WO2017152472A1 - 深海高压条件下岩石热物性测试系统与方法 - Google Patents

深海高压条件下岩石热物性测试系统与方法 Download PDF

Info

Publication number
WO2017152472A1
WO2017152472A1 PCT/CN2016/079686 CN2016079686W WO2017152472A1 WO 2017152472 A1 WO2017152472 A1 WO 2017152472A1 CN 2016079686 W CN2016079686 W CN 2016079686W WO 2017152472 A1 WO2017152472 A1 WO 2017152472A1
Authority
WO
WIPO (PCT)
Prior art keywords
rock sample
rock
temperature sensor
pressure
temperature
Prior art date
Application number
PCT/CN2016/079686
Other languages
English (en)
French (fr)
Inventor
杨小秋
林为人
施小斌
许鹤华
徐子英
Original Assignee
中国科学院南海海洋研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院南海海洋研究所 filed Critical 中国科学院南海海洋研究所
Priority to US15/556,024 priority Critical patent/US10345253B2/en
Publication of WO2017152472A1 publication Critical patent/WO2017152472A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials

Definitions

  • the invention relates to a rock thermal property testing system under deep sea high pressure conditions, and belongs to the technical field of rock thermal property testing.
  • the thermal properties of the inner rock layer of the earth are the most basic physical parameters in the thermal structure, thermal evolution and geodynamics of the Earth. Under different temperature and pressure conditions, there are differences in thermal properties of rocks. Therefore, it is very important to carry out in-depth research on thermal properties of rock under different confining pressure conditions.
  • the existing thermal property testing methods and systems for high-pressure conditions are assembled in a pressure-resistant tank by pre-assembling the thermal property test probe (including the heating source and the temperature sensor) with the rock sample. Start the pressure pump, add the pressure inside the pressure tank to the predetermined pressure, and maintain it for a period of time. After the temperature of the whole system reaches equilibrium, turn on the thermal property test system for electric heating, and monitor the internal temperature change of the rock to complete Thermal properties test under different confining pressure conditions.
  • thermophysical parameter test has a particularly high temperature requirement for ambient temperature, and during the thermal property test under laboratory conditions, the test system is usually in direct contact with air, and it is difficult to test in a relatively constant temperature environment. Because the fluctuation of the ambient temperature is difficult to control, the test results are often greatly affected.
  • This test method and technique requires active electrical heating (such as passing a constant current through the heating wire) as a "heat source” for transient thermal properties testing.
  • one of the objects of the present invention is to provide a rock thermal property testing system under deep sea high pressure conditions without electric heating "heat source” and without a pressure pump, which is only placed at the center and surface of the rock sample.
  • a temperature sensor realizes the instantaneous loading of the rock sample by quickly opening the drain valve, and monitors the temperature change of the rock sample center, the surface and the pressure medium during the transient increase of the confining pressure, and uses the established finite element numerical inversion model. Combined with the global optimization method, the thermal properties of rock samples under high pressure conditions can be obtained.
  • the transient thermal property test of the "heat source” without electric heating is realized, which greatly simplifies the rock thermal property test system and its operating procedure under high pressure conditions.
  • the temperature fluctuation of the deep sea water is very small in the time scale of 1 to 3 hours. It is a very good constant temperature environment, which is precisely the ideal condition for the thermal property test of rock, so that higher quality thermal property test can be obtained. As a result, laboratories are often difficult to achieve.
  • a rock thermal property testing system under deep sea high pressure conditions comprising two pressure tanks, wherein a first data pressure tank is equipped with a data collecting unit, and a second pressure tank is formed with a cavity filled with a pressure transmitting medium.
  • a rock sample is mounted in the cavity, and a center temperature sensor and a second temperature sensor are respectively mounted on the center and the outer surface of the rock sample, and a third temperature sensor and a pressure sensor are installed in the cavity,
  • the output ends of the first temperature sensor, the second temperature sensor, the third temperature sensor and the pressure sensor are all connected to the input end of the data collecting unit through a watertight cable, and the second pressure tank is provided with an exhaust pipe connected to the cavity. valve.
  • the outer surface of the rock sample is provided with a rubber sleeve for water-sealing the rock sample, and the upper and lower ends of the rock sample are sealed by hard silica gel.
  • the rock sample is cylindrical.
  • the pressure transmitting medium is sea water.
  • Another object of the present invention is to provide a method for testing thermal properties of rocks under deep sea high pressure conditions without the need to electrically heat a "heat source" without a pressure pump, which only places a temperature sensor at the center and surface of the rock sample, and quickly opens and drains.
  • the valve is used to realize the instantaneous loading of the rock sample, and to monitor the temperature change of the rock sample center, the surface and the pressure medium during the transient increase of the confining pressure. Using the established finite element numerical inversion model and the global optimization method, the valve can be obtained. Thermophysical parameters of rock samples under high pressure conditions. Thus achieving no The transient thermal property test of the electric heating "heat source" greatly simplifies the rock thermal property test system and its operating procedures under high pressure conditions.
  • the temperature fluctuation of the deep sea water is very small in the time scale of 1 to 3 hours. It is a very good constant temperature environment, which is precisely the ideal condition for the thermal property test of rock, so that higher quality thermal property test can be obtained. As a result, laboratories are often difficult to achieve.
  • a method for testing thermal properties of rock under deep sea high pressure conditions comprising the following steps:
  • Step 1 The first temperature sensor and the second temperature sensor are placed on the center and the outer surface of the prepared cylindrical rock sample, and the rock sample is water-sealed by a rubber sleeve, and the hard silica gel is passed through the upper and lower ends of the rock sample. Sealing to form a rock sample assembly;
  • Step 2 placing the rock sample component and the third temperature sensor in the second pressure tank, filling the second pressure tank with the second pressure tank, and then sealing the second pressure tank, and then passing the first temperature sensor through the watertight cable
  • the second temperature sensor, the third temperature sensor and the pressure sensor are all connected to the data acquisition unit to assemble and form a rock thermal property test system; the temperature and pressure data acquisition module of the data acquisition unit is turned on, and temperature and confining pressure monitoring are started;
  • Step 3 Instant loading: Using the underwater robot, carry the whole set of rock thermal property test system to the predetermined depth of the deep sea. After the temperature of the whole set of rock thermal property test system reaches equilibrium, use the robot of the underwater robot or the underwater motor to quickly open the drain. The valve causes the confining pressure in the second pressure tank to rise to the seawater pressure in the deep sea;
  • Step 4 According to the temperature and confining pressure changes monitored by the data acquisition unit in real time, the thermal property parameters of the rock sample under arbitrary confining pressure are obtained by finite element numerical model inversion.
  • the step 4 includes the following steps:
  • Step 41 The finite element numerical model is established based on the heat conduction differential equation in a cylindrical coordinate system formed by the radial and axial directions of the cylindrical rock sample with the center of the cylindrical rock sample as a dot;
  • Step 42 Let the thermal conductivity and volumetric heat capacity of the rock sample be ⁇ and ( ⁇ c), respectively, and the thermal conductivity and volumetric heat capacity of the common rock in the crust are 0.5-6.0 W ⁇ m -1 ⁇ K -1 , respectively. 0.5 ⁇ 10 6 ⁇ 5.0 ⁇ 10 6 J ⁇ m -3 ⁇ K -1 , for the solution area
  • Step 43 Input each mesh node ( ⁇ i , ( ⁇ c) j ) into the established finite element numerical model to monitor the temperature change T02(t) and pressure transmission of the rock sample surface in real time during rapid loading.
  • the medium temperature change T03(t) is used as the boundary condition.
  • Step 44 Calculating the finite element numerical model by using a least squares method Linear fit to the measured temperature change T01(t) at the rock sample center:
  • n is the total number of samples
  • t k is the time of the kth sampling
  • T01(t k ) is the temperature change collected by the first temperature sensor at the time t k after the instantaneous loading, 1 ⁇ k ⁇ n;
  • Step 45 Define the objective function as
  • Step 46 find a grid point with the smallest objective function value, in case ⁇ is the threshold set to determine whether the solution requirement is met, then accept The thermal conductivity and volumetric heat capacity ( ⁇ , ( ⁇ c)) of the rock sample required to be solved, otherwise The centered neighborhood is the solution area, the grid is encrypted, and the process returns to step 43 until it is satisfied. So far, the thermal conductivity and volumetric heat capacity of the rock sample are solved.
  • Step 47 finally according to the relationship between thermal conductivity ⁇ , volumetric heat capacity ( ⁇ c) and thermal diffusivity ⁇ The thermal diffusivity of the rock sample was calculated.
  • the boundary conditions are determined by the surface temperature change T02(t) of the sample and the temperature change T03(t) of the pressure medium monitored by the rock thermal property test system.
  • is the temperature response coefficient of the adiabatic stress change of various media
  • A is due to the change of confining pressure
  • the heat source corresponding to the temperature change r 0 is the radius of the rock sample
  • z 01 is the vertical distance from the top or bottom surface of the cylindrical rock sample to the cylindrical surface of the rock sample
  • z 02 is the top surface of the cylindrical rock sample component after packaging Or the vertical distance from the bottom surface to the cylindrical surface of the rock sample center.
  • the measured temperature change T01(t) of the rock sample center, the rock sample surface temperature change T02(t) and the pressure transfer medium temperature change T03(t) are the temperature difference between the measured temperature and the instantaneous loading at each moment, namely:
  • T 1 (t), T 2 (t), and T 3 (t) are the measured temperatures of the first temperature sensor, the second temperature sensor, and the third temperature sensor at time t after the instantaneous loading, respectively, and are measured by step 4.
  • T 1 (0), T 2 (0), and T 3 (0) are measured temperatures of the first temperature sensor, the second temperature sensor, and the third temperature sensor before the instantaneous loading, respectively, and are measured by the step 2.
  • the temperature of the entire set of rock thermal property testing systems is balanced.
  • test method and system provided by the patent of the present invention are in the center and surface of a cylindrical rock sample. Do not place a temperature sensor, then pack it in a rubber sleeve and place it in a second pressure tank. Use the underwater vehicle to carry the test system to a predetermined depth in the deep sea (for example, 6000 meters, the confining pressure is equivalent to 60MPa). The instantaneous loading (or unloading) of rock samples is achieved by the underwater robot quickly opening the drain valve.
  • the main advantages are as follows:
  • FIG. 1 is a schematic structural view of a temperature response test system for adiabatic stress variation of underwater rock according to the present invention
  • Figure 2 is a finite element numerical model under a two-dimensional cylindrical coordinate system
  • Figure 3 shows the temperature response curve during the transient loading of sandstone L28 in the Longmenshan fault zone
  • Figure 4 shows the temperature response curve during the RJS transient loading of Bengal sandstone in India
  • Figure 5 is a comparison of the measured results of the center temperature of the sandstone L28 rock sample in the Longmenshan fault zone with the finite element numerical model simulation results;
  • Figure 6 is a comparison of the measured results of the RJS rock sample center temperature and the finite element numerical model simulation results of the Bengal sandstone in India.
  • a rock thermal property testing system under deep sea high pressure conditions includes two pressure tanks, a first pressure tank 1 and a second pressure tank 2, wherein the first pressure tank 1 is equipped with a data acquisition unit 3, a cavity formed in the second pressure tank 2 is filled with seawater, and a rock sample assembly is installed in the cavity (the cylindrical rock sample assembly includes the cylindrical rock sample 4 and its center and A first temperature sensor 61 and a second temperature sensor 62 are respectively disposed on the surface, and then the cylindrical upper hard silicone 41 and the lower hard silica gel 42 are respectively placed and pressed on the upper and lower sides of the cylindrical rock sample 4, Then, the hard silicone 41, the cylindrical rock sample 4 and the lower hard silicone 42 are wrapped by the rubber sleeve 5 to realize water-sealing, and after being packaged, placed in the second cavity 21 disposed in the second pressure tank 2) A third temperature sensor 63 and a pressure sensor 7 are also mounted in the cavity.
  • the outputs of the first temperature sensor 61, the second temperature sensor 62, the third temperature sensor 63 and the pressure sensor 7 pass through the watertight cable 22 and the data acquisition unit. Input phase of 3 Further, the second pressure tank 2 is provided with a drain valve 21 that communicates with the cavity.
  • the invention relates to a method and a system for testing thermal properties of rocks under deep sea high pressure conditions.
  • the underwater robot 8 is used to quickly open the drain valve 21 to instantaneously load the rock sample 4.
  • Our experimental results show that the stress-temperature response coefficient ( ⁇ T/ ⁇ ) of common rocks in the crust is relatively small (only 2 ⁇ 6mK/MPa), while the pressure transmitting medium (such as silicone oil is filled in the cavity of the second pressure tank 2).
  • the stress-temperature response coefficient of the medium is as high as 138.74 mK/MPa, which is two orders of magnitude higher than the common rock in the crust. Therefore, after the confining pressure is instantaneously increased, a temperature difference is generated between the rock sample and the pressure transmitting medium.
  • the thermal properties of rock samples under high pressure conditions can be obtained by real-time monitoring of confining pressure, temperature of rock sample center, surface and pressure medium, and finite element numerical inversion method. /thermal conductivity, thermal diffusivitiy, and volumetric heat capacity.
  • the finite element numerical model and method for thermal property parameter inversion are as follows:
  • the first temperature sensor 61 is located at the center of the rock sample, and the second temperature sensor 62 and the first temperature sensor 61 are located on the same radial circle of the rock sample. Therefore, the heat conduction differential equation under the corresponding cylindrical coordinate system (2drz) can be expressed as
  • the boundary conditions are constrained by the sample surface temperature change T02(t) monitored by the test system and the pressure medium temperature change T03(t) as follows.
  • ⁇ , ⁇ c are the thermal conductivity and volumetric heat capacity of various media, respectively, and ⁇ is the adiabatic pressure derivative of temperature of various media, A is Heat source termdriven by change rate of confining pressure ).
  • Step 2 The thermal conductivity and volumetric heat capacity of the rock sample are ⁇ , ( ⁇ c), respectively.
  • the thermal conductivity and volumetric heat capacity of the common rock in the crust are respectively in the range of 0.5-6.0W ⁇ m -1 ⁇ K -1 .
  • 0.5 ⁇ 10 6 ⁇ 5.0 ⁇ 10 6 J ⁇ m -3 ⁇ K -1 in order to broaden the adaptability of the inversion method, the solution area of the thermal property parameter of the rock can be appropriately increased again.
  • Step 4 Calculating the above finite element numerical model by using the least squares method Linear fit to the measured temperature change T01 of the rock sample center:
  • Step 5 Define the objective function as
  • Step 6 Find the grid point with the smallest objective function value. in case Accepted to determine if the threshold is set to meet the solution requirements) The thermal conductivity and volumetric heat capacity ( ⁇ , ( ⁇ c)) of the rock sample required to be solved, otherwise The centered neighborhood is the solution area, encrypt the mesh, and return to step 3 until it is satisfied. So far, the thermal conductivity and volumetric heat capacity of the rock sample are solved.
  • the underwater system (Underwater Vehicle) is used to carry the whole system to the predetermined depth of the deep sea (for example, 6000 meters, corresponding to a water pressure of about 60 MPa). After the temperature of the whole system reaches equilibrium, the robot of the underwater robot is used quickly. The drain valve is opened, so that within 1 to 2 s, the confining pressure in the second pressure tank 2 is instantaneously increased to a deep seawater pressure (for example, 60 MPa). Since the temperature response coefficient of the stress variation of the rock sample and the pressure transmitting medium (such as seawater) differs by an order of magnitude, there is a temperature difference between the rock sample and the pressure transmitting medium.
  • a deep seawater pressure for example, 60 MPa
  • the finite element numerical inversion model and the global optimization method can be used to obtain the thermal properties of rock samples under high pressure conditions.
  • the transient thermal property test of the "heat source" without electric heating is realized, which greatly simplifies the rock thermal property test system and its operating procedure under high pressure conditions.
  • First step The first temperature sensor 61 and the second temperature sensor 62 are placed on the center and outer surface of the prepared cylindrical rock sample 4, and the rock sample 4 is hermetically sealed with a rubber sleeve 5 to form a rock sample assembly.
  • Second step The rock sample assembly, the pressure sensor 7, and the third temperature sensor 63 are placed in the second pressure tank 2 and sealed.
  • the outputs of the first temperature sensor 61, the second temperature sensor 62, the third temperature sensor 63 and the pressure sensor 7 are then connected to the respective inputs of the data acquisition unit 3, respectively, as shown in FIG. Turn on the temperature and pressure data acquisition module to start temperature and confining pressure monitoring.
  • Step 3 After the whole system is assembled, use the underwater robot 8 to carry the whole system to the depth of the deep sea water 9 (for example, 6000 meters, corresponding to water pressure of about 60Mpa, the bottom of seawater 9 is marked as seabed 10), wait for the whole system. After the temperature reaches equilibrium, the robot of the underwater robot is used to quickly open the drain valve 21, so that within 1 to 2 seconds, the confining pressure in the second pressure tank 2 is immediately raised to the deep seawater pressure (for example, 60 MPa).
  • the deep seawater pressure for example, 60 MPa
  • thermophysical parameters of the rock sample under a confining pressure are used, that is, inversion Obtain the thermophysical parameters of the rock sample under a confining pressure.
  • the invention has been experimentally tested, and the system used in the experimental test is basically the same as the system provided by the patent of the present invention.
  • a slightly different method is to increase the pressure of a large pressure tank by a high pressure pump (for example, 130 MPa to simulate the deep sea). High pressure environment), so that after opening the drain valve, the pressure of the pressure tank can be increased by another built-in rock sample assembly.
  • Figure 3 and Figure 4 show the temperature response curves of the Longmenshan fault zone sandstone L28 and the Indian Bengal sandstone RJS during transient loading.
  • Table 1 shows the thermal property parameters obtained by testing the sandstone samples of L28 and RJS under the confining pressure of 15.31MPa and 13.61MPa respectively:
  • the measured results of the center temperature of the L28 and RJS rock samples and the finite element numerical simulation results are shown in Figures 5 and 6.
  • the method and system provided by the present invention can be used not only for the thermal properties of rocks under deep sea high pressure conditions. Parametric testing, and greatly simplifies the original test system and its operating procedures.

Abstract

一种深海高压条件下岩石热物性测试系统,其包括二个耐压罐(1,2),第一耐压罐(1)中安装有数据采集单元(3),第二耐压罐(2)的空腔内充满海水并安装一岩石样品(4),岩石样品(4)的中心及外表面分别安装有第一温度传感器(61)和第二温度传感器(62),空腔内安装有第三温度传感器(63)和压力传感器(7),第一温度传感器(61)、第二温度传感器(62)、第三温度传感器(63)和压力传感器(7)的输出端均通过水密电缆(22)与数据采集单元(3)的输入端相连,第二耐压罐(2)上安装有与空腔相连通的排泄阀(21)。还公开了一种深海高压条件下岩石热物性测试方法,无需电加热"热源"、无需加压泵,其通过快速打开排泄阀来实现岩石样品瞬间加载,利用建立的有限元数值反演模型,即可获得高压条件下岩石样品的热物性参数。

Description

深海高压条件下岩石热物性测试系统与方法 技术领域
本发明涉及一种深海高压条件下岩石热物性测试系统,属于岩石热物性测试技术领域。
背景技术
地球内部岩层热物性,是地球内部热结构、热演化及地球动力学研究中最基础的物性参数。而不同的温、压条件下,岩石热物性存在差异。因此,深入开展不同围压条件下岩石热物性测试研究具有非常重要的意义。
目前,已有的高压条件下岩石热物性测试方法和系统,是通过将热物性测试探头(包括加热源和温度传感器)与岩石样品事先组装好,一同安置在耐压罐内。启动加压泵,将耐压罐内围压加到预定压力后,维持一段时间,待整套系统的温度达到平衡后,再开启热物性测试系统进行电加热,同时监测岩石内部温度变化,从而完成不同围压条件下的热物性测试。
上述现有的测试方法与系统,必需主动进行电加热(比如以恒定电流通过加热丝)作为瞬态法热物性测试所需的“热源”。因此,加热源和温度传感器必需同时安置在岩石内部,使得测试系统相对较为复杂。而且热物性参数测试对环境温度的恒温性要求特别高,而实验室条件下进行热物性测试过程中,测试系统通常直接与空气接触,很难在一个相对恒温的环境下进行测试。由于环境温度的波动难以控制,导致测试结果往往受到较大影响。
这种测试方法与技术,必需主动进行电加热(比如以恒定电流通过加热丝)作为瞬态法热物性测试所需的“热源”。
而我们的实验结果表明:地壳常见岩石的应力-温度响应系数(ΔT/Δσ)比较小(只有2~6mK/MPa),而传压介质(比如海水)的应力-温度响应系数则高达17.67mK/MPa,比地壳常见岩石的高1个数量级。因此,围压瞬间升高后,岩石样品与传压介质海水之间就存在温差。因此,本发明通过实时监测耐压罐围压瞬间升高过程中岩石样品中心、表面及传压介质海水温度变化,结合有限元数值反演方法,即可获得高压条件下岩石样品的热物性参数(热导率/thermal conductivity、 热扩散率/thermal diffusivitiy、及体积热容/volumetric heat capacity)。
发明内容
为克服现有技术的不足,本发明的目的之一在于提供一种无需电加热“热源”、无需加压泵的深海高压条件下岩石热物性测试系统,其只在岩石样品中心及表面各安置一个温度传感器,通过快速打开排泄阀来实现岩石样品的瞬间加载,并监测围压瞬间升高过程中岩石样品中心、表面及传压介质海水的温度变化,利用建立的有限元数值反演模型,结合全局优化方法,即可获得高压条件下岩石样品的热物性参数。从而实现了无电加热“热源”的瞬态热物性测试,大大简化了高压条件下岩石热物性测试系统及其操作程序。同时,1~3个小时的时间尺度内,深海海水的温度波动非常小,是一个非常良好的恒温环境,这恰恰是岩石热物性测试最理想的条件,从而可获得更高质量的热物性测试结果,而实验室通常难以实现。
为实现上述目的,本发明采取的技术方案是:
一种深海高压条件下岩石热物性测试系统,其包括二个耐压罐,其中,第一耐压罐中安装有数据采集单元,第二耐压罐内形成一充满传压介质的空腔,在所述空腔内安装一岩石样品,所述岩石样品的中心及外表面分别安装有第一温度传感器和第二温度传感器,所述空腔内安装有第三温度传感器和压力传感器,所述第一温度传感器、第二温度传感器、第三温度传感器和压力传感器的输出端均通过水密电缆与数据采集单元的输入端相连,所述第二耐压罐上安装有与空腔相连通的排泄阀。
所述岩石样品的外表面设置有用于对岩石样品进行水密封装的橡胶套,所述岩石样品的上、下两端均通过硬质硅胶进行密封。
所述岩石样品为圆柱状。
所述传压介质为海水。
本发明的另一目的在于提供一种无需电加热“热源”、无需加压泵的深海高压条件下岩石热物性测试方法,其只在岩石样品中心及表面各安置一个温度传感器,通过快速打开排泄阀来实现岩石样品的瞬间加载,并监测围压瞬间升高过程中岩石样品中心、表面及传压介质海水的温度变化,利用建立的有限元数值反演模型,结合全局优化方法,即可获得高压条件下岩石样品的热物性参数。从而实现了无 电加热“热源”的瞬态热物性测试,大大简化了高压条件下岩石热物性测试系统及其操作程序。同时,1~3个小时的时间尺度内,深海海水的温度波动非常小,是一个非常良好的恒温环境,这恰恰是岩石热物性测试最理想的条件,从而可获得更高质量的热物性测试结果,而实验室通常难以实现。
为实现上述目的,本发明采取的技术方案是:
一种深海高压条件下岩石热物性测试方法,其包括以下步骤:
步骤1、将第一温度传感器和第二温度传感器安置在制备好的圆柱状岩石样品的中心和外表面,采用橡胶套将岩石样品进行水密封装,并在岩石样品的上下两端通过硬质硅胶密封,形成岩石样品组件;
步骤2、将岩石样品组件、第三温度传感器放入第二耐压罐中,第二耐压罐充满传压介质后再对第二耐压罐进行密封,然后通过水密电缆将第一温度传感器、第二温度传感器、第三温度传感器和压力传感器均连接至数据采集单元,从而组装形成岩石热物性测试系统;开启数据采集单元的温度和压力数据采集模块,开始温度和围压监测;
步骤3、瞬间加载:利用水下机器人,将整套岩石热物性测试系统携带至深海预定深度,待整套岩石热物性测试系统温度达到平衡后,再利用水下机器人的机械手或者水下电机快速打开排泄阀,使得第二耐压罐内的围压瞬间升高至深海海水压力;
步骤4、根据数据采集单元实时监测的温度和围压变化,通过有限元数值模型,反演获得任意围压下岩石样品的热物性参数。
所述步骤4包括以下步骤:
步骤41、以圆柱状岩石样品的中心为圆点,在以圆柱状岩石样品的径向和轴向形成的柱坐标系统内基于热传导微分方程建立有限元数值模型;
步骤42、设岩石样品的热导率和体积热容分别为λ和(ρc),地壳常见岩石的热导率及体积热容的范围分别为0.5~6.0W·m-1·K-1、0.5×106~5.0×106J·m-3·K-1,对求解区域
Figure PCTCN2016079686-appb-000001
中的两参数中λ、(ρc)都进行m等份剖分,获得初始的(m+1)×(m+1)个 网格节点(λi,(ρc)j),其中i,j=1,2,3,…,m;
步骤43、将每个网格节点(λi,(ρc)j)输入已建立的有限元数值模型中,以快速加载过程中实时监测获取的岩石样品表面的温度变化T02(t)和传压介质温度变化T03(t)作为边界条件,模拟计算(λ,(ρc))=(λi,(ρc)j)时,岩石样品中心处的温度变化,记为
Figure PCTCN2016079686-appb-000002
步骤44、利用最小二乘法,对所述有限元数值模型计算获得的
Figure PCTCN2016079686-appb-000003
与岩石样品中心实测的温度变化T01(t)进行线性拟合:
Figure PCTCN2016079686-appb-000004
求解该拟合直线斜率Ki,j和相关系数Ri,j,其中相关系数计算表达式如下
Figure PCTCN2016079686-appb-000005
其中:n为采样总次数,tk为第k次采样的时刻,T01(tk)为瞬间加载后tk时刻第一温度传感器采集的温度变化,1≤k≤n;
步骤45、定义目标函数为
F(λi,(ρc)j)=1.0-(Ri,j)2      (4)
并求解各网格点处的目标函数值F(λi,(ρc)j);
步骤46、找出目标函数值最小的网格点,
Figure PCTCN2016079686-appb-000006
如果
Figure PCTCN2016079686-appb-000007
ε为判断是否满足求解要求而设定的阈值,则接受
Figure PCTCN2016079686-appb-000008
为所需要求解的岩石样品的热导率和体积热容(λ,(ρc)),否则,将以
Figure PCTCN2016079686-appb-000009
为中心的邻域为求解区域,将网格加密,返回到步骤43,直到满足
Figure PCTCN2016079686-appb-000010
为止,从而解算得到岩石样品的热导率和体积热容
Figure PCTCN2016079686-appb-000011
Figure PCTCN2016079686-appb-000012
步骤47、最后根据热导率λ、体积热容(ρc)及热扩散率κ之间的关系式
Figure PCTCN2016079686-appb-000013
计算得到岩石样品的热扩散率。
所述步骤41中,柱坐标系统下的热传导微分方程表达为
Figure PCTCN2016079686-appb-000014
Figure PCTCN2016079686-appb-000015
其初始条件为
T(r,z,0)=0,r≤r0,|z|≤z02)    (7)
边界条件由岩石热物性测试系统监测的样品表面温度变化T02(t)和传压介质温度变化T03(t)进行如下约束
Figure PCTCN2016079686-appb-000016
其中γ为各种介质的绝热应力变化的温度响应系数,A是由于围压变化
Figure PCTCN2016079686-appb-000017
导致温度变化所对应的热源,r0为岩石样品的半径,z01为圆柱状岩石样品顶面或底面到岩石样品中心圆柱面的垂直距离,z02为封装后的圆柱状岩石样品组件顶面或底面到岩石样品中心圆柱面的垂直距离。
所述岩石样品中心实测的温度变化T01(t),岩石样品表面温度变化T02(t)和传压介质温度变化T03(t)为各时刻实测温度与瞬间加载时的温度差,即:
T01(t)=T1(t)-T1(0)
T02(t)=T2(t)-T2(0)
T03(t)=T3(t)-T3(0)
其中,T1(t)、T2(t)、T3(t)分别是瞬间加载后t时刻时第一温度传感器、第二温度传感器和第三温度传感器的实测温度,通过步骤4测得,T1(0)、T2(0)、T3(0)分别是瞬间加载前第一温度传感器、第二温度传感器和第三温度传感器的实测温度,通过步骤2测得。
第一温度传感器、第二温度传感器以及第三温度传感器测量的温度均达到稳定时,则整套岩石热物性测试系统温度达到平衡。
而本发明专利所提供的测试方法与系统,是在圆柱状岩石样品中心及表面分 别安置一个温度传感器,然后用橡胶套封装后在放在第二耐压罐中,利用水下机器人(Underwater Vehicle)将测试系统携带至深海预定深度(比如6000米,围压相当于60MPa),通过水下机器人快速打开排泄阀来实现岩石样品的瞬间加载(或卸载),其主要优势如下:
1)无需电加热“热源”,只在岩石样品中心及表面各安置一个温度传感器,用于监测围压瞬间升高过程中岩石样品中心、表面及传压介质海水的温度变化,利用我们建立的有限元数值反演模型,结合全局优化方法,即可获得高压条件下岩石样品的热物性参数。从而实现了无电加热“热源”的瞬态热物性测试,大大简化了高压条件下岩石热物性测试系统及其操作程序。
2)深海海水的压力非常巨大,是一个天然的“高压泵”,因此本测试系统中无需加载台或者加压泵;
3)1~3个小时的时间尺度内,深海海水的温度波动非常小,是一个非常良好的恒温环境,为热物性测试提供了一个最理想条件,从而可获得更高质量的热物性测试结果。
附图说明
图1为本发明水下岩石绝热应力变化的温度响应测试系统的结构示意图;
图2为二维柱坐标系统下的有限元数值模型;
图3为龙门山断裂带砂岩L28瞬间加载过程中的温度响应曲线;
图4为印度Rajasthan砂岩RJS瞬间加载过程中的温度响应曲线;
图5为龙门山断裂带砂岩L28岩样中心温度的实测结果与有限元数值模型模拟结果对比图;
图6为印度Rajasthan砂岩RJS岩样中心温度的实测结果与有限元数值模型模拟结果对比图。
其中,1、第一耐压罐;2、第二耐压罐;21、排泄阀;22、水密电缆;3、数据采集单元;4、岩石样品;41、上硬质硅胶;42、下硬质硅胶;5、橡胶套;61、第一温度传感器;62、第二温度传感器;63、第三温度传感器;7、压力传感器;8、水下机器人;9、海水;10、海底。
具体实施方式
下面结合附图和具体实施方式对本发明的内容做进一步详细说明。
实施例
请参照图1所示,一种深海高压条件下岩石热物性测试系统,其包括二个耐压罐,分别是第一耐压罐1和第二耐压罐2,其中,第一耐压罐1中安装有数据采集单元3,第二耐压罐2内形成一空腔并充满海水,在所述空腔内安装一岩石样品组件(圆柱状岩石样品组件包括圆柱状岩石样品4以及其中心及表面分别安置一个第一温度传感器61和第二温度传感器62,然后将圆柱状的上硬质硅胶41和下硬质硅胶42分别放置并压紧于圆柱状岩石样品4的上、下两侧,再由橡胶套5将硬质硅胶41、圆柱状岩石样品4以及下硬质硅胶42进行包裹,实现水密封装,封装后在放在设置于第二耐压罐2的第二空腔21内),空腔内还安装有第三温度传感器63和压力传感器7,第一温度传感器61、第二温度传感器62、第三温度传感器63和压力传感器7的输出端均通过水密电缆22与数据采集单元3的输入端相连,第二耐压罐2上安装有与空腔相连通的排泄阀21。
本发明涉及一种深海高压条件下岩石热物性测试方法与系统,利用水下机器人8,快速打开排泄阀21,对岩石样品4进行瞬间加载。我们的实验结果表明:地壳常见岩石的应力-温度响应系数(ΔT/Δσ)比较小(只有2~6mK/MPa),而传压介质(比如硅油,填充于第二耐压罐2的空腔中)的应力-温度响应系数则高达138.74mK/MPa,比地壳常见岩石的高2个数量级。因此,围压瞬间升高后,岩石样品与传压介质之间产生温差。通过实时监测耐压罐围压(Confining pressure)、岩石样品中心、表面及传压介质的温度变化,结合有限元数值反演方法,即可获得高压条件下岩石样品的热物性参数(热导率/thermal conductivity、热扩散率/thermal diffusivitiy、及体积热容/volumetric heat capacity)。
热物性参数反演的有限元数值模型与方法具体如下:
1)热传导微分方程
由于本测试系统中的岩石样品制备成圆柱状,为了方便计算,这里第一温度传感器61位于岩石样品的中心,并且第二温度传感器62与第一温度传感器61位于岩石样品同一径向圆上。因此,其对应的柱坐标系统(2drz)下的热传导微分方程可表达成
Figure PCTCN2016079686-appb-000018
Figure PCTCN2016079686-appb-000019
其初始条件为
T(r,z,0)=0,r≤25mm,|z|≤65mm),      (11)
边界条件由测试系统监测的样品表面温度变化T02(t)和传压介质温度变化T03(t)进行如下约束,
Figure PCTCN2016079686-appb-000020
其中λ,ρc分别是各种介质的热导率(thermal conductivity)和体积热容(volumetric heat capacity),γ为各种介质的绝热应力变化的温度响应系数(adiabatic pressure derivative of temperature),A是由于围压变化导致温度变化所对应的“热源”(heat source termdriven by change rate of confining pressure
Figure PCTCN2016079686-appb-000021
)。
依此热传导微分方程在柱坐标系统(2drz)建立有限元数值模型,如图2所示。
步骤2、设岩石样品的热导率和体积热容分别为λ,(ρc),地壳常见岩石的热导率及体积热容的大致范围分别在0.5~6.0W·m-1·K-1、0.5×106~5.0×106J·m-3·K-1,为了拓宽本反演方法的适应性,可再次适当增大岩石热物性参数的求解区域
Figure PCTCN2016079686-appb-000022
其中λ,(ρc)两参数都进行m等份剖分,获得初始的(m+1)×(m+1)个网格节点(λi,(ρc)j),其中i,j=1,2,3,…,m;
步骤3、并将每个网格节点(λi,(ρc)j)输入已建立的PT-FE有限元数值模型,以快加载过程中实时监测获取的岩石样品表面的温度变化T02(t)和传压介质(如硅油)温度变化T03(t)作为边界条件(图2),模拟计算(λ,(ρc))=(λi,(ρc)j)时,岩石样品中心处的温度变化,记为
Figure PCTCN2016079686-appb-000023
步骤4、利用最小二乘法,对上述有限元数值模型计算获得的
Figure PCTCN2016079686-appb-000024
与岩石样 品中心实测的温度变化T01进行线性拟合:
Figure PCTCN2016079686-appb-000025
求解该拟合直线斜率Ki,j和相关系数Ri,j,其中相关系数计算表达式如下
Figure PCTCN2016079686-appb-000026
步骤5、定义目标函数为
F(λi,(ρc)j)=1.0-(Ri,j)2      (16)
并求解各网格点处的目标函数值F(λi,(ρc)j),i,j=1,2,3,...,m;
步骤6、找出目标函数值最小的网格点,
Figure PCTCN2016079686-appb-000027
如果
Figure PCTCN2016079686-appb-000028
为判断是否满足求解要求而设定的阈值),则接受
Figure PCTCN2016079686-appb-000029
为所需要求解的岩石样品的热导率和体积热容(λ,(ρc)),否则,将以
Figure PCTCN2016079686-appb-000030
为中心的邻域为求解区域,将网格加密,返回到步骤3,直到满足
Figure PCTCN2016079686-appb-000031
为止,从而解算得到岩石样品的热导率和体积热容
Figure PCTCN2016079686-appb-000032
步骤7、最后根据热导率、体积热容及热扩散率之间的关系式κ=λ/(ρc),可计算得到岩石样品的热扩散率。至此,某围压下岩石热物性参数求解完毕。
实际测试过程中,利用水下机器人(Underwater Vehicle),将整套系统携带至深海预定深度(比如6000米,对应水压约60MPa),待整个系统温度达到平衡后,再利用水下机器人的机械手快速打开排泄阀,使得1~2s内,第二耐压罐2内的围压瞬间升高至深海水压(比如60MPa)。由于岩石样品与传压介质(比如海水)的应力变化温度响应系数相差一个数量级,因此岩石样品与传压介质之间就存在温差。通过监测围压瞬间升高过程中岩石样品中心及表面的温度变化,利用我们建立的有限元数值反演模型,结合全局优化方法,即可获得高压条件下岩石样品的热物性参数。从而实现了无电加热“热源”的瞬态热物性测试,大大简化了高压条件下岩石热物性测试系统及其操作程序。
本发明深海高压条件下岩石热物性测试方法步骤如下:
第一步:将第一温度传感器61和第二温度传感器62安置在制备好的圆柱状岩石样品4的中心和外表面,并用橡胶套5将岩石样品4进行水密封装,形成岩石样品组件。
第二步:将上述岩石样品组件、压力传感器7及第三温度传感器63,放入第二耐压罐2中,并进行密封。然后用水密电缆22按图1所示将第一温度传感器61、第二温度传感器62、第三温度传感器63和压力传感器7的输出端分别连接到数据采集单元3的相应的输入端。开启温度和压力数据采集模块,开始温度和围压监测。
第三步:整套系统组装好后,利用水下机器人8,将整套系统携带至深海海水9预定深度(比如6000米,对应水压约60Mpa,海水9的底部标记为海底10),待整个系统温度达到平衡后,再利用水下机器人的机械手快速打开排泄阀21,使得1~2s内,第二耐压罐2内的围压瞬间升高至深海水压力(比如60MPa)。
通过上述操作,实现岩石样品瞬间加载,且这个过程中的温度和围压变化,都被实时监测并记录,再利用上述已建立的热物性参数反演的有限元数值模型与方法,即反演获得某围压下岩石样品的热物性参数。
本发明已经过实验测试,实验测试所用到的系统与本发明专利提供的系统基本一致,稍有不同的是用高压泵实现将一个大的耐压罐围压升高(比如130MPa,以模拟深海高压环境),以便在打开排泄阀之后,可使得另外一个内置有岩石样品组件的耐压罐围压瞬间升高。
图3和图4是龙门山断裂带砂岩L28与印度Rajasthan砂岩RJS瞬间加载过程中的温度响应曲线。表1为对L28与RJS两个砂岩样品分别在15.31MPa、13.61MPa围压下测试获得的热物性参数结果:
表1  龙门山断裂带砂岩(L28)与印度Rajasthan砂岩(RJS)的热物性反演结果
Figure PCTCN2016079686-appb-000033
对比L28和RJS岩石样品中心温度的实测结果与有限元数值模拟结果如图5和图6所示:本发明提供的方法和系统,不仅可用于深海高压条件下岩石热物性 参数测试,而且大大简化了原有测试系统及其操作程序。
虽然本发明是通过具体实施例进行说明的,本领域技术人员应当明白,在不脱离本发明范围的情况下,还可以对本发明进行各种变换及等同替代。另外,针对特定情形或应用,可以对本发明做各种修改,而不脱离本发明的范围。因此,本发明不局限于所公开的具体实施例,而应当包括落入本发明权利要求范围内的全部实施方式。

Claims (9)

  1. 一种深海高压条件下岩石热物性测试系统,其特征在于,其包括二个耐压罐,其中,第一耐压罐中安装有数据采集单元,第二耐压罐内形成一充满传压介质的空腔,在所述空腔内安装一岩石样品,所述岩石样品的中心及外表面分别安装有第一温度传感器和第二温度传感器,所述空腔内安装有第三温度传感器和压力传感器,所述第一温度传感器、第二温度传感器、第三温度传感器和压力传感器的输出端均通过水密电缆与数据采集单元的输入端相连,所述第二耐压罐上安装有与空腔相连通的排泄阀。
  2. 根据权利要求1所述的深海高压条件下岩石热物性测试系统,其特征在于,所述岩石样品的外表面设置有用于对岩石样品进行水密封装的橡胶套,所述岩石样品的上、下两端均通过硬质硅胶进行密封。
  3. 根据权利要求1所述的深海高压条件下岩石热物性测试系统,其特征在于,所述岩石样品为圆柱状。
  4. 根据权利要求1所述的深海高压条件下岩石热物性测试系统,其特征在于,所述传压介质为海水。
  5. 一种深海高压条件下岩石热物性测试方法,其特征在于,其包括以下步骤:
    步骤1、将第一温度传感器和第二温度传感器安置在制备好的圆柱状岩石样品的中心和外表面,采用橡胶套将岩石样品进行水密封装,并在岩石样品的上下两端通过硬质硅胶密封,形成岩石样品组件;
    步骤2、将岩石样品组件、第三温度传感器放入第二耐压罐中,第二耐压罐充满传压介质后再对第二耐压罐进行密封,然后通过水密电缆将第一温度传感器、第二温度传感器、第三温度传感器和压力传感器均连接至数据采集单元,从而组装形成岩石热物性测试系统;开启数据采集单元的温度和压力数据采集模块,开始温度和围压监测;
    步骤3、瞬间加载:利用水下机器人,将整套岩石热物性测试系统携带至深海预定深度,待整套岩石热物性测试系统温度达到平衡后,再利用水下机器人的机械手或者水下电机快速打开排泄阀,使得第二耐压罐内的围压瞬间升高至深海 海水压力;
    步骤4、根据数据采集单元实时监测的温度和围压变化,通过有限元数值模型,反演获得任意围压下岩石样品的热物性参数。
  6. 根据权利要求5所述的深海高压条件下岩石热物性测试方法,其特征在于,所述步骤4包括以下步骤:
    步骤41、以圆柱状岩石样品的中心为圆点,在以圆柱状岩石样品的径向和轴向形成的柱坐标系统内基于热传导微分方程建立有限元数值模型;
    步骤42、设岩石样品的热导率和体积热容分别为λ和(ρc),地壳常见岩石的热导率及体积热容的范围分别为0.5~6.0W·m-1·K-1、0.5×106~5.0×106J·m-3·K-1,对求解区域
    Figure PCTCN2016079686-appb-100001
    中的两参数中λ、(ρc)都进行m等份剖分,获得初始的(m+1)×(m+1)个网格节点(λi,(ρc)j),其中i,j=1,2,3,…,m;
    步骤43、将每个网格节点(λi,(ρc)j)输入已建立的有限元数值模型中,以快速加载过程中实时监测获取的岩石样品表面的温度变化T02(t)和传压介质温度变化T03(t)作为边界条件,模拟计算(λ,(ρc))=(λi,(ρc)j)时,岩石样品中心处的温度变化,记为
    Figure PCTCN2016079686-appb-100002
    步骤44、利用最小二乘法,对所述有限元数值模型计算获得的
    Figure PCTCN2016079686-appb-100003
    与岩石样品中心实测的温度变化T01(t)进行线性拟合:
    Figure PCTCN2016079686-appb-100004
    求解该拟合直线斜率Ki,j和相关系数Ri,j,其中相关系数计算表达式如下
    Figure PCTCN2016079686-appb-100005
    其中:n为采样总次数,tk为第k次采样的时刻,T01(tk)为瞬间加载后tk时刻第一温度传感器采集的温度变化,1≤k≤n;
    步骤45、定义目标函数为
    F(λi,(ρc)j)=1.0-(Ri,j)2   (4)
    并求解各网格点处的目标函数值F(λi,(ρc)j);
    步骤46、找出目标函数值最小的网格点,
    Figure PCTCN2016079686-appb-100006
    如果
    Figure PCTCN2016079686-appb-100007
    ε为判断是否满足求解要求而设定的阈值,则接受
    Figure PCTCN2016079686-appb-100008
    为所需要求解的岩石样品的热导率和体积热容(λ,(ρc)),否则,将以
    Figure PCTCN2016079686-appb-100009
    为中心的邻域为求解区域,将网格加密,返回到步骤43,直到满足
    Figure PCTCN2016079686-appb-100010
    为止,从而解算得到岩石样品的热导率和体积热容
    Figure PCTCN2016079686-appb-100011
    Figure PCTCN2016079686-appb-100012
    步骤47、最后根据热导率λ、体积热容(ρc)及热扩散率κ之间的关系式
    Figure PCTCN2016079686-appb-100013
    计算得到岩石样品的热扩散率。
  7. 根据权利要求6所述的深海高压条件下岩石热物性测试方法,其特征在于,所述步骤41中,柱坐标系统下的热传导微分方程表达为
    Figure PCTCN2016079686-appb-100014
    Figure PCTCN2016079686-appb-100015
    其初始条件为
    T(r,z,0)=0,r≤r0,|z|≤z02)   (7)
    边界条件由岩石热物性测试系统监测的样品表面温度变化T02(t)和传压介质温度变化T03(t)进行如下约束
    Figure PCTCN2016079686-appb-100016
    其中γ为各种介质的绝热应力变化的温度响应系数,A是由于围压变化
    Figure PCTCN2016079686-appb-100017
    导致温度变化所对应的热源,r0为岩石样品的半径,z01为圆柱状岩石样品顶面或底面到岩石样品中心圆柱面的垂直距离,z02为封装后的圆柱状岩石样品组件顶面或底面到岩石样品中心圆柱面的垂直距离。
  8. 根据权利要求7所述的高压条件下岩石热物性测试方法,其特征在于,所述岩石样品中心实测的温度变化T01(t),岩石样品表面温度变化T02(t)和传压介质温度变化T03(t)为各时刻实测温度与瞬间加载时的温度差,即:
    T01(t)=T1(t)-T1(0)
    T02(t)=T2(t)-T2(0)
    T03(t)=T3(t)-T3(0)
    其中,T1(t)、T2(t)、T3(t)分别是瞬间加载后t时刻时第一温度传感器、第二温度传感器和第三温度传感器的实测温度,通过步骤4测得,T1(0)、T2(0)、T3(0)分别是瞬间加载前第一温度传感器、第二温度传感器和第三温度传感器的实测温度,通过步骤2测得。
  9. 根据权利要求4所述的深海高压条件下岩石热物性测试方法,其特征在于,第一温度传感器、第二温度传感器以及第三温度传感器测量的温度均达到稳定时,则整套岩石热物性测试系统温度达到平衡。
PCT/CN2016/079686 2016-03-08 2016-04-19 深海高压条件下岩石热物性测试系统与方法 WO2017152472A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/556,024 US10345253B2 (en) 2016-03-08 2016-04-19 System and method for determining the thermal properties of rocks under high pressure conditions in deep sea

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610130630.X 2016-03-08
CN201610130630.XA CN105784755B (zh) 2016-03-08 2016-03-08 深海高压条件下岩石热物性测试系统与方法

Publications (1)

Publication Number Publication Date
WO2017152472A1 true WO2017152472A1 (zh) 2017-09-14

Family

ID=56388201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079686 WO2017152472A1 (zh) 2016-03-08 2016-04-19 深海高压条件下岩石热物性测试系统与方法

Country Status (3)

Country Link
US (1) US10345253B2 (zh)
CN (1) CN105784755B (zh)
WO (1) WO2017152472A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108287111A (zh) * 2017-01-09 2018-07-17 中国石油化工股份有限公司 用于检测胶筒的封隔性能的装置
CN112857462A (zh) * 2021-02-26 2021-05-28 西南石油大学 一种海洋水合物固态流化开采中地质风险监测系统及方法
CN114002053A (zh) * 2021-11-04 2022-02-01 湖南水利水电职业技术学院 冻融和加载同步试验装置及试验方法
CN116519485A (zh) * 2023-05-19 2023-08-01 广州建筑股份有限公司 一种土体固结流变三轴试验设备及试验方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109883807A (zh) * 2019-03-22 2019-06-14 中原工学院 一种岩石温度加热装置及其使用方法
CN111289353A (zh) * 2020-04-01 2020-06-16 厦门理工学院 一种用于海底岩石破碎的试验装置
CN111735845B (zh) * 2020-07-16 2023-03-24 安徽理工大学 一种单轴压缩状态下材料保温隔冷性能试验装置及试验方法
CN113092266A (zh) * 2021-03-18 2021-07-09 中国地质大学(北京) 滑溜水压裂液储层伤害机理的评价装置、方法及存储介质
CN113092243B (zh) * 2021-05-08 2022-10-14 中国科学院南海海洋研究所 深海快速加卸载装置及其方法
CN113533181B (zh) * 2021-07-06 2022-10-14 英利能源(中国)有限公司 光伏组件用于海水环境的设计试验方法及装置
CN115805104B (zh) * 2023-02-07 2023-04-18 太原理工大学 一种油页岩原位开采含油率检测装置及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247978A (ja) * 1995-03-15 1996-09-27 Sumitomo Osaka Cement Co Ltd 断熱温度上昇試験装置
CN101696949A (zh) * 2009-10-27 2010-04-21 中国科学院力学研究所 柱形水合物沉积物中含相变热传导测量装置
CN101949803A (zh) * 2010-09-04 2011-01-19 烟台力尔自动化设备有限公司 一种岩石实验装置
CN102053253A (zh) * 2009-10-30 2011-05-11 中国石油化工股份有限公司 一种岩石样品检测及数据采集系统及其方法和应用
CN102998332A (zh) * 2012-11-23 2013-03-27 三峡大学 破碎岩体宏观热物性参数的测试系统与方法
CN105067450A (zh) * 2015-08-12 2015-11-18 中国石油大学(华东) 测量高温高压下多孔弹性介质Biot系数的装置及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2737367B2 (ja) * 1990-06-13 1998-04-08 三菱マテリアル株式会社 岩石試料の高温高圧試験装置
US7089816B2 (en) * 2004-01-13 2006-08-15 Halliburton Energy Services, Inc. Method and apparatus for testing cement slurries
US7296927B2 (en) * 2005-04-07 2007-11-20 Halliburton Energy Services, Inc. Laboratory apparatus and method for evaluating cement performance for a wellbore
US8783091B2 (en) * 2009-10-28 2014-07-22 Halliburton Energy Services, Inc. Cement testing
US20130002258A1 (en) * 2011-06-30 2013-01-03 Schlumberger Technology Corporation Device for dielectric permittivity and resistivity high temperature measurement of rock samples
EP2977742A1 (en) * 2013-02-08 2016-01-27 Services Petroliers Schlumberger Methodology for measuring properties of microporous material at multiple scales
CN105628500B (zh) * 2016-02-17 2017-06-23 中国科学院南海海洋研究所 一种岩石绝热应力变化的温度响应系数测试系统
CN105716948B (zh) * 2016-03-08 2017-05-17 中国科学院南海海洋研究所 水下岩石绝热应力变化的温度响应系数测试系统与方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247978A (ja) * 1995-03-15 1996-09-27 Sumitomo Osaka Cement Co Ltd 断熱温度上昇試験装置
CN101696949A (zh) * 2009-10-27 2010-04-21 中国科学院力学研究所 柱形水合物沉积物中含相变热传导测量装置
CN102053253A (zh) * 2009-10-30 2011-05-11 中国石油化工股份有限公司 一种岩石样品检测及数据采集系统及其方法和应用
CN101949803A (zh) * 2010-09-04 2011-01-19 烟台力尔自动化设备有限公司 一种岩石实验装置
CN102998332A (zh) * 2012-11-23 2013-03-27 三峡大学 破碎岩体宏观热物性参数的测试系统与方法
CN105067450A (zh) * 2015-08-12 2015-11-18 中国石油大学(华东) 测量高温高压下多孔弹性介质Biot系数的装置及方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108287111A (zh) * 2017-01-09 2018-07-17 中国石油化工股份有限公司 用于检测胶筒的封隔性能的装置
CN112857462A (zh) * 2021-02-26 2021-05-28 西南石油大学 一种海洋水合物固态流化开采中地质风险监测系统及方法
CN114002053A (zh) * 2021-11-04 2022-02-01 湖南水利水电职业技术学院 冻融和加载同步试验装置及试验方法
CN116519485A (zh) * 2023-05-19 2023-08-01 广州建筑股份有限公司 一种土体固结流变三轴试验设备及试验方法
CN116519485B (zh) * 2023-05-19 2024-02-06 广州建筑股份有限公司 一种土体固结流变三轴试验设备及试验方法

Also Published As

Publication number Publication date
US20180113087A1 (en) 2018-04-26
US10345253B2 (en) 2019-07-09
CN105784755A (zh) 2016-07-20
CN105784755B (zh) 2017-08-22

Similar Documents

Publication Publication Date Title
WO2017152472A1 (zh) 深海高压条件下岩石热物性测试系统与方法
WO2017152473A1 (zh) 高压条件下岩石热物性测试系统与方法
US20180209889A1 (en) Apparatus and methodology for measuring properties of microporous material at multiple scales
US10324227B2 (en) System and method for determining the adiabatic stress derivative of the temperature for rocks under water
CN104897554B (zh) 气热力耦合作用下低渗岩石气体渗透测试装置和测试方法
CN105675434A (zh) 一种含气量测量系统及测量方法
CN102768224B (zh) 正反双向热流法测固-固接触热阻的测试方法
CN102778475B (zh) 一种上下恒温参数辨识法测固-固接触热阻
CN108107072A (zh) 一种土体导热系数测试方法及试验装置
CN205749187U (zh) 一种含气量测量系统
CN108226004B (zh) 多孔介质流体渗流模拟装置及方法
CN206479579U (zh) 一种温控三轴试样电阻率实验装置
CN104849149B (zh) 一种高分子保温材料高温静水压性能模拟试验方法
CN108205610A (zh) 基于快速精确数值重构技术的混凝土块冷却系统设计方法
Feseker et al. Introducing the T‐Stick: A new device for high precision in situ sediment temperature profile measurements
CN204374151U (zh) 一种应用于测量土壤超声分散能量的实验容器
Tai et al. Thermal conductivity of Toyoura sand at various moisture and stress conditions
Kneafsey et al. Laboratory measurements on core-scale sediment and hydrate samples to predict reservoir behavior
CN114813384A (zh) 一种可置换溶液的温控渗透固结试验系统及试验方法
Safarov et al. The influence of single-wall carbon nanotubs on changes of thermal conductivity and the temperature of liquid diethyl ether
CN116298194A (zh) 交通荷载作用下冻融软土水分迁移演化过程的试验系统
CN117236090A (zh) 一种圆柱形样品径向热导率测试误差的计算方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15556024

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893120

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (12.02.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16893120

Country of ref document: EP

Kind code of ref document: A1