WO2017154115A1 - Storage battery apparatus, storage battery system, method, and control program - Google Patents

Storage battery apparatus, storage battery system, method, and control program Download PDF

Info

Publication number
WO2017154115A1
WO2017154115A1 PCT/JP2016/057226 JP2016057226W WO2017154115A1 WO 2017154115 A1 WO2017154115 A1 WO 2017154115A1 JP 2016057226 W JP2016057226 W JP 2016057226W WO 2017154115 A1 WO2017154115 A1 WO 2017154115A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
voltage
panels
voltage difference
storage battery
Prior art date
Application number
PCT/JP2016/057226
Other languages
French (fr)
Japanese (ja)
Inventor
坂田 康治
麻美 水谷
智広 豊崎
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to JP2018503898A priority Critical patent/JPWO2017154115A1/en
Priority to PCT/JP2016/057226 priority patent/WO2017154115A1/en
Publication of WO2017154115A1 publication Critical patent/WO2017154115A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters

Definitions

  • Embodiments of the present invention relate to a storage battery device, a storage battery system, a method, and a control program.
  • a secondary battery with a high energy density and a long life like a lithium ion battery has been developed and used not only as a vehicle-mounted secondary battery but also as a stationary storage battery for the purpose of stabilizing the power system.
  • This stationary storage battery is configured by combining a large number of battery cells in a multi-series / multi-parallel manner in order to ensure a high voltage and a large capacity.
  • battery panels constituting the storage battery system are connected in parallel to the main circuit, and a circuit breaker is installed in each of the battery panels, and the circuit breaker open / close control is performed individually. In these parallel-connected battery panels, if a large voltage difference occurs between the battery panels, an excessive inrush current occurs immediately after turning on the circuit breaker, the fuse for overcurrent protection is blown, There is a risk of deteriorating the storage battery.
  • the present invention has been made in view of the above, and in a large-scale storage battery system composed of a plurality of battery panels connected in parallel, suppresses the occurrence of an excessive inrush current when a circuit breaker is turned on.
  • An object of the present invention is to provide a storage battery device, a storage battery system, a method, and a control program capable of quickly adjusting the voltage for that purpose.
  • the storage battery device of the embodiment is a storage battery device in which a plurality of cell modules including battery cells and a plurality of battery panels connected in series are connected in parallel.
  • the circuit breaker connects the storage battery to the main circuit for each battery panel.
  • the voltage measuring unit measures the battery voltage.
  • the control unit opens the circuit breaker corresponding to the battery panel in which the voltage difference between the battery panels exceeds a predetermined allowable voltage difference among the plurality of battery panels, and the voltage difference between the battery panels is
  • the circuit breakers corresponding to a plurality of battery panels that are within the allowable voltage difference are closed and charged or discharged simultaneously to achieve the target battery voltage until the voltage differences of all the battery panels are within the allowable voltage difference. repeat.
  • FIG. 1 is an outline lineblock diagram of a natural energy power generation system provided with the storage battery system of an embodiment.
  • FIG. 2 is a schematic configuration block diagram of the storage battery system of the embodiment.
  • FIG. 3 is an explanatory diagram of detailed configurations of the cell module, the CMU, and the BMU.
  • FIG. 4 is an explanatory diagram when a voltage difference of the battery panel is generated.
  • FIG. 5 is a process flowchart for adjusting the voltage difference between the battery panels.
  • FIG. 6 is an explanatory diagram of a notification display example related to voltage adjustment.
  • FIG. 7 is an explanatory diagram of an example of specific voltage adjustment.
  • FIG. 8 is a diagram schematically illustrating the relationship between OCV and SOC in a lithium ion battery.
  • Drawing 1 is an outline lineblock diagram of a natural energy power generation system provided with the storage battery system of an embodiment.
  • the natural energy power generation system 100 functions as an electric power system, uses natural energy (renewable energy) such as sunlight, hydropower, wind power, biomass, geothermal heat, and the like, and a natural energy power generation unit 1 that can output as system power, A wattmeter 2 that measures the generated power of the energy power generation unit 1, and the surplus power of the natural energy power generation unit 1 is charged based on the measurement result of the wattmeter 2, and the generated power of the natural energy power generation unit 1 is discharged by discharging the insufficient power.
  • natural energy newable energy
  • a wattmeter 2 that measures the generated power of the energy power generation unit 1
  • the surplus power of the natural energy power generation unit 1 is charged based on the measurement result of the wattmeter 2, and the generated power of the natural energy power generation unit 1 is discharged by discharging the insufficient power.
  • a storage battery system 3 that is superimposed and output, a transformer 4 that performs voltage conversion of the output power of the natural energy power generation unit 1 (including the case where the output power of the storage battery system 3 is superimposed), and the locality of the storage battery system 3
  • the storage battery controller 5 that performs the control and remote control of the storage battery controller 5 It includes a host controller 6, a.
  • FIG. 2 is a schematic configuration block diagram of the storage battery system of the embodiment.
  • the storage battery system 3 can be broadly divided into a storage battery device 11 that stores electric power, and a power conversion device (PCS: Power) that converts DC power supplied from the storage battery device 11 into AC power having a desired power quality and supplies it to a load. Conditioning System) 12.
  • PCS Power
  • Conditioning System 12.
  • the storage battery device 11 roughly comprises a plurality of battery panel units 21-1 to 21-N (N is a natural number) and a battery terminal board 22 to which the battery panel units 21-1 to 21-N are connected. ing.
  • the battery panel units 21-1 to 21-N include a plurality of battery panels 23-1 to 23-M (M is a natural number) connected in parallel to each other, a gateway device 24, and a BMU (Battery Management Unit: battery described later). And a DC power supply device 25 that supplies a DC power supply for operation to a management device) and a CMU (Cell Monitoring Unit).
  • the battery panels 23-1 to 23-M are connected to the output power source via the high potential side power supply line (high potential side power supply line) LH and the low potential side power supply line (low potential side power supply line) LL, respectively.
  • Lines (output power supply lines; bus lines) LHO and LLO are connected to supply power to the power converter 12 that is the main circuit.
  • the battery panel 23-1 is roughly divided into a plurality (24 in FIG. 2) of cell modules 31-1 to 31-24 and a plurality of (see FIG. 1) provided in each of the cell modules 31-1 to 31-24. 24) CMU 32-1 to 32-24, a service disconnect 33 provided between the cell module 31-12 and the cell module 31-13, a current sensor 34, and a contactor 35.
  • the cell modules 31-1 to 31-24, the service disconnect 33, the current sensor 34, and the contactor 35 are connected in series.
  • a plurality of battery cells are connected in series and parallel to form a battery pack.
  • a plurality of cell modules 31-1 to 31-24 connected in series constitute an assembled battery group.
  • the battery panel 23-1 includes a BMU 36, and the communication lines of the CMUs 32-1 to 32-24 and the output line of the current sensor 34 are connected to the BMU 36.
  • the BMU 36 controls the entire battery panel 23-1 under the control of the gateway device 24, and displays the communication results (voltage data and temperature data described later) and the detection results of the current sensor 34 with each CMU 32-1 to 32-24. Based on this, the contactor 35 is controlled to open and close.
  • the battery terminal board 22 is configured as a microcomputer for controlling the plurality of panel breakers 41-1 to 41-N provided corresponding to the battery panel units 21-1 to 21-N and the entire storage battery device 11.
  • a master device 42 for controlling the plurality of panel breakers 41-1 to 41-N provided corresponding to the battery panel units 21-1 to 21-N and the entire storage battery device 11.
  • the master device 42 is configured as a control power line 51 to which power is supplied via the UPS (Uninterruptible Power System) 12A of the power conversion device 12 and the Ethernet (registered trademark) between the master device 42 and the power conversion device 12.
  • UPS Uninterruptible Power System
  • Ethernet registered trademark
  • FIG. 3 is an explanatory diagram of detailed configurations of the cell module, the CMU, and the BMU.
  • Each of the cell modules 31-1 to 31-24 includes a plurality (10 in FIG. 3) of battery cells 61-1 to 61-10 connected in series.
  • CMUs 32-1 to 32-24 are voltage temperature measurement ICs (Analog Front End IC: AFE) for measuring the voltage of the battery cells constituting the corresponding cell modules 31-1 to 31-24 and the temperature of a predetermined location.
  • -IC) 62 an MPU 63 that controls the entire CMU 32-1 to 32-24, and a communication controller 64 that conforms to the CAN (Controller Area Network) standard for performing CAN communication with the BMU 36, And a memory 65 for storing voltage data and temperature data corresponding to the voltage for each cell.
  • CAN Controller Area Network
  • each of the cell modules 31-1 to 31-24 and the corresponding CMUs 32-1 to 32-24 will be referred to as battery modules 37-1 to 37-24.
  • a configuration in which the cell module 31-1 and the corresponding CMU 32-1 are combined is referred to as a battery module 37-1.
  • the BMU 36 is transmitted from the MPU 71 that controls the entire BMU 36, the communication controller 72 conforming to the CAN standard for performing CAN communication between the CMUs 32-1 to 32-24, and the CMUs 32-1 to 32-24. And a memory 73 for storing voltage data and temperature data.
  • the storage battery controller 5 detects the generated power of the natural energy power generation unit 1 and suppresses output fluctuations of the generated power using the storage battery device 11 in order to reduce the influence of the generated power on the power system.
  • the fluctuation suppression amount for the storage battery device 11 is calculated by the storage battery controller 5 or its upper control device 6 and is given as a charge / discharge command to a PCS (Power Conditioning System) 12 corresponding to the storage battery device 11.
  • PCS Power Conditioning System
  • the plurality of panel breakers 41-1 to 41-N are provided corresponding to the battery panels 23-1 to 23-M. These panel breakers 41-1 to 41-N are sequentially turned on (closed) when the storage battery system 3 is started. Thereby, a main circuit is connected and it is set as the state in which charging / discharging to a storage battery is possible.
  • R is the internal resistance per battery panel (sum of internal resistance of storage battery, wiring, etc.).
  • the storage battery system is provided with a fuse for protecting the overcurrent. When an overcurrent flows on the main circuit, the fuse may be blown unintentionally. Moreover, when an overcurrent flows through the storage battery, there is a concern that the storage battery may be deteriorated or that the storage battery is damaged.
  • the controller of the storage battery system does not turn on the circuit breakers of these battery panels, and the inrush current generated on the main circuit is obviated. It was preventing.
  • the maintenance staff In order to eliminate the voltage difference between the battery panels, it is necessary for the maintenance staff to confirm the voltage difference for each battery panel and to charge / discharge the storage battery for each battery panel to eliminate the voltage difference. Therefore, in the present embodiment, when a voltage difference of a certain level or more is generated between the battery panels at the time of starting the storage battery system, charging and discharging are individually performed on the individual battery panels. Adjust the voltage difference. And after confirming that the voltage difference between all the battery panels is settled in the allowable range, the circuit breakers of all the battery panels are automatically turned on so that the entire storage battery system can be charged and discharged.
  • FIG. 4 is an explanatory diagram when a voltage difference of the battery panel is generated. When a difference occurs in the charge amount between the battery panels connected in parallel due to the maintenance of the battery panel or the like, it is as shown in FIG.
  • the battery voltage increases as the charge amount increases, and the battery voltage decreases as the charge amount decreases. Therefore, as shown in FIG. 4, when a difference occurs in the charge amount between the battery panels, a difference also occurs in the voltage between the battery panels.
  • a method of adjusting the voltage difference between the battery panels will be described with reference to FIG.
  • A a method of selecting the highest battery panel voltage as a reference voltage
  • B a method of selecting the lowest battery panel voltage as a reference voltage
  • C a method of selecting the average voltage of each battery panel as a reference voltage
  • D when there are a plurality of battery panels having the same voltage (a plurality of battery panel groups), a method of selecting the average voltage of the battery panel group (combination) having the largest number as a reference voltage; Etc.
  • (E) a method in which an operator sets a target charging rate (SOC) and selects a battery voltage corresponding to the charging rate as a reference voltage; Can also be considered.
  • SOC target charging rate
  • the above-described reference voltage selection methods (a) to (e) each have advantages and disadvantages. For example, when the reference voltage selection method (b) is adopted and adjusted to the lowest battery panel voltage, the amount of electrical energy that can be discharged by the storage battery decreases, so the reference voltage selection method (a) is adopted. There are cases where it is preferable to select the highest battery panel voltage as the reference voltage.
  • the reference voltage selection method (a) when the reference voltage selection method (a) is adopted and the highest battery panel voltage is used as the reference voltage, the reference voltage selection method (b) is adopted and the lowest battery board voltage is used as the reference voltage, or When the reference voltage selection method of (c) is adopted and the average voltage is used as the reference voltage, the total voltage required for voltage adjustment is larger than when the reference voltage selection method of (d) is adopted and selected as the reference voltage. There are cases where the amount of charge and discharge increases and waste occurs.
  • FIG. 5 is a process flowchart for adjusting the voltage difference between the battery panels.
  • the processing procedure for adjusting the voltage difference between the battery panels is as follows.
  • step S11 the voltages of the battery panels 23-1 to 23-M (units) are measured (step S11).
  • the voltage difference between the battery panels is calculated (step S12).
  • the voltage difference is within the allowable range is a range in which the amount of current between the battery panels resulting from the voltage difference when connecting the battery panels is equal to or less than the allowable current value even if they are connected as they are. In this case, if there is no combination of battery panels having a voltage difference within an allowable range, the battery panel closest to the average voltage of all the battery panels is selected, and the voltage is selected as the reference voltage.
  • a voltage adjustment schedule is created (step S14).
  • a battery panel with the largest voltage difference from the set reference voltage is selected as a charge / discharge target to be scheduled preferentially among battery panels other than the combination of battery panels whose voltage difference is within an allowable range. (Step S14-1). At this time, if there are a plurality of battery panels whose SOC differences are within an allowable range with respect to the battery panel selected in step S14-1, they are selected together.
  • step S14-2 a voltage adjustment schedule is created for these battery panels so that they are charged and discharged until the same voltage as that of the battery panel having the next largest voltage difference is reached (step S14-2).
  • step S14-3 it is determined whether or not the voltage difference between all battery panels falls within the allowable range. If it is determined that the voltage difference between all battery panels does not fall within the allowable range (step S14-3) S14-3; No), the process of step S14-1 is repeated again to continue schedule creation.
  • step S15 when all the charging / discharging target schedules are created, the time required for voltage adjustment is calculated according to the created schedule, and a display is made to notify the operator (step S15).
  • FIG. 6 is an explanatory diagram of a notification display example related to voltage adjustment.
  • the storage battery system 3 calculates the required time T (h) required for adjusting the voltage between the battery panels, and as shown in FIG. 6, a guideline for the required time (48 minutes in the example of FIG. 6). ) Is displayed on the operation monitoring panel, or is notified to the host device or the like, so that the operator or the like can be notified in advance.
  • step S16 the voltage of the battery panel is adjusted according to the created schedule.
  • step S17 the voltage difference between all the battery panels 23-1 to 23-M falls within the allowable range.
  • FIG. 7 is an explanatory diagram of an example of specific voltage adjustment.
  • M 5
  • the combination of the battery panels in which the voltage difference between the battery panels is within the allowable range is the battery panel 23-3 and the battery panel 23-4 as shown in FIG. Therefore, the average voltage of the battery panel 23-3 and the battery panel 23-4 is selected as the reference voltage.
  • battery panel 23-1 battery panel 23-1, battery panel 23-2, and battery panel 23-5) that have a voltage difference that exceeds the allowable voltage difference
  • a schedule is created so that charging and discharging are performed individually.
  • the voltage difference is adjusted with the target reference voltage as a target.
  • a breaker of a battery panel 23-2 other than the battery panel used for selecting the reference voltage and having the largest voltage difference with respect to the reference voltage is inserted, and FIG. As shown in B), the storage battery constituting the battery panel 23-2 is charged in order to adjust the voltage difference.
  • charging is first performed until the voltage is the same as that of the battery panel 23-5 having the smallest voltage difference with respect to the voltage of the battery panel 23-2. Thereafter, the circuit breaker of the battery panel 23-2 is opened.
  • the breaker of the battery panel 23-1 having the largest voltage difference (> 0) with respect to the reference voltage at this time is inserted, and as shown in FIG. 7 (C), the voltage difference The battery is discharged to adjust the battery.
  • the voltage of each battery panel is as follows.
  • the battery panel 23-2 and the battery panel 23-5 are made into one group, and these circuit breakers are simultaneously turned on (closed) and charged to the reference voltage as shown in FIG. 7D. .
  • the voltages of the battery panels are as follows, and as shown in FIG. 7E, the voltages of all the battery panels are within the allowable range.
  • the voltage difference of each battery panel is measured, and multiple battery panels whose voltage differences are within the allowable range are collectively adjusted as a group, thereby performing charging / discharging for each battery panel individually.
  • the voltage difference can be adjusted in a short time.
  • the PCS 12 does not have a function capable of directly adjusting the voltage difference of the storage battery, and generally performs charge / discharge control of the storage battery based on the active power and the charge / discharge time. Therefore, in order to adjust the voltage difference between the battery panels, it is necessary to obtain the difference in charge from the voltage difference between the battery panels.
  • the PCS output active power
  • the charge / discharge time are determined.
  • the amount of charge charging state: SOC
  • the open circuit voltage OCV
  • FIG. 8 is a diagram schematically illustrating the relationship between OCV and SOC in a lithium ion battery.
  • OCV at SOC 0% is referred to as a lower limit voltage
  • OCV at SOC 100% is referred to as an upper limit voltage.
  • the storage battery charge amount difference ⁇ SOC (%) can be determined from the battery panel OCV difference ⁇ V (V 2 ⁇ V 1 ).
  • the charge amount difference ⁇ SOC (%) can be converted by the following equation (2) by using the rated capacity Cap (Wh) of the storage battery.
  • the storage battery system can adjust the voltage difference between the battery panels based on the charge / discharge power P (W) and the required time T (h).
  • each storage battery device can be used effectively, the effective life of the storage battery system can be extended, the operation cost can be reduced, and the storage battery system can be operated for a long time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

The storage battery apparatus of an embodiment has a plurality of parallel-connected battery boards, each of which has a plurality of series-connected cell modules each equipped with battery cells. This storage battery apparatus is equipped with: breakers which each connect the storage batteries of the corresponding battery board to a main circuit; a voltage measurement unit which measures battery voltage; and a control unit which turns to the open position the breakers corresponding to the battery boards having a voltage difference therebetween exceeding a predetermined allowable voltage difference among the plurality of battery boards, and turns to closed position the breakers corresponding to the plurality of battery boards having a voltage difference therebetween equal to or smaller than the allowable voltage difference, and at the same time charges or discharges the storage batteries to a target battery voltage, the above process being repeated until the differences in voltage between all battery boards fall within the allowable voltage difference. Thus, it is possible to suppress the occurrence of excessive inrush current upon turning on the breakers, and quickly make a voltage adjustment for that purpose.

Description

蓄電池装置、蓄電池システム、方法及び制御プログラムStorage battery device, storage battery system, method and control program
 本発明の実施形態は、蓄電池装置、蓄電池システム、方法及び制御プログラムに関する。 Embodiments of the present invention relate to a storage battery device, a storage battery system, a method, and a control program.
 近年、太陽光発電や風力発電などをはじめとした安全かつクリーンな自然エネルギーの導入が進んでいる。しかしながら、自然エネルギーの出力は不安定であり、大量導入が進むと電力系統における電圧や周波数に悪影響を及ぼすことが懸念される。また、電力需要に対してこれら自然エネルギーの供給量が大幅に上回ると、自然エネルギーの発電システムを停止しなければならず、発電設備の利用率が低下してしまう。 In recent years, the introduction of safe and clean natural energy including solar power generation and wind power generation has been progressing. However, the output of natural energy is unstable, and there is a concern that the voltage and frequency in the power system will be adversely affected when mass introduction proceeds. In addition, if the supply amount of these natural energies greatly exceeds the power demand, the natural energy power generation system must be stopped, and the utilization rate of the power generation facilities is reduced.
 従来、電力系統における電圧や周波数の安定化には、発電機のガバナフリー制御やLFC(Load Frequency Control)機能、揚水発電による負荷平準化等で対応が行われてきた。しかしながら、発電機の下げ代不足の問題や、揚水発電所の建設に立地条件の制約があること、建設期間が長いなどの課題があった。
 そこで、立地条件の制約が比較的少ない二次電池を用いた大規模蓄電池システムへの注目が高まっている。
Conventionally, stabilization of voltage and frequency in a power system has been addressed by governor-free control of a generator, an LFC (Load Frequency Control) function, load leveling by pumped-storage power generation, and the like. However, there were problems such as the problem of deficiency in generator lowering, the restriction of location conditions in the construction of the pumped storage power plant, and the long construction period.
Thus, attention is being paid to large-scale storage battery systems using secondary batteries with relatively few restrictions on location conditions.
特開2014-127404号公報JP 2014-127404 A 特開2014-075317号公報JP 2014-075317 A 特開2014-119397号公報JP 2014-119597 A 特開2014-023362号公報JP 2014-023362 A 特開2014-041747号公報JP 2014-041747 A 特開2014-110198号公報JP 2014-110198 A 特開2015-008040号公報Japanese Patent Laid-Open No. 2015-008040 特開2013-137867号公報JP 2013-137867 A
 ところで、リチウムイオン電池のようなエネルギー密度が高く、長寿命の二次電池が開発され、車載用二次電池としての利用に留まらず、電力系統の安定化を目的とした定置型蓄電池への利用が拡大している。この定置型蓄電池は、高電圧かつ大容量を確保するため、多数の電池セルを多直列・多並列で組み合わせて構成される。蓄電池システムを構成する電池盤は主回路に並列接続される場合が多く、それぞれに遮断器を設置し、個別に遮断器の開/閉制御が行われる。これらの並列接続された電池盤において、電池盤間に大きな電圧差が生じていた場合、遮断器を投入した直後に過大な突入電流が発生し、過電流保護のためのヒューズが溶断したり、蓄電池の劣化を招く虞がある。 By the way, a secondary battery with a high energy density and a long life like a lithium ion battery has been developed and used not only as a vehicle-mounted secondary battery but also as a stationary storage battery for the purpose of stabilizing the power system. Is expanding. This stationary storage battery is configured by combining a large number of battery cells in a multi-series / multi-parallel manner in order to ensure a high voltage and a large capacity. In many cases, battery panels constituting the storage battery system are connected in parallel to the main circuit, and a circuit breaker is installed in each of the battery panels, and the circuit breaker open / close control is performed individually. In these parallel-connected battery panels, if a large voltage difference occurs between the battery panels, an excessive inrush current occurs immediately after turning on the circuit breaker, the fuse for overcurrent protection is blown, There is a risk of deteriorating the storage battery.
 このため、並列接続された電池盤間の電圧差がなるべく小さい状態で、各電池盤の遮断器を投入する必要がある。 For this reason, it is necessary to turn on the circuit breakers of each battery panel while the voltage difference between the battery panels connected in parallel is as small as possible.
 本発明は、上記に鑑みてなされたものであって、並列接続された複数の電池盤で構成される大規模な蓄電池システムにおいて、遮断器の投入時における過大な突入電流の発生を抑制するとともに、そのための電圧調整を迅速に行うことが可能な、蓄電池装置、蓄電池システム、方法及び制御プログラムを提供することを目的としている。 The present invention has been made in view of the above, and in a large-scale storage battery system composed of a plurality of battery panels connected in parallel, suppresses the occurrence of an excessive inrush current when a circuit breaker is turned on. An object of the present invention is to provide a storage battery device, a storage battery system, a method, and a control program capable of quickly adjusting the voltage for that purpose.
 実施形態の蓄電池装置は、電池セルを備えたセルモジュールが複数、直列に接続される電池盤が複数並列に接続される蓄電池装置である。
 遮断器は、電池盤毎に蓄電池を主回路へ接続する。
 電圧計測部は、電池電圧を計測する。
 これらにより制御部は、複数の電池盤のうち、電池盤間の電圧差が所定の許容電圧差を超えている電池盤に対応する前記遮断器を開状態とし、電池盤間の電圧差が前記許容電圧差以内である複数の電池盤に対応する前記遮断器を閉状態として同時に充電あるいは放電して目標電池電圧とする処理を全ての前記電池盤の電圧差が前記許容電圧差以内となるまで繰り返す。
The storage battery device of the embodiment is a storage battery device in which a plurality of cell modules including battery cells and a plurality of battery panels connected in series are connected in parallel.
The circuit breaker connects the storage battery to the main circuit for each battery panel.
The voltage measuring unit measures the battery voltage.
Thus, the control unit opens the circuit breaker corresponding to the battery panel in which the voltage difference between the battery panels exceeds a predetermined allowable voltage difference among the plurality of battery panels, and the voltage difference between the battery panels is The circuit breakers corresponding to a plurality of battery panels that are within the allowable voltage difference are closed and charged or discharged simultaneously to achieve the target battery voltage until the voltage differences of all the battery panels are within the allowable voltage difference. repeat.
図1は、実施形態の蓄電池システムを備えた自然エネルギー発電システムの概要構成図である。 Drawing 1 is an outline lineblock diagram of a natural energy power generation system provided with the storage battery system of an embodiment. 図2は、実施形態の蓄電池システムの概要構成ブロック図である。FIG. 2 is a schematic configuration block diagram of the storage battery system of the embodiment. 図3は、セルモジュール、CMU及びBMUの詳細構成説明図である。FIG. 3 is an explanatory diagram of detailed configurations of the cell module, the CMU, and the BMU. 図4は、電池盤の電圧差が生じている場合の説明図である。FIG. 4 is an explanatory diagram when a voltage difference of the battery panel is generated. 図5は、電池盤間の電圧差を調整するための処理フローチャートである。FIG. 5 is a process flowchart for adjusting the voltage difference between the battery panels. 図6は、電圧調整に係る通知表示例の説明図である。FIG. 6 is an explanatory diagram of a notification display example related to voltage adjustment. 図7は、具体的な電圧調整の一例の説明図である。FIG. 7 is an explanatory diagram of an example of specific voltage adjustment. 図8は、リチウムイオン電池におけるOCVとSOCの関係を模式的に説明する図である。FIG. 8 is a diagram schematically illustrating the relationship between OCV and SOC in a lithium ion battery.
 次に図面を参照して実施形態について説明する。
 図1は、実施形態の蓄電池システムを備えた自然エネルギー発電システムの概要構成図である。
Next, embodiments will be described with reference to the drawings.
Drawing 1 is an outline lineblock diagram of a natural energy power generation system provided with the storage battery system of an embodiment.
 自然エネルギー発電システム100は、電力システムとして機能し、太陽光、水力、風力、バイオマス、地熱等の自然エネルギー(再生可能エネルギー)を利用し、系統電力として出力可能な自然エネルギー発電ユニット1と、自然エネルギー発電ユニット1の発電電力を測定する電力計2と、電力計2の測定結果に基づいて自然エネルギー発電ユニット1の余剰電力を充電し、不足電力を放電して自然エネルギー発電ユニット1の発電電力に重畳して出力する蓄電池システム3と、自然エネルギー発電ユニット1の出力電力(蓄電池システム3の出力電力が重畳されている場合も含む)の電圧変換を行う変圧器4と、蓄電池システム3のローカルな制御を行う蓄電池制御コントローラ5と、蓄電池制御コントローラ5のリモート制御を行う上位制御装置6と、を備えている。 The natural energy power generation system 100 functions as an electric power system, uses natural energy (renewable energy) such as sunlight, hydropower, wind power, biomass, geothermal heat, and the like, and a natural energy power generation unit 1 that can output as system power, A wattmeter 2 that measures the generated power of the energy power generation unit 1, and the surplus power of the natural energy power generation unit 1 is charged based on the measurement result of the wattmeter 2, and the generated power of the natural energy power generation unit 1 is discharged by discharging the insufficient power. A storage battery system 3 that is superimposed and output, a transformer 4 that performs voltage conversion of the output power of the natural energy power generation unit 1 (including the case where the output power of the storage battery system 3 is superimposed), and the locality of the storage battery system 3 The storage battery controller 5 that performs the control and remote control of the storage battery controller 5 It includes a host controller 6, a.
 図2は、実施形態の蓄電池システムの概要構成ブロック図である。
 蓄電池システム3は、大別すると、電力を蓄える蓄電池装置11と、蓄電池装置11から供給された直流電力を所望の電力品質を有する交流電力に変換して負荷に供給する電力変換装置(PCS:Power Conditioning System)12と、を備えている。
FIG. 2 is a schematic configuration block diagram of the storage battery system of the embodiment.
The storage battery system 3 can be broadly divided into a storage battery device 11 that stores electric power, and a power conversion device (PCS: Power) that converts DC power supplied from the storage battery device 11 into AC power having a desired power quality and supplies it to a load. Conditioning System) 12.
 蓄電池装置11は、大別すると、複数の電池盤ユニット21-1~21-N(Nは自然数)と、電池盤ユニット21-1~21-Nが接続された電池端子盤22と、を備えている。
 電池盤ユニット21-1~21-Nは、互いに並列に接続された複数の電池盤23-1~23-M(Mは自然数)と、ゲートウェイ装置24と、後述のBMU(Battery Management Unit:電池管理装置)及びCMU(Cell Monitoring Unit:セル監視装置)に動作用の直流電源を供給する直流電源装置25と、を備えている。
The storage battery device 11 roughly comprises a plurality of battery panel units 21-1 to 21-N (N is a natural number) and a battery terminal board 22 to which the battery panel units 21-1 to 21-N are connected. ing.
The battery panel units 21-1 to 21-N include a plurality of battery panels 23-1 to 23-M (M is a natural number) connected in parallel to each other, a gateway device 24, and a BMU (Battery Management Unit: battery described later). And a DC power supply device 25 that supplies a DC power supply for operation to a management device) and a CMU (Cell Monitoring Unit).
 ここで、電池盤23-1~23-Mの構成について説明する。
 電池盤23-1~23-Mは、それぞれ、高電位側電源供給ライン(高電位側電源供給線)LH及び低電位側電源供給ライン(低電位側電源供給線)LLを介して、出力電源ライン(出力電源線;母線)LHO、LLOに接続され、主回路である電力変換装置12に電力を供給している。
Here, the configuration of the battery panels 23-1 to 23-M will be described.
The battery panels 23-1 to 23-M are connected to the output power source via the high potential side power supply line (high potential side power supply line) LH and the low potential side power supply line (low potential side power supply line) LL, respectively. Lines (output power supply lines; bus lines) LHO and LLO are connected to supply power to the power converter 12 that is the main circuit.
 電池盤23-1~23-Mは、同一構成であるので、電池盤23-1を例として説明する。
 電池盤23-1は、大別すると、複数(図2では、24個)のセルモジュール31-1~31-24と、セルモジュール31-1~31-24にそれぞれ設けられた複数(図1では、24個)のCMU32-1~32-24と、セルモジュール31-12とセルモジュール31-13との間に設けられたサービスディスコネクト33と、電流センサ34と、コンタクタ35と、を備え、複数のセルモジュール31-1~31-24、サービスディスコネクト33、電流センサ34及びコンタクタ35は、直列に接続されている。
Since the battery boards 23-1 to 23-M have the same configuration, the battery board 23-1 will be described as an example.
The battery panel 23-1 is roughly divided into a plurality (24 in FIG. 2) of cell modules 31-1 to 31-24 and a plurality of (see FIG. 1) provided in each of the cell modules 31-1 to 31-24. 24) CMU 32-1 to 32-24, a service disconnect 33 provided between the cell module 31-12 and the cell module 31-13, a current sensor 34, and a contactor 35. The cell modules 31-1 to 31-24, the service disconnect 33, the current sensor 34, and the contactor 35 are connected in series.
 ここで、セルモジュール31-1~31-24は、電池セルが複数、直並列に接続されて組電池を構成している。そして、複数の直列接続されたセルモジュール31-1~31-24で組電池群を構成している。 Here, in the cell modules 31-1 to 31-24, a plurality of battery cells are connected in series and parallel to form a battery pack. A plurality of cell modules 31-1 to 31-24 connected in series constitute an assembled battery group.
 さらに電池盤23-1は、BMU36を備え、各CMU32-1~32-24の通信ライン、電流センサ34の出力ラインは、BMU36に接続されている。
 BMU36は、ゲートウェイ装置24の制御下で、電池盤23-1全体を制御し、各CMU32-1~32-24との通信結果(後述する電圧データ及び温度データ)及び電流センサ34の検出結果に基づいてコンタクタ35の開閉制御を行う。
Further, the battery panel 23-1 includes a BMU 36, and the communication lines of the CMUs 32-1 to 32-24 and the output line of the current sensor 34 are connected to the BMU 36.
The BMU 36 controls the entire battery panel 23-1 under the control of the gateway device 24, and displays the communication results (voltage data and temperature data described later) and the detection results of the current sensor 34 with each CMU 32-1 to 32-24. Based on this, the contactor 35 is controlled to open and close.
 次に電池端子盤22の構成について説明する。
 電池端子盤22は、電池盤ユニット21-1~21-Nに対応させて設けられた複数の盤遮断器41-1~41-Nと、蓄電池装置11全体を制御するマイクロコンピュータとして構成されたマスタ(Master)装置42と、を備えている。
Next, the configuration of the battery terminal board 22 will be described.
The battery terminal board 22 is configured as a microcomputer for controlling the plurality of panel breakers 41-1 to 41-N provided corresponding to the battery panel units 21-1 to 21-N and the entire storage battery device 11. A master device 42.
 マスタ装置42には、電力変換装置12との間に、電力変換装置12のUPS(Uninterruptible Power System)12Aを介して電源が供給される制御電源線51と、イーサネット(登録商標)として構成され、制御データのやりとりを行う制御通信線52と、が接続されている。 The master device 42 is configured as a control power line 51 to which power is supplied via the UPS (Uninterruptible Power System) 12A of the power conversion device 12 and the Ethernet (registered trademark) between the master device 42 and the power conversion device 12. A control communication line 52 for exchanging control data is connected.
 ここで、セルモジュール31-1~31-24、CMU32-1~32-24およびBMU36の詳細構成について説明する。 Here, detailed configurations of the cell modules 31-1 to 31-24, the CMUs 32-1 to 32-24, and the BMU 36 will be described.
 図3は、セルモジュール、CMU及びBMUの詳細構成説明図である。
 セルモジュール31-1~31-24は、それぞれ、直列接続された複数(図3では、10個)の電池セル61-1~61-10を備えている。
FIG. 3 is an explanatory diagram of detailed configurations of the cell module, the CMU, and the BMU.
Each of the cell modules 31-1 to 31-24 includes a plurality (10 in FIG. 3) of battery cells 61-1 to 61-10 connected in series.
 CMU32-1~32-24は、対応するセルモジュール31-1~31-24を構成している電池セルの電圧及び所定箇所の温度を測定するための電圧温度計測IC(Analog Front End IC:AFE-IC)62と、それぞれが対応するCMU32-1~32-24全体の制御を行うMPU63と、BMU36との間でCAN通信を行うためのCAN(Controller Area Network)規格に則った通信コントローラ64と、セル毎の電圧に相当する電圧データ及び温度データを格納するメモリ65と、を備えている。 CMUs 32-1 to 32-24 are voltage temperature measurement ICs (Analog Front End IC: AFE) for measuring the voltage of the battery cells constituting the corresponding cell modules 31-1 to 31-24 and the temperature of a predetermined location. -IC) 62, an MPU 63 that controls the entire CMU 32-1 to 32-24, and a communication controller 64 that conforms to the CAN (Controller Area Network) standard for performing CAN communication with the BMU 36, And a memory 65 for storing voltage data and temperature data corresponding to the voltage for each cell.
 以下の説明において、セルモジュール31-1~31-24のそれぞれと、対応するCMU32-1~32-24と、を合わせた構成については、電池モジュール37-1~37-24と呼ぶものとする。例えば、セルモジュール31-1と対応するCMU32-1を合わせた構成を電池モジュール37-1と呼ぶものとする。 In the following description, the configuration in which each of the cell modules 31-1 to 31-24 and the corresponding CMUs 32-1 to 32-24 are combined will be referred to as battery modules 37-1 to 37-24. . For example, a configuration in which the cell module 31-1 and the corresponding CMU 32-1 are combined is referred to as a battery module 37-1.
 また、BMU36は、BMU36全体を制御するMPU71と、CMU32-1~32-24との間でCAN通信を行うためのCAN規格に則った通信コントローラ72と、CMU32-1~32-24から送信された電圧データ及び温度データを格納するメモリ73と、を備えている。 The BMU 36 is transmitted from the MPU 71 that controls the entire BMU 36, the communication controller 72 conforming to the CAN standard for performing CAN communication between the CMUs 32-1 to 32-24, and the CMUs 32-1 to 32-24. And a memory 73 for storing voltage data and temperature data.
 蓄電池制御コントローラ5は、自然エネルギー発電ユニット1の発電電力を検出し、この発電電力が電力系統へ及ぼす影響を緩和するために、蓄電池装置11を用いて発電電力の出力変動抑制を行なっている。ここで、蓄電池装置11に対する変動抑制量は当該蓄電池制御コントローラ5あるいはその上位制御装置6で算出し、蓄電池装置11に対応するPCS(Power Conditioning System)12に充放電指令として与えられる。 The storage battery controller 5 detects the generated power of the natural energy power generation unit 1 and suppresses output fluctuations of the generated power using the storage battery device 11 in order to reduce the influence of the generated power on the power system. Here, the fluctuation suppression amount for the storage battery device 11 is calculated by the storage battery controller 5 or its upper control device 6 and is given as a charge / discharge command to a PCS (Power Conditioning System) 12 corresponding to the storage battery device 11.
 上述したように、電池盤23-1~23-Mに対応させて複数の盤遮断器41-1~41-Nが設けられている。
 そして、これらの盤遮断器41-1~41-Nは、蓄電池システム3の起動時に順次投入(閉状態と)される。これにより、主回路を接続し、蓄電池への充放電が可能な状態とする。
As described above, the plurality of panel breakers 41-1 to 41-N are provided corresponding to the battery panels 23-1 to 23-M.
These panel breakers 41-1 to 41-N are sequentially turned on (closed) when the storage battery system 3 is started. Thereby, a main circuit is connected and it is set as the state in which charging / discharging to a storage battery is possible.
 この時、電池盤23-1~23-M間の充電量が異なり、電池盤23-1~23-M間の電圧に大きな差が生じていた場合、遮断器を投入した直後に主回路上に過大な突入電流(横流)が発生する。並列接続可能な2台の電池盤間に電圧差ΔVが生じていたと仮定すると、遮断器投入時に流れる突入電流Iは、以下の式(1)から求められる。 At this time, if the amount of charge between the battery panels 23-1 to 23-M is different and there is a large difference in the voltage between the battery panels 23-1 to 23-M, immediately after turning on the circuit breaker, An excessive inrush current (cross current) occurs. Assuming that a voltage difference ΔV has occurred between two battery panels that can be connected in parallel, the inrush current I that flows when the circuit breaker is turned on can be obtained from the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、Rは電池盤1台当たりの内部抵抗(蓄電池や配線等の内部抵抗の和)である。蓄電池システムには、過電流を保護するためのヒューズが設置されており、主回路上に過電流が流れると、このヒューズが意図せず溶断する場合がある。また、蓄電池に過電流が流れると、蓄電池が劣化する要因となったり、蓄電池に損傷を与えるなどのリスクが懸念されたりする。 Here, R is the internal resistance per battery panel (sum of internal resistance of storage battery, wiring, etc.). The storage battery system is provided with a fuse for protecting the overcurrent. When an overcurrent flows on the main circuit, the fuse may be blown unintentionally. Moreover, when an overcurrent flows through the storage battery, there is a concern that the storage battery may be deteriorated or that the storage battery is damaged.
 そのため、この突入電流の発生を防止するために、並列接続された電池盤間に一定以上の電圧差が生じていた場合、該当電池盤の遮断器を投入しないように保護を行う。その後、保守員などが電池盤間の電圧差を解消した後、遮断器の投入を再度試みる。このように、並列接続された電池盤間に過大な電流が発生する事を防ぐためには、遮断器を投入する際に該当電池盤間の電圧差を小さくしておく必要がある。 Therefore, in order to prevent the occurrence of this inrush current, when a voltage difference of a certain level or more is generated between the battery panels connected in parallel, protection is performed so that the breaker of the corresponding battery panel is not turned on. Then, after the maintenance staff resolves the voltage difference between the battery panels, they try to turn on the circuit breaker again. As described above, in order to prevent an excessive current from being generated between the battery panels connected in parallel, it is necessary to reduce a voltage difference between the corresponding battery panels when the circuit breaker is turned on.
 ところで、従来においては、電池盤間の電圧差が所定の閾値を上回っていた場合、蓄電池システムの制御コントローラはこれらの電池盤の遮断器を投入せず、主回路上に発生する突入電流を未然に防いでいた。電池盤間の電圧差を解消するためには、保守員が電池盤毎の電圧差を確認し、電池盤毎に蓄電池への充放電を行うことで、電圧差を解消する必要があった。
 そこで、本実施形態においては、蓄電池システムの起動時において、電池盤間に一定以上の電圧差が生じていた場合、個々の電池盤に対して個別に充放電を行うことで、これら電池盤間の電圧差を調整する。そして、全ての電池盤間の電圧差が許容範囲内に収まっていることを確認した後、全ての電池盤の遮断器を自動投入し、蓄電池システム全体で充放電可能な状態としている。
By the way, conventionally, when the voltage difference between the battery panels exceeds a predetermined threshold, the controller of the storage battery system does not turn on the circuit breakers of these battery panels, and the inrush current generated on the main circuit is obviated. It was preventing. In order to eliminate the voltage difference between the battery panels, it is necessary for the maintenance staff to confirm the voltage difference for each battery panel and to charge / discharge the storage battery for each battery panel to eliminate the voltage difference.
Therefore, in the present embodiment, when a voltage difference of a certain level or more is generated between the battery panels at the time of starting the storage battery system, charging and discharging are individually performed on the individual battery panels. Adjust the voltage difference. And after confirming that the voltage difference between all the battery panels is settled in the allowable range, the circuit breakers of all the battery panels are automatically turned on so that the entire storage battery system can be charged and discharged.
 図4は、電池盤の電圧差が生じている場合の説明図である。
 電池盤のメンテナンス等により並列接続された電池盤間の充電量に差が生じた場合を視覚的に表現すると図4に示すようなものとなる。
FIG. 4 is an explanatory diagram when a voltage difference of the battery panel is generated.
When a difference occurs in the charge amount between the battery panels connected in parallel due to the maintenance of the battery panel or the like, it is as shown in FIG.
 ところで、一般的なリチウムイオン電池は、充電量が多いほど電池電圧は高くなり、充電量が少ないと電池電圧は低くなる。そのため、図4に示すように、電池盤間の充電量に差が生じると、電池盤間の電圧にも差が生じる。 By the way, in a general lithium ion battery, the battery voltage increases as the charge amount increases, and the battery voltage decreases as the charge amount decreases. Therefore, as shown in FIG. 4, when a difference occurs in the charge amount between the battery panels, a difference also occurs in the voltage between the battery panels.
 ここで、電池盤間の電圧差を調整する方法について図4を参照して説明する。
 電圧調整に用いる基準電圧の選定方法として、
 (a)最も高い電池盤電圧を基準電圧として選定する方法、
 (b)最も低い電池盤電圧を基準電圧として選定する方法、
 (c)各電池盤の平均電圧を基準電圧として選定する方法、
 (d)既に電圧が等しい電池盤が複数組(複数の電池盤群)ある場合には、その数が最も多い電池盤群(組み合わせ)の平均電圧を基準電圧として選定する方法、
等が挙げられる。
Here, a method of adjusting the voltage difference between the battery panels will be described with reference to FIG.
As a selection method of the reference voltage used for voltage adjustment,
(A) a method of selecting the highest battery panel voltage as a reference voltage;
(B) a method of selecting the lowest battery panel voltage as a reference voltage;
(C) a method of selecting the average voltage of each battery panel as a reference voltage;
(D) when there are a plurality of battery panels having the same voltage (a plurality of battery panel groups), a method of selecting the average voltage of the battery panel group (combination) having the largest number as a reference voltage;
Etc.
 また、別の基準電圧の選定方法として、蓄電池システムの運用方針に合わせ、
 (e)オペレータが目標充電率(SOC)を設定し、その充電率に応じた電池電圧を基準電圧として選定する方法、
も考えらえる。
 上述した(a)~(e)の基準電圧の選定方法には、それぞれ長所と短所が考えられる。
 例えば、(b)の基準電圧の選定方法を採用し、最も低い電池盤電圧に調整した場合、蓄電池で放電可能な電気エネルギー量は減少するため、(a)の基準電圧の選定方法を採用し最も高い電池盤電圧を基準電圧に選定した方が好ましいケースが挙げられる。
In addition, as another reference voltage selection method, according to the operation policy of the storage battery system,
(E) a method in which an operator sets a target charging rate (SOC) and selects a battery voltage corresponding to the charging rate as a reference voltage;
Can also be considered.
The above-described reference voltage selection methods (a) to (e) each have advantages and disadvantages.
For example, when the reference voltage selection method (b) is adopted and adjusted to the lowest battery panel voltage, the amount of electrical energy that can be discharged by the storage battery decreases, so the reference voltage selection method (a) is adopted. There are cases where it is preferable to select the highest battery panel voltage as the reference voltage.
 また、(a)の基準電圧の選定方法を採用し最も高い電池盤電圧を基準電圧とする場合、(b)の基準電圧の選定方法を採用し最も低い電池盤電圧を基準電圧とする場合あるいは(c)の基準電圧の選定方法を採用し平均電圧を基準電圧とする場合、(d)の基準電圧の選定方法を採用し基準電圧に選定した場合と比べて、電圧調整に必要となる総充放電量が多くなり、無駄が生じるケースがある。 Further, when the reference voltage selection method (a) is adopted and the highest battery panel voltage is used as the reference voltage, the reference voltage selection method (b) is adopted and the lowest battery board voltage is used as the reference voltage, or When the reference voltage selection method of (c) is adopted and the average voltage is used as the reference voltage, the total voltage required for voltage adjustment is larger than when the reference voltage selection method of (d) is adopted and selected as the reference voltage. There are cases where the amount of charge and discharge increases and waste occurs.
 したがって、基準電圧の選定方法は、蓄電池システムの用途や設計方針に応じて決めることが望ましい。 Therefore, it is desirable to determine the reference voltage selection method according to the application and design policy of the storage battery system.
 以下においては、上述した(d)の基準電圧の選定方法を採用した場合を例として、具体的な処理手順を説明する。
 図5は、電池盤間の電圧差を調整するための処理フローチャートである。
 電池盤間の電圧差が許容範囲を超えていた場合において、電池盤間の電圧差を調整するための処理手順は、以下の通りである。
In the following, a specific processing procedure will be described by taking as an example the case where the above-described method for selecting the reference voltage (d) is adopted.
FIG. 5 is a process flowchart for adjusting the voltage difference between the battery panels.
When the voltage difference between the battery panels exceeds the allowable range, the processing procedure for adjusting the voltage difference between the battery panels is as follows.
 まず、各電池盤23-1~23-M(ユニット)の電圧を測定する(ステップS11)。
 次に各電池盤間の電圧差を算出する(ステップS12)。
First, the voltages of the battery panels 23-1 to 23-M (units) are measured (step S11).
Next, the voltage difference between the battery panels is calculated (step S12).
 そして電圧差が許容範囲内の電池盤の組合せを求め、最も数が多い組合せの電池盤の平均電圧を基準電圧として選定する(ステップS13)。
 ここで電圧差が許容範囲内とは、互いにそのまま接続しても電池盤間の接続時の電圧差に起因する電池盤間の電流量が許容電流値以下となる範囲である。この場合において、電圧差が許容範囲内の電池盤の組合せが存在しない場合は、全電池盤の平均電圧に最も近い電池盤を選び、その電圧を基準電圧として選定する。
Then, a combination of battery panels having a voltage difference within an allowable range is obtained, and the average voltage of the battery panels having the largest number is selected as a reference voltage (step S13).
Here, the voltage difference is within the allowable range is a range in which the amount of current between the battery panels resulting from the voltage difference when connecting the battery panels is equal to or less than the allowable current value even if they are connected as they are. In this case, if there is no combination of battery panels having a voltage difference within an allowable range, the battery panel closest to the average voltage of all the battery panels is selected, and the voltage is selected as the reference voltage.
 続いて、電圧調整のスケジュール作成を行う(ステップS14)。
 スケジュールの作成においては、電圧差が許容範囲内の電池盤の組合せ以外の電池盤の中で、設定した基準電圧から最も電圧差が大きい電池盤を優先的にスケジューリングすべき充放電対象として選択する(ステップS14-1)。この時、ステップS14-1で選択した電池盤に対し、SOC差が許容範囲内である複数の電池盤が存在すれば、それらをまとめて選択する。
Subsequently, a voltage adjustment schedule is created (step S14).
When creating a schedule, a battery panel with the largest voltage difference from the set reference voltage is selected as a charge / discharge target to be scheduled preferentially among battery panels other than the combination of battery panels whose voltage difference is within an allowable range. (Step S14-1). At this time, if there are a plurality of battery panels whose SOC differences are within an allowable range with respect to the battery panel selected in step S14-1, they are selected together.
 そして、これらの電池盤に対して、次に電圧差が大きい電池盤と同じ電圧になるまで充放電を行なうように電圧調整のスケジュール作成を行う(ステップS14-2)。
 次に全ての電池盤の電圧差が許容範囲内に収まるか否かを判別し(ステップS14-3)全ての電池盤の電圧差が許容範囲内に収まらないと判別される場合には(ステップS14-3;No)、再びステップS14-1の処理を繰り返してスケジュール作成を継続する。
Then, a voltage adjustment schedule is created for these battery panels so that they are charged and discharged until the same voltage as that of the battery panel having the next largest voltage difference is reached (step S14-2).
Next, it is determined whether or not the voltage difference between all battery panels falls within the allowable range (step S14-3). If it is determined that the voltage difference between all battery panels does not fall within the allowable range (step S14-3) S14-3; No), the process of step S14-1 is repeated again to continue schedule creation.
 次に全ての充放電対象のスケジュールが作成されると、作成したスケジュールに従って電圧調整に係る所要時間の算出を行うとともに、オペレータに通知すべく表示を行う(ステップS15)。 Next, when all the charging / discharging target schedules are created, the time required for voltage adjustment is calculated according to the created schedule, and a display is made to notify the operator (step S15).
 図6は、電圧調整に係る通知表示例の説明図である。
 具体的には、蓄電池システム3は、各電池盤間の電圧調整にかかる所要時間T(h)を算出し、図6に示すように、所要時間の目安(図6の例の場合、48分)を操作監視盤に表示したり、上位装置などへ通知を行うことで、オペレータ等に予め知らせることができる。
FIG. 6 is an explanatory diagram of a notification display example related to voltage adjustment.
Specifically, the storage battery system 3 calculates the required time T (h) required for adjusting the voltage between the battery panels, and as shown in FIG. 6, a guideline for the required time (48 minutes in the example of FIG. 6). ) Is displayed on the operation monitoring panel, or is notified to the host device or the like, so that the operator or the like can be notified in advance.
 続いて、作成したスケジュールに従って電池盤の電圧調整を行う(ステップS16)。
 そして、全ての電池盤23-1~23-Mの電圧差が許容範囲内に収まると、全ての盤遮断器41-1~41-Mを投入して閉状態とする(ステップS17)。
Subsequently, the voltage of the battery panel is adjusted according to the created schedule (step S16).
When the voltage difference between all the battery panels 23-1 to 23-M falls within the allowable range, all the panel breakers 41-1 to 41-M are turned on and closed (step S17).
 次に具体的な電圧調整の一例について図を用いて説明する。
 図7は、具体的な電圧調整の一例の説明図である。
 以下の説明においては、説明の簡略化のため、電池盤が電池盤23-1~21-5(M=5)の5個である場合を例として説明する。
Next, a specific example of voltage adjustment will be described with reference to the drawings.
FIG. 7 is an explanatory diagram of an example of specific voltage adjustment.
In the following description, for simplification of description, a case where there are five battery panels 23-1 to 21-5 (M = 5) will be described as an example.
 図7の例の場合、電池盤間の電圧差が許容範囲内に収まる電池盤の組合せは、図7(A)に示すように、電池盤23-3と電池盤23-4である。
 そこで、電池盤23-3と電池盤23-4の平均電圧を、基準電圧に選定する。
In the case of the example of FIG. 7, the combination of the battery panels in which the voltage difference between the battery panels is within the allowable range is the battery panel 23-3 and the battery panel 23-4 as shown in FIG.
Therefore, the average voltage of the battery panel 23-3 and the battery panel 23-4 is selected as the reference voltage.
 なお、許容電圧差を越える電圧差がある電池盤(電池盤23-1、電池盤23-2および電池盤23-5)に対しては個別に充放電を行なうようにスケジュール作成がなされ、選定した基準電圧を目標とした電圧差の調整がなされることとなる。 For battery panels (battery panel 23-1, battery panel 23-2, and battery panel 23-5) that have a voltage difference that exceeds the allowable voltage difference, a schedule is created so that charging and discharging are performed individually. The voltage difference is adjusted with the target reference voltage as a target.
 この場合において、各電池盤の電圧と選定された基準電圧との電圧差は、電池盤23-2>電池盤23-5、電池盤23-1>電池盤23-3=電池盤23-4となっているものとする。また、電池盤23-3の電圧>電池盤23-4の電圧となっているものとする。 In this case, the voltage difference between the voltage of each battery panel and the selected reference voltage is battery panel 23-2> battery panel 23-5, battery panel 23-1> battery panel 23-3 = battery panel 23-4. It shall be. Further, it is assumed that the voltage of the battery panel 23-3> the voltage of the battery panel 23-4.
 最初に、作成したスケジュールに従い、基準電圧の選定に用いられた電池盤以外の電池盤であって、基準電圧に対し最も電圧差が大きい電池盤23-2の遮断器を投入し、図7(B)に示すように、電圧差調整するために電池盤23-2を構成している蓄電池の充電を行う。基準電圧まで充電を行う過程において、まず電池盤23-2の電圧に対して最も電圧差が少ない電池盤23-5と同じ電圧となるまで充電を行なう。その後、電池盤23-2の遮断器を開く。 First, in accordance with the created schedule, a breaker of a battery panel 23-2 other than the battery panel used for selecting the reference voltage and having the largest voltage difference with respect to the reference voltage is inserted, and FIG. As shown in B), the storage battery constituting the battery panel 23-2 is charged in order to adjust the voltage difference. In the process of charging up to the reference voltage, charging is first performed until the voltage is the same as that of the battery panel 23-5 having the smallest voltage difference with respect to the voltage of the battery panel 23-2. Thereafter, the circuit breaker of the battery panel 23-2 is opened.
 次に、スケジュールに従って、この時点において基準電圧に対して最も電圧差(>0)が大きいこととなる電池盤23-1の遮断器を投入し、図7(C)に示すように、電圧差を調整するために蓄電池の放電を行う。 Next, according to the schedule, the breaker of the battery panel 23-1 having the largest voltage difference (> 0) with respect to the reference voltage at this time is inserted, and as shown in FIG. 7 (C), the voltage difference The battery is discharged to adjust the battery.
 この場合において、電池盤23-1と基準電圧の選定に用いられた電池盤であってより電池盤23-1と近い電圧を有する電池盤との間の電圧を有する電池盤は存在しない、すなわち、電池盤23-1を基準電圧まで放電する過程において、他に電圧差の調整が必要となる電池盤は存在しないため、一度に選定した基準電圧まで放電を行うようにスケジュールが作成されている。 In this case, there is no battery panel having a voltage between the battery panel 23-1 and the battery panel used for selecting the reference voltage and having a voltage closer to the battery panel 23-1. In the process of discharging the battery panel 23-1 to the reference voltage, there is no other battery panel that requires adjustment of the voltage difference, so a schedule is prepared to discharge to the selected reference voltage at a time. .
 上述したスケジュールに従うと、この時点において、各電池盤の電圧は以下の通りとなっている。
 電池盤23-3>電池盤23-1>電池盤23-4>電池盤23-2≒電池盤23-5
According to the schedule described above, at this time, the voltage of each battery panel is as follows.
Battery panel 23-3> Battery panel 23-1> Battery panel 23-4> Battery panel 23-2≈Battery panel 23-5
 そこで、最後に、電池盤23-2と電池盤23-5を一つのグループとし、これらの遮断器を同時に投入(閉)し、図7(D)に示すように、基準電圧まで充電を行う。
 この結果、各電池盤の電圧は以下の通りとなり、図7(E)に示すように、全ての電池盤の電圧が許容範囲内に収まることとなる。
 電池盤23-3>電池盤23-1≒電池盤23-2≒電池盤23-5>電池盤23-4
Therefore, finally, the battery panel 23-2 and the battery panel 23-5 are made into one group, and these circuit breakers are simultaneously turned on (closed) and charged to the reference voltage as shown in FIG. 7D. .
As a result, the voltages of the battery panels are as follows, and as shown in FIG. 7E, the voltages of all the battery panels are within the allowable range.
Battery panel 23-3> Battery panel 23-1≈Battery panel 23-2≈Battery panel 23-5> Battery panel 23-4
 このように、各電池盤の電圧差を測定し、電圧差が許容範囲内である複数の電池盤をまとめて一つのグループとして電圧調整することにより、電池盤毎に個別に充放電を行う調整方法と比べて、短時間で電圧差を調整することができる。 In this way, the voltage difference of each battery panel is measured, and multiple battery panels whose voltage differences are within the allowable range are collectively adjusted as a group, thereby performing charging / discharging for each battery panel individually. Compared with the method, the voltage difference can be adjusted in a short time.
 次に、電圧調整のスケジュールの作成において、電圧調整を行うために必要となる蓄電池の充放電制御について説明する。
 通常、PCS12は、蓄電池の電圧差を直接調整できるような機能は有しておらず、一般的には有効電力と充放電時間に基づいて蓄電池の充放電制御を行う。そのため、電池盤間の電圧差を調整するためには、電池盤間の電圧差から充電量の差を求める必要がある。
Next, charge / discharge control of a storage battery required for performing voltage adjustment in creating a voltage adjustment schedule will be described.
Usually, the PCS 12 does not have a function capable of directly adjusting the voltage difference of the storage battery, and generally performs charge / discharge control of the storage battery based on the active power and the charge / discharge time. Therefore, in order to adjust the voltage difference between the battery panels, it is necessary to obtain the difference in charge from the voltage difference between the battery panels.
 そして、この充電量の差に基づいて、PCS出力(有効電力)と充放電時間を決定する。一般的なリチウムイオン電池は、充電量(充電状態:SOC)と開回路電圧(OCV)の間に相関がある場合が多い。このような蓄電池では、開回路電圧の差から充電量の差を推定することができる。 Then, based on the difference in charge amount, the PCS output (active power) and the charge / discharge time are determined. In general lithium ion batteries, there is often a correlation between the amount of charge (charging state: SOC) and the open circuit voltage (OCV). In such a storage battery, the charge amount difference can be estimated from the open circuit voltage difference.
 図8は、リチウムイオン電池におけるOCVとSOCの関係を模式的に説明する図である。
 以下においては、SOC0%におけるOCVを下限電圧、SOC100%におけるOCVを上限電圧と呼ぶこととする。
FIG. 8 is a diagram schematically illustrating the relationship between OCV and SOC in a lithium ion battery.
In the following, OCV at SOC 0% is referred to as a lower limit voltage, and OCV at SOC 100% is referred to as an upper limit voltage.
 一般的に、SOCが高いほど蓄電池のOCVは高くなる傾向にある。この電池特性に基づいて、電池盤のOCV差ΔV(V-V)から、蓄電池の充電量の差ΔSOC(%)を求めることができる。
 充電量の差ΔSOC(%)は、蓄電池の定格容量Cap(Wh)を用いることで、以下の式(2)により単位変換を行うことができる。
In general, the higher the SOC, the higher the OCV of the storage battery. Based on the battery characteristics, the storage battery charge amount difference ΔSOC (%) can be determined from the battery panel OCV difference ΔV (V 2 −V 1 ).
The charge amount difference ΔSOC (%) can be converted by the following equation (2) by using the rated capacity Cap (Wh) of the storage battery.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 この充電量の差ΔSOC’(Wh)と電圧調整時における充放電電力P(W)を用いると、各電池盤間の電圧調整にかかる所要時間T(h)は、以下の式(3)で求められる。 Using this charge amount difference ΔSOC ′ (Wh) and the charge / discharge power P (W) at the time of voltage adjustment, the required time T (h) required for voltage adjustment between the battery panels is given by the following equation (3). Desired.
Figure JPOXMLDOC01-appb-M000003
 蓄電池システムは、この充放電電力P(W)と所要時間T(h)に基づいて、電池盤間の電圧差を調整することができる。
Figure JPOXMLDOC01-appb-M000003
The storage battery system can adjust the voltage difference between the battery panels based on the charge / discharge power P (W) and the required time T (h).
 以上の説明のように、実施形態が適用された蓄電池装置を複数備えた蓄電池システムによれば、遮断器の投入時における過大な突入電流の発生を抑制するとともに、そのための電圧調整を迅速に行うことが可能となる。 As described above, according to the storage battery system including a plurality of storage battery devices to which the embodiment is applied, generation of an excessive inrush current at the time of turning on the circuit breaker is suppressed, and voltage adjustment therefor is quickly performed. It becomes possible.
 さらに各蓄電池装置の容量を有効に利用でき、実効的な蓄電池システムの長寿命化が図れ、運用コストの低減を図ることができるとともに、蓄電池システムの長期運用が可能となる。 Furthermore, the capacity of each storage battery device can be used effectively, the effective life of the storage battery system can be extended, the operation cost can be reduced, and the storage battery system can be operated for a long time.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (10)

  1.  電池セルを備えたセルモジュールが複数、直列に接続される電池盤が複数並列に接続される蓄電池装置であって、
     前記電池盤毎に蓄電池を主回路へ接続する遮断器と、
     電池電圧を計測する電圧計測部と、
     前記複数の電池盤のうち、電池盤間の電圧差が所定の許容電圧差を超えている電池盤に対応する前記遮断器を開状態とし、電池盤間の電圧差が前記許容電圧差以内である複数の電池盤に対応する前記遮断器を閉状態として同時に充電あるいは放電して目標電池電圧とする処理を全ての前記電池盤の電圧差が前記許容電圧差以内となるまで繰り返す制御部と、
     を備えた蓄電池装置。
    A plurality of cell modules provided with battery cells, a storage battery device in which a plurality of battery panels connected in series are connected in parallel,
    A circuit breaker for connecting a storage battery to the main circuit for each battery panel;
    A voltage measuring unit for measuring the battery voltage;
    Among the plurality of battery panels, the circuit breaker corresponding to the battery panel whose voltage difference between the battery panels exceeds a predetermined allowable voltage difference is opened, and the voltage difference between the battery panels is within the allowable voltage difference. A control unit that repeats the process of setting the target battery voltage by simultaneously charging or discharging the circuit breaker corresponding to a plurality of battery panels until the voltage difference of all the battery panels is within the allowable voltage difference, and
    A storage battery device comprising:
  2.  前記制御部は、前記充電あるいは放電の対象となる電池盤の電圧と前記目標電池電圧との間の電圧を有する他の電池盤が存在しない場合に、前記充電あるいは放電の対象となる電池盤について前記目標電池電圧まで充電あるいは放電を行う、
     請求項1記載の蓄電池装置。
    The control unit is configured to control the battery board to be charged or discharged when there is no other battery board having a voltage between the voltage of the battery board to be charged or discharged and the target battery voltage. Charge or discharge to the target battery voltage,
    The storage battery device according to claim 1.
  3.  前記制御部は、所定の許容電圧差以内に複数の前記電池盤の電圧値が含まれる場合に、当該複数の前記電池盤の平均電圧を前記目標電池電圧として用いる、
     請求項1記載の蓄電池装置。
    The control unit uses an average voltage of the plurality of battery panels as the target battery voltage when voltage values of the plurality of battery panels are included within a predetermined allowable voltage difference.
    The storage battery device according to claim 1.
  4.  前記制御部は、前記目標電池電圧として、最も高い電池盤電圧、最も低い電池盤電圧、電池盤電圧の平均電圧、あるいは、既に電池電圧が等しいとみなせる電池盤が複数ある場合において、その数が最も多い電池盤群における平均電圧のいずれかを用いる、
     請求項1記載の蓄電池装置。
    The control unit, as the target battery voltage, the highest battery panel voltage, the lowest battery panel voltage, the average voltage of the battery panel voltage, or when there are a plurality of battery panels that can already be regarded as equal battery voltage, the number is Use one of the average voltages in the most battery panel group,
    The storage battery device according to claim 1.
  5.  前記電池セルとして、充電量と開回路電圧の間に相関がある電池セルを用い、
     前記制御部は、前記電池セルの充電量-開回路電圧特性に基づいて、前記電池盤の充放電制御を行う、
     請求項1記載の蓄電池装置。
    As the battery cell, a battery cell having a correlation between the charge amount and the open circuit voltage is used,
    The control unit performs charge / discharge control of the battery panel based on a charge amount-open circuit voltage characteristic of the battery cell.
    The storage battery device according to claim 1.
  6.  前記制御部は、全ての前記電池盤の電圧差が前記許容電圧差以内となると、全ての前記遮断器を閉状態とする、
     請求項1記載の蓄電池装置。
    When the voltage difference between all the battery panels is within the allowable voltage difference, the control unit closes all the circuit breakers.
    The storage battery device according to claim 1.
  7.  前記制御部は、前記電池盤間の電圧差が前記許容電圧差を越えている場合に、各前記電池盤の電圧差を調整するための所要時間を予め算出し、通知する、
     請求項1記載の蓄電池装置。
    When the voltage difference between the battery panels exceeds the allowable voltage difference, the control unit calculates and notifies in advance the time required to adjust the voltage difference between the battery panels.
    The storage battery device according to claim 1.
  8.  電池セルを備えたセルモジュールが複数、直列に接続される電池盤が複数並列に接続される蓄電池装置と、前記蓄電池装置を制御する制御装置と、を備えた蓄電池システムであって、
     前記電池盤毎に蓄電池を主回路へ接続する遮断器と、
     電池電圧を計測する電圧計測部を有し、
     前記制御装置は、前記複数の電池盤のうち、電池盤間の電圧差が所定の許容電圧差を超えている電池盤に対応する前記遮断器を開状態とし、電池盤間の電圧差が前記許容電圧差以内である複数の電池盤に対応する前記遮断器を閉状態として同時に充電あるいは放電して目標電池電圧とする処理を全ての前記電池盤の電圧差が前記許容電圧差以内となるまで繰り返す、
     蓄電池システム。
    A storage battery system comprising a plurality of cell modules including battery cells, a storage battery device in which a plurality of battery panels connected in series are connected in parallel, and a control device for controlling the storage battery device,
    A circuit breaker for connecting a storage battery to the main circuit for each battery panel;
    It has a voltage measurement unit that measures battery voltage,
    The control device opens the circuit breaker corresponding to a battery panel in which a voltage difference between the battery panels exceeds a predetermined allowable voltage difference among the plurality of battery panels, and the voltage difference between the battery panels is The circuit breakers corresponding to a plurality of battery panels that are within the allowable voltage difference are closed and charged or discharged simultaneously to achieve the target battery voltage until the voltage differences of all the battery panels are within the allowable voltage difference. repeat,
    Storage battery system.
  9.  電池セルを備えたセルモジュールが複数、直列に接続される電池盤が複数並列に接続されるとともに、前記電池盤毎に蓄電池を主回路へ接続する遮断器と、電池電圧を計測する電圧計測部を有する蓄電池装置で実行される方法であって、
     電池電圧を計測する過程と、
     前記複数の電池盤のうち、電池盤間の電圧差が所定の許容電圧差を超えている電池盤に対応する前記遮断器を開状態とし、電池盤間の電圧差が前記許容電圧差以内である複数の電池盤に対応する前記遮断器を閉状態として同時に充電あるいは放電して目標電池電圧とする処理を全ての前記電池盤の電圧差が前記許容電圧差以内となるまで繰り返す過程と、
     を備えた方法。
    A plurality of cell modules having battery cells, a plurality of battery panels connected in series are connected in parallel, a circuit breaker for connecting a storage battery to the main circuit for each battery panel, and a voltage measuring unit for measuring a battery voltage A method performed in a storage battery device having
    The process of measuring battery voltage;
    Among the plurality of battery panels, the circuit breaker corresponding to the battery panel whose voltage difference between the battery panels exceeds a predetermined allowable voltage difference is opened, and the voltage difference between the battery panels is within the allowable voltage difference. The process of repeating the process of simultaneously charging or discharging the circuit breaker corresponding to a plurality of battery panels to the target battery voltage by closing or charging until all the voltage differences of the battery panels are within the allowable voltage difference,
    With a method.
  10.  電池セルを備えたセルモジュールが複数、直列に接続される電池盤が複数並列に接続されるとともに、前記電池盤毎に蓄電池を主回路へ接続する遮断器と、電池電圧を計測する電圧計測部を有する蓄電池装置をコンピュータにより制御するための制御プログラムであって、
     前記コンピュータを、
     電池電圧を計測させる手段と、
     前記複数の電池盤のうち、電池盤間の電圧差が所定の許容電圧差を超えている電池盤に対応する前記遮断器を開状態とし、電池盤間の電圧差が前記許容電圧差以内である複数の電池盤に対応する前記遮断器を閉状態として同時に充電あるいは放電して目標電池電圧とする処理を全ての前記電池盤の電圧差が前記許容電圧差以内となるまで繰り返させる手段と、
    して機能させる制御プログラム。
    A plurality of cell modules having battery cells, a plurality of battery panels connected in series are connected in parallel, a circuit breaker for connecting a storage battery to the main circuit for each battery panel, and a voltage measuring unit for measuring a battery voltage A control program for controlling a storage battery device having
    The computer,
    Means for measuring battery voltage;
    Among the plurality of battery panels, the circuit breaker corresponding to the battery panel whose voltage difference between the battery panels exceeds a predetermined allowable voltage difference is opened, and the voltage difference between the battery panels is within the allowable voltage difference. Means for repeating the process of simultaneously charging or discharging the circuit breaker corresponding to a plurality of battery panels to a target battery voltage by being charged or discharged until the voltage difference of all the battery panels is within the allowable voltage difference;
    Control program to function.
PCT/JP2016/057226 2016-03-08 2016-03-08 Storage battery apparatus, storage battery system, method, and control program WO2017154115A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018503898A JPWO2017154115A1 (en) 2016-03-08 2016-03-08 Storage battery device, storage battery system, method and control program
PCT/JP2016/057226 WO2017154115A1 (en) 2016-03-08 2016-03-08 Storage battery apparatus, storage battery system, method, and control program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/057226 WO2017154115A1 (en) 2016-03-08 2016-03-08 Storage battery apparatus, storage battery system, method, and control program

Publications (1)

Publication Number Publication Date
WO2017154115A1 true WO2017154115A1 (en) 2017-09-14

Family

ID=59789178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057226 WO2017154115A1 (en) 2016-03-08 2016-03-08 Storage battery apparatus, storage battery system, method, and control program

Country Status (2)

Country Link
JP (1) JPWO2017154115A1 (en)
WO (1) WO2017154115A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108376989A (en) * 2018-02-13 2018-08-07 中国电力科学研究院有限公司 A kind of battery energy storage power station partition control method and system based on multiple agent
JP2020005386A (en) * 2018-06-27 2020-01-09 株式会社Soken Power supply system
JP2021097425A (en) * 2019-12-13 2021-06-24 三菱電機株式会社 Connection device of power storage device
JP2022505155A (en) * 2018-10-17 2022-01-14 イーエスエス テック インコーポレーテッド Operation system and operation method of power storage system
WO2022209244A1 (en) * 2021-03-30 2022-10-06 古河電気工業株式会社 Power storage device and equalization charging method
US11735781B2 (en) 2020-01-17 2023-08-22 Kabushiki Kaisha Toshiba Charge and discharge control device, charge and discharge system, charge and discharge control method, and non-transitory storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013179780A (en) * 2012-02-28 2013-09-09 Mitsubishi Heavy Ind Ltd Voltage equalization apparatus, method and program and power storage system provided with the same
JP2014514692A (en) * 2011-03-21 2014-06-19 エルジー・ケム・リミテッド Battery pack connection control apparatus and method
JP2015159631A (en) * 2014-02-21 2015-09-03 株式会社東芝 Power storage system, controller of power storage system, and control method
JP2015186339A (en) * 2014-03-24 2015-10-22 トヨタ自動車株式会社 Power storage system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014514692A (en) * 2011-03-21 2014-06-19 エルジー・ケム・リミテッド Battery pack connection control apparatus and method
JP2013179780A (en) * 2012-02-28 2013-09-09 Mitsubishi Heavy Ind Ltd Voltage equalization apparatus, method and program and power storage system provided with the same
JP2015159631A (en) * 2014-02-21 2015-09-03 株式会社東芝 Power storage system, controller of power storage system, and control method
JP2015186339A (en) * 2014-03-24 2015-10-22 トヨタ自動車株式会社 Power storage system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108376989A (en) * 2018-02-13 2018-08-07 中国电力科学研究院有限公司 A kind of battery energy storage power station partition control method and system based on multiple agent
CN108376989B (en) * 2018-02-13 2022-07-26 中国电力科学研究院有限公司 Battery energy storage power station partition control method and system based on multiple intelligent agents
JP2020005386A (en) * 2018-06-27 2020-01-09 株式会社Soken Power supply system
JP7071229B2 (en) 2018-06-27 2022-05-18 株式会社Soken Power system
JP2022505155A (en) * 2018-10-17 2022-01-14 イーエスエス テック インコーポレーテッド Operation system and operation method of power storage system
JP2021097425A (en) * 2019-12-13 2021-06-24 三菱電機株式会社 Connection device of power storage device
JP7365883B2 (en) 2019-12-13 2023-10-20 三菱電機株式会社 Connection device for power storage equipment
US11735781B2 (en) 2020-01-17 2023-08-22 Kabushiki Kaisha Toshiba Charge and discharge control device, charge and discharge system, charge and discharge control method, and non-transitory storage medium
WO2022209244A1 (en) * 2021-03-30 2022-10-06 古河電気工業株式会社 Power storage device and equalization charging method

Also Published As

Publication number Publication date
JPWO2017154115A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
WO2017154115A1 (en) Storage battery apparatus, storage battery system, method, and control program
JP6571268B2 (en) Battery monitoring apparatus and method
US9257860B2 (en) Battery pack, cell balancing method of the same, and energy storage system including the battery pack
KR101763502B1 (en) Storage battery management device, method, and computer program
US8806240B2 (en) Battery management system, method of controlling the same, and energy storage system including the battery management system
US20120169124A1 (en) Output circuit for power supply system
JP6400484B2 (en) Power storage system, power storage control method, and power storage control program
US20130187466A1 (en) Power management system
US20150255999A1 (en) Energy storage system and controlling method thereof
KR20150081731A (en) Battery pack, energy storage system including the battery pack, and method of operating the battery pack
JP6174154B2 (en) Storage battery management apparatus, method and program
WO2016147311A1 (en) Storage-battery management device, method, and program
JP2017028822A (en) Solar power generation system
JP6419941B2 (en) Storage battery management apparatus, method and program
US10461655B2 (en) Power fluctuation mitigation system
JP6622380B2 (en) Storage battery device and method
CN107949966B (en) Power supply device
WO2017043109A1 (en) Storage battery device and storage battery system
WO2016147322A1 (en) Storage cell management device, method, and program
JP7293145B2 (en) MONITORING CONTROL DEVICE, STORAGE BATTERY SYSTEM AND METHOD
JP6585705B2 (en) Charge / discharge system
WO2017042973A1 (en) Storage battery system, method, and program
JP2016093057A (en) Power storage system, power storage control method, and power storage control program

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018503898

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893447

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893447

Country of ref document: EP

Kind code of ref document: A1