JP6622380B2 - Storage battery device and method - Google Patents

Storage battery device and method Download PDF

Info

Publication number
JP6622380B2
JP6622380B2 JP2018503944A JP2018503944A JP6622380B2 JP 6622380 B2 JP6622380 B2 JP 6622380B2 JP 2018503944 A JP2018503944 A JP 2018503944A JP 2018503944 A JP2018503944 A JP 2018503944A JP 6622380 B2 JP6622380 B2 JP 6622380B2
Authority
JP
Japan
Prior art keywords
temperature
storage battery
storage
battery
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018503944A
Other languages
Japanese (ja)
Other versions
JPWO2017154170A1 (en
Inventor
井出 誠
誠 井出
小林 武則
武則 小林
勉 丹野
勉 丹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Publication of JPWO2017154170A1 publication Critical patent/JPWO2017154170A1/en
Application granted granted Critical
Publication of JP6622380B2 publication Critical patent/JP6622380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/04Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明の実施形態は、蓄電池装置及び方法に関する。   Embodiments described herein relate generally to a storage battery device and method.

近年、太陽光発電や風力発電などをはじめとした安全かつクリーンな自然エネルギーの導入が進んでいる。しかしながら、自然エネルギーの出力は不安定であり、大量導入が進むと電力系統における電圧や周波数に悪影響を及ぼすことが懸念される。また、電力需要に対してこれら自然エネルギーの供給量が大幅に上回ると、自然エネルギーの発電システムを停止しなければならず、発電設備の利用率が低下してしまう。   In recent years, the introduction of safe and clean natural energy including solar power generation and wind power generation has been progressing. However, the output of natural energy is unstable, and there is a concern that the voltage and frequency in the power system will be adversely affected when mass introduction proceeds. Moreover, if the supply amount of these natural energy greatly exceeds the electric power demand, the natural energy power generation system must be stopped, and the utilization rate of the power generation equipment is reduced.

従来、電力系統における電圧や周波数の安定化には、発電機のガバナフリー制御やLFC(Load Frequency Control)機能、揚水発電による負荷平準化等で対応が行われてきた。しかしながら、発電機の下げ代不足の問題や、揚水発電所の建設に立地条件の制約があること、建設期間が長いなどの課題があった。   Conventionally, stabilization of voltage and frequency in a power system has been addressed by governor-free control of a generator, an LFC (Load Frequency Control) function, load leveling by pumped-storage power generation, and the like. However, there were problems such as the problem of deficiency in generator lowering, the restriction of location conditions in the construction of the pumped storage power plant, and the long construction period.

そこで、立地条件の制約が比較的少ない二次電池を用いた大規模蓄電池システムへの注目が高まっている。
ところで、リチウムイオン電池に代表されるような蓄電池は、蓄電池が正常に動作している場合には、環境温度に対して、蓄電池の温度がある一定範囲内に収まるようになっている。したがって、蓄電池の相対的な温度差から異常判断を行うことが提案されている。
Thus, attention is being paid to large-scale storage battery systems using secondary batteries with relatively few restrictions on location conditions.
Incidentally, a storage battery represented by a lithium ion battery is designed to be within a certain range with respect to the environmental temperature when the storage battery is operating normally. Therefore, it has been proposed to make an abnormality determination from the relative temperature difference of the storage batteries.

特開2000−340266号公報JP 2000-340266 A 特開2014−075317号公報JP 2014-075317 A 特開2014−119397号公報JP 2014-119597 A 特開2014−023362号公報JP 2014-023362 A 特開2014−041747号公報JP 2014-041747 A 特開2014−110198号公報JP 2014-110198 A 特開2015−008040号公報Japanese Patent Laying-Open No. 2015-008040 特開2013−137867号公報JP 2013-137867 A 特開2014−127404号公報JP 2014-127404 A

しかしながら、外部の環境温度の影響を考慮しないとした場合、例えば、各蓄電池の温度が100℃と99℃である状態は明らかな異常であるにもかかわらず、相対的な温度差がないため、異常と判断されないおそれがあった。   However, if the influence of the external environmental temperature is not considered, for example, there is no relative temperature difference even though the state where the temperature of each storage battery is 100 ° C and 99 ° C is an obvious abnormality, There was a risk that it was not judged abnormal.

また、蓄電池を収納容器や収納建屋などに収納した場合、高所に配置された蓄電池と低所に配置された蓄電池とでは、対流などによる温度差が発生するが、従来これらは考慮されていなかったため、異常を誤検出する虞があった。   In addition, when the storage battery is stored in a storage container or storage building, a temperature difference due to convection occurs between the storage battery placed in the high place and the storage battery placed in the low place, but these have not been considered in the past. For this reason, there is a possibility that the abnormality is erroneously detected.

本発明は、上記に鑑みてなされたものであって、周囲温度や蓄電池の配置環境などを考慮してより正確に蓄電池の異常を検出可能な蓄電池装置及び方法を提供することを目的としている。   The present invention has been made in view of the above, and an object of the present invention is to provide a storage battery device and a method that can detect an abnormality of a storage battery more accurately in consideration of an ambient temperature, an arrangement environment of the storage battery, and the like.

実施形態の蓄電池装置は、複数の蓄電池が複数接続され、収納容器内に複数の蓄電池が収納された蓄電池装置である。
そして、複数の蓄電池は、収納容器内の高さ方向に沿って配置された複数の温度空間領域にそれぞれ配置されている。
電池温度計測部は、蓄電池の温度をそれぞれ計測する。
周囲温度計測部は、周囲温度を計測する。
これにより、異常検出部は、蓄電池の配置位置を含む情報に基づいて互いに同一の温度空間領域に属する検出対象の蓄電池と他の蓄電池との温度差が所定の第1の閾値を超えている場合に検出対象の蓄電池を異常として検出する。
The storage battery device of the embodiment is a storage battery device in which a plurality of storage batteries are connected and a plurality of storage batteries are stored in a storage container .
And the some storage battery is each arrange | positioned at the some temperature space area | region arrange | positioned along the height direction in a storage container.
The battery temperature measuring unit measures the temperature of each storage battery.
The ambient temperature measurement unit measures the ambient temperature.
Thereby, the abnormality detection unit is configured such that the temperature difference between the detection target storage battery and the other storage battery belonging to the same temperature space region exceeds the predetermined first threshold based on the information including the arrangement position of the storage battery. The storage battery to be detected is detected as abnormal.

図1は、実施形態の蓄電池システムを備えた自然エネルギー発電システムの概要構成図である。Drawing 1 is an outline lineblock diagram of a natural energy power generation system provided with the storage battery system of an embodiment. 図2は、実施形態の蓄電池システムの概要構成ブロック図である。FIG. 2 is a schematic configuration block diagram of the storage battery system of the embodiment. 図3は、蓄電池モジュール、CMU及びBMUの詳細構成説明図である。FIG. 3 is a detailed configuration explanatory diagram of the storage battery module, the CMU, and the BMU. 図4は、第1実施形態の蓄電池システムの制御系の機能ブロック図である。FIG. 4 is a functional block diagram of a control system of the storage battery system according to the first embodiment. 図5は、蓄電池の配置状態を説明する図である。FIG. 5 is a diagram illustrating an arrangement state of storage batteries. 図6は、第1実施形態の蓄電池の異常検出処理フローチャートである。FIG. 6 is an abnormality detection process flowchart of the storage battery of the first embodiment. 図7は、第2実施形態の蓄電池システムの制御系の機能ブロック図である。FIG. 7 is a functional block diagram of a control system of the storage battery system according to the second embodiment. 図8は、第2実施形態の蓄電池の異常検出処理フローチャートである。FIG. 8 is a flowchart of abnormality detection processing for the storage battery of the second embodiment. 図9は、第3実施形態の蓄電池システムの制御系の機能ブロック図である。FIG. 9 is a functional block diagram of a control system of the storage battery system according to the third embodiment.

次に図面を参照して実施形態について説明する。
図1は、実施形態の蓄電池システムを備えた自然エネルギー発電システムの概要構成図である。
Next, embodiments will be described with reference to the drawings.
Drawing 1 is an outline lineblock diagram of a natural energy power generation system provided with the storage battery system of an embodiment.

自然エネルギー発電システム100は、電力システムとして機能し、太陽光、水力、風力、バイオマス、地熱等の自然エネルギー(再生可能エネルギー)を利用し、系統電力として出力可能な自然エネルギー発電ユニット1と、自然エネルギー発電ユニット1の発電電力を測定する電力計2と、電力計2の測定結果に基づいて自然エネルギー発電ユニット1の余剰電力を充電し、不足電力を放電して自然エネルギー発電ユニット1の発電電力に重畳して出力する蓄電池システム3と、自然エネルギー発電ユニット1の出力電力(蓄電池システム3の出力電力が重畳されている場合も含む)の電圧変換を行う変圧器4と、蓄電池システム3のローカルな制御を行う蓄電池制御コントローラ5と、蓄電池制御コントローラ5のリモート制御を行う上位制御装置6と、を備えている。   The natural energy power generation system 100 functions as an electric power system, uses natural energy (renewable energy) such as sunlight, hydropower, wind power, biomass, geothermal heat, and the like, and a natural energy power generation unit 1 that can output as system power, A wattmeter 2 that measures the generated power of the energy power generation unit 1, and the surplus power of the natural energy power generation unit 1 is charged based on the measurement result of the wattmeter 2, and the insufficient power is discharged to generate the generated power of the natural energy power generation unit 1. A storage battery system 3 that is superimposed and output, a transformer 4 that performs voltage conversion of the output power of the natural energy power generation unit 1 (including the case where the output power of the storage battery system 3 is superimposed), and the locality of the storage battery system 3 The storage battery controller 5 that performs various controls and remote control of the storage battery controller 5 A position control unit 6, and a.

図2は、実施形態の蓄電池システムの概要構成ブロック図である。
蓄電池システム3は、大別すると、電力を蓄える蓄電池装置11と、蓄電池装置11から供給された直流電力を所望の電力品質を有する交流電力に変換して負荷に供給する電力変換装置(PCS:Power Conditioning System)12と、を備えている。
FIG. 2 is a schematic configuration block diagram of the storage battery system of the embodiment.
The storage battery system 3 can be broadly divided into a storage battery device 11 that stores electric power, and a power conversion device (PCS: Power) that converts DC power supplied from the storage battery device 11 into AC power having a desired power quality and supplies it to a load. Conditioning System) 12.

蓄電池装置11は、大別すると、複数の電池盤ユニット21−1〜21−N(Nは自然数)と、電池盤ユニット21−1〜21−Nが接続された電池端子盤22と、を備えている。
電池盤ユニット21−1〜21−Nは、互いに並列に接続された複数の電池盤23−1〜23−M(Mは自然数)と、ゲートウェイ装置24と、後述のBMU(Battery Management Unit:電池管理装置)及びCMU(Cell Monitoring Unit:セル監視装置)に動作用の直流電源を供給する直流電源装置25と、を備えている。
The storage battery device 11 roughly includes a plurality of battery panel units 21-1 to 21-N (N is a natural number) and a battery terminal board 22 to which the battery panel units 21-1 to 21-N are connected. ing.
The battery panel units 21-1 to 21-N include a plurality of battery panels 23-1 to 23-M (M is a natural number) connected in parallel to each other, a gateway device 24, and a BMU (Battery Management Unit: battery described later). And a DC power supply device 25 that supplies a DC power supply for operation to a management device) and a CMU (Cell Monitoring Unit).

ここで、電池盤の構成について説明する。
電池盤23−1〜23−Mは、それぞれ、高電位側電源供給ライン(高電位側電源供給線)LH及び低電位側電源供給ライン(低電位側電源供給線)LLを介して、出力電源ライン(出力電源線;母線)LHO、LLOに接続され、主回路である電力変換装置12に電力を供給している。
Here, the configuration of the battery panel will be described.
The battery panels 23-1 to 23-M are connected to output power via a high potential power supply line (high potential power supply line) LH and a low potential power supply line (low potential power supply line) LL, respectively. Lines (output power supply lines; bus lines) LHO and LLO are connected to supply power to the power converter 12 that is the main circuit.

電池盤23−1〜23−Mは、同一構成であるので、電池盤23−1を例として説明する。
電池盤23−1は、大別すると、複数(図2では、24個)の蓄電池モジュール31−1〜31−24と、蓄電池モジュール31−1〜31−24にそれぞれ設けられた複数(図2では、24個)のCMU32−1〜32−24と、蓄電池モジュール31−12と蓄電池モジュール31−13との間に設けられたサービスディスコネクト33と、電流センサ34と、コンタクタ35と、を備え、複数の蓄電池モジュール31−1〜31−24、サービスディスコネクト33、電流センサ34及びコンタクタ35は、直列に接続されている。
Since the battery boards 23-1 to 23-M have the same configuration, the battery board 23-1 will be described as an example.
The battery panel 23-1 is roughly divided into a plurality (24 in FIG. 2) of storage battery modules 31-1 to 31-24 and a plurality of storage battery modules 31-1 to 31-24 (see FIG. 2). 24) CMU 32-1 to 32-24, a service disconnect 33 provided between the storage battery module 31-12 and the storage battery module 31-13, a current sensor 34, and a contactor 35. The plurality of storage battery modules 31-1 to 31-24, the service disconnect 33, the current sensor 34, and the contactor 35 are connected in series.

ここで、蓄電池モジュール31−1〜31−24は、電池セルを複数、直並列に接続されて組電池を構成している。そして、複数の直列接続された蓄電池モジュール31−1〜31−24で組電池群を構成している。   Here, in the storage battery modules 31-1 to 31-24, a plurality of battery cells are connected in series and parallel to form an assembled battery. And the assembled battery group is comprised by the some storage battery module 31-1 to 31-24 connected in series.

さらに電池盤23−1は、BMU36を備え、各CMU32−1〜32−24の通信ライン、電流センサ34の出力ラインは、BMU36に接続されている。
BMU36は、ゲートウェイ装置24の制御下で、電池盤23−1全体を制御し、各CMU32−1〜32−24との通信結果(後述する電圧データ及び温度データ)及び電流センサ34の検出結果に基づいてコンタクタ35の開閉制御を行う。
Further, the battery panel 23-1 includes a BMU 36, and the communication lines of the CMUs 32-1 to 32-24 and the output line of the current sensor 34 are connected to the BMU 36.
The BMU 36 controls the entire battery panel 23-1 under the control of the gateway device 24, and displays the communication results (voltage data and temperature data described later) with the CMUs 32-1 to 32-24 and the detection results of the current sensor 34. Based on this, the contactor 35 is controlled to open and close.

次に電池端子盤22の構成について説明する。
電池端子盤22は、電池盤ユニット21−1〜21−Nに対応させて設けられた複数の盤遮断器41−1〜41−Nと、蓄電池装置11全体を制御するマイクロコンピュータとして構成されたマスタ(Master)装置42と、を備えている。
Next, the configuration of the battery terminal board 22 will be described.
The battery terminal board 22 is configured as a microcomputer that controls the plurality of panel breakers 41-1 to 41-N provided corresponding to the battery board units 21-1 to 21-N and the entire storage battery device 11. A master device 42.

マスタ装置42には、電力変換装置12との間に、電力変換装置12のUPS(Uninterruptible Power System)12Aを介して供給される制御電源線51と、イーサネット(登録商標)として構成され、制御データのやりとりを行う制御通信線52と、が接続されている。   The master device 42 is configured as a control power line 51 supplied via the UPS (Uninterruptible Power System) 12A of the power conversion device 12 and the Ethernet (registered trademark) between the power conversion device 12 and the control data. Are connected to a control communication line 52 that exchanges data.

ここで、蓄電池モジュール31−1〜31−24、CMU32−1〜32−24およびBMU36の詳細構成について説明する。   Here, detailed configurations of the storage battery modules 31-1 to 31-24, the CMUs 32-1 to 32-24 and the BMU 36 will be described.

図3は、蓄電池モジュール、CMU及びBMUの詳細構成説明図である。
蓄電池モジュール31−1〜31−24は、それぞれ、多直列多並列接続されたm個(図3では、m=10)の蓄電池BAT−1〜BAT−10を備えている。
FIG. 3 is a detailed configuration explanatory diagram of the storage battery module, the CMU, and the BMU.
Each of the storage battery modules 31-1 to 31-24 includes m (m = 10 in FIG. 3) storage batteries BAT-1 to BAT-10 connected in multiple series and parallel.

CMU32−1〜32−24は、対応する蓄電池モジュール31−1〜31−24を構成している電池セルの電圧及び所定箇所の温度を測定するための電圧温度計測IC(Analog Front End IC:AFE IC)62と、それぞれが対応するCMU32−1〜32−24全体の制御を行うMPU63と、BMU36との間でCAN通信を行うためのCAN(Controller Area Network)規格に則った通信コントローラ64と、セル毎の電圧に相当する電圧データ及び温度データを格納するメモリ65と、を備えている。   The CMUs 32-1 to 32-24 are voltage temperature measurement ICs (Analog Front End ICs: AFEs) for measuring the voltages of the battery cells constituting the corresponding storage battery modules 31-1 to 31-24 and the temperatures at predetermined locations. IC) 62, an MPU 63 that controls the entire CMU 32-1 to 32-24, and a communication controller 64 that conforms to the CAN (Controller Area Network) standard for performing CAN communication with the BMU 36, And a memory 65 for storing voltage data and temperature data corresponding to the voltage for each cell.

以下の説明において、蓄電池モジュール31−1〜31−24のそれぞれと、対応するCMU32−1〜32−24と、を合わせた構成については、電池モジュール37−1〜37−24と呼ぶものとする。例えば、蓄電池モジュール31−1と対応するCMU32−1を合わせた構成を電池モジュール37−1と呼ぶものとする。   In the following description, the configuration in which each of the storage battery modules 31-1 to 31-24 and the corresponding CMUs 32-1 to 32-24 are combined will be referred to as battery modules 37-1 to 37-24. . For example, a configuration in which the storage battery module 31-1 and the corresponding CMU 32-1 are combined is referred to as a battery module 37-1.

また、BMU36は、BMU36全体を制御するMPU71と、CMU32−1〜32−24との間でCAN通信を行うためのCAN規格に則った通信コントローラ72と、CMU32−1〜32−24から送信された電圧データ及び温度データを格納するメモリ73と、を備えている。   Further, the BMU 36 is transmitted from the MPU 71 that controls the entire BMU 36, the communication controller 72 conforming to the CAN standard for performing CAN communication between the CMUs 32-1 to 32-24, and the CMUs 32-1 to 32-24. And a memory 73 for storing voltage data and temperature data.

蓄電池制御コントローラ5は、自然エネルギー発電ユニット1の発電電力を検出し、この発電電力が電力系統へ及ぼす影響を緩和するために、蓄電池装置11を用いて発電電力の出力変動抑制を行なっている。ここで、蓄電池装置11に対する変動抑制量は当該蓄電池制御コントローラ5あるいはその上位制御装置6で算出し、蓄電池装置11に対応するPCS(Power Conditioning System)12に充放電指令として与えられる。   The storage battery controller 5 detects the generated power of the natural energy power generation unit 1 and suppresses output fluctuations of the generated power using the storage battery device 11 in order to reduce the influence of the generated power on the power system. Here, the fluctuation suppression amount for the storage battery device 11 is calculated by the storage battery controller 5 or its upper control device 6 and given to a PCS (Power Conditioning System) 12 corresponding to the storage battery device 11 as a charge / discharge command.

上述したように、電池盤23−1〜23−Mに対応させて複数の盤遮断器41−1〜41−Nが設けられている。
そして、これらの盤遮断器41−1〜41−Nは、蓄電池システムの起動時に順次投入(閉状態と)される。これにより、主回路を接続し、蓄電池への充放電が可能な状態とする。
As described above, the plurality of panel breakers 41-1 to 41-N are provided corresponding to the battery panels 23-1 to 23-M.
These panel breakers 41-1 to 41-N are sequentially turned on (closed) when the storage battery system is activated. Thereby, a main circuit is connected and it is set as the state in which charging / discharging to a storage battery is possible.

[1]第1実施形態
図4は、第1実施形態の蓄電池システムの制御系の機能ブロック図である。
蓄電池システム3の制御系70は、蓄電池システム3を構成している蓄電池の設置場所(実際には、収納容器BOXの設置場所)の周囲温度Tを計測する周囲温度計測部71と、蓄電池システム3を構成している蓄電池BAT_xの温度T(BAT_xTAR_ID)を計測し、出力する電池温度計測部72と、各蓄電池BAT_xの有無及び配置位置を含む電池情報INFを出力する情報出力部73と、周囲温度T、電池情報INF及び蓄電池システム3を構成している全ての蓄電池BAT_xの温度T(BAT_xTAR_ID)に基づいて後述する複数種類の比較演算を行い比較演算結果COMPを出力する比較演算部74と、比較演算部74の出力した比較演算結果COMPに基づいて異常検出を行う異常検出部75と、を備えている。
[1] First Embodiment FIG. 4 is a functional block diagram of a control system of the storage battery system of the first embodiment.
Control system 70 of the battery system 3, the installation location of the battery constituting the battery system 3 (in practice, the location of the container BOX) and ambient temperature measuring unit 71 for measuring the ambient temperature T P of battery system A battery temperature measuring unit 72 that measures and outputs the temperature T ( BAT_x , TAR_ID ) of the storage battery BAT_x constituting the battery 3, and an information output unit 73 that outputs battery information INF including the presence and location of each storage battery BAT_x; , Comparison of a plurality of types of comparison operations described later based on the ambient temperature T P , the battery information INF, and the temperatures T ( BAT_x , TAR_ID ) of all the storage batteries BAT_x constituting the storage battery system 3, and outputting a comparison calculation result COMP The calculation unit 74 and the abnormality detection unit 7 that detects an abnormality based on the comparison calculation result COMP output from the comparison calculation unit 74. It has a, and.

上記構成において、xは、2以上の整数で表される蓄電池を特定するための識別情報であり、TAR_IDは、温度空間領域を特定するための識別情報(以下、温度空間領域識別情報という)である。   In the above configuration, x is identification information for specifying a storage battery represented by an integer of 2 or more, and TAR_ID is identification information for specifying a temperature space region (hereinafter referred to as temperature space region identification information). is there.

図5は、蓄電池の配置状態を説明する図である。
そして、蓄電池BAT_xは、収納容器BOX内にmmax個単位(mmax:2以上の整数)で、上下方向に異なるTAR_IDmax(TAR_IDmax:2以上の整数)個の空間領域にそれぞれ配置されている。すなわち、蓄電池の個数xは、全体としてx=mmax・TAR_IDmax(個)となっている。なお、各温度空間領域で、蓄電池の数は同一である必要はなく、各温度空間領域に収納されている蓄電池数が把握できていればよい。
FIG. 5 is a diagram illustrating an arrangement state of storage batteries.
The battery BAT_x is, m max number units within container BOX: with (m max 2 or more integer), vertically different TAR_ID max (TAR_ID max: 2 or more integer) into individual spatial regions are arranged respectively Yes. That is, the total number x of storage batteries is x = m max · TAR_ID max (pieces). Note that the number of storage batteries does not have to be the same in each temperature space region, and it is only necessary to know the number of storage batteries stored in each temperature space region.

ここで、同一の温度空間領域に配置されたmmax個の蓄電池は、それぞれ正常動作しているのであれば、ほぼ同一の温度となるように温度空間領域が規定されているものとする。この場合において異なる温度空間領域に配置された蓄電池は、属している温度空間領域がより高い位置に配置されている蓄電池ほど収納容器BOX内の空気の対流により温度が高くなっている。Here, it is assumed that the temperature space regions are defined so that the m max storage batteries arranged in the same temperature space region have substantially the same temperature as long as they normally operate. In this case, in the storage batteries arranged in different temperature space regions, the temperature of the storage battery arranged in a higher position of the temperature space region to which the storage battery belongs is higher due to air convection in the storage container BOX.

具体的には、図5に示す例の場合、mmax=10個、TAR_IDmax=5であるとし、温度空間領域識別情報TAR_ID=1(最下層の温度空間領域)に対応する10個の蓄電池周囲が収納容器BOX内で最下層に位置しているため最も温度が低く、より上層に向かうに従って、すなわち、温度空間領域識別情報TAR_ID=2から温度空間領域識別情報TAR_ID=5(=TAR_IDmax)に向かって徐々に蓄電池周囲の温度が高くなっている。Specifically, in the example shown in FIG. 5, it is assumed that m max = 10 and TAR_ID max = 5, and 10 storage batteries corresponding to the temperature space region identification information TAR_ID = 1 (the temperature space region in the lowermost layer). Since the periphery is located in the lowermost layer in the storage container BOX, the temperature is the lowest, and the temperature space region identification information TAR_ID = 2 to the temperature space region identification information TAR_ID = 5 (= TAR_ID max ). The temperature around the storage battery gradually increases toward.

次に第1実施形態の動作を説明する。
図6は、第1実施形態の蓄電池の異常検出処理フローチャートである。
以下の説明においては、電池温度計測部72は、収納容器BOX内に収納されている全ての蓄電池BAT_xについて同時並行的に温度計測を行っているものとする。
異常検出処理が開始されると、まず周囲温度計測部71は、収納容器BOXの設置場所の周囲温度Tを計測し、比較演算部74に出力する(ステップS11)。
Next, the operation of the first embodiment will be described.
FIG. 6 is an abnormality detection process flowchart of the storage battery of the first embodiment.
In the following description, it is assumed that the battery temperature measuring unit 72 measures the temperature of all the storage batteries BAT_x stored in the storage container BOX simultaneously in parallel.
When the abnormality detection processing is started, the ambient temperature measuring unit 71 First, the ambient temperature T P of the installation location of the container BOX measured, and outputs the comparison operation unit 74 (step S11).

そして、比較演算部74は、温度空間領域識別情報TAR_IDの初期値として、
TAR_ID=1
とする(ステップS12)。
また、比較演算部74は、蓄電池識別情報mの初期値として
m=1
とする(ステップS13)。
Then, the comparison calculation unit 74 uses the initial value of the temperature space region identification information TAR_ID as
TAR_ID = 1
(Step S12).
Moreover, the comparison calculation part 74 is m = 1 as an initial value of the storage battery identification information m.
(Step S13).

これに伴い、電池温度計測部72は、計測した蓄電池BAT_mの温度T(BAT_mTAR_ID)を比較演算部74に出力する(ステップS14)。
具体的には、この時点では、電池温度計測部72は、計測した温度空間領域識別情報TAR_ID=1に属している蓄電池BAT_1(m=1)の温度T(1,1)を出力する。
Along with this, the battery temperature measurement unit 72 outputs the measured temperature T ( BAT_m , TAR_ID ) of the storage battery BAT_m to the comparison calculation unit 74 (step S14).
Specifically, at this time, the battery temperature measurement unit 72 outputs the temperature T (1, 1) of the storage battery BAT_1 (m = 1) belonging to the measured temperature space region identification information TAR_ID = 1.

これにより、比較演算部74は、蓄電池BAT_1(m=1)の温度T(1,1)が熱暴走に至る可能性をなくすため、若しくは、仕様によって提示される仕様上限温度として設定された第1閾値温度TAを越えているか否かを判別するための第1比較演算、蓄電池BAT_1(m=1)の温度T(1,1)が周囲温度に対して所定の第2閾値温度TBを越えているか否かを判別するための第2比較演算及び蓄電池BAT_1(m=1)の温度T(1,1)と蓄電池BAT_2(m=m+1)の温度T(2,1)との差が第3閾値温度TCを越えているか否かを判別するための第3比較演算を行い比較演算結果COMPとして、異常検出部75に出力する(ステップS14)。   As a result, the comparison calculation unit 74 eliminates the possibility that the temperature T (1, 1) of the storage battery BAT_1 (m = 1) reaches a thermal runaway, or is set as the specification upper limit temperature presented by the specification. A first comparison operation for determining whether or not one threshold temperature TA has been exceeded, the temperature T (1, 1) of the storage battery BAT_1 (m = 1) exceeds a predetermined second threshold temperature TB with respect to the ambient temperature The second comparison calculation for determining whether or not the battery has a difference between the temperature T (1,1) of the storage battery BAT_1 (m = 1) and the temperature T (2,1) of the storage battery BAT_2 (m = m + 1). A third comparison calculation is performed to determine whether or not the threshold temperature TC is exceeded, and the comparison calculation result COMP is output to the abnormality detection unit 75 (step S14).

この結果、異常検出部75は、比較演算結果COMPに基づいて、まず、蓄電池BAT_1(m=1)の温度T(1,1)が熱暴走を回避するために設定された第1閾値温度TAを越えているか否か、すなわち、
温度T(1,1)>第1閾値温度TA
となっているか否かを判別する(ステップS15)。
As a result, based on the comparison calculation result COMP, the abnormality detection unit 75 first sets the first threshold temperature TA set so that the temperature T (1, 1) of the storage battery BAT_1 (m = 1) is set to avoid thermal runaway. Whether or not
Temperature T (1,1)> first threshold temperature TA
It is determined whether or not (step S15).

ステップS15の判別において、温度T(1,1)>第1閾値温度TAとなっている場合には(ステップS15;Yes)、異常検出部75は、蓄電池BAT_1が単体で直ちに使用を中止すべき状態にある異常が検出されたとして蓄電池BAT_1が異常である旨をBMU36に通知する(ステップS18))。
この結果、BMU36は、蓄電池BAT_1を電気的に切り離す処理を行うこととなる。
そして、処理を後述するステップS19に移行する。
If it is determined in step S15 that the temperature T (1,1)> the first threshold temperature TA is satisfied (step S15; Yes), the abnormality detection unit 75 should immediately stop using the storage battery BAT_1 alone. As the abnormality in the state is detected, the BMU 36 is notified that the storage battery BAT_1 is abnormal (step S18)).
As a result, the BMU 36 performs a process of electrically disconnecting the storage battery BAT_1.
And a process transfers to step S19 mentioned later.

一方、ステップS15の判別において、温度T(1,1)≦第1閾値温度TAとなっている場合には(ステップS15;No)、熱暴走に至る可能性はないので、異常検出部75は、比較演算結果COMPに基づいて、蓄電池BAT_1(m=1)の温度T(1,1)が周囲温度Tに対して第2閾値温度TB以上の差があるか否か、すなわち、
温度T(1,1)−周囲温度TP>第2閾値温度TB
となっているか否かを判別する(ステップS16)。
On the other hand, if it is determined in step S15 that temperature T (1,1) ≦ first threshold temperature TA (step S15; No), there is no possibility of thermal runaway. based on the comparison calculation results COMP, whether or not the temperature T of the battery BAT_1 (m = 1) (1,1 ) is a difference of more than a second threshold temperature TB to ambient temperature T P, i.e.,
Temperature T (1,1) -ambient temperature TP> second threshold temperature TB
It is determined whether or not (step S16).

ステップS16の判別において、温度T(1,1)−周囲温度TP>第2閾値温度TBとなっている場合には(ステップS16;Yes)、異常検出部75は、蓄電池BAT_1の温度が周囲温度Tと比較して温度が高すぎる異常が検出されたとして蓄電池BAT_1が異常である旨をBMU36に通知する(ステップS18)。If it is determined in step S16 that temperature T (1,1) -ambient temperature TP> second threshold temperature TB (step S16; Yes), the abnormality detection unit 75 determines that the temperature of the storage battery BAT_1 is the ambient temperature. T abnormal P compared to the temperature is too high to notify the BMU36 the fact battery BAT_1 is abnormal as detected (step S18).

この結果、BMU36は、蓄電池BAT_1がより重大な異常に至る前に蓄電池BAT_1を電気的に切り離す処理を行うこととなる。
そして、処理を後述するステップS19に移行する。
As a result, the BMU 36 performs a process of electrically disconnecting the storage battery BAT_1 before the storage battery BAT_1 reaches a more serious abnormality.
And a process transfers to step S19 mentioned later.

一方、ステップS16の判別において、温度T(1,1)−周囲温度T≦第2閾値温度TBとなっている場合には(ステップS16;No)、蓄電池BAT_1の温度が周囲温度Tと比較して正常な温度範囲内であるので、異常検出部75は、比較演算結果COMPに基づいて、温度空間領域識別情報TAR_IDが等しい同一の温度空間領域に属する次の蓄電池BAT_m+1との温度差が第3閾値温度TC以上の差があるか否か、すなわち、
温度T(1,1)−温度T(2,1)>第3閾値温度TC
となっているか否かを判別する(ステップS17)。
On the other hand, if it is determined in step S16 that temperature T (1,1) −ambient temperature T P ≦ second threshold temperature TB (step S16; No), the temperature of the storage battery BAT_1 is equal to the ambient temperature T P. Since the comparison is within the normal temperature range, the abnormality detection unit 75 determines that the temperature difference from the next storage battery BAT_m + 1 belonging to the same temperature space region having the same temperature space region identification information TAR_ID based on the comparison calculation result COMP. Whether there is a difference equal to or higher than the third threshold temperature TC, that is,
Temperature T (1,1) -temperature T (2,1)> third threshold temperature TC
It is determined whether or not (step S17).

なお、この判別は、m=mmaxである場合には、次の蓄電池を、例えば、蓄電池BAT_m+1=蓄電池BAT_1として比較を行うものとする。
ステップS17の判別において、温度T(1,1)−温度T(2,1)>第3閾値温度TCとなっている場合には(ステップS17;Yes)、異常検出部75は、蓄電池BAT_1の温度が温度空間領域識別情報TAR_IDが等しい同一の温度空間領域に属する次の蓄電池BAT_2と比較して温度が高すぎる異常が検出されたとして蓄電池BAT_1が異常である旨をBMU36に通知する(ステップS18)。
In this determination, when m = m max , the next storage battery is compared as, for example, storage battery BAT_m + 1 = storage battery BAT_1.
If it is determined in step S17 that temperature T (1,1) −temperature T (2,1)> third threshold temperature TC (step S17; Yes), the abnormality detection unit 75 determines that the storage battery BAT_1 The BMU 36 is informed that the storage battery BAT_1 is abnormal when an abnormality in which the temperature is too high compared to the next storage battery BAT_2 belonging to the same temperature space area having the same temperature space area identification information TAR_ID is detected (step S18). ).

ステップS17の判別において、温度T(1,1)−温度T(2,1)≦第3閾値温度TCとなっている場合には(ステップS17;No)、蓄電池BAT_1の温度が蓄電池BAT_2と比較して正常な温度範囲内であるので、同一の温度空間領域に属する全ての蓄電池について処理が完了したか否か、すなわち、
m=mmax
であるか否かを判別する(ステップS19)。
If it is determined in step S17 that temperature T (1,1) −temperature T (2,1) ≦ third threshold temperature TC (step S17; No), the temperature of the storage battery BAT_1 is compared with the storage battery BAT_2. Since it is within the normal temperature range, whether or not the processing is completed for all the storage batteries belonging to the same temperature space region, that is,
m = m max
It is discriminate | determined whether it is (step S19).

ステップS19の判別において、m≠mmaxである場合には(ステップS19;No)、未だ同一の温度空間領域に属する全ての蓄電池について処理が完了していないので、
m=m+1
とし(ステップS20)、再び処理をステップS14に移行して、上述したものと同様の処理を行う。
In the determination of step S19, when m ≠ mmax (step S19; No), the processing has not been completed for all the storage batteries belonging to the same temperature space region.
m = m + 1
(Step S20), the process again proceeds to Step S14, and the same process as described above is performed.

ステップS19の判別において、m=maxである場合には(ステップS19;Yes)、同一の温度空間領域に属する全ての蓄電池について処理が完了したので、全ての温度空間領域に属する全ての蓄電池について処理が完了したか否か、すなわち、
TAR_ID=TAR_IDmax
であるか否かを判別する(ステップS21)。
If it is determined in step S19 that m = max (step S19; Yes), the process has been completed for all storage batteries belonging to the same temperature space region, and therefore, the process is performed for all storage batteries belonging to all temperature space regions. Is completed, i.e.,
TAR_ID = TAR_ID max
It is discriminate | determined whether it is (step S21).

ステップS21の判別において、TAR_ID≠TAR_IDmax
である場合には(ステップS21;No)、未だ全ての温度空間領域に属する全ての蓄電池について処理が完了していないので、
TAR_ID=TAR_ID+1
とし、再び処理をステップS13に移行して、上述したものと同様の処理を行う。
In the determination of step S21, TAR_ID ≠ TAR_ID max
(Step S21; No), since the processing is not yet completed for all the storage batteries belonging to all the temperature space regions,
TAR_ID = TAR_ID + 1
Then, the process again proceeds to step S13, and the same process as described above is performed.

ステップS21の判別において、
TAR_ID=TAR_IDmax
である場合には(ステップS21;Yes)、全ての温度空間領域に属する全ての蓄電池について処理が完了したので、異常検出処理を終了する。
In the determination of step S21,
TAR_ID = TAR_ID max
If it is (step S21; Yes), since the process is completed for all the storage batteries belonging to all the temperature space regions, the abnormality detection process is terminated.

以上の説明のように、本第1実施形態によれば、蓄電池システムの周囲環境温度や、各蓄電池が実際に配置された環境の温度(上述の温度空間領域の温度)の影響を受けることなく、確実かつ正確に蓄電池の異常を検出することができる。   As described above, according to the first embodiment, there is no influence of the ambient environment temperature of the storage battery system or the temperature of the environment where each storage battery is actually arranged (the temperature in the temperature space region described above). It is possible to reliably and accurately detect abnormality of the storage battery.

[2]第2実施形態
図7は、第2実施形態の蓄電池システムの制御系の機能ブロック図である。
図7において、図4と同様の部分には、同一の符号を付すものとする。
本第2実施形態が第1実施形態と異なる点は、第1実施形態の構成に加えて周囲温度計測部71が計測した周囲温度Tを時系列で記憶する周囲温度記憶部81、電池温度計測部72が計測した蓄電池システム3を構成している蓄電池BAT_xの温度T(BAT_xTAR_ID)を時系列で記憶する電池温度記憶部82及び情報出力部73が出力した電池情報INFに変更があった場合の変更後の電池情報INFを時系列で記憶する情報記憶部83とを備え、比較演算部74がある検出対象の蓄電池の温度と、当該検出対象の蓄電池と同一の周囲温度及び同一の配置位置における過去の正常時の蓄電池(当該蓄電池と同一でも良いし、他の同種の蓄電池でも良い)の温度と、を比較して異常を検出する点である。
[2] Second Embodiment FIG. 7 is a functional block diagram of a control system of a storage battery system according to a second embodiment.
In FIG. 7, the same parts as those in FIG. 4 are denoted by the same reference numerals.
This second embodiment differs from the first embodiment, the ambient temperature storage unit 81 ambient temperature measuring portion 71 in addition to the configuration of the first embodiment is stored in time series ambient temperature T P measured, battery temperature There is a change in the battery information INF output by the battery temperature storage unit 82 and the information output unit 73 that store the temperature T ( BAT_x , TAR_ID ) of the storage battery BAT_x constituting the storage battery system 3 measured by the measurement unit 72 in time series. Information storage unit 83 that stores the battery information INF after change in the case of a change in time, and the temperature of the detection target storage battery with the comparison calculation unit 74, the same ambient temperature as the detection target storage battery, and the same The abnormality is detected by comparing the temperature of the past normal storage battery (which may be the same as the storage battery or another similar storage battery) at the arrangement position.

次に第2実施形態の動作を説明する。
図8は、第2実施形態の蓄電池の異常検出処理フローチャートである。
以下の説明においても、電池温度計測部72は、収納容器BOX内に収納されている全ての蓄電池BAT_xについて同時並行的に温度計測を行っているものとする。
異常検出処理が開始されると、まず周囲温度計測部71は、収納容器BOXの設置場所の周囲温度Tを計測し、比較演算部74に出力する(ステップS31)。
そして、比較演算部74は、温度空間領域識別情報TAR_IDの初期値として、
TAR_ID=1
とする(ステップS32)。
Next, the operation of the second embodiment will be described.
FIG. 8 is a flowchart of abnormality detection processing for the storage battery of the second embodiment.
Also in the following description, it is assumed that the battery temperature measurement unit 72 measures the temperature of all the storage batteries BAT_x stored in the storage container BOX at the same time.
When the abnormality detection processing is started, the ambient temperature measuring unit 71 First, the ambient temperature T P of the installation location of the container BOX measured, and outputs the comparison operation unit 74 (step S31).
Then, the comparison calculation unit 74 uses the initial value of the temperature space region identification information TAR_ID as
TAR_ID = 1
(Step S32).

また、比較演算部74は、蓄電池識別情報mの初期値として
m=1
とする(ステップS33)。
これに伴い、電池温度計測部72は、計測した蓄電池BAT_mの温度T(BAT_mTAR_ID)を比較演算部74に出力する(ステップS34)。
Moreover, the comparison calculation part 74 is m = 1 as an initial value of the storage battery identification information m.
(Step S33).
Accordingly, the battery temperature measurement unit 72 outputs the measured temperature T ( BAT_m , TAR_ID ) of the storage battery BAT_m to the comparison calculation unit 74 (step S34).

なお、図5中、蓄電池BAT_mの温度T(BAT_mTAR_ID)を図示の簡略化のため、TBAT_mと表記し、蓄電池BAT_mと同一の周囲温度及び同一の配置位置における過去の正常時の蓄電池BAT_1_0の温度T_0(1,1)をTBAT_m_0と表記している。
具体的には、この時点では、電池温度計測部72は、計測した温度空間領域識別情報TAR_ID=1に属している蓄電池BAT_1(m=1)の温度T(1,1)を出力する。
In FIG. 5, the temperature T ( BAT_m , TAR_ID ) of the storage battery BAT_m is represented as T BAT_m for simplification of illustration, and the storage battery BAT_1_0 in the past normal time at the same ambient temperature and the same arrangement position as the storage battery BAT_m. The temperature T_0 (1, 1) is expressed as TBAT_m_0 .
Specifically, at this time, the battery temperature measurement unit 72 outputs the temperature T (1, 1) of the storage battery BAT_1 (m = 1) belonging to the measured temperature space region identification information TAR_ID = 1.

これにより、比較演算部74は、現在の周囲温度T及び現在の電池情報INFに基づいて、蓄電池BAT_1(m=1)の温度T(1,1)が同一の周囲温度及び同一の配置位置における過去の正常時の当該蓄電池BAT_1_0の温度T_0(1,1)を電池温度記憶部82から抽出し、比較演算を行い、比較演算結果COMPとして、異常検出部75に出力する(ステップS35)。Thus, the comparison operation unit 74, based on the current ambient temperature T P and the current cell information INF, the temperature T (1, 1) is the same ambient temperature and the same position of the battery BAT_1 (m = 1) The temperature T_0 (1, 1) of the storage battery BAT_1_0 in the past at normal time is extracted from the battery temperature storage unit 82, a comparison calculation is performed, and the comparison calculation result COMP is output to the abnormality detection unit 75 (step S35).

この結果、異常検出部75は、比較演算結果COMPに基づいて、まず、蓄電池BAT_1(m=1)の温度T(1,1)と、同一の周囲温度及び同一の配置位置における過去の正常時の当該蓄電池BAT_1_0の温度T_0(1,1)との差が第4閾値温度TDを越えているか否か、すなわち、
温度T(1,1)−温度T_0(1,1)>第4閾値温度TD
となっているか否かを判別する(ステップS36)。
As a result, based on the comparison calculation result COMP, the abnormality detection unit 75 first detects the temperature T (1, 1) of the storage battery BAT_1 (m = 1), the past normal time at the same ambient temperature, and the same arrangement position. Whether the difference from the temperature T_0 (1, 1) of the storage battery BAT_1_0 exceeds the fourth threshold temperature TD, that is,
Temperature T (1,1) -Temperature T_0 (1,1)> Fourth threshold temperature TD
It is determined whether or not (step S36).

ステップS36の判別において、温度T(1,1)−温度T_0(1,1)>第4閾値温度TDとなっている場合には(ステップS35;Yes)、異常検出部75は、蓄電池BAT_1において異常が検出されたとして蓄電池BAT_1が異常である旨をBMU36に通知する(ステップS37)。   If it is determined in step S36 that temperature T (1,1) −temperature T_0 (1,1)> fourth threshold temperature TD (step S35; Yes), the abnormality detection unit 75 determines whether or not the storage battery BAT_1. As the abnormality is detected, the BMU 36 is notified that the storage battery BAT_1 is abnormal (step S37).

この結果、BMU36は、蓄電池BAT_1を電気的に切り離す処理を行うこととなる。
そして、処理を後述するステップS38に移行する。
As a result, the BMU 36 performs a process of electrically disconnecting the storage battery BAT_1.
And a process transfers to step S38 mentioned later.

一方、ステップS36の判別において、温度T(1,1)−温度T_0(1,1)≦第4閾値温度TDとなっている場合には(ステップS36;No)、蓄電池BAT_1の温度は正常な温度範囲内であるので、同一の温度空間領域に属する全ての蓄電池について処理が完了したか否か、すなわち、
m=mmax
であるか否かを判別する(ステップS38)。
On the other hand, if it is determined in step S36 that temperature T (1,1) -temperature T_0 (1,1) ≦ fourth threshold temperature TD (step S36; No), the temperature of the storage battery BAT_1 is normal. Since it is within the temperature range, whether or not the processing is completed for all the storage batteries belonging to the same temperature space region, that is,
m = m max
It is determined whether or not (step S38).

ステップS38の判別において、m≠mmaxである場合には(ステップS38;No)、未だ同一の温度空間領域に属する全ての蓄電池について処理が完了していないので、
m=m+1
とし(ステップS39)、再び処理をステップS34に移行して、上述したものと同様の処理を行う。
If it is determined in step S38 that m ≠ m max (step S38; No), the processing has not yet been completed for all the storage batteries belonging to the same temperature space region.
m = m + 1
(Step S39), the process again proceeds to step S34, and the same process as described above is performed.

ステップS38の判別において、m=maxである場合には(ステップS38;Yes)、同一の温度空間領域に属する全ての蓄電池について処理が完了したので、全ての温度空間領域に属する全ての蓄電池について処理が完了したか否か、すなわち、
TAR_ID=TAR_IDmax
であるか否かを判別する(ステップS40)。
If m = max in the determination in step S38 (step S38; Yes), since processing has been completed for all storage batteries belonging to the same temperature space region, processing is performed for all storage batteries belonging to all temperature space regions. Is completed, i.e.,
TAR_ID = TAR_ID max
It is discriminate | determined whether it is (step S40).

ステップS40の判別において、
TAR_ID≠TAR_IDmax
である場合には(ステップS40;No)、未だ全ての温度空間領域に属する全ての蓄電池について処理が完了していないので、
TAR_ID=TAR_ID+1
とし(ステップS41)、再び処理をステップS33に移行して、上述したものと同様の処理を行う。
In the determination of step S40,
TAR_ID ≠ TAR_ID max
(Step S40; No), since the processing is not yet completed for all the storage batteries belonging to all the temperature space regions,
TAR_ID = TAR_ID + 1
(Step S41), the process again proceeds to step S33, and the same process as described above is performed.

ステップS40の判別において、TAR_ID=TAR_IDmaxである場合には(ステップS21;Yes)、全ての温度空間領域に属する全ての蓄電池について処理が完了したので、異常検出処理を終了する。If TAR_ID = TAR_ID max in the determination in step S40 (step S21; Yes), the process is completed for all the storage batteries belonging to all the temperature space regions, and thus the abnormality detection process is terminated.

以上の説明のように、本第2実施形態によれば、蓄電池位置が同一で周囲条件が同様の条件で蓄電池の温度の比較を行うので、蓄電池システムの周囲環境温度や、各蓄電池が実際に配置された環境の温度(上述の温度空間領域の温度)の影響を受けることなく、確実かつ正確に蓄電池の異常を検出することができる。   As described above, according to the second embodiment, the storage battery temperature is compared under the same storage battery position and the same ambient conditions. Therefore, the ambient environment temperature of the storage battery system and each storage battery are actually Abnormalities of the storage battery can be detected reliably and accurately without being affected by the temperature of the environment in which it is placed (the temperature in the temperature space region described above).

[3]第3実施形態
図9は、第3実施形態の蓄電池システムの制御系の機能ブロック図である。
図9において、図4と同様の部分には、同一の符号を付すものとする。
本第3実施形態が第1実施形態と異なる点は、各蓄電池の電圧を計測する電池電圧計測部81を設け、比較演算部74が、同一の温度空間領域に属する蓄電池に対し、温度に加えて、蓄電池電圧に基づいて蓄電池の異常を判別する点である。
[3] Third Embodiment FIG. 9 is a functional block diagram of a control system of a storage battery system according to a third embodiment.
In FIG. 9, the same parts as those in FIG. 4 are denoted by the same reference numerals.
The third embodiment is different from the first embodiment in that a battery voltage measuring unit 81 that measures the voltage of each storage battery is provided, and the comparison operation unit 74 adds the temperature to the storage batteries belonging to the same temperature space region. Thus, the abnormality of the storage battery is determined based on the storage battery voltage.

以下、要部の動作のみ説明する。
電池電圧計測部81は、蓄電システム3を構成する全ての蓄電池のそれぞれの電圧を計測しており、例えば、蓄電池BAT_mの電池電圧VBAT_mを計測する。
そして、蓄電システムの中で同じ高さに位置する蓄電池BAT_mと蓄電池BAT_m+1の温度を比較するに際し、それらが並列に接続されている場合はそれらの電池電圧差の絶対値を算出する。
Only the operation of the main part will be described below.
The battery voltage measurement unit 81 measures the voltages of all the storage batteries constituting the power storage system 3, and measures the battery voltage V BAT_m of the storage battery BAT_m, for example.
When comparing the temperatures of the storage battery BAT_m and the storage battery BAT_m + 1 located at the same height in the power storage system, if they are connected in parallel, the absolute value of the battery voltage difference is calculated.

具体的には、蓄電池BAT_mの電圧をVBAT_m、蓄電池BAT_m+1の電圧をVBAT_m+1とした場合、それらの差分の絶対値が閾値電圧VAを越えているか否か、すなわち、
|VBAT_m−VBAT_m+1|>VA
となっているか否かを判別し、|VBAT_m−VBAT_m+1|>VAの場合に、電池が異常であると判別する。
Specifically, when the voltage of the storage battery BAT_m is V BAT_m and the voltage of the storage battery BAT_m + 1 is V BAT_m + 1 , whether or not the absolute value of the difference exceeds the threshold voltage VA, that is,
| V BAT_m -V BAT_m + 1 |> VA
And if | V BATm −V BAT — m + 1 |> VA, it is determined that the battery is abnormal.

したがって、本第3実施形態によれば、蓄電池の各温度を比較することに加えて各電圧も比較することによって蓄電池の異常検出の精度が向上する。
なお、上記構成に加えて、蓄電システムの中で同じ高さに位置する蓄電池BAT_mに対して蓄電池BAT_m+1以外に同じ高さに位置する他の蓄電池が存在する場合、それらの他の蓄電池との電圧も比較するようにしてもよい。
これらの構成によれば、蓄電池の異常検出の精度が向上することができる。
Therefore, according to the third embodiment, the accuracy of storage battery abnormality detection is improved by comparing each voltage in addition to comparing each temperature of the storage battery.
In addition to the above configuration, when there is another storage battery located at the same height in addition to the storage battery BAT_m + 1 with respect to the storage battery BAT_m located at the same height in the power storage system, the voltage with these other storage batteries May also be compared.
According to these configurations, the accuracy of abnormality detection of the storage battery can be improved.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

例えば、以上の説明においては、第1閾値TA〜第4閾値TD及び閾値電圧VAについては、システムの経年変化などを考慮して可変とすることも可能である。
以上の説明においては、蓄電池を一つの二次電池として扱っていたが、各蓄電池が複数の電池セルが直列あるいは並列接続された蓄電池モジュールとして構成されている場合であっても同様に適用が可能である。
For example, in the above description, the first threshold value TA to the fourth threshold value TD and the threshold voltage VA can be made variable in consideration of the secular change of the system.
In the above description, the storage battery is treated as one secondary battery, but the present invention can be similarly applied even when each storage battery is configured as a storage battery module in which a plurality of battery cells are connected in series or in parallel. It is.

以上の説明においては、同一の温度空間領域内における蓄電池の配置位置については、詳細に言及しなかったが、2次元配置あるいは3次元配置されているような場合であっても同様に適用が可能である。   In the above description, the arrangement position of the storage battery in the same temperature space region has not been described in detail, but it can be similarly applied even in the case of two-dimensional arrangement or three-dimensional arrangement. It is.

Claims (7)

複数の蓄電池が複数接続され、収納容器内に前記複数の蓄電池が収納された蓄電池装置であって、
前記複数の蓄電池は、前記収納容器内の高さ方向に沿って配置された複数の温度空間領域にそれぞれ配置され、
前記蓄電池の温度をそれぞれ計測する電池温度計測部と、
周囲温度を計測する周囲温度計測部と、
前記温度空間領域毎に、互いに同一の温度空間領域に属する検出対象の前記蓄電池と他の前記蓄電池との温度差が所定の第1の閾値を超えている場合に前記検出対象の前記蓄電池を異常として検出する異常検出部と、
を備えた蓄電池装置。
A storage battery device in which a plurality of storage batteries are connected, and the storage batteries are stored in a storage container ,
The plurality of storage batteries are respectively disposed in a plurality of temperature space regions disposed along a height direction in the storage container,
A battery temperature measuring unit for measuring the temperature of each of the storage batteries;
An ambient temperature measurement unit for measuring the ambient temperature;
When the temperature difference between the storage battery to be detected belonging to the same temperature space area and the other storage battery exceeds a predetermined first threshold for each temperature space area, the storage battery to be detected is abnormal. An abnormality detection unit to detect as,
A storage battery device comprising:
前記異常検出部は、前記検出対象の前記蓄電池の温度と前記周囲温度との温度差が所定の第2の所定の閾値以下であり、かつ、互いに同一の温度空間領域に属する検出対象の前記蓄電池と他の前記蓄電池との温度差が前記第1の閾値を超えている場合に前記検出対象の前記蓄電池を異常として検出する、The abnormality detection unit is configured to detect the storage battery as a detection target, wherein a temperature difference between the temperature of the storage battery as the detection target and the ambient temperature is equal to or less than a predetermined second predetermined threshold value and belong to the same temperature space region. When the temperature difference between the battery and the other storage battery exceeds the first threshold, the storage battery to be detected is detected as an abnormality.
請求項1記載の蓄電池装置。  The storage battery device according to claim 1.
前記蓄電池の配置位置を含む情報に基づいて互いに同一の温度空間領域に属する前記検出対象の前記蓄電池と他の前記蓄電池との温度差を前記第1の閾値と比較する比較演算部を備え、
前記異常検出部は、前記比較演算部の比較結果に基づいて前記異常の検出を行う、
請求項1記載の蓄電池装置。
Includes a comparing unit for comparing the temperature difference between the battery and the other of said storage battery of the detection target belonging to the same temperature spatial regions together based on the information including the location of the storage battery and the first threshold value,
The abnormality detection unit detects the abnormality based on a comparison result of the comparison calculation unit.
The storage battery device according to claim 1.
複数の蓄電池が複数接続される蓄電池装置であって、
前記蓄電池の温度をそれぞれ計測する電池温度計測部と、
周囲温度を計測する周囲温度計測部と、
前記蓄電池の温度を前記周囲温度に対応づけて時系列で記憶する電池温度記憶部と、
前記蓄電池の配置位置を含む情報に基づいて、検出対象の前記蓄電池の温度と、同一の配置位置における前記電池温度記憶部に記憶された同一とみなせる前記周囲温度における前記蓄電池の温度と、の温度差が所定の閾値を超えている場合に前記検出対象の前記蓄電池を異常として検出する異常検出部と、
を備えた蓄電池装置。
A storage battery device to which a plurality of storage batteries are connected,
A battery temperature measuring unit for measuring the temperature of each of the storage batteries;
An ambient temperature measurement unit for measuring the ambient temperature;
A battery temperature storage unit for storing the temperature of the storage battery in time series in association with the ambient temperature;
Based on the information including the location of the storage battery, the temperature of the storage battery to be detected and the temperature of the storage battery at the ambient temperature stored in the battery temperature storage unit at the same location as the same An abnormality detection unit that detects the storage battery as an abnormality when the difference exceeds a predetermined threshold;
A storage battery device comprising:
前記蓄電池の電圧をそれぞれ計測する電池電圧計測部を備え、
前記異常検出部は、互いに同一の温度空間領域に属する検出対象の前記蓄電池の電圧と、他の前記蓄電池の電圧と、の電圧差が所定の閾値を超えている場合に前記検出対象の前記蓄電池を異常として検出する、
請求項1乃至請求項4のいずれかに記載の蓄電池装置。
A battery voltage measuring unit that measures the voltage of each of the storage batteries,
The abnormality detection unit is configured to detect the storage battery of the detection target when a voltage difference between the voltage of the storage battery to be detected belonging to the same temperature space region and the voltage of the other storage battery exceeds a predetermined threshold. Is detected as abnormal,
The storage battery device according to any one of claims 1 to 4.
複数の蓄電池が複数接続され、収納容器内に前記複数の蓄電池が収納されて、前記複数の蓄電池が、前記収納容器内の高さ方向に沿ってそれぞれ配置された温度空間領域にそれぞれ配置された蓄電池装置で実行される方法であって、
前記蓄電池の温度をそれぞれ計測する過程と、
周囲温度を計測する過程と、
前記温度空間領域毎に、互いに同一の前記温度空間領域に属する検出対象の前記蓄電池と他の前記蓄電池との温度差が所定の第1の閾値を超えている場合に前記検出対象の前記蓄電池を異常として検出する過程と、
を備えた方法。
A plurality of storage batteries are connected , the plurality of storage batteries are stored in a storage container, and the plurality of storage batteries are respectively disposed in temperature space regions that are respectively disposed along the height direction in the storage container. A method executed in a storage battery device ,
A process of measuring the temperature of each of the storage batteries,
The process of measuring ambient temperature,
For each temperature space region, when the temperature difference between the storage battery to be detected belonging to the same temperature space region and another storage battery exceeds a predetermined first threshold, the storage battery to be detected The process of detecting as an anomaly;
With a method.
複数の蓄電池が複数接続され、前記蓄電池の温度を周囲温度に対応づけて時系列で記憶可能な電池温度記憶部を備えた蓄電池装置で実行される方法であって、
前記蓄電池の温度をそれぞれ計測する過程と、
周囲温度を計測する過程と、
前記蓄電池の温度を前記周囲温度に対応づけて時系列で前記電池温度記憶部に記憶する過程と、
前記蓄電池の配置位置を含む情報に基づいて、検出対象の前記蓄電池の温度と、同一の配置位置における前記電池温度記憶部に記憶された同一とみなせる前記周囲温度における前記蓄電池の温度と、の温度差が所定の閾値を超えている場合に前記検出対象の前記蓄電池を異常として検出する過程と、
を備えた方法。
A plurality of storage batteries are connected, and the method is executed by a storage battery device including a battery temperature storage unit capable of storing the storage battery temperature in time series in association with the ambient temperature,
A process of measuring the temperature of each of the storage batteries,
The process of measuring ambient temperature,
Storing the temperature of the storage battery in the battery temperature storage unit in time series in association with the ambient temperature;
Based on the information including the location of the storage battery, the temperature of the storage battery to be detected and the temperature of the storage battery at the ambient temperature stored in the battery temperature storage unit at the same location as the same A process of detecting the detection target storage battery as abnormal when the difference exceeds a predetermined threshold; and
With a method.
JP2018503944A 2016-03-10 2016-03-10 Storage battery device and method Active JP6622380B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/057574 WO2017154170A1 (en) 2016-03-10 2016-03-10 Storage cell device and method

Publications (2)

Publication Number Publication Date
JPWO2017154170A1 JPWO2017154170A1 (en) 2018-10-04
JP6622380B2 true JP6622380B2 (en) 2019-12-18

Family

ID=59789219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018503944A Active JP6622380B2 (en) 2016-03-10 2016-03-10 Storage battery device and method

Country Status (2)

Country Link
JP (1) JP6622380B2 (en)
WO (1) WO2017154170A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210157662A (en) * 2020-06-22 2021-12-29 주식회사 엘지에너지솔루션 System and method for managing state of battery
CN113022378B (en) * 2021-03-01 2023-03-07 中国第一汽车股份有限公司 Temperature consistency prediction method, temperature consistency prediction device, prediction equipment and storage medium
CN114530651B (en) * 2022-01-25 2023-10-20 上海电享信息科技有限公司 Temperature control method and charging and discharging method based on energy storage power station

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1155869A (en) * 1997-07-29 1999-02-26 Matsushita Electric Ind Co Ltd Automatic temperature regulation battery charger
JP3732839B2 (en) * 2003-06-20 2006-01-11 本田技研工業株式会社 Voltage measuring device
JP2005346321A (en) * 2004-06-02 2005-12-15 Hitachi Ltd Disk array apparatus and method for controlling battery output of disk array apparatus
JP2009059504A (en) * 2007-08-30 2009-03-19 Sony Corp Battery pack, and control method
JP2010271286A (en) * 2009-05-25 2010-12-02 Mitsubishi Heavy Ind Ltd Device and method of determining deterioration of battery, and program
JP4929389B2 (en) * 2010-10-14 2012-05-09 三菱重工業株式会社 Battery system
JP2014022282A (en) * 2012-07-20 2014-02-03 Sharp Corp Secondary battery abnormality detector, secondary battery, and method for detecting secondary battery abnormality
JP6289803B2 (en) * 2012-08-22 2018-03-07 株式会社東芝 Storage battery device, storage battery device management method, and storage battery system
JP2014131449A (en) * 2012-12-28 2014-07-10 Sharp Corp Power consumption control device, portable terminal, and power consumption control program
JP6261975B2 (en) * 2013-12-11 2018-01-17 株式会社東芝 Heating element storage device

Also Published As

Publication number Publication date
JPWO2017154170A1 (en) 2018-10-04
WO2017154170A1 (en) 2017-09-14

Similar Documents

Publication Publication Date Title
JP6571268B2 (en) Battery monitoring apparatus and method
US8766590B2 (en) Energy storage system of apartment building, integrated power management system, and method of controlling the system
US8806240B2 (en) Battery management system, method of controlling the same, and energy storage system including the battery management system
US9401616B2 (en) Battery pack, energy storage system including battery pack, and method of charging battery pack
US20150194707A1 (en) Battery pack, energy storage system including the battery pack, and method of operating the battery pack
JP6174154B2 (en) Storage battery management apparatus, method and program
JP6400484B2 (en) Power storage system, power storage control method, and power storage control program
US11054475B2 (en) Electric storage capacity estimation apparatus and method for operating the same
JP6622380B2 (en) Storage battery device and method
JPWO2017154115A1 (en) Storage battery device, storage battery system, method and control program
US10581246B2 (en) Voltage-fluctuation suppression device and method
JP6419941B2 (en) Storage battery management apparatus, method and program
KR102064586B1 (en) Charge management method for energy storage system
US20180172773A1 (en) Storage battery device, storage battery system, method and computer program product
WO2018167888A1 (en) Storage battery deterioration prediction device, storage battery system, method and program
WO2016147322A1 (en) Storage cell management device, method, and program
WO2017042973A1 (en) Storage battery system, method, and program
WO2017043109A1 (en) Storage battery device and storage battery system
JP6863365B2 (en) Monitoring device, monitoring system and monitoring method
JP6585705B2 (en) Charge / discharge system
JP2016093057A (en) Power storage system, power storage control method, and power storage control program
KR102101848B1 (en) Apparatus for stabling of battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191121

R150 Certificate of patent or registration of utility model

Ref document number: 6622380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150