WO2017152810A1 - 信道探测信号srs的发送方法及装置 - Google Patents

信道探测信号srs的发送方法及装置 Download PDF

Info

Publication number
WO2017152810A1
WO2017152810A1 PCT/CN2017/075611 CN2017075611W WO2017152810A1 WO 2017152810 A1 WO2017152810 A1 WO 2017152810A1 CN 2017075611 W CN2017075611 W CN 2017075611W WO 2017152810 A1 WO2017152810 A1 WO 2017152810A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
subframe
drs
transmission
configuration
Prior art date
Application number
PCT/CN2017/075611
Other languages
English (en)
French (fr)
Inventor
徐汉青
赵亚军
莫林梅
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017152810A1 publication Critical patent/WO2017152810A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation

Definitions

  • the present invention relates to the field of communications, and in particular to a method and apparatus for transmitting a channel sounding signal SRS.
  • LTE uses Unlicensed-Unlicensed (LTE-U) to deploy LTE in unlicensed carriers to meet the increasing capacity requirements of wireless communication systems and improve the efficiency of unlicensed spectrum.
  • LTE-U Unlicensed-Unlicensed
  • LTE-U it is necessary to consider how to conduct data transmission with a fair and friendly competitive unlicensed carrier between Wireless Fidelity (WiFi), radar, etc. and LTE-U and the same system. It is possible not to affect and retain the LTE technology features.
  • WiFi Wireless Fidelity
  • radar etc.
  • LTE-U Low-Reliable and Wi-U
  • LTE-U LTE Licensed Assisted Access to Unlicensed spectrum
  • LAA LTE Licensed Assisted Access to Unlicensed spectrum
  • an unlicensed carrier device can perform data interaction with the UE by itself, and does not need to authorize carrier-assisted access, and is generally called a standalone communication device.
  • DL CSI Downlink Channel State Information
  • the first one is the Downlink Reference Signal (Downlink Reference Signal, DL RS for short).
  • the cell-specific reference signal (CRS) or the channel state information reference signal (CSI-RS) is used for measurement, and then the CSI measurement result is reported to the base station.
  • the second is the base station.
  • the SRS sent by the UE is measured, and the DL CSI is obtained by using the channel heterogeneity.
  • the former introduces a large measurement feedback delay (4 ms). In the unlicensed carrier communication, the delay may be further amplified.
  • the extension will affect the scheduling of the base station side, and on the other hand, it will affect the accuracy of the CSI measurement. Therefore, it is a more effective method to obtain the uplink and downlink CSI by using the uplink SRS, but how to send the SRS in the unlicensed spectrum is a problem. .
  • the embodiment of the invention provides a method and a device for transmitting a channel sounding signal SRS in an unlicensed carrier, so as to at least solve the problem that the uplink and downlink channel state information cannot be measured in time in the related art.
  • a method for transmitting a channel sounding signal includes:
  • the terminal sends a Sounding Reference Signal (SRS) to the base station, where the SRS is sent in one of the following manners:
  • SRS Sounding Reference Signal
  • the SRS is sent as a component signal of a Demodulation Reference Signal (DRS);
  • DRS Demodulation Reference Signal
  • the downlink channel or signal is mapped to a subframe other than the configuration subframe of the SRS;
  • the SRS is transmitted according to the restricted or modified SRS subframe configuration, or the sequence number configuration, or the transmission configuration.
  • the SRS is used as a component signal of the discovery signal DRS, including:
  • the SRS is a necessary constituent signal of the DRS, or the SRS is a configurable signal in the DRS.
  • the SRS is sent as a component signal of the DRS
  • the SRS is located on a blank symbol of the DRS; and/or,
  • the duration of the DRS is set to 13 symbols in the transmission subframe in which the DRS is located, and the SRS is located on the 13th symbol of the transmission subframe in which the DRS is located; or the duration of the DRS Set to be the last symbol of the previous one of the two adjacent transmission subframes in which the DRS is located, and 12 symbols of the latter one of the two adjacent transmission subframes, where the SRS is located And transmitting the last symbol of the previous one of the two adjacent transmission subframes; and/or,
  • the duration of the DRS is set to 14 symbols in the transmission subframe in which the DRS is located, and the SRS is located on the 14th symbol of the transmission subframe in which the DRS is located; or, the duration of the DRS The last two symbols of the previous one of the two adjacent transmission subframes in which the DRS is located, and the twelve symbols of the next one of the two adjacent transmission subframes, the SRS Located on the penultimate symbol of the previous one of the two adjacent transmission subframes.
  • the SRS and the DRS are transmitted in the same subframe or adjacent subframes.
  • the SRS is sent on a blank symbol of the DRS; and/or,
  • the SRS is sent on the 13th symbol or the 14th symbol in the transmission subframe in which the DRS is located; and/or,
  • the SRS is sent in a previous subframe of the transmission subframe in which the DRS is located.
  • the LBT is performed once, and the SRS and the DRS are sent according to the execution result of the LBT.
  • the configuration parameters of the SRS are modified or restricted, so that the SRS is The sending position is located in the DRS measurement timing configuration DMTC subframe or the DRS subframe, where the configuration parameter includes at least one of the following: a subframe configuration, a configuration sequence number, a period, and an offset.
  • the configuration parameter of the SRS And the DRS measurement timing configuration (DMTC for short), wherein the configuration parameters include: a period and/or an offset.
  • the terminal is a terminal scheduled by the downlink channel, or the terminal is not a terminal scheduled by the downlink channel.
  • a last symbol or a specific symbol of the downlink channel multiplexed subframe is reserved or determined to be used for sending the SRS,
  • the downlink channel or signal is not mapped to the last symbol or a specific symbol of the subframe.
  • the SRS is sent with a downlink channel or a signal in a same subframe
  • the SRS is sent in a last symbol of a subframe multiplexed with the downlink channel, where the SRS is in channel state information.
  • the measurement reference signal CSI-RS, or the symbol or subframe occupied by the downlink user-specific reference signal UE-specific RS is not transmitted.
  • sending the SRS according to the restricted or modified SRS subframe configuration includes:
  • Each uplink subframe in the radio frame is configured to allow transmission of the transmission subframe of the SRS.
  • sending the SRS according to the restricted or modified sequence number configuration includes:
  • the SRS is transmitted using a restricted or modified transmission period and/or a transmission offset.
  • sending the SRS according to the restricted or modified sending configuration includes:
  • the terminal In a case where the terminal receives an SRS transmission request in subframe n, the terminal starts transmitting the SRS on a first idle subframe that satisfies the following condition:
  • the first idle subframe is an n+kth subframe, where k is greater than or equal to 4.
  • the first idle subframe is the first idle subframe sent by the uplink, or the first idle subframe is the first subframe of the terminal scheduled to send the uplink physical shared channel PUSCH, or
  • the first idle subframe is a transmit subframe that meets a preset SRS subframe configuration requirement, where the preset SRS subframe configuration requirement includes: configuring each subframe in the wireless frame to allow the SRS to be sent. Transmitting a subframe; or configuring each uplink subframe in the radio frame to allow transmission of the SRS transmission subframe; or transmitting or transmitting by using a restricted or modified transmission period and/or transmission offset configuration a transmission subframe of the SRS;
  • the method before the terminal sends the channel sounding signal SRS to the base station, the method further includes:
  • the terminal receives the downlink control signaling sent by the base station, where the downlink control signaling satisfies at least one of the following formats: DCI format 0, DCI format 4, DCI format 1A, DCI format 2B, DCI format 2C;
  • the downlink control signaling includes at least one of the following fields: an SRS period, an SRS offset, a SRS single transmission, multiple transmissions of the SRS in a preset burst burst, and an SRS periodic transmission according to an opportunity after the trigger, SRS.
  • the duration of the transmission, SRS transmission Delay.
  • the method before the terminal sends the channel sounding signal SRS to the base station, the method further includes:
  • the terminal receives the downlink control signaling sent by the base station, where the downlink control signaling satisfies at least one of the following formats: DCI format 1C, DCI format 3A, DCI format 3C; the downlink control signaling includes the following At least one of the fields: a subframe set of the SRS, an SRS transmission pattern, an SRS period, an SRS offset, a transmission duration of the SRS, and indication information indicating whether the SRS is transmitted.
  • the restricted or modified SRS subframe configuration, or the sequence number configuration, or the sending configuration refers to: the unlicensed carrier does not set the SRS subframe configuration, and/or the unlicensed carrier does not set the SRS configuration sequence number.
  • a method for transmitting a channel sounding signal SRS including:
  • the base station sends the configuration information of the channel sounding signal SRS to the terminal, where the sending manner of the SRS in the sending configuration information includes one of the following:
  • the SRS is sent as a constituent signal of the discovery signal DRS;
  • the downlink channel or signal is mapped to a subframe other than the configuration subframe of the SRS;
  • the SRS is transmitted according to the restricted or modified SRS subframe configuration, or the sequence number configuration, or the transmission configuration.
  • the method before the sending, by the base station, the sending configuration information of the channel sounding signal SRS to the terminal, the method further includes:
  • Downlink control signaling sent by the base station to the terminal where the downlink control signaling satisfies at least one of the following formats: DCI format 0, DCI format 4, DCI format 1A, DCI format 2B, DCI format 2C
  • the downlink control signaling includes at least one of the following fields: an SRS period, an SRS offset, a SRS single transmission, multiple transmissions of the SRS in a preset burst burst, and an SRS periodically sent according to an opportunity after the trigger. , duration of SRS transmission, and SRS transmission delay.
  • a device for transmitting a channel sounding signal SRS is further provided, which is located in the terminal, and includes:
  • the sending module is configured to send a channel sounding signal SRS to the base station, where the sending manner of the SRS includes one of the following:
  • the SRS is sent as a constituent signal of the discovery signal DRS;
  • the downlink channel or signal is mapped to a subframe other than the configuration subframe of the SRS;
  • the SRS is transmitted according to the restricted or modified SRS subframe configuration, or the sequence number configuration, or the transmission configuration.
  • a device for transmitting a channel sounding signal SRS which is located in a base station, includes:
  • the configuration module is configured to send the transmission configuration information of the channel sounding signal SRS to the terminal, and the sending manner of the SRS in the sending configuration information includes one of the following:
  • the SRS is sent as a constituent signal of the discovery signal DRS;
  • the downlink channel or signal is mapped to a subframe other than the configuration subframe of the SRS;
  • the SRS is transmitted according to the restricted or modified SRS subframe configuration, or the sequence number configuration, or the transmission configuration.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • the terminal sends the channel sounding signal SRS to the base station, where the SRS is sent in the following manner: the SRS is sent as a component signal of the discovery signal DRS; the SRS and the DRS are transmitted in the same subframe or adjacent subframes; The SRS and the downlink channel or the signal are multiplexed and transmitted in the same subframe; the downlink channel or the signal is mapped to the subframe other than the configuration subframe of the SRS;
  • the SRS is transmitted according to the restricted or modified SRS subframe configuration, or the sequence number configuration, or the transmission configuration.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • the base station sends the configuration information of the channel sounding signal SRS to the terminal, where the sending manner of the SRS in the sending configuration information includes one of the following: the SRS is sent as a component signal of the discovery signal DRS; the SRS and the DRS Transmitting with the same subframe or the adjacent subframe; the SRS and the downlink channel or the signal are multiplexed and transmitted with the subframe; the downlink channel or the signal is mapped to the subframe other than the configuration subframe of the SRS;
  • the SRS is transmitted according to the restricted or modified SRS subframe configuration, or the sequence number configuration, or the transmission configuration.
  • the terminal sends the channel sounding signal SRS to the base station, where the sending manner of the SRS includes one of the following: the SRS is sent as a component signal of the discovery signal DRS; the SRS and the DRS are in the same subframe or adjacent subframes.
  • the SRS and the downlink channel or the signal are multiplexed and transmitted in the same subframe; the downlink channel or the signal is mapped to the subframe other than the configuration subframe of the SRS; according to the restricted or modified SRS subframe configuration, or the serial number configuration, or
  • the sending configuration sends the SRS, which solves the problem that the uplink and downlink channel status information cannot be measured in time and effectively, and improves the spectrum use efficiency of the unlicensed carrier.
  • FIG. 1 is a flowchart 1 of a method for transmitting a channel sounding signal SRS according to an embodiment of the present invention
  • FIG. 2 is a second flowchart of a method for transmitting a channel sounding signal SRS according to an embodiment of the present invention
  • FIG. 3 is a structural block diagram 1 of a transmitting apparatus for a channel sounding signal SRS according to an embodiment of the present invention
  • FIG. 4 is a structural block diagram 2 of a device for transmitting a channel sounding signal SRS according to an embodiment of the present invention.
  • FIG. 5 is a first schematic diagram showing the positional relationship between SRS and DRS according to a preferred embodiment of the present invention
  • FIG. 6 is a second schematic diagram of the positional relationship between SRS and DRS according to a preferred embodiment of the present invention.
  • FIG. 1 is a flowchart 1 of a method for transmitting a channel sounding signal SRS according to an embodiment of the present invention. As shown in FIG. step:
  • Step S102 Configure a sending mode of the SRS, where the sending mode includes one of the following:
  • the SRS is sent as a constituent signal of the discovery signal
  • the SRS and the DRS are transmitted in the same subframe or adjacent subframes;
  • the SRS is multiplexed with the downlink channel or signal and transmitted in the same subframe;
  • the downlink channel or signal is mapped to a subframe other than the configuration subframe of the SRS;
  • the restricted or modified SRS subframe configuration, or sequence number configuration, or the sending configuration refers to: the unlicensed carrier does not need to set the SRS subframe configuration, and/or is not authorized. The carrier does not need to set the SRS configuration sequence number.
  • Step S104 The terminal sends the channel sounding signal SRS to the base station according to the foregoing sending manner.
  • the terminal sends the channel sounding signal SRS to the base station, and the SRS is used for the measurement of the uplink and downlink channels, which solves the problem that the uplink and downlink channel condition information cannot be measured in time and effectively, and improves the spectrum use efficiency of the unlicensed carrier.
  • the SRS as a constituent signal of the discovery signal DRS includes:
  • the SRS is a necessary constituent signal of the DRS, or the SRS is a configurable signal in the DRS.
  • the SRS is located on a blank symbol of the DRS; and/or,
  • the duration of the DRS is set to 13 symbols in the transmission subframe in which the DRS is located, and the SRS is located on the 13th symbol of the transmission subframe in which the DRS is located; or the duration of the DRS is set to the DRS.
  • the last symbol of the previous one of the two adjacent transmission subframes and the last one of the two adjacent transmission subframes, and the SRS is located in the adjacent two transmission subframes. On the last symbol of the previous transmission subframe; and/or,
  • the duration of the DRS is set to 14 symbols in the transmission subframe in which the DRS is located, and the SRS is located on the 14th symbol of the transmission subframe where the DRS is located; or the duration of the DRS is set to the DRS.
  • the SRS is sent on the blank symbol of the DRS; and/or,
  • the SRS is sent on the 13th symbol or the 14th symbol in the transmission subframe in which the DRS is located; and/or,
  • the SRS is transmitted on a previous subframe of the transmission subframe in which the DRS is located.
  • the LBT is performed once, and the SRS and the DRS are transmitted according to the execution result of the LBT.
  • the configuration parameters of the SRS are modified or restricted, so that the SRS is The sending position is located in the DRS measurement timing configuration DMTC subframe or the DRS subframe, where the configuration parameter includes at least one of the following: a subframe configuration, a configuration sequence number, a period, and an offset.
  • the configuration parameter of the SRS and the DRS measurement timing configuration include: period and / or offset.
  • the terminal when the SRS and the downlink channel or the signal are transmitted in the same subframe, the terminal is the terminal scheduled by the downlink channel, or the terminal is not the terminal scheduled by the downlink channel.
  • the last symbol or the specific symbol of the downlink channel multiplexed subframe is reserved or determined to be used for transmitting the SRS. Where the downlink channel or signal is not mapped to the last symbol or particular symbol of the subframe.
  • the SRS in a case where the SRS and the downlink channel or the signal are transmitted in the same subframe, the SRS is in the same The last symbol of the downlink channel multiplexed subframe is transmitted, wherein the SRS is not transmitted on the symbol or subframe occupied by the channel state information measurement reference signal CSI-RS or the downlink user-specific reference signal UE-specific RS.
  • sending the SRS according to the restricted or modified SRS subframe configuration includes:
  • Each uplink subframe in the radio frame is configured to allow transmission of the transmission subframe of the SRS.
  • sending the SRS according to the restricted or modified sequence number configuration includes:
  • the SRS is sent using a restricted or modified transmission period and/or transmission offset.
  • transmitting the SRS according to the restricted or modified transmission configuration includes:
  • the terminal In the case that the terminal receives the SRS transmission request in the subframe n, the terminal starts transmitting the SRS on the first idle subframe that satisfies the following condition:
  • the first idle subframe is an n+kth subframe, where k is greater than or equal to 4.
  • the first idle subframe is the first idle subframe sent by the uplink, or the first idle subframe is the first subframe of the terminal scheduled to send the uplink physical shared channel PUSCH, or the first The idle subframe is a transmission subframe that meets a preset SRS subframe configuration requirement, where the preset SRS subframe configuration requirement includes: configuring each subframe in the wireless frame as a transmission subframe that allows the SRS to be sent; or Configuring each uplink subframe in the radio frame as a transmission subframe that allows the SRS to be transmitted; or a transmission subframe configured to transmit the SRS by a restricted or modified transmission period and/or a transmission offset configuration;
  • the method before the terminal sends the channel sounding signal SRS to the base station, the method further includes:
  • the terminal receives downlink control signaling sent by the base station, where the downlink control signaling satisfies at least one of the following formats: DCI format 0, DCI format 4, DCI format 1A, DCI format 2B, DCI format 2C;
  • the signaling includes at least one of the following fields: an SRS period, an SRS offset, a SRS single transmission, multiple transmissions of the SRS in a preset burst burst, and an SRS periodic transmission according to an opportunity after the trigger, and the SRS transmission continues. Duration, SRS transmission delay.
  • the method before the terminal sends the channel sounding signal SRS to the base station, the method further includes:
  • the terminal receives the downlink control signaling sent by the base station, where the downlink control signaling satisfies at least one of the following formats: DCI format 1C, DCI format 3A, and DCI format 3C; the downlink control signaling includes the following fields. At least one of: a subframe set of the SRS, an SRS transmission pattern, an SRS period, an SRS offset, and a transmission duration of the SRS.
  • FIG. 2 is a second flowchart of a method for transmitting a channel sounding signal SRS according to an embodiment of the present invention. As shown in FIG. 2, the process includes The following steps:
  • Step S202 The base station configures a sending manner of the SRS, and the sending manner includes one of the following:
  • the SRS is sent as a constituent signal of the discovery signal DRS;
  • the SRS and the DRS are transmitted in the same subframe or adjacent subframes;
  • the SRS is multiplexed with the downlink channel or signal and transmitted in the same subframe;
  • the downlink channel or signal is mapped to a subframe other than the configuration subframe of the SRS;
  • the SRS is transmitted according to the restricted or modified SRS subframe configuration, or the sequence number configuration, or the transmission configuration.
  • Step S204 the base station sends the transmission configuration information of the channel sounding signal SRS to the terminal.
  • the base station sends the transmission configuration information of the channel sounding signal SRS to the terminal, which solves the problem that the uplink and downlink channel condition information cannot be measured in time and effectively, and improves the spectrum use efficiency of the unlicensed carrier.
  • the method before the base station sends the configuration information of the channel sounding signal SRS to the terminal, the method further includes:
  • Downlink control signaling sent by the base station to the terminal where the downlink control signaling satisfies at least one of the following formats: DCI format 0, DCI format 4, DCI format 1A, DCI format 2B, DCI format 2C;
  • the control signaling includes at least one of the following fields: an SRS period, an SRS offset, a SRS single transmission, multiple transmissions of the SRS in a preset burst burst, and an SRS periodically sent after the trigger, and the SRS is sent.
  • FIG. 3 is a structural block diagram of a device for transmitting a channel sounding signal SRS according to an embodiment of the present invention. As shown in FIG. 3, the device is located in a terminal, and the device includes:
  • the first configuration module 32 is configured to configure a sending manner of the SRS, and the sending manner includes one of the following:
  • the SRS is sent as a constituent signal of the discovery signal DRS;
  • the SRS and the DRS are transmitted in the same subframe or adjacent subframes;
  • the SRS is multiplexed with the downlink channel or signal and transmitted in the same subframe;
  • the downlink channel or signal is mapped to a subframe other than the configuration subframe of the SRS;
  • the SRS is transmitted according to the restricted or modified SRS subframe configuration, or the sequence number configuration, or the transmission configuration.
  • the first sending module 34 is connected to the first configuration module 32 and configured to send the channel sounding signal SRS to the base station according to the foregoing sending manner.
  • FIG. 4 is a structural block diagram 2 of a device for transmitting a channel sounding signal SRS according to an embodiment of the present invention. As shown in FIG. 4, the device is located in a base station, and the device includes:
  • the second configuration module 42 is configured to configure a sending manner of the SRS, where the sending manner includes one of the following
  • the SRS is sent as a constituent signal of the discovery signal DRS;
  • the SRS and the DRS are transmitted in the same subframe or adjacent subframes;
  • the SRS is multiplexed with the downlink channel or signal and transmitted in the same subframe;
  • the downlink channel or signal is mapped to a subframe other than the configuration subframe of the SRS;
  • the SRS is transmitted according to the restricted or modified SRS subframe configuration, or the sequence number configuration, or the transmission configuration.
  • the second sending module 44 is connected to the second configuration module 42 and configured to send information for configuring the transmission mode of the SRS to the terminal.
  • the SRS can be sent separately or together with other upstream channels.
  • SRS has two modes: periodic transmission and aperiodic transmission (ie, trigger type 0 and trigger type 1).
  • the SRS is transmitted in the last symbol of the subframe (for the TDD uplink pilot (UpPTS), it occupies two Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbols, both of which can be Used for SRS transmission).
  • the SRS period is between 2ms and 320ms (trigger type 0/1 and FDD/TDD are different).
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • DRS has a higher LBT priority, and only needs to listen to a time interval not less than X us (such as 25 us), and the base station can send DRS.
  • the DMTC has a period of 40/80/160 ms and a duration of 6 ms. Therefore, the DRS with a longer transmission period has a less impact on data transmission by using a higher priority LBT method.
  • the SRS can be transmitted as a constituent signal of the DRS or in a manner of being transmitted along with the DRS.
  • Method 1 SRS is sent as a component signal of DRS.
  • the new DRS includes not only downlink CRS, PSS/SSS, configurable CSI-RS, but also uplink SRS.
  • the uplink SRS may be a necessary component signal of the DRS, or may be a configurable signal in the DRS, and may be used for uplink and downlink channel measurement.
  • the DRS can still be the 12 OFDM symbol structure of Rel-13DRS (symbol 0 to symbol 11, where the unknown signal or occupied signal can be transmitted on the symbol 1/2/3/8, the standard is not defined, these can be regarded as blank symbols ).
  • the SRS is transmitted on a blank symbol in the Rel-13 DRS, such as symbol 1 (the second symbol of the subframe, the same below), or symbol 2, or symbol 3, or symbol 8.
  • symbol 1 the second symbol of the subframe, the same below
  • symbol 2 the second symbol of the subframe, the same below
  • DRS can also be 13 symbol structures.
  • the SRS is transmitted on the symbol 12 of the same subframe (the 13th symbol of the subframe), or the SRS is transmitted in the last symbol of the previous subframe of the existing DRS transmission subframe. That is, the last symbol of the previous subframe transmits the SRS, and the first 12 symbols of the latter subframe transmit the existing DRS, and the 13 symbols constitute a new DRS.
  • This method is a handover from uplink to downlink, and basically does not need to consider the uplink and downlink handover delay.
  • the new DRS including SRS and existing DRS only needs to perform LBT once, and can send SRS and existing SRS.
  • the SRS can directly utilize the LBT result of the DRS.
  • the composition signal of the existing DRS is transmitted, the SRS can be directly sent, and the LBT or the occupied signal or the occupied information need not be executed.
  • FIG. 5 is a first schematic diagram showing the positional relationship between SRS and DRS according to a preferred embodiment of the present invention. As shown in FIG. 5, the new DRS includes the symbol 13 on the subframe n and the symbol 0 to the symbol 11 on the subframe n+1. 13 symbols.
  • the SRS in Fig. 5 is a constituent signal of the DRS.
  • the duration of the CCA is not necessarily a symbol in FIG. 5, for example, it may be only a few tens of us.
  • FIG. 5 is merely an example of the position of the CCA, and does not limit the duration and manner of the CCA.
  • the DRS can also be a 14 symbol structure.
  • the SRS is transmitted on the symbol 13 of the same subframe (the 14th symbol of the subframe), and the symbol 12 can transmit a CRS or some other signal or information.
  • the benefit of this option is that there is no need to change the time domain location of the SRS's existing transmission.
  • Rel-13 limits the effective transmission duration of the DRS LBT to less than 1 ms, the limitation may be modified, that is, the effective transmission duration of the DRS LBT may be equal to or greater than 1 ms, and at least a DRS including 14 symbols can be transmitted.
  • the DRS adopts 14 symbol structures, which also helps the UE to handle uplink and downlink transmission handover delays. FIG.
  • FIG. 6 is a second schematic diagram of the positional relationship between the SRS and the DRS according to a preferred embodiment of the present invention.
  • the SRS in FIG. 6 is a constituent signal of the DRS.
  • the new DRS includes symbols 0 through 13 on subframe n+1 for a total of 14 symbols.
  • the duration of the CCA is not necessarily one symbol in FIG. 6, for example, it may be only a few tens of us.
  • FIG. 6 is only an example of the position of the CCA, and does not limit the duration and manner of the CCA.
  • the SRS is sent in the second last symbol of the previous subframe of the existing DRS transmission subframe. That is, the second last symbol of the previous subframe transmits the SRS, and the first 12 symbols of the latter subframe transmit the existing DRS, and the 14 symbols constitute a new DRS (including the existing composition signals between the SRS and the DRS). A blank symbol that can send an occupied signal or an undefined signal).
  • the DRS containing the SRS employs 13 or 14 symbol structures.
  • one or more of the parameters of the subframe configuration, the configuration sequence number, the period, the offset, and the like of the SRS may be modified and restricted to accommodate the SRS being transmitted on the DMTC subframe or the DRS subframe.
  • the configuration of srs-SubframeConfig in Table5.5.3.3-1 and/or Table 5.5.3.3-2 in 3GPP 36.211Rel-10 ⁇ 13 may be restricted or modified. And/or, restricting the SRS Configuration Index Isrs configuration in Table 8.2-1, and/or Table 8.2-2, and/or Table 8.2-4, and/or Table 8.2-4 in 3GPP 36.213 Rel-10 ⁇ 13 Or modify.
  • the SRS period in the DRS is 40, 80, or 160 ms.
  • the SRS Configuration Index Isrs in the DRS is limited to a configuration range of 37-316.
  • the SRS configuration in the DRS can be loosened with the traditional SRS configuration, that is, the SRS in the DRS adopts the same configuration as the DRS or the DMTC, including the same period, or offset.
  • the SRS may be a necessary component signal of the DRS or a configurable signal in the DRS.
  • the SRS is a configurable signal in the DRS, which means that the SRS can be configured to be transmitted in the DMTC or in the DRS subframe, or the SRS can be configured not to be transmitted.
  • the above design of the DRS and the design of the SRS transmission method in the DRS do not limit the traditional SRS configuration transmission. That is, the SRS in the DRS can be sent by using the above method, and the traditional SRS can still be implemented according to the traditional configuration or sending manner. Line is sent.
  • SRS can be multiplexed with DRS or adjacent subframes
  • the DL DRS and the UL SRS can be transmitted in the same subframe.
  • the DRS can still use the Rel-13 structure, a 12-symbol structure.
  • SRS is not a component signal of DRS. Since the DRS has a higher LBT priority, it is only necessary to listen to a time interval not less than X us (eg, 25 us), and the base station can transmit the DRS. Therefore, the SRS can be transmitted using the LBT result of the DRS.
  • the SRS can be sent on the DRS subframe without channel interception.
  • the SRS may be transmitted on the DRS subframe symbol 12 (the 13th OFDM symbol in the subframe). SRS transmission can directly utilize the LBT results of DRS. After the DRS is sent, the SRS can be sent directly without performing LBT or filling the occupied signal or occupying information.
  • the SRS is transmitted on the DRS subframe symbol 13, and no channel interception is required.
  • the symbol 12 can transmit other occupied signals or information, and the invention is not limited.
  • the advantage of this method is that it does not need to change the time domain location of the existing SRS transmission, and can ensure the uplink and downlink transmission handover delay of the UE. Since Rel-13 limits the effective transmission duration of DRS LBT to less than 1 ms, this limitation can be modified, that is, the effective transmission duration of DRS LBT can be equal to or greater than 1 ms, ensuring that SRS can utilize the listening result of DRS LBT.
  • the SRS is sent on a blank symbol in the middle of the DRS, such as symbol 1, or symbol 2, or symbol 3, or symbol 8.
  • a blank symbol in the middle of the DRS such as symbol 1, or symbol 2, or symbol 3, or symbol 8.
  • the SRS is transmitted on a previous subframe of the DRS subframe, preferably on the last or the second last symbol on the previous subframe of the DRS subframe.
  • the SRS and DRS can perform an LBT once, and if successful, send the SRS and DRS.
  • the advantage of this method is that the SRS is sent before the DRS, and there is no need to consider the uplink and downlink handover delay, and the two can share the same LBT result. As shown in Figure 5 (note that SRS is not a constituent signal of DRS in this method).
  • the SRS can be transmitted with the DRS in the same subframe or in the adjacent subframe, and the two share the result of the LBT listening. Whether the SRS is sent before the DRS, or the DRS is sent before the SRS, or both are multiplexed, only LBT or CCA needs to be executed once.
  • one or more of the parameters of the subframe configuration, the period, the offset, and the like of the SRS may be restricted or modified to be adapted to be sent by the SRS on the DMTC subframe or the DRS subframe.
  • the configuration of srs-SubframeConfig in Table 5.5.3.3-1 and/or Table 5.5.3.3-2 in 3GPP 36.211Rel-10 ⁇ 13 may be restricted or modified. And/or, restricting the SRS Configuration Index Isrs configuration in Table 8.2-1, and/or Table 8.2-2, and/or Table 8.2-4, and/or Table 8.2-4 in 3GPP 36.213Rel-10 ⁇ 13 Or modify.
  • the SRS period is 40, 80, or 160ms
  • the SRS Configuration Index Isrs configuration range is 37-316.
  • the SRS can be configured to be sent on each DRS subframe or in the DMTC, or can be flexibly configured, that is, SRS is sent in some DRS subframes, and SRS is not sent in some DRS subframes.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the base station configures the UE to send an SRS. Assuming the channel is idle, the UE transmits the SRS according to the configured srs-SubframeConfig (determining the SRS transmittable subframe), the SRS Configuration Index (determining the SRS transmission period and offset), and/or other parameters.
  • the SRS can be sent with other upstream channels or separately. When the SRS is sent separately, only the last symbol of the subframe is occupied, so the subframe can also be used for downlink scheduling or transmission from the perspective of resource saving and spectrum efficiency. In an unlicensed carrier scenario, whether an SRS subframe can also be used for downlink scheduling or transmission has the following method:
  • the downlink channel or signal and the uplink SRS may be multiplexed and transmitted in the same subframe, and is not limited to the special subframe of Rel-10.
  • the UE receiving the downlink channel and transmitting the uplink SRS may or may not be the same UE.
  • the UE receiving the downlink channel is the scheduled UE, and the UE transmitting the uplink SRS is another UE.
  • the downlink channel is not mapped to the last symbol of the subframe, or a specific symbol.
  • the downlink channel may be a PDSCH or an (E) PDCCH or the like.
  • the SRS subframe configuration is a cell-level behavior, all UEs within the cell should know on which subframe sets there may be UEs transmitting SRS. Therefore, the base station or the scheduled UE will make an assumption that the PDSCH, and/or other downlink channels or signals are not mapped to the last symbol of the subframe, or a specific symbol (such as the last two symbols), if Subframes are used or may be used to send SRS.
  • resource block, or resource element, or subframe, or symbol when the resource block, or resource element, or subframe, or symbol is not used for SRS transmission (plus some existing restrictions, such as no restrictions for PBCH, synchronization signals, CRS signals, etc.), PDSCH, and / or other downstream channels or signals can be mapped to the corresponding resources.
  • the SRS is not transmitted.
  • the SRS occupies the last symbol, it will face collision problems with CSI-RS and downlink UE-specific RS.
  • Another solution is that the SRS is not transmitted on the CSI-RS or the symbol or subframe occupied by the downlink UE-specific RS in order to maintain the CSI-RS or the downlink UE-specific RS channel measurement, demodulation and the like.
  • Method 2 The downlink channel or signal is not mapped to the subframe configured by the SRS.
  • the downlink channel/signal is not mapped to the SRS configured subframe.
  • the downlink channel/signal may include a discovery signal, or the downlink channel/signal does not include a discovery signal, and the discovery signal has a higher priority. If the signal subframe is found to encounter an SRS subframe, the discovery signal is preferentially transmitted. Parameters such as SRS subframe configuration, SRS Configuration Index (determination of SRS transmission period and offset), and SRS bandwidth are configured by higher layer signaling, and the base station can predict which subframes the UE served by the cell may transmit. In order to avoid collision and interference between the downlink channel or the signal and the SRS transmission, the base station does not transmit the downlink channel or the downlink signal in the SRS subframe.
  • the set of subframe numbers that can be used to transmit the SRS in one cell is configured by the srs-SubframeConfig field of the IE (see 3GPP 36.331 protocol): SoundingRS-UL-ConfigCommon, which is a cell-level configuration (through Issued by SIB2).
  • the UE If the UE configures the aperiodic SRS on the serving cell c and the SRS request is detected on the subframe n of the serving cell c, the UE sends the aperiodicity in the first subframe that satisfies the following conditions: SRS:
  • k SRS ⁇ 0, 1, ..., 9 ⁇ is the subframe number within each system frame n f
  • k SRS is defined in Table 8.2-3 of 3GPP 36.213 .
  • the SRS period T SRS,1 , and the SRS subframe offset, T offset,1 are determined by the SRS configuration sequence I SRS in 3GPP 36.213 Table 8.2-4 and Table 8.2-5. For FDD and TDD cases respectively.
  • the unlicensed carrier does not need to set the SRS subframe configuration. That is, the srs-SubframeConfig field is not required to configure the subframe set for transmitting the SRS; or the SRS subframe configuration in the unlicensed carrier is restricted or modified.
  • each subframe in the restricted radio frame is a possible transmission subframe of the SRS, or each uplink subframe and/or partial subframe in the restricted radio frame is a possible transmission subframe of the SRS.
  • the unlicensed carrier does not need to set the SRS configuration sequence number. That is, it is not necessary to configure the I SRS , and the corresponding period T SRS and offset T offset for the UE through srs-ConfigIndexAp-r10.
  • the SRS configuration sequence number in the unlicensed carrier is limited or modified.
  • the SRS configuration number I SRS is limited to 0 or 1.
  • the SRS transmission period in the unlicensed carrier is limited to 2 ms.
  • limit or modify the SRS transmission period For example, 2ms or 1ms.
  • the UE if the UE receives the SRS transmission request in subframe n, the UE starts to send the aperiodic SRS on the first idle subframe that satisfies the following conditions:
  • a first available subframe that can be used for uplink transmission or a subframe in which the UE is first scheduled to transmit a PUSCH; or a subframe that satisfies an SRS subframe configuration requirement (this is the same as the prior art, but SRS The subframe configuration has been modified as above).
  • the UE needs to perform corresponding rate matching behavior according to the above modification. For example, the UE may assume that each subframe or uplink subframe or the last symbol or a specific symbol on a partial subframe that can be used for uplink transmission may be used for SRS transmission, and therefore, the UE does not have the last symbol in the subframe. Or PUSCH is mapped on a specific symbol. The particular symbol can be the first symbol of the subframe, or the second to last symbol, or other symbol that specifies the SRS to be transmitted.
  • the eNodeB can trigger the UE to send the aperiodic SRS through the DCI format 0/4/1A.
  • the eNodeB can trigger the UE to send an aperiodic SRS through DCI format0/4/1A/2B/2C. (Use the SRS request field in the corresponding DCI)
  • the SRS triggering mode in the unlicensed carrier can be enhanced to improve the transmission probability and configuration flexibility of the SRS.
  • SRS transmission configuration fields SRS period, SRS offset, SRS single transmission, multiple transmission of SRS in a burst (for example, multiple transmissions in burst according to configuration period/offset, or Each subframe is transmitted in the burst, the SRS is periodically transmitted according to the opportunity, the duration of the SRS transmission, the SRS transmission delay, and the like.
  • the base station sends a common downlink signaling to the UE to notify the SRS of the transmission.
  • the terminal receives downlink control signaling sent by the base station, where the downlink control signaling satisfies at least one of the following formats: DCI format 1C, DCI format 3A, DCI format 3C; in the downlink control signaling At least one of the following fields is included: a set of transmission subframes of the SRS, an SRS transmission pattern, an SRS period, an SRS offset, an SRS transmission duration, and indication information indicating whether the SRS is transmitted.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • S1 Configure a sending manner of the SRS, where the sending manner includes one of the following:
  • the SRS is sent as a constituent signal of the discovery signal
  • the downlink channel or signal is mapped to a subframe other than the configuration subframe of the SRS;
  • the SRS is transmitted according to the restricted or modified SRS subframe configuration, or the sequence number configuration, or the transmission configuration.
  • the terminal sends the channel sounding signal SRS to the base station according to the foregoing sending manner.
  • the storage medium is further arranged to store program code for performing the method steps of the above-described embodiments:
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor performs the method steps of the foregoing embodiments according to the stored program code in the storage medium.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the terminal sends the channel sounding signal SRS to the base station, where the sending manner of the SRS includes one of the following: the SRS is sent as a component signal of the discovery signal DRS; the SRS and the DRS Transmitting with the same subframe or adjacent subframe; the SRS is multiplexed with the downlink channel or signal and the subframe; the downlink channel or signal is mapped to the subframe other than the configuration subframe of the SRS; according to the restricted or modified SRS sub-
  • the frame configuration, or sequence number configuration, or the transmission configuration transmits the SRS, which solves the problem that the uplink and downlink channel condition information cannot be measured in time and effectively, and improves the spectrum use efficiency of the unlicensed carrier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种信道探测信号SRS的发送方法及装置,通过本发明终端发送信道探测信号SRS给基站,其中,该SRS的发送方式包括以下之一:该SRS作为发现信号DRS的组成信号发送;该SRS与DRS同子帧或相邻子帧发送;该SRS与下行信道或信号同子帧复用发送;下行信道或信号映射到该SRS的配置子帧之外的子帧;依据限制或修改后的SRS子帧配置、或者序号配置、或者发送配置发送该SRS,解决了不能及时有效的进行上下行信道状况信息测量的问题,提高了非授权载波的频谱使用效率。

Description

信道探测信号SRS的发送方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种信道探测信号SRS的发送方法及装置。
背景技术
LTE使用非授权载波(Long Term Evolution–Unlicensed,简称为LTE-U)是指在非授权的载波中部署LTE,用来满足无线通信系统日益增长的容量需求和提高非授权频谱的使用效率,是LTE以及未来无线通信可能的一个重要演进方向。在设计LTE-U时,需要考虑如何与无线保真(Wireless Fidelity,简称为WiFi)、雷达等异系统以及LTE-U同系统之间公平友好的竞争非授权载波来进行数据传输,同时需要尽可能的不影响和保留LTE技术特性。根据第三代合作伙伴计划(3rd Generation Partnership Project,简称为3GPP)标准会议的表述,Rel-13/14版本中的LTE-U系统也可称为LTE授权载波辅助接入(LTE Licensed Assisted Access to unlicensed spectrum,简称为LAA)系统。另外还有一种非授权载波设备可以自行与UE进行数据交互,不需要授权载波辅助接入,一般称作独立通信(Standalone)设备。
下行信道状态信息(Downlink Channel State Information,简称为DL CSI)测量有两种方式,第一种是用户设备(User Equipment,简称为UE)对下行参考信号(Downlink Reference Signal,简称为DL RS(如小区专用参考信号(Cell-specific Reference Signal,简称为CRS)或信道状态信息参考信号(Channel State Information Reference Signal,简称为CSI-RS)进行测量,然后上报CSI测量结果给基站。第二种是基站对UE发送的SRS进行测量,利用信道的互异性得到DL CSI。前者会引入较大的测量反馈时延(4ms)。在非授权载波通信中,这种时延有可能会被进一步放大。时延一方面会影响基站侧的调度,另一方面也影响CSI测量的准确性。因此,利用上行SRS来获得上下行CSI是一个较为有效的方法,但是如何在非授权频谱中发送SRS是一个问题。
针对相关技术中,不能及时有效的进行上下行信道状况信息测量的问题,目前还没有效的技术方案解决。
发明内容
本发明实施例提供了一种非授权载波中信道探测信号SRS的发送方法及装置,以至少解决相关技术中不能及时有效的进行上下行信道状况信息测量的问题。
根据本发明实施例的一个方面,提供了一种信道探测信号的发送方法,包括:
终端发送信道探测信号(Sounding Reference Signal,简称为SRS)给基站,其中,所述SRS的发送方式包括以下之一:
所述SRS作为发现信号(Demodulation Reference Signal,简称为DRS)的组成信号发送;
所述SRS与DRS同子帧或相邻子帧发送;
所述SRS与下行信道或信号同子帧复用发送;
下行信道或信号映射到所述SRS的配置子帧之外的子帧;
依据限制或修改后的SRS子帧配置、或者序号配置、或者发送配置发送所述SRS。
可选地,所述SRS作为发现信号DRS的组成信号包括:
所述SRS是所述DRS的必要组成信号,或者,所述SRS是所述DRS中的可配置信号。
可选地,,在所述SRS作为DRS的组成信号发送的情况下,
所述SRS位于所述DRS的空白符号上;和/或,
所述DRS的时长被设置为所述DRS所在的发送子帧中的13个符号,所述SRS位于所述DRS所在的所述发送子帧的第13个符号上;或者,所述DRS的时长被设置为所述DRS所在的相邻两个发送子帧中前一个发送子帧的最后一个符号以及所述相邻两个发送子帧中后一个发送子帧的12个符号,所述SRS位于所述相邻两个发送子帧中前一个发送子帧的最后一个符号上;和/或,
所述DRS的时长被设置为所述DRS所在的发送子帧中的14个符号,所述SRS位于所述DRS所在的所述发送子帧的第14个符号上;或者,所述DRS的时长被设置为所述DRS所在的相邻两个发送子帧中前一个发送子帧的最后两个符号以及所述相邻两个发送子帧中后一个发送子帧的12个符号,所述SRS位于所述相邻两个发送子帧中前一个发送子帧的倒数第二个符号上。
可选地,,在所述SRS与DRS同子帧或相邻子帧发送的情况下,
所述SRS在所述DRS的空白符号上发送;和/或,
所述SRS在所述DRS所在的发送子帧中的第13个符号或第14个符号上发送;和/或,
所述SRS在所述DRS所在的发送子帧的前一子帧上发送。
可选地,所述SRS与DRS同子帧或相邻子帧发送的情况下,执行一次LBT,根据所述LBT的执行结果,发送所述SRS和所述DRS。
可选地,在所述SRS作为DRS的组成信号发送,或者所述SRS与DRS同子帧或相邻子帧发送的情况下,对所述SRS的配置参数进行修改或者限制,使得所述SRS的发送位置位于DRS测量时序配置DMTC子帧或者DRS子帧中,其中,所述配置参数包括以下至少之一:子帧配置,配置序号,周期,偏移。
可选地,在所述SRS作为发现信号DRS的组成信号发送的情况下,所述SRS的配置参 数与所述DRS或者测量时序配置(DRS measurement timing configuration,简称为DMTC),其中,所述配置参数包括:周期和/或偏移。
可选地,在所述SRS与下行信道或信号同子帧发送的情况下,所述终端是所述下行信道调度的终端,或者,所述终端不是所述下行信道调度的终端。
可选地,在所述SRS与下行信道或信号同子帧发送的情况下,所述下行信道复用的子帧的最后一个符号或者特定符号被预留或被确定用于发送所述SRS,其中,所述下行信道或信号不映射在所述子帧的最后一个符号或者特定符号。
可选地,在所述SRS与下行信道或信号同子帧发送的情况下,所述SRS在与所述下行信道复用的子帧的最后一个符号发送,其中,所述SRS在信道状态信息测量参考信号CSI-RS、或下行用户专用参考信号UE-specific RS所占用的符号或子帧上不发送。
可选地,依据限制或修改后的SRS子帧配置发送所述SRS包括:
将无线帧中的每个子帧配置为允许发送所述SRS的发送子帧;或者
将无线帧中的每个上行子帧配置为允许发送所述SRS的发送子帧。
可选地,依据限制或修改后的序号配置发送所述SRS包括:
限制或修改用于发送所述SRS的发送周期和/或发送偏移;
使用限制或修改后的发送周期和/或发送偏移发送所述SRS。
可选地,依据限制或修改后的发送配置发送所述SRS包括:
在所述终端在子帧n接收到SRS发送请求的情况下,所述终端在满足以下条件的第一个空闲子帧上开始发送所述SRS:
所述第一个空闲子帧为第n+k子帧,其中,k大于等于4;
所述第一个空闲子帧为上行发送的第一个空闲子帧,或者,所述第一个空闲子帧为所述终端第一个被调度发送上行物理共享信道PUSCH的子帧,或者,所述第一个空闲子帧为满足预设SRS子帧配置要求的发送子帧,其中,所述预设SRS子帧配置要求包括:将无线帧中的每个子帧配置为允许发送所述SRS的发送子帧;或者将无线帧中的每个上行子帧配置为允许发送所述SRS的发送子帧;或者通过限制或修改后的发送周期和/或发送偏移配置的用于发送所述SRS的发送子帧;
可选地,在终端发送信道探测信号SRS给基站之前,还包括:
所述终端接收基站发送的下行控制信令,其中,所述下行控制信令满足以下格式中的至少之一:DCI格式0,DCI格式4,DCI格式1A,DCI格式2B,DCI格式2C;所述下行控制信令中包括以下字段中的至少之一:SRS周期、SRS偏移、SRS单次发送、SRS在预设突发burst中的多次发送、触发之后SRS按照机会周期性发送、SRS发送的持续时长、SRS发送 时延。
可选地,在终端发送信道探测信号SRS给基站之前,还包括:
所述终端接收基站发送的下行控制信令,其中,所述下行控制信令满足以下格式中的至少之一:DCI格式1C,DCI格式3A,DCI格式3C;所述下行控制信令中包括以下字段中的至少之一:SRS的子帧集合、SRS发送图样、SRS周期、SRS偏移、SRS的发送时长、用于指示SRS是否发送的指示信息。
可选地,限制或修改后的SRS子帧配置、或者序号配置、或者发送配置是指:非授权载波不设置SRS子帧配置,和/或非授权载波不设置SRS配置序号。
根据本发明实施例的另一个方面,还提供了一种信道探测信号SRS的发送方法,包括:
基站发送信道探测信号SRS的发送配置信息给终端,其中,所述发送配置信息中的所述SRS的发送方式包括以下之一:
所述SRS作为发现信号DRS的组成信号发送;
所述SRS与DRS同子帧或相邻子帧发送;
所述SRS与下行信道或信号同子帧复用发送;
下行信道或信号映射到所述SRS的配置子帧之外的子帧;
依据限制或修改后的SRS子帧配置、或者序号配置、或者发送配置发送所述SRS。
可选地,基站发送信道探测信号SRS的发送配置信息给终端之前,所述方法还包括:
所述基站向所述终端发送的下行控制信令,其中,所述下行控制信令满足以下格式中的至少之一:DCI格式0,DCI格式4,DCI格式1A,DCI格式2B,DCI格式2C;所述下行控制信令中包括以下字段中的至少之一:SRS周期、SRS偏移、SRS单次发送、SRS在预设突发burst中的多次发送、触发之后SRS按照机会周期性发送、SRS发送的持续时长、SRS发送时延。
根据本发明实施例的另一个方面,还提供了一种信道探测信号SRS的发送装置,位于终端中,包括:
发送模块,设置为发送信道探测信号SRS给基站,其中,所述SRS的发送方式包括以下之一:
所述SRS作为发现信号DRS的组成信号发送;
所述SRS与DRS同子帧或相邻子帧发送;
所述SRS与下行信道或信号同子帧复用发送;
下行信道或信号映射到所述SRS的配置子帧之外的子帧;
依据限制或修改后的SRS子帧配置、或者序号配置、或者发送配置发送所述SRS。
根据本发明实施例的另一个方面,还提供了一种信道探测信号SRS的发送装置,位于基站中,包括:
配置模块,设置为发送信道探测信号SRS的发送配置信息给终端,所述发送配置信息中的所述SRS的发送方式包括以下之一:
所述SRS作为发现信号DRS的组成信号发送;
所述SRS与DRS同子帧或相邻子帧发送;
所述SRS与下行信道或信号同子帧复用发送;
下行信道或信号映射到所述SRS的配置子帧之外的子帧;
依据限制或修改后的SRS子帧配置、或者序号配置、或者发送配置发送所述SRS。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
终端发送信道探测信号SRS给基站,其中,所述SRS的发送方式包括以下之一:所述SRS作为发现信号DRS的组成信号发送;所述SRS与DRS同子帧或相邻子帧发送;所述SRS与下行信道或信号同子帧复用发送;下行信道或信号映射到所述SRS的配置子帧之外的子帧;
依据限制或修改后的SRS子帧配置、或者序号配置、或者发送配置发送所述SRS。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
基站发送信道探测信号SRS的发送配置信息给终端,其中,所述发送配置信息中的所述SRS的发送方式包括以下之一:所述SRS作为发现信号DRS的组成信号发送;所述SRS与DRS同子帧或相邻子帧发送;所述SRS与下行信道或信号同子帧复用发送;下行信道或信号映射到所述SRS的配置子帧之外的子帧;
依据限制或修改后的SRS子帧配置、或者序号配置、或者发送配置发送所述SRS。
通过本发明实施例,终端发送信道探测信号SRS给基站,其中,该SRS的发送方式包括以下之一:该SRS作为发现信号DRS的组成信号发送;该SRS与DRS同子帧或相邻子帧发送;该SRS与下行信道或信号同子帧复用发送;下行信道或信号映射到该SRS的配置子帧之外的子帧;依据限制或修改后的SRS子帧配置、或者序号配置、或者发送配置发送该SRS,解决了不能及时有效的进行上下行信道状况信息测量的问题,提高了非授权载波的频谱使用效率。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的一种信道探测信号SRS的发送方法的流程图一;
图2是根据本发明实施例的一种信道探测信号SRS的发送方法的流程图二;
图3是根据本发明实施例的一种信道探测信号SRS的发送装置的结构框图一;
图4是根据本发明实施例的一种信道探测信号SRS的发送装置的结构框图二。
图5是根据本发明优选实施例的SRS和DRS的位置关系示意图一;
图6是根据本发明优选实施例的SRS和DRS的位置关系示意图二。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种信道探测信号SRS的发送方法,图1是根据本发明实施例的一种信道探测信号SRS的发送方法的流程图一,如图1所示,该流程包括如下步骤:
步骤S102,配置SRS的发送方式,该发送方式包括以下之一:
该SRS作为发现信号的组成信号发送;
该SRS与DRS同子帧或相邻子帧发送;
该SRS与下行信道或信号同子帧复用发送;
下行信道或信号映射到该SRS的配置子帧之外的子帧;
依据限制或修改后的SRS子帧配置、或者序号配置、或者发送配置发送该SRS;
其中,在本实施例的可选实施方式中,该限制或修改后的SRS子帧配置、或者序号配置、或者发送配置是指:非授权载波不需要设置SRS子帧配置,和/或非授权载波不需要设置SRS配置序号。
步骤S104,终端依据上述发送方式发送信道探测信号SRS给基站。
通过上述步骤,终端发送信道探测信号SRS给基站,该SRS用于上下行信道的测量,解决了不能及时有效的进行上下行信道状况信息测量的问题,提高了非授权载波的频谱使用效率。
在本发明的实施例中,该SRS作为发现信号DRS的组成信号包括:
该SRS是该DRS的必要组成信号,或者,该SRS是该DRS中的可配置信号。
在本发明的实施例中,,在该SRS作为DRS的组成信号发送的情况下,
该SRS位于该DRS的空白符号上;和/或,
该DRS的时长被设置为该DRS所在的发送子帧中的13个符号,该SRS位于该DRS所在的该发送子帧的第13个符号上;或者,该DRS的时长被设置为该DRS所在的相邻两个发送子帧中前一个发送子帧的最后一个符号以及该相邻两个发送子帧中后一个发送子帧的12个符号,该SRS位于该相邻两个发送子帧中前一个发送子帧的最后一个符号上;和/或,
该DRS的时长被设置为该DRS所在的发送子帧中的14个符号,该SRS位于该DRS所在的该发送子帧的第14个符号上;或者,该DRS的时长被设置为该DRS所在的相邻两个发送子帧中前一个发送子帧的最后两个符号以及该相邻两个发送子帧中后一个发送子帧的12个符号,该SRS位于该相邻两个发送子帧中前一个发送子帧的倒数第二个符号上。
在本发明的实施例中,,在该SRS与DRS同子帧或相邻子帧发送的情况下,
该SRS在该DRS的空白符号上发送;和/或,
该SRS在该DRS所在的发送子帧中的第13个符号或第14个符号上发送;和/或,
该SRS在该DRS所在的发送子帧的前一子帧上发送。
在本发明的实施例中,该SRS与DRS同子帧或相邻子帧发送的情况下,执行一次LBT,根据该LBT的执行结果,发送该SRS和该DRS。
在本发明的实施例中,在该SRS作为DRS的组成信号发送,或者该SRS与DRS同子帧或相邻子帧发送的情况下,对该SRS的配置参数进行修改或者限制,使得该SRS的发送位置位于DRS测量时序配置DMTC子帧或者DRS子帧中,其中,该配置参数包括以下至少之一:子帧配置,配置序号,周期,偏移。
在本发明的实施例中,在该SRS作为发现信号DRS的组成信号发送的情况下,该SRS的配置参数与该DRS或者测量时序配置(DRS measurement timing configuration,简称为DMTC),其中,该配置参数包括:周期和/或偏移。
在本发明的实施例中,在该SRS与下行信道或信号同子帧发送的情况下,该终端是该下行信道调度的终端,或者,该终端不是该下行信道调度的终端。
在本发明的实施例中,在该SRS与下行信道或信号同子帧发送的情况下,该下行信道复用的子帧的最后一个符号或者特定符号被预留或被确定用于发送该SRS,其中,该下行信道或信号不映射在该子帧的最后一个符号或者特定符号。
在本发明的实施例中,在该SRS与下行信道或信号同子帧发送的情况下,该SRS在与该 下行信道复用的子帧的最后一个符号发送,其中,该SRS在信道状态信息测量参考信号CSI-RS、或下行用户专用参考信号UE-specific RS所占用的符号或子帧上不发送。
在本发明的实施例中,依据限制或修改后的SRS子帧配置发送该SRS包括:
将无线帧中的每个子帧配置为允许发送该SRS的发送子帧;或者
将无线帧中的每个上行子帧配置为允许发送该SRS的发送子帧。
在本发明的实施例中,依据限制或修改后的序号配置发送该SRS包括:
限制或修改用于发送该SRS的发送周期和/或发送偏移;
使用限制或修改后的发送周期和/或发送偏移发送该SRS。
在本发明的实施例中,依据限制或修改后的发送配置发送该SRS包括:
在该终端在子帧n接收到SRS发送请求的情况下,该终端在满足以下条件的第一个空闲子帧上开始发送该SRS:
该第一个空闲子帧为第n+k子帧,其中,k大于等于4;
该第一个空闲子帧为上行发送的第一个空闲子帧,或者,该第一个空闲子帧为该终端第一个被调度发送上行物理共享信道PUSCH的子帧,或者,该第一个空闲子帧为满足预设SRS子帧配置要求的发送子帧,其中,该预设SRS子帧配置要求包括:将无线帧中的每个子帧配置为允许发送该SRS的发送子帧;或者将无线帧中的每个上行子帧配置为允许发送该SRS的发送子帧;或者通过限制或修改后的发送周期和/或发送偏移配置的用于发送该SRS的发送子帧;
在本发明的实施例中,在终端发送信道探测信号SRS给基站之前,还包括:
该终端接收基站发送的下行控制信令,其中,该下行控制信令满足以下格式中的至少之一:DCI格式0,DCI格式4,DCI格式1A,DCI格式2B,DCI格式2C;该下行控制信令中包括以下字段中的至少之一:SRS周期、SRS偏移、SRS单次发送、SRS在预设突发burst中的多次发送、触发之后SRS按照机会周期性发送、SRS发送的持续时长、SRS发送时延。
在本发明的实施例中,在终端发送信道探测信号SRS给基站之前,还包括:
该终端接收基站发送的下行控制信令,其中,该下行控制信令满足以下格式中的至少之一:DCI格式1C,DCI格式3A,DCI格式3C;该下行控制信令中包括以下字段中的至少之一:SRS的子帧集合、SRS发送图样、SRS周期、SRS偏移、SRS的发送时长。
在本实施例中还提供了一种信道探测信号SRS的发送方法,图2是根据本发明实施例的一种信道探测信号SRS的发送方法的流程图二,如图2所示,该流程包括如下步骤:
步骤S202,基站配置SRS的发送方式,该发送方式包括以下之一:
该SRS作为发现信号DRS的组成信号发送;
该SRS与DRS同子帧或相邻子帧发送;
该SRS与下行信道或信号同子帧复用发送;
下行信道或信号映射到该SRS的配置子帧之外的子帧;
依据限制或修改后的SRS子帧配置、或者序号配置、或者发送配置发送该SRS。
步骤S204,基站发送信道探测信号SRS的发送配置信息给终端。
通过上述步骤,基站发送信道探测信号SRS的发送配置信息给终端,解决了不能及时有效的进行上下行信道状况信息测量的问题,提高了非授权载波的频谱使用效率。
在本发明的实施例中,基站发送信道探测信号SRS的发送配置信息给终端之前,该方法还包括:
该基站向该终端发送的下行控制信令,其中,该下行控制信令满足以下格式中的至少之一:DCI格式0,DCI格式4,DCI格式1A,DCI格式2B,DCI格式2C;该下行控制信令中包括以下字段中的至少之一:SRS周期、SRS偏移、SRS单次发送、SRS在预设突发burst中的多次发送、触发之后SRS按照机会周期性发送、SRS发送的持续时长、SRS发送时延、用于指示SRS是否发送的指示信息。
图3是根据本发明实施例的一种信道探测信号SRS的发送装置的结构框图一,如图3所示,该装置位于终端中,该装置包括:
第一配置模块32,设置为配置SRS的发送方式,该发送方式包括以下之一:
该SRS作为发现信号DRS的组成信号发送;
该SRS与DRS同子帧或相邻子帧发送;
该SRS与下行信道或信号同子帧复用发送;
下行信道或信号映射到该SRS的配置子帧之外的子帧;
依据限制或修改后的SRS子帧配置、或者序号配置、或者发送配置发送该SRS。
第一发送模块34,与第一配置模块32连接,设置为依据上述发送方式发送信道探测信号SRS给基站。
图4是根据本发明实施例的一种信道探测信号SRS的发送装置的结构框图二,如图4所示,该装置位于基站中,该装置包括:
第二配置模块42,设置为配置SRS的发送方式,该发送方式包括以下之一
该SRS作为发现信号DRS的组成信号发送;
该SRS与DRS同子帧或相邻子帧发送;
该SRS与下行信道或信号同子帧复用发送;
下行信道或信号映射到该SRS的配置子帧之外的子帧;
依据限制或修改后的SRS子帧配置、或者序号配置、或者发送配置发送该SRS。
第二发送模块44,与第二配置模块42连接,设置为发送配置SRS的发送方式的信息给终端。
下面结合优选实施例和实施方式对本发明进行详细说明。
SRS可以单独发送,也可以和其他上行信道一起发送。SRS有周期发送和非周期发送两种方式(也即trigger type 0和trigger type 1)。SRS在子帧的最后一个符号发送(对于TDD上行导频(UpPTS)占用2个单载波频分多址(Single Carrier-Frequency Division Multiple Access,简称为SC-FDMA)符号,这两个符号都可以用于SRS传输)。SRS的周期在2ms到320ms之间(trigger type 0/1以及FDD/TDD各有不同)。
实施例一:
针对上行SRS与下行发现信号DRS的发送关系,有如下设计:
在Rel-13中,DRS具有较高的LBT优先级,只需要侦听一个不小于X us(如25us)的时间间隔,基站即可发送DRS。在Rel-12/13版本中,DMTC的周期为40/80/160ms,持续时间duration为6ms。因此,较长发送周期的DRS采用较高优先级的LBT方式对数据发送影响也不大。SRS可以作为DRS的组成信号、或采用与DRS伴随发送的方式进行发送。
方法一:SRS作为DRS的组成信号发送。
重新设计非授权载波的DRS。新的DRS不仅包括下行的CRS、PSS/SSS、可配置的CSI-RS、还包括上行SRS。上行SRS可以是DRS的必要组成信号,也可以是DRS中的可配置信号,可用于上下行的信道测量。
DRS仍然可以是Rel-13DRS的12个OFDM符号结构(符号0到符号11,其中符号1/2/3/8上可以发送未知信号或占用信号,标准未做定义,这些可以看做是空白符号)。SRS在Rel-13DRS中的空白符号上发送,例如符号1(子帧的第二个符号,下同),或符号2,或符号3,或符号8。SRS在现有DRS中的空白符号上发送一方面不会改变DRS的长度,另一方面也起到了占用信道的作用;
DRS也可以是13个符号结构。SRS在同子帧的符号12(子帧的第13个符号)上发送、或者,SRS在现有DRS发送子帧的前一子帧最后一个符号发送。也即,前一子帧的最后一个符号发送SRS,后一子帧的前12个符号发送现有DRS,这13个符号组成了新的DRS。这种方法是从上行到下行的切换,基本不需要考虑上下行切换时延。
包括SRS和现有DRS的新的DRS只需要执行一次LBT,即可发送SRS和现有SRS。例 如,对于前一种方式,SRS可以直接利用DRS的LBT结果,现有DRS的组成信号发送完毕后,可以直接发送SRS,不需要再执行LBT或填充占用信号或占用信息。图5是根据本发明优选实施例的SRS和DRS的位置关系示意图一,如图5所示,新的DRS包括子帧n上的符号13和子帧n+1上的符号0到符号11,一共13个符号。在方法一中,图5中的SRS是DRS的组成信号。需要说明的是CCA的时长不一定是图5中的一个符号,例如可以仅为几十us,图5仅仅是给出CCA的位置示例,不限制CCA的时长和方式。
DRS也可以是14个符号结构。SRS在同子帧的符号13(子帧的第14个符号)上发送,符号12可以发送CRS或其他一些信号或信息。这个选择好处是不需要改变SRS现有发送的时域位置。进一步的,由于Rel-13限制DRS LBT的有效发送时长需要小于1ms,可以修改此限制,即DRS LBT的有效发送时长可以等于或大于1ms,至少能够发送包括14个符号的DRS。DRS采用14个符号结构,也有助于UE处理上下行发送切换时延。图6是根据本发明优选实施例的SRS和DRS的位置关系示意图二,如图6所示,在方法一中,图6中的SRS是DRS的组成信号。新的DRS包括子帧n+1上的符号0到符号13,一共14个符号。需要说明的是CCA的时长不一定是图6中的一个符号,例如可以仅为几十us,图6仅仅是给出CCA的位置示例,不限制CCA的时长和方式。
或者,SRS在现有DRS发送子帧的前一子帧倒数第二个符号发送。也即,前一子帧的倒数第二个符号发送SRS,后一子帧的前12个符号发送现有DRS,这14个符号组成了新的DRS(包括SRS和DRS现有组成信号之间的一个空白符号,可以发送占用信号或未定义信号)。
优选的,包含SRS的DRS采用13个或14个符号结构。
SRS的子帧配置(srs-SubframeConfig)和/或序号配置(SRS Configuration Index Isrs,确定SRS的周期及偏移)有可能导致SRS的发送位置不是落在DMTC中。例如,Isrs=37,对应SRS的周期为40ms,偏移为0。如果DMTC的周期也为40ms,但偏移为1ms,那么根据上述配置,SRS不会在DMTC中发送。
因此,可以对SRS的子帧配置、配置序号、周期、偏移等参数之一或多个作出修改和限制,以适应SRS在DMTC子帧或DRS子帧上发送。可以对3GPP 36.211Rel-10~13中Table5.5.3.3-1和/或Table 5.5.3.3-2中的srs-SubframeConfig的配置进行限制或修改。和/或,对3GPP36.213Rel-10~13中Table 8.2-1、和/或Table 8.2-2、和/或Table 8.2-4、和/或Table 8.2-4中的SRS Configuration Index Isrs配置进行限制或修改。例如,确定DRS中的SRS周期为40,80,或160ms,例如限制DRS中的SRS Configuration Index Isrs配置范围为37-316.
或者,DRS中的SRS配置可以与传统的SRS配置进行松绑,即DRS中的SRS采用与DRS、或DMTC相同的配置,包括相同的周期、或偏移。SRS可以是DRS的必要组成信号,也可以是DRS中的可配置信号。SRS是DRS中的可配置信号意思是在DMTC中或DRS子帧中可以配置发送SRS,也可以配置不发送SRS。
上述对DRS的设计和对DRS中SRS发送方法的设计不限制传统的SRS配置发送。也即,DRS中的SRS可以采用上述方法进行发送,传统的SRS仍然可以按照传统配置或发送方式进 行发送。
方法二:SRS可以与DRS同子帧复用或相邻子帧发送
DL DRS和UL SRS可以同子帧发送。DRS可以仍然采用Rel-13结构,即12符号结构。SRS不是DRS的组成信号。由于DRS具有较高的LBT优先级,只需要侦听一个不小于X us(如25us)的时间间隔,基站即可发送DRS。因此SRS可以利用DRS的LBT结果进行发送。SRS可以在DRS子帧上发送,不需要再进行信道侦听。
进一步的,SRS可以在DRS子帧符号12(子帧中的第13个OFDM符号)上发送。SRS发送可以直接利用DRS的LBT结果。DRS发送完毕后,可以直接发送SRS,不需要再执行LBT或填充占用信号或占用信息。
或者,SRS在DRS子帧符号13上发送,不需要再进行信道侦听。如图6所示(注意在此方法中SRS不是DRS的组成信号)。符号12可以发送其他一些占用信号或信息,本发明不做限制。这个方法好处是不需要改变SRS现有发送的时域位置,且能够保证UE的上下行发送切换时延。由于Rel-13限制DRS LBT的有效发送时长需要小于1ms,可以修改此限制,即DRS LBT的有效发送时长可以等于或大于1ms,保证SRS能够利用DRS LBT的侦听结果。
或者,SRS在DRS中间的空白符号上发送,例如符号1,或符号2,或符号3,或符号8。好处是不需要改变现有DRS LBT侦听结果的有效时长。
或者,SRS在DRS子帧的前一子帧上发送,优选在DRS子帧的前一子帧上倒数第一个或倒数第二个符号上发送。SRS和DRS可以执行一次LBT,如果成功,则发送SRS和DRS。这种方法好处是SRS在DRS之前发送,不需要考虑上下行切换时延,且两者能共享同一次LBT结果。如图5所示(注意在此方法中SRS不是DRS的组成信号)。
综上,SRS可以与DRS同子帧或相邻子帧发送,两者共享一次LBT侦听的结果。无论是SRS在DRS之前发送,还是DRS在SRS之前发送,或者两者复用发送,都只需要执行一次LBT或CCA。
进一步的,可以对SRS的子帧配置、周期、偏移等参数之一或多个作出限制或修改,以适应SRS在DMTC子帧或DRS子帧上发送。可以对3GPP 36.211Rel-10~13中Table 5.5.3.3-1和/或Table 5.5.3.3-2中的srs-SubframeConfig的配置进行限制或修改。和/或,对3GPP 36.213Rel-10~13中Table 8.2-1、和/或Table 8.2-2、和/或Table 8.2-4、和/或Table 8.2-4中的SRS Configuration Index Isrs配置进行限制或修改。例如,SRS周期为40,80,或160ms,限制SRS Configuration Index Isrs配置范围为37-316.
SRS可以配置在每个DRS子帧上或DMTC中都发送,也可以灵活配置,即在有些DRS子帧中发送SRS,有些DRS子帧中不发送SRS。
实施例二:
针对上行SRS与下行信道或信号的发送关系,有如下设计:
基站配置UE发送SRS。假设信道空闲,UE按照配置的srs-SubframeConfig(确定SRS可发送的子帧)、SRS Configuration Index(确定SRS发送的周期及偏置)和/或其他参数来发送SRS。SRS可以和其他上行信道一起发送,也可以单独发送。当SRS单独发送时,只占用该子帧的最后一个符号,因此从资源节约和频谱效率角度,该子帧还可用于下行调度或发送。在非授权载波场景中,SRS子帧是否还可以用于下行调度或发送有如下方法:。
方法一:下行信道或信号和上行SRS可以在同子帧复用发送,不限于Rel-10的特殊子帧。接收下行信道和发送上行SRS的UE可以是或不是同一个UE。例如,接收下行信道的UE为所被调度的UE,而发送上行SRS的UE是另一个UE。当配置UE在某子帧发送SRS时,下行信道不会映射到所述子帧的最后一个符号、或特定符号。下行信道可以是PDSCH或(E)PDCCH等。
因为SRS子帧配置是一个小区级的行为,小区内的所有UE应该知道在哪些子帧集合上可能会有UE发送SRS。因此,基站或被调度的UE会做一个假设,即假设PDSCH、和/或其他下行信道或信号不会映射到该子帧的最后一个符号、或特定符号(如最后两个符号),如果该子帧会用于或可能用于发送SRS。
换言之,当该资源块、或资源元素、或子帧、或符号没有用于SRS发送(再加上现有的一些限制,如没有用于PBCH、同步信号、CRS信号等限制),PDSCH、和/或其他下行信道或信号则可映射到相应资源上。
如果下行信道如PDSCH或(E)PDCCH与SRS在同符号上发送,则不发送SRS。
SRS如果占用最后一个符号,会面临与CSI-RS、下行UE-specific RS的碰撞问题。另外一个解决方法是,为了维持CSI-RS、或下行UE-specific RS的信道测量、解调等功能,SRS在CSI-RS、或下行UE-specific RS所占用的符号或子帧上不发送。
方法二:下行信道或信号不会映射到SRS所配置子帧。对于非授权载波,为避免对周期性或非周期性SRS发送的影响,下行信道/信号不会映射到SRS所配置子帧。所述下行信道/信号可以包括发现信号,或者,下行信道/信号不包括发现信号,发现信号有更高的优先级,如果发现信号子帧遇到SRS子帧,发现信号优先发送。SRS子帧配置、SRS Configuration Index(确定SRS发送的周期及偏置)、以及SRS带宽等参数是由高层信令配置的,基站可以预知小区所服务的UE可能在哪些子帧上发送。为避免下行信道或信号与SRS发送产生冲突和干扰,因此基站在SRS子帧不发送下行信道、或下行信号。
实施例三
针对上行SRS与上行信道或信号的发送关系,有如下设计:
针对trigger type 1的SRS发送,目前有如下限制:
(1)一个小区内可用于发送SRS的子帧号的集合是通过IE(详见3GPP 36.331协议):SoundingRS-UL-ConfigCommon的srs-SubframeConfig字段来配置,这是一个小区级的配置(通 过SIB2下发)。
具体如何通过srs-SubframeConfig配置SRS发送集合在3GPP 36.211的Table 5.5.3.3-1(用于FDD)和Table 5.5.3.3-2(用于TDD)中给出。这两个表格给出了每种配置下的每个系统帧内可用于发送SRS的子帧集合。且需要满足下面条件,
(2)如果UE在serving cell c上配置了非周期性SRS,且在serving cell c的子帧n上检测到了SRS请求,则UE会在满足以下条件的第一个子帧上发送非周期性SRS:
a.该子帧满足,且n+k,k≥4,且
b.对于“TDD且TSRS,1>2的小区”和“FDD小区”而言,用于发送非周期性SRS的子帧必须满足(10·nf+kSRS-Toffset,1)mod TSRS,1=0;
c.对于“TDD且TSRS,1=2的SRS传输”而言,其发送的子帧必须满足(kSRS-Toffset,1)mod 5=0。
其中,对于FDD而言,kSRS={0,1,...,9}为每个系统帧nf内的子帧号,对于TDD而言,kSRS在3GPP 36.213的Table 8.2-3定义。SRS周期TSRS,1,以及SRS子帧偏移,Toffset,1,在3GPP36.213Table 8.2-4and Table 8.2-5,由SRS配置序号ISRS决定。分别针对FDD和TDD情况。
对于非授权载波场景,在发送SRS前还需要侦听信道是否空闲。即使信道空闲,也会受到最大发送时长Tmcot和/或地区规则的限制。再加上上述SRS子帧集合的限制和SRS发送周期/偏移的限制,SRS发送概率会大大下降,从而影响到数据调度。因此需要设计一种新的SRS发送方法来提高SRS发送的成功概率。
非授权载波不需要设置SRS子帧配置。即不需要srs-SubframeConfig字段来配置发送SRS的子帧集合;或者,对非授权载波中的SRS子帧配置进行限制或修改。例如,限制无线帧中的每个子帧都是SRS的可能发送子帧,或限制无线帧中的每个上行子帧和/或部分子帧都是SRS的可能发送子帧。例如,限制Table 5.5.3.3-1中srs-SubframeConfig为0,或限制Table5.5.3.3-2中srs-SubframeConfig为7。
和/或,非授权载波不需要设置SRS配置序号。即不需要通过srs-ConfigIndexAp-r10给UE配置ISRS、及相应的周期TSRS和偏移Toffset。或者,对非授权载波中的SRS配置序号进行限制或修改。例如,限制SRS配置序号ISRS为0或1。即限制非授权载波中的SRS发送周期为2ms。或者,对SRS发送周期进行限制或修改。例如为2ms或1ms。
和/或,如果UE在子帧n接收到了SRS发送请求,UE会在满足以下条件的第一个空闲子帧上开始发送非周期性SRS:
a.该子帧>=n+4,且
b.可用于上行发送的第一个可用子帧;或者所述UE第一个被调度发送PUSCH的子帧;或者满足SRS子帧配置要求的子帧(这一条与现有技术相同,但SRS子帧配置做了如上修改)。
如果不保留SRS子帧配置或对SRS子帧配置进行限制或修改,UE需要根据上述修改作出相应的速率匹配行为。例如,UE会假设每个子帧或上行子帧或可用于上行发送的部分子帧上最后一个符号或特定符号都可能会用于SRS发送,因此,UE不会在所述子帧的最后一个符号或特定符号上映射PUSCH。特定符号可以是子帧的第一个符号、或倒数第二个符号、或其他指定发送SRS的符号。
现有技术中,对于trigger type 1SRS(对应于非周期SRS),对于FDD,eNodeB可以通过DCI format 0/4/1A触发UE发送非周期性SRS。对于TDD,eNodeB可以通过DCI format0/4/1A/2B/2C触发UE发送非周期性SRS。(使用对应DCI中的SRS request字段)
可以对非授权载波中的SRS触发方式进行增强,以提高SRS的发送概率和配置的灵活性。
在DCI format 0/4/1A/2B/2C(这里的“/”为“和/或”关系)。增加如下SRS发送配置字段之一或多个:SRS周期、SRS偏移、SRS单次发送、SRS在某个burst中的多次发送(例如按配置周期/偏移在burst中多次发送、或在burst中每个子帧都发送)、触发之后SRS按照机会周期性发送、SRS发送的持续时长、SRS发送时延等。
或者,基站给UE发送公共的下行信令,用来通知SRS的发送情况。例如:所述终端接收基站发送的下行控制信令,其中,所述下行控制信令满足以下格式中的至少之一:DCI格式1C,DCI格式3A,DCI格式3C;所述下行控制信令中包括以下字段中的至少之一:SRS的发送子帧集合、SRS发送图样、SRS周期、SRS偏移、SRS发送时长、用于指示SRS是否发送的指示信息。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,配置SRS的发送方式,所述发送方式包括以下之一:
所述SRS作为发现信号的组成信号发送;
所述SRS与DRS同子帧或相邻子帧发送;
所述SRS与下行信道或信号同子帧复用发送;
下行信道或信号映射到所述SRS的配置子帧之外的子帧;
依据限制或修改后的SRS子帧配置、或者序号配置、或者发送配置发送所述SRS。
S2,终端依据上述发送方式发送信道探测信号SRS给基站。
可选地,存储介质还被设置为存储用于执行上述实施例的方法步骤的程序代码:。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述实施例的方法步骤。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例的信道探测信号SRS的发送过程中,终端发送信道探测信号SRS给基站,其中,该SRS的发送方式包括以下之一:该SRS作为发现信号DRS的组成信号发送;该SRS与DRS同子帧或相邻子帧发送;该SRS与下行信道或信号同子帧复用发送;下行信道或信号映射到该SRS的配置子帧之外的子帧;依据限制或修改后的SRS子帧配置、或者序号配置、或者发送配置发送该SRS,解决了不能及时有效的进行上下行信道状况信息测量的问题,提高了非授权载波的频谱使用效率。

Claims (20)

  1. 一种信道探测信号SRS的发送方法,包括:
    终端发送信道探测信号SRS给基站,其中,所述SRS的发送方式包括以下之一:
    所述SRS作为发现信号DRS的组成信号发送;
    所述SRS与DRS同子帧或相邻子帧发送;
    所述SRS与下行信道或信号同子帧复用发送;
    下行信道或信号映射到所述SRS的配置子帧之外的子帧;
    依据限制或修改后的SRS子帧配置、或者序号配置、或者发送配置发送所述SRS。
  2. 根据权利要求1所述的方法,其中,所述SRS作为发现信号DRS的组成信号包括:
    所述SRS是所述DRS的必要组成信号,或者,所述SRS是所述DRS中的可配置信号。
  3. 根据权利要求1或2所述的方法,其中,在所述SRS作为DRS的组成信号发送的情况下,
    所述SRS位于所述DRS的空白符号上;和/或,
    所述DRS的时长被设置为所述DRS所在的发送子帧中的13个符号,所述SRS位于所述DRS所在的所述发送子帧的第13个符号上;或者,所述DRS的时长被设置为所述DRS所在的相邻两个发送子帧中前一个发送子帧的最后一个符号以及所述相邻两个发送子帧中后一个发送子帧的12个符号,所述SRS位于所述相邻两个发送子帧中前一个发送子帧的最后一个符号上;和/或,
    所述DRS的时长被设置为所述DRS所在的发送子帧中的14个符号,所述SRS位于所述DRS所在的所述发送子帧的第14个符号上;或者,所述DRS的时长被设置为所述DRS所在的相邻两个发送子帧中前一个发送子帧的最后两个符号以及所述相邻两个发送子帧中后一个发送子帧的12个符号,所述SRS位于所述相邻两个发送子帧中前一个发送子帧的倒数第二个符号上。
  4. 根据权利要求1所述的方法,其中,在所述SRS与DRS同子帧或相邻子帧发送的情况下,
    所述SRS在所述DRS的空白符号上发送;和/或,
    所述SRS在所述DRS所在的发送子帧中的第13个符号或第14个符号上发送;和/或,
    所述SRS在所述DRS所在的发送子帧的前一子帧上发送。
  5. 根据权利要求1所述的方法,其中,所述SRS与DRS同子帧或相邻子帧发送的情况下,执行一次LBT,根据所述LBT的执行结果,发送所述SRS和所述DRS。
  6. 根据权利要求1所述的方法,其中,在所述SRS作为DRS的组成信号发送,或者所述SRS与DRS同子帧或相邻子帧发送的情况下,对所述SRS的配置参数进行修改或者限制,使得所述SRS的发送位置位于DRS测量时序配置DMTC子帧或者DRS子帧中,其中,所述配置参数包括以下至少之一:子帧配置,配置序号,周期,偏移。
  7. 根据权利要求1所述的方法,其中,在所述SRS作为发现信号DRS的组成信号发送的情况下,所述SRS的配置参数与所述DRS或者DMTC相同,其中,所述配置参数包括:周期和/或偏移。
  8. 根据权利要求1所述的方法,其中,在所述SRS与下行信道或信号同子帧发送的情况下,所述终端是所述下行信道调度的终端,或者,所述终端不是所述下行信道调度的终端。
  9. 根据权利要求1所述的方法,其中,在所述SRS与下行信道或信号同子帧发送的情况下,所述下行信道复用的子帧的最后一个符号或者特定符号被预留或被确定用于发送所述SRS,其中,所述下行信道或信号不映射在所述子帧的最后一个符号或者特定符号。
  10. 根据权利要求1所述的方法,其中,在所述SRS与下行信道或信号同子帧发送的情况下,所述SRS在与所述下行信道复用的子帧的最后一个符号发送,其中,所述SRS在信道状态信息测量参考信号CSI-RS、或下行用户专用参考信号UE-specific RS所占用的符号或子帧上不发送。
  11. 根据权利要求1所述的方法,其中,依据限制或修改后的SRS子帧配置发送所述SRS包括:
    将无线帧中的每个子帧配置为允许发送所述SRS的发送子帧;或者
    将无线帧中的每个上行子帧配置为允许发送所述SRS的发送子帧。
  12. 根据权利要求1所述的方法,其中,依据限制或修改后的序号配置发送所述SRS包括:
    限制或修改用于发送所述SRS的发送周期和/或发送偏移;
    使用限制或修改后的发送周期和/或发送偏移发送所述SRS。
  13. 根据权利要求1所述的方法,其中,依据限制或修改后的发送配置发送所述SRS包括:
    在所述终端在子帧n接收到SRS发送请求的情况下,所述终端在满足以下条件的第一个空闲子帧上开始发送所述SRS:
    所述第一个空闲子帧为第n+k子帧,其中,k大于等于4;
    所述第一个空闲子帧为上行发送的第一个空闲子帧,或者,所述第一个空闲子帧为所述终端第一个被调度发送上行物理共享信道PUSCH的子帧,或者,所述第一个空闲子帧为满足预设SRS子帧配置要求的发送子帧,其中,所述预设SRS子帧配置要求包括:将无线帧中的每个子帧配置为允许发送所述SRS的发送子帧;或者将无线帧中的每个上行子帧配置为允许发送所述SRS的发送子帧;或者通过限制或修改后的发送周期和/或发 送偏移配置的用于发送所述SRS的发送子帧。
  14. 根据权利要求1所述的方法,其中,在终端发送信道探测信号SRS给基站之前,还包括:
    所述终端接收基站发送的下行控制信令,其中,所述下行控制信令满足以下格式中的至少之一:DCI格式0,DCI格式4,DCI格式1A,DCI格式2B,DCI格式2C;所述下行控制信令中包括以下字段中的至少之一:SRS周期、SRS偏移、SRS单次发送、SRS在预设突发burst中的多次发送、触发之后SRS按照机会周期性发送、SRS发送的持续时长、SRS发送时延。
  15. 根据权利要求1所述的方法,其中,在终端发送信道探测信号SRS给基站之前,还包括:
    所述终端接收基站发送的下行控制信令,其中,所述下行控制信令满足以下格式中的至少之一:DCI格式1C,DCI格式3A,DCI格式3C;所述下行控制信令中包括以下字段中的至少之一:SRS的子帧集合、SRS发送图样、SRS周期、SRS偏移、SRS的发送时长、用于指示SRS是否发送的指示信息。
  16. 根据权利要求1所述的方法,其中,限制或修改后的SRS子帧配置、或者序号配置、或者发送配置是指:非授权载波不设置SRS子帧配置,和/或非授权载波不设置SRS配置序号。
  17. 一种信道探测信号SRS的发送方法,包括:
    基站发送信道探测信号SRS的发送配置信息给终端,其中,所述发送配置信息中的所述SRS的发送方式包括以下之一:
    所述SRS作为发现信号DRS的组成信号发送;
    所述SRS与DRS同子帧或相邻子帧发送;
    所述SRS与下行信道或信号同子帧复用发送;
    下行信道或信号映射到所述SRS的配置子帧之外的子帧;
    依据限制或修改后的SRS子帧配置、或者序号配置、或者发送配置发送所述SRS。
  18. 根据权利要求17所述的方法,其中,基站发送信道探测信号SRS的发送配置信息给终端之前,所述方法还包括:
    所述基站向所述终端发送的下行控制信令,其中,所述下行控制信令满足以下格式中的至少之一:DCI格式0,DCI格式4,DCI格式1A,DCI格式2B,DCI格式2C;所述下行控制信令中包括以下字段中的至少之一:SRS周期、SRS偏移、SRS单次发送、SRS在预设突发burst中的多次发送、触发之后SRS按照机会周期性发送、SRS发送的持续时长、SRS发送时延。
  19. 一种信道探测信号SRS的发送装置,位于终端中,包括:
    发送模块,设置为发送信道探测信号SRS给基站,其中,所述SRS的发送方式包括以下之一:
    所述SRS作为发现信号DRS的组成信号发送;
    所述SRS与DRS同子帧或相邻子帧发送;
    所述SRS与下行信道或信号同子帧复用发送;
    下行信道或信号映射到所述SRS的配置子帧之外的子帧;
    依据限制或修改后的SRS子帧配置、或者序号配置、或者发送配置发送所述SRS。
  20. 一种信道探测信号SRS的发送装置,位于基站中,包括:
    配置模块,设置为发送信道探测信号SRS的发送配置信息给终端,所述发送配置信息中的所述SRS的发送方式包括以下之一:
    所述SRS作为发现信号DRS的组成信号发送;
    所述SRS与DRS同子帧或相邻子帧发送;
    所述SRS与下行信道或信号同子帧复用发送;
    下行信道或信号映射到所述SRS的配置子帧之外的子帧;
    依据限制或修改后的SRS子帧配置、或者序号配置、或者发送配置发送所述SRS。
PCT/CN2017/075611 2016-03-11 2017-03-03 信道探测信号srs的发送方法及装置 WO2017152810A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610140536.2A CN107182092B (zh) 2016-03-11 2016-03-11 信道探测信号srs的发送方法及装置
CN201610140536.2 2016-03-11

Publications (1)

Publication Number Publication Date
WO2017152810A1 true WO2017152810A1 (zh) 2017-09-14

Family

ID=59788995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075611 WO2017152810A1 (zh) 2016-03-11 2017-03-03 信道探测信号srs的发送方法及装置

Country Status (2)

Country Link
CN (1) CN107182092B (zh)
WO (1) WO2017152810A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3749013B1 (en) 2018-02-13 2023-04-26 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Sounding reference signal transmission method, terminal device, and network device
US20190349060A1 (en) * 2018-05-11 2019-11-14 Mediatek Inc. Methods of Efficient Bandwidth Part Switching in a Wideband Carrier
CN111277375B (zh) * 2018-12-05 2021-07-23 大唐移动通信设备有限公司 一种资源分配的方法及装置
WO2020154923A1 (zh) * 2019-01-29 2020-08-06 华为技术有限公司 一种drs发送方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931456A (zh) * 2010-08-09 2010-12-29 中兴通讯股份有限公司 一种移动通信系统的无线帧及测量参考信号的发送方法
CN102598524A (zh) * 2009-08-18 2012-07-18 株式会社泛泰 在协作多天线收发器系统中收发组特有消息的方法和系统
CN103024755A (zh) * 2011-09-20 2013-04-03 株式会社东芝 通信设备、基站以及基站系统
US20150358827A1 (en) * 2014-06-05 2015-12-10 Texas Instruments Incorporated Method and apparatus for transmitting lte waveforms in shared spectrum by carrier sensing
CN105357162A (zh) * 2014-08-22 2016-02-24 中兴通讯股份有限公司 一种信号处理方法、基站和终端

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5596452B2 (ja) * 2010-07-22 2014-09-24 京セラ株式会社 無線基地局および無線通信方法
JP5583512B2 (ja) * 2010-08-06 2014-09-03 京セラ株式会社 無線基地局および無線通信方法
CN105099632B (zh) * 2014-04-23 2019-12-13 北京三星通信技术研究有限公司 一种上行探测参考信号传输的方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102598524A (zh) * 2009-08-18 2012-07-18 株式会社泛泰 在协作多天线收发器系统中收发组特有消息的方法和系统
CN101931456A (zh) * 2010-08-09 2010-12-29 中兴通讯股份有限公司 一种移动通信系统的无线帧及测量参考信号的发送方法
CN103024755A (zh) * 2011-09-20 2013-04-03 株式会社东芝 通信设备、基站以及基站系统
US20150358827A1 (en) * 2014-06-05 2015-12-10 Texas Instruments Incorporated Method and apparatus for transmitting lte waveforms in shared spectrum by carrier sensing
CN105357162A (zh) * 2014-08-22 2016-02-24 中兴通讯股份有限公司 一种信号处理方法、基站和终端

Also Published As

Publication number Publication date
CN107182092A (zh) 2017-09-19
CN107182092B (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
JP7094936B2 (ja) 搬送波感知による共用スペクトルにおけるlte波形を送信するための方法及び装置
KR102044084B1 (ko) 제어 시그널링의 수신을 위한 방법 및 장치
JP7279116B2 (ja) 端末、無線通信方法、基地局及びシステム
KR102185715B1 (ko) 비인가된 캐리어 상에서 동작하는 scell에서의 제어 시그널링의 수신을 위한 방법 및 장치
CN105790911B (zh) 一种上下行载波的配置方法及装置
EP3383113B1 (en) User terminal, wireless base station, and wireless communication method
US20230070829A1 (en) Time-domain allocation for repetitions
WO2015106715A1 (zh) 信号传输方法和装置
EP3065427B1 (en) Radio base station, user terminal, and radio communication method
WO2017012346A1 (zh) 信道状态信息测量反馈方法、基站、终端、计算机存储介质
CN109923843B (zh) 新无线电中的循环前缀管理
JP2014527331A (ja) サウンディング基準信号(srs)の増強
WO2017016216A1 (zh) 一种非授权载波的同步信号的发送方法和基站、存储介质
JP6753509B2 (ja) 通信を実行するための方法および装置
WO2017152810A1 (zh) 信道探测信号srs的发送方法及装置
WO2017076182A1 (zh) 测量参考信号srs的发送方法及装置
WO2017024582A1 (zh) 上行参考信号传输方法、用户终端及基站
WO2017133270A1 (zh) 上行信号/信道的发送方法及装置、计算机存储介质
US10645723B2 (en) Signal transmission method, signal transmission control method, user equipment, and base station
KR102546637B1 (ko) 비면허대역 프레임 구성 방법 및 장치
JP6933283B2 (ja) 通信を実行するための方法および装置
CN114143857B (zh) 灵活的传送网
WO2022082795A1 (zh) 一种通信方法及装置
EP4125233A1 (en) User equipment and base station involved in resource indication for control channel carrier switching
JP7416206B2 (ja) 上りリンク信号の送受信方法及び装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762496

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17762496

Country of ref document: EP

Kind code of ref document: A1