WO2017154536A1 - Electrically driven pump - Google Patents

Electrically driven pump Download PDF

Info

Publication number
WO2017154536A1
WO2017154536A1 PCT/JP2017/006100 JP2017006100W WO2017154536A1 WO 2017154536 A1 WO2017154536 A1 WO 2017154536A1 JP 2017006100 W JP2017006100 W JP 2017006100W WO 2017154536 A1 WO2017154536 A1 WO 2017154536A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
region
pump
disposed
circuit
Prior art date
Application number
PCT/JP2017/006100
Other languages
French (fr)
Japanese (ja)
Inventor
康司 鎌田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017154536A1 publication Critical patent/WO2017154536A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Definitions

  • the present invention relates to an electric pump, and more particularly to an electric pump used in a cooling system for a vehicle.
  • a cooling system that cools heat-generating equipment in the vehicle with cooling water (refrigerant) cooled by a radiator.
  • a cooling system is used that cools a power unit including an inverter and a converter by sending cooling water cooled by a radiator through a pipe.
  • an electric pump is used to circulate the cooling water in the pipe.
  • a pump chamber provided with a suction port for sucking cooling water and a discharge port for discharging the sucked cooling water, a motor for rotating an impeller in the pump chamber, and a motor are driven.
  • an electric water pump including a motor chamber that houses a drive circuit unit for the purpose (see, for example, Patent Document 1).
  • the drive circuit unit includes a plurality of circuit components constituting a drive circuit for driving the motor, and a circuit board on which the plurality of circuit components are mounted.
  • the present invention has been made to solve the conventional problems, and the circuit components for driving the motor are subjected to a high temperature load without increasing the number of man-hours at the time of manufacture or increasing the size of the entire pump. It aims at providing the electric pump which can suppress this.
  • an electric pump that sucks and discharges a refrigerant, and includes a suction port for sucking the refrigerant and a discharge for discharging the sucked refrigerant.
  • a pump region in which a pump chamber having an outlet is disposed, a motor region in which a motor for rotating an impeller disposed in the pump chamber is disposed, and a plurality of circuit components for driving the motor are mounted.
  • a motor drive circuit region that is a region where a circuit board is disposed. The motor drive circuit region is disposed adjacent to the pump chamber through which the refrigerant sucked from the suction port flows.
  • the present invention it is possible to suppress the circuit components for driving the motor from being subjected to a high temperature load without increasing the number of man-hours at the time of manufacture or increasing the size of the entire pump.
  • FIG. 1 is an external perspective view of an electric pump according to an embodiment.
  • FIG. 2 is a front view of the electric pump according to the embodiment.
  • FIG. 3 is a side view of the electric pump according to the embodiment.
  • FIG. 4 is a top view of the electric pump according to the embodiment.
  • FIG. 5 is an exploded view of the electric pump according to the embodiment.
  • FIG. 6 is a cross-sectional view of the electric pump according to the embodiment.
  • FIG. 7 is a conceptual diagram showing an outline of the electric pump according to the embodiment.
  • FIG. 8 is a conceptual diagram showing an outline of the electric pump of the comparative example.
  • FIG. 9 is a cross-sectional view of another electric pump according to the embodiment.
  • FIG. 10 is a conceptual diagram showing an outline of an electric pump according to a modification.
  • the plurality of circuit components there are heat generating components that generate heat, such as coils or semiconductor components.
  • the motor generates heat by driving the motor.
  • the ambient temperature of the electric water pump may be high. For this reason, low heat-resistant parts such as electrolytic capacitors may be deteriorated by receiving a high temperature load.
  • FIGS. 1 to 6 are diagrams showing the configuration of the electric pump 1 according to the embodiment.
  • FIG. 1 is an external perspective view of an electric pump according to an embodiment.
  • FIG. 2 is a front view of the electric pump.
  • FIG. 3 is a side view of the electric pump.
  • FIG. 4 is a top view of the electric pump.
  • FIG. 5 is an exploded view of the electric pump.
  • FIG. 6 is a sectional view of the electric pump. In FIG. 6, thick arrows indicate the flow of the refrigerant.
  • the electric pump 1 is an electric pump that uses a refrigerant as a working fluid and sucks and discharges the refrigerant by power of a motor.
  • the electric pump 1 in the present embodiment is an electric water pump that uses water (cooling water) as a refrigerant.
  • the electric pump 1 is a cooling pump incorporated in a circulation path connected to a heat exchanger such as a radiator.
  • a heat exchanger such as a radiator.
  • the electric pump 1 circulates cooling water cooled by a radiator, thereby supplying cooling water to a power unit, an engine (internal combustion engine), or the like including an inverter or a converter.
  • the electric pump 1 includes a casing 100 having a pump chamber 100a (pump casing) and a motor chamber 100b (motor casing), an impeller 200 disposed in the pump chamber 100a, a motor
  • the motor 300 and the drive circuit unit 400 are provided in the chamber 100b.
  • the drive circuit unit 400 includes a plurality of circuit components 410 and a circuit board 420 on which the plurality of circuit components 410 are mounted.
  • the housing 100 is an outer member that forms an outer shell of the electric pump 1. As shown in FIGS. 5 and 6, the housing 100 includes a first housing portion 110, a second housing portion 120, and a third housing portion 130. The first housing unit 110, the second housing unit 120, and the third housing unit 130 are connected and fixed to each other by, for example, three screws.
  • the first housing unit 110, the second housing unit 120, and the third housing unit 130 are made of a resin material, a metal material, or the like.
  • the first housing unit 110, the second housing unit 120, and the third housing unit 130 are made of PPS (Polyphenylene sulfide) resin, which is relatively light and has high thermal conductivity among resin materials. Composed.
  • the pump chamber 100 a is a region through which the refrigerant passes, and is configured by the first housing unit 110 and the second housing unit 120. That is, the pump chamber 100a is a space region surrounded by the first housing part 110 and the second housing part 120, and the flow path is formed using the first housing part 110 and the second housing part 120 as a partition wall. Constitute.
  • the pump chamber 100a has a suction port 101 for sucking the refrigerant and a discharge port 102 for discharging the sucked refrigerant.
  • the suction port 101 and the discharge port 102 are provided in the first housing part 110.
  • the suction port 101 and the discharge port 102 have a long cylindrical shape, and are provided in the first housing unit 110 so as to cross each other.
  • the suction port 101 is provided such that the direction in which the refrigerant flows through the suction port 101 and the rotation axis of the impeller 200 are substantially parallel.
  • the discharge port 102 is provided such that the direction in which the refrigerant flows in the discharge port 102 and the tangential direction of the rotation circle of the impeller 200 are substantially parallel.
  • the motor chamber 100b includes a second casing 120 and a third casing 130.
  • the motor chamber 100b is a space area surrounded by the second housing part 120 and the third housing part 130, and the second housing part 120 and the third housing part 130 form a closed space as a partition wall.
  • casing part 120 serves as the partition of the pump chamber 100a and the motor chamber 100b.
  • the motor 300 and the drive circuit unit 400 are accommodated in the motor chamber 100b. That is, the motor 300 and the drive circuit unit 400 are disposed in the same internal space (the motor chamber 100b). Specifically, the motor chamber 100b accommodates the motor 300 and a plurality of circuit components 410 and a circuit board 420.
  • the electric pump 1 in the present embodiment has a structure that is separated into a pump chamber 100a that is a liquid layer and a motor chamber 100b that is an air layer, with the second housing portion 120 as a boundary. That is, the electric pump 1 is different from the canned type in which the motor is immersed in the refrigerant, and the motor 300 in the motor chamber 100b is not immersed in the refrigerant. That is, the electric pump 1 has a structure in which the refrigerant does not flow into the motor chamber 100b.
  • the electric pump 1 includes a pump region (pump unit) P that is a region where the pump chamber 100a is disposed, a motor region (motor unit) M that is a region where the motor 300 is disposed, And a motor drive circuit region (motor drive circuit portion) D, which is a region where the circuit board 420 on which the circuit component 410 is mounted is disposed.
  • a motor drive circuit region D a plurality of circuit components 410 are also disposed along with the circuit board 420. That is, the drive circuit unit 400 is disposed in the motor drive circuit region D.
  • the pump region P, the motor region M, and the motor drive circuit region D are regions where the electric pump 1 is assigned along the axial direction of the impeller 200. Specifically, the motor region M, the motor drive circuit region D, and the pump region P are assigned in this order from the bottom.
  • the motor drive circuit area D is located between the pump area P and the motor area M.
  • the first casing unit 110 is mainly disposed in the pump region P.
  • the second housing part 120 is mainly disposed in the motor drive circuit region D.
  • the third housing part 130 is mainly disposed in the motor region M.
  • the pump chamber 100a corresponds only to the pump region P.
  • the motor chamber 100 b corresponds to the motor drive circuit area D and the motor area M.
  • the motor drive circuit region D is a region on the pump chamber 100a side in a region between the second housing portion 120 and the third housing portion 130 that constitute the motor chamber 100b.
  • the motor region M is a region on the opposite side to the pump chamber 100a side in the region between the second housing part 120 and the third housing part 130 constituting the motor chamber 100b.
  • the impeller 200 (impeller) has a disk-shaped bottom (base) 210 and a plurality of blades 220 (blades).
  • the impeller 200 is installed at a position facing the suction port 101.
  • the plurality of blades 220 are fixed to the bottom portion 210.
  • the plurality of blades 220 are open blades.
  • the plurality of blades 220 are arranged substantially radially about the central axis of the motor 300 (rotor 320).
  • the central axis (rotary axis) of the impeller 200 is coaxial with the rotational axis of the rotor 320 of the motor 300.
  • impeller 200 and motor 300 are connected by shaft 500. By rotating the shaft 500 by the motor 300, the impeller 200 rotates.
  • the shaft 500 is disposed so as to protrude from the motor chamber 100b to the pump chamber 100a through a through hole 121 provided in the second casing 120.
  • the shaft 500 connects the motor 300 and the impeller 200 via a through hole 121 provided in a partition wall (second housing part 120) that partitions the pump chamber 100a and the motor chamber 100b.
  • the shaft 500 since the motor drive circuit region D is located between the pump region P and the motor region M, the shaft 500 is configured to pass through the motor drive circuit region D. In the motor drive circuit region D, the shaft 500 penetrates the circuit board 420.
  • the shaft 500 is made of a metal material such as iron.
  • the through hole 121 is provided with a resin seal member 700 for sealing between the shaft 500 and the through hole 121.
  • the seal member 700 has an insertion hole through which the shaft 500 is inserted, and a lip portion standing from the insertion hole.
  • the seal member 700 seals between the shaft 500 and the through-hole 121 by generating a surface pressure on the sliding surface with the shaft 500 due to the elastic deformation of the lip portion.
  • the shaft 500 includes a first shaft portion 510 existing in the pump region P (pump chamber 100a), a second shaft portion 520 existing in the motor region M, and a third shaft portion 530 existing in the motor drive circuit region D.
  • the third shaft portion 530 is a portion between the first shaft portion 510 and the second shaft portion 520.
  • the first shaft portion 510 is connected to the bottom portion 210 of the impeller 200 in the pump chamber 100a.
  • the impeller 200 is fixed to the tip of the first shaft portion 510 with a push nut 600.
  • the second shaft portion 520 is connected to the rotor 320 of the motor 300 in the motor chamber 100b.
  • the distal end portion of the second shaft portion 520 is supported by a bearing provided in the motor region M.
  • the third shaft portion 530 is supported by a bearing provided in the motor drive circuit region D.
  • the motor 300 operates the refrigerant in the pump chamber 100a.
  • the motor 300 rotates the impeller 200 disposed in the pump chamber 100 a through the shaft 500, thereby drawing the refrigerant from the suction port 101 into the pump chamber 100 a and discharging it from the discharge port 102.
  • the motor 300 is, for example, an inner rotor type DC brushless motor, and includes a stator 310 (stator) and a rotor 320 disposed on the inner peripheral side of the stator 310.
  • the stator 310 has a plurality of coils 311 (windings), and generates a magnetic flux on the inner peripheral side when the coil 311 is energized.
  • the shaft 500 is connected to the magnetic pole part 321.
  • the magnetic pole portion 321 is a columnar member installed so as to face the stator 310 with a slight gap (air gap) from the inner peripheral surface of the stator 310.
  • the magnetic pole portion 321 is provided with a plurality of magnetic poles (for example, permanent magnets in which N poles and S poles are alternately arranged in the circumferential direction) corresponding to the plurality of coils 311 of the stator 310.
  • the shaft 500 is a shaft member that transmits power for rotating the impeller 200, and is provided coaxially with the magnetic pole portion 321.
  • the motor 300 is covered with a cup-shaped cover 330.
  • the cover 330 is made of a metal made of a metal material such as iron, but is not limited to this and may be made of a resin.
  • the drive circuit unit 400 includes a plurality of circuit components 410 for driving the motor 300 and a circuit board 420 on which the plurality of circuit components 410 are mounted.
  • the plurality of circuit components 410 include a drive circuit for driving the motor 300 and the like.
  • the circuit component 410 (circuit element) is, for example, a capacitance element such as an electrolytic capacitor or a ceramic capacitor, a resistance element such as a resistor, a coil element, or a semiconductor element such as a microcontroller (integrated circuit element).
  • the circuit component 410 may include a rotational position detection element (Hall IC (Integrated Circuit)) for detecting the rotational position of the rotor 320.
  • many of the plurality of circuit components 410 are mounted on the surface of the circuit board 420 on the impeller 200 side.
  • circuit components 410 there are low heat resistant components (lifetime components) whose heat resistant temperature is relatively lower than other circuit components and whose product life is affected by the temperature.
  • Examples of the circuit component 410 that is a low heat resistant component having a low heat resistant temperature include an electrolytic capacitor 411.
  • circuit component 410 there are heat generating components in which coils or semiconductor components generate heat themselves.
  • the circuit component 410 that is a heat-generating component include a microcontroller (hereinafter abbreviated as “microcomputer”) 412 configured by an analog circuit including a SIP (Single Inline Package) switch and the like.
  • the circuit board 420 is, for example, a printed wiring board in which metal wiring is patterned on the surface of a resin board.
  • the plurality of circuit components 410 mounted on the circuit board 420 are electrically connected to each other by metal wiring.
  • a through hole 421 through which the shaft 500 passes is formed in the circuit board 420.
  • the through hole 421 is circular, for example, but is not limited thereto.
  • the motor drive circuit region D which is a region where the circuit board 420 is disposed, is adjacent to the pump chamber 100 a through which the refrigerant sucked from the suction port 101 flows. Arranged.
  • the circuit component 410 is arranged at a position close to the pump chamber 100a. Therefore, the circuit component 410 can be cooled by the refrigerant flowing into the pump chamber 100a. That is, the circuit component 410 and the heat around the circuit component 410 can be conducted to the refrigerant in the pump chamber 100a to dissipate heat.
  • the electric pump 1 cools the circuit components 410 of the electric pump 1 using the refrigerant that is circulated by itself. Thereby, it is not necessary to enclose the refrigerant in the motor chamber 100b or separately provide a cooling channel. Therefore, it is possible to prevent the circuit component 410 for driving the motor 300 from receiving a high-temperature load while avoiding an increase in the number of man-hours during manufacturing and an increase in the size of the entire pump. By cooling the circuit component 410 in this way, the pump output can be improved, the cost of the circuit component 410 can be reduced, and the electric pump 1 can be downsized.
  • the motor drive circuit region D is disposed at a position closer to the pump chamber 100a than the motor region M.
  • the circuit component 410 arranged in the motor drive circuit area D can be brought closer to the refrigerant in the pump chamber 100a than the motor 300 arranged in the motor area M. Therefore, the circuit component 410 can be effectively cooled. Therefore, it is possible to further suppress the circuit component 410 from receiving a high temperature load.
  • FIG. 7 is a conceptual diagram showing an outline of the electric pump according to the embodiment.
  • motor drive circuit region D is arranged between pump region P and motor region M. That is, the pump region P, the motor drive circuit region D, and the motor region M have a three-layer structure (three-storey structure) stacked in the axial direction of the shaft 500 and the impeller 200.
  • the motor drive circuit region D located on the second layer (second floor) is sandwiched between the motor region M located on the first layer (first floor) and the pump region P located on the third layer (third floor). It is a configuration.
  • FIG. 8 is a conceptual diagram showing an outline of the electric pump of the comparative example. Accordingly, as compared with the electric pump 1X having a structure in which the motor region M is disposed between the pump region P and the motor drive circuit region D as shown in FIG.
  • the circuit component 410 can be effectively cooled by the refrigerant in the pump chamber 100a in the region P. Therefore, it is possible to more effectively suppress the circuit component 410 from receiving a high temperature load.
  • the electric pump 1 is mainly arranged in the first housing part 110 arranged mainly in the pump region P, the second housing part 120 arranged mainly in the motor drive circuit region D, and mainly in the motor region M.
  • the pump chamber 100a includes a first housing part 110 and a second housing part 120.
  • the motor 300 and the circuit board 420 are housed in a motor chamber 100b configured by the second housing part 120 and the third housing part 130.
  • the electric pump 1 having a structure in which the pump chamber 100a and the motor chamber 100b are separated can be realized.
  • an electric water pump a canned type in which a pump chamber and a motor chamber are integrated is also known.
  • the cand type electric water pump needs to have a sealed space in which the cooling water does not leak as a whole. Therefore, the man-hour at the time of manufacture becomes large, or the whole pump becomes large.
  • the electric pump 1 in the present embodiment employs a structure in which the pump chamber 100a and the motor chamber 100b are separated, and the motor drive circuit region D is disposed adjacent to the pump chamber 100a. Therefore, the electric pump 1 in the present embodiment can be reduced in size and can improve the overall pump efficiency as compared with the canned electric pump.
  • a part of the second housing part 120 may be close to at least one of the circuit components 410.
  • a part of the second housing 120 is brought close to the electrolytic capacitor 411 that is a low heat-resistant component. More specifically, the recess 122 is provided in the second casing 120, and the electrolytic capacitor 411 is disposed so as to be accommodated in the recess 122. That is, the upper part and the side periphery of the electrolytic capacitor 411 are covered with the recess 122.
  • the low heat resistant parts such as the electrolytic capacitor 411 close to the second casing 120, it is possible to further suppress the low heat resistant parts from being subjected to a high temperature load.
  • a part of the second housing part 120 to be brought close to the circuit component 410 is made of a material having excellent thermal conductivity.
  • heat conduction such as heat radiation resin is provided in the gap between the recess 122 of the second casing 120 and the circuit component 410 (electrolytic capacitor 411 in this embodiment) covered with the recess 122.
  • a member may be interposed.
  • paste-like or high-viscosity liquid silicone RTV (Room Temperature Vulcanizing) rubber or the like is applied onto the circuit component 410 and the electric pump 1 is assembled, whereby the recess 122 and the circuit component 410 of the second housing unit 120 are assembled.
  • Silicone RTV rubber may be filled in the gap between the two. The silicone RTV rubber cures by reacting with moisture to become a rubber elastic body, and adheres to the second casing 120 and the circuit component 410. Or you may fill the clearance gap between the recessed part 122 of the 2nd housing
  • a part of the second housing part 120 is brought closer to the low heat resistant part such as the electrolytic capacitor 411, A part of the second casing 120 may be brought into contact with a low heat resistant component such as the electrolytic capacitor 411.
  • the heat conducted to the low heat-resistant components such as the electrolytic capacitor 411 can be conducted to the refrigerant in the pump chamber 100a via the second casing portion 120 to be dissipated.
  • FIG. 9 is a cross-sectional view of another electric pump according to the embodiment.
  • a part of the second casing 120 may be brought close to or in contact with the microcomputer 412 configured by an analog circuit.
  • the microcomputer 412 configured by an analog circuit.
  • an extension part 123 that extends a part of the second casing part 120 is formed in the second casing part 120, and the extension part 123 is brought close to the microcomputer 412. Also good.
  • a paste-like or high-viscosity liquid silicone RTV rubber or the like is applied on the microcomputer 412 or a heat dissipation sheet is interposed between the extending portion 123 and the microcomputer 412 as shown in FIG.
  • the gap between the extending portion 123 and the microcomputer 412 may be filled with a heat radiation resin. Note that the distal end portion of the extending portion 123 may be brought into direct contact with the microcomputer 412 without using a heat radiating resin.
  • the heat generated by the microcomputer 412 that is a heat generating component can be conducted to the refrigerant in the pump chamber 100a through the second casing 120 to be dissipated. Therefore, it is possible to reduce the influence of heat from the heat-generating parts such as the microcomputer 412 on the low heat-resistant parts such as the electrolytic capacitor 411. Therefore, it is possible to further reduce the influence of heat applied to the low heat resistant component.
  • the circuit component 410 such as the electrolytic capacitor 411 having a low heat-resistant temperature may be disposed away from the circuit component 410 such as the microcomputer 412 that is a heat generating component.
  • the electric pump 1 of the present embodiment is an electric pump that sucks and discharges the refrigerant, and includes the suction port 101 for sucking the refrigerant and the discharge port 102 for discharging the sucked refrigerant.
  • a motor drive circuit region in which the circuit board 420 to be mounted is disposed.
  • the motor drive circuit region is disposed adjacent to the pump chamber 100a through which the refrigerant sucked from the suction port 101 flows.
  • the motor drive circuit area is disposed closer to the pump chamber 100a than the motor area.
  • the motor drive circuit area is arranged between the pump area and the motor area.
  • the electric pump 1 includes a first housing part 110 disposed in the pump area, a second housing part 120 disposed in the motor drive circuit area, and a third housing part 130 disposed in the motor area.
  • the pump chamber 100a includes a first housing part 110 and a second housing part 120.
  • the motor 300 and the circuit board 420 are housed in a motor chamber configured by the second housing part 120 and the third housing part 130.
  • a part of the second casing 120 is close to or in contact with at least one of the plurality of circuit components 410.
  • the at least one circuit component 410 that is close to or in contact with a part of the second casing 120 is preferably a low heat resistant component having a heat resistant temperature lower than that of other circuit components.
  • an electrolytic capacitor is used as a representative example of the low heat resistance component.
  • the at least one circuit component that is in proximity to or in contact with a part of the second casing may be a microcomputer configured by an analog circuit.
  • FIG. 10 is a conceptual diagram showing an outline of an electric pump according to a modification.
  • the motor drive circuit region D is arranged adjacent to the pump chamber 100a, as shown in FIG. 10, not only the motor drive circuit region D but also the motor region M is adjacent to the pump chamber 100a. You may arrange.
  • the circuit component 410 since the circuit component 410 is disposed adjacent to the pump chamber 100a, the circuit component 410 can be cooled by the refrigerant flowing in the pump chamber 100a.
  • the circuit board 420 in the motor drive circuit region D has, for example, a donut shape.
  • the motor 300 is an inner rotor type DC brushless motor, but is not limited thereto.
  • the electric pump according to the present invention is a pump for circulating a refrigerant such as water, and can be used as an electric water pump used in, for example, a cooling system for a vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Provided is an electrically driven pump (1) for sucking in a refrigerant and discharging the refrigerant. The electrically driven pump (1) is provided with: a pump region (P) in which a pump chamber (100a) is disposed, the pump chamber (100a) having a suction opening (101) which sucks in the refrigerant and a discharge opening which discharges the sucked-in refrigerant; a motor region (M) in which a motor (300) is disposed, the motor (300) rotating an impeller (200) disposed within the pump chamber (100a); and a motor drive circuit region (D) in which a circuit board (420) is disposed, the circuit board (420) having mounted thereon a plurality of circuit components (410) for driving the motor (300). The motor drive circuit region (D) is disposed adjacent to the pump chamber (100a) through which the refrigerant sucked in from the suction opening (101) flows.

Description

電動ポンプElectric pump
 本発明は、電動ポンプに関し、特に車両用の冷却システムに用いられる電動ポンプに関する。 The present invention relates to an electric pump, and more particularly to an electric pump used in a cooling system for a vehicle.
 自動車等の車両においては、ラジエータで冷却された冷却水(冷媒)によって、車両内の発熱機器を冷却する、冷却システムが用いられている。例えば、ハイブリッド自動車では、ラジエータで冷却された冷却水を、配管によって送液することで、インバータ及びコンバータ等からなるパワーユニットを冷却する、冷却システムが用いられている。このような冷却システムにおいては、配管内の冷却水を循環させるために、電動ポンプが用いられている。 In vehicles such as automobiles, a cooling system is used that cools heat-generating equipment in the vehicle with cooling water (refrigerant) cooled by a radiator. For example, in a hybrid vehicle, a cooling system is used that cools a power unit including an inverter and a converter by sending cooling water cooled by a radiator through a pipe. In such a cooling system, an electric pump is used to circulate the cooling water in the pipe.
 従来、この種の電動ポンプとして、冷却水を吸い込む吸込口、及び吸い込んだ冷却水を吐出する吐出口が設けられたポンプ室と、ポンプ室内のインペラを回転させるためのモータ、及びモータを駆動するための駆動回路ユニットを収納するモータ室とを備える、電動ウォーターポンプが知られている(例えば特許文献1を参照)。駆動回路ユニットは、モータを駆動するための駆動回路を構成する複数の回路部品と、複数の回路部品が実装された回路基板とを有する。 Conventionally, as this type of electric pump, a pump chamber provided with a suction port for sucking cooling water and a discharge port for discharging the sucked cooling water, a motor for rotating an impeller in the pump chamber, and a motor are driven. There is known an electric water pump including a motor chamber that houses a drive circuit unit for the purpose (see, for example, Patent Document 1). The drive circuit unit includes a plurality of circuit components constituting a drive circuit for driving the motor, and a circuit board on which the plurality of circuit components are mounted.
特開2012-207592号公報JP 2012-207592 A
 本発明は、従来の問題を解決するためになされたものであり、製造時の工数が増加したり、ポンプ全体が大型化することなく、モータを駆動するための回路部品が高温負荷を受けることを抑制できる、電動ポンプを提供することを目的とする。 The present invention has been made to solve the conventional problems, and the circuit components for driving the motor are subjected to a high temperature load without increasing the number of man-hours at the time of manufacture or increasing the size of the entire pump. It aims at providing the electric pump which can suppress this.
 上記目的を達成するために、本発明に係る電動ポンプの一態様は、冷媒を吸い込んで吐出する電動ポンプであって、冷媒を吸い込むための吸込口、及び、吸い込んだ冷媒を吐出するための吐出口を有するポンプ室が配置されるポンプ領域と、ポンプ室内に配置されたインペラを回転させるためのモータが配置される領域であるモータ領域と、モータを駆動するための複数の回路部品が実装される回路基板が配置された領域であるモータ駆動回路領域とを備える。モータ駆動回路領域は、吸込口から吸い込んだ冷媒が流れるポンプ室に隣接して配置される。 In order to achieve the above object, one aspect of an electric pump according to the present invention is an electric pump that sucks and discharges a refrigerant, and includes a suction port for sucking the refrigerant and a discharge for discharging the sucked refrigerant. A pump region in which a pump chamber having an outlet is disposed, a motor region in which a motor for rotating an impeller disposed in the pump chamber is disposed, and a plurality of circuit components for driving the motor are mounted. And a motor drive circuit region that is a region where a circuit board is disposed. The motor drive circuit region is disposed adjacent to the pump chamber through which the refrigerant sucked from the suction port flows.
 本発明によれば、製造時の工数が増加したり、ポンプ全体が大型化することなく、モータを駆動するための回路部品が高温負荷を受けることを抑制できる。 According to the present invention, it is possible to suppress the circuit components for driving the motor from being subjected to a high temperature load without increasing the number of man-hours at the time of manufacture or increasing the size of the entire pump.
図1は、実施の形態に係る電動ポンプの外観斜視図である。FIG. 1 is an external perspective view of an electric pump according to an embodiment. 図2は、実施の形態に係る電動ポンプの正面図である。FIG. 2 is a front view of the electric pump according to the embodiment. 図3は、実施の形態に係る電動ポンプの側面図である。FIG. 3 is a side view of the electric pump according to the embodiment. 図4は、実施の形態に係る電動ポンプの上面図である。FIG. 4 is a top view of the electric pump according to the embodiment. 図5は、実施の形態に係る電動ポンプの分解図である。FIG. 5 is an exploded view of the electric pump according to the embodiment. 図6は、実施の形態に係る電動ポンプの断面図である。FIG. 6 is a cross-sectional view of the electric pump according to the embodiment. 図7は、実施の形態に係る電動ポンプの概略を示す概念図である。FIG. 7 is a conceptual diagram showing an outline of the electric pump according to the embodiment. 図8は、比較例の電動ポンプの概略を示す概念図である。FIG. 8 is a conceptual diagram showing an outline of the electric pump of the comparative example. 図9は、実施の形態に係る別の電動ポンプの断面図である。FIG. 9 is a cross-sectional view of another electric pump according to the embodiment. 図10は、変形例に係る電動ポンプの概略を示す概念図である。FIG. 10 is a conceptual diagram showing an outline of an electric pump according to a modification.
 本発明の実施の形態の説明に先立ち、従来の電動ポンプにおける問題点を簡単に説明する。 Prior to the description of the embodiment of the present invention, problems in the conventional electric pump will be briefly described.
 特許文献1の電動ウォーターポンプでは、複数の回路部品の中に、耐熱温度が相対的に低く、製品寿命が温度の影響を受ける低耐熱部品(有寿命部品)が存在する。このような低耐熱部品として、例えば、電解コンデンサ等が用いられる。 In the electric water pump of Patent Document 1, among a plurality of circuit parts, there are low heat resistant parts (lifetime parts) whose heat resistant temperature is relatively low and whose product life is affected by temperature. As such a low heat-resistant component, for example, an electrolytic capacitor or the like is used.
 一方、複数の回路部品の中には、コイル又は半導体部品等の、自ら発熱する発熱部品が存在する。電動ウォーターポンプの動作時には、モータの駆動によってモータが発熱する。さらに、特に車両においては、電動ウォーターポンプの周囲温度が高温になる場合もある。このため、電解コンデンサ等の低耐熱部品は、高温負荷を受けて劣化することがある。 On the other hand, among the plurality of circuit components, there are heat generating components that generate heat, such as coils or semiconductor components. During the operation of the electric water pump, the motor generates heat by driving the motor. Further, particularly in a vehicle, the ambient temperature of the electric water pump may be high. For this reason, low heat-resistant parts such as electrolytic capacitors may be deteriorated by receiving a high temperature load.
 そこで、低耐熱部品が高温の負荷を受けないように、モータ等の発熱を抑えることも考えられる。しかし、発熱を抑えるようにモータ等を駆動させると、電動ウォーターポンプの出力が低下してしまう。 Therefore, it is conceivable to suppress the heat generation of the motor or the like so that the low heat resistant parts are not subjected to a high temperature load. However, when a motor or the like is driven so as to suppress heat generation, the output of the electric water pump decreases.
 モータ室内に冷媒を封入して、回路部品を冷却することも考えられる。しかし、モータ室に冷媒を封入すると、駆動回路ユニットの絶縁性を確保したり、冷媒を封入するための製造時の工数が増加したりして、新たな問題が発生する。 It is also conceivable to cool the circuit components by filling the motor chamber with a refrigerant. However, when the refrigerant is sealed in the motor chamber, new problems arise due to securing the insulation of the drive circuit unit and increasing the number of manufacturing steps for sealing the refrigerant.
 モータ室内に冷却用の流路を別途設けて、回路部品を冷却することも考えられる。しかし、この方法では、内部構造が複雑になるばかりか、ポンプ全体が大型化するという問題が発生する。 It is also conceivable to provide a separate cooling channel in the motor chamber to cool the circuit components. However, this method has a problem that not only the internal structure becomes complicated, but also the entire pump becomes large.
 以下、本発明の実施の形態について説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは、一例であって、本発明を限定するものではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素は、任意の構成要素として説明される。 Hereinafter, embodiments of the present invention will be described. Note that each of the embodiments described below shows a preferred specific example of the present invention. Therefore, the numerical values, shapes, materials, components, component arrangement positions, connection forms, and the like shown in the following embodiments are merely examples, and do not limit the present invention. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept of the present invention are described as arbitrary constituent elements.
 各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、各図において縮尺等は必ずしも一致していない。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。 Each figure is a schematic diagram and is not necessarily shown strictly. Accordingly, the scales and the like do not necessarily match in each drawing. In each figure, substantially the same components are denoted by the same reference numerals, and redundant descriptions are omitted or simplified.
 (実施の形態)
 以下、本発明の実施の形態に係る電動ポンプ1について、図1~図6を用いて説明する。図1~図6は、実施の形態に係る電動ポンプ1の構成を示す図である。図1は、実施の形態に係る電動ポンプの外観斜視図である。図2は、同電動ポンプの正面図である。図3は、同電動ポンプの側面図である。図4は、同電動ポンプの上面図である。図5は、同電動ポンプの分解図である。図6は、同電動ポンプの断面図である。なお、図6において、太い矢印は、冷媒の流れを示す。
(Embodiment)
Hereinafter, an electric pump 1 according to an embodiment of the present invention will be described with reference to FIGS. 1 to 6 are diagrams showing the configuration of the electric pump 1 according to the embodiment. FIG. 1 is an external perspective view of an electric pump according to an embodiment. FIG. 2 is a front view of the electric pump. FIG. 3 is a side view of the electric pump. FIG. 4 is a top view of the electric pump. FIG. 5 is an exploded view of the electric pump. FIG. 6 is a sectional view of the electric pump. In FIG. 6, thick arrows indicate the flow of the refrigerant.
 電動ポンプ1は、作動流体として冷媒を用いて、モータの動力によって、冷媒を吸い込んで、吐出する電動式のポンプである。本実施の形態における電動ポンプ1は、冷媒として水(冷却水)を用いる電動ウォーターポンプである。 The electric pump 1 is an electric pump that uses a refrigerant as a working fluid and sucks and discharges the refrigerant by power of a motor. The electric pump 1 in the present embodiment is an electric water pump that uses water (cooling water) as a refrigerant.
 電動ポンプ1は、ラジエータ等の熱交換機に接続される循環路中に組み込まれる、冷却用ポンプである。電動ポンプ1は、例えばハイブリッド自動車において、ラジエータで冷却された冷却水を循環させることで、インバータ又はコンバータ等からなる、パワーユニット又はエンジン(内燃機関)等に、冷却水を供給する。 The electric pump 1 is a cooling pump incorporated in a circulation path connected to a heat exchanger such as a radiator. For example, in a hybrid vehicle, the electric pump 1 circulates cooling water cooled by a radiator, thereby supplying cooling water to a power unit, an engine (internal combustion engine), or the like including an inverter or a converter.
 図1~図6に示すように、電動ポンプ1は、ポンプ室100a(ポンプケーシング)及びモータ室100b(モータケーシング)を有する筐体100と、ポンプ室100a内に配置されるインペラ200と、モータ室100b内に配置されるモータ300と、駆動回路ユニット400とを備える。駆動回路ユニット400は、複数の回路部品410と、複数の回路部品410が実装される回路基板420とを有する。 As shown in FIGS. 1 to 6, the electric pump 1 includes a casing 100 having a pump chamber 100a (pump casing) and a motor chamber 100b (motor casing), an impeller 200 disposed in the pump chamber 100a, a motor The motor 300 and the drive circuit unit 400 are provided in the chamber 100b. The drive circuit unit 400 includes a plurality of circuit components 410 and a circuit board 420 on which the plurality of circuit components 410 are mounted.
 筐体100は、電動ポンプ1の外郭をなす外郭部材である。図5及び図6に示すように、筐体100は、第1筐体部110と第2筐体部120と第3筐体部130とによって構成される。第1筐体部110、第2筐体部120及び第3筐体部130は、例えば3本のネジによって互いに連結されて固定される。 The housing 100 is an outer member that forms an outer shell of the electric pump 1. As shown in FIGS. 5 and 6, the housing 100 includes a first housing portion 110, a second housing portion 120, and a third housing portion 130. The first housing unit 110, the second housing unit 120, and the third housing unit 130 are connected and fixed to each other by, for example, three screws.
 第1筐体部110、第2筐体部120及び第3筐体部130は、樹脂材料又は金属材料等によって構成される。本実施の形態において、第1筐体部110、第2筐体部120及び第3筐体部130は、樹脂材料の中では比較的に軽くて熱伝導率が高い、PPS(Polyphenylenesulfide)樹脂によって構成される。 The first housing unit 110, the second housing unit 120, and the third housing unit 130 are made of a resin material, a metal material, or the like. In the present embodiment, the first housing unit 110, the second housing unit 120, and the third housing unit 130 are made of PPS (Polyphenylene sulfide) resin, which is relatively light and has high thermal conductivity among resin materials. Composed.
 ポンプ室100aは、冷媒が通る領域であり、第1筐体部110と第2筐体部120とによって構成される。つまり、ポンプ室100aは、第1筐体部110と第2筐体部120とによって囲まれた空間領域であり、第1筐体部110及び第2筐体部120を隔壁として、流路を構成する。 The pump chamber 100 a is a region through which the refrigerant passes, and is configured by the first housing unit 110 and the second housing unit 120. That is, the pump chamber 100a is a space region surrounded by the first housing part 110 and the second housing part 120, and the flow path is formed using the first housing part 110 and the second housing part 120 as a partition wall. Constitute.
 ポンプ室100aは、冷媒を吸い込むための吸込口101、及び吸い込んだ冷媒を吐出するための吐出口102を有する。本実施の形態において、吸込口101及び吐出口102は、第1筐体部110に設けられる。吸込口101及び吐出口102は、長尺円筒形状であり、互いに交差する位置関係で、第1筐体部110に設けられる。 The pump chamber 100a has a suction port 101 for sucking the refrigerant and a discharge port 102 for discharging the sucked refrigerant. In the present embodiment, the suction port 101 and the discharge port 102 are provided in the first housing part 110. The suction port 101 and the discharge port 102 have a long cylindrical shape, and are provided in the first housing unit 110 so as to cross each other.
 具体的には、吸込口101は、吸込口101内を冷媒が流れる方向と、インペラ200の回転軸とが実質的に平行となるように、設けられる。一方、吐出口102は、吐出口102内を冷媒が流れる方向と、インペラ200の回転円の接線方向とが実質的に平行となるように、設けられる。これにより、インペラ200が回転することで、吸込口101から冷媒がポンプ室100a内に引き込まれるとともに、吐出口102から冷媒が吐出される。 Specifically, the suction port 101 is provided such that the direction in which the refrigerant flows through the suction port 101 and the rotation axis of the impeller 200 are substantially parallel. On the other hand, the discharge port 102 is provided such that the direction in which the refrigerant flows in the discharge port 102 and the tangential direction of the rotation circle of the impeller 200 are substantially parallel. Thereby, when the impeller 200 rotates, the refrigerant is drawn into the pump chamber 100a from the suction port 101 and the refrigerant is discharged from the discharge port 102.
 モータ室100bは、第2筐体部120と第3筐体部130とによって構成される。モータ室100bは、第2筐体部120と第3筐体部130とによって囲まれる空間領域であり、第2筐体部120と第3筐体部130とが隔壁となって閉空間を形成する。このように、本実施の形態では、第2筐体部120が、ポンプ室100aとモータ室100bとの隔壁を兼用する。 The motor chamber 100b includes a second casing 120 and a third casing 130. The motor chamber 100b is a space area surrounded by the second housing part 120 and the third housing part 130, and the second housing part 120 and the third housing part 130 form a closed space as a partition wall. To do. Thus, in this Embodiment, the 2nd housing | casing part 120 serves as the partition of the pump chamber 100a and the motor chamber 100b.
 モータ室100bには、モータ300及び駆動回路ユニット400が収納される。つまり、モータ300及び駆動回路ユニット400は、同一の内部空間(モータ室100b)に配置される。具体的には、モータ室100bには、モータ300が収納されるとともに、複数の回路部品410及び回路基板420が収納される。 The motor 300 and the drive circuit unit 400 are accommodated in the motor chamber 100b. That is, the motor 300 and the drive circuit unit 400 are disposed in the same internal space (the motor chamber 100b). Specifically, the motor chamber 100b accommodates the motor 300 and a plurality of circuit components 410 and a circuit board 420.
 本実施の形態における電動ポンプ1は、第2筐体部120を境界として液層であるポンプ室100aと、空気層であるモータ室100bとに分離される構造である。つまり、電動ポンプ1は、モータが冷媒に浸されるキャンドタイプとは異なり、モータ室100b内のモータ300は、冷媒に浸されない。つまり、電動ポンプ1は、モータ室100b内には、冷媒が流入しない構造である。 The electric pump 1 in the present embodiment has a structure that is separated into a pump chamber 100a that is a liquid layer and a motor chamber 100b that is an air layer, with the second housing portion 120 as a boundary. That is, the electric pump 1 is different from the canned type in which the motor is immersed in the refrigerant, and the motor 300 in the motor chamber 100b is not immersed in the refrigerant. That is, the electric pump 1 has a structure in which the refrigerant does not flow into the motor chamber 100b.
 図6に示すように、電動ポンプ1は、ポンプ室100aが配置される領域であるポンプ領域(ポンプ部)Pと、モータ300が配置される領域であるモータ領域(モータ部)Mと、複数の回路部品410が実装される回路基板420が配置される領域であるモータ駆動回路領域(モータ駆動回路部)Dとを備える。なお、モータ駆動回路領域Dには、回路基板420とともに複数の回路部品410も配置される。つまり、モータ駆動回路領域Dには、駆動回路ユニット400が配置されている。 As shown in FIG. 6, the electric pump 1 includes a pump region (pump unit) P that is a region where the pump chamber 100a is disposed, a motor region (motor unit) M that is a region where the motor 300 is disposed, And a motor drive circuit region (motor drive circuit portion) D, which is a region where the circuit board 420 on which the circuit component 410 is mounted is disposed. In the motor drive circuit region D, a plurality of circuit components 410 are also disposed along with the circuit board 420. That is, the drive circuit unit 400 is disposed in the motor drive circuit region D.
 本実施の形態において、ポンプ領域P、モータ領域M及びモータ駆動回路領域Dは、電動ポンプ1をインペラ200の軸芯方向に沿って割り当てられる領域となっている。具体的には、下から、モータ領域M、モータ駆動回路領域D及びポンプ領域Pの順に割り当てられる。モータ駆動回路領域Dは、ポンプ領域Pとモータ領域Mとの間に位置している。 In the present embodiment, the pump region P, the motor region M, and the motor drive circuit region D are regions where the electric pump 1 is assigned along the axial direction of the impeller 200. Specifically, the motor region M, the motor drive circuit region D, and the pump region P are assigned in this order from the bottom. The motor drive circuit area D is located between the pump area P and the motor area M.
 具体的には、第1筐体部110、第2筐体部120及び第3筐体部130のうち、第1筐体部110は、主としてポンプ領域Pに配置される。第2筐体部120は、主としてモータ駆動回路領域Dに配置される。第3筐体部130は、主としてモータ領域Mに配置される。 Specifically, among the first casing unit 110, the second casing unit 120, and the third casing unit 130, the first casing unit 110 is mainly disposed in the pump region P. The second housing part 120 is mainly disposed in the motor drive circuit region D. The third housing part 130 is mainly disposed in the motor region M.
 なお、ポンプ室100aは、ポンプ領域Pのみに対応している。モータ室100bは、モータ駆動回路領域Dとモータ領域Mとに対応している。具体的には、モータ駆動回路領域Dは、モータ室100bを構成する第2筐体部120と第3筐体部130との間の領域のうち、ポンプ室100a側の領域である。モータ領域Mは、モータ室100bを構成する第2筐体部120と第3筐体部130との間の領域のうち、ポンプ室100a側とは反対側の領域である。 Note that the pump chamber 100a corresponds only to the pump region P. The motor chamber 100 b corresponds to the motor drive circuit area D and the motor area M. Specifically, the motor drive circuit region D is a region on the pump chamber 100a side in a region between the second housing portion 120 and the third housing portion 130 that constitute the motor chamber 100b. The motor region M is a region on the opposite side to the pump chamber 100a side in the region between the second housing part 120 and the third housing part 130 constituting the motor chamber 100b.
 インペラ200(羽根車)は、円板状の底部(ベース)210と複数枚の羽根220(ブレード)とを有する。インペラ200は、吸込口101に対向する位置に設置される。複数枚の羽根220は、底部210に固定される。本実施の形態において、複数枚の羽根220は、オープンブレードである。複数枚の羽根220は、モータ300(ロータ320)の中心軸を中心として、実質的に放射状に配置される。 The impeller 200 (impeller) has a disk-shaped bottom (base) 210 and a plurality of blades 220 (blades). The impeller 200 is installed at a position facing the suction port 101. The plurality of blades 220 are fixed to the bottom portion 210. In the present embodiment, the plurality of blades 220 are open blades. The plurality of blades 220 are arranged substantially radially about the central axis of the motor 300 (rotor 320).
 インペラ200の中心軸(回転軸)は、モータ300のロータ320の回転軸と同軸である。本実施の形態において、インペラ200とモータ300とは、シャフト500によって連結される。モータ300によってシャフト500を回転させることによって、インペラ200が回転する。 The central axis (rotary axis) of the impeller 200 is coaxial with the rotational axis of the rotor 320 of the motor 300. In the present embodiment, impeller 200 and motor 300 are connected by shaft 500. By rotating the shaft 500 by the motor 300, the impeller 200 rotates.
 シャフト500は、第2筐体部120に設けられる貫通孔121を介して、モータ室100bからポンプ室100aに突出するように、配置される。シャフト500は、ポンプ室100aとモータ室100bとを仕切る隔壁(第2筐体部120)に設けられる貫通孔121を介して、モータ300とインペラ200とを連結している。本実施の形態では、モータ駆動回路領域Dが、ポンプ領域Pとモータ領域Mとの間に位置しているので、シャフト500は、モータ駆動回路領域Dを通過するように構成される。モータ駆動回路領域Dにおいて、シャフト500は、回路基板420を貫通する。シャフト500は、例えば鉄等の金属材料によって構成される。 The shaft 500 is disposed so as to protrude from the motor chamber 100b to the pump chamber 100a through a through hole 121 provided in the second casing 120. The shaft 500 connects the motor 300 and the impeller 200 via a through hole 121 provided in a partition wall (second housing part 120) that partitions the pump chamber 100a and the motor chamber 100b. In the present embodiment, since the motor drive circuit region D is located between the pump region P and the motor region M, the shaft 500 is configured to pass through the motor drive circuit region D. In the motor drive circuit region D, the shaft 500 penetrates the circuit board 420. The shaft 500 is made of a metal material such as iron.
 貫通孔121には、シャフト500と貫通孔121との間をシールするための、樹脂製のシール部材700が設けられる。シール部材700は、シャフト500が挿通する挿通孔と、この挿通孔から立設するリップ部とを有する。シール部材700は、リップ部が弾性変形することで、シャフト500との摺動面に面圧が発生して、シャフト500と貫通孔121との間をシールする。 The through hole 121 is provided with a resin seal member 700 for sealing between the shaft 500 and the through hole 121. The seal member 700 has an insertion hole through which the shaft 500 is inserted, and a lip portion standing from the insertion hole. The seal member 700 seals between the shaft 500 and the through-hole 121 by generating a surface pressure on the sliding surface with the shaft 500 due to the elastic deformation of the lip portion.
 シャフト500は、ポンプ領域P(ポンプ室100a)に存在する第1シャフト部510と、モータ領域Mに存在する第2シャフト部520と、モータ駆動回路領域Dに存在する第3シャフト部530とを有する。第3シャフト部530は、第1シャフト部510と第2シャフト部520との間の部分である。 The shaft 500 includes a first shaft portion 510 existing in the pump region P (pump chamber 100a), a second shaft portion 520 existing in the motor region M, and a third shaft portion 530 existing in the motor drive circuit region D. Have. The third shaft portion 530 is a portion between the first shaft portion 510 and the second shaft portion 520.
 第1シャフト部510は、ポンプ室100a内で、インペラ200の底部210に連結される。インペラ200は、プッシュナット600で第1シャフト部510の先端に固定される。 The first shaft portion 510 is connected to the bottom portion 210 of the impeller 200 in the pump chamber 100a. The impeller 200 is fixed to the tip of the first shaft portion 510 with a push nut 600.
 第2シャフト部520は、モータ室100b内で、モータ300のロータ320に連結される。第2シャフト部520の先端部は、モータ領域Mに設けられるベアリングで支持される。 The second shaft portion 520 is connected to the rotor 320 of the motor 300 in the motor chamber 100b. The distal end portion of the second shaft portion 520 is supported by a bearing provided in the motor region M.
 第3シャフト部530は、モータ駆動回路領域Dに設けられるベアリングで支持される。 The third shaft portion 530 is supported by a bearing provided in the motor drive circuit region D.
 モータ300は、ポンプ室100a内の冷媒を作動させる。モータ300は、シャフト500を通じて、ポンプ室100a内に配置されるインペラ200を回転させることで、冷媒を、吸込口101からポンプ室100a内に引き込んで、吐出口102から吐出させる。 The motor 300 operates the refrigerant in the pump chamber 100a. The motor 300 rotates the impeller 200 disposed in the pump chamber 100 a through the shaft 500, thereby drawing the refrigerant from the suction port 101 into the pump chamber 100 a and discharging it from the discharge port 102.
 モータ300は、例えばインナロータ型のDCブラシレスモータであり、ステータ310(固定子)と、ステータ310の内周側に配置されたロータ320とを有する。 The motor 300 is, for example, an inner rotor type DC brushless motor, and includes a stator 310 (stator) and a rotor 320 disposed on the inner peripheral side of the stator 310.
 ステータ310は、複数のコイル311(巻線)を有し、コイル311への通電により、内周側に磁束を生じさせる。ロータ320は、磁極部321にシャフト500が連結される。磁極部321は、ステータ310の内周面と僅かな隙間(エアギャップ)を介して、ステータ310と対向するように設置された円柱状の部材である。磁極部321には、ステータ310の複数のコイル311に対応して、複数の磁極(例えば、周方向に交互にN極とS極とが並ぶ永久磁石)が設けられる。シャフト500は、インペラ200を回転させるための動力を伝達する軸部材であり、磁極部321と同軸に設けられる。 The stator 310 has a plurality of coils 311 (windings), and generates a magnetic flux on the inner peripheral side when the coil 311 is energized. In the rotor 320, the shaft 500 is connected to the magnetic pole part 321. The magnetic pole portion 321 is a columnar member installed so as to face the stator 310 with a slight gap (air gap) from the inner peripheral surface of the stator 310. The magnetic pole portion 321 is provided with a plurality of magnetic poles (for example, permanent magnets in which N poles and S poles are alternately arranged in the circumferential direction) corresponding to the plurality of coils 311 of the stator 310. The shaft 500 is a shaft member that transmits power for rotating the impeller 200, and is provided coaxially with the magnetic pole portion 321.
 なお、本実施の形態において、モータ300は、カップ状のカバー330によって覆われる。カバー330は、例えば鉄等の金属材料によって構成される金属製であるが、これに限られるものではなく、樹脂製であってもよい。 In this embodiment, the motor 300 is covered with a cup-shaped cover 330. The cover 330 is made of a metal made of a metal material such as iron, but is not limited to this and may be made of a resin.
 駆動回路ユニット400は、モータ300を駆動するための複数の回路部品410と、複数の回路部品410が実装された回路基板420とを備える。 The drive circuit unit 400 includes a plurality of circuit components 410 for driving the motor 300 and a circuit board 420 on which the plurality of circuit components 410 are mounted.
 複数の回路部品410は、モータ300を駆動するための駆動回路等を含む。回路部品410(回路素子)は、例えば、電解コンデンサ又はセラミックコンデンサ等の容量素子、抵抗器等の抵抗素子、コイル素子、又は、マイクロコントローラ(集積回路素子)等の半導体素子等である。回路部品410には、ロータ320の回転位置を検出するための回転位置検出素子(ホールIC(Integrated Circuit))が含まれていてもよい。 The plurality of circuit components 410 include a drive circuit for driving the motor 300 and the like. The circuit component 410 (circuit element) is, for example, a capacitance element such as an electrolytic capacitor or a ceramic capacitor, a resistance element such as a resistor, a coil element, or a semiconductor element such as a microcontroller (integrated circuit element). The circuit component 410 may include a rotational position detection element (Hall IC (Integrated Circuit)) for detecting the rotational position of the rotor 320.
 本実施の形態において、複数の回路部品410の多くは、回路基板420のインペラ200側の面に実装される。 In the present embodiment, many of the plurality of circuit components 410 are mounted on the surface of the circuit board 420 on the impeller 200 side.
 複数の回路部品410の中には、耐熱温度が他の回路部品よりも相対的に低くて、製品寿命が温度の影響を受ける低耐熱部品(有寿命部品)が存在する。耐熱温度が低い低耐熱部品である回路部品410としては、例えば、電解コンデンサ411が挙げられる。 Among the plurality of circuit components 410, there are low heat resistant components (lifetime components) whose heat resistant temperature is relatively lower than other circuit components and whose product life is affected by the temperature. Examples of the circuit component 410 that is a low heat resistant component having a low heat resistant temperature include an electrolytic capacitor 411.
 複数の回路部品410の中には、コイル又は半導体部品等が自ら発熱する、発熱部品が存在する。具体的には、発熱部品である回路部品410としては、例えばSIP(Single Inline Package)スイッチ等を含むアナログ回路によって構成されるマイクロコントローラ(以後「マイコン」と略記)412等が挙げられる。 Among the plurality of circuit components 410, there are heat generating components in which coils or semiconductor components generate heat themselves. Specifically, examples of the circuit component 410 that is a heat-generating component include a microcontroller (hereinafter abbreviated as “microcomputer”) 412 configured by an analog circuit including a SIP (Single Inline Package) switch and the like.
 回路基板420は、例えば、樹脂基板の表面に、金属配線がパターニングされたプリント配線基板である。回路基板420に実装された複数の回路部品410は、金属配線によって互いに電気的に接続される。 The circuit board 420 is, for example, a printed wiring board in which metal wiring is patterned on the surface of a resin board. The plurality of circuit components 410 mounted on the circuit board 420 are electrically connected to each other by metal wiring.
 回路基板420には、シャフト500が貫通する貫通孔421が形成される。貫通孔421は、例えば円形であるが、これに限られるものではない。 A through hole 421 through which the shaft 500 passes is formed in the circuit board 420. The through hole 421 is circular, for example, but is not limited thereto.
 このように構成される電動ポンプ1では、図6に示すように、回路基板420が配置される領域であるモータ駆動回路領域Dが、吸込口101から吸い込んだ冷媒が流れるポンプ室100aに隣接して配置される。 In the electric pump 1 configured as described above, as shown in FIG. 6, the motor drive circuit region D, which is a region where the circuit board 420 is disposed, is adjacent to the pump chamber 100 a through which the refrigerant sucked from the suction port 101 flows. Arranged.
 これにより、回路部品410がポンプ室100aに近い位置に配置される。したがって、ポンプ室100a内に流れる冷媒によって、回路部品410を冷却することができる。つまり、回路部品410及び回路部品410周辺の熱を、ポンプ室100aの冷媒に伝導して、放熱させることができる。 Thereby, the circuit component 410 is arranged at a position close to the pump chamber 100a. Therefore, the circuit component 410 can be cooled by the refrigerant flowing into the pump chamber 100a. That is, the circuit component 410 and the heat around the circuit component 410 can be conducted to the refrigerant in the pump chamber 100a to dissipate heat.
 以上のように、本実施の形態における電動ポンプ1によれば、電動ポンプ1が、自ら循環させる冷媒を用いて、電動ポンプ1自身の回路部品410を冷却させる。これにより、モータ室100b内に冷媒を封入したり、冷却用の流路を別途設ける必要がない。したがって、製造時の工数が増加したり、ポンプ全体が大型化することを回避しつつ、モータ300を駆動するための回路部品410が、高温負荷を受けることを抑制できる。このように回路部品410が冷却されることで、ポンプ出力を向上させたり、回路部品410のコストを削減したり、電動ポンプ1の小型化が可能となったりする。 As described above, according to the electric pump 1 in the present embodiment, the electric pump 1 cools the circuit components 410 of the electric pump 1 using the refrigerant that is circulated by itself. Thereby, it is not necessary to enclose the refrigerant in the motor chamber 100b or separately provide a cooling channel. Therefore, it is possible to prevent the circuit component 410 for driving the motor 300 from receiving a high-temperature load while avoiding an increase in the number of man-hours during manufacturing and an increase in the size of the entire pump. By cooling the circuit component 410 in this way, the pump output can be improved, the cost of the circuit component 410 can be reduced, and the electric pump 1 can be downsized.
 本実施の形態において、モータ駆動回路領域Dは、モータ領域Mよりもポンプ室100aに近い位置に配置される。 In the present embodiment, the motor drive circuit region D is disposed at a position closer to the pump chamber 100a than the motor region M.
 これにより、モータ駆動回路領域Dに配置される回路部品410を、モータ領域Mに配置されるモータ300よりも、ポンプ室100aの冷媒に近づけることができる。よって、効果的に回路部品410を冷却することができる。したがって、回路部品410が高温負荷を受けることを、一層抑制することができる。 Thereby, the circuit component 410 arranged in the motor drive circuit area D can be brought closer to the refrigerant in the pump chamber 100a than the motor 300 arranged in the motor area M. Therefore, the circuit component 410 can be effectively cooled. Therefore, it is possible to further suppress the circuit component 410 from receiving a high temperature load.
 図7は、実施の形態に係る電動ポンプの概略を示す概念図である。図7に示すように、本実施の形態における電動ポンプ1では、モータ駆動回路領域Dが、ポンプ領域Pとモータ領域Mとの間に、配置される。つまり、ポンプ領域Pとモータ駆動回路領域Dとモータ領域Mとは、シャフト500及びインペラ200の軸芯方向に積層された三層構造(3階建て構造)である。2層目(2階)に位置するモータ駆動回路領域Dは、1層目(1階)に位置するモータ領域Mと、3層目(3階)に位置するポンプ領域Pとに挟まれた構成である。 FIG. 7 is a conceptual diagram showing an outline of the electric pump according to the embodiment. As shown in FIG. 7, in electric pump 1 according to the present embodiment, motor drive circuit region D is arranged between pump region P and motor region M. That is, the pump region P, the motor drive circuit region D, and the motor region M have a three-layer structure (three-storey structure) stacked in the axial direction of the shaft 500 and the impeller 200. The motor drive circuit region D located on the second layer (second floor) is sandwiched between the motor region M located on the first layer (first floor) and the pump region P located on the third layer (third floor). It is a configuration.
 図8は、比較例の電動ポンプの概略を示す概念図である。これにより、図8に示すような、モータ領域Mがポンプ領域Pとモータ駆動回路領域Dとの間に配置される構造の電動ポンプ1Xと比べて、本実施の形態の電動ポンプ1は、ポンプ領域Pのポンプ室100aにおける冷媒によって、回路部品410を効果的に冷却することができる。したがって、回路部品410が高温負荷を受けることをより一層効果的に抑制することができる。 FIG. 8 is a conceptual diagram showing an outline of the electric pump of the comparative example. Accordingly, as compared with the electric pump 1X having a structure in which the motor region M is disposed between the pump region P and the motor drive circuit region D as shown in FIG. The circuit component 410 can be effectively cooled by the refrigerant in the pump chamber 100a in the region P. Therefore, it is possible to more effectively suppress the circuit component 410 from receiving a high temperature load.
 本実施の形態の電動ポンプ1は、主としてポンプ領域Pに配置される第1筐体部110と、主としてモータ駆動回路領域Dに配置される第2筐体部120と、主としてモータ領域Mに配置される第3筐体部130とを備える。ポンプ室100aは、第1筐体部110と第2筐体部120とで構成される。モータ300及び回路基板420は、第2筐体部120と第3筐体部130とで構成されるモータ室100b内に収納される。 The electric pump 1 according to the present embodiment is mainly arranged in the first housing part 110 arranged mainly in the pump region P, the second housing part 120 arranged mainly in the motor drive circuit region D, and mainly in the motor region M. A third housing part 130 to be provided. The pump chamber 100a includes a first housing part 110 and a second housing part 120. The motor 300 and the circuit board 420 are housed in a motor chamber 100b configured by the second housing part 120 and the third housing part 130.
 これにより、ポンプ室100aとモータ室100bとが分離される構造を有する電動ポンプ1を実現することができる。 Thereby, the electric pump 1 having a structure in which the pump chamber 100a and the motor chamber 100b are separated can be realized.
 ところで、電動ウォーターポンプとしては、ポンプ室とモータ室とが一体化されたキャンドタイプも知られている。しかし、キャンドタイプの電動ウォーターポンプは、ポンプ全体として、冷却水が漏れないような密閉空間にする必要がある。したがって、製造時の工数が大きくなったり、ポンプ全体が大きくなったりする。 Incidentally, as an electric water pump, a canned type in which a pump chamber and a motor chamber are integrated is also known. However, the cand type electric water pump needs to have a sealed space in which the cooling water does not leak as a whole. Therefore, the man-hour at the time of manufacture becomes large, or the whole pump becomes large.
 一方、本実施の形態における電動ポンプ1は、ポンプ室100aとモータ室100bとが分離される構造を採用しつつ、モータ駆動回路領域Dがポンプ室100aに隣接して配置される。したがって、本実施の形態における電動ポンプ1は、キャンドタイプの電動ポンプと比べて、小型化することができ、かつ、ポンプ全効率を向上させることができる。 On the other hand, the electric pump 1 in the present embodiment employs a structure in which the pump chamber 100a and the motor chamber 100b are separated, and the motor drive circuit region D is disposed adjacent to the pump chamber 100a. Therefore, the electric pump 1 in the present embodiment can be reduced in size and can improve the overall pump efficiency as compared with the canned electric pump.
 本実施の形態において、第2筐体部120の一部は、回路部品410の少なくとも1つに近接しているとよい。本実施の形態では、図6に示すように、第2筐体部120の一部を、低耐熱部品である電解コンデンサ411に近接させる。より具体的には、第2筐体部120に凹部122を設けて、凹部122に収納されるように電解コンデンサ411を配置する。つまり、電解コンデンサ411の上部及び側周部が、凹部122に覆われる。 In the present embodiment, a part of the second housing part 120 may be close to at least one of the circuit components 410. In the present embodiment, as shown in FIG. 6, a part of the second housing 120 is brought close to the electrolytic capacitor 411 that is a low heat-resistant component. More specifically, the recess 122 is provided in the second casing 120, and the electrolytic capacitor 411 is disposed so as to be accommodated in the recess 122. That is, the upper part and the side periphery of the electrolytic capacitor 411 are covered with the recess 122.
 このように、電解コンデンサ411等の低耐熱部品を、第2筐体部120に近接させることによって、低耐熱部品が高温負荷を受けることを一層抑制することができる。 As described above, by placing the low heat resistant parts such as the electrolytic capacitor 411 close to the second casing 120, it is possible to further suppress the low heat resistant parts from being subjected to a high temperature load.
 この場合、回路部品410に近接させる第2筐体部120の一部は、熱伝導性に優れた材料によって構成されているとよい。 In this case, it is preferable that a part of the second housing part 120 to be brought close to the circuit component 410 is made of a material having excellent thermal conductivity.
 これにより、第2筐体部120の一部に近接する回路部品410が受ける高温負荷を、効果的に抑制できる。 Thereby, the high temperature load received by the circuit component 410 close to a part of the second casing 120 can be effectively suppressed.
 図6に示すように、第2筐体部120の凹部122と、凹部122に覆われる回路部品410(本実施の形態では電解コンデンサ411)との間の隙間には、放熱樹脂等の熱伝導部材を介在させてもよい。例えば、ペースト状又は粘度の高い液状のシリコーンRTV(Room Temperature Vulcanizing)ゴム等を回路部品410上に塗布して、電動ポンプ1を組み立てることで、第2筐体部120の凹部122と回路部品410との間の隙間に、シリコーンRTVゴムを充填させてもよい。シリコーンRTVゴムは、湿気と反応して硬化してゴム弾性体となり、第2筐体部120及び回路部品410と接着する。あるいは、回路部品410をシリコーン樹脂製のキャップ部材で覆うことによって、第2筐体部120の凹部122と回路部品410との間の隙間を埋めてもよい。 As shown in FIG. 6, in the gap between the recess 122 of the second casing 120 and the circuit component 410 (electrolytic capacitor 411 in this embodiment) covered with the recess 122, heat conduction such as heat radiation resin is provided. A member may be interposed. For example, paste-like or high-viscosity liquid silicone RTV (Room Temperature Vulcanizing) rubber or the like is applied onto the circuit component 410 and the electric pump 1 is assembled, whereby the recess 122 and the circuit component 410 of the second housing unit 120 are assembled. Silicone RTV rubber may be filled in the gap between the two. The silicone RTV rubber cures by reacting with moisture to become a rubber elastic body, and adheres to the second casing 120 and the circuit component 410. Or you may fill the clearance gap between the recessed part 122 of the 2nd housing | casing part 120 and the circuit component 410 by covering the circuit component 410 with the cap member made from a silicone resin.
 これにより、第2筐体部120の凹部122に覆われた回路部品410にかかる高温負荷を、一層軽減することができる。 Thereby, it is possible to further reduce the high temperature load applied to the circuit component 410 covered with the recess 122 of the second casing 120.
 なお、第2筐体部120の一部を電解コンデンサ411等の低耐熱部品に近接させるのではなく、第2筐体部120の一部を電解コンデンサ411等の低耐熱部品にさらに近づけて、第2筐体部120の一部を電解コンデンサ411等の低耐熱部品に接触させてもよい。 Instead of bringing a part of the second housing part 120 close to a low heat resistant component such as the electrolytic capacitor 411, a part of the second housing part 120 is brought closer to the low heat resistant part such as the electrolytic capacitor 411, A part of the second casing 120 may be brought into contact with a low heat resistant component such as the electrolytic capacitor 411.
 これにより、電解コンデンサ411等の低耐熱部品に伝導した熱を、第2筐体部120を介して、ポンプ室100aの冷媒に伝導させて、放熱させることができる。 Thereby, the heat conducted to the low heat-resistant components such as the electrolytic capacitor 411 can be conducted to the refrigerant in the pump chamber 100a via the second casing portion 120 to be dissipated.
 図9は、実施の形態に係る別の電動ポンプの断面図である。第2筐体部120の一部を、アナログ回路によって構成されるマイコン412に近接又は接触させてもよい。例えば、図9に示すように、第2筐体部120に、第2筐体部120の一部を延設させる延設部123を形成して、延設部123をマイコン412に近接させてもよい。この場合、ペースト状又は粘度の高い液状のシリコーンRTVゴム等をマイコン412上に塗布したり、延設部123とマイコン412との間に放熱シートを介在させたりすることで、図9に示すように、延設部123とマイコン412との間の隙間を放熱樹脂で埋めてもよい。なお、放熱樹脂を用いることなく、延設部123の先端部を、マイコン412に直接接触させてもよい。 FIG. 9 is a cross-sectional view of another electric pump according to the embodiment. A part of the second casing 120 may be brought close to or in contact with the microcomputer 412 configured by an analog circuit. For example, as shown in FIG. 9, an extension part 123 that extends a part of the second casing part 120 is formed in the second casing part 120, and the extension part 123 is brought close to the microcomputer 412. Also good. In this case, a paste-like or high-viscosity liquid silicone RTV rubber or the like is applied on the microcomputer 412 or a heat dissipation sheet is interposed between the extending portion 123 and the microcomputer 412 as shown in FIG. In addition, the gap between the extending portion 123 and the microcomputer 412 may be filled with a heat radiation resin. Note that the distal end portion of the extending portion 123 may be brought into direct contact with the microcomputer 412 without using a heat radiating resin.
 これにより、発熱部品であるマイコン412で発生した熱を、第2筐体部120を介して、ポンプ室100aの冷媒に伝導させて放熱させることができる。したがって、電解コンデンサ411等の低耐熱部品が、マイコン412等の発熱部品による熱の影響を受けることを、軽減することができる。っよって、低耐熱部品が受ける熱の影響をさらに軽減することができる。なお、耐熱温度が低い電解コンデンサ411等の回路部品410は、発熱部品であるマイコン412等の回路部品410から遠ざけて、配置するとよい。 Thereby, the heat generated by the microcomputer 412 that is a heat generating component can be conducted to the refrigerant in the pump chamber 100a through the second casing 120 to be dissipated. Therefore, it is possible to reduce the influence of heat from the heat-generating parts such as the microcomputer 412 on the low heat-resistant parts such as the electrolytic capacitor 411. Therefore, it is possible to further reduce the influence of heat applied to the low heat resistant component. Note that the circuit component 410 such as the electrolytic capacitor 411 having a low heat-resistant temperature may be disposed away from the circuit component 410 such as the microcomputer 412 that is a heat generating component.
 以上のように、本実施の形態の電動ポンプ1は、冷媒を吸い込んで吐出する電動ポンプであって、冷媒を吸い込むための吸込口101、及び、吸い込んだ冷媒を吐出するための吐出口102を有するポンプ室100aが配置されるポンプ領域と、ポンプ室100a内に配置されるインペラ200を回転させるためのモータ300が配置されるモータ領域と、モータ300を駆動するための複数の回路部品410が実装される回路基板420が配置されるモータ駆動回路領域とを備える。モータ駆動回路領域は、吸込口101から吸い込んだ冷媒が流れるポンプ室100aに隣接して配置される。 As described above, the electric pump 1 of the present embodiment is an electric pump that sucks and discharges the refrigerant, and includes the suction port 101 for sucking the refrigerant and the discharge port 102 for discharging the sucked refrigerant. A pump region in which the pump chamber 100a is disposed, a motor region in which the motor 300 for rotating the impeller 200 disposed in the pump chamber 100a is disposed, and a plurality of circuit components 410 for driving the motor 300 And a motor drive circuit region in which the circuit board 420 to be mounted is disposed. The motor drive circuit region is disposed adjacent to the pump chamber 100a through which the refrigerant sucked from the suction port 101 flows.
 これにより、製造時の工数が増加したり、ポンプ全体が大型化することなく、モータ300を駆動するための回路部品が高温負荷を受けることを抑制できる。 This makes it possible to suppress the circuit components for driving the motor 300 from receiving a high-temperature load without increasing the number of man-hours during manufacturing and increasing the size of the entire pump.
 モータ駆動回路領域は、モータ領域よりもポンプ室100aに近い位置に配置されている。 The motor drive circuit area is disposed closer to the pump chamber 100a than the motor area.
 すなわち、本実施の形態は、図7に示すように、モータ駆動回路領域は、ポンプ領域とモータ領域との間に配置される。 That is, in the present embodiment, as shown in FIG. 7, the motor drive circuit area is arranged between the pump area and the motor area.
 電動ポンプ1は、ポンプ領域に配置される第1筐体部110と、モータ駆動回路領域に配置される第2筐体部120と、モータ領域に配置される第3筐体部130とを備える。ポンプ室100aは、第1筐体部110と第2筐体部120とで構成される。モータ300及び回路基板420は、第2筐体部120と第3筐体部130とで構成されるモータ室内に収納される。 The electric pump 1 includes a first housing part 110 disposed in the pump area, a second housing part 120 disposed in the motor drive circuit area, and a third housing part 130 disposed in the motor area. . The pump chamber 100a includes a first housing part 110 and a second housing part 120. The motor 300 and the circuit board 420 are housed in a motor chamber configured by the second housing part 120 and the third housing part 130.
 第2筐体部120の一部は、複数の回路部品410の少なくとも1つに近接している又は接触している。 A part of the second casing 120 is close to or in contact with at least one of the plurality of circuit components 410.
 第2筐体部120の一部に近接又は接触している少なくとも1つの回路部品410は、耐熱温度が他の回路部品よりも低い低耐熱部品であることが好ましい。 The at least one circuit component 410 that is close to or in contact with a part of the second casing 120 is preferably a low heat resistant component having a heat resistant temperature lower than that of other circuit components.
 本実施の形態では、低耐熱部品の代表例として、電解コンデンサとした。 In this embodiment, an electrolytic capacitor is used as a representative example of the low heat resistance component.
 なお、第2筐体部の一部に近接又は接触している少なくとも1つの回路部品は、アナログ回路によって構成されるマイコンであってもよい。 Note that the at least one circuit component that is in proximity to or in contact with a part of the second casing may be a microcomputer configured by an analog circuit.
 (変形例等)
 以上、本発明に係る電動ポンプについて、実施の形態に基づいて説明した。しかし、本発明は、上記の実施の形態に限定されるものではない。
(Modifications, etc.)
The electric pump according to the present invention has been described based on the embodiments. However, the present invention is not limited to the above embodiment.
 例えば、上記実施の形態においては、モータ駆動回路領域Dがポンプ室100aに隣接して配置する一例として、図7に示すように、モータ駆動回路領域Dがポンプ領域Pとモータ領域Mとの間に配置されている構成を例示した。しかし、これに限らない。図10は、変形例に係る電動ポンプの概略を示す概念図である。モータ駆動回路領域Dがポンプ室100aに隣接して配置する他の例としては、図10に示すように、モータ駆動回路領域Dだけではなく、モータ領域Mについても、ポンプ室100aに隣接して配置してもよい。この場合も、回路部品410がポンプ室100aに隣接して配置されるので、ポンプ室100a内を流れる冷媒によって、回路部品410を冷却することができる。なお、図10において、モータ駆動回路領域Dにおける回路基板420は、例えばドーナツ状である。 For example, in the above embodiment, as an example in which the motor drive circuit region D is disposed adjacent to the pump chamber 100a, the motor drive circuit region D is located between the pump region P and the motor region M as shown in FIG. The structure arrange | positioned in was illustrated. However, it is not limited to this. FIG. 10 is a conceptual diagram showing an outline of an electric pump according to a modification. As another example in which the motor drive circuit region D is arranged adjacent to the pump chamber 100a, as shown in FIG. 10, not only the motor drive circuit region D but also the motor region M is adjacent to the pump chamber 100a. You may arrange. Also in this case, since the circuit component 410 is disposed adjacent to the pump chamber 100a, the circuit component 410 can be cooled by the refrigerant flowing in the pump chamber 100a. In FIG. 10, the circuit board 420 in the motor drive circuit region D has, for example, a donut shape.
 上記実施の形態において、モータ300は、インナロータ型のDCブラシレスモータであるが、これに限られるものではない。 In the above embodiment, the motor 300 is an inner rotor type DC brushless motor, but is not limited thereto.
 その他、上記実施の形態に対して、当業者が思いつく各種変形を施して得られる形態、又は、本発明の趣旨を逸脱しない範囲で、上記実施の形態おける構成要素、及び機能を任意に組み合わせることで実現される形態も、本発明に含まれる。 In addition, any combination of the components and functions in the above-described embodiment is possible without departing from the spirit of the present invention, or a form obtained by making various modifications conceived by those skilled in the art. The form realized by is also included in the present invention.
 本発明に係る電動ポンプは、水等の冷媒を循環させるためのポンプであり、例えば車両用の冷却システム等に用いられる電動ウォーターポンプとして利用することができる。 The electric pump according to the present invention is a pump for circulating a refrigerant such as water, and can be used as an electric water pump used in, for example, a cooling system for a vehicle.
 1  電動ポンプ
 1X  電動ポンプ
 100  筐体
 101  吸込口
 102  吐出口
 100a  ポンプ室
 100b  モータ室
 110  第1筐体部
 120  第2筐体部
 121  貫通孔
 122  凹部
 123  延設部
 130  第3筐体部
 200  インペラ
 210  底部
 220  羽根
 300  モータ
 310  ステータ
 311  コイル
 320  ロータ
 321  磁極部
 330  カバー
 400  駆動回路ユニット
 410  回路部品
 411  電解コンデンサ
 412  マイコン
 420  回路基板
 421  貫通孔
 500  シャフト
 510  第1シャフト部
 520  第2シャフト部
 530  第3シャフト部
 600  プッシュナット
DESCRIPTION OF SYMBOLS 1 Electric pump 1X Electric pump 100 Housing | casing 101 Suction inlet 102 Discharge outlet 100a Pump chamber 100b Motor chamber 110 1st housing | casing part 120 2nd housing | casing part 121 Through-hole 122 Recessed part 123 Extension part 130 3rd housing | casing part 200 Impeller 210 Bottom portion 220 Blades 300 Motor 310 Stator 311 Coil 320 Rotor 321 Magnetic pole portion 330 Cover 400 Drive circuit unit 410 Circuit component 411 Electrolytic capacitor 412 Microcomputer 420 Circuit board 421 Through hole 500 Shaft 510 First shaft portion 520 Second shaft portion 530 Third Shaft 600 push nut

Claims (8)

  1. 冷媒を吸い込んで吐出する電動ポンプであって、前記冷媒を吸い込むための吸込口、及び、吸い込んだ前記冷媒を吐出するための吐出口を有するポンプ室が配置されるポンプ領域と、前記ポンプ室内に配置されるインペラを回転させるためのモータが配置されるモータ領域と、前記モータを駆動するための複数の回路部品が実装される回路基板が配置されるモータ駆動回路領域とを備え、前記モータ駆動回路領域は、前記吸込口から吸い込んだ前記冷媒が流れる前記ポンプ室に隣接して配置される電動ポンプ。 An electric pump that sucks and discharges a refrigerant, wherein a pump region in which a suction port for sucking the refrigerant and a pump chamber having a discharge port for discharging the sucked refrigerant is disposed, and in the pump chamber A motor region in which a motor for rotating the impeller to be disposed is disposed; and a motor drive circuit region in which a circuit board on which a plurality of circuit components for driving the motor are mounted is disposed, and the motor driving The circuit area is an electric pump disposed adjacent to the pump chamber through which the refrigerant sucked from the suction port flows.
  2. 前記モータ駆動回路領域は、前記モータ領域よりも前記ポンプ室に近い位置に配置される請求項1に記載の電動ポンプ。 The electric pump according to claim 1, wherein the motor drive circuit region is disposed closer to the pump chamber than the motor region.
  3. 前記モータ駆動回路領域は、前記ポンプ領域と前記モータ領域との間に配置される請求項1に記載の電動ポンプ。 The electric pump according to claim 1, wherein the motor drive circuit region is disposed between the pump region and the motor region.
  4. 前記ポンプ領域に配置される第1筐体部と、前記モータ駆動回路領域に配置される第2筐体部と、前記モータ領域に配置される第3筐体部とを備え、
    前記ポンプ室は、前記第1筐体部と前記第2筐体部とで構成され、
    前記モータ及び前記回路基板は、前記第2筐体部と前記第3筐体部とで構成されるモータ室内に収納されている請求項1に記載の電動ポンプ。
    A first housing portion disposed in the pump region, a second housing portion disposed in the motor drive circuit region, and a third housing portion disposed in the motor region,
    The pump chamber is composed of the first housing part and the second housing part,
    2. The electric pump according to claim 1, wherein the motor and the circuit board are housed in a motor chamber configured by the second housing portion and the third housing portion.
  5. 前記第2筐体部の一部は、前記複数の回路部品の少なくとも1つに近接している又は接触している
    請求項4に記載の電動ポンプ。
    5. The electric pump according to claim 4, wherein a part of the second casing is close to or in contact with at least one of the plurality of circuit components.
  6. 前記第2筐体部の一部に近接又は接触している前記複数の回路部品の少なくとも1つの回路部品は、耐熱温度が他の回路部品よりも低い低耐熱部品である
    請求項5に記載の電動ポンプ。
    The at least one circuit component of the plurality of circuit components that are close to or in contact with a part of the second housing part is a low heat resistant component having a heat resistant temperature lower than other circuit components. Electric pump.
  7. 前記低耐熱部品は、電解コンデンサである
    請求項6に記載の電動ポンプ。
    The electric pump according to claim 6, wherein the low heat-resistant component is an electrolytic capacitor.
  8. 前記第2筐体部の一部に近接又は接触している前記複数の回路部品の少なくとも1つの回路部品は、アナログ回路によって構成されるマイクロコントローラである
    請求項4に記載の電動ポンプ。
    5. The electric pump according to claim 4, wherein at least one circuit component of the plurality of circuit components in proximity to or in contact with a part of the second housing portion is a microcontroller configured by an analog circuit.
PCT/JP2017/006100 2016-03-10 2017-02-20 Electrically driven pump WO2017154536A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016047679A JP2019073973A (en) 2016-03-10 2016-03-10 Electric pump
JP2016-047679 2016-03-10

Publications (1)

Publication Number Publication Date
WO2017154536A1 true WO2017154536A1 (en) 2017-09-14

Family

ID=59790427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006100 WO2017154536A1 (en) 2016-03-10 2017-02-20 Electrically driven pump

Country Status (2)

Country Link
JP (1) JP2019073973A (en)
WO (1) WO2017154536A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020033934A (en) * 2018-08-30 2020-03-05 パナソニックIpマネジメント株式会社 Electric pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166500A (en) * 1997-12-03 1999-06-22 Toshiba Ave Co Ltd Pump
JP2006063956A (en) * 2004-08-30 2006-03-09 Aisin Seiki Co Ltd Electric pump
JP2006299975A (en) * 2005-04-21 2006-11-02 Asmo Co Ltd Fluid pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166500A (en) * 1997-12-03 1999-06-22 Toshiba Ave Co Ltd Pump
JP2006063956A (en) * 2004-08-30 2006-03-09 Aisin Seiki Co Ltd Electric pump
JP2006299975A (en) * 2005-04-21 2006-11-02 Asmo Co Ltd Fluid pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020033934A (en) * 2018-08-30 2020-03-05 パナソニックIpマネジメント株式会社 Electric pump
JP7186342B2 (en) 2018-08-30 2022-12-09 パナソニックIpマネジメント株式会社 electric pump

Also Published As

Publication number Publication date
JP2019073973A (en) 2019-05-16

Similar Documents

Publication Publication Date Title
CN1905328B (en) inverter-integrated rotating electric machine
US10415590B2 (en) Electric coolant pump
JP5927766B2 (en) Electric pump unit
JP5880842B2 (en) Electric oil pump device
JP2008184947A (en) Electric compressor
JP6222012B2 (en) Electronic component cooling structure and electric compressor
JP6621491B2 (en) Rotating electric machine
JP5903089B2 (en) Electric pump
JP6690732B2 (en) Electric compressor
KR101601100B1 (en) Electric Water Pump with Coolant Passage
JP2014190179A (en) Electric compressor
JP2000073962A (en) Fluid pump device
JP7135801B2 (en) motors and fan motors
JP7168689B2 (en) electric coolant pump
JP2018120994A (en) Electronic device and motor device
WO2017154536A1 (en) Electrically driven pump
JP6918242B2 (en) Rotating machine
US20210396233A1 (en) Glanded pump with ring capacitor
JP7186342B2 (en) electric pump
JP2022148740A (en) electric fluid pump
CN112262263A (en) Electric coolant pump
JP2019041055A (en) Electronic control device
US20230374993A1 (en) Electric oil pump
JP7178548B2 (en) electric pump
WO2020100690A1 (en) Electric pump

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762879

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17762879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP