WO2017153313A1 - Device for carrying out a selective laser melting and a laser metal deposition process, and component produced therewith - Google Patents

Device for carrying out a selective laser melting and a laser metal deposition process, and component produced therewith Download PDF

Info

Publication number
WO2017153313A1
WO2017153313A1 PCT/EP2017/055140 EP2017055140W WO2017153313A1 WO 2017153313 A1 WO2017153313 A1 WO 2017153313A1 EP 2017055140 W EP2017055140 W EP 2017055140W WO 2017153313 A1 WO2017153313 A1 WO 2017153313A1
Authority
WO
WIPO (PCT)
Prior art keywords
walled
slm
component
elements
thin
Prior art date
Application number
PCT/EP2017/055140
Other languages
German (de)
French (fr)
Inventor
Christian Brunhuber
Jonas Eriksson
Moritz Fischle
Andreas Graichen
Stefan Lampenscherf
Steffen Walter
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2017153313A1 publication Critical patent/WO2017153313A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a device for carrying out a selective laser melting (SLM) production method, in particular for producing components having complex internal structures and / or many individual parts for turbines, in particular for gas turbines.
  • SLM selective laser melting
  • the SLM process is known, in which three-dimensional metals are selectively melted by means of laser beams in a powder bed, and components are "erected" by lowering the powder bed, very fine structures, wall thicknesses in the range from 20 to 100 ym be represented include.
  • the construction direction of the component disadvantage is defined in the SLM process from the beginning. of the process is therefore, that an anisotropic material behavior at about Herge ⁇ placed the SLM process components results and in particular also that the manufacture of overhanging structures in the SLM process is possible only by means of auxiliary structures. for example, was placed firmly ⁇ that the creep resistance of the components produced in the SLM process compared to driven components is greatly reduced.
  • the invention accordingly provides an apparatus for carrying out a selective laser melting (SLM) process, wherein a powder bed, an inert gas chamber and a La ⁇ serstrahl comprehensive SLM device, which is based in a preferred direction, a component by at least a laser metal deposition apparatus comprising a laser beam and a powder spray, is added, such that at least one Laser metal deposition device is arranged transversely to the preferred direction of the SLM structure.
  • SLM selective laser melting
  • a component located in front ⁇ , thin-walled and thick-walled elements comprising said thin-walled elements by means of se- lective laser melting and thick-walled elements by means of laser metal deposition are made, such that the thin-walled elements for SLM-produced components typical features such as Dimensions of the wall thicknesses between 20 and 200 ym and an anisotropic property profile of the material, as well as reduced creep show, whereas thick-walled Elemen ⁇ te wall thicknesses greater than 150ym, especially greater than 200ym and more preferably have greater than 300ym show no preference ⁇ direction and an isotropic property profile ,
  • the invention makes it possible to overcome the disadvantages of the SLM-made components because the weak, thin-walled structures of the SLM product are supplemented by strong structures that can be produced via LMD.
  • a prototype of a turbine blade is a ⁇ be ferred embodiment of the device according to the invention by the inner fine, complex, and responsible for the cooling of thin-walled structures typical SLM components and the thick-walled bearing outer contours are typical LMD components.
  • hybrid components of different material combinations ⁇ nations can be prepared via the combination of the SLM with the LMD procedures nevertheless have the inner fine SLM structures.
  • the thick-walled structures serve as auxiliary structures during the construction of the thin-walled, finer and preferably internal structures, so that overhanging thin-walled structures without auxiliary structures can also be produced in the SLM process.
  • the thick-walled coarse elements are transverse to the fine thin-walled elements, as far as the construction direction of the production of the elements can be seen.
  • Structures that can be produced via SLM such as the cooling structures of turbine blades or turbine blades as a base or base plate for the application and production of coarser and thicker wall elements such as housing of turbine blade are used, so that at the connection of inner ⁇ cooling structure and outer shell or housing is detectable, as each item, via rapid prototyping ⁇ up was introduced.
  • a component may according to the invention, thin-walled and thick-walled, about generative manufacturing methods erzeug ⁇ te elements comprising, hammered with the cast, transmission ⁇ NEN, or otherwise be as conventionally produced elements combined to form one component.
  • two preferred directions are formed, which can be detected by the grains and / or dendrites forming.
  • the construction direction is detectable for example in the structure of the component, because the forming grains and / or dendrites along a
  • FIG. 1 shows on the top left part according to an exemplary of the invention, the thin-walled and thick-walled struc ⁇ Ren and bottom right the construction of such a component, wherein the one hand the construction direction of the thin-walled elements, which are preferably produced via a SLM process and second, the construction direction of the thick-walled elements, which are preferably produced in the LMD process, are shown.
  • Figure 1 shows a wing 1 of a rotor having cells 2 inside with highly complex and therefore finely structured cooling elements.
  • These inner cells 2 comprise beispiels- example and preferably complex cooling designs asdekanä ⁇ le, spirals, grinding, -gitter Modellen, periodic and non-periodic -raster which can be realized in thin-walled dreidimensio ⁇ dimensional structures. It is particularly advantageous if these thin-walled structures have wall thicknesses of less than / equal to 200 ym, and in particular of less than 150ym and particularly preferably of less than 100 mm ⁇ .
  • the housing has an outer wall, which is realized in thicker wall thicknesses, for example, with a wall ⁇ strength in the millimeter range, in particular wall thicknesses of ... to.
  • FIG. 2 shows a component according to an embodiment of the invention in detail, wherein an exemplary position of the at least two mounting directions 4, 5 of the two components th of a component according to the invention to each other, the thin-walled element 2 on the one hand and the thick-walled element 3 on the other hand, is shown.
  • the two mounting directions 4 of the thin-walled element 2 and the mounting direction 5 of the thick-walled element 3 are perpendicular to each other here.
  • the two mounting directions 4 and 5 in any other embodiments of the invention include any angle to Shen, as by a LMD device, for example, by 5 axes and / or rotatable by robots by applying material to a base plate a complete Three-dimensional element is forth ⁇ adjustable.
  • a LMD device for example, by 5 axes and / or rotatable by robots by applying material to a base plate a complete Three-dimensional element is forth ⁇ adjustable.
  • two essential elements of the ge in Figure 1 ⁇ showed rotor blade are illustrated. In this case, the views are reproduced from the outside on the housing wall 3.
  • the thin-walled elements 2 are located behind the housing wall 3.
  • the mounting direction 4, for example the thin-walled structures, such as the cooling cells produced in the SLM process and the construction direction 5 of a thick-walled structure, can be seen
  • This thick-walled member 3 is, for example, in building direction up 5 is produced, wherein as a base plate or base surface ⁇ a part, for example a side wall of a thin-walled ⁇ , produced in the SLM-method, three-dimensional cooling element 2 is used.
  • the housing 3 can be produced either partially or entirely by the LMD method, but it is also possible to construct an LMD housing on a base, which is cast, for example, which also includes components which, in turn, rest on the thin-walled structures 2 are constructed.
  • the component according to the invention comprises elements that are each available via different manufacturing methods, wherein the thin-walled elements are available at least in part via SLM processes and the thick-walled elements can be produced at least in part via LMD processes. Further components of the component, which can be completed by conventional and other production methods, can thereby complete the component.
  • Figure 3 shows a further embodiment of the invention wherein a component is shown in a core-shell structure as a longitudinal cross-section.
  • the blade shown is characterized in that a ge ⁇ cast vane core with an inner blade or turbine blade mold 8 in SLM process walled complex and fine cooling structures 6 are applied, on the one part, by means of LMD method with mechanically stable shell 7 are surrounded.
  • FIG. 4 shows the construction from FIG. 3 in cross-section in the front view.
  • the poured core 8 for example as a prefabricated element for ra ⁇ pid prototyping, therefore there are thin-walled fine cooling structures 6, which in turn are surrounded by a shell 7 produced by LMD.
  • the invention for the first time discloses a device having complex fine inner thin-walled elements, which receives outer contours and mechanical stability by thick-walled elements where ⁇ at the two elements of the component can be produced by generative procedural ⁇ acids, such as SLM and LMD and usefully also molded by prefabricated example parts he be ⁇ supplemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Composite Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Laser Beam Processing (AREA)
  • Powder Metallurgy (AREA)

Abstract

The invention relates to a device for carrying out a selective laser melting (SLM) and a laser metal deposition (LMD) production method, particularly for producing components with complex inner structures and/or a plurality of individual parts for turbines, particularly for gas turbines. The invention first discloses a component with complex fine inner thin-walled elements, which is provided with outer contours and mechanical stability by means of thick-walled elements, the two elements of the component being producible by generative methods such as SLM and LMD and still completed, for logical reasons, by prefabricated, for example, cast parts.

Description

Beschreibung description
VORRICHTUNG ZUR DURCHFÜHRUNG EINES SELECTIVE LASER MELTING UND EINES LASER METAL DEPOSITION PROZESSES SOWIE DAMIT HERGESTELLTES BAUTEIL DEVICE FOR CARRYING OUT A SELECTIVE LASER MELTING AND A LASER METAL DEPOSITION PROCESS AND COMPONENT MANUFACTURED THEREFOR
Die Erfindung betrifft eine Vorrichtung zur Durchführung eines Selective Laser Melting (SLM) - Herstellungsverfahrens, insbesondere zur Herstellung von Komponenten mit komplexen inneren Strukturen und/oder vielen Einzelteilen für Turbinen, insbesondere für Gasturbinen. The invention relates to a device for carrying out a selective laser melting (SLM) production method, in particular for producing components having complex internal structures and / or many individual parts for turbines, in particular for gas turbines.
Bekannt ist beispielsweise das SLM-Verfahren, bei dem mittels Laserstrahlen in einem Pulverbett selektiv dreidimensional Metalle geschmolzen und durch Absenken des Pulverbetts Bau- teile im Sinne des Wortes „errichtet" werden. Dabei können sehr feine Strukturen, die Wandstärken im Bereich von 20 bis 100 ym umfassen dargestellt werden. Allerdings ist im SLM- Verfahren die Aufbaurichtung des Bauteils von Anfang an festgelegt. Nachteilig an dem Verfahren ist deshalb, dass ein anisotropes Materialverhalten bei über den SLM-Prozess herge¬ stellten Bauteilen resultiert und insbesondere auch, dass die Herstellung überhängender Strukturen im SLM-Prozess nur mittels Hilfsstrukturen möglich ist. Beispielsweise wurde fest¬ gestellt, dass die Kriechbeständigkeit der im SLM-Prozess hergestellten Bauteile im Vergleich zu getriebenen Bauteilen stark verringert ist. For example, the SLM process is known, in which three-dimensional metals are selectively melted by means of laser beams in a powder bed, and components are "erected" by lowering the powder bed, very fine structures, wall thicknesses in the range from 20 to 100 ym be represented include. However, the construction direction of the component disadvantage is defined in the SLM process from the beginning. of the process is therefore, that an anisotropic material behavior at about Herge ¬ placed the SLM process components results and in particular also that the manufacture of overhanging structures in the SLM process is possible only by means of auxiliary structures. for example, was placed firmly ¬ that the creep resistance of the components produced in the SLM process compared to driven components is greatly reduced.
Deshalb ist es Aufgabe der vorliegenden Erfindung, eine Vorrichtung und ein damit produziertes Bauteil zu schaffen, durch das die Nachteile des Standes der Technik bei SLM- produzierten Bauteilen überwunden werden. It is therefore an object of the present invention to provide a device and a component produced thereby, which overcomes the disadvantages of the prior art in SLM-produced components.
Diese Aufgabe wird durch den Gegenstand der vorliegenden Er¬ findung, wie er in den Ansprüchen und den Figuren offenbart ist, gelöst. This object is achieved by the subject matter of the present ¬ invention as disclosed in the claims and the figures.
Gegenstand der Erfindung ist demnach eine Vorrichtung zur Durchführung eines Selective Laser Melting (SLM-) Prozesses, wobei eine ein Pulverbett, eine Inertgaskammer und einen La¬ serstrahl umfassende SLM-Vorrichtung, die in eine Vorzugsrichtung ein Bauteil aufbaut durch zumindest eine Laser Metal Deposition Vorrichtung, die einen Laserstrahl und ein Pulver- spray umfasst, ergänzt ist, derart, dass zumindest eine Laser Metal Deposition Vorrichtung quer zur Vorzugsrichtung des SLM-Aufbaus angeordnet ist. Außerdem ist Gegenstand der vor¬ liegenden Erfindung ein Bauteil, dünnwandige und dickwandige Elemente umfassend, wobei dünnwandige Elemente mittels se- lective laser melting und dickwandige Elemente mittels Laser metal deposition gemacht sind, derart, dass die dünnwandigen Elemente für SLM-hergestellte Bauteile typische Merkmale wie Dimensionen der Wandstärken zwischen 20 und 200 ym und ein anisotropes Eigenschaftsprofil des Materials, sowie vermin- derte Kriechfestigkeit zeigen, wohingegen dickwandige Elemen¬ te Wandstärken größer 150ym, insbesondere größer 200ym und besonders bevorzugt größer 300ym haben, keinerlei Vorzugs¬ richtung und ein isotropes Eigenschaftsprofil zeigen. Durch die Erfindung wird es möglich, die Nachteile der SLM- hergestellten Bauteile zu überwinden, weil die schwachen, dünnwandigen Strukturen des SLM-Produktes durch starke Strukturen, die über LMD herstellbar sind, ergänzt werden. Beispielsweise ist ein Prototyp eines Turbinenblatts eine be¬ vorzugte Ausführungsform des Bauteils gemäß der Erfindung, indem die inneren, feinen, komplexen und für die Kühlung verantwortlichen dünnwandigen Strukturen typische SLM-Bauteile und die dickwandigen tragenden Außenkonturen typische LMD Bauteile sind. The invention accordingly provides an apparatus for carrying out a selective laser melting (SLM) process, wherein a powder bed, an inert gas chamber and a La ¬ serstrahl comprehensive SLM device, which is based in a preferred direction, a component by at least a laser metal deposition apparatus comprising a laser beam and a powder spray, is added, such that at least one Laser metal deposition device is arranged transversely to the preferred direction of the SLM structure. In addition, subject matter of the invention, a component located in front ¬, thin-walled and thick-walled elements comprising said thin-walled elements by means of se- lective laser melting and thick-walled elements by means of laser metal deposition are made, such that the thin-walled elements for SLM-produced components typical features such as Dimensions of the wall thicknesses between 20 and 200 ym and an anisotropic property profile of the material, as well as reduced creep show, whereas thick-walled Elemen ¬ te wall thicknesses greater than 150ym, especially greater than 200ym and more preferably have greater than 300ym show no preference ¬ direction and an isotropic property profile , The invention makes it possible to overcome the disadvantages of the SLM-made components because the weak, thin-walled structures of the SLM product are supplemented by strong structures that can be produced via LMD. For example, a prototype of a turbine blade is a ¬ be ferred embodiment of the device according to the invention by the inner fine, complex, and responsible for the cooling of thin-walled structures typical SLM components and the thick-walled bearing outer contours are typical LMD components.
Insbesondere können über die Kombination des SLM mit dem LMD- Verfahren auch hybride Bauteile verschiedener Materialkombi¬ nationen hergestellt werden, die trotzdem die inneren feinen SLM-Strukturen aufweisen. Dazu liegt beispielsweise eine in¬ nere Struktur aus einem ersten Material, das für die Herstel¬ lung feiner Kühlstrukturen geeignet ist, vor und eine äußere Struktur, die aus einem oder mehreren Materialien gemacht ist und die dickwandige gröbere Strukturen mit Auflösungen von über 200ym zeigt. In particular, hybrid components of different material combinations ¬ nations can be prepared via the combination of the SLM with the LMD procedures nevertheless have the inner fine SLM structures. For this purpose, for example, is a nere in ¬ structure of a first material that is suitable for the development of fine herstel ¬ cooling structures, and is an outer structure made of one or more materials and shows the thick-walled coarser structures with resolutions of over 200ym.
Dabei ist es beispielsweise möglich, dass die dickwandigen Strukturen während des Aufbaus der dünnwandigen feineren und bevorzugt innen liegenden Strukturen als Hilfsstrukturen dienen, so dass auch überhängende dünnwandige Strukturen ohne Hilfsstrukturen im SLM-Prozess herstellbar sind. Nach einer Ausführungsform des Bauteils liegen die dickwandigen groben Elemente quer zu den feinen dünnwandigen Elementen vor, soweit die Aufbaurichtung der Herstellung der Elemente erkennbar ist. Insbesondere können auch voluminöse Elemente aus feinen In this case, it is possible, for example, for the thick-walled structures to serve as auxiliary structures during the construction of the thin-walled, finer and preferably internal structures, so that overhanging thin-walled structures without auxiliary structures can also be produced in the SLM process. According to one embodiment of the component, the thick-walled coarse elements are transverse to the fine thin-walled elements, as far as the construction direction of the production of the elements can be seen. In particular, also voluminous elements of fine
Strukturen, die über SLM herstellbar sind, wie beispielsweise die Kühlstrukturen von Turbinenblättern oder Turbinenschaufeln als Basis oder Bodenplatte für die Aufbringung und Herstellung gröberer und dickwandigerer Elemente wie Gehäuse von Turbinenschaufel dienen, so dass an der Verbindung von inne¬ rer Kühlstruktur und äußerer Schale oder Gehäuse nachweisbar ist, wie das jeweilige Element per rapid prototyping aufge¬ bracht wurde . Schließlich kann ein Bauteil nach der Erfindung, dünnwandige und dickwandige, über generative Herstellungsmethoden erzeug¬ te Elemente umfassend mit gegossenen, gehämmerten, getriebe¬ nen, oder sonst wie herkömmlich produzierten Elementen zu einem Bauteil kombiniert werden. Structures that can be produced via SLM, such as the cooling structures of turbine blades or turbine blades as a base or base plate for the application and production of coarser and thicker wall elements such as housing of turbine blade are used, so that at the connection of inner ¬ cooling structure and outer shell or housing is detectable, as each item, via rapid prototyping ¬ up was introduced. Finally a component may according to the invention, thin-walled and thick-walled, about generative manufacturing methods erzeug ¬ te elements comprising, hammered with the cast, transmission ¬ NEN, or otherwise be as conventionally produced elements combined to form one component.
In einem so erhältlichen Bauteil bilden sich zwei Vorzugsrichtungen aus, die durch die sich ausbildenden Körner und/oder Dendriten nachweisbar sind. Die Aufbaurichtung ist beispielsweise im Gefüge des Bauteils nachweisbar, weil die sich ausbildenden Körner und/oder Dendriten entlang einesIn a component obtainable in this way, two preferred directions are formed, which can be detected by the grains and / or dendrites forming. The construction direction is detectable for example in the structure of the component, because the forming grains and / or dendrites along a
Temperaturgefälles wachsen. Insbesondere wachsen sie vom hei¬ ßen Laserspot aus in das kühlere Substratmaterial. Dies ist sowohl beim SLM als auch bei LMD der Fall. Es entstehen viel- fach sehr lange Körner und/oder Dendriten, die in ihrer Temperature gradient grow. In particular, they grow out from the hot ¬ SEN laser spot in the cooler substrate material. This is the case with both SLM and LMD. There are many very long grains and / or dendrites in their
Längsstruktur erkennen lassen, wie das Bauteil aufgebaut wurde . Im Folgenden wird die Erfindung noch anhand beispielhafterLongitudinal structure show how the component was built. In the following, the invention will be described by way of example
Ausführungsformen, die in den Figuren schematisch dargestellt sind, näher erläutert: Embodiments, which are shown schematically in the figures, explained in more detail:
Figur 1 zeigt links oben ein Bauteil nach einer Ausführungs- form der Erfindung, das dünnwandige und dickwandige Struktu¬ ren hat und rechts unten den Aufbau eines solchen Bauteils, wobei zum einen die Aufbaurichtung der dünnwandigen Elemente, die vorzugsweise über einen SLM-Prozess herstellbar sind und zum zweiten die Aufbaurichtung der dickwandigen Elemente, die vorzugsweise im LMD-Prozess herstellbar sind, gezeigt werden. 1 shows on the top left part according to an exemplary of the invention, the thin-walled and thick-walled struc ¬ Ren and bottom right the construction of such a component, wherein the one hand the construction direction of the thin-walled elements, which are preferably produced via a SLM process and second, the construction direction of the thick-walled elements, which are preferably produced in the LMD process, are shown.
Figur 1 zeigt einen Flügel 1 eines Rotors, der im Inneren Zellen 2 mit hochkomplexen und deshalb feinstrukturierten Kühlelementen hat. Diese inneren Zellen 2 umfassen beispiels- weise und bevorzugt komplexe Kühlkonstruktionen wie Kühlkanä¬ le, -spiralen, -schleifen, -gitterstrukturen, periodische und nicht periodische -raster, die in dünnwandigen dreidimensio¬ nalen Strukturen realisierbar sind. Dabei ist es insbesondere vorteilhaft, wenn diese dünnwandigen Strukturen Wandstärken von kleiner/gleich als 200 ym, insbesondere von kleiner als 150ym und insbesondere bevorzugt von kleiner als 100 mm auf¬ weisen . Figure 1 shows a wing 1 of a rotor having cells 2 inside with highly complex and therefore finely structured cooling elements. These inner cells 2 comprise beispiels- example and preferably complex cooling designs as Kühlkanä ¬ le, spirals, grinding, -gitterstrukturen, periodic and non-periodic -raster which can be realized in thin-walled dreidimensio ¬ dimensional structures. It is particularly advantageous if these thin-walled structures have wall thicknesses of less than / equal to 200 ym, and in particular of less than 150ym and particularly preferably of less than 100 mm ¬.
Diese inneren Zellen 2 liegen in einem Gehäuse 3, das die nö- tige mechanische Stabilität für den Betrieb eines Rotorblat¬ tes zeigt. Das Gehäuse hat eine äußere Wand, die in dickeren Wandstärken realisiert ist, beispielsweise mit einer Wand¬ stärke im Millimeterbereich, insbesondere auch Wandstärken von ... bis. These inner cells 2 are located in a housing 3, which shows the NÖ-term mechanical stability for the operation of a Rotorblat ¬ tes. The housing has an outer wall, which is realized in thicker wall thicknesses, for example, with a wall ¬ strength in the millimeter range, in particular wall thicknesses of ... to.
In der Figur 2 ist ein Bauteil nach einer Ausführungsform der Erfindung im Detail gezeigt, wobei eine beispielhafte Lage der zumindest zwei Aufbaurichtungen 4, 5 der beiden Komponen- ten eines Bauteils nach der Erfindung zueinander, des dünnwandigen Elements 2 einerseits und des dickwandigen Elements 3 andererseits, gezeigt ist. Die beiden Aufbaurichtungen 4 des dünnwandigen Elements 2 und Aufbaurichtung 5 des dickwan- digen Elements 3 liegen hier senkrecht zueinander. 2 shows a component according to an embodiment of the invention in detail, wherein an exemplary position of the at least two mounting directions 4, 5 of the two components th of a component according to the invention to each other, the thin-walled element 2 on the one hand and the thick-walled element 3 on the other hand, is shown. The two mounting directions 4 of the thin-walled element 2 and the mounting direction 5 of the thick-walled element 3 are perpendicular to each other here.
Neben dem in Figur 2 gezeigten Ausführungsbeispiel können die beiden Aufbaurichtungen 4 und 5 aber in anderen Ausführungsformen der Erfindung beliebige Winkel zueinander einschlie- ßen, da durch eine LMD-Vorrichtung beispielsweise um 5 Achsen und/oder per Roboter drehbar durch Materialauftrag auf eine Basisplatte ein komplettes dreidimensionales Element her¬ stellbar ist. In Figur 2 sind zwei essentielle Elemente des in Figur 1 ge¬ zeigten Rotorblattes dargestellt. Dabei wird der Blicke von außen auf die Gehäusewand 3 wiedergegeben. Die dünnwandigen Elemente 2 befinden sich hinter der Gehäusewand 3. Zu erkennen ist die Aufbaurichtung 4, beispielsweise der dünnwandigen Strukturen, wie der im SLM-Prozess hergestellten Kühlzellen und die Aufbaurichtung 5 einer dickwandigen In addition to the embodiment shown in Figure 2, the two mounting directions 4 and 5 in any other embodiments of the invention include any angle to Shen, as by a LMD device, for example, by 5 axes and / or rotatable by robots by applying material to a base plate a complete Three-dimensional element is forth ¬ adjustable. In Figure 2, two essential elements of the ge in Figure 1 ¬ showed rotor blade are illustrated. In this case, the views are reproduced from the outside on the housing wall 3. The thin-walled elements 2 are located behind the housing wall 3. The mounting direction 4, for example the thin-walled structures, such as the cooling cells produced in the SLM process and the construction direction 5 of a thick-walled structure, can be seen
Struktur, beispielsweise der Gehäuseaußenwand 3 des Rotor¬ blattes 1 aus Figur 1, die mittels LMD-Verfahren herstellbar ist. Dieses dickwandige Element 3 wird beispielsweise in Auf- baurichtung 5 hergestellt, wobei als Basisplatte oder Grund¬ fläche ein Teil, beispielsweise eine Seitenwand, einer dünn¬ wandigen, im SLM-Verfahren hergestellten, dreidimensionalen Kühlelements 2 genutzt ist. Structure, for example, the housing outer wall 3 of the rotor ¬ sheet 1 of Figure 1, which can be produced by LMD method. This thick-walled member 3 is, for example, in building direction up 5 is produced, wherein as a base plate or base surface ¬ a part, for example a side wall of a thin-walled ¬, produced in the SLM-method, three-dimensional cooling element 2 is used.
Das Gehäuse 3 ist entweder teilweise oder ganz im LMD-Verfah- ren herstellbar, es kann aber auch auf einem Sockel, der beispielsweise gegossen ist, eine LMD-Gehäuse aufgebaut werden, dass auch Bestandteile umfasst, die wiederum auf den dünnwan- digen Strukturen 2 aufgebaut sind. The housing 3 can be produced either partially or entirely by the LMD method, but it is also possible to construct an LMD housing on a base, which is cast, for example, which also includes components which, in turn, rest on the thin-walled structures 2 are constructed.
Das Bauteil gemäß der Erfindung umfasst Elemente, die jeweils über verschiedene Herstellungsmethoden erhältlich sind, wobei die dünnwandigen Elemente zumindest zum Teil über SLM-Ver- fahren erhältlich sind und die dickwandigen Elemente zumindest zum Teil über LMD-Verfahren herstellbar sind. Weitere Elemente des Bauteils, die über herkömmliche und andere Her- stellungsverfahren können dabei das Bauteil vervollständigen. The component according to the invention comprises elements that are each available via different manufacturing methods, wherein the thin-walled elements are available at least in part via SLM processes and the thick-walled elements can be produced at least in part via LMD processes. Further components of the component, which can be completed by conventional and other production methods, can thereby complete the component.
Figur 3 zeigt eine weitere Ausführungsform der Erfindung wobei ein Bauteil in einem core-shell-Aufbau als Längs- Querschnitt gezeigt ist. Figure 3 shows a further embodiment of the invention wherein a component is shown in a core-shell structure as a longitudinal cross-section.
Eine innere Gitterstruktur mit Kühlelementen bereits in Flügel- oder Schaufelform für beispielsweise eine Gasturbinenschaufel, umfasst dünnwandige Elemente 6, die von einer Scha¬ le aus mechanisch stabileren, dickwandigen Elementen 7 umge- ben sind. Bei der in Figur 3 gezeigten Ausführungsform zeichnet sich die gezeigte Schaufel dadurch aus, dass um einen ge¬ gossenen Schaufelkern mit einer inneren Rotorblatt oder Turbinenschaufelform 8 im SLM-Verfahren dünnwandige komplexe und feine Kühlstrukturen 6 aufgebracht werden, die ihrerseits mittels LMD-Verfahren mit einer mechanisch stabilen Schale 7 umgeben sind. An internal lattice structure with cooling elements already in wing or blade shape for example a gas turbine blade, comprising thin-walled elements 6, which are sur- rounded by a scraping ¬ le of mechanically stable, thick-walled elements. 7 In the embodiment shown in Figure 3 embodiment, the blade shown is characterized in that a ge ¬ cast vane core with an inner blade or turbine blade mold 8 in SLM process walled complex and fine cooling structures 6 are applied, on the one part, by means of LMD method with mechanically stable shell 7 are surrounded.
Figur 4 schließlich zeigt den Aufbau aus Figur 3 im Querschnitt in der Vorderansicht. Man erkennt wieder den gegosse- nen Kern 8, beispielsweise als vorgefertigtes Element für ra¬ pid Prototyping, darum befinden sich dünnwandige feine Kühlstrukturen 6, die ihrerseits von einer LMD-gefertigten Schale 7 umgeben sind. Die Erfindung offenbart erstmals ein Bauteil mit komplexen feinen inneren dünnwandigen Elementen, das durch dickwandige Elemente Außenkonturen und mechanische Stabilität erhält, wo¬ bei die beiden Elemente des Bauteils durch generative Verfah¬ ren wie SLM und LMD herstellbar sind und sinnvollerweise auch noch durch vorgefertigte beispielsweise gegossene Teile er¬ gänzt werden. Finally, FIG. 4 shows the construction from FIG. 3 in cross-section in the front view. One recognizes again the poured core 8, for example as a prefabricated element for ra ¬ pid prototyping, therefore there are thin-walled fine cooling structures 6, which in turn are surrounded by a shell 7 produced by LMD. The invention for the first time discloses a device having complex fine inner thin-walled elements, which receives outer contours and mechanical stability by thick-walled elements where ¬ at the two elements of the component can be produced by generative procedural ¬ acids, such as SLM and LMD and usefully also molded by prefabricated example parts he be ¬ supplemented.

Claims

Patentansprüche claims
1. Vorrichtung zur Durchführung eines Selective Laser Melting (SLM-) Prozesses, wobei eine ein Pulverbett, eine Inertgas- kammer und einen Laserstrahl umfassende SLM-Vorrichtung, die in eine Vorzugsrichtung ein Bauteil aufbaut durch zumindest eine Laser Metal Deposition Vorrichtung, die einen Laserstrahl und ein Pulverspray umfasst, ergänzt ist, derart, dass zumindest eine Laser Metal Deposition Vorrichtung quer zur Vorzugsrichtung des SLM-Aufbaus angeordnet ist. An apparatus for performing a selective laser melting (SLM) process, comprising a SLM device comprising a powder bed, an inert gas chamber and a laser beam, which builds a component in a preferred direction by means of at least one laser metal deposition apparatus comprising a laser beam and a powder spray is added, such that at least one laser metal deposition device is arranged transversely to the preferred direction of the SLM structure.
2. Vorrichtung nach Anspruch 1, bei der eine Inertgaskammer vorgesehen ist, in der abwechselnd ein Laserstrahl zur Durchführung des SLM Prozesses und ein Laserstrahl zur Durchfüh- rung des LMD Prozesses aktivierbar ist. 2. Device according to claim 1, wherein an inert gas chamber is provided, in which alternately a laser beam for performing the SLM process and a laser beam for performing the LMD process can be activated.
3. Bauteil, erhältlich durch Durchführung eines Selective La¬ ser Melting Prozesses und eines Laser Metal Deposition Pro¬ zesses mittels einer Vorrichtung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass im Aufbau des Bauteils zwei Vorzugsrichtungen nachweisbar sind, die den beiden jeweiligen Laserstrahlen zuordenbar sind. 3. The component obtainable by carrying out a selective La ¬ ser Melting process and a laser metal deposition Pro ¬ zesses means of a device according to any one of claims 1 or 2, characterized in that two preferred directions are detectable in the construction of the component, the respective both Laser beams are assigned.
4. Bauteil, dünnwandige und dickwandige Elemente umfassend, wobei dünnwandige Elemente mittels selective laser melting und dickwandige Elemente mittels Laser metal deposition ge¬ macht sind, derart, dass die dünnwandigen Elemente für SLM- hergestellte Bauteile typische Merkmale wie Dimensionen der Wandstärken zwischen 20 und 200 ym und ein anisotropes Eigen- schaftsprofil des Materials, sowie verminderte Kriechfestig¬ keit zeigen, wohingegen dickwandige Elemente Wandstärken größer 150ym, insbesondere größer 200ym und besonders bevorzugt größer 300ym haben, keinerlei Vorzugsrichtung und ein isotropes Eigenschaftsprofil zeigen. 4. component comprising thin-walled and thick-walled elements, wherein thin-walled elements by means of selective laser melting and thick-walled elements by means of laser metal deposition ge ¬ made , such that the thin-walled elements for SLM-manufactured components typical features such as dimensions of the wall thicknesses between 20 and 200 ym and an anisotropic property profile of the material and reduced Kriechfestig ¬ ness show, whereas thick-walled elements wall thicknesses greater than 150ym, in particular greater than 200ym and particularly preferably greater than 300ym have show no preferred direction, and an isotropic property profile.
5. Bauteil nach Anspruch 4, das im core-shell Prinzip aufge¬ baut ist, wobei innen die dünnwandigen Elemente und als Scha¬ le die dickwandigen Elemente vorgesehen sind. 5. The component of claim 4, which is fitted in the core-shell principle ¬ builds, wherein the thick-walled elements inside the thin-walled elements and are provided as saddle ¬ le.
6. Bauteil nach Anspruch 4 oder 5, wobei ein Schichtaufbau von innen nach außen vorgesehen ist, derart, dass auf einem inneren Kern aus einem gegossenem Material dünnwandige Ele¬ mente, die mittels SLM-Verfahren herstellbar sind, liegen und darauf dann eine Lage mit dickwandigen Elementen, die mittels LMD-Verfahren herstellbar sind. 6. Component according to claim 4 or 5, wherein a layer structure is provided from the inside to the outside, such that on an inner core of a cast material thin-walled ele ¬ ments, which can be produced by SLM method lie, and then a layer with thick-walled elements that can be produced by LMD method.
7. Bauteil nach einem der Ansprüche 4 bis 6, das eine Turbi¬ nenschaufel oder ein Turbinenblatt oder ein Rotorblatt dar¬ stellt . 7. Component according to one of claims 4 to 6, which represents a Turbi ¬ nenschaufel or a turbine blade or a rotor blade ¬ .
8. Bauteil nach einem der Ansprüche 4 bis 7, wobei die dünn¬ wandigen, im SLM-Verfahren hergestellten Elemente komplexe innere Kühlstrukturen einer Turbinenschaufel oder eines Tur¬ binenblatts darstellen. 8. Component according to one of claims 4 to 7, wherein the thin ¬ walled, produced in the SLM process elements complex internal cooling structures of a turbine blade or a tur ¬ binenblatts represent.
PCT/EP2017/055140 2016-03-07 2017-03-06 Device for carrying out a selective laser melting and a laser metal deposition process, and component produced therewith WO2017153313A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016203680.7A DE102016203680A1 (en) 2016-03-07 2016-03-07 Device for carrying out a selective laser melting process and component produced therewith
DE102016203680.7 2016-03-07

Publications (1)

Publication Number Publication Date
WO2017153313A1 true WO2017153313A1 (en) 2017-09-14

Family

ID=58314168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/055140 WO2017153313A1 (en) 2016-03-07 2017-03-06 Device for carrying out a selective laser melting and a laser metal deposition process, and component produced therewith

Country Status (2)

Country Link
DE (1) DE102016203680A1 (en)
WO (1) WO2017153313A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107876769A (en) * 2017-12-04 2018-04-06 首都航天机械公司 A kind of large size, thin walled open labyrinth combination increasing material manufacturing method
CN109530704A (en) * 2019-01-30 2019-03-29 武汉天和技术股份有限公司 A kind of preparation method of plasma flare hollow cathode
EP3363563B1 (en) * 2017-02-17 2022-11-09 HS Marston Aerospace Limited Additive manufacturing method to produce a heat exchanger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018202685A1 (en) * 2018-02-22 2019-08-22 Siemens Aktiengesellschaft Component and method for producing a component by means of additive manufacturing processes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011011325A1 (en) * 2011-02-16 2012-08-16 Mtu Aero Engines Gmbh Method for generative production or repair of a component and component
DE102011081112A1 (en) * 2011-08-17 2013-02-21 Rolls-Royce Deutschland Ltd & Co Kg Method for producing a component for high thermal loads, a component produced by the method and an aircraft engine with the component
CN103726049A (en) * 2014-01-09 2014-04-16 武汉新瑞达激光工程有限责任公司 Laser additive manufacturing method and device of metal parts
WO2015058043A1 (en) * 2013-10-18 2015-04-23 United Technologies Corporation Multiple piece engine component
CN105562687A (en) * 2014-10-10 2016-05-11 南京理工大学 Selective laser melting powder sending and laying device used for compounding of different types of powder
WO2016078800A1 (en) * 2014-11-21 2016-05-26 Siemens Aktiengesellschaft Method of manufacturing a component and component

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008013569U1 (en) * 2008-10-09 2008-12-24 Hochschule Mittweida (Fh) Device for applying layer structures to at least one substrate by means of laser deposition welding
EP2415552A1 (en) * 2010-08-05 2012-02-08 Siemens Aktiengesellschaft A method for manufacturing a component by selective laser melting
DE102011008695A1 (en) * 2011-01-15 2012-07-19 Mtu Aero Engines Gmbh A method of generatively producing a device with an integrated damping for a turbomachine and generatively manufactured component with an integrated damping for a turbomachine
EP2845918A1 (en) * 2013-09-04 2015-03-11 Siemens Aktiengesellschaft Method for at least partially coating a blade, a coating device and a blade
EP2875938A1 (en) * 2013-11-21 2015-05-27 Airbus Operations GmbH Manufacturing method and manufacturing tool for reinforced structural elements

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011011325A1 (en) * 2011-02-16 2012-08-16 Mtu Aero Engines Gmbh Method for generative production or repair of a component and component
DE102011081112A1 (en) * 2011-08-17 2013-02-21 Rolls-Royce Deutschland Ltd & Co Kg Method for producing a component for high thermal loads, a component produced by the method and an aircraft engine with the component
WO2015058043A1 (en) * 2013-10-18 2015-04-23 United Technologies Corporation Multiple piece engine component
CN103726049A (en) * 2014-01-09 2014-04-16 武汉新瑞达激光工程有限责任公司 Laser additive manufacturing method and device of metal parts
CN105562687A (en) * 2014-10-10 2016-05-11 南京理工大学 Selective laser melting powder sending and laying device used for compounding of different types of powder
WO2016078800A1 (en) * 2014-11-21 2016-05-26 Siemens Aktiengesellschaft Method of manufacturing a component and component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3363563B1 (en) * 2017-02-17 2022-11-09 HS Marston Aerospace Limited Additive manufacturing method to produce a heat exchanger
CN107876769A (en) * 2017-12-04 2018-04-06 首都航天机械公司 A kind of large size, thin walled open labyrinth combination increasing material manufacturing method
CN107876769B (en) * 2017-12-04 2019-08-13 首都航天机械公司 A kind of large size, thin walled open labyrinth combination increasing material manufacturing method
CN109530704A (en) * 2019-01-30 2019-03-29 武汉天和技术股份有限公司 A kind of preparation method of plasma flare hollow cathode

Also Published As

Publication number Publication date
DE102016203680A1 (en) 2017-09-07

Similar Documents

Publication Publication Date Title
WO2017153313A1 (en) Device for carrying out a selective laser melting and a laser metal deposition process, and component produced therewith
DE112018001284T5 (en) METHOD OF MANUFACTURING DEVICE GEAR FLEX PLINES BY ADDITIVE METAL PRODUCTION
EP3259381B1 (en) Method for manufacturing a component by thermal spraying and installation for manufacturing a component with a device for thermal spraying
EP2606997B1 (en) Method for manufacturing a component by metal powder injection moulding
EP3423218B1 (en) Method for the modular additive manufacturing of a component and a component
EP2315697B1 (en) Support for a aircraft structural component produced in a selective laser melting method, use and production method
EP3421157A1 (en) Method for producing an impeller of a rotary machine and impeller produced according to such a method
DE102009048665A1 (en) Turbine blade and method for its production
DE102011087374A1 (en) Process for the production of a molded article by layering of material powder
DE4222856C1 (en)
DE102009034566A1 (en) Use of generative manufacturing method for layered structure of a component of a tank shell of a tank for liquids and/or gases, preferably fuel tank of e.g. satellite, where the component consists of titanium or an alloy of titanium
EP1568486B1 (en) Method for manufacturing of workpieces or semifinished products containing titanium aluminide alloys and products made thereby
DE102012016309A1 (en) Method for manufacturing core layer of light component for use in e.g. vehicle, involves forming core layer comprising support portion integrally connected with functional portion in additive manufacturing process
WO2006128736A1 (en) Process for producing an object having at least two moving parts
EP3414036B1 (en) Process for determining the build orientation of an article to be manufactured through additive manufacturing and computer-readable medium
DE102016105093A1 (en) Additive manufacturing
WO2016091629A1 (en) Method for manufacturing a compressor impeller
EP3338918A1 (en) Layered construction device and layered construction method for additive manufacture of at least one component area of a component
WO2019011641A1 (en) Method for a component with a predetermined surface structure to be produced by additive manufacturing
EP3715022B1 (en) Process for additive manufacturing a component
WO2017220075A1 (en) Labyrinth seal and method for producing a labyrinth seal
EP3571411B1 (en) Pump impeller
WO2017220058A1 (en) Method for producing at least one hybrid component having additively manufactured sub-regions
EP3222372A1 (en) Method for additive manufacturing a component with multiple building materials and component
EP3238863A1 (en) Method for producing a rotor blade for a fluid flow engine

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17710848

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17710848

Country of ref document: EP

Kind code of ref document: A1