the most proximal end surface and the most proximal end surface of the shield wiring. It is longer than the distance.
 本明細書において、「ある部材がある面(その面の一部分である場合を含む。)に設けられている」とは、その部材がその面を構成する部材に付着する(堆積する)ように配置されていることを意味し、その部材がその面に接している場合のみならず、その部材とその面との間に他の部材が介在している場合を含む。 In this specification, “a member is provided on a surface (including a case where the member is a part of the surface)” means that the member adheres (deposits) to the member constituting the surface. This means not only the case where the member is in contact with the surface but also the case where another member is interposed between the member and the surface.
 上記の静電容量式センサでは、表示部の最近位に位置するパネルの端面である最近位端面からみて、表示部よりもシールド配線の方が近くに位置する。そのため、例えばパネルの操作面に操作者の指が触れたことなどを原因として、静電容量式センサにESD(Electro Static Discharge:静電気放電)が生じて、この放電に基づく電気がパネルの面を伝うように流れる現象、すなわち、沿面放電が発生した場合であっても、パネルの端面からパネルと基材との間に流れ込もうとする電気は、表示部よりもシールド配線に優先的に流れる。このように、ESDにより生じた電気はシールド配線を流れてグラウンド電位に設定された部分に流れるため、ESDにより生じた電気が表示部を流れることをシールド配線によって抑えることができる。 In the above-described capacitance type sensor, the shield wiring is located closer to the display unit than the display unit, as viewed from the nearest end surface of the panel located at the nearest position of the display unit. For this reason, ESD (Electro Static Discharge) occurs in the capacitive sensor due to, for example, an operator's finger touching the operation surface of the panel. Even when creeping discharge occurs, electricity that tries to flow between the panel and the base material flows preferentially to the shield wiring rather than to the display section. . In this way, electricity generated by ESD flows through the shield wiring to a portion set to the ground potential, so that the electricity generated by ESD can be prevented from flowing through the display portion by the shield wiring.
 上記の静電容量式センサにおいて、前記表示部は、前記パネルと前記加飾層との間に位置していてもよい。この場合には、操作面側からみたときに、表示部は加飾層を背景として配置されるため、表示部の意匠性が向上する場合がある。 In the above capacitive sensor, the display unit may be located between the panel and the decorative layer. In this case, when viewed from the operation surface side, the display unit is arranged with the decoration layer as a background, and thus the design of the display unit may be improved.
 前記シールド配線は、前記基材と前記加飾層との間に位置していてもよい。この場合には、操作面側からみたときに、シールド配線は加飾層によって隠蔽されて視認されなくなるため、シールド配線の材料選択の自由度が高くなる。 The shield wiring may be located between the base material and the decorative layer. In this case, when viewed from the operation surface side, the shield wiring is hidden by the decorative layer and is not visually recognized, so the degree of freedom in selecting the material of the shield wiring is increased.
 上記の静電容量式センサにおいて、前記加飾層および前記表示部は、前記パネルにおける前記操作面とは反対側の主面に設けられていてもよい。この場合には、加飾層および表示部と基材との間に位置する部材は操作面側から視認されないため、基材のパネルに対向する面に様々な部材(配線など)を設けることができる。 In the above-described capacitance type sensor, the decoration layer and the display unit may be provided on a main surface of the panel opposite to the operation surface. In this case, since the member positioned between the decorative layer and the display unit and the base material is not visually recognized from the operation surface side, various members (such as wiring) may be provided on the surface of the base material facing the panel. it can.
 上記の静電容量式センサにおいて、前記表示部における前記最近位端面に近位な端部と前記最近位端面との間の距離は、前記シールド配線における前記最近位端面から遠位な端部と前記最近位端面との間の距離よりも長くてもよい。この場合には、表示部の全体がシールド配線よりも最近位端面から遠位となるため、ESDにより生じた電気が最近位端面からパネルと基材との間に流れ込んだときに、表示部に電気が流れる可能性がより安定的に低減される。 In the above capacitive sensor, the distance between the proximal end surface of the display unit proximal to the proximal end surface and the proximal end surface is the distance from the proximal end surface of the shield wiring to the distal end surface. It may be longer than the distance between the nearest end face. In this case, since the entire display unit is farther from the most proximal end face than the shield wiring, when electricity generated by ESD flows between the panel and the substrate from the nearest end face, The possibility of electricity flowing is reduced more stably.
 前記シールド配線は、前記基材における前記パネルに対向する面に設けられている第1シールド配線を含んでいてもよいし、前記パネルにおける前記操作面とは反対側の主面に設けられている第2シールド配線を含んでいてもよい。シールド配線が第1シールド配線および第2シールド配線の双方を有していることにより、ESDにより生じた電気が最近位端面からパネルと基材との間に流れ込んだときに、この電気が表示部に流れる可能性が特に安定的に低減される場合もある。 The shield wiring may include a first shield wiring provided on a surface of the base material facing the panel, or provided on a main surface of the panel opposite to the operation surface. The second shield wiring may be included. Since the shield wiring has both the first shield wiring and the second shield wiring, when electricity generated by ESD flows between the panel and the base material from the nearest end face, the electricity is displayed on the display unit. In some cases, the possibility of flowing into the tank is reduced in a particularly stable manner.
 上記の静電容量式センサは、前記加飾層と前記基材との間に位置し、前記透明電極と外部接続部とを電気的に接続する配線部をさらに有していてもよい。この場合において、前記配線部における前記最近位端面に近位な端部と前記最近位端面との間の距離は、前記シールド配線における前記最近位端面に近位な端部と前記最近位端面との間の距離よりも長いことが好ましい。これによれば、配線部に対するシールド効果を高めることができる。すなわち、ESDに基づく沿面放電が発生した場合であっても、最近位端面からパネルと基材との間に流れ込んだ電気は、配線部よりもシールド配線に優先的に流れ、配線部を流れる電流が過大となって配線部が損傷を受けることを抑えることができる。 The electrostatic capacitance sensor may further include a wiring portion that is positioned between the decorative layer and the base material and electrically connects the transparent electrode and the external connection portion. In this case, the distance between the end portion proximal to the nearest end face and the nearest end face in the wiring portion is such that the end portion proximal to the nearest end face and the nearest end face in the shield wire are It is preferable that it is longer than the distance between. According to this, the shielding effect with respect to a wiring part can be improved. That is, even when creeping discharge based on ESD occurs, the electricity flowing between the panel and the base material from the nearest end face flows preferentially to the shield wiring rather than the wiring part, and the current flowing through the wiring part It is possible to prevent the wiring portion from being damaged due to excessively large.
 上記のように配線部とシールド配線とが配置されている場合において、前記パネルの操作面の法線に沿った方向からみて、前記配線部は、前記表示部と重複する部分を有していてもよい。配線部と表示部とに上記のような重複する部分がある場合には、配線部に過大な電流が流れると、この重複部分において表示部に配線部からの電気が流れ込むおそれがある。しかしながら、上記のように、配線部はシールド配線によりESDから守られているため、配線部に過大な電流が流れることが適切に抑制されている。したがって、配線部と重複する部分があっても、表示部にはESDにより生じた電気が流れにくい。それゆえ、配線部と表示部との配置関係をより自由に設定することができる。 In the case where the wiring portion and the shield wiring are arranged as described above, the wiring portion has a portion overlapping with the display portion when viewed from the direction along the normal line of the operation surface of the panel. Also good. When there is an overlapping portion as described above in the wiring portion and the display portion, if an excessive current flows in the wiring portion, there is a possibility that electricity from the wiring portion flows into the display portion in the overlapping portion. However, as described above, since the wiring portion is protected from ESD by the shield wiring, it is appropriately suppressed that an excessive current flows in the wiring portion. Therefore, even if there is a portion overlapping with the wiring portion, electricity generated by ESD hardly flows through the display portion. Therefore, the arrangement relationship between the wiring portion and the display portion can be set more freely.
 前記シールド配線は、前記基材の端面に設けられている部分および前記パネルの端面に設けられている部分の少なくとも一方を有していてもよい。ESDに基づく沿面放電が生じた場合であっても、最近位端面からパネルと基材との間に電気が流れ込むよりも、シールド配線が基材の端面に設けられている部分および/またはパネルの端面に設けられている部分へと優先的に流れ込む。このため、パネルと基材との間に位置する表示部に電気が流れることを抑えることができる。 The shield wiring may have at least one of a portion provided on the end surface of the base material and a portion provided on the end surface of the panel. Even when a creeping discharge based on ESD occurs, a part where the shield wiring is provided on the end face of the base material and / or the panel rather than electricity flowing between the panel and the base material from the nearest end face Preferentially flows into the portion provided on the end face. For this reason, it can suppress that electricity flows into the display part located between a panel and a base material.
 本発明の態様によれば、静電容量式センサにおいてESDにより沿面放電が生じた場合であっても、沿面放電に基づく電気がパネルと基材との間に位置する表示部に流れることがシールド配線によって抑制される。このため、ESD対策を施すとともに導電性材料を含む表示部の変色を抑えることができる静電容量式センサが提供される。 According to the aspect of the present invention, even when creeping discharge occurs due to ESD in the capacitance type sensor, it is shielded that electricity based on the creeping discharge flows to the display unit located between the panel and the substrate. Suppressed by wiring. For this reason, the electrostatic capacitance type sensor which can suppress the discoloration of the display part containing an electroconductive material while taking an ESD countermeasure is provided.
本実施形態に係る静電容量式センサを表す模式的斜視図である。It is a typical perspective view showing the electrostatic capacitance type sensor which concerns on this embodiment. 本実施形態に係る静電容量式センサを表す模式的平面図である。It is a typical top view showing the capacitive sensor which concerns on this embodiment. 図2に表した領域Aを拡大して表した模式的拡大図である。FIG. 3 is a schematic enlarged view showing a region A shown in FIG. 2 in an enlarged manner. 本実施形態に係る静電容量式センサの構成を表す模式的平面図である。It is a typical top view showing the composition of the capacitance type sensor concerning this embodiment. 図4に表した切断面C1-C1における模式的断面図である。FIG. 5 is a schematic cross-sectional view taken along a cutting plane C1-C1 shown in FIG. 図4に表した切断面C2-C2における模式的断面図である。FIG. 5 is a schematic cross-sectional view taken along a cutting plane C2-C2 shown in FIG. 本実施形態の他のシールド配線を表す模式的平面図である。It is a typical top view showing other shield wiring of this embodiment. 本実施形態のさらに他のシールド配線を表す模式的断面図である。It is a typical sectional view showing other shield wiring of this embodiment. 本実施形態のさらに他のシールド配線を表す模式的断面図である。It is a typical sectional view showing other shield wiring of this embodiment. 本実施形態のさらに他のシールド配線を表す模式的平面図である。It is a typical top view showing other shield wiring of this embodiment. 本実施形態のさらに他のシールド配線を表す模式的断面図である。It is a typical sectional view showing other shield wiring of this embodiment.
 以下、本発明の実施の形態について図面を参照しつつ説明する。なお、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。
 図1は、本実施形態に係る静電容量式センサを表す模式的斜視図である。図2は、本実施形態に係る静電容量式センサを表す模式的平面図である。図3は、図2に表した領域Aを拡大して表した模式的拡大図である。
Embodiments of the present invention will be described below with reference to the drawings. In addition, in each drawing, the same code | symbol is attached | subjected to the same component and detailed description is abbreviate | omitted suitably.
FIG. 1 is a schematic perspective view showing a capacitive sensor according to the present embodiment. FIG. 2 is a schematic plan view showing the capacitive sensor according to the present embodiment. FIG. 3 is a schematic enlarged view showing the area A shown in FIG. 2 in an enlarged manner.
 本願明細書において「透明」および「透光性」とは、可視光線透過率が50%以上(好ましくは80%以上)の状態を指す。更に、ヘイズ値が6%以下であることが好適である。本願明細書において「遮光」および「遮光性」とは、可視光線透過率が50%未満(好ましくは20%未満)の状態を指す。 In the present specification, “transparent” and “translucent” refer to a state where the visible light transmittance is 50% or more (preferably 80% or more). Furthermore, the haze value is preferably 6% or less. In the present specification, “light shielding” and “light shielding” refer to a state where the visible light transmittance is less than 50% (preferably less than 20%).
 図1に表したように、本実施形態に係る静電容量式センサ1は、基材2と、パネル3と、を備える。基材2は、透光性を有し、ポリエチレンテレフタレート(PET)等のフィルム状の透明基材やガラス基材等で形成される。基材2の一方の主面には、透明電極などが設けられている。この詳細については、後述する。パネル3は、透光性を有する。パネル3の材料は、特には限定されない。パネル3の材料としては、ガラス基材やプラスチック基材が好ましく適用される。 As shown in FIG. 1, the capacitive sensor 1 according to this embodiment includes a base material 2 and a panel 3. The base material 2 has translucency and is formed of a film-like transparent base material such as polyethylene terephthalate (PET), a glass base material, or the like. A transparent electrode or the like is provided on one main surface of the substrate 2. Details of this will be described later. The panel 3 has translucency. The material of the panel 3 is not particularly limited. As a material of the panel 3, a glass substrate or a plastic substrate is preferably applied.
 図1~図3に表したように、静電容量式センサ1は、パネル3側の面の法線に沿った方向からみて、検出領域11と非検出領域25とからなる。検出領域11は、指などの操作体により操作を行うことができる領域であり、非検出領域25は、検出領域11の外周側に位置する額縁状の領域である。非検出領域25は、後述する加飾層9によって遮光され、静電容量式センサ1におけるパネル3側の面から基材2側の面への光(外光が例示される。)および基材2側の面からパネル3側の面への光(静電容量式センサ1と組み合わせて使用される表示装置のバックライトからの光が例示される。)は、非検出領域25を透過しにくくなっている。非検出領域25には、表示部41が設けられている。表示部41は、例えばロゴ部(ロゴタイプ(logotype))として設けられており、導電性材料を含んでいる。表示部41の材料の例として、例えばCu系、Al系、Cr系、Au系、Ag系などの導電性材料が挙げられる。このように、表示部41の材料の例として、金属ミラー効果を有する導電性材料が挙げられる。これにより、表示部41においてミラー効果が得られるとともに、高級感が得られる。 As shown in FIGS. 1 to 3, the capacitive sensor 1 includes a detection region 11 and a non-detection region 25 when viewed from the direction along the normal of the surface on the panel 3 side. The detection area 11 is an area where an operation body such as a finger can be operated, and the non-detection area 25 is a frame-shaped area located on the outer peripheral side of the detection area 11. The non-detection region 25 is shielded by a decorative layer 9 described later, and light (external light is exemplified) from the surface on the panel 3 side to the surface on the base material 2 side in the capacitive sensor 1 and the base material. Light from the surface on the second side to the surface on the panel 3 side (light from the backlight of the display device used in combination with the capacitive sensor 1 is not easily transmitted through the non-detection region 25). It has become. A display unit 41 is provided in the non-detection area 25. The display part 41 is provided as a logo part (logotype (logotype)), for example, and includes a conductive material. Examples of the material of the display unit 41 include conductive materials such as Cu-based, Al-based, Cr-based, Au-based, and Ag-based materials. As described above, an example of the material of the display unit 41 is a conductive material having a metal mirror effect. Thereby, a mirror effect is obtained in the display unit 41 and a high-class feeling is obtained.
 図3に表したように、非検出領域25には、シールド配線18が設けられている。シールド配線18は導電性を有し、Cu、Cu合金、CuNi合金、Ni、Ag、Au等の金属を有する材料により形成される。シールド配線18は、金属の材料を含むインクで例えばスクリーン印刷などにより形成される。あるいは、シールド配線18は、金属を有する材料でスパッタや蒸着等により形成されてもよい。あるいは、シールド配線18は、カーボン系の導電性材料を含むインクで例えばスクリーン印刷により形成されてもよい。 As shown in FIG. 3, a shield wiring 18 is provided in the non-detection region 25. The shield wiring 18 has conductivity and is formed of a material having a metal such as Cu, Cu alloy, CuNi alloy, Ni, Ag, or Au. The shield wiring 18 is formed of an ink containing a metal material, for example, by screen printing. Alternatively, the shield wiring 18 may be formed of a material having a metal by sputtering or vapor deposition. Alternatively, the shield wiring 18 may be formed of ink containing a carbon-based conductive material, for example, by screen printing.
 シールド配線18は、表示部41からみて外側(検出領域11から離れる側)に設けられており、フレキシブルプリント基板29のうちで例えば基準電位としてグラウンド電位に設定された部分に電気的に接続可能とされている。これについて、図面を参照しつつさらに説明する。 The shield wiring 18 is provided on the outer side (the side away from the detection region 11) when viewed from the display unit 41, and can be electrically connected to a portion of the flexible printed circuit board 29 that is set to a ground potential as a reference potential, for example. Has been. This will be further described with reference to the drawings.
 図4は、本実施形態に係る静電容量式センサの構成を表す模式的平面図である。なお、透明電極は透明なので本来は視認できないが、図4では理解を容易にするため透明電極の外形を示している。
 図5は、図4に表した切断面C1-C1における模式的断面図である。
 図6は、図4に表した切断面C2-C2における模式的断面図である。
FIG. 4 is a schematic plan view showing the configuration of the capacitive sensor according to the present embodiment. Although the transparent electrode is transparent and cannot be visually recognized, FIG. 4 shows the outer shape of the transparent electrode for easy understanding.
FIG. 5 is a schematic cross-sectional view taken along the cutting plane C1-C1 shown in FIG.
FIG. 6 is a schematic cross-sectional view taken along the section C2-C2 shown in FIG.
 本実施形態に係る静電容量式センサ1は、基材2と、第1の電極8と、第2の電極12と、パネル3と、シールド配線18と、表示部41と、加飾層9と、を備える。 The capacitive sensor 1 according to this embodiment includes a base material 2, a first electrode 8, a second electrode 12, a panel 3, a shield wiring 18, a display unit 41, and a decoration layer 9. And comprising.
 第1の電極8は、検出領域11に配置され、複数の第1の透明電極4を有する。図5に示すように、複数の第1の透明電極4は、基材2におけるZ1-Z2方向に沿った方向を法線とする主面のうちZ1側に位置する主面(以下、「おもて面」と略記する場合がある。)2aに設けられている。各第1の透明電極4は、細長い連結部7を介してY1-Y2方向(第1の方向)に連結されている。そして、Y1-Y2方向に連結された複数の第1の透明電極4を有する第1の電極8が、X1-X2方向に間隔を空けて配列されている。 The first electrode 8 is disposed in the detection region 11 and has a plurality of first transparent electrodes 4. As shown in FIG. 5, the plurality of first transparent electrodes 4 are principal surfaces located on the Z1 side (hereinafter referred to as “O”) of the principal surfaces having the direction along the Z1-Z2 direction in the substrate 2 as a normal line. It may be abbreviated as “front surface”.) 2a. Each first transparent electrode 4 is connected in the Y1-Y2 direction (first direction) via an elongated connecting portion 7. The first electrodes 8 having a plurality of first transparent electrodes 4 connected in the Y1-Y2 direction are arranged at intervals in the X1-X2 direction.
 第1の透明電極4および連結部7は、ITO(Indium Tin Oxide)等の透明導電性材料でスパッタや蒸着等により形成される。透明導電性材料としては、ITOの他に、銀ナノワイヤに代表される金属ナノワイヤ、メッシュ状に形成された薄い金属、あるいは導電性ポリマーなどが挙げられる。これは、後述する透明導電性材料においても同じである。  The first transparent electrode 4 and the connecting portion 7 are made of a transparent conductive material such as ITO (Indium Tin Oxide) by sputtering or vapor deposition. Examples of the transparent conductive material include, besides ITO, metal nanowires typified by silver nanowires, thin metals formed in a mesh shape, or conductive polymers. This also applies to the transparent conductive material described later. *
 第2の電極12は、検出領域11に配置され、複数の第2の透明電極5を有する。図6に示すように、複数の第2の透明電極5は、基材2のおもて面2aに設けられている。このように、第2の透明電極5は、第1の透明電極4と同じ面(基材2のおもて面2a)に設けられている。図5および図6に示すように、各第2の透明電極5は、細長いブリッジ配線10を介してX1-X2方向(第2の方向)に連結されている。そして、X1-X2方向に連結された複数の第2の透明電極5を有する第2の電極12が、Y1-Y2方向に間隔を空けて配列されている。なお、X1-X2方向は、Y1-Y2方向と交差している。例えば、X1-X2方向は、Y1-Y2方向と垂直に交わっている。 The second electrode 12 is disposed in the detection region 11 and has a plurality of second transparent electrodes 5. As shown in FIG. 6, the plurality of second transparent electrodes 5 are provided on the front surface 2 a of the substrate 2. Thus, the 2nd transparent electrode 5 is provided in the same surface (front surface 2a of the base material 2) as the 1st transparent electrode 4. FIG. As shown in FIGS. 5 and 6, each second transparent electrode 5 is connected to the X1-X2 direction (second direction) via the elongated bridge wiring 10. The second electrodes 12 having a plurality of second transparent electrodes 5 connected in the X1-X2 direction are arranged at intervals in the Y1-Y2 direction. Note that the X1-X2 direction intersects the Y1-Y2 direction. For example, the X1-X2 direction intersects the Y1-Y2 direction perpendicularly.
 第2の透明電極5は、ITO等の透明導電性材料でスパッタや蒸着等により形成される。ブリッジ配線10は、ITO等の透明導電性材料で形成される。あるいは、ブリッジ配線10は、ITO等の透明導電性材料を含む第1層と、第1層よりも低抵抗で透明な金属からなる第2層と、を有していてもよい。ブリッジ配線10が第1層と第2層との積層構造を有する場合には、第2層は、Au、Au合金、CuNiおよびNiよりなる群から選択されたいずれかにより形成されることが好適である。この中でも、Auを選択することがより好適である。第2層がAuにより形成された場合には、ブリッジ配線10は、良好な耐環境性(耐湿性、耐熱性)を得ることができる。 The second transparent electrode 5 is formed of a transparent conductive material such as ITO by sputtering or vapor deposition. The bridge wiring 10 is formed of a transparent conductive material such as ITO. Alternatively, the bridge wiring 10 may have a first layer containing a transparent conductive material such as ITO and a second layer made of a transparent metal having a lower resistance than the first layer. When the bridge wiring 10 has a laminated structure of the first layer and the second layer, the second layer is preferably formed of any one selected from the group consisting of Au, Au alloy, CuNi, and Ni. It is. Among these, it is more preferable to select Au. When the second layer is formed of Au, the bridge wiring 10 can obtain good environmental resistance (humidity resistance, heat resistance).
 図5および図6に示すように、各第1の透明電極4間を連結する連結部7の表面には、絶縁層20が設けられている。図6に示すように、絶縁層20は、連結部7と第2の透明電極5との間の空間を埋め、第2の透明電極5の表面にも多少乗り上げている。絶縁層20としては、例えばノボラック樹脂(レジスト)が用いられる。 As shown in FIGS. 5 and 6, an insulating layer 20 is provided on the surface of the connecting portion 7 that connects the first transparent electrodes 4 to each other. As shown in FIG. 6, the insulating layer 20 fills the space between the connecting portion 7 and the second transparent electrode 5, and is slightly on the surface of the second transparent electrode 5. As the insulating layer 20, for example, a novolac resin (resist) is used.
 図5および図6に示すように、ブリッジ配線10は、絶縁層20の表面20aから絶縁層20のX1-X2方向の両側に位置する各第2の透明電極5の表面にかけて設けられている。ブリッジ配線10は、各第2の透明電極5間を電気的に接続している。 5 and 6, the bridge wiring 10 is provided from the surface 20a of the insulating layer 20 to the surface of each second transparent electrode 5 located on both sides of the insulating layer 20 in the X1-X2 direction. The bridge wiring 10 electrically connects the second transparent electrodes 5.
 図5および図6に示すように、各第1の透明電極4間を接続する連結部7の表面には絶縁層20が設けられており、絶縁層20の表面に各第2の透明電極5間を接続するブリッジ配線10が設けられている。このように、連結部7とブリッジ配線10との間には絶縁層20が介在し、第1の透明電極4と第2の透明電極5とは電気的に絶縁された状態となっている。本実施形態では、第1の透明電極4と第2の透明電極5とを同じ面(基材2のおもて面2a)に設けられているため、静電容量式センサ1の薄型化を実現できる。 As shown in FIGS. 5 and 6, an insulating layer 20 is provided on the surface of the connecting portion 7 that connects the first transparent electrodes 4, and each second transparent electrode 5 is provided on the surface of the insulating layer 20. A bridge wiring 10 is provided to connect the two. As described above, the insulating layer 20 is interposed between the connecting portion 7 and the bridge wiring 10, and the first transparent electrode 4 and the second transparent electrode 5 are electrically insulated. In the present embodiment, since the first transparent electrode 4 and the second transparent electrode 5 are provided on the same surface (the front surface 2a of the base material 2), the capacitive sensor 1 can be thinned. realizable.
 なお、連結部7、絶縁層20およびブリッジ配線10は、いずれも検出領域11内に位置するものであり、第1の透明電極4および第2の透明電極5と同様に透光性を有する。 Note that the connecting portion 7, the insulating layer 20, and the bridge wiring 10 are all located in the detection region 11, and have translucency similarly to the first transparent electrode 4 and the second transparent electrode 5.
 図4に示すように、非検出領域25には、各第1の電極8および各第2の電極12から引き出された複数本の配線部6が形成されている。第1の電極8および第2の電極12のそれぞれは、接続配線16を介して配線部6と電気的に接続されている。図4に示すように、各配線部6は、フレキシブルプリント基板29と電気的に接続される外部接続部27に接続されている。すなわち、各配線部6は、第1の電極8および第2の電極12と、外部接続部27と、を電気的に接続している。外部接続部27は、例えば導電ペーストを介して、フレキシブルプリント基板29と電気的に接続されている。 As shown in FIG. 4, in the non-detection region 25, a plurality of wiring portions 6 led out from the first electrodes 8 and the second electrodes 12 are formed. Each of the first electrode 8 and the second electrode 12 is electrically connected to the wiring portion 6 via the connection wiring 16. As shown in FIG. 4, each wiring unit 6 is connected to an external connection unit 27 that is electrically connected to the flexible printed circuit board 29. That is, each wiring part 6 electrically connects the first electrode 8 and the second electrode 12 and the external connection part 27. The external connection unit 27 is electrically connected to the flexible printed circuit board 29 through, for example, a conductive paste.
 各配線部6は、Cu、Cu合金、CuNi合金、Ni、Ag、Au等の金属を有する材料により形成される。接続配線16は、ITO等の透明導電性材料で形成され、検出領域11から非検出領域25に延出している。配線部6は、接続配線16の上に非検出領域25内で積層され、接続配線16と電気的に接続されている。 Each wiring part 6 is formed of a material having a metal such as Cu, Cu alloy, CuNi alloy, Ni, Ag, or Au. The connection wiring 16 is made of a transparent conductive material such as ITO, and extends from the detection region 11 to the non-detection region 25. The wiring portion 6 is stacked on the connection wiring 16 in the non-detection region 25 and is electrically connected to the connection wiring 16.
 配線部6は、図5および図6に示すように、基材2のおもて面2aにおける非検出領域25に位置する部分に設けられている。外部接続部27も、配線部6と同様に、基材2のおもて面2aにおける非検出領域25に位置する部分に設けられている。 The wiring part 6 is provided in the part located in the non-detection area | region 25 in the front surface 2a of the base material 2, as shown in FIG.5 and FIG.6. Similarly to the wiring portion 6, the external connection portion 27 is also provided in a portion located in the non-detection region 25 on the front surface 2 a of the base material 2.
 図4では、理解を容易にするために配線部6や外部接続部27が視認されるように表示しているが、実際には、図5および図6に示すように、基材2のおもて面2aに対向するようにパネル3が設けられている。パネル3は透光性を有する。パネル3におけるZ1-Z2方向に沿った方向を法線とする主面のうちZ1側に位置する主面(基材2のおもて面2aに対向する主面3bとは反対側の主面)3aは、静電容量式センサ1を操作する側の面となるため、本明細書において「操作面」ともいう。パネル3を構成する材料は限定されない。かかる材料として、ポリカーボネートなどの有機系材料、ガラスなどの無機系材料が例示される。パネル3は、積層構造を有していてもよい。積層構造の具体例として、有機系材料からなるフィルム上に無機系材料からなるハードコート層が形成されている積層構造体が挙げられる。パネル3の形状は平板状であってもよいし、他の形状であってもよい。例えば、パネル3の操作面3aは曲面であってもよく、パネル3の操作面3aの面形状と、パネル3におけるZ1-Z2方向に沿った方向を法線とする主面のうちZ2側に位置する主面(換言すれば、操作面3aとは反対側の主面であって、以下、「裏面」と略記する場合がある。)3bの面形状とが異なっていてもよい。 In FIG. 4, for ease of understanding, the wiring portion 6 and the external connection portion 27 are displayed so as to be visually recognized. However, in actuality, as shown in FIGS. A panel 3 is provided so as to face the front surface 2a. The panel 3 has translucency. Of the main surfaces of the panel 3 having a direction along the Z1-Z2 direction as a normal line, the main surface located on the Z1 side (the main surface opposite to the main surface 3b facing the front surface 2a of the substrate 2) ) 3a is a surface on the side where the capacitive sensor 1 is operated, and is also referred to as an “operation surface” in this specification. The material which comprises the panel 3 is not limited. Examples of such materials include organic materials such as polycarbonate and inorganic materials such as glass. The panel 3 may have a laminated structure. A specific example of the laminated structure is a laminated structure in which a hard coat layer made of an inorganic material is formed on a film made of an organic material. The shape of the panel 3 may be a flat plate shape or another shape. For example, the operation surface 3a of the panel 3 may be a curved surface, and the surface shape of the operation surface 3a of the panel 3 and the Z2 side of the main surface with the direction along the Z1-Z2 direction in the panel 3 as a normal line. The surface shape of the positioned main surface (in other words, the main surface opposite to the operation surface 3a and may be abbreviated as “back surface” hereinafter) 3b may be different.
 パネル3の裏面3bにおける非検出領域25に位置する部分には、遮光性を有する加飾層9が設けられている。本実施形態に係る静電容量式センサ1では、パネル3の裏面3bにおける非検出領域25に位置する部分全体に加飾層9が設けられている。このため、静電容量式センサ1をパネル3の操作面3a側からみると、配線部6および外部接続部27は加飾層9によって隠蔽され、視認されない。加飾層9を構成する材料は、遮光性を有する限り任意である。加飾層9は絶縁性を有していてもよい。 A decorative layer 9 having a light-shielding property is provided in a portion located in the non-detection region 25 on the back surface 3b of the panel 3. In the capacitive sensor 1 according to this embodiment, the decoration layer 9 is provided on the entire portion located in the non-detection region 25 on the back surface 3 b of the panel 3. For this reason, when the capacitive sensor 1 is viewed from the operation surface 3 a side of the panel 3, the wiring portion 6 and the external connection portion 27 are hidden by the decorative layer 9 and are not visually recognized. The material which comprises the decoration layer 9 is arbitrary as long as it has light-shielding property. The decorative layer 9 may have insulating properties.
 図5および図6に示すように、パネル3は、基材2とパネル3との間に設けられた光学透明粘着層(OCA;Optical Clear Adhesive)30を介して基材2と接合されている。光学透明粘着層(OCA)30は、アクリル系粘着剤や両面粘着テープ等からなる。 As shown in FIGS. 5 and 6, the panel 3 is joined to the base material 2 via an optical transparent adhesive layer (OCA) 30 provided between the base material 2 and the panel 3. . The optical transparent adhesive layer (OCA) 30 is made of an acrylic adhesive, a double-sided adhesive tape, or the like.
 図1に示す静電容量式センサ1では、図6に示すようにパネル3の操作面3a上に捜査隊の一例として指Fを接触させると、指Fと指Fに近い第1の透明電極4との間、および指Fと指Fに近い第2の透明電極5との間で静電容量が生じる。静電容量式センサ1は、このときの静電容量変化に基づいて、指Fの接触位置を算出することが可能である。静電容量式センサ1は、指Fと第1の電極8との間の静電容量変化に基づいて指Fの位置のX座標を検知し、指Fと第2の電極12との間の静電容量変化に基づいて指Fの位置のY座標を検知する(自己容量検出型)。 In the capacitive sensor 1 shown in FIG. 1, when a finger F is brought into contact with the operation surface 3 a of the panel 3 as an example of an investigation team as shown in FIG. 6, the first transparent electrode close to the finger F and the finger F is used. 4 and between the finger F and the second transparent electrode 5 close to the finger F, capacitance occurs. The capacitive sensor 1 can calculate the contact position of the finger F based on the capacitance change at this time. The capacitance type sensor 1 detects the X coordinate of the position of the finger F based on the capacitance change between the finger F and the first electrode 8, and detects the X coordinate between the finger F and the second electrode 12. The Y coordinate of the position of the finger F is detected based on the capacitance change (self-capacitance detection type).
 あるいは、静電容量式センサ1は、相互容量検出型であってもよい。すなわち、静電容量式センサ1は、第1の電極8および第2の電極12のいずれか一方の電極の一列に駆動電圧を印加し、第1の電極8および第2の電極12のいずれか他方の電極と指Fとの間の静電容量の変化を検知してもよい。これにより、静電容量式センサ1は、他方の電極により指Fの位置のY座標を検知し、一方の電極により指Fの位置のX座標を検知する。 Alternatively, the capacitance type sensor 1 may be a mutual capacitance detection type. In other words, the capacitive sensor 1 applies a driving voltage to one of the first electrode 8 and the second electrode 12, and either the first electrode 8 or the second electrode 12 is applied. A change in capacitance between the other electrode and the finger F may be detected. Thereby, the capacitive sensor 1 detects the Y coordinate of the position of the finger F by the other electrode, and detects the X coordinate of the position of the finger F by the one electrode.
 なお、図4~図6に表した第1の透明電極4および第2の透明電極5の配置は、一例であり、これだけには限定されない。静電容量式センサ1は、指Fなどの操作体と透明電極との間の静電容量の変化を検知し、操作体の操作面3aへの接触位置を算出できればよい。例えば、第1の透明電極4と第2の透明電極5とは基材2の異なる主面に設けられていてもよい。 The arrangement of the first transparent electrode 4 and the second transparent electrode 5 shown in FIGS. 4 to 6 is an example, and is not limited to this. The capacitance type sensor 1 only needs to detect a change in capacitance between the operation body such as the finger F and the transparent electrode, and calculate the contact position of the operation body with respect to the operation surface 3a. For example, the first transparent electrode 4 and the second transparent electrode 5 may be provided on different main surfaces of the substrate 2.
 図4に示すように、パネル3の裏面3bにおける非表示領域25に位置する部分には、表示部41が設けられている。図1~図3に関して前述したように、表示部41は、例えばロゴ部として設けられ、導電性材料を含んでいる。図5では、表示部41は、パネル3の裏面3bと加飾層9との間に位置する。このように配置されることにより、静電容量式センサ1を操作面3a側からみたときに、表示部41は加飾層9を背景として配置される。その結果、表示部41の意匠性が高まる場合があり、この場合には、静電容量式センサ1はより高い高級感を与えることができる。なお、表示部41は、上記のように、その全体がパネル3の裏面3bと加飾層9との間に位置していてもよいし、パネル3の裏面3bと加飾層9との間に位置しない部分を有していていもよい。 As shown in FIG. 4, a display portion 41 is provided in a portion located in the non-display area 25 on the back surface 3 b of the panel 3. As described above with reference to FIGS. 1 to 3, the display unit 41 is provided as a logo unit, for example, and includes a conductive material. In FIG. 5, the display unit 41 is located between the back surface 3 b of the panel 3 and the decoration layer 9. By arrange | positioning in this way, when the electrostatic capacitance type sensor 1 is seen from the operation surface 3a side, the display part 41 is arrange | positioned by using the decoration layer 9 as a background. As a result, the design of the display unit 41 may be improved. In this case, the capacitive sensor 1 can give a higher sense of quality. In addition, as above, the display part 41 may be located between the back surface 3b of the panel 3 and the decoration layer 9, or between the back surface 3b of the panel 3 and the decoration layer 9. It may have a part which is not located in.
 シールド配線18は、非検出領域25において基材2と加飾層9との間に位置し、配線部6および表示部41よりも外周側(検出領域11から離れる側)に設けられている。図1~図3に関して前述したように、シールド配線18は、導電性を有し、フレキシブルプリント基板29のうちで例えば基準電位としてグラウンド電位に設定された部分に電気的に接続可能とされている。 The shield wiring 18 is located between the base material 2 and the decorative layer 9 in the non-detection region 25 and is provided on the outer peripheral side (side away from the detection region 11) from the wiring unit 6 and the display unit 41. As described above with reference to FIGS. 1 to 3, the shield wiring 18 has conductivity, and can be electrically connected to a portion of the flexible printed circuit board 29 that is set to a ground potential, for example, as a reference potential. .
 図5に示す断面図では、表示部41に最近位なパネル3の端面である最近位端面3cと表示部41におけるパネル3の最近位端面3cに近位な端部との間の距離D1は、パネル3の最近位端面3cとシールド配線18におけるパネル3の最近位端面3cに近位な端部との間の距離D2よりも長い。 In the cross-sectional view shown in FIG. 5, the distance D <b> 1 between the closest end surface 3 c that is the end surface of the panel 3 closest to the display unit 41 and the end portion of the display unit 41 that is proximal to the closest end surface 3 c of the panel 3 is The distance D2 between the most proximal end face 3c of the panel 3 and the end portion of the shield wiring 18 that is proximal to the nearest end face 3c of the panel 3 is longer.
 また、パネル3の最近位端面3cと表示部41におけるパネル3の最近位端面3cに近位な端部との間の距離D1は、パネル3の最近位端面3cとシールド配線18におけるパネル3の最近位端面3cから遠位な端部(検出領域11に近位な端部)との間の距離D11よりも長い。すなわち、パネル3の最近位端面3cと表示部41におけるパネル3の最近位端面3cに近位な端部との間に、シールド配線18におけるパネル3の最近位端面3cから遠位な端部(すなわち、検出領域11に近位な端部)が位置する。これによれば、表示部41は、シールド配線18よりも内側(検出領域11に近位)に位置することになる。 The distance D1 between the most proximal end surface 3c of the panel 3 and the end portion of the display unit 41 that is proximal to the nearest end surface 3c of the panel 3 is the distance between the most proximal end surface 3c of the panel 3 and the panel 3 in the shield wiring 18. It is longer than the distance D11 between the distal end face 3c and the distal end (end proximal to the detection region 11). That is, an end portion of the shield wiring 18 that is distal from the most proximal end face 3c of the panel 3 (between the nearest end face 3c of the panel 3 and an end portion of the display unit 41 that is proximal to the nearest end face 3c of the panel 3). That is, the end portion proximal to the detection region 11 is located. According to this, the display unit 41 is located inside the shield wiring 18 (proximal to the detection region 11).
 そのため、静電容量式センサ1において、例えばパネル3の操作面3aに指Fが近接したことに起因してESD(Electro Static Discharge:静電気放電)が発生し、このESDに基づいて沿面放電が生じた場合であっても、表示部41がシールド配線18よりも内側(検出領域11に近位)に位置するため、沿面放電によりパネル3と基材2との間に流れ込んだ電気は、表示部41よりもシールド配線18に優先的に流れる。このため、ESDにより生じた電気は、シールド配線18を介してフレキシブルプリント基板29のうちで例えば基準電位としてグラウンド電位に設定された部分に流れ、表示部41に流れることが抑制される。このように、シールド配線18と表示部41との配置を適切に設定することにより、ESD対策を施すとともに導電性材料を含む表示部41の変色を抑えることができる。 For this reason, in the capacitive sensor 1, ESD (Electro Static Discharge) occurs due to the proximity of the finger F to the operation surface 3a of the panel 3, for example, and creeping discharge occurs based on the ESD. Even in this case, since the display unit 41 is located inside the shield wiring 18 (proximal to the detection region 11), the electricity flowing between the panel 3 and the base material 2 due to creeping discharge is It flows preferentially to the shield wiring 18 over 41. For this reason, the electricity generated by the ESD flows to the portion of the flexible printed circuit board 29 that is set to the ground potential, for example, as the reference potential via the shield wiring 18 and is prevented from flowing to the display unit 41. Thus, by appropriately setting the arrangement of the shield wiring 18 and the display unit 41, it is possible to take measures against ESD and suppress discoloration of the display unit 41 including a conductive material.
 また、シールド配線18は、基材2のおもて面2aに設けられている。そのため、第1の透明電極4および第2の透明電極5などを基材2のおもて面2aに形成する工程において、基材2のおもて面2aにシールド配線18を形成することができる。これにより、シールド配線18を形成する工程の効率を高めることができ、製造コストを低減することができる。 The shield wiring 18 is provided on the front surface 2a of the base material 2. Therefore, in the step of forming the first transparent electrode 4 and the second transparent electrode 5 on the front surface 2a of the base material 2, the shield wiring 18 can be formed on the front surface 2a of the base material 2. it can. Thereby, the efficiency of the process which forms the shield wiring 18 can be improved, and manufacturing cost can be reduced.
 なお、図5の断面図に表した二点鎖線の配線部6のように、シールド配線18よりも検出領域11に近位な位置に配線部6が設けられていてもよい。この場合には、図5に示すように、パネル3の最近位端面3cと配線部6におけるパネル3の最近位端面3cに近位な端部との間の距離D12は、パネル3の最近位端面3cとシールド配線18におけるパネル3の最近位端面部3cに近位な端部との間の距離D2よりも長い。そして、パネル3の操作面3aの法線に沿った方向(図5のZ1-Z2方向)からみて、配線部6は、表示部41と重複する部分を有する。 Note that the wiring part 6 may be provided at a position closer to the detection region 11 than the shield wiring 18, like the two-dot chain line wiring part 6 shown in the cross-sectional view of FIG. 5. In this case, as shown in FIG. 5, the distance D12 between the most proximal end surface 3c of the panel 3 and the end portion of the wiring portion 6 that is proximal to the most proximal end surface 3c is the most proximal position of the panel 3. The distance D2 is longer than the distance D2 between the end face 3c and the end of the shield wiring 18 that is proximal to the most proximal end face 3c of the panel 3. Then, when viewed from the direction along the normal line of the operation surface 3a of the panel 3 (Z1-Z2 direction in FIG. 5), the wiring portion 6 has a portion overlapping the display portion 41.
 これによれば、配線部6に対するシールド効果を高めることができる。上記の構成では、配線部6におけるパネル3の最近位端面3cに近位な端部が、シールド配線18におけるパネル3の最近位端面部3cに近位な端部よりも内側(検出領域11に近位)に位置する。そのため、ESDに基づく沿面放電が発生した場合であっても、最近位端面3cからパネル3と基材2との間に流れ込んだ電気は、配線部6よりもシールド配線18に優先的に流れ、配線部6を流れる電流が過大となって配線部6が損傷を受けることが抑制される。 According to this, the shielding effect with respect to the wiring part 6 can be enhanced. In the above configuration, the end portion of the wiring portion 6 that is proximal to the most proximal end surface 3c of the panel 3 is inside the end portion of the shield wiring 18 that is proximal to the most proximal end surface portion 3c of the panel 3 (in the detection region 11). (Proximal). Therefore, even when creeping discharge based on ESD occurs, the electricity that flows between the panel 3 and the base material 2 from the nearest end face 3c flows preferentially to the shield wiring 18 rather than the wiring portion 6. It is suppressed that the electric current which flows through the wiring part 6 becomes excessive, and the wiring part 6 is damaged.
 また、上記のように配線部6が表示部41と重複する部分を有することにより、配線部6と表示部41との配置関係をより自由に設定することができる。配線部6と表示部41とに上記のような重複する部分がある場合には、配線部6に過大な電流が流れると、この重複部分において表示部41に配線部6からの電気が流れ込むおそれがある。しかしながら、上記のように、配線部6はシールド配線18によりESDから守られているため、配線部18に過大な電流が流れることが適切に抑制されている。したがって、配線部6と重複する部分があっても表示部41にはESDにより生じた電気が流れにくい。 In addition, since the wiring unit 6 has a portion overlapping the display unit 41 as described above, the arrangement relationship between the wiring unit 6 and the display unit 41 can be set more freely. When the wiring part 6 and the display part 41 have overlapping portions as described above, if an excessive current flows in the wiring part 6, electricity from the wiring part 6 may flow into the display part 41 in the overlapping part. There is. However, since the wiring part 6 is protected from ESD by the shield wiring 18 as described above, an excessive current is prevented from flowing through the wiring part 18 appropriately. Therefore, even if there is an overlapping part with the wiring part 6, it is difficult for electricity generated by ESD to flow through the display part 41.
 なお、シールド配線18は、グラウンド電位に設定された部分に電気を流すことができればよく、グラウンド電位に設定された部分に直接的に接続されていなくともよい。すなわち、シールド配線18は、ESDにより生じた電気が流れたときにグラウンド電位に設定された部分に電気を流すことができればよく、ESDにより生じた電気が流れる前の状態では電気的に浮いていてもよい。 Note that the shield wiring 18 is not limited to being directly connected to the portion set to the ground potential as long as electricity can flow through the portion set to the ground potential. That is, the shield wiring 18 only needs to be able to flow electricity to the portion set to the ground potential when the electricity generated by the ESD flows, and is electrically floating before the electricity generated by the ESD flows. Also good.
 また、シールド配線18は、基材2の端面2cに設けられている部分およびパネル3の端面に設けられている部分の少なくとも一方を有していてもよい。静電容量式センサ1においてESDに基づく沿面放電が生じた場合であっても、ESDにより生じた電気は、シールド配線18における基材2の端面2cに設けられている部分や、シールド配線18におけるパネル3の最近位端面3cなどの端面に設けられている部分を優先的に流れ、ESDにより生じた電気がパネル3と基材2との間に流れ込んで表示部41に至ることが抑制される。これにより、導電性材料を含む表示部41をESDから効率的に守り、表示部41の変色をより抑えることができる。 Further, the shield wiring 18 may have at least one of a portion provided on the end surface 2 c of the substrate 2 and a portion provided on the end surface of the panel 3. Even in the case where creeping discharge based on ESD occurs in the capacitance type sensor 1, the electricity generated by ESD is generated in the portion of the shield wiring 18 provided on the end surface 2 c of the substrate 2 or in the shield wiring 18. A portion provided on the end face such as the nearest end face 3c of the panel 3 preferentially flows, and electricity generated by ESD is suppressed from flowing between the panel 3 and the base material 2 to reach the display unit 41. . Thereby, the display part 41 containing an electroconductive material can be efficiently protected from ESD, and the discoloration of the display part 41 can be suppressed more.
 図7は、本実施形態の他のシールド配線を表す模式的平面図である。図7は、図2に表した領域Aを拡大して表した模式的拡大図に相当する。 FIG. 7 is a schematic plan view showing another shield wiring of this embodiment. FIG. 7 corresponds to a schematic enlarged view in which the area A shown in FIG. 2 is enlarged.
 図3に示した静電容量式センサ1のシールド配線18が表示部41の近傍で直線状に配置されているのに対し、図7に示した静電容量式センサ1Aのシールド配線18Aは、表示41の近傍で、屈曲する部分を有する。このような屈曲する部分において、パネル3の最近位端面3cと表示部41におけるパネル3の最近位端面3cに近位な端部との間の距離D1は、パネル3の最近位端面3cとシールド配線18Aにおけるパネル3の最近位端面3cに近位な端部との間の距離D3よりも長い。シールド配線18Aと表示部41とがこのような配置であることにより、図3に示した静電容量式センサ1の場合と同様に、ESDにより生じた電気が表示部41に流れることが抑制される。 The shield wiring 18 of the capacitive sensor 1 shown in FIG. 3 is arranged linearly in the vicinity of the display unit 41, whereas the shield wiring 18A of the capacitive sensor 1A shown in FIG. In the vicinity of the display 41, it has a bent portion. In such a bent portion, the distance D1 between the proximal end surface 3c of the panel 3 and the end portion proximal to the proximal end surface 3c of the panel 3 in the display unit 41 is the shield 3 of the panel 3 and the shield. It is longer than the distance D3 between the end of the wiring 18A and the proximal end to the most proximal end face 3c of the panel 3. Since the shield wiring 18A and the display unit 41 are arranged in this manner, the electricity generated by ESD is suppressed from flowing to the display unit 41 as in the case of the capacitive sensor 1 shown in FIG. The
 一方、表示部41が設けられている部分以外の部分においては、パネル3の最近位端面3cと表示部41におけるパネル3の最近位端面3cに近位な端部との間の距離D1は、パネル3の最近位端面3cとシールド配線18Aにおけるパネル3の最近位端面3cに近位な端部との間の距離D9よりも短い。すなわち、シールド配線18Aは、屈曲する部分において表示部41を囲うように配置される。シールド配線18Aがこのような屈曲部を有することにより、ESDにより生じた電気が表示部41に流れることの抑制と、シールド配線18の配置自由度の確保とを両立することができる。 On the other hand, in a portion other than the portion where the display unit 41 is provided, the distance D1 between the nearest end surface 3c of the panel 3 and the end portion of the display unit 41 proximal to the nearest end surface 3c of the panel 3 is The distance D9 is shorter than the distance D9 between the most proximal end surface 3c of the panel 3 and the end of the shield wiring 18A that is proximal to the most proximal end surface 3c of the panel 3. That is, the shield wiring 18 </ b> A is disposed so as to surround the display unit 41 at the bent portion. Since the shield wiring 18 </ b> A has such a bent portion, it is possible to achieve both suppression of the electricity generated by ESD flowing to the display unit 41 and securing the degree of freedom of arrangement of the shield wiring 18.
 図8は、本実施形態のさらに他のシールド配線を表す模式的断面図である。図8は、図4に表した切断面C1-C1における模式的断面図に相当する。 FIG. 8 is a schematic cross-sectional view showing still another shield wiring of the present embodiment. FIG. 8 corresponds to a schematic cross-sectional view taken along the cutting plane C1-C1 shown in FIG.
 図8に表した静電容量式センサ1Bでは、シールド配線18Bは、加飾層9の基材2に近位な面9aに設けられている。加飾層9はパネルの裏面3bに設けられているため、シールド配線18Bは、換言すれば、加飾層9を介在部材として、パネルの裏面3bに設けられている。本明細書において、理解を容易にするために、基材2のおもて面2aに設けられたシールド配線を「第1シールド配線」(図5に示したシールド配線18が該当する。)といい、パネル3の裏面3bに設けられたシールド配線を「第2シールド配線」(図8に示したシールド配線18Bが該当する。)という場合がある。 8, the shield wiring 18 </ b> B is provided on the surface 9 a proximal to the base material 2 of the decorative layer 9. Since the decoration layer 9 is provided on the back surface 3b of the panel, in other words, the shield wiring 18B is provided on the back surface 3b of the panel with the decoration layer 9 as an intervening member. In this specification, for easy understanding, the shield wiring provided on the front surface 2a of the substrate 2 is referred to as “first shield wiring” (the shield wiring 18 shown in FIG. 5 corresponds). The shield wiring provided on the back surface 3b of the panel 3 may be referred to as “second shield wiring” (the shield wiring 18B shown in FIG. 8 corresponds).
 図8の断面図に示すように、パネル3の最近位端面3cと表示部41におけるパネル3の最近位端面3cに近位な端部との間の距離D1は、パネル3の最近位端面3cとシールド配線18Bにおけるパネル3の最近位端面3cに近位な端部との間の距離D4よりも長い。また、パネル3の最近位端面3cと表示部41におけるパネル3の最近位端面3cに近位な端部との間の距離D1は、パネル3の最近位端面3cとシールド配線18Bにおけるパネル3の最近位端面3cから遠位な端部(検出領域11に近位な端部)との間の距離D13よりも長い。すなわち、パネル3の最近位端面3cと表示部41におけるパネル3の最近位端面3cに近位な端部との間に、シールド配線18Bにおけるパネル3の最近位端面3cから遠位な端部(検出領域11に近位な端部)が位置する。これによれば、表示部41は、シールド配線18Bよりも内側(検出領域11に近位)に位置することになる。他の構造は、図1~図6に関して前述した静電容量式センサ1の構造と同じである。 As shown in the cross-sectional view of FIG. 8, the distance D1 between the most proximal end face 3c of the panel 3 and the end proximal to the nearest end face 3c of the panel 3 in the display unit 41 is the nearest end face 3c of the panel 3. And a distance D4 between the shield wiring 18B and the end portion proximal to the nearest end face 3c of the panel 3 in the shield wiring 18B. In addition, the distance D1 between the most proximal end surface 3c of the panel 3 and the end portion of the display unit 41 that is proximal to the nearest end surface 3c of the panel 3 is the distance between the most proximal end surface 3c of the panel 3 and the panel 3 in the shield wiring 18B. It is longer than the distance D13 between the distal end face 3c and the distal end (end proximal to the detection region 11). That is, between the proximal end face 3c of the panel 3 and the end proximal to the proximal end face 3c of the panel 3 in the display unit 41, an end (distal from the proximal end face 3c of the panel 3 in the shield wiring 18B) The end proximal to the detection region 11) is located. According to this, the display part 41 will be located inside the shield wiring 18B (proximal to the detection region 11). The other structure is the same as the structure of the capacitive sensor 1 described above with reference to FIGS.
 この場合には、シールド配線18Bは、シールド配線が基材2のおもて面2aの上に設けられている場合と比較して、表示部41のより近くに位置することができる。そのため、静電容量式センサ1BにおいてESDに基づく沿面放電が発生した場合であっても、基材2とパネル3との間に流れ込んだ電気は、表示部41よりもシールド配線18Bにさらに優先的に流れる。このため、ESDにより生じた電気は、シールド配線18Bを介してフレキシブルプリント基板29のうちで例えば基準電位としてグラウンド電位に設定された部分に流れることがより安定的に生じる。したがって、シールド配線18Bにより、ESDにより生じた電気が表示部41に流れることがより安定的に抑制される。このように、シールド配線18Bと表示部41との配置を適切に設定することにより、ESD対策を施すとともに導電性材料を含む表示部41の変色をより安定的に抑えることができる。 In this case, the shield wiring 18B can be positioned closer to the display unit 41 than when the shield wiring is provided on the front surface 2a of the base member 2. Therefore, even when creeping discharge based on ESD occurs in the capacitive sensor 1B, the electricity flowing between the base material 2 and the panel 3 is more preferential to the shield wiring 18B than the display unit 41. Flowing into. For this reason, electricity generated by ESD more stably flows through the shield wiring 18B to the portion of the flexible printed circuit board 29 that is set to the ground potential, for example, as the reference potential. Therefore, electricity generated by ESD flows to the display unit 41 more stably by the shield wiring 18B. Thus, by appropriately setting the arrangement of the shield wiring 18B and the display unit 41, it is possible to take ESD countermeasures and more stably suppress discoloration of the display unit 41 including a conductive material.
 図9は、本実施形態のさらに他のシールド配線を表す模式的断面図である。図9は、図4に表した切断面C1-C1における模式的断面図に相当する。 FIG. 9 is a schematic cross-sectional view showing still another shield wiring of the present embodiment. FIG. 9 corresponds to a schematic cross-sectional view taken along the cutting plane C1-C1 shown in FIG.
 図9の断面図に表した静電容量式センサ1Cは、第1シールド配線18Cと、第2シールド配線18Dと、を有する。第1シールド配線18Cは、前述のとおり、基材2のおもて面2aに設けられているシールド配線である。パネル3の端部3cと表示部41おけるパネル3の最近位端面3cに近位な端部との間の距離D1は、パネル3の最近位端面3cと第1シールド配線18Cおけるパネル3の最近位端面3cに近位な端部との間の距離D5よりも長い。 The capacitive sensor 1C shown in the sectional view of FIG. 9 has a first shield wiring 18C and a second shield wiring 18D. The first shield wiring 18C is a shield wiring provided on the front surface 2a of the base material 2 as described above. The distance D1 between the end portion 3c of the panel 3 and the end portion of the display unit 41 that is proximal to the nearest end surface 3c of the panel 3 is the nearest end surface 3c of the panel 3 and the nearest distance of the panel 3 in the first shield wiring 18C. It is longer than the distance D5 between the end portion proximal to the distal end surface 3c.
 また、パネル3の最近位端面3cと表示部41におけるパネル3の最近位端面3cに近位な端部との間の距離D1は、パネル3の最近位端面3cと第1シールド配線18Cにおけるパネル3の最近位端面3cから遠位な端部(検出領域11に近位な端部)との間の距離D14よりも長い。すなわち、パネル3の最近位端面3cと表示部41におけるパネル3の最近位端面3cに近位な端部との間に、第1シールド配線18Cにおけるパネル3の最近位端面3cから遠位な端部(検出領域11に近位な端部)が位置する。これによれば、表示部41は、第1シールド配線18Cよりも内側(検出領域11に近位)に位置することになる。 Further, the distance D1 between the most proximal end surface 3c of the panel 3 and the end portion of the display unit 41 proximal to the nearest end surface 3c of the panel 3 is the panel at the most proximal end surface 3c of the panel 3 and the first shield wiring 18C. 3 is longer than the distance D14 between the distal end (the end proximal to the detection region 11) from the most proximal end face 3c. That is, an end of the first shield wiring 18 </ b> C distal from the most proximal end surface 3 c of the panel 3 between the most proximal end surface 3 c of the panel 3 and the end of the display unit 41 proximal to the most proximal end surface 3 c of the panel 3. (The end proximal to the detection region 11) is located. According to this, the display part 41 will be located inside (proximal to the detection area | region 11) rather than the 1st shield wiring 18C.
 第2シールド配線18Dは、加飾層9における基材2に近位な面9aに設けられている。加飾層9はパネルの裏面3bに設けられているため、換言すれば、第2シールド配線18Dは、加飾層9を介在部材としてパネル3の裏面3bに設けられている。第1シールド配線18Cと同様に、第2シールド配線18Dは導電性を有し、Cu、Cu合金、CuNi合金、Ni、Ag、Au等の金属を有する材料により形成される。第2シールド配線18Dは、金属の材料を含むインクで例えばスクリーン印刷などにより形成される。あるいは、第2シールド配線18Dは、金属を有する材料でスパッタや蒸着等により形成されてもよい。あるいは、第2シールド配線18Dは、カーボン系の導電性材料を含むインクで例えばスクリーン印刷により形成されてもよい。 The second shield wiring 18 </ b> D is provided on the surface 9 a proximal to the base material 2 in the decorative layer 9. Since the decoration layer 9 is provided on the back surface 3b of the panel, in other words, the second shield wiring 18D is provided on the back surface 3b of the panel 3 with the decoration layer 9 as an interposed member. Similar to the first shield wiring 18C, the second shield wiring 18D has conductivity and is formed of a material having a metal such as Cu, Cu alloy, CuNi alloy, Ni, Ag, or Au. The second shield wiring 18D is formed of ink containing a metal material, for example, by screen printing. Alternatively, the second shield wiring 18D may be formed of a material having a metal by sputtering, vapor deposition, or the like. Alternatively, the second shield wiring 18D may be formed of an ink containing a carbon-based conductive material, for example, by screen printing.
 第2シールド配線18Dは、導電性を有し、フレキシブルプリント基板29のうちで例えば基準電位としてグラウンド電位に設定された部分に電気的に接続可能とされている。図9の断面図に示すように、パネル3の最近位端面3cと表示部41おけるパネル3の端部3cに近位な端部との間の距離D1は、パネル3の最近位端面3cと第2シールド配線18Dにおけるパネル3の最近位端面3cに近位な端部との間の距離D6よりも長い。 The second shield wiring 18D has conductivity, and can be electrically connected to a portion of the flexible printed circuit board 29 that is set to a ground potential, for example, as a reference potential. As shown in the cross-sectional view of FIG. 9, the distance D <b> 1 between the most proximal end surface 3 c of the panel 3 and the end portion 3 c proximal to the end portion 3 c of the display unit 41 is the distance from the most proximal end surface 3 c of the panel 3. It is longer than the distance D6 between the second shield wiring 18D and the end portion proximal to the most proximal end face 3c of the panel 3.
 また、パネル3の最近位端面3cと表示部41におけるパネル3の最近位端面3cに近位な端部との間の距離D1は、パネル3の最近位端面3cと第2シールド配線18Dにおけるパネル3の最近位端面3cから遠位な端部(検出領域11に近位な端部)との間の距離D15よりも長い。すなわち、パネル3の最近位端面3cと表示部41におけるパネル3の最近位端面3cに近位な端部との間に、第2シールド配線18Dにおけるパネル3の最近位端面3cから遠位な端部(検出領域11に近位な端部)が位置する。他の構造は、図1~図6に関して前述した静電容量式センサ1の構造と同じである。これによれば、表示部41は、第2シールド配線18Dよりも内側(検出領域11に近位)に位置することになる。 In addition, the distance D1 between the most proximal end surface 3c of the panel 3 and the end portion of the display unit 41 that is proximal to the most proximal end surface 3c is the panel at the most proximal end surface 3c of the panel 3 and the second shield wiring 18D. 3 is longer than a distance D15 between the distal end (the end proximal to the detection region 11) from the most proximal end face 3c. That is, an end of the second shield wiring 18D that is distal to the most proximal end surface 3c of the panel 3 is located between the most proximal end surface 3c of the panel 3 and an end of the display unit 41 that is proximal to the most proximal end surface 3c. (The end proximal to the detection region 11) is located. The other structure is the same as the structure of the capacitive sensor 1 described above with reference to FIGS. According to this, the display unit 41 is located on the inner side (proximal to the detection region 11) than the second shield wiring 18D.
 そのため、静電容量式センサ1CにおいてESDに基づく沿面放電が発生した場合であっても、表示部41は第1シールド配線18Cおよび第2シールド配線18Dよりも内側(検出領域11に近位)に位置するため、パネル3と基材2との間に流れ込んだ電気は、表示部41よりも、第1シールド配線18Cおよび第2シールド配線18Dの少なくともいずれかに優先的に流れる。このため、ESDにより生じた電気は、第1シールド配線18Cおよび/または第2シールド配線18Dを介してフレキシブルプリント基板29のうちで例えば基準電位としてグラウンド電位に設定された部分に流れ、ESDにより生じた電気が表示部41に流れることは抑制される。このように、第1シールド配線18Cおよび第2シールド配線18Dの少なくとも一方を設け、これらのシールド配線と表示部41との配置を適切に設定することにより、ESD対策を施すとともに導電性材料を含む表示部41の変色を抑えることがより安定的に実現される。 Therefore, even when creeping discharge based on ESD occurs in the capacitive sensor 1C, the display unit 41 is located on the inner side (proximal to the detection region 11) than the first shield wiring 18C and the second shield wiring 18D. Therefore, the electricity flowing between the panel 3 and the base material 2 flows preferentially to at least one of the first shield wiring 18C and the second shield wiring 18D rather than the display unit 41. For this reason, the electricity generated by the ESD flows through the first shield wiring 18C and / or the second shield wiring 18D to the portion of the flexible printed circuit board 29 that is set to the ground potential as the reference potential, for example, and is generated by the ESD. It is suppressed that the electricity which flowed to the display part 41 flows. Thus, by providing at least one of the first shield wiring 18C and the second shield wiring 18D and appropriately setting the arrangement of the shield wiring and the display unit 41, ESD countermeasures are taken and a conductive material is included. Suppressing discoloration of the display unit 41 is more stably realized.
 図9に示される静電容量式センサ1Cでは、第1シールド配線18Cと第2シールド配線18Dとが、パネル3の操作面3a側からみたときに重複する部分を有するように配置されているが、これに限定されない。第1シールド配線18Cと第2シールド配線18Dとが重複する部分を有さず、最近位端面3cからみたときに2重の壁となって表示部41を保護するようにシールド配線が配置されていてもよい。 In the capacitance type sensor 1 </ b> C shown in FIG. 9, the first shield wiring 18 </ b> C and the second shield wiring 18 </ b> D are arranged so as to have overlapping portions when viewed from the operation surface 3 a side of the panel 3. However, the present invention is not limited to this. The first shield wiring 18C and the second shield wiring 18D do not have an overlapping portion, and the shield wiring is disposed so as to protect the display unit 41 as a double wall when viewed from the nearest end face 3c. May be.
 図10は、本実施形態のさらに他のシールド配線を表す模式的平面図である。図11は、本実施形態のさらに他のシールド配線を表す模式的断面図である。図10は、図2に表した領域Aを拡大して表した模式的拡大図に相当する。図11は、図4に表した切断面C1-C1における模式的断面図に相当する。 FIG. 10 is a schematic plan view showing still another shield wiring of the present embodiment. FIG. 11 is a schematic cross-sectional view showing still another shield wiring of the present embodiment. FIG. 10 corresponds to a schematic enlarged view in which the region A shown in FIG. 2 is enlarged. FIG. 11 corresponds to a schematic cross-sectional view taken along the cutting plane C1-C1 shown in FIG.
 図10および図11に表した静電容量式センサ1Dは、第1シールド配線18Eと、第2シールド配線18Fと、を有する。基材2のおもて面2aあるいはパネル3の操作面3aに対して垂直にみたときに、第1シールド配線18Eは、非検出領域25のうちで表示部41が設けられた部分以外の部分において、基材2のおもて面2aに設けられている。一方で、基材2のおもて面2aあるいはパネル3の操作面3aに対して垂直にみたときに、第2シールド配線18Fは、非検出領域25のうちで表示部41が設けられた部分において、加飾層9の基材2に近位な面9aに、換言すれば、加飾層9を介在部材としてパネル3の裏面3bに設けられている。第1シールド配線18Eはフレキシブルプリント基板29のうちで例えば基準電位としてグラウンド電位に設定された部分と電気的に接続可能とされている。第2シールド配線18Fは、直接的に電気的に第1シールド配線18Eと接続されていないが、大電流が流れたときには第1シールド配線18Eと第2シールド配線18Fとの間で電気的接続が生じうるように、第2シールド配線18Fとの相対位置が設定されている。したがって、第2シールド配線18Fは、第1シールド配線18Eを介してグラウンド電位に設定された部分と電気的に接続可能とされている。 The capacitive sensor 1D shown in FIGS. 10 and 11 includes a first shield wiring 18E and a second shield wiring 18F. When viewed perpendicularly to the front surface 2a of the base material 2 or the operation surface 3a of the panel 3, the first shield wiring 18E is a portion of the non-detection region 25 other than the portion where the display unit 41 is provided. 2 is provided on the front surface 2a of the substrate 2. On the other hand, when viewed perpendicularly to the front surface 2a of the substrate 2 or the operation surface 3a of the panel 3, the second shield wiring 18F is a portion of the non-detection region 25 where the display unit 41 is provided. The surface 9a of the decorative layer 9 proximal to the substrate 2 is, in other words, provided on the back surface 3b of the panel 3 with the decorative layer 9 as an intervening member. The first shield wiring 18E can be electrically connected to a portion of the flexible printed circuit board 29 that is set to a ground potential as a reference potential, for example. The second shield wiring 18F is not directly and electrically connected to the first shield wiring 18E. However, when a large current flows, the second shield wiring 18F is electrically connected between the first shield wiring 18E and the second shield wiring 18F. The relative position with respect to the 2nd shield wiring 18F is set so that it may arise. Therefore, the second shield wiring 18F can be electrically connected to the portion set to the ground potential via the first shield wiring 18E.
 図11の断面図に示すように、断面の法線方向から透視した場合において、パネル3の最近位端面3cと表示部41におけるパネル3の最近位端面3cに近位な端部との間の距離D1は、パネル3の最近位端面3cと第1シールド配線18Eにおけるパネル3の端部3cに近位な端部との間の距離D7よりも長い。また、パネル3の最近位端面3cと表示部41におけるパネル3の最近位端面3cに近位な端部との間の距離D1は、パネル3の最近位端面3cと第2シールド配線18Fにおけるパネル3の最近位端面3cに近位な端部との間の距離D8よりも長い。他の構造は、図9に関して前述した静電容量式センサ1の構造と同じである。 As shown in the cross-sectional view of FIG. 11, when viewed from the normal direction of the cross section, between the most proximal end surface 3 c of the panel 3 and the end portion proximal to the most proximal end surface 3 c of the panel 3 in the display unit 41. The distance D1 is longer than the distance D7 between the closest end surface 3c of the panel 3 and the end portion of the first shield wiring 18E proximal to the end portion 3c of the panel 3. Further, the distance D1 between the most proximal end surface 3c of the panel 3 and the end portion proximal to the most proximal end surface 3c of the panel 3 in the display unit 41 is the panel at the most proximal end surface 3c of the panel 3 and the second shield wiring 18F. 3 is longer than the distance D8 between the proximal end to the most proximal end face 3c. The other structure is the same as that of the capacitive sensor 1 described above with reference to FIG.
 静電容量式センサ1DにおいてESDに基づく沿面放電が生じた場合であっても、表示部41が第2シールド配線18Fよりも内側(検出領域11に近位)に位置するため、パネル3と基材2との間に流れ込んだ電流は、表示部41よりも第2シールド配線18Fに優先的に流れる。そして、第2シールド配線18Fに流れた電気は、第1シールド配線18Eへと流れ、第1シールド配線18Eを介してフレキシブルプリント基板29のうちで例えば基準電位としてグラウンド電位に設定された部分に流れる。したがって、第1シールド配線18Eおよび第2シールド配線18Fにより、ESDにより生じた電気が表示部41に流れることが抑制される。このように、第1シールド配線18Eおよび第2シールド配線18Fと表示部41との配置を適切に設定することにより、ESD対策を施すとともに導電性材料を含む表示部41の変色を抑えることができる。 Even in the case where creeping discharge based on ESD occurs in the capacitive sensor 1D, the display unit 41 is located on the inner side (proximal to the detection region 11) than the second shield wiring 18F. The current that flows into the material 2 preferentially flows to the second shield wiring 18 </ b> F rather than the display unit 41. Then, the electricity that has flowed to the second shield wiring 18F flows to the first shield wiring 18E, and flows through the first shield wiring 18E to a portion of the flexible printed circuit board 29 that is set to the ground potential, for example, as the reference potential. . Therefore, the first shield wiring 18E and the second shield wiring 18F suppress the electricity generated by the ESD from flowing to the display unit 41. Thus, by appropriately setting the arrangement of the first shield wiring 18E and the second shield wiring 18F and the display unit 41, it is possible to take ESD countermeasures and suppress discoloration of the display unit 41 including a conductive material. .
 第1シールド配線18Eおよび第2シールド配線18Fの少なくとも一方、具体的には、これらのうちで直接的に表示部41を保護する(ESDにより生じた電気を優先的に受ける)シールド配線に大電流が流れたときに、第1シールド配線18Eと第2シールド配線18Fとの間で電気的接続が生じうるように配置されている限り、直接的に表示部41を保護するシールド配線からの電気を流すためのシールド配線の配置は任意である。具体的には、静電容量式センサ1Dでは第2シールド配線18Fが直接的に表示部41を保護するシールド配線であって、第1シールド配線18Eは第2シールド配線18Fからの電気を流すことができればよいため、上記の距離D1と上記の距離D7との関係は任意である。したがって、静電容量式センサ1Dでは、第1シールド配線18Eの配置自由度を高めることができる。 At least one of the first shield wiring 18E and the second shield wiring 18F, specifically, a large current is applied to the shield wiring that directly protects the display unit 41 (receiving preferentially electricity generated by ESD). As long as it is arranged so that electrical connection can occur between the first shield wiring 18E and the second shield wiring 18F, electricity from the shield wiring that directly protects the display unit 41 can be obtained. Arrangement of the shield wiring for flowing is arbitrary. Specifically, in the capacitive sensor 1D, the second shield wiring 18F is a shield wiring that directly protects the display unit 41, and the first shield wiring 18E allows electricity from the second shield wiring 18F to flow. Therefore, the relationship between the distance D1 and the distance D7 is arbitrary. Therefore, in the capacitive sensor 1D, the degree of freedom of arrangement of the first shield wiring 18E can be increased.
 上記の構成とは逆に、第1シールド配線18Eおよび第2シールド配線18Fのうち、第1シールド配線18Eが直接的に表示部41を保護するシールド配線であって、第2シールド配線18Fが第1シールド配線18Eからの電気を受けてグラウンド電位に設定された部分に流す構成であってもよい。この場合には、上記の距離D1を小さくすることが可能となる場合もある。 Contrary to the above configuration, of the first shield wiring 18E and the second shield wiring 18F, the first shield wiring 18E is a shield wiring that directly protects the display unit 41, and the second shield wiring 18F is the first shield wiring 18F. A configuration may be adopted in which electricity from the one shield wiring 18E is received and supplied to a portion set to the ground potential. In this case, it may be possible to reduce the distance D1.
 なお、第2シールド配線18Fは、第1シールド配線18Eを介することなくグラウンド電位に設定された部分に電気的に接続可能とされていてもよい。 It should be noted that the second shield wiring 18F may be electrically connectable to a portion set to the ground potential without passing through the first shield wiring 18E.
 以上、本実施形態およびその適用例を説明したが、本発明はこれらの例に限定されるものではない。例えば、前述の各実施形態またはその適用例に対して、当業者が適宜、構成要素の追加、削除、設計変更を行ったものや、各実施形態の特徴を適宜組み合わせたものも、本発明の要旨を備えている限り、本発明の範囲に含有される。 Although the present embodiment and its application examples have been described above, the present invention is not limited to these examples. For example, those in which the person skilled in the art appropriately added, deleted, or changed the design of the above-described embodiments or application examples thereof, or combinations of the features of the embodiments as appropriate are also included in the present invention. As long as the gist is provided, it is included in the scope of the present invention.
 例えば、上記の実施形態では、加飾層9は、パネル3の裏面3bにおける非検出領域25に位置する部分全体に設けられ、非検出領域25全体が遮光された状態となっているが、これに限定されない。パネル3の裏面3bの非検出領域25に位置する部分には、加飾層9が設けられていない部分があってもよい。また、加飾層9は、パネル3の裏面3bに設けられているが、これに限定されず、パネル3と基材2との間に位置していればよい。例えば、光学透明粘着層30内に埋設されていてもよい。この際、表示部41がパネル3の裏面3bと加飾層9との間に位置していれば、表示部41の意匠性が高まり、好ましい。シールド配線18および配線部6の少なくとも一部が基材2と加飾層9との間に位置していれば、静電容量式センサ1を操作面3a側からみたときに、その部分は加飾層9により隠蔽されて視認されないため、非検出領域25の意匠性が高まる場合がある。 For example, in the above-described embodiment, the decorative layer 9 is provided on the entire portion located in the non-detection region 25 on the back surface 3b of the panel 3, and the entire non-detection region 25 is shielded from light. It is not limited to. There may be a portion where the decorative layer 9 is not provided in the portion located in the non-detection region 25 of the back surface 3 b of the panel 3. Moreover, although the decoration layer 9 is provided in the back surface 3b of the panel 3, it is not limited to this, What is necessary is just to be located between the panel 3 and the base material 2. FIG. For example, it may be embedded in the optical transparent adhesive layer 30. At this time, if the display unit 41 is located between the back surface 3b of the panel 3 and the decorative layer 9, the design of the display unit 41 is enhanced, which is preferable. If at least a part of the shield wiring 18 and the wiring part 6 is located between the base material 2 and the decorative layer 9, when the capacitive sensor 1 is viewed from the operation surface 3a side, the part is added. Since it is concealed by the decoration layer 9 and is not visually recognized, the design of the non-detection region 25 may be increased.
 第2シールド配線18Dは加飾層9を介在部材としてパネル3の裏面3bに設けられているが、第2シールド配線18Dは、パネル3の裏面3bに直接的に設けられ、パネル3の裏面3bと加飾層9との間に位置してもよい。この場合には、第2シールド配線18Dは、透明導電材料から構成されていることが好ましい場合がある。 The second shield wiring 18D is provided on the back surface 3b of the panel 3 with the decorative layer 9 as an interposed member. However, the second shield wiring 18D is provided directly on the back surface 3b of the panel 3, and the back surface 3b of the panel 3 is provided. And the decorative layer 9. In this case, it may be preferable that the second shield wiring 18D is made of a transparent conductive material.
 1、1A、1B、1C、1D 静電容量式センサ
 2 基材
 2a おもて面
 2c 端面
 3 パネル
 3a 操作面
 3b 裏面
 3c 最近位端面
 4 第1の透明電極
 5 第2の透明電極
 6 配線部
 7 連結部
 8 第1の電極
 9 加飾層
 9a 加飾層9の基材2に近位な面
 10 ブリッジ配線
 11 検出領域
 12 第2の電極
 16 接続配線
 18、18A、18B シールド配線
 18C、18E 第1シールド配線
 18D、18F 第2シールド配線
 20 絶縁層
 20a 表面
 25 非検出領域
 27 外部接続部
 29 フレキシブルプリント基板
 30 光学透明粘着層
 41 表示部
 D1、D2、D3、D4、D5、D6、D7、D8、D9、D11、D12、D13、D14、D15 距離
 F 指
DESCRIPTION OF SYMBOLS 1, 1A, 1B, 1C, 1D Capacitance type sensor 2 Base material 2a Front surface 2c End surface 3 Panel 3a Operation surface 3b Back surface 3c Nearest end surface 4 1st transparent electrode 5 2nd transparent electrode 6 Wiring part 7 connecting portion 8 first electrode 9 decoration layer 9a surface of decoration layer 9 proximal to substrate 2 10 bridge wiring 11 detection region 12 second electrode 16 connection wiring 18, 18A, 18B shield wiring 18C, 18E First shield wiring 18D, 18F Second shield wiring 20 Insulating layer 20a Surface 25 Non-detection area 27 External connection part 29 Flexible printed circuit board 30 Optical transparent adhesive layer 41 Display part D1, D2, D3, D4, D5, D6, D7, D8, D9, D11, D12, D13, D14, D15 Distance F Finger

Claims (10)

  1.  透光性を有し一方の主面が操作面となるパネルと、少なくとも一方の主面に透明電極が設けられ透光性を有する基材とを備え、前記基材は前記パネルの前記操作面とは反対側の主面に対向配置される静電容量式センサであって、
     前記静電容量式センサは、前記パネルの操作面の法線に沿った方向からみて、前記操作面に対する操作を検出しうる検出領域と、前記検出領域の外周側に位置する非検出領域とからなり、
     前記非検出領域における前記パネルと前記基材との間の部分に、前記非検出領域の光透過率を低減させる加飾層、導電性材料を含む表示部、および導電性を有しグラウンド電位に設定された部分に電気的に接続可能なシールド配線を備え、
     前記表示部に最近位な前記パネルの端面である最近位端面と前記表示部における前記最近位端面に近位な端部との間の距離は、前記シールド配線における前記最近位端面に近位な端部と前記最近位端面との間の距離よりも長いことを特徴とする静電容量式センサ。
    A panel having translucency and one main surface serving as an operation surface; and a base material having translucency provided with a transparent electrode on at least one main surface, wherein the base material is the operation surface of the panel. A capacitive sensor disposed opposite to the main surface on the opposite side,
    The capacitive sensor includes a detection region that can detect an operation on the operation surface as viewed from a direction along a normal line of the operation surface of the panel, and a non-detection region that is located on the outer peripheral side of the detection region. Become
    In a portion between the panel and the base material in the non-detection region, a decoration layer that reduces the light transmittance of the non-detection region, a display unit including a conductive material, and a conductive and ground potential With shield wiring that can be electrically connected to the set part,
    The distance between the proximal end surface, which is the end surface of the panel closest to the display portion, and the end portion of the display portion proximal to the proximal end surface is proximal to the proximal end surface of the shield wiring. A capacitance type sensor characterized by being longer than a distance between an end portion and the nearest end face.
  2.  前記表示部は、前記パネルと前記加飾層との間に位置する、請求項1に記載の静電容量式センサ。 The capacitive sensor according to claim 1, wherein the display unit is located between the panel and the decorative layer.
  3.  前記シールド配線は、前記基材と前記加飾層との間に位置する、請求項1または2に記載の静電容量式センサ。 The electrostatic capacitance sensor according to claim 1 or 2, wherein the shield wiring is located between the base material and the decorative layer.
  4.  前記加飾層および前記表示部は、前記パネルにおける前記操作面とは反対側の主面に設けられている、請求項1から3のいずれか一項に記載の静電容量式センサ。 The capacitance type sensor according to any one of claims 1 to 3, wherein the decoration layer and the display unit are provided on a main surface of the panel opposite to the operation surface.
  5.  前記表示部における前記最近位端面に近位な端部と前記最近位端面との間の距離は、前記シールド配線における前記最近位端面から遠位な端部と前記最近位端面との間の距離よりも長い、請求項1から4のいずれか一項に記載の静電容量式センサ。 The distance between the proximal end surface of the display unit proximal to the proximal end surface and the proximal end surface is a distance between the distal end portion of the shield wiring and the proximal end surface that is distal from the proximal end surface. The capacitive sensor according to claim 1, which is longer than the capacitance sensor.
  6.  前記シールド配線は、前記基材における前記パネルに対向する面に設けられている第1シールド配線を含む、請求項1から5のいずれか一項に記載の静電容量式センサ。 The capacitance type sensor according to any one of claims 1 to 5, wherein the shield wiring includes a first shield wiring provided on a surface of the base material facing the panel.
  7.  前記シールド配線は、前記パネルにおける前記操作面とは反対側の主面に設けられている第2シールド配線を含む、請求項1から6のいずれか一項に記載の静電容量式センサ。 The capacitance type sensor according to any one of claims 1 to 6, wherein the shield wiring includes a second shield wiring provided on a main surface of the panel opposite to the operation surface.
  8.  前記加飾層と前記基材との間に位置し、前記透明電極と外部接続部とを電気的に接続する配線部をさらに有し、
     前記配線部における前記最近位端面に近位な端部と前記最近位端面との間の距離は、前記シールド配線における前記最近位端面に近位な端部と前記最近位端面との間の距離よりも長い、請求項1から7のいずれか一項に記載の静電容量式センサ。
    It is located between the decorative layer and the base material, and further has a wiring part that electrically connects the transparent electrode and the external connection part,
    The distance between the end closest to the nearest end face and the nearest end face in the wiring portion is the distance between the end proximal to the nearest end face and the nearest end face in the shield wiring. The capacitive sensor according to any one of claims 1 to 7, wherein the capacitive sensor is longer.
  9.  前記パネルの操作面の法線に沿った方向からみて、前記配線部は、前記表示部と重複する部分を有する、請求項8記載の静電容量式センサ。 The capacitance type sensor according to claim 8, wherein the wiring portion has a portion overlapping with the display portion when viewed from a direction along a normal line of the operation surface of the panel.
  10.  前記シールド配線は、前記基材の端面に設けられている部分および前記パネルの端面に設けられている部分の少なくとも一方を有する、請求項1から9のいずれか一項に記載の静電容量式センサ。 The capacitance type according to any one of claims 1 to 9, wherein the shield wiring has at least one of a portion provided on an end surface of the base material and a portion provided on an end surface of the panel. Sensor.
PCT/JP2017/007071 2016-03-11 2017-02-24 Electrostatic capacity sensor WO2017154617A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016048262A JP2019079081A (en) 2016-03-11 2016-03-11 Capacitive sensor
JP2016-048262 2016-03-11

Publications (1)

Publication Number Publication Date
WO2017154617A1 true WO2017154617A1 (en) 2017-09-14

Family

ID=59790455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007071 WO2017154617A1 (en) 2016-03-11 2017-02-24 Electrostatic capacity sensor

Country Status (2)

Country Link
JP (1) JP2019079081A (en)
WO (1) WO2017154617A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020119356A (en) * 2019-01-25 2020-08-06 株式会社ワコム Sensor panel for detecting pen signal transmitted by pen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123193A (en) * 2007-11-09 2009-06-04 Lg Electronics Inc Portable terminal
WO2011111748A1 (en) * 2010-03-11 2011-09-15 アルプス電気株式会社 Translucent inputting device
JP2012203565A (en) * 2011-03-24 2012-10-22 Dainippon Printing Co Ltd Touch panel sensor and manufacturing method of touch panel sensor
WO2013125519A1 (en) * 2012-02-23 2013-08-29 京セラ株式会社 Input device, display device, electronic device, and mobile terminal
JP2013232040A (en) * 2012-04-27 2013-11-14 Dainippon Printing Co Ltd Front protective plate for display device with notification window, and display device
JP2015503779A (en) * 2011-12-25 2015-02-02 宸鴻科技(廈門)有限公司TPK Touch Solutions(Xiamen)Inc. Touch panel and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123193A (en) * 2007-11-09 2009-06-04 Lg Electronics Inc Portable terminal
WO2011111748A1 (en) * 2010-03-11 2011-09-15 アルプス電気株式会社 Translucent inputting device
JP2012203565A (en) * 2011-03-24 2012-10-22 Dainippon Printing Co Ltd Touch panel sensor and manufacturing method of touch panel sensor
JP2015503779A (en) * 2011-12-25 2015-02-02 宸鴻科技(廈門)有限公司TPK Touch Solutions(Xiamen)Inc. Touch panel and manufacturing method thereof
WO2013125519A1 (en) * 2012-02-23 2013-08-29 京セラ株式会社 Input device, display device, electronic device, and mobile terminal
JP2013232040A (en) * 2012-04-27 2013-11-14 Dainippon Printing Co Ltd Front protective plate for display device with notification window, and display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020119356A (en) * 2019-01-25 2020-08-06 株式会社ワコム Sensor panel for detecting pen signal transmitted by pen
JP7202906B2 (en) 2019-01-25 2023-01-12 株式会社ワコム Sensor panel for detecting pen signals sent by the pen

Also Published As

Publication number Publication date
JP2019079081A (en) 2019-05-23

Similar Documents

Publication Publication Date Title
US10048821B2 (en) Touch window and touch device including the same
US9823792B2 (en) Touch panel
KR102187807B1 (en) Touch panel and touch device
US9772727B2 (en) Touch panel
US9483132B2 (en) Touch window and display including the same
CN104808879B (en) Touch window and touch device
US9857894B2 (en) Touch panel having a color film that includes a color part
US9772734B2 (en) Touch window
TWI663534B (en) Touch display
US9619092B2 (en) Touch panel
US9547397B2 (en) Touch window and touch device the same
CN110858107A (en) Touch control display device
JP6735850B2 (en) Capacitive sensor and equipment
US10055074B2 (en) Touch window
JP6636618B2 (en) Capacitive sensor
WO2017154617A1 (en) Electrostatic capacity sensor
KR102302818B1 (en) Touch window and display with the same
JP6529866B2 (en) Capacitive sensor, touch panel and electronic device
KR102212918B1 (en) Touch panel
KR20160050554A (en) Touch device
KR102131177B1 (en) Touch window and display with the same
KR102119608B1 (en) Touch window and display with the same
KR102237838B1 (en) Touch panel
KR102187650B1 (en) Touch window
WO2017175521A1 (en) Capacitive sensor

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762957

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17762957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP