WO2017154539A1 - Ship stern structure - Google Patents

Ship stern structure Download PDF

Info

Publication number
WO2017154539A1
WO2017154539A1 PCT/JP2017/006112 JP2017006112W WO2017154539A1 WO 2017154539 A1 WO2017154539 A1 WO 2017154539A1 JP 2017006112 W JP2017006112 W JP 2017006112W WO 2017154539 A1 WO2017154539 A1 WO 2017154539A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
propeller
stern
hull
ship
Prior art date
Application number
PCT/JP2017/006112
Other languages
French (fr)
Japanese (ja)
Inventor
建剛 施
憲一 柴田
貴偉 譚
将成 上原
Original Assignee
常石造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常石造船株式会社 filed Critical 常石造船株式会社
Priority to JP2018504336A priority Critical patent/JPWO2017154539A1/en
Publication of WO2017154539A1 publication Critical patent/WO2017154539A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/38Rudders

Definitions

  • the present invention relates to a stern structure of a ship.
  • Patent Document 2 discloses a spindle provided near the stern bottom at the stern end of the ship, a locking part for rotatably locking the front part of the spindle to the stern bottom, and the spindle in the stern.
  • a spindle-shaped wave suppression unit with a biasing unit that includes a spring that biases from the bottom of the ship, suppresses wave formation from the stern that occurs during medium-to-high speed navigation, and converts the wave energy at the time of wave generation suppression to thrust.
  • attitude control is also important for reducing drag during ship navigation.
  • the attitude of the ship at the time of navigation is changed in attitude (broken line) with respect to the optimum design (solid line) in still water, the bow side (F) sinks and the stern side (R) rises. It becomes a state. Therefore, the resistance on the bow side is increased and the fuel consumption is deteriorated. Therefore, it is preferable to control the posture to approach the optimum design in still water.
  • the wave resistance reducing means in the inventions described in Patent Document 1 and Patent Document 2 newly adds a complicated structure to the stern part, and has a problem of cost.
  • the present invention solves the above-mentioned conventional problems, and provides a stern structure of a ship that reduces wave resistance with a simple configuration and is effective in controlling the attitude during navigation.
  • a stern part structure of a ship includes a propeller disposed at a stern part of a ship, a rudder disposed behind the propeller, and a ladder horn for attaching the rudder to a hull. And a fin attached to the ladder horn and projecting in the width direction of the hull.
  • the vertical distance from the rotation axis of the propeller to the attachment position of the fin is 0.75R or more.
  • the length of the fin in the hull width direction is less than 1.0R.
  • the length of the fin in the width direction of the hull refers to the distance from the center in the width direction of the hull to the tip of the fin.
  • a propeller disposed at the stern of the ship, a rudder disposed behind the propeller, a ladder horn for attaching the rudder to the hull, and a hull width direction attached to the ladder horn project It has a fin, and the wave-making resistance by the stern wave generated in the vicinity of the stern can be reduced by the fin having a simple configuration.
  • the fin can generate a downward force on the stern side so that the attitude during navigation approaches the optimum design in still water.
  • the propeller turning radius is R and the fin width direction length is less than 1.0 R, the appropriate length for reducing wave resistance and controlling the attitude during navigation. Fins can be configured.
  • FIG. 2 is an AA arrow view of FIG. 1.
  • FIG. 3 is a sectional view taken along line BB in FIG. It is explanatory drawing of the attachment range of a fin. It is explanatory drawing of the length of the hull width direction of a fin. It is explanatory drawing of the length of the hull width direction of a fin. It is explanatory drawing of the length of the hull width direction of a fin. It is explanatory drawing of the angle of the hull front-back direction of a fin. It is explanatory drawing of the angle of the hull front-back direction of a fin. It is explanatory drawing of the attitude
  • FIG. 1 is a side view showing a stern structure of a ship according to this embodiment.
  • FIG. 2 is an AA arrow view of FIG. 3 is a cross-sectional view taken along the line BB of FIG.
  • a propeller 1 is arranged at the stern part of the ship.
  • the propeller 1 is rotatably attached to the hull 3 via a propeller shaft 2 and is rotated by the power of a main engine disposed in the ship.
  • a rudder 5 is arranged behind the propeller 1.
  • the rudder 5 is rotatably attached to a ladder horn 4 suspended from the bottom of the hull 3.
  • a valve 6 is provided at a position facing the propeller shaft 2 of the rudder 5.
  • the ladder horn 4 is provided with fins 10 (10a, 10b) protruding in the hull width direction.
  • the fins 10 (10 a, 10 b) are a pair of left and right symmetrical wing-like members, and protrude toward the left and right sides of the ladder horn 4.
  • symbol 7 in FIG. 2 has shown the propeller surface of the propeller 1.
  • FIG. 4 is an explanatory diagram of the fin mounting range.
  • the attachment position of the fin 10 in the ladder horn 4 is preferably in the attachment range 8 (shaded portion) shown in FIG.
  • the attachment range 8 is a portion in which the vertical distance from the rotation axis C1 of the propeller 1 to the attachment position of the fin 10 is 0.75R or more when the rotation radius of the propeller 1 is R.
  • the effect of reducing wave resistance and posture control is reduced.
  • it is more effective to attach the propeller 1 to a position (1.0 R or more) above the propeller surface 7 because it is less affected by the wake of the propeller.
  • the attachment position of the fin 10 in the ladder horn 4 can be determined as appropriate in accordance with the effects of reduction of wave resistance and posture control.
  • the length of the fin in the hull width direction means the distance from the center C 2 of the hull width direction to the tip of the fin.
  • the length of the fin in the hull width direction is preferably less than 1.0 R, where R is the rotation radius of the propeller 1. If it is longer than 1.0 R, the resistance of the fin itself is increased, which is difficult in terms of strength. Further, it is preferably 0.5R to 1.0R. This is because if the length is shorter than 0.5R, the effect of reducing wave resistance and posture control is small. However, the length of the fins in the width direction of the hull can be determined as appropriate in accordance with the effects of reduction of wave resistance and attitude control.
  • FIG. 8 and 9 are explanatory diagrams of angles of the fins in the longitudinal direction of the hull.
  • the aforementioned fin 10 shown in FIG. 1 is attached so as to be horizontal from the front to the rear of the hull.
  • the fin 14 shown in FIG. 8 it is attached so as to descend from the front to the rear of the hull, and forms an angle ⁇ 14 (for example, 5 ° to 10 °) with respect to the horizontal.
  • the fins 15 shown in FIG. 9 the fins 15 are attached so as to rise from the front to the rear of the hull, and form an angle ⁇ 15 (for example, 5 ° to 10 °) with respect to the horizontal.
  • the angle of the fins in the longitudinal direction of the hull can be determined as appropriate in accordance with the effects of reducing wave resistance and attitude control.
  • the stern part structure of a ship according to this embodiment is such that fins are provided on the ladder horn 4 and the fins have the following effects.
  • FIG. 11 is an explanatory diagram of generation of downward lift.
  • FIG. 11 demonstrates taking the case of the fin (fin 15 shown in FIG. 9) attached so that it might raise toward the back from the hull front.
  • the flow V from the stern toward the fin 15 hits the fin 15 slightly from above.
  • the cross-sectional shape of the fin 15 is line-symmetric with respect to the center line X in the hull longitudinal direction.
  • a lift dL is generated in the fin 15 and is decomposed into a forward component and a downward component. Therefore, a downward force is generated on the stern side by the downward lift component with respect to the fin 15, and the attitude during navigation can be controlled so as to approach the optimum design in still water.
  • lift occurs in a direction perpendicular to the flow, and the direction of lift is the blade suction surface.
  • the magnitude of the lift varies with the pressure difference between the front surface (upper surface) and the back surface (lower surface), and when the pressure difference is zero, the lift is also zero.
  • the approach direction of the flow from the stern to the fin differs depending on the stern shape. Accordingly, a fin (fin 10 shown in FIG. 1) attached so as to be horizontal from the front to the rear of the hull, or a fin (shown in FIG. 8) attached so that the fin descends from the front of the hull to the rear. Even with the fins 14), a downward lift force can be generated depending on the direction of the flow from the stern to the fins. Moreover, downward lift can also be generated by making the cross-sectional shape of the fins asymmetric.
  • the propeller 1 disposed at the stern part of the ship, the rudder 5 disposed behind the propeller 1, and the ladder horn 4 for attaching the rudder 5 to the hull 3.
  • the fin 10 which protrudes in the hull width direction attached to the ladder horn 4, and can reduce the wave-making resistance by the stern wave which generate
  • the radius of rotation of the propeller 1 is taken as R, in the case where the vertical distance from the axis of rotation C 1 of the propeller 1 to the attachment position of the fin 10 and the above 0.75R includes a reduction of the wave resistance
  • the fin 10 can be provided at an appropriate position for posture control during navigation.
  • the propeller turning radius is R and the fin width direction length is less than 1.0 R, the appropriate length for reducing wave resistance and controlling the attitude during navigation.
  • the fins 10 can be configured.
  • wingspan L is the length of the hull center C 2.
  • the propeller rotation radius R 2700 mm, and the length of the fin in the hull width direction (wing width L) is 2000 / 2700 ⁇ 0.74R.
  • the vertical distance from the axis of rotation C 1 of the propeller to the mounting position of the fin is 3050 mm, which is 3050/2700 ⁇ 1.13R.
  • the fin 10 is a pair of left and right symmetrical fins 10a and 10b.
  • the mounting positions, lengths, and angles of the left and right fins may be asymmetrical.

Abstract

Provided is a ship stern structure having a simple configuration which reduces wave-making resistance, the ship stern structure being effective in controlling the orientation of a traveling ship. This ship stern structure comprises: a propeller 1 which is disposed at the stern of a ship; a rudder 5 which is disposed at the rear of the propeller 1; a rudder horn 4 for mounting the rudder 5 to a hull 3; and fins 10 which are mounted on the rudder horn 4 in a manner protruding in the hull width direction. The vertical distance between the rotary shaft of the propeller 1 and the mounting position of the fins 10 is preferably 0.75 R or more, and the length of the fins 10 in the hull width direction is preferably less than 1.0 R, where R is the radius of rotation of the propeller 1.

Description

船舶の船尾部構造Ship stern structure
 本発明は、船舶の船尾部構造に関するものである。 The present invention relates to a stern structure of a ship.
 従来、船舶航行時に船尾付近に発生する船尾波による造波抵抗を低減して、燃費を改善するようにした船尾部構造が提案されている。例えば、特許文献1には、船体の船尾に移動可能に設けられたウェッジの下面の角度を、船体の航走条件に基づいて駆動装置で調整してウェッジにより造波抵抗を低減するようにした船舶に関する発明が記載されている。 Conventionally, a stern structure has been proposed in which the wave resistance due to stern waves generated near the stern during ship navigation is reduced to improve fuel efficiency. For example, in Patent Document 1, the angle of the lower surface of the wedge provided movably on the stern of the hull is adjusted by a driving device based on the sailing conditions of the hull to reduce the wave-making resistance by the wedge. Inventions relating to ships are described.
 また、特許文献2には、船舶の船尾端部における船尾船底近傍に設けた紡錘体と、この紡錘体の前部を船尾船底に回動可能に係止する係止部と、紡錘体を船尾船底から付勢するばねを含む付勢部とを有した紡錘状造波抑制部により、中高速航行時に生じる船尾からの造波を抑制するとともに造波抑制時の波エネルギーを推力に変換するようにした船舶の船尾部構造に関する発明が記載されている。 Further, Patent Document 2 discloses a spindle provided near the stern bottom at the stern end of the ship, a locking part for rotatably locking the front part of the spindle to the stern bottom, and the spindle in the stern. A spindle-shaped wave suppression unit with a biasing unit that includes a spring that biases from the bottom of the ship, suppresses wave formation from the stern that occurs during medium-to-high speed navigation, and converts the wave energy at the time of wave generation suppression to thrust The invention relating to the structure of the stern portion of the ship is described.
 一方、船舶の航行時の抵抗低減のためには、姿勢のコントロールという点も重要である。図10に示すように、船舶の航行時の姿勢は、静水中の最適設計(実線)に対して姿勢変化(破線)が生じ、船首側(F)が沈み込み船尾側(R)が浮き上がった状態になる。そのため船首側の抵抗が増加して燃費が悪化してしまう。従って、姿勢をコントロールして静水中の最適設計に近づけることが好ましい。 On the other hand, attitude control is also important for reducing drag during ship navigation. As shown in FIG. 10, the attitude of the ship at the time of navigation is changed in attitude (broken line) with respect to the optimum design (solid line) in still water, the bow side (F) sinks and the stern side (R) rises. It becomes a state. Therefore, the resistance on the bow side is increased and the fuel consumption is deteriorated. Therefore, it is preferable to control the posture to approach the optimum design in still water.
特開2015-123904号公報JP2015-123904A 特開2011-016471号公報JP2011-016471A
 しかしながら、特許文献1及び特許文献2に記載された発明における造波抵抗低減手段は、船尾部に複雑な構造物を新たに追加するものでありコスト面の問題がある。また、造波抵抗低減のためには、構造物の制御の最適化、構造物の形状や角度の最適化が必要である。また、特許文献1及び特許文献2に記載された発明によれば、航行時の姿勢コントロールに対する効果はない。 However, the wave resistance reducing means in the inventions described in Patent Document 1 and Patent Document 2 newly adds a complicated structure to the stern part, and has a problem of cost. In order to reduce the wave resistance, it is necessary to optimize the control of the structure and the shape and angle of the structure. Moreover, according to the invention described in Patent Document 1 and Patent Document 2, there is no effect on attitude control during navigation.
 本発明は、上記従来の課題を解決するものであり、簡単な構成で造波抵抗を低減するとともに、航行時の姿勢のコントロールに効果的な船舶の船尾部構造を提供するものである。 The present invention solves the above-mentioned conventional problems, and provides a stern structure of a ship that reduces wave resistance with a simple configuration and is effective in controlling the attitude during navigation.
 上記課題を解決するため、本発明の船舶の船尾部構造は、船舶の船尾部に配置されたプロペラと、前記プロペラの後方に配置された舵と、前記舵を船体に取り付けるためのラダーホーンと、前記ラダーホーンに取り付けられた船体幅方向に突出するフィンとを有することを特徴とする。 In order to solve the above problems, a stern part structure of a ship according to the present invention includes a propeller disposed at a stern part of a ship, a rudder disposed behind the propeller, and a ladder horn for attaching the rudder to a hull. And a fin attached to the ladder horn and projecting in the width direction of the hull.
 また好ましくは、前記プロペラの回転半径をRとしたときに、前記プロペラの回転軸から前記フィンの取り付け位置までの垂直方向の距離が0.75R以上であることを特徴とする。 More preferably, when the rotation radius of the propeller is R, the vertical distance from the rotation axis of the propeller to the attachment position of the fin is 0.75R or more.
 また好ましくは、前記プロペラの回転半径をRとしたときに、前記フィンの船体幅方向の長さが1.0R未満であることを特徴とする。なお、「フィンの船体幅方向の長さ」とは、船体幅方向の中心からフィンの先端までの距離をいう。 Further preferably, when the rotation radius of the propeller is R, the length of the fin in the hull width direction is less than 1.0R. Note that “the length of the fin in the width direction of the hull” refers to the distance from the center in the width direction of the hull to the tip of the fin.
 本発明によれば、船舶の船尾部に配置されたプロペラと、プロペラの後方に配置された舵と、舵を船体に取り付けるためのラダーホーンと、ラダーホーンに取り付けられた船体幅方向に突出するフィンとを有しており、簡単な構成のフィンにより船尾付近に発生する船尾波による造波抵抗を低減することができる。また、フィンにより船尾側に下向きの力を発生させて、航行中の姿勢が静水中の最適設計に近づくようにコントロールすることができる。 According to the present invention, a propeller disposed at the stern of the ship, a rudder disposed behind the propeller, a ladder horn for attaching the rudder to the hull, and a hull width direction attached to the ladder horn project It has a fin, and the wave-making resistance by the stern wave generated in the vicinity of the stern can be reduced by the fin having a simple configuration. In addition, the fin can generate a downward force on the stern side so that the attitude during navigation approaches the optimum design in still water.
 また、プロペラの回転半径をRとしたときに、プロペラの回転軸からフィンの取り付け位置までの垂直方向の距離を0.75R以上とした場合には、造波抵抗の低減と航行時の姿勢コントロールのために適切な位置にフィンを設けることができる。 Also, when the propeller turning radius is R and the vertical distance from the propeller rotating shaft to the fin mounting position is 0.75 R or more, wave resistance is reduced and attitude control during navigation For this reason, fins can be provided at appropriate positions.
 また、プロペラの回転半径をRとしたときに、フィンの船体幅方向の長さを1.0R未満とした場合には、造波抵抗の低減と航行時の姿勢コントロールのために適切な長さにフィンを構成することができる。 Also, when the propeller turning radius is R and the fin width direction length is less than 1.0 R, the appropriate length for reducing wave resistance and controlling the attitude during navigation. Fins can be configured.
 以上、本発明によれば、簡単な構成で造波抵抗を低減するとともに、航行時の姿勢のコントロールに効果的な船舶の船尾部構造を提供することができる。 As described above, according to the present invention, it is possible to provide a stern structure of a ship that can reduce wave resistance with a simple configuration and is effective in controlling the attitude during navigation.
本発明の実施形態に係る船舶の船尾部構造を示す側面図である。It is a side view which shows the stern part structure of the ship which concerns on embodiment of this invention. 図1のA-A矢視図である。FIG. 2 is an AA arrow view of FIG. 1. 図2のB-B断面図である。FIG. 3 is a sectional view taken along line BB in FIG. フィンの取付範囲の説明図である。It is explanatory drawing of the attachment range of a fin. フィンの船体幅方向の長さの説明図である。It is explanatory drawing of the length of the hull width direction of a fin. フィンの船体幅方向の長さの説明図である。It is explanatory drawing of the length of the hull width direction of a fin. フィンの船体幅方向の長さの説明図である。It is explanatory drawing of the length of the hull width direction of a fin. フィンの船体前後方向の角度の説明図である。It is explanatory drawing of the angle of the hull front-back direction of a fin. フィンの船体前後方向の角度の説明図である。It is explanatory drawing of the angle of the hull front-back direction of a fin. 航行時の姿勢変化の説明図である。It is explanatory drawing of the attitude | position change at the time of navigation. 下向き揚力発生の説明図である。It is explanatory drawing of downward lift generation | occurrence | production. 実施例におけるフィンサイズの説明図である。It is explanatory drawing of the fin size in an Example.
 次に、図1乃至図12を参照して、本発明の実施形態に係る船舶の船尾部構造について説明する。まず、図1乃至図3を参照して、本実施形態に係る船舶の船尾構造の基本構成について説明する。図1は、本実施形態に係る船舶の船尾部構造を示す側面図である。図2は、図1のA-A矢視図である。図3は、図2のB-B断面図である。 Next, a stern part structure of a ship according to an embodiment of the present invention will be described with reference to FIGS. First, with reference to FIG. 1 thru | or FIG. 3, the basic composition of the stern structure of the ship which concerns on this embodiment is demonstrated. FIG. 1 is a side view showing a stern structure of a ship according to this embodiment. FIG. 2 is an AA arrow view of FIG. 3 is a cross-sectional view taken along the line BB of FIG.
 図1に示すように、船舶の船尾部にはプロペラ1が配置されている。プロペラ1は、プロペラ軸2を介して船体3に回動可能に取り付けられており、船内に配置された主機関の動力により回転するようになっている。 As shown in FIG. 1, a propeller 1 is arranged at the stern part of the ship. The propeller 1 is rotatably attached to the hull 3 via a propeller shaft 2 and is rotated by the power of a main engine disposed in the ship.
 プロペラ1の後方には、舵5が配置されている。舵5は、船体3の船底から垂下したラダーホーン4に回動可能に取り付けられている。また、舵5のプロペラ軸2に対向する位置には、バルブ6が設けられている。 A rudder 5 is arranged behind the propeller 1. The rudder 5 is rotatably attached to a ladder horn 4 suspended from the bottom of the hull 3. A valve 6 is provided at a position facing the propeller shaft 2 of the rudder 5.
 図2及び図3に示すように、ラダーホーン4には、船体幅方向に突出するフィン10(10a,10b)が設けられている。フィン10(10a,10b)は一対の左右対称の翼状部材であり、ラダーホーン4の左右両舷方向に向けて突出している。なお、図2中の符号7は、プロペラ1のプロペラ面を示している。 2 and 3, the ladder horn 4 is provided with fins 10 (10a, 10b) protruding in the hull width direction. The fins 10 (10 a, 10 b) are a pair of left and right symmetrical wing-like members, and protrude toward the left and right sides of the ladder horn 4. In addition, the code | symbol 7 in FIG. 2 has shown the propeller surface of the propeller 1. FIG.
 次に、図4乃至図9を参照して、本実施形態に係る船舶の船尾部構造における、フィンの取付位置、長さ、角度について説明する。 Next, with reference to FIGS. 4 to 9, the fin mounting position, length, and angle in the stern structure of the ship according to this embodiment will be described.
 図4は、フィンの取付範囲の説明図である。ラダーホーン4におけるフィン10の取付位置は、図4に示す取付範囲8(斜線部分)であることが好ましい。取付範囲8は、プロペラ1の回転半径をRとしたときに、プロペラ1の回転軸Cからフィン10の取付位置までの垂直方向の距離が0.75R以上となる部分である。取付範囲8よりも下の位置では、造波抵抗の低減と姿勢コントロールの効果が小さくなる。さらに、図1に示すように、プロペラ1のプロペラ面7よりも上の位置(1.0R以上)に取り付けると、プロペラ後流の影響を受けにくいため、より効果的である。ラダーホーン4におけるフィン10の取付位置は、造波抵抗の低減と姿勢コントロールの効果に合わせて適宜決定することができる。 FIG. 4 is an explanatory diagram of the fin mounting range. The attachment position of the fin 10 in the ladder horn 4 is preferably in the attachment range 8 (shaded portion) shown in FIG. The attachment range 8 is a portion in which the vertical distance from the rotation axis C1 of the propeller 1 to the attachment position of the fin 10 is 0.75R or more when the rotation radius of the propeller 1 is R. At a position below the attachment range 8, the effect of reducing wave resistance and posture control is reduced. Further, as shown in FIG. 1, it is more effective to attach the propeller 1 to a position (1.0 R or more) above the propeller surface 7 because it is less affected by the wake of the propeller. The attachment position of the fin 10 in the ladder horn 4 can be determined as appropriate in accordance with the effects of reduction of wave resistance and posture control.
 図5乃至図7は、フィンの船体幅方向の長さの説明図である。ここで「フィンの船体幅方向の長さ」とは、船体幅方向の中心Cからフィンの先端までの距離をいう。フィンの船体幅方向の長さは、プロペラ1の回転半径をRとしたときに、1.0R未満であることが好ましい。1.0Rよりも長いとフィン自体の抵抗が大きくなり、強度上も困難である。さらに、0.5R~1.0Rであることが好ましい。0.5Rよりも短いと造波抵抗の低減と姿勢コントロールの効果が小さいためである。ただし、フィンの船体幅方向の長さは、造波抵抗の低減と姿勢コントロールの効果に合わせて適宜決定することができる。 5 to 7 are explanatory views of the length of the fin in the hull width direction. Here, the "length of the hull width direction of the fins" means the distance from the center C 2 of the hull width direction to the tip of the fin. The length of the fin in the hull width direction is preferably less than 1.0 R, where R is the rotation radius of the propeller 1. If it is longer than 1.0 R, the resistance of the fin itself is increased, which is difficult in terms of strength. Further, it is preferably 0.5R to 1.0R. This is because if the length is shorter than 0.5R, the effect of reducing wave resistance and posture control is small. However, the length of the fins in the width direction of the hull can be determined as appropriate in accordance with the effects of reduction of wave resistance and attitude control.
 図5に示すフィン11a,11bの船体幅方向の長さ(船体中心Cからの長さ)は、L11であり、L11=0.55Rとなっている。図6に示すフィン12a,12bの船体幅方向の長さ(船体中心Cからの長さ)は、L12であり、L12=0.74Rとなっている。図7に示すフィン13a,13bの船体幅方向の長さ(船体中心Cからの長さ)は、L13であり、L13=0.93Rとなっている。 Fins 11a, of the hull width direction 11b length shown in FIG. 5 (length from the hull center C 2) is L 11, and has a L 11 = 0.55R. Fins 12a, of the hull width direction 12b length shown in FIG. 6 (the length from the hull center C 2) is L 12, and has a L 12 = 0.74R. Fins 13a, of the hull width direction 13b length shown in FIG. 7 (the length from the hull center C 2) is L 13, and has a L 13 = 0.93R.
 図8及び図9は、フィンの船体前後方向の角度の説明図である。前述した図1に示すフィン10は、船体前方から後方に向けて水平となるように取り付けられている。これに対して、図8に示すフィン14の場合、船体前方から後方に向けて下降するように取り付けられており、水平に対して角度θ14(例えば、5°~10°)をなしている。また、図9に示すフィン15の場合、船体前方から後方に向けて上昇するように取り付けられており、水平に対して角度θ15(例えば、5°~10°)をなしている。フィンの船体前後方向の角度は、造波抵抗の低減と姿勢コントロールの効果に合わせて適宜決定することができる。 8 and 9 are explanatory diagrams of angles of the fins in the longitudinal direction of the hull. The aforementioned fin 10 shown in FIG. 1 is attached so as to be horizontal from the front to the rear of the hull. On the other hand, in the case of the fin 14 shown in FIG. 8, it is attached so as to descend from the front to the rear of the hull, and forms an angle θ 14 (for example, 5 ° to 10 °) with respect to the horizontal. . Further, in the case of the fins 15 shown in FIG. 9, the fins 15 are attached so as to rise from the front to the rear of the hull, and form an angle θ 15 (for example, 5 ° to 10 °) with respect to the horizontal. The angle of the fins in the longitudinal direction of the hull can be determined as appropriate in accordance with the effects of reducing wave resistance and attitude control.
 ここで、本実施形態に係る船舶の船尾部構造の作用効果について説明する。本実施形態に係る船舶の船尾部構造は、ラダーホーン4にフィンを設けたものであり、フィンが以下のような作用効果を奏するものである。 Here, the operational effects of the stern structure of the ship according to the present embodiment will be described. The stern part structure of a ship according to this embodiment is such that fins are provided on the ladder horn 4 and the fins have the following effects.
(造波抵抗の低減)
 通常、船尾端を離れた流れが水面で崩れることは抵抗増加に繋がる。そこで、ラダーホーン4にフィンを設けることで、フィン前後方の流場を変化させて船尾波の勢いを弱め、船尾端を離れた流れが崩れることを抑えることにより、船尾波による造波抵抗を低減することができる。
(Reduction of wave resistance)
Usually, the flow away from the stern end collapses on the surface of the water, leading to an increase in resistance. Therefore, by providing fins in the ladder horn 4, the flow field behind the fins is changed to weaken the momentum of the stern waves, and the flow away from the stern ends is prevented from collapsing. Can be reduced.
(姿勢のコントロール)
 ラダーホーン4にフィンを設けることで、船尾からの流れの中で下向きの揚力成分を得ることができ、姿勢コントロールが可能になる。この点について、図11を参照して説明する。図11は、下向き揚力発生の説明図である。なお、図11では、船体前方から後方に向けて上昇するように取り付けられたフィン(図9に示すフィン15)を例にとって説明する。
(Attitude control)
By providing the fin on the ladder horn 4, a downward lift component can be obtained in the flow from the stern, and the attitude can be controlled. This point will be described with reference to FIG. FIG. 11 is an explanatory diagram of generation of downward lift. In addition, in FIG. 11, it demonstrates taking the case of the fin (fin 15 shown in FIG. 9) attached so that it might raise toward the back from the hull front.
 図11において、船尾からフィン15に向かう流れVは、フィン15に対して若干上方から当たるようになっている。また、フィン15の横断面形状は、船体前後方向の中心線Xを軸として線対称となっている。このとき、フィン15には揚力dLが発生し、前向き成分と下向き成分とに分解される。従って、フィン15に対する下向きの揚力成分により船尾側に下向きの力を発生させて、航行中の姿勢が静水中の最適設計に近づくようにコントロールできるのである。 In FIG. 11, the flow V from the stern toward the fin 15 hits the fin 15 slightly from above. Moreover, the cross-sectional shape of the fin 15 is line-symmetric with respect to the center line X in the hull longitudinal direction. At this time, a lift dL is generated in the fin 15 and is decomposed into a forward component and a downward component. Therefore, a downward force is generated on the stern side by the downward lift component with respect to the fin 15, and the attitude during navigation can be controlled so as to approach the optimum design in still water.
 一般的に、揚力は流れに対して垂直方向に発生し、揚力の向きは翼負圧面になる。そして、揚力の大きさは、表面(上面)と裏面(下面)との圧力差で変化し、圧力差がゼロの場合は揚力もゼロになる。ここで、フィンに対する船尾からの流れの進入方向は、船尾形状によって異なる。従って、船体前方から後方に向けて水平となるように取り付けられたフィン(図1に示すフィン10)や、フィンが船体前方から後方に向けて下降するように取り付けられたフィン(図8に示すフィン14)であっても、フィンに対する船尾からの流れの進入方向によっては、下向き揚力が発生し得る。また、フィンの横断面形状を非対称とすることによっても、下向き揚力を発生させることができる。 Generally, lift occurs in a direction perpendicular to the flow, and the direction of lift is the blade suction surface. The magnitude of the lift varies with the pressure difference between the front surface (upper surface) and the back surface (lower surface), and when the pressure difference is zero, the lift is also zero. Here, the approach direction of the flow from the stern to the fin differs depending on the stern shape. Accordingly, a fin (fin 10 shown in FIG. 1) attached so as to be horizontal from the front to the rear of the hull, or a fin (shown in FIG. 8) attached so that the fin descends from the front of the hull to the rear. Even with the fins 14), a downward lift force can be generated depending on the direction of the flow from the stern to the fins. Moreover, downward lift can also be generated by making the cross-sectional shape of the fins asymmetric.
 本実施形態に係る船舶の船尾部構造によれば、船舶の船尾部に配置されたプロペラ1と、プロペラ1の後方に配置された舵5と、舵5を船体3に取り付けるためのラダーホーン4と、ラダーホーン4に取り付けられた船体幅方向に突出するフィン10とを有しており、簡単な構成のフィン10により船尾付近に発生する船尾波による造波抵抗を低減することができる。また、フィン10により船尾側に下向きの力を発生させて、航行中の姿勢が静水中の最適設計に近づくようにコントロールすることができる。 According to the stern part structure of the ship according to the present embodiment, the propeller 1 disposed at the stern part of the ship, the rudder 5 disposed behind the propeller 1, and the ladder horn 4 for attaching the rudder 5 to the hull 3. And the fin 10 which protrudes in the hull width direction attached to the ladder horn 4, and can reduce the wave-making resistance by the stern wave which generate | occur | produces in the stern vicinity with the fin 10 of a simple structure. Further, a downward force can be generated on the stern side by the fin 10 so that the attitude during navigation can be controlled so as to approach the optimum design in still water.
 また、プロペラ1の回転半径をRとしたときに、プロペラ1の回転軸Cからフィン10の取り付け位置までの垂直方向の距離を0.75R以上とした場合には、造波抵抗の低減と航行時の姿勢コントロールのために適切な位置にフィン10を設けることができる。 Moreover, the radius of rotation of the propeller 1 is taken as R, in the case where the vertical distance from the axis of rotation C 1 of the propeller 1 to the attachment position of the fin 10 and the above 0.75R includes a reduction of the wave resistance The fin 10 can be provided at an appropriate position for posture control during navigation.
 また、プロペラの回転半径をRとしたときに、フィンの船体幅方向の長さを1.0R未満とした場合には、造波抵抗の低減と航行時の姿勢コントロールのために適切な長さにフィン10を構成することができる。 Also, when the propeller turning radius is R and the fin width direction length is less than 1.0 R, the appropriate length for reducing wave resistance and controlling the attitude during navigation. The fins 10 can be configured.
 以上、本実施形態に係る船舶の船尾部構造によれば、簡単な構成で造波抵抗を低減するとともに、航行時の姿勢を効果的にコントロールすることができる。 As mentioned above, according to the stern part structure of the ship which concerns on this embodiment, while reducing wave-making resistance with a simple structure, the attitude | position at the time of navigation can be controlled effectively.
 次に、本実施形態に係る船舶の船尾部構造による抵抗低減効果に関するCFDシミュレーション結果について説明する。CFDシミュレーションの条件は、以下の通りである。 Next, the CFD simulation result regarding the resistance reduction effect by the stern part structure of the ship according to the present embodiment will be described. The conditions for the CFD simulation are as follows.
(フィンサイズ)
 図12は、実施例におけるフィンサイズの説明図であり、翼幅L=2000mm、根元コード長Cr=1070mm、先端コード長500mmである。なお、翼幅Lは船体中心Cからの長さである。プロペラ回転半径R=2700mmであり、フィンの船体幅方向の長さ(翼幅L)は、2000/2700≒0.74Rである。また、プロペラの回転軸Cからフィンの取付位置までの垂直方向の距離は、3050mmであり、3050/2700≒1.13Rである。
(Fin size)
FIG. 12 is an explanatory diagram of the fin size in the embodiment, where the blade width L = 2000 mm, the root cord length Cr = 1070 mm, and the tip cord length 500 mm. Incidentally, wingspan L is the length of the hull center C 2. The propeller rotation radius R = 2700 mm, and the length of the fin in the hull width direction (wing width L) is 2000 / 2700≈0.74R. Further, the vertical distance from the axis of rotation C 1 of the propeller to the mounting position of the fin is 3050 mm, which is 3050/2700 ≒ 1.13R.
(計算モデル及び計算条件)
 自由表面モデルによる抵抗計算及びダブルモデルによる自航計算を行った。計算条件として、フルード数Fn=0.25とした。表1に、CFDシミュレーションの結果を、比較例(フィンなし)を基準とした主機馬力BHPの削減率により示す。
(Calculation model and calculation conditions)
Resistance calculation by free surface model and self-propulsion calculation by double model were performed. As calculation conditions, the Froude number Fn = 0.25. Table 1 shows the results of the CFD simulation by the reduction rate of the main machine horsepower BHP based on the comparative example (without fins).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、フィンによる抵抗低減効果が確認された。なお、この抵抗低減効果は、造波抵抗の低減及び航行時の姿勢のコントロールの両者による効果であると考えられる。 As shown in Table 1, the resistance reduction effect by the fins was confirmed. This resistance reduction effect is considered to be an effect of both the reduction of wave resistance and the control of the attitude during navigation.
 以上、本発明の実施形態に係る船舶の船尾部構造について説明したが、本発明は上述した実施の形態に限定されるわけではなく、その他種々の変更が可能である。例えば、上記実施形態では、フィン10を一対の左右対称のフィン10a,10bとしたが、左右のフィンの取付位置、長さ、角度が非対称となるように構成することもできる。 As mentioned above, although the stern part structure of the ship which concerns on embodiment of this invention was demonstrated, this invention is not necessarily limited to embodiment mentioned above, Other various changes are possible. For example, in the above-described embodiment, the fin 10 is a pair of left and right symmetrical fins 10a and 10b. However, the mounting positions, lengths, and angles of the left and right fins may be asymmetrical.
  1 プロペラ
  2 プロペラ軸
  3 船体
  4 ラダーホーン
  5 舵
  6 バルブ
  7 プロペラ面
  8 取付範囲
 10 フィン
 11 フィン
 12 フィン
 13 フィン
 14 フィン
 15 フィン
DESCRIPTION OF SYMBOLS 1 Propeller 2 Propeller shaft 3 Hull 4 Ladder horn 5 Rudder 6 Valve 7 Propeller surface 8 Mounting range 10 Fin 11 Fin 12 Fin 13 Fin 14 Fin 15 Fin

Claims (3)

  1.  船舶の船尾部に配置されたプロペラと、前記プロペラの後方に配置された舵と、前記舵を船体に取り付けるためのラダーホーンと、前記ラダーホーンに取り付けられた船体幅方向に突出するフィンとを有することを特徴とする船舶の船尾部構造。 A propeller disposed at the stern portion of the ship; a rudder disposed behind the propeller; a ladder horn for attaching the rudder to a hull; and a fin projecting in a width direction of the hull attached to the ladder horn. A stern structure of a ship, characterized by comprising:
  2.  前記プロペラの回転半径をRとしたときに、前記プロペラの回転軸から前記フィンの取り付け位置までの垂直方向の距離が0.75R以上であることを特徴とする請求項1に記載の船舶の船尾部構造。 2. The stern of a ship according to claim 1, wherein when the rotation radius of the propeller is R, a vertical distance from a rotation axis of the propeller to a mounting position of the fin is 0.75 R or more. Part structure.
  3.  前記プロペラの回転半径をRとしたときに、前記フィンの船体幅方向の長さが1.0R未満であることを特徴とする請求項1に記載の船舶の船尾部構造。 The ship stern structure according to claim 1, wherein the length of the fin in the hull width direction is less than 1.0R, where R is the rotation radius of the propeller.
PCT/JP2017/006112 2016-03-09 2017-02-20 Ship stern structure WO2017154539A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018504336A JPWO2017154539A1 (en) 2016-03-09 2017-02-20 Ship stern structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016045886 2016-03-09
JP2016-045886 2016-03-09

Publications (1)

Publication Number Publication Date
WO2017154539A1 true WO2017154539A1 (en) 2017-09-14

Family

ID=59790445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006112 WO2017154539A1 (en) 2016-03-09 2017-02-20 Ship stern structure

Country Status (2)

Country Link
JP (1) JPWO2017154539A1 (en)
WO (1) WO2017154539A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595500U (en) * 1982-07-05 1984-01-13 石川島播磨重工業株式会社 Rudder structure with wing body
JPH0526797U (en) * 1991-03-11 1993-04-06 川崎重工業株式会社 Rudder for ships
JP2002178992A (en) * 2000-12-11 2002-06-26 Nkk Corp Rudder for ship
KR20110064830A (en) * 2009-12-09 2011-06-15 삼성중공업 주식회사 Thrust fin apparatus rotatable based on thrust mesurement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595500U (en) * 1982-07-05 1984-01-13 石川島播磨重工業株式会社 Rudder structure with wing body
JPH0526797U (en) * 1991-03-11 1993-04-06 川崎重工業株式会社 Rudder for ships
JP2002178992A (en) * 2000-12-11 2002-06-26 Nkk Corp Rudder for ship
KR20110064830A (en) * 2009-12-09 2011-06-15 삼성중공업 주식회사 Thrust fin apparatus rotatable based on thrust mesurement

Also Published As

Publication number Publication date
JPWO2017154539A1 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
JP4931879B2 (en) A device that reduces ship drive output requirements
KR20180026363A (en) Vessel
EP3507189B1 (en) Stabilizer fin for a watercraft
KR101205355B1 (en) Rudder for vessel
JP6046652B2 (en) Ship
JP6638941B2 (en) Ship rudder with stern fins
KR20160031790A (en) Propelling and steering system of vessel, and full spade rudder with twisted leading edge
WO2017154539A1 (en) Ship stern structure
CN102501957A (en) Tuck plate structure of ship
JP2014028551A (en) Enlarged ship
JP2002178993A (en) Rudder for ship
KR200480863Y1 (en) Propeller for Ship
TWI596042B (en) Hydrofoil
JP4363795B2 (en) High lift twin rudder system for ships
KR102331923B1 (en) Ship Keys and Vessels
KR20210137337A (en) Full spade rudder having diverge type bulb
JP2017165376A (en) Rudder structure and manufacturing method of ship
JP6493691B2 (en) Ship
KR102117384B1 (en) Supporting structure of duct for ship
JP4116009B2 (en) Split stern fin structure
KR102117385B1 (en) Supporting structure of duct for ship
JP2005145397A (en) Fin device
KR101185519B1 (en) Rudder for ship
JP4703244B2 (en) Marine 1-axis 2-rudder system and 1-axis 2-rudder ship
JP6380848B2 (en) Ship

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018504336

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762882

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17762882

Country of ref document: EP

Kind code of ref document: A1