WO2017152544A1 - 一种频率选择表面结构单元和频率选择表面结构 - Google Patents

一种频率选择表面结构单元和频率选择表面结构 Download PDF

Info

Publication number
WO2017152544A1
WO2017152544A1 PCT/CN2016/087124 CN2016087124W WO2017152544A1 WO 2017152544 A1 WO2017152544 A1 WO 2017152544A1 CN 2016087124 W CN2016087124 W CN 2016087124W WO 2017152544 A1 WO2017152544 A1 WO 2017152544A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
frequency selective
selective surface
metal strip
surface structure
Prior art date
Application number
PCT/CN2016/087124
Other languages
English (en)
French (fr)
Inventor
王龙龙
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017152544A1 publication Critical patent/WO2017152544A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2002Dielectric waveguide filters

Definitions

  • This document relates to, but is not limited to, the field of communications, and more particularly to a frequency selective surface structure unit and a frequency selective surface structure thereof.
  • a system is required to select a specific electromagnetic wave, such as a microwave filter, a shielding box and a shielded chamber, and a simple dipole frequency selection surface.
  • microwave filters including a filter composed of lumped parameters, a filter composed of a microstrip line, and a cavity filter, but the lumped LC filter is composed of a capacitor and the like, at a frequency.
  • the distribution parameter is larger at higher time, is not suitable for high frequency filtering, and is fixed in position when applied, and the direction and position of electromagnetic waves are determined.
  • the resonant units of the microstrip line type filter are all in the same space layer, occupying a large area, and the direction and position of the electromagnetic wave are determined.
  • the shielding box and the shielding room can achieve the function of shielding electromagnetic waves, the shielding frequency is not selective, and the volume is large and the cost is high.
  • the simple dipole frequency selection surface has frequency selection characteristics for specific electromagnetic waves. Due to its simple structure, it exhibits different transmission characteristics for electromagnetic waves incident at different angles, but its stability is poor, and its frequency selective surface structure The size is large and the effect of miniaturization is not achieved.
  • the relevant frequency selector ie: microwave filter
  • the general frequency selection surface is a half-wavelength resonator.
  • Embodiments of the present invention provide a frequency selective surface structure unit and a frequency selective surface structure thereof, which have the characteristics of miniaturization while having frequency selection characteristics.
  • the frequency selection surface structure unit includes a dielectric substrate 1, a ring array and a metal strip 3 on a medium plane of the dielectric substrate 1;
  • the ring array 2 includes a closed loop metal wire 21 disposed along four sides of the dielectric substrate 1 and a sequentially arranged slit ring disposed inside the closed loop metal wire 21 and having the same center as the closed loop metal wire 21 Array 22, the gap ring array has two intersecting diagonal slits, the diagonal slits dividing each slit ring of the gap ring array 22 into four metal wires 221 in different directions; the metal strip 3 includes a first metal strip 31 that perpendicularly intersects each of the closed loop metal lines 21 and each of the metal lines 221 of the gap ring array 22 in a direction corresponding to the first metal strips 31.
  • the distance d between the metal lines 221 in each direction of the slot ring array is equal.
  • the metal strip 3 further includes a second metal strip 32 parallel to the first metal strip 31, and the second metal strip 32 is adjacent to a portion of the metal in a corresponding direction of the gap ring array. Lines 221 intersect perpendicularly.
  • the distance d between the metal lines 221 in each direction includes a first distance d1, a second distance d2, and a third distance d3, wherein between the metal lines intersecting the second metal strip a distance d1 equal to a distance d2 between the metal lines that do not intersect the second metal strip in the direction, the metal line intersecting the second metal strip and the second metal strip not intersecting in the direction
  • the distance d between the metal wires 221 ranges from 0.1 mm to 0.75 mm, and the width w of the metal strip ranges from 0.1 mm to 0.75 mm.
  • the ring array 2 is a square ring array
  • the closed loop metal wire 21 is a closed square ring metal wire
  • the slit ring array 22 is a slot square ring array.
  • the effective resonance of the frequency selective surface structural unit is changed by changing the distance d between the metal wires 221, the width w of the metal strip 3, and the length L of the side length of the closed square ring metal wire 21.
  • a wavelength, the resonant frequency of the frequency selective surface structural unit being determined according to the effective resonant wavelength.
  • the width of the metal strip 3 is w.
  • the distance d between the metal wires 221 and/or the width w of the metal strip 3 is reduced, the resonance wavelength is increased, and the resonance frequency is increased. reduce.
  • the distance d between the metal wires 221 and/or the width w of the metal strip 3 is increased, the resonance wavelength is decreased, and the resonance frequency is increase.
  • a frequency selective surface structure is provided by the embodiment of the present invention.
  • the frequency selective surface structure includes a plurality of frequency selective surface structural units according to any of the above embodiments, and the frequency selective surface structural units are periodically arranged symmetrically.
  • the periodically selecting the frequency selective surface structure unit period comprises: a preset number of the frequency selection surface structural units are symmetrically arranged in a center.
  • a frequency selective surface structure unit includes a dielectric substrate 1 , a square ring array 2 and a metal strip 3 on a dielectric plane of the dielectric substrate 1 , and the square ring array 2 includes the dielectric substrate a closed square ring metal wire 21 disposed on four sides of the first side, and a slit square ring array 22 disposed in the same center of the closed square ring metal wire and having the same center of the closed square ring metal wire, the slit square ring array 22 has two intersecting diagonal slits, which divide each slit square ring of the slit square ring array into four metal wires 221 in different directions; the metal wire 3 includes a first metal strip 31 Vertically intersecting each of the metal wires 221 of the closed square ring metal wire 21 and the slit square ring array in the corresponding direction.
  • the frequency selective surface structural unit adopts a completely symmetrical square unit, and inside the square annular structure, a metal strip 3 connected to the closed square ring metal wire 21 is provided, and there are many in the closed square ring metal wire 21.
  • the slit square ring array 22 formed by the parallel metal wires 221 intersects the metal strip 3 perpendicularly.
  • FIG. 1 is a schematic structural diagram of a frequency selective surface structure unit according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of another frequency selective surface structure unit according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a frequency selective surface structure according to an embodiment of the present invention.
  • FIG. 7 is a frequency response characteristic when different polarization waves are incident at 45° when the frequency selective surface structure unit is provided according to an embodiment of the present invention.
  • the dielectric substrate 1, ring array: 2, closed ring metal wire: 21, slit ring array: 22, metal wire: 221, metal strip: 3, first metal strip 31, second metal strip: 32.
  • the embodiment of the present invention provides a frequency selective surface structure unit.
  • the frequency selection surface structure unit includes a dielectric substrate 1 , a ring array 2 and a first metal strip 3 on a dielectric plane of the dielectric substrate 1 .
  • the ring array 2 includes a closed loop metal wire 21 disposed along four sides of the dielectric substrate 1 and a sequentially arranged slit ring disposed inside the closed loop metal wire 21 and having the same center as the closed loop metal wire 21 Array 22, the gap ring array 22 has two intersecting diagonal slits, the diagonal slits dividing each slit ring of the gap ring array into four metal wires 221 in different directions; the metal strip 3 includes a first metal line 31 that intersects perpendicularly to the enclosure The metal wire 21 and each of the metal wires 221 of the slot ring array 22 in the direction corresponding to the first metal strip 31. In the frequency selective surface structural unit shown in FIG. 1, the distance between the metal lines 221 in each direction of the slot ring array 22 is equal.
  • the ring array 2 is a square ring array
  • the closed ring metal wire 21 is a closed square ring metal wire
  • the slit ring array 22 is a slit square ring array as an example for detailed description.
  • each parameter of the dielectric substrate is as follows: a thickness of 1 mm, a dielectric constant of 4.3, and a tangent loss of 0.025.
  • the space inside the rectangular metal frame is not fully utilized by the common frequency selection surface.
  • the metal strip of the internal space of the frequency selective surface structure unit provided by the embodiment of the present invention is connected to the rectangular metal line, so that the effective resonant wavelength increases and the resonant frequency decreases.
  • the required unit area is greatly reduced, thereby achieving miniaturization.
  • the unit of the frequency selective surface structure in the embodiment of the present invention may not be limited to a square ring of a quadrilateral, and may also include other rings such as a circle.
  • the closed square ring The corresponding position of the metal wire is a closed circular metal wire, and a concentric circle of the annular ring array is disposed inside, and the diagonal gap divides each slot ring of the slot ring array into four metal wires in different directions;
  • the closed annular metal wire intersects each of the metal lines of the slot ring array in the corresponding direction perpendicularly with a metal strip.
  • the metal strip 3 further includes a second metal strip 32 parallel to the first metal strip 31, and the second metal strip 32 is adjacent to the adjacent portion of the slit square ring array.
  • the metal wires 221 (which may be one of them, two adjacent or three adjacent numbers, and not exceeding the number of all the metal wires 221) may intersect perpendicularly.
  • the distance d between the metal wires 221 in each direction includes a first distance d1, a second distance d2, and a third distance d3, and the first distance d1 is a metal line 221 intersecting the second metal strip 32.
  • the distance between the second distance d2 is the distance between the metal wires 221 that do not intersect the second metal strip 32 in the direction
  • the third distance d3 is the metal line 221 intersecting the second metal strip 32 and the direction a distance between the metal wires 221 not intersecting the second metal strip 32; wherein a first distance d1 between the metal wires 221 intersecting the second metal strip 32 and the second metal strip in the direction
  • the second distance d2 between the 32 uncorrelated metal lines 221 is equal, between the metal line 221 intersecting the second metal strip 32 and the metal line 221 in the direction not intersecting the second metal strip 32.
  • the third distance d3 2 * d1.
  • the width w of the metal strip 3, and the length of the side length of the closed square ring metal wire L is used to change an effective resonant wavelength of the frequency selective surface structural unit, and a resonant frequency of the frequency selective surface structural unit is determined according to the effective resonant wavelength.
  • the distance d between the metal wires 221 in each direction ranges from 0.1 mm to 0.75 mm
  • the width w of the metal strips 3 ranges from 0.1 mm to 0.75 mm.
  • the distance d between the metal wires 221 in each direction and/or the width w of the metal strip 3, the resonance wavelength is reduced. Increase, the resonant frequency decreases.
  • the distance d between the metal wires 221 in each direction and/or the width w of the metal strip 3, the resonance wavelength is increased. Decrease, the resonant frequency increases.
  • three metal strips are connected inside the square annular structure and the closed square ring metal wire and the adjacent partial metal wire 221 are connected. This increases the effective resonant wavelength of the patch unit and reduces the resonant frequency.
  • All metal wires are on the same dielectric plane as the metal strip.
  • Each parameter of the dielectric substrate is as follows: thickness is 1 mm, dielectric constant is 4.3, and tangent loss is 0.025.
  • the size of the shield unit formed by selecting the surface structural unit at this frequency is about 0.055 ⁇ 0 ⁇ 0.055 ⁇ 0 ( ⁇ 0 is the wavelength in the vacuum corresponding to the center frequency point of the stop band), and the effect of miniaturization is achieved.
  • reducing the distance d between the metal wires and/or the width W of the metal wire while the side length of the closed square ring is constant can increase the resonance wavelength, thereby reducing the resonance frequency; otherwise, increasing the metal in each direction
  • the distance d between the lines and/or the width W of the metal lines can increase the resonant frequency to filter out electromagnetic waves of higher frequency.
  • the width of the metal line 221 of the slot square ring array ranges from 0.1 mm to 0.75 mm, and the metal line 221 and the metal line 221 in each direction.
  • the distance between d and d ranges from 0.1 mm to 0.75 mm.
  • the lengths of the first metal strip 31 and the second metal strip 32 connected in each direction of the square ring array are in the range of:
  • the first metal strip 31 is 2.8 mm to 8.5 mm
  • the second metal strip 32 is 1.5 mm to 4.3 mm.
  • the length of the metal wire 221 separated by the diagonal slit in the slot square array is Ln, and Ln is taken.
  • the value ranges from 0.5 mm to 16 mm, where n is the number of metal lines in each direction in the square structure, that is, the number of slotted square rings in the slot square ring array, and the range is 6-20. Arranged according to the structure described, all metal strips and metal lines are etched in the same dielectric plane in the form of metal patches.
  • Each parameter of the dielectric substrate can be as follows: thickness is 1 mm, dielectric constant is 4.3. The tangent loss is 0.025.
  • the embodiment of the present invention further provides a frequency selective surface structure composed of the frequency selective surface structural unit shown in FIG. 1 or FIG. 2, including a plurality of frequency selective surface structural units shown in FIG. 1 or FIG.
  • the frequency selective surface structural units are periodically symmetrically arranged, and optionally include a predetermined number of the frequency selective surface structural units arranged symmetrically in a center.
  • the preset number may be a square number of 4, 9, or 16, as shown in FIG. 3, taking a preset number of 4 as an example, and four frequency selective surface structural units shown in FIG. While selecting the frequency to be filtered as needed, the angle and polarization stability of the frequency selective surface are improved by a highly symmetrical structure, and when the incident angle and the polarization angle are changed, the selection effect of the electromagnetic wave is substantially the same.
  • the frequency selective surface is a spatial filtering structure, and the structure is mainly divided into a patch type and an aperture type, which respectively correspond to the characteristics of band resistance and band pass, and the frequency selective surface structure provided by the embodiment of the present invention It is mainly applied to the shielding of the wireless communication network. Therefore, the patch type unit having the band resistance characteristic is used in the embodiment of the present invention. Since in a typical chip-type unit, the square-ring type unit structure has a relatively wide bandwidth, and the microwave frequency selection is performed using a compact period-symmetrically arranged square ring unit. As the circumference of the square ring increases, the corresponding resonant wavelength increases, and the resonant frequency is lowered by increasing the effective circumference of the resonant unit.
  • the frequency selective surface structural unit provided by the embodiment of the present invention performs strict periodic symmetric arrangement to improve the angle and the pole of the frequency selective surface. Stability.
  • a dielectric substrate having a thickness of 1 mm, a dielectric constant of 4.3, and a tangential loss of 0.025 was used.
  • the structure shown in FIG. 2 is formed on the dielectric substrate in the form of a metal patch, and the number n of the square rings of the slit square ring array is 12, wherein 6 slit square rings and the first metal strip 31 and the second The metal strips 32 intersect at the same time, and the lengths thereof are L1, L2, L3, L4, L5, and L6, respectively.
  • the six square rings do not intersect the second metal strip 32, and only intersect the first metal strip 31, and the length thereof is L11, respectively.
  • L22, L33, L44, L55, L66 optionally:
  • the array comprises a square ring array consisting of a closed square ring metal wire and a slot square ring array. In each direction of the square ring array, three metal strips 3 are respectively connected with each metal wire in a corresponding direction, and the metal strip lengths are respectively : S1 is 4.05 mm, S2 is 2.1 mm, and S2 is 2.1 mm.
  • the slit square ring array is separated by diagonal diagonal slits in four different directions, and the metal wires which are arranged in parallel and whose length is sequentially decreased, and the metal wires intersecting the second metal strip 32 from the outer to the inner slit square ring array
  • each parameter of the dielectric substrate has a thickness of 1 mm, a dielectric constant of 4.3, and a tangent loss of 0.025.
  • the size of the shield unit formed by selecting the surface structure unit by the frequency is 0.055 ⁇ 0 ⁇ 0.055 ⁇ 0 ( ⁇ 0 is the wavelength in vacuum corresponding to the center frequency point of the stop band).
  • the shield structure was simulated by electromagnetic simulation software Ansoft HFSS 13.0, simulated The parameter results are shown in Figure 4 to Figure 7.
  • Figure 4 shows the frequency response of a transverse electric wave (TE wave) when it is incident perpendicularly.
  • TE wave transverse electric wave
  • the shield exhibits a band-stop characteristic with a center frequency of 1.9 GHz.
  • the attenuation at the center frequency is below -60 dB, achieving a good shielding of the Global System for Mobile Communications (GSM) 1900 signal.
  • GSM Global System for Mobile Communications
  • Figure 5 shows the frequency response characteristic curve when the TE wave is incident on the shield at different angles.
  • the center frequency of the shield is basically unchanged, which is very good.
  • the GSM1900 signal is shielded. It can be seen from the results that the shielding structure of the invention maintains a very stable transmission characteristic for incident waves of different angles, and the shield of the surface selective surface structure has good angular stability.
  • Fig. 6 and Fig. 7 respectively show the frequency response characteristics when different polarized waves TE and transverse magnetic waves (TM waves) are incident on the shield at angles of 0° and 45°, respectively. It can be seen from Fig. 6 and Fig. 7 that when the two polarized waves are normally incident, the frequency response of the shield is substantially unchanged, and the center frequency is still 1.9 GHz. When the TE and TM waves are incident at 45, the shield is used. The center frequency is 1.9 GHz, and the transmission coefficient at the center frequency is small, and different polarization waves have no effect on the performance of the shield. It can be seen that the shield of the miniaturized frequency selective surface is not sensitive to the polarization performance of the incident wave and has good polarization stability. 6 and 7, the shield of the invention exhibits a band-stop characteristic with a center frequency of 1.9 GHz and excellent angular stability and polarization stability.
  • the distance d between the metal lines in each direction may be the same as the width w of the metal lines.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the frequency selective surface structure unit and the frequency selective surface structure of the composition provided by the embodiments of the present invention have versatility, and the resonance length is increased by further reducing the distance d between the metal lines in each direction and the width w of the metal strip. Further, the resonance frequency is lowered; the resonance frequency can also be increased by appropriately increasing the distance d between the metal wires in each direction and the width w of the metal strip to achieve the effect of filtering out electromagnetic waves of a certain frequency.
  • the spacing d between the metal wires in each direction and the width w of the metal strip are increased, and the cell size L is changed to reduce the resonance wavelength to achieve an electromagnetic wave filtering out the frequency of 5.1 GHz, using a thickness of 1 mm, a dielectric constant.
  • the dielectric substrate having a tangential loss of 0.025, the number of square rings of the slotted square ring array is 8, wherein the four slotted square rings intersect with the first metal strip 31 and the second metal strip 32 at the same time, and the lengths thereof are respectively L1.
  • L2, L3, L4, 4 square rings are not intersected with the second metal strip 32, only intersect with the first metal strip 31, and the lengths thereof are L11, L22, L33, L44, respectively.
  • the structural dimensions on the substrate are as follows:
  • the distribution structure is similar to that of the example one.
  • the effect of the shield structure is band-stopping at a center frequency of 5.1 GHz, and also has good angular stability and polarization stability.
  • the size of the shield unit is designed. 8.4mm ⁇ 8.4mm.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本文公开了一种频率选择表面结构单元及其改变谐振频率和波长的法、频率选择表面结构,频率选择表面结构单元包括介质基板(1)、位于介质基板(1)的介质平面上的环阵列(2)与金属条(3);环阵列(2)包括沿介质基板(1)的四条边设置的封闭环金属线(21)和设于封闭环金属线(21)内部与封闭环金属线(21)具有同一中心的依次排列的缝隙环阵列(22),缝隙环阵列具有两条交叉的对角线缝隙,对角线缝隙将缝隙环阵列(22)的每个缝隙环划分为不同方向的四条金属线(221);金属条(3)包括第一金属条(31),第一金属条(31)垂直相交于封闭环金属线(21)以及与第一金属条(31)对应方向上的缝隙环阵列(22)的每条金属线(221)。

Description

一种频率选择表面结构单元和频率选择表面结构 技术领域
本文涉及但不限于通信领域,尤其涉及一种频率选择表面结构单元及其组成的频率选择表面结构。
背景技术
随着无线通信的快速发展,不论是雷达、电子对抗技术,还是个人通信系统,其快速发展对微波领域都起到了促进作用。在很多的领域要求某个系统需要对特定的电磁波进行频率选择,例如:微波滤波器、屏蔽箱和屏蔽室、简单的偶极子频率选择表面等。
其中,微波滤波器的种类较多,包括集总参数构成的滤波器、微带线构成的滤波器还有腔体滤波器等,但集总LC滤波器是由电容电感等元件构成,在频率较高时分布参数较大,不适于用于高频率滤波,并且在应用时位置固定,电磁波方向和位置确定。微带线型滤波器的谐振单元均在同一空间层,占用面积较大,电磁波方向和位置确定。屏蔽箱和屏蔽室虽然能达到屏蔽电磁波的功能,但是屏蔽的频率没有选择性,且占用体积大,成本昂贵。简单的偶极子频率选择表面对特定的电磁波具有频率选择特性,由于其结构简单,其对不同角度入射的电磁波表现出不一样的传输特性,但其稳定性较差,并且其频率选择表面结构尺寸较大,达不到小型化的效果。
可见,相关的频率选择器(即:微波滤波器)都无法满足小型化的要求,并且一般的频率选择表面为半波长谐振器,在实际的设计应用中不可能将尺寸做的足够大来满足特定频率下的谐振;因此,亟需一种小型化的频率选择表面结构,在具有频率选择特性的同时,满足小型化的需求。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种频率选择表面结构单元及其组成的频率选择表面结构,在具有频率选择特性的同时,满足小型化的需求。
本发明实施例提供的一种频率选择表面结构单元,所述频率选择表面结构单元包括介质基板1、位于所述介质基板1的介质平面上的环阵列与金属条3;
所述环阵列2包括沿所述介质基板1的四条边设置的封闭环金属线21和设于所述封闭环金属线21内部与所述封闭环金属线21具有同一中心的依次排列的缝隙环阵列22,所述缝隙环阵列具有两条交叉的对角线缝隙,所述对角线缝隙将所述缝隙环阵列22的每个缝隙环划分为不同方向的四条金属线221;所述金属条3包括第一金属条31,所述第一金属条31垂直相交于所述封闭环金属线21以及与所述第一金属条31对应方向上的缝隙环阵列22的每条金属线221。
可选地,所述缝隙环阵列的每个方向上的金属线221之间的距离d相等。
可选地,所述金属条3还包括与所述第一金属条31平行的第二金属条32,所述第二金属条32与所述缝隙环阵列的对应方向上的相邻的部分金属线221垂直相交。
可选地,所述每个方向上的金属线221之间的距离d包括第一距离d1、第二距离d2和第三距离d3,其中,与所述第二金属条相交的金属线之间的距离d1和该方向上与所述第二金属条未相交的金属线之间的距离d2相等,所述与第二金属条相交的金属线和该方向上与所述第二金属条未相交的金属线之间的距离d3=2*d1。
可选地,所述金属线221之间的距离d的取值范围为0.1mm~0.75mm,所述金属条的宽度w的取值范围为0.1mm~0.75mm。
可选地,所述环阵列2为方环阵列,所述封闭环金属线21为封闭方环金属线,所述缝隙环阵列22为缝隙方环阵列。
可选地,通过改变所述金属线221之间的距离d、所述金属条3的宽度w和封闭方环金属线21的边长的长度L来改变所述频率选择表面结构单元的有效谐振波长,根据所述有效谐振波长确定所述频率选择表面结构单元的谐振频率。其中,金属条3的宽度为w。
可选地,当封闭方环金属线的边长长度L不变时,减小所述金属线221之间的距离d和/或所述金属条3的宽度w,谐振波长增大,谐振频率降低。
可选地,当封闭方环金属线的边长长度L不变时,增大所述金属线221之间的距离d和/或所述金属条3的宽度w,谐振波长减小,谐振频率增加。
本发明实施例提供的一种频率选择表面结构,所述频率选择表面结构包括多个上述任一实施例所述的频率选择表面结构单元,所述频率选择表面结构单元周期对称排列。
可选地,所述频率选择表面结构单元周期对称排列包括:预设数量的所述频率选择表面结构单元中心对称排列。
本发明实施例的一种频率选择表面结构单元,包括介质基板1、位于所述介质基板1的介质平面上的方环阵列2与金属条3;所述方环阵列2包括沿所述介质基板1的四条边设置的封闭方环金属线21和设于所述封闭方环金属线内部与所述封闭方环金属线具有同一中心的依次排列的缝隙方环阵列22,所述缝隙方环阵列22具有两条交叉的对角线缝,所述对角缝隙将所述缝隙方环阵列的每个缝隙方环划分为不同方向的四条金属线221;所述金属线3包括第一金属条31,垂直相交于所述封闭方环金属线21与对应方向上的缝隙方环阵列的每条金属线221。采用本发明实施例,频率选择表面结构单元采用完全对称的正方形单元,在方环形结构的内部设有与封闭方环金属线21相连的金属条3,并且在封闭方环金属线21内有许多平行金属线221构成的缝隙方环阵列22与该金属条3垂直相交,由于封闭方环金属线21的周长增大,方环的周长增大,对应的谐振波长增大,通过增加谐振单元的有效周长来降低谐振频率,从而在小型化的基础上能够有效进行频率选择。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
图1为本发明实施例提供的一种频率选择表面结构单元的结构示意图;
图2为本发明实施例提供的另一种频率选择表面结构单元的结构示意图;
图3为本发明实施例提供的一种频率选择表面结构的结构示意图;
图4为采用本发明实施例提供频率选择表面结构单元时TE波垂直入射时的频率响应特性;
图5为采用本发明实施例提供频率选择表面结构单元时TE波以不同角度入射时的频率响应特性;
图6为采用本发明实施例提供频率选择表面结构单元时不同极化波垂直入射时的频率响应特性;
图7为采用本发明实施例提供频率选择表面结构单元时不同极化波45°入射时的频率响应特性。
其中,介质基板:1,环阵列:2,封闭环金属线:21,缝隙环阵列:22,金属线:221,金属条:3,第一金属条31,第二金属条:32。
具体实施方式
下面结合附图对技术方案的实施作详细描述。
本发明实施例提供一种频率选择表面结构单元,如图1所示,频率选择表面结构单元包括介质基板1、位于所述介质基板1的介质平面上的环阵列2与第一金属条3,所述环阵列2包括沿所述介质基板1的四条边设置的封闭环金属线21和设于所述封闭环金属线21内部与所述封闭环金属线21具有同一中心的依次排列的缝隙环阵列22,所述缝隙环阵列22具有两条交叉的对角线缝隙,所述对角线缝隙将所述缝隙环阵列的每个缝隙环划分为不同方向的四条金属线221;所述金属条3包括第一金属线31,垂直相交于所述封闭 环金属线21以及与所述第一金属条31对应方向上的缝隙环阵列22的每条金属线221。在图一所示的频率选择表面结构单元中,所述缝隙环阵列22的每个方向上的金属线221之间的距离相等。
下面以所述环阵列2为方环阵列,所述封闭环金属线21为封闭方环金属线,所述缝隙环阵列22为缝隙方环阵列为例进行详细说明。
在图1中,频率选择表面结构单元为正方形贴面单元完全对称结构,在方形结构的内部的封闭方环金属线的每个边上有一个金属条3和每一边的中点相连,且该金属条3与封闭方环金属线的内部的缝隙方环阵列的对应方向上的每一个金属线221垂直相交,这样来增加贴片单元的有效谐振波长,降低了谐振频率。由于一个封闭方环金属线的周长较短,而增加每一条金属线相连的金属条后,等效的谐振周长增加,由f=C/λ,可得到谐振频率降低,其中f为谐振频率,c为谐振周长,λ为谐振波长。从该公式可知,该金属线长度由需要的谐振频率来决定。
在图1中,可选地,封闭方环金属线的边长(方环单元结构的边长)为L,L取5.1mm,缝隙方环阵列的金属线221的宽度均为w=0.15mm,金属线221之间的距离d=0.15mm,方环阵列到介质基板的边的间距即封闭方环金属线到介质基板边的间距g=4.2mm,封闭方环阵列的每个方向上包括6条金属线221,这些金属线的长度分别为L1=3.6mm,L2=3.0mm,L3=2.4mm,L4=1.8mm,L5=1.2mm,L6=0.6mm,第一金属条31的长度:S1=2.1mm,所有的金属线在同一个介质平面上,在本发明实施例中,可选地,介质基板的每项参数如下:厚度为1mm,介电常数4.3,正切损耗为0.025。
需要说明的是,上述数据为描述本发明的具体结构进行的举例,实施例中涉及的具体数据包括并不限于上述举例。
相对于普通的频率选择表面没有充分利用矩形金属框内部的空间,本发明实施例提供的频率选择表面结构单元的内部空间的金属条和矩形金属线相连,这样有效谐振波长增加,谐振频率降低,当需要谐振某一个谐振频率的 电磁波时,采用本发明实施例提供的结构,需要的单元面积大大减小,从而实现小型化。
在实际应用中,本发明实施例中的频率选择表面结构的单元可不限制在四边形的方环,也可包括圆形等其他的环形,当频率选择结构表面为圆形时,所述封闭方环金属线对应位置为封闭圆形金属线,在其内部设置同心圆的缝隙圆环阵列,且对角线缝隙将所述缝隙圆环阵列的每个缝隙圆环划分为不同方向的四条金属线;封闭圆环金属线与对应方向上的缝隙圆环阵列的每条金属线垂直相交有金属条。
如图2所示,可选地,金属条3还包括与第一金属条31平行的第二金属条32,第二金属条32与所述缝隙方环阵列的对应方向上的相邻的部分金属线221(可以是其中的一个、相邻的两个或相邻的三个等数量,不超出全部金属线221的数量即可)垂直相交。在图2中,每个方向上的金属线221之间的距离d包括第一距离d1、第二距离d2和第三距离d3,第一距离d1为与第二金属条32相交的金属线221之间的距离,第二距离d2为该方向上与第二金属条32未相交的金属线221之间的距离,第三距离d3为与第二金属条32相交的金属线221和该方向上与第二金属条32未相交的金属线221之间的距离;其中,与所述第二金属条32相交的金属线221之间的第一距离d1和该方向上与所述第二金属条32未相交的金属线221之间的第二距离d2相等,所述与第二金属条32相交的金属线221和该方向上与所述第二金属条32未相交的金属线221之间的第三距离d3=2*d1。
对于图1、2所示的频率选择表面结构中,通过改变每个方向上的所述金属线221之间的距离d、所述金属条3的宽度w和封闭方环金属线的边长长度L来改变所述频率选择表面结构单元的有效谐振波长,根据所述有效谐振波长确定所述频率选择表面结构单元的谐振频率。其中,可选地,每个方向上的所述金属线221之间的距离d的取值范围为0.1mm~0.75mm,金属条3的宽度w的取值范围为0.1mm~0.75mm。
可选地,当封闭方环金属线的边长长度L不变时,减小每个方向上的所述金属线221之间的距离d和/或所述金属条3的宽度w,谐振波长增大,谐振频率降低。可选地,当封闭方环金属线的边长长度L不变时,增大每个方向上的所述金属线221之间的距离d和/或所述金属条3的宽度w,谐振波长减小,谐振频率增加。
如图2所示,可选地,在方环形结构的内部都有三条金属条(一条第一金属条、两条第二金属条)和封闭方环金属线及相邻的部分金属线221相连,这样来增加贴片单元的有效谐振波长,降低了谐振频率。封闭方环金属线的边长即方环单元结构的边长尺寸为L*L=8.7mm*8.7mm,金属条的宽度均为w=0.15mm,第一距离、第二距离d1=d2=0.15mm,封闭方环金属线到介质基板的边的间距g=0.2mm,由对角线缝隙隔离之后的缝隙方环阵列的每个方向上的12条金属线的长度分别为:L1=8.0mm,L2=7.4mm,L3=6.8mm,L4=6.2mm,L5=5.6mm,L6=5.0mm,L11=4.0mm,L22=3.4mm,L33=2.8mm,L44=2.2mm,L55=1.6mm,L66=1.0mm,连接的第一金属条31的长度S1=4.05mm,第二金属条32的长度S2=2.1mm。所有的金属线与金属条在同一个介质平面上,此介质基板的每项参数如下:厚度为1mm,介电常数4.3,正切损耗为0.025。以该频率选择表面结构单元形成的屏蔽器单元的尺寸约为0.055λ0×0.055λ0(λ0为阻带中心频率点对应的真空中波长),达到了小型化的效果。并在封闭方环的边长不变的情况下减小金属线之间的距离d和/或金属线的宽度W可以增大谐振波长,进而使谐振频率降低;反之增加每个方向上的金属线之间的距离d和/或金属线的宽度W,可以使谐振频率增加,来滤除频率较高的电磁波。
在本发明实施例图2提供的频率选择表面结构单元中,缝隙方环阵列的金属线221的宽度的取值范围为0.1mm~0.75mm,每个方向上的金属线221与金属线221之间的距离为d,d的取值范围为0.1mm~0.75mm,连接在方环阵列的每个方向上的第一金属条31、第二金属条32的长度的取值范围为: 第一金属条31为:2.8mm~8.5mm,第二金属条32为1.5mm~4.3mm,缝隙方环阵列内的有对角线缝隙隔离后的金属线221的长度为Ln,Ln的取值范围为0.5mm~16mm,n为方形结构内的每个方向上金属线个数,即缝隙方环阵列中的缝隙方环的个数,其范围为6~20。按照所述的结构方式排列,采用所有的金属条和金属线以金属贴片的形式刻蚀在同一个介质平面上,此介质基板的每项参数可如下:厚度为1mm,介电常数4.3,正切损耗为0.025。
本发明实施例还提供一种频率选择表面结构,该频率选择表面结构由图1或图2所示的频率选择表面结构单元组成,包括多个图1或图2所示的频率选择表面结构单元,这些频率选择表面结构单元周期对称排列,可选地,包括预设数量的所述频率选择表面结构单元中心对称排列。这里,预设数量的取值可为4、9、16等平方数,如图3所示,以预设数量以4为例,4个图2所示的频率选择表面结构单元中心对称排列,在根据需要选择需要过滤的频率的同时,通过高度对称的结构,提高频率选择表面的角度和极化稳定性,满足入射角和极化角变化时,其对电磁波的选择作用基本一致。
在实际应用中,频率选择表面是一种空间滤波结构,此结构主要分为贴片型和孔径型,它们分别对应表现出带阻和带通的特性,本发明实施例提供的频率选择表面结构主要应用于无线通讯网络的屏蔽,所以本发明实施例中采用具有带阻特性的贴片型单元。由于在典型的贴片型单元中,方环型的单元结构具有相对较宽的带宽,并且采用紧凑的周期对称排列的方环单元进行微波频率选择。由于方环周长增大,对应的谐振波长增大,通过增加谐振单元的有效周长来降低谐振频率,应用本发明实施例提供的频率选择表面结构单元进行严格周期对称排列提高了频率选择表面的角度和极化稳定性。
下面以图2所示的频率选择表面结构单元为例,通过不同的参数设置的实施例,对发明实施例提供的频率选择表面结构单元和频率选择表面结构进行进一步说明。
实施例一
在该频率选择表面结构单元中,采用厚度为1mm,介电常数4.3,正切损耗为0.025的介质基板。在介质基板上的以金属贴片的形式形成如图2所示的结构,缝隙方环阵列的方环的个数n为12,其中,6个缝隙方环与第一金属条31和第二金属条32同时相交,其长度分别为L1、L2、L3、L4、L5、L6,6个方环未与第二金属条32相交,只与第一金属条31相交,其长度分别为L11、L22、L33、L44、L55、L66,可选地:
(1)在介质基板的机制平面上设有一个方环形结构及封闭方环金属线,该封闭方环金属线的边长为L=8.7mm,在封闭方环金属线的内部有缝隙方环阵列,由封闭方环金属线和缝隙方环阵列组成方环阵列,在方环阵列的每个方向上有三条金属条3分别和对应方向上的每一条金属线相连,该金属条长度分别为:S1为4.05mm,S2为2.1mm,S2为2.1mm。
(2)缝隙方环阵列由对角线缝隙在四个不同方向隔离出平行排列且长度依次减小的金属线,从外到内的缝隙方环阵列中与第二金属条32相交的金属线的长度依次为L1=8.0mm,L2=7.4mm,L3=6.8mm,L4=6.2mm,L5=5.6mm,L6=5.0mm的,每一条金属线的宽度为w=0.15mm,第一距离d1=0.15mm。
(3)然后在(2)的基础上隔一个间距d3=0.3mm,该间距即为与所述第二金属条32相交的金属线221之间的第一距离d1和该方向上与所述第二金属条32未相交的金属线221之间的第三距离d3,该方向上未与第二金属条32相交的金属线221的长度依次为L11=4.0mm,L22=3.4mm,L33=2.8mm,L44=2.2mm,L55=1.6mm,L66=1.0mm,这些金属线之间的距离d2=0.15mm。这里,d3=2*d1=2*d2。
(4)将此单元阵列结构刻蚀在介质基板上,其介质基板的每项参数为厚度1mm,介电常数4.3,正切损耗为0.025。
通过该频率选择表面结构单元构成的屏蔽器单元尺寸为0.055λ0×0.055λ0(λ0为阻带中心频率点对应的真空中波长)。
通过电磁仿真软件Ansoft HFSS 13.0对该屏蔽器结构进行仿真,仿真的 参数结果如图4至图7所示,
其中,图4给出了横电波(Transverse Electric Wave,TE波)垂直入射时的频率响应。由图4可知,该屏蔽器呈现出带阻特性,中心频率为1.9GHz。在中心频率处的衰减达到了-60dB以下,达到了很好的屏蔽全球通信系统(Global System for Mobile Communications,GSM)1900信号的作用。
图5给出了TE波以不同角度入射该屏蔽器时频率响应特性曲线,对TE波以0°、30°、60°入射时,该屏蔽器的中心频率基本不变,都能很好的屏蔽GSM1900信号,由结果看出,该发明的屏蔽结构对不同角度的入射波都保持了十分稳定的传输特性,表面该频率选择表面结构的屏蔽器具有很好的角度稳定性。
图6和图7分别给出了不同极化波TE和横磁波(transverse magnetic wave,TM波)以0°和45°角入射屏蔽器时的频率响应特性。由图6和图7可知道,两种极化波都垂直入射时,该屏蔽器的频率响应基本没变,中心频率依然是1.9GHz,当TE和TM波以45°入射时,该屏蔽器的中心频率均为1.9GHz,并且在中心频率的传输系数很小,不同极化波对该屏蔽器的性能没有影响。由此可见该小型化频率选择表面的屏蔽器对入射波的极化表现并不敏感,具有较好的极化稳定性。由图6和图7可知,该发明的屏蔽器呈现出带阻特性,中心频率为1.9GHz,并且角度稳定性和极化稳定性都很好。
在本发明实施例中,可选地,每个方向上的金属线之间的距离d可与金属线的宽度w相同。
实施例二:
本发明实施例提供的频率选择表面结构单元及其组成的频率选择表面结构具有通用性,通过进一步减小每个方向上的金属线之间的距离d和金属条宽度w来增大谐振长度,进而使谐振频率降低;也可以通过适当增加每个方向上的金属线之间的距离d和金属条宽度w来使谐振频率增加,达到滤除某个频率电磁波的效果。
本实例是增加每个方向上的金属线之间的间距d和金属条的宽度w和改变单元尺寸L来减小谐振波长,达到滤除5.1GHz频率的电磁波,采用厚度为1mm,介电常数4.3,正切损耗为0.025的介质基板,缝隙方环阵列的方环的个数为8,其中,4个缝隙方环与第一金属条31和第二金属条32同时相交,其长度分别为L1、L2、L3、L4,4个方环未与第二金属条32相交,只与第一金属条31相交,其长度分别为L11、L22、L33、L44,质基板上的结构尺寸如下:
金属线的宽度w=0.21mm,金属线之间的距离d=0.21mm(d1=d2=0.21,d3=2d1=0.42mm),封闭方环金属线到介质基板的边的距离为g=0.25mm,第一金属条31和第二金属条32的长度:S1为3.99mm,S2为2.1mm,S2=为2.1mm,从外到内的缝隙方环阵列中与第二金属条32相交的金属线的长度依次为:L1=7.5mm,L2=6.7mm,L3=5.9mm,L4=5.1mm,未与第二金属条32相交的金属线的长度依次L11=3.5mm,L22=2.7mm,L33=1.9mm,L44=1.1mm。其分布结构与实例一结构类似,其效果在中心频率为5.1GHz时该屏蔽器结构呈现出带阻特性,并且也有较好的角度稳定性和极化稳定性,所设计的屏蔽器单元尺寸为8.4mm×8.4mm。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
上述技术方案由于封闭环金属线的周长增大,封闭环的周长增大,对应的谐振波长增大,即通过增加谐振单元的有效周长来降低谐振频率,从而在小型化的基础上能够有效进行频率选择。

Claims (8)

  1. 一种频率选择表面结构单元,包括介质基板(1)、位于所述介质基板(1)的介质平面上的环阵列(2)与金属条(3);
    所述环阵列(2)包括:沿所述介质基板(1)的四条边设置的封闭环金属线,(21)和设于所述封闭环金属线(21)内部与所述封闭环金属线(21)具有同一中心的依次排列的缝隙环阵列(22);所述缝隙环阵列具有两条交叉的对角线缝隙,所述对角线缝隙将所述缝隙环阵列(22)的每个缝隙环划分为不同方向的四条金属线(221);
    所述金属条(3)包括:第一金属条(31),所述第一金属条(31)垂直相交于所述封闭环金属线(21)以及与所述第一金属条(31)对应方向上的缝隙环阵列(22)的每条金属线(221)。
  2. 根据权利要求1所述的频率选择表面结构单元,其中,所述缝隙环阵列的每个方向上的金属线(221)之间的距离d相等。
  3. 根据权利要求1所述的频率选择表面结构单元,所述金属条(3)还包括:与所述第一金属条(31)平行的第二金属条(32),所述第二金属条(32)与所述缝隙环阵列的对应方向上的相邻的部分金属线(221)垂直相交。
  4. 根据权利要求3所述的频率选择表面结构单元,其中,所述每个方向上的金属线(221)之间的距离d包括第一距离d1、第二距离d2和第三距离d3,其中,与所述第二金属条相交的金属线之间的距离d1和该方向上与所述第二金属条未相交的金属线之间的距离d2相等,所述与第二金属条相交的金属线和该方向上与所述第二金属条未相交的金属线之间的距离d3=2*d1。
  5. 根据权利要求1所述的频率选择表面结构单元,其特征在于,所述金属线(221)之间的距离d的取值范围为0.1mm~0.75mm,所述金属条(3)的宽度w的取值范围为0.1mm~0.75mm。
  6. 根据权利要求1至5中任一项所述的频率选择表面结构单元,其中,所述环阵列(2)为方环阵列,所述封闭环金属线(21)为封闭方环金属线, 所述缝隙环阵列(22)为缝隙方环阵列。
  7. 一种频率选择表面结构,所述频率选择表面结构包括权利要求1至6中任一项所述的频率选择表面结构单元,所述频率选择表面结构单元周期对称排列。
  8. 根据权利要求7所述的频率选择表面结构,其中,所述频率选择表面结构单元周期对称排列包括:预设数量的所述频率选择表面结构单元中心对称排列。
PCT/CN2016/087124 2016-03-07 2016-06-24 一种频率选择表面结构单元和频率选择表面结构 WO2017152544A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610127450.6A CN107171042B (zh) 2016-03-07 2016-03-07 一种频率选择表面结构
CN201610127450.6 2016-03-07

Publications (1)

Publication Number Publication Date
WO2017152544A1 true WO2017152544A1 (zh) 2017-09-14

Family

ID=59788936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/087124 WO2017152544A1 (zh) 2016-03-07 2016-06-24 一种频率选择表面结构单元和频率选择表面结构

Country Status (2)

Country Link
CN (1) CN107171042B (zh)
WO (1) WO2017152544A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109193167A (zh) * 2018-09-06 2019-01-11 西安电子科技大学 低频数比小型化的频率选择表面

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112290224B (zh) * 2020-10-26 2022-02-08 中国人民解放军空军工程大学 一种角度响应可调频率选择表面
CN113690625A (zh) * 2021-08-12 2021-11-23 电子科技大学 一种单层全金属带通型自支撑频率选择表面结构
CN218244264U (zh) * 2022-07-28 2023-01-06 中兴通讯股份有限公司 一种膜体及介质结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201084827Y (zh) * 2007-09-07 2008-07-09 达昌电子科技(苏州)有限公司 单极天线模块
US20090058746A1 (en) * 2007-08-31 2009-03-05 Harris Corporation Evanescent wave-coupled frequency selective surface
CN103490125A (zh) * 2013-10-12 2014-01-01 电子科技大学 基于频率选择表面的多层互补结构太赫兹带通滤波器
CN204614907U (zh) * 2015-02-04 2015-09-02 中国科学院西安光学精密机械研究所 基于频率选择表面结构的多通带太赫兹带通滤波器
CN105244619A (zh) * 2015-11-12 2016-01-13 电子科技大学 双频带宽带频率选择表面

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008121159A2 (en) * 2006-10-19 2008-10-09 Los Alamos National Security Llc Active terahertz metamaterial devices
CN102856657A (zh) * 2012-07-31 2013-01-02 深圳光启创新技术有限公司 超材料板材及由其制成的超材料天线罩和天线系统
CN103178352A (zh) * 2013-03-05 2013-06-26 电子科技大学 一种多频单负介电常数超材料及其制备方法
CN103700951B (zh) * 2014-01-10 2015-12-02 中国科学院长春光学精密机械与物理研究所 复合介质双层fss结构srr金属层超轻薄吸波材料
CN104767012A (zh) * 2015-04-24 2015-07-08 江苏科技大学 频率选择表面

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090058746A1 (en) * 2007-08-31 2009-03-05 Harris Corporation Evanescent wave-coupled frequency selective surface
CN201084827Y (zh) * 2007-09-07 2008-07-09 达昌电子科技(苏州)有限公司 单极天线模块
CN103490125A (zh) * 2013-10-12 2014-01-01 电子科技大学 基于频率选择表面的多层互补结构太赫兹带通滤波器
CN204614907U (zh) * 2015-02-04 2015-09-02 中国科学院西安光学精密机械研究所 基于频率选择表面结构的多通带太赫兹带通滤波器
CN105244619A (zh) * 2015-11-12 2016-01-13 电子科技大学 双频带宽带频率选择表面

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109193167A (zh) * 2018-09-06 2019-01-11 西安电子科技大学 低频数比小型化的频率选择表面
CN109193167B (zh) * 2018-09-06 2020-10-09 西安电子科技大学 高谐振点对低谐振点的比值为低值的小型化频率选择表面

Also Published As

Publication number Publication date
CN107171042A (zh) 2017-09-15
CN107171042B (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
TWI484698B (zh) 印刷式濾波天線
WO2017152544A1 (zh) 一种频率选择表面结构单元和频率选择表面结构
JP2008536366A (ja) 周波数帯域フィルタリングのための周波数選択反射器及びその設計方法
Mezaal et al. New compact microstrip filters based on quasi fractal resonator
KR101451705B1 (ko) 음의 투자율 특성을 갖는 메타물질을 이용한 다중 스플리트 링 공진기
US4864321A (en) Electromagnetic energy shield
CN110600886A (zh) 一种多频带的宽带小型化频率选择表面天线
CN114267958A (zh) 一种窄过渡带的低通吸收式频率选择结构
KR101756816B1 (ko) 소형화된 단위구조의 반복 배열을 가지는 대역 저지 동작 주파수 선택 표면구조
KR101040084B1 (ko) 주파수 선택표면 단위 셀 및 이를 이용한 표면파 억제장치
TW201505249A (zh) Ebg構造
JP2008245227A (ja) コプレーナ共振器およびそれを用いたコプレーナフィルタ
CN113131223B (zh) 一种双极化双吸收带的电磁波吸收器
CN113346250B (zh) 一种基于多层耦合结构的毫米波三频频率选择表面
WO2021009893A1 (ja) 周波数選択板
CN108777360A (zh) 基于强耦合机制的角度极其稳定的高性能通信天线罩
WO2019024354A1 (zh) 频率选择表面结构
EP2808940B1 (en) Artificial dielectric resonator and artificial dielectric filter using same
JP4079944B2 (ja) 擬似楕円応答による導波管e面rf帯域通過フィルター
Cheng et al. Miniature dual-mode bandpass filters using hexagonal open-loop resonators with E-shaped stubs loading
Pae et al. Analysis and design of a single layer double square slot frequency selective surface with single stopband between double passbands
Li et al. Three-dimensional bandpass frequency selective structures
CN105762504A (zh) 具有螺旋环谐振器的圆形陷波超宽带天线
Xu et al. An ultra wideband FSS operating at Ka band
CN114899615B (zh) 一种拼装式四频带带阻频率选择表面

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893190

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893190

Country of ref document: EP

Kind code of ref document: A1