WO2017152462A1 - 液晶显示面板驱动方法及液晶显示面板驱动系统 - Google Patents

液晶显示面板驱动方法及液晶显示面板驱动系统 Download PDF

Info

Publication number
WO2017152462A1
WO2017152462A1 PCT/CN2016/079012 CN2016079012W WO2017152462A1 WO 2017152462 A1 WO2017152462 A1 WO 2017152462A1 CN 2016079012 W CN2016079012 W CN 2016079012W WO 2017152462 A1 WO2017152462 A1 WO 2017152462A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
display panel
voltage
timing controller
Prior art date
Application number
PCT/CN2016/079012
Other languages
English (en)
French (fr)
Inventor
陈胤宏
吴宇
胡安乐
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/105,567 priority Critical patent/US9959831B1/en
Publication of WO2017152462A1 publication Critical patent/WO2017152462A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0257Reduction of after-image effects

Definitions

  • the present invention relates to the field of liquid crystal display technologies, and in particular, to a liquid crystal display panel driving method and a liquid crystal display panel driving system.
  • LCD Liquid Crystal Display
  • advantages such as thin body, power saving, no radiation, etc., such as: LCD TV, mobile phone, personal digital assistant (PDA), digital camera, computer screen or Laptop screens, etc., dominate the field of flat panel display.
  • PDA personal digital assistant
  • liquid crystal displays which include a liquid crystal display panel and a backlight module.
  • the working principle of the liquid crystal display panel is to fill liquid crystal molecules between a Thin Film Transistor Array Substrate (TFT Array Substrate) and a Color Filter (CF), and apply driving on the two substrates.
  • TFT Array Substrate Thin Film Transistor Array Substrate
  • CF Color Filter
  • the liquid crystal display panel includes a plurality of sub-pixels arranged in an array, each sub-pixel is electrically connected to a thin film transistor (TFT), and a gate of the TFT is connected to a horizontal gate scan line, and the source (Source) ) connected to the data line in the vertical direction, and the drain is connected to the pixel electrode.
  • TFT thin film transistor
  • Source Source
  • Drain Drain
  • liquid crystal display panels With the development of display technology, the size of liquid crystal display panels is getting larger and larger, and the resolution is getting higher and higher, but liquid crystal display panels usually generate a constant TFT turn-on voltage by pulse-modulation (PWM) IC. (VGH) is supplied to the gate drive IC to drive the TFTs in each row of sub-pixels before charging the sub-pixels.
  • PWM pulse-modulation
  • VGH is supplied to the gate drive IC to drive the TFTs in each row of sub-pixels before charging the sub-pixels.
  • the existing liquid crystal display panel driving system architecture includes a liquid crystal display panel 100, a plurality of gate driving ICs GD10, GD20, GD30, etc., and a constant TFT turn-on voltage VGH is set on a printed circuit board (Printed Circuit Board).
  • the PWM ICs on the Assembly, PCBA) are generated and transmitted to the respective gate drive ICs through wires (Wire On Array, WOA) disposed on the TFT array substrate. Since the WOA trace is thinner and the impedance is larger, the TFT turn-on voltage VGH is attenuated, and the TFT turn-on voltage VGH actually received by the different gate drive ICs is greatly different, thereby The charging time of different pixel display areas corresponding to different gate driving ICs is also different, and the horizontal block phenomenon (H Block) between adjacent pixel display areas often occurs, that is, between adjacent pixel display areas There is a clear horizontal boundary, which seriously affects the viewing experience, resulting in a decline in the quality of the liquid crystal display panel.
  • H Block horizontal block phenomenon
  • An object of the present invention is to provide a liquid crystal display panel driving method capable of dynamically adjusting a TFT turn-on voltage in real time, so that the TFT turn-on voltage actually received by each gate driving IC is kept uniform, thereby making the charging time of different pixel display regions equal, eliminating Horizontal block problem to improve the quality of the liquid crystal display panel.
  • the object of the present invention is to provide a liquid crystal display panel driving system capable of dynamically adjusting the TFT turn-on voltage in real time, so that the TFT turn-on voltages actually received by the respective gate drive ICs are kept consistent, so that the charging times of different pixel display regions are equal. Eliminate horizontal block problems and improve the quality of liquid crystal display panels.
  • the present invention first provides a driving method of a liquid crystal display surface, comprising the following steps:
  • Step 1 Providing a liquid crystal display panel driving system
  • the liquid crystal display panel driving system includes:
  • M is a positive integer
  • the liquid crystal display panel has M rows of pixels
  • N is a positive integer greater than 1 and can divide M.
  • the liquid crystal display panel is divided into N pixel display areas, and each pixel is displayed.
  • the area includes M/N line pixels;
  • each gate driving IC is responsible for driving M/N rows of pixels of one pixel display area;
  • a PWM IC that supplies a TFT turn-on voltage to each gate driving IC through a trace
  • timing controller electrically connected to the PWM IC
  • the timing controller includes a counter, a TFT turn-on voltage calculation module electrically connected to the counter, an I2C command module electrically connected to the TFT turn-on voltage calculation module and a PWMIC;
  • Step 2 The PWM IC first supplies an initial TFT turn-on voltage to the first gate driving IC corresponding to the driving of the first pixel display region; the timing controller starts to output display data to the liquid crystal display panel row by row, each output One line displays data, and the counter in the timing controller is incremented by one;
  • Step 3 Let i be a positive integer, and 1 ⁇ i ⁇ N.
  • the TFT open voltage calculation module in the timing controller performs an operation to obtain the first
  • the target TFT of the i+1 gate drive IC turns on the voltage and transmits it to the I2C instruction module, and the I2C instruction module controls the PWM IC to output the corresponding i+1th gate drive IC to its corresponding target TFT.
  • Step 4 When the counter in the timing controller is added to M, the counter is reset to zero.
  • the I2C instruction module and the PWM IC are electrically connected through an I2C interface.
  • N gate driving ICs are also disposed on the other side of the liquid crystal display panel, and M/N row pixels of one pixel display area are commonly driven by two gate driving ICs located on both sides of the pixel display area.
  • the target TFT turn-on voltage of the i+1th gate drive IC is greater than the target TFT turn-on voltage of the i-th gate drive IC; and the TFT turn-on voltages actually received by the respective gate drive ICs are equal.
  • the invention also provides a liquid crystal display panel driving system, comprising:
  • M is a positive integer
  • the liquid crystal display panel has M rows of pixels
  • N is a positive integer greater than 1 and can divide M.
  • the liquid crystal display panel is divided into N pixel display areas, and each pixel is displayed.
  • the area includes M/N line pixels;
  • each gate driving IC is responsible for driving M/N rows of pixels of one pixel display area;
  • a PWM IC that supplies a TFT turn-on voltage to each gate driving IC through a trace
  • timing controller electrically connected to the PWM IC
  • the timing controller includes a counter, a TFT turn-on voltage calculation module electrically connected to the counter, an I2C command module electrically connected to the TFT turn-on voltage calculation module and the PWM IC;
  • the PWM IC is configured to provide an initial TFT turn-on voltage to the first gate drive IC and to output respective target TFT turn-on voltages to other gate drive ICs by the control of the I2C command module;
  • the timing controller is configured to display to the liquid crystal
  • the panel outputs display data row by row, and displays data for one line at a time, and the counter in the timing controller is incremented by one; if i is a positive integer, and 1 ⁇ i ⁇ N, the counter is added to i ⁇ M/N,
  • the TFT turn-on voltage calculation module in the timing controller performs an operation to obtain a target TFT turn-on voltage of the i+1th gate drive IC and transmits it to the I2C command module, and the I2C command module controls the PWM IC correspondingly to the i+ One gate drive IC outputs its corresponding target TFT turn-on voltage; when the counter in the timing controller is applied to M, the counter is reset to zero.
  • the I2C instruction module and the PWM IC are electrically connected through an I2C interface.
  • N gate driving ICs are also disposed on the other side of the liquid crystal display panel, and M/N row pixels of one pixel display area are commonly driven by two gate driving ICs located on both sides of the pixel display area.
  • the PWM IC and the timing controller are both disposed on a drive control circuit board located outside the pixel display area of the liquid crystal display panel.
  • the invention also provides a liquid crystal display panel driving method, comprising the following steps:
  • Step 1 Providing a liquid crystal display panel driving system
  • the liquid crystal display panel driving system includes:
  • M is a positive integer
  • the liquid crystal display panel has M rows of pixels
  • N is a positive integer greater than 1 and can divide M.
  • the liquid crystal display panel is divided into N pixel display areas, and each pixel is displayed.
  • the area includes M/N line pixels;
  • each gate driving IC is responsible for driving M/N rows of pixels of one pixel display area;
  • a PWM IC that supplies a TFT turn-on voltage to each gate driving IC through a trace
  • timing controller electrically connected to the PWM IC
  • the timing controller includes a counter, a TFT turn-on voltage calculation module electrically connected to the counter, an I2C command module electrically connected to the TFT turn-on voltage calculation module and the PWM IC;
  • Step 2 The PWM IC first supplies an initial TFT turn-on voltage to the first gate driving IC corresponding to the driving of the first pixel display region; the timing controller starts to output display data to the liquid crystal display panel row by row, each output One line displays data, and the counter in the timing controller is incremented by one;
  • Step 3 Let i be a positive integer, and 1 ⁇ i ⁇ N.
  • the TFT open voltage calculation module in the timing controller performs an operation to obtain the first
  • the target TFT of the i+1 gate drive IC turns on the voltage and transmits the voltage to the I2C instruction module, and the I2C instruction module controls the PWM IC to output the corresponding target TFT turn-on voltage to the i+1th gate drive IC.
  • Step 4 When the counter in the timing controller is added to M, the counter is reset to zero;
  • the I2C command module and the PWM IC are electrically connected through an I2C interface
  • the target TFT turn-on voltage of the i+1th gate drive IC is greater than the target TFT turn-on voltage of the i-th gate drive IC; and the TFT turn-on voltages actually received by the respective gate drive ICs are equal.
  • the invention provides a liquid crystal display panel driving method and a liquid crystal display panel driving system
  • the timing controller comprises a counter, a TFT opening voltage calculation module electrically connected to the counter, and an electrical connection TFT opening voltage calculation module and The I2C command module of the PWM IC
  • the timing controller displays data for each line of output to the liquid crystal display panel
  • the counter in the timing controller is incremented by 1
  • the TFT turn-on voltage calculation in the timing controller is added every time i ⁇ M/N is added.
  • the module performs an operation to obtain a target TFT turn-on voltage of the i+1th gate drive IC and transmits it to the I2C command module, and the I2C command module controls the PWM IC to output correspondingly to the i+1th gate drive IC.
  • the target TFT turns on the voltage, and can dynamically adjust the TFT turn-on voltage in real time, so that the TFT turn-on voltage actually received by each gate drive IC remains the same, thereby making different pixel display regions
  • the charging time is equal, eliminating horizontal block problems and improving the quality of the liquid crystal display panel.
  • FIG. 1 is a schematic diagram of a conventional liquid crystal display panel driving system architecture
  • FIG. 2 is a flow chart of a method for driving a liquid crystal display panel of the present invention
  • FIG. 3 is a schematic structural diagram of a liquid crystal display panel driving system of the present invention.
  • FIG. 4 is a schematic diagram of a timing controller in a liquid crystal display panel driving system of the present invention.
  • FIG. 5 is a waveform diagram showing a target TFT turn-on voltage of each gate driving IC in the liquid crystal display panel driving method of the present invention.
  • the present invention first provides a liquid crystal display panel driving method, which includes the following steps:
  • Step 1 Provide a liquid crystal display panel driving system.
  • the liquid crystal display panel driving system includes:
  • M is a positive integer
  • the liquid crystal display panel 1 has M rows of pixels
  • N is a positive integer greater than 1 and can be divisible by M
  • the liquid crystal display panel 1 is divided into N pixel display areas Zone ( 1) to Zone(N), each pixel display area includes M/N line pixels;
  • each gate driving IC is responsible for driving M/N rows of pixels of one pixel display area;
  • a PWM IC 2 that supplies a TFT turn-on voltage VGH to each of the gate drive ICs GD(1) to GD(N) through a trace L;
  • a timing controller 3 electrically connected to the PWM IC 2; the timing controller 3 includes a counter 31, a TFT turn-on voltage calculation module 32 electrically connected to the counter 31, and a TFT open voltage calculation module electrically connected 32 and I2C command module 33 of PWM IC 2. Further, the I2C command module 33 and the PWM IC 2 are electrically connected through an I2C interface.
  • the liquid crystal display panel 1 has 2160 rows of pixels, the liquid crystal display panel 1 is divided into three pixel display areas Zone(1) to Zone(3), and each pixel display area includes 720 rows of pixels. At least three gate drive ICs GD(1) to GD(3) are disposed on one side of the liquid crystal display panel 1, and each gate drive IC is responsible for driving 720 rows of pixels of one pixel display area, that is, the first pixel.
  • the display area Zone(1) is driven only by the first gate drive IC GD(1), and the second pixel display area Zone(2) is driven only by the second gate drive IC GD(2), the third pixel
  • the display area Zone(3) is driven only by the third gate driving IC GD(3), which is suitable for the case where the liquid crystal display panel is driven by one side; of course, three of the other sides of the liquid crystal display panel 1 can also be provided.
  • the gate drive ICs GD(1') to GD(3'), 720 rows of pixels of one pixel display area are jointly driven by two gate drive ICs located on both sides of the pixel display area, that is, the first pixel display area Zone (1)
  • the GD(1) and GD(1') two gate drive ICs are driven together by the two sides, and the second pixel display area Zone(2) is GD(2) and GD located on both sides thereof.
  • Two gate drive ICs are driven together, and the third pixel display area Zone(3) is driven by two gate drive ICs of GD(3) and GD(3') on both sides thereof.
  • LCD panel Side driving situation
  • Step 2 The PWM IC 2 first provides an initial to the first gate driving IC GD(1) (or GD(1), and GD(1')) corresponding to driving the first pixel display area Zone(1).
  • the TFT is turned on; the timing controller 3 starts to output display data to the liquid crystal display panel 1 row by row, and displays data for one line at a time, and the counter 31 in the timing controller 3 is incremented by one.
  • the first gate drive IC GD(1) (or GD(1), and GD(1')) in the second step drives the first pixel display area Zone by the initial TFT turn-on voltage supplied from the PWM IC 2. 1) Each row of pixels is charged.
  • Step 3 Let i be a positive integer, and 1 ⁇ i ⁇ N.
  • the TFT turn-on voltage calculation module 32 in the timing controller 3 performs an operation.
  • the target TFT turn-on voltage of the i+1th gate drive IC GD(i+1) (or GD(i+1), and GD(i+1')) is obtained and transmitted to the I2C command module 33.
  • the I2C command module 33 controls the PWM IC 2 to correspond to the output of the i+1th gate drive IC GD(i+1) (or GD(i+1), and GD(i+1')) via the I2C interface.
  • the target TFT turns on the voltage.
  • the TFT turn-on voltage calculation module 32 performs an operation to obtain a target TFT turn-on voltage of the second gate drive IC GD(2) and GD(2') and transmits it to the I2C command module 33,
  • the I2C command module 33 controls the PWM IC 2 to output the corresponding target TFT turn-on voltage to the second gate drive IC GD(2) and GD(2') via the I2C interface.
  • the counter 31 when the counter 31 is applied to 1440, it indicates that the gate drive ICs GD(2) and GD(2')
  • the second pixel display area Zone(2) is responsible for charging, and the TFT turn-on voltage calculation module 32 performs calculation to obtain that the third gate drive IC GD(3) and the target TFT of GD(3') are turned on.
  • the voltage is transmitted to the I2C command module 33, and the I2C command module 33 controls the PWM IC 2 to output the corresponding target TFT turn-on voltage to the third gate drive IC GD(3) and GD(3') through the I2C interface. .
  • the TFT turn-on voltage calculation module 32 calculates the target TFT turn-on voltage of each of the gate drive ICs based on: in the case where the initial TFT turn-on voltages are supplied to the respective gate drive ICs of the same liquid crystal display panel 1, Measure the TFT turn-on voltage attenuation amplitude between two adjacent gate drive ICs to obtain a preset compensation value, and then set the relevant register inside the timing controller 3, due to the attenuation of the TFT turn-on voltage on the trace L It is linear, and the increase of the target TFT turn-on voltage should also be linear.
  • the TFT turn-on voltage calculation module 32 calls the preset compensation value of the corresponding multiple.
  • the target TFT turn-on voltage of each gate drive IC can be calculated.
  • Step 4 When the counter 31 in the timing controller 3 is added to M, the counter 31 is reset to zero.
  • the i+1th gate drive IC GD(i+1) corresponding to the i+1th pixel display area Zone(i+1) given by the TFT turn-on voltage calculation module 32 is calculated.
  • (or GD(i+1), and GD(i+1')) have a target TFT turn-on voltage greater than the i-th gate drive IC GD(i) corresponding to the ith pixel display region Zone(i) (or The target TFT of GD(i), and GD(i')) turns on the voltage, but there is linear attenuation when the TFT turn-on voltage is transmitted on the trace L, and each gate drive IC GD(1) to GD(N) (or GD(1) to GD(N), and GD(1') to GD(N')) are actually equal to the TFT turn-on voltage actually received, which realizes real-time dynamic adjustment of the TFT turn-on voltage, so that different pixel display areas are The charging time is equal, which can eliminate the horizontal block problem and improve the quality
  • the present invention further provides a liquid crystal display panel driving system, including:
  • M is a positive integer
  • the liquid crystal display panel 1 has M rows of pixels
  • N is a positive integer greater than 1 and can be divisible by M
  • the liquid crystal display panel 1 is divided into N pixel display areas Zone ( 1) to Zone(N), each pixel display area includes M/N line pixels;
  • each gate drive IC is responsible for driving the M/N line pixels of one pixel display area;
  • a PWM IC 2 that supplies a TFT turn-on voltage VGH to each of the gate drive ICs GD(1) to GD(N) through a trace L;
  • a timing controller 3 electrically connected to the PWM IC 2; the timing controller 3 includes a counter 31, a TFT turn-on voltage calculation module 32 electrically connected to the counter 31, and a TFT open voltage calculation module electrically connected 32 and I2C instruction module 33 of PWM IC2. Further, the I2C command module 33 and the PWM IC 2 are electrically connected through an I2C interface.
  • the PWM IC 2 and the timing controller 3 are both disposed on a drive control circuit board (CB) located outside each pixel display area of the liquid crystal display panel 1.
  • CB drive control circuit board
  • the liquid crystal display panel 1 has 2160 rows of pixels, and the liquid crystal display panel 1 is divided into three pixel display areas Zone(1) to Zone(3), each pixel.
  • the display area includes 720 lines of pixels.
  • At least three gate drive ICs GD(1) to GD(3) are disposed on one side of the liquid crystal display panel 1, and each gate drive IC is responsible for driving 720 rows of pixels of one pixel display area, that is, the first pixel.
  • the display area Zone(1) is driven only by the first gate drive IC GD(1), and the second pixel display area Zone(2) is driven only by the second gate drive IC GD(2), the third pixel
  • the display area Zone(3) is driven only by the third gate driving IC GD(3), which is suitable for the case where the liquid crystal display panel is driven by one side; of course, three of the other sides of the liquid crystal display panel 1 can also be provided.
  • the gate drive ICs GD(1') to GD(3'), 720 rows of pixels of one pixel display area are jointly driven by two gate drive ICs located on both sides of the pixel display area, that is, the first pixel display area Zone (1)
  • the GD(1) and GD(1') two gate drive ICs are driven together by the two sides, and the second pixel display area Zone(2) is GD(2) and GD located on both sides thereof.
  • Two gate drive ICs are driven together, and the third pixel display area Zone(3) is driven by two gate drive ICs of GD(3) and GD(3') on both sides thereof.
  • LCD panel Side driving situation
  • the PWM IC 2 is used to provide an initial TFT turn-on voltage to the first gate drive IC GD(1) and to other gate drive ICs GD(2) to GD(N) by the control of the I2C command module 33 (or GD(2) to GD(N), and GD(2') to GD(N')) output respective target TFT turn-on voltages;
  • the timing controller 3 is configured to output display data to the liquid crystal display panel 1 row by row, Each time one line of display data is output, the counter 31 in the timing controller 3 is incremented by one; if i is a positive integer, and 1 ⁇ i ⁇ N, the timing controller is added to the i ⁇ M/N every time the counter 31 is added.
  • the TFT turn-on voltage calculation module 32 in 3 performs an operation to obtain that the target TFT of the i+1th gate drive IC GD(i+1) (or GD(i+1) and GD(i+1')) is turned on.
  • the voltage is transmitted to the I2C instruction module 33, and the I2C instruction module 33 controls the PWM IC 2 to correspondingly to the i+1th gate drive IC GD(i+1) (or GD(i+1) and GD(i+1). ')) output its corresponding target TFT turn-on voltage; when counting in the timing controller 3
  • the counter 31 When the counter 31 is applied to M, the counter 31 is reset to zero.
  • the working process of the liquid crystal display panel driving system is:
  • the first gate drive IC GD(1) (or GD(1), and GD(1')) drives the first pixel display region Zone(1) by using the initial TFT turn-on voltage supplied from the PWM IC2.
  • Each row of pixels is charged, and the timing controller 3 outputs data for one line, and the counter 31 in the timing controller 3 is incremented by one.
  • the counter 31 When the counter 31 is added to 720, it indicates that the first pixel display area Zone(1), which is responsible for the gate driving ICs GD(1) and GD(1'), has been charged, and the TFT turn-on voltage calculation module 32 performs an operation.
  • the target voltage of the second gate drive IC GD(2) and GD(2') is turned on and transmitted to the I2C command module 33, and the I2C command module 33 controls the PWM IC 2 through the I2C interface to the second
  • the gate drive ICs GD(2) and GD(2') output their corresponding target TFT turn-on voltages.
  • the counter 31 when the counter 31 is added to 1440, it indicates that the second pixel display area Zone(2), which is responsible for the gate drive ICs GD(2) and GD(2'), has been charged, and the TFT turn-on voltage calculation module 32 performs Operation, the target TFT turn-on voltage of the third gate drive IC GD(3) and GD(3') is obtained and transmitted to the I2C command module 33, and the I2C command module 33 controls the PWM IC 2 through the I2C interface.
  • the third gate drive IC GD(3) and GD(3') output the target TFT turn-on voltage corresponding thereto.
  • the counter 31 When the counter 31 is added to 2160, it indicates that the third pixel display area Zone(3), which is responsible for the gate drive ICs GD(3) and GD(3'), has been charged, and the counter 31 is reset to clear to enter the next step. Drive and display of the picture.
  • the TFT turn-on voltage calculation module 32 calculates the target TFT turn-on voltage of each gate drive IC based on: in the case where the initial TFT turn-on voltage is supplied to each of the gate drive ICs of the same liquid crystal display panel 1 By actually measuring the TFT turn-on voltage attenuation amplitude between two adjacent gate drive ICs, a preset compensation value is obtained, and then the relevant register inside the timing controller 3 is set, since the TFT turn-on voltage is on the trace L The attenuation on the top is linear, and the increase in the turn-on voltage of the target TFT should also be linear.
  • the TFT turn-on voltage calculation module 32 calls the corresponding multiple.
  • the target TFT turn-on voltage of each gate drive IC can be calculated by setting the compensation value.
  • the i+1th gate drive IC GD(i+1) corresponding to the i+1th pixel display area Zone(i+1) given by the TFT turn-on voltage calculation module 32 is calculated. (or GD(i+1), and GD(i+1')) target TFT turn-on voltage is greater than corresponding drive ith pixel display area Zone(i)
  • the ith gate drive IC GD(i) (or GD(i), and GD(i')) has a target TFT turn-on voltage, but there is linear attenuation when the TFT turn-on voltage is transmitted on the trace L, and each gate
  • the pole drive ICs GD(1) to GD(N) (or GD(1) to GD(N), and GD(1') to GD(N')) actually receive the same TFT turn-on voltage, which is achieved.
  • the real-time dynamic adjustment of the TFT turn-on voltage makes the charging time of different pixel display areas equal, which can eliminate the horizontal block problem and improve the quality of the liquid crystal
  • the timing controller includes a counter, a TFT open voltage calculation module electrically connected to the counter, an electrically connected TFT turn-on voltage calculation module, and an I2C of the PWM IC.
  • the instruction module, the timing controller outputs data to one row for each output of the liquid crystal display panel, and the counter in the timing controller is incremented by one, and each time the i ⁇ M/N is added, the TFT open voltage calculation module in the timing controller performs calculation.
  • the target TFT turn-on voltage of the i+1th gate drive IC is obtained and transmitted to the I2C command module, and the I2C command module controls the PWM IC to output the corresponding target TFT turn-on voltage to the i+1th gate drive IC.
  • the TFT turn-on voltage can be dynamically adjusted in real time, so that the TFT turn-on voltage actually received by each gate drive IC is kept uniform, so that the charging time of different pixel display areas is equal, the horizontal block problem is eliminated, and the quality of the liquid crystal display panel is improved.

Abstract

一种液晶显示面板(1)驱动方法及液晶显示面板(1)驱动系统,时序控制器(3)包括计数器(31)、TFT开启电压计算模块(32)、及I2C指令模块(33),时序控制器(3)向液晶显示面板(1)每输出一行显示数据,计数器(31)加1,每加到i×M/N时,TFT开启电压计算模块(32)进行运算,得出第i+1个栅极驱动IC的目标TFT开启电压并传输给I2C指令模块(33),所述I2C指令模块(33)控制PWM IC(2)相应向第i+1个栅极驱动输出与其对应的目标TFT开启电压,能够实时动态调整TFT开启电压,使各个栅极驱动IC实际接收到的TFT开启电压保持一致,从而使液晶显示面板(1)不同像素显示区域的充电时间相等,消除水平区块问题,提高液晶显示面板(1)的品质。

Description

液晶显示面板驱动方法及液晶显示面板驱动系统 技术领域
本发明涉及液晶显示技术领域,尤其涉及一种液晶显示面板驱动方法及液晶显示面板驱动系统。
背景技术
液晶显示器(Liquid Crystal Display,LCD)具有机身薄、省电、无辐射等众多优点,得到了广泛的应用,如:液晶电视、移动电话、个人数字助理(PDA)、数字相机、计算机屏幕或笔记本电脑屏幕等,在平板显示领域中占主导地位。
现有市场上的液晶显示器大部分为背光型液晶显示器,其包括液晶显示面板及背光模组(Backlight Module)。液晶显示面板的工作原理是在薄膜晶体管阵列基板(Thin Film Transistor Array Substrate,TFT Array Substrate)与彩色滤光片基板(Color Filter,CF)之间灌入液晶分子,并在两片基板上施加驱动电压来控制液晶分子的旋转方向,以将背光模组的光线折射出来产生画面。
液晶显示面板包括多个呈阵列式排布的子像素,每个子像素电性连接一个薄膜晶体管(TFT),该TFT的栅极(Gate)连接至水平方向的栅极扫描线,源极(Source)连接至竖直方向的数据线,漏极(Drain)则连接至像素电极。通过栅极驱动(Gate Driver)IC在栅极扫描线上施加足够的电压,会使得电性连接至该条栅极扫描线上的所有TFT打开,从而数据线上的信号电压能够写入像素,控制液晶的透光度,实现显示效果。
随着显示技术的发展,液晶显示面板的尺寸越来越大,解析度越来越高,但液晶显示面板通常都是靠脉冲调制(Pulse-Width Modulation,PWM)IC产生一个恒定的TFT开启电压(VGH)提供给栅极驱动IC来驱动各行子像素内的TFT,然后才能给子像素进行充电。如图1所示,现有的液晶显示面板驱动系统架构包括液晶显示面板100、数个栅极驱动IC GD10、GD20、GD30等,恒定的TFT开启电压VGH由设置在印刷电路板(Printed Circuit Board Assembly,PCBA)上的PWM IC产生,并通过设置在TFT阵列基板上的走线(Wire On Array,WOA)向各个栅极驱动IC传输。由于WOA走线较细,阻抗较大,TFT开启电压VGH会产生衰减,不同的栅极驱动IC实际接收到的TFT开启电压VGH存在较大的差异,从而 造成不同栅极驱动IC分别对应的不同像素显示区域的充电时间也不相同,常出现相邻的像素显示区域之间的水平区块现象(H Block),即相邻的像素显示区域之间会有明显的水平分界,严重影响观看体验,导致液晶显示面板的品质下降。
发明内容
本发明的目的在于提供一种液晶显示面板驱动方法,能够实时动态调整TFT开启电压,使各个栅极驱动IC实际接收到的TFT开启电压保持一致,从而使不同像素显示区域的充电时间相等,消除水平区块问题,提高液晶显示面板的品质。
本发明的目的还在于提供一种液晶显示面板驱动系统,能够实时动态调整TFT开启电压,使各个栅极驱动IC实际接收到的TFT开启电压保持一致,从而使不同像素显示区域的充电时间相等,消除水平区块问题,提高液晶显示面板的品质。
为实现上述目的,本发明首先提供一种液晶显示面的驱动方法,包括以下步骤:
步骤1、提供一液晶显示面板驱动系统;
所述液晶显示面板驱动系统包括:
液晶显示面板,设M为正整数,所述液晶显示面板具有M行像素,设N为大于1且能够整除M的正整数,该液晶显示面板被划分为N个像素显示区域,每一像素显示区域包括M/N行像素;
至少于所述液晶显示面板的一侧设置的N个栅极驱动IC,每一栅极驱动IC负责驱动一个像素显示区域的M/N行像素;
通过走线向各个栅极驱动IC提供TFT开启电压的PWM IC;
以及电性连接所述PWM IC的时序控制器;
所述时序控制器包括计数器、电性连接所述计数器的TFT开启电压计算模块、电性连接所述TFT开启电压计算模块与PWMIC的I2C指令模块;
步骤2、所述PWM IC先向对应驱动第1个像素显示区域的第1个栅极驱动IC提供初始的TFT开启电压;所述时序控制器开始向液晶显示面板逐行输出显示数据,每输出一行显示数据,该时序控制器内的计数器加1;
步骤3、设i为正整数,且1≤i﹤N,当时序控制器内的计数器每加到i×M/N时,该时序控制器内的TFT开启电压计算模块进行运算,得出第i+1个栅极驱动IC的目标TFT开启电压并传输给I2C指令模块,所述I2C指令模块控制PWM IC相应向第i+1个栅极驱动IC输出与其对应的目标TFT开 启电压;
步骤4、当时序控制器内的计数器加到M时,该计数器复位清零。
所述I2C指令模块与PWM IC之间通过I2C接口进行电性连接。
液晶显示面板的另一侧也设置N个栅极驱动IC,一个像素显示区域的M/N行像素由位于该像素显示区域两侧的两个栅极驱动IC共同驱动。
第i+1个栅极驱动IC的目标TFT开启电压大于第i个栅极驱动IC的目标TFT开启电压;各个栅极驱动IC最终实际接收到的TFT开启电压相等。
本发明还提供一种液晶显示面板驱动系,包括:
液晶显示面板,设M为正整数,所述液晶显示面板具有M行像素,设N为大于1且能够整除M的正整数,该液晶显示面板被划分为N个像素显示区域,每一像素显示区域包括M/N行像素;
至少于所述液晶显示面板的一侧设置的N个栅极驱动IC,每一栅极驱动IC负责驱动一个像素显示区域的M/N行像素;
通过走线向各个栅极驱动IC提供TFT开启电压的PWM IC;
以及电性连接所述PWM IC的时序控制器;
所述时序控制器包括计数器、电性连接所述计数器的TFT开启电压计算模块、电性连接所述TFT开启电压计算模块与PWM IC的I2C指令模块;
所述PWM IC用于向第1个栅极驱动IC提供初始的TFT开启电压以及受I2C指令模块的控制向其它栅极驱动IC输出各自的目标TFT开启电压;所述时序控制器用于向液晶显示面板逐行输出显示数据,每输出一行显示数据,所述时序控制器内的计数器加1;设i为正整数,且1≤i﹤N,所述计数器每加到i×M/N时,该时序控制器内的TFT开启电压计算模块进行运算,得出第i+1个栅极驱动IC的目标TFT开启电压并传输给I2C指令模块,所述I2C指令模块控制PWM IC相应向第i+1个栅极驱动IC输出与其对应的目标TFT开启电压;当时序控制器内的计数器加到M时,该计数器复位清零。
所述I2C指令模块与PWM IC之间通过I2C接口进行电性连接。
液晶显示面板的另一侧也设置N个栅极驱动IC,一个像素显示区域的M/N行像素由位于该像素显示区域两侧的两个栅极驱动IC共同驱动。
所述PWM IC与时序控制器均设在位于液晶显示面板各个像素显示区域以外的驱动控制电路板上。
本发明还提供一种液晶显示面板驱动方法,包括以下步骤:
步骤1、提供一液晶显示面板驱动系统;
所述液晶显示面板驱动系统包括:
液晶显示面板,设M为正整数,所述液晶显示面板具有M行像素,设N为大于1且能够整除M的正整数,该液晶显示面板被划分为N个像素显示区域,每一像素显示区域包括M/N行像素;
至少于所述液晶显示面板的一侧设置的N个栅极驱动IC,每一栅极驱动IC负责驱动一个像素显示区域的M/N行像素;
通过走线向各个栅极驱动IC提供TFT开启电压的PWM IC;
以及电性连接所述PWM IC的时序控制器;
所述时序控制器包括计数器、电性连接所述计数器的TFT开启电压计算模块、电性连接所述TFT开启电压计算模块与PWM IC的I2C指令模块;
步骤2、所述PWM IC先向对应驱动第1个像素显示区域的第1个栅极驱动IC提供初始的TFT开启电压;所述时序控制器开始向液晶显示面板逐行输出显示数据,每输出一行显示数据,该时序控制器内的计数器加1;
步骤3、设i为正整数,且1≤i﹤N,当时序控制器内的计数器每加到i×M/N时,该时序控制器内的TFT开启电压计算模块进行运算,得出第i+1个栅极驱动IC的目标TFT开启电压并传输给I2C指令模块,所述I2C指令模块控制PWM IC相应向第i+1个栅极驱动IC输出与其对应的目标TFT开启电压;
步骤4、当时序控制器内的计数器加到M时,该计数器复位清零;
其中,所述I2C指令模块与PWM IC之间通过I2C接口进行电性连接;
其中,第i+1个栅极驱动IC的目标TFT开启电压大于第i个栅极驱动IC的目标TFT开启电压;各个栅极驱动IC最终实际接收到的TFT开启电压相等。
本发明的有益效果:本发明提供的一种液晶显示面板驱动方法及液晶显示面板驱动系统,时序控制器包括计数器、电性连接计数器的TFT开启电压计算模块、电性连接TFT开启电压计算模块与PWM IC的I2C指令模块,时序控制器向液晶显示面板每输出一行显示数据,该时序控制器内的计数器加1,每加到i×M/N时,该时序控制器内的TFT开启电压计算模块进行运算,得出第i+1个栅极驱动IC的目标TFT开启电压并传输给I2C指令模块,所述I2C指令模块控制PWM IC相应向第i+1个栅极驱IC输出与其对应的目标TFT开启电压,能够实时动态调整TFT开启电压,使各个栅极驱动IC实际接收到的TFT开启电压保持一致,从而使不同像素显示区域 的充电时间相等,消除水平区块问题,提高液晶显示面板的品质。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为现有的液晶显示面板驱动系统架构的示意图;
图2为本发明的液晶显示面板驱动方法的流程图;
图3为本发明的液晶显示面板驱动系统的架构示意图;
图4为本发明的液晶显示面板驱动系统中时序控制器的示意图;
图5为本发明的液晶显示面板驱动方法中各个栅极驱动IC的目标TFT开启电压的波形示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图2,结合图3与图4,,本发明首先提供一种液晶显示面板驱动方法,包括以下步骤:
步骤1、提供一液晶显示面板驱动系统。
如图3与图4所示,所述液晶显示面板驱动系统包括:
液晶显示面板1,设M为正整数,所述液晶显示面板1具有M行像素,设N为大于1且能够整除M的正整数,该液晶显示面板1被划分为N个像素显示区域Zone(1)至Zone(N),每一像素显示区域包括M/N行像素;
至少于所述液晶显示面板1的一侧设置的N个栅极驱动IC GD(1)至GD(N),每一栅极驱动IC负责驱动一个像素显示区域的M/N行像素;
通过走线L向各个栅极驱动IC GD(1)至GD(N)提供TFT开启电压VGH的PWM IC 2;
以及电性连接所述PWM IC 2的时序控制器3;所述时序控制器3包括计数器31、电性连接所述计数器31的TFT开启电压计算模块32、电性连接所述TFT开启电压计算模块32与PWM IC 2的I2C指令模块33。进一步地,所述I2C指令模块33与PWM IC 2之间通过I2C接口进行电性连接。
以液晶显示面板1的解析度为3840×2160为例,液晶显示面板1具有 2160行像素,该液晶显示面板1被划分为3个像素显示区域Zone(1)至Zone(3),每一像素显示区域包括720行像素。至少于所述液晶显示面板1的一侧设置3个栅极驱动IC GD(1)至GD(3),每一栅极驱动IC负责驱动一个像素显示区域的720行像素,即第1个像素显示区域Zone(1)仅由第1个栅极驱动IC GD(1)驱动,第2个像素显示区域Zone(2)仅由第2个栅极驱动IC GD(2)驱动,第3个像素显示区域Zone(3)仅由第3个栅极驱动IC GD(3)驱动,这适用于液晶显示面板单边驱动的情况;当然,也可在液晶显示面板1的另一侧也设置3个栅极驱动IC GD(1’)至GD(3’),一个像素显示区域的720行像素由位于该像素显示区域两侧的两个栅极驱动IC共同驱动,即第1个像素显示区域Zone(1)由位于其两侧的GD(1)与GD(1’)两个栅极驱动IC共同驱动,第2个像素显示区域Zone(2)由位于其两侧的GD(2)与GD(2’)两个栅极驱动IC共同驱动,第3个像素显示区域Zone(3)由位于其两侧的GD(3)与GD(3’)两个栅极驱动IC共同驱动,这适用于液晶显示面板双边驱动的情况。
步骤2、所述PWM IC 2先向对应驱动第1个像素显示区域Zone(1)的第1个栅极驱动IC GD(1)(或GD(1)、与GD(1’))提供初始的TFT开启电压;所述时序控制器3开始向液晶显示面板1逐行输出显示数据,每输出一行显示数据,该时序控制器3内的计数器31加1。
该步骤2中的第1个栅极驱动IC GD(1)(或GD(1)、与GD(1’))利用PWM IC 2提供的初始的TFT开启电压驱动第1个像素显示区域Zone(1)内的各行像素进行充电。
步骤3、设i为正整数,且1≤i﹤N,当时序控制器3内的计数器31每加到i×M/N时,该时序控制器3内的TFT开启电压计算模块32进行运算,得出第i+1个栅极驱动IC GD(i+1)(或GD(i+1)、与GD(i+1’))的目标TFT开启电压并传输给I2C指令模块33,所述I2C指令模块33通过I2C接口控制PWM IC 2相应向第i+1个栅极驱动IC GD(i+1)(或GD(i+1)、与GD(i+1’))输出与其对应的目标TFT开启电压。
继续以液晶显示面板1的解析度为3840×2160为例,当计数器31加到720时,表示栅极驱动IC GD(1)与GD(1’)所负责的第1个像素显示区域Zone(1)已充电完毕,TFT开启电压计算模块32进行运算,得出第2个栅极驱动IC GD(2)、与GD(2’)的目标TFT开启电压并传输给I2C指令模块33,所述I2C指令模块33通过I2C接口控制PWM IC 2相应向第2个栅极驱动IC GD(2)、与GD(2’)输出与其对应的目标TFT开启电压。
同样的,当计数器31加到1440时,表示栅极驱动IC GD(2)与GD(2’) 所负责的第2个像素显示区域Zone(2)已充电完毕,TFT开启电压计算模块32进行运算,得出第3个栅极驱动IC GD(3)、与GD(3’)的目标TFT开启电压并传输给I2C指令模块33,所述I2C指令模块33通过I2C接口控制PWM IC 2相应向第3个栅极驱动IC GD(3)、与GD(3’)输出与其对应的目标TFT开启电压。
依此类推。
具体地,TFT开启电压计算模块32运算各个栅极驱动IC的目标TFT开启电压是基于:在向同样的液晶显示面板1的各个栅极驱动IC均提供初始的TFT开启电压的情况下,通过实际量测相邻两个栅极驱动IC之间的TFT开启电压衰减幅值,得出一个预设补偿值,再设置时序控制器3内部的相关寄存器,由于TFT开启电压在走线L上的衰减是线性的,目标TFT开启电压的增幅也应是线性的,当时序控制器3内的计数器31每加到i×M/N时,TFT开启电压计算模块32通过调用对应倍数的预设补偿值即可运算各个栅极驱动IC的目标TFT开启电压。
步骤4、当时序控制器3内的计数器31加到M时,该计数器31复位清零。
继续以液晶显示面板1的解析度为3840×2160为例,当计数器31加到2160时,表示栅极驱动IC GD(3)与GD(3’)所负责的第3个像素显示区域Zone(3)已充电完毕,计数器31复位清零,以进入下一幅画面的驱动和显示。
如图5所示,经TFT开启电压计算模块32运算后给出的对应驱动第i+1个像素显示区域Zone(i+1)的第i+1个栅极驱动IC GD(i+1)(或GD(i+1)、与GD(i+1’))的目标TFT开启电压大于对应驱动第i个像素显示区域Zone(i)的第i个栅极驱动IC GD(i)(或GD(i)、与GD(i’))的目标TFT开启电压,但由于TFT开启电压在走线L上传输时存在线性衰减,各个栅极驱动IC GD(1)至GD(N)(或GD(1)至GD(N)、与GD(1’)至GD(N’))最终实际接收到的TFT开启电压相等,这就实现了实时动态调整TFT开启电压,使得不同像素显示区域的充电时间相等,能够消除水平区块问题,提高液晶显示面板的品质。
请同时参阅3与图4,基于同一发明构思,本发明还提供一种液晶显示面板驱动系统,包括:
液晶显示面板1,设M为正整数,所述液晶显示面板1具有M行像素,设N为大于1且能够整除M的正整数,该液晶显示面板1被划分为N个像素显示区域Zone(1)至Zone(N),每一像素显示区域包括M/N行像素;
至少于所述液晶显示面板1的一侧设置的N个栅极驱动IC GD(1)至 GD(N),每一栅极驱动IC负责驱动一个像素显示区域的M/N行像素;
通过走线L向各个栅极驱动IC GD(1)至GD(N)提供TFT开启电压VGH的PWM IC 2;
以及电性连接所述PWM IC 2的时序控制器3;所述时序控制器3包括计数器31、电性连接所述计数器31的TFT开启电压计算模块32、电性连接所述TFT开启电压计算模块32与PWM IC2的I2C指令模块33。进一步地,所述I2C指令模块33与PWM IC 2之间通过I2C接口进行电性连接。
具体地,所述PWM IC 2与时序控制器3均设在位于液晶显示面板1各个像素显示区域以外的驱动控制电路板(Control Board,CB)上。
以液晶显示面板1的解析度为3840×2160为例,液晶显示面板1具有2160行像素,该液晶显示面板1被划分为3个像素显示区域Zone(1)至Zone(3),每一像素显示区域包括720行像素。至少于所述液晶显示面板1的一侧设置3个栅极驱动IC GD(1)至GD(3),每一栅极驱动IC负责驱动一个像素显示区域的720行像素,即第1个像素显示区域Zone(1)仅由第1个栅极驱动IC GD(1)驱动,第2个像素显示区域Zone(2)仅由第2个栅极驱动IC GD(2)驱动,第3个像素显示区域Zone(3)仅由第3个栅极驱动IC GD(3)驱动,这适用于液晶显示面板单边驱动的情况;当然,也可在液晶显示面板1的另一侧也设置3个栅极驱动IC GD(1’)至GD(3’),一个像素显示区域的720行像素由位于该像素显示区域两侧的两个栅极驱动IC共同驱动,即第1个像素显示区域Zone(1)由位于其两侧的GD(1)与GD(1’)两个栅极驱动IC共同驱动,第2个像素显示区域Zone(2)由位于其两侧的GD(2)与GD(2’)两个栅极驱动IC共同驱动,第3个像素显示区域Zone(3)由位于其两侧的GD(3)与GD(3’)两个栅极驱动IC共同驱动,这适用于液晶显示面板双边驱动的情况。
所述PWM IC 2用于向第1个栅极驱动IC GD(1)提供初始的TFT开启电压以及受I2C指令模块33的控制向其它栅极驱动IC GD(2)至GD(N)(或GD(2)至GD(N)、与GD(2’)至GD(N’))输出各自的目标TFT开启电压;所述时序控制器3用于向液晶显示面板1逐行输出显示数据,每输出一行显示数据,所述时序控制器3内的计数器31加1;设i为正整数,且1≤i﹤N,所述计数器31每加到i×M/N时,该时序控制器3内的TFT开启电压计算模块32进行运算,得出第i+1个栅极驱动IC GD(i+1)(或GD(i+1)与GD(i+1’))的目标TFT开启电压并传输给I2C指令模块33,所述I2C指令模块33控制PWM IC 2相应向第i+1个栅极驱动IC GD(i+1)(或GD(i+1)与GD(i+1’))输出与其对应的目标TFT开启电压;当时序控制器3内的计 数器31加到M时,该计数器31复位清零。
仍以液晶显示面板1的解析度为3840×2160为例,该液晶显示面板驱动系统的工作过程为:
首先,第1个栅极驱动IC GD(1)(或GD(1)、与GD(1’))利用PWM IC2提供的初始的TFT开启电压驱动第1个像素显示区域Zone(1)内的各行像素进行充电,所述时序控制器3每输出一行显示数据,该时序控制器3内的计数器31加1。
当计数器31加到720时,表示栅极驱动IC GD(1)与GD(1’)所负责的第1个像素显示区域Zone(1)已充电完毕,TFT开启电压计算模块32进行运算,得出第2个栅极驱动IC GD(2)、与GD(2’)的目标TFT开启电压并传输给I2C指令模块33,所述I2C指令模块33通过I2C接口控制PWM IC 2相应向第2个栅极驱动IC GD(2)、与GD(2’)输出与其对应的目标TFT开启电压。
同样的,当计数器31加到1440时,表示栅极驱动IC GD(2)与GD(2’)所负责的第2个像素显示区域Zone(2)已充电完毕,TFT开启电压计算模块32进行运算,得出第3个栅极驱动IC GD(3)、与GD(3’)的目标TFT开启电压并传输给I2C指令模块33,所述I2C指令模块33通过I2C接口控制PWM IC 2相应向第3个栅极驱动IC GD(3)、与GD(3’)输出与其对应的目标TFT开启电压。
依此类推。
当计数器31加到2160时,表示栅极驱动IC GD(3)与GD(3’)所负责的第3个像素显示区域Zone(3)已充电完毕,计数器31复位清零,以进入下一幅画面的驱动和显示。
值得一提的是,TFT开启电压计算模块32运算各个栅极驱动IC的目标TFT开启电压是基于:在向同样的液晶显示面板1的各个栅极驱动IC均提供初始的TFT开启电压的情况下,通过实际量测相邻两个栅极驱动IC之间的TFT开启电压衰减幅值,得出一个预设补偿值,再设置时序控制器3内部的相关寄存器,由于TFT开启电压在走线L上的衰减是线性的,目标TFT开启电压的增幅也应是线性的,当时序控制器3内的计数器31每加到i×M/N时,TFT开启电压计算模块32通过调用对应倍数的预设补偿值即可运算各个栅极驱动IC的目标TFT开启电压。
如图5所示,经TFT开启电压计算模块32运算后给出的对应驱动第i+1个像素显示区域Zone(i+1)的第i+1个栅极驱动IC GD(i+1)(或GD(i+1)、与GD(i+1’))的目标TFT开启电压大于对应驱动第i个像素显示区域Zone(i) 的第i个栅极驱动IC GD(i)(或GD(i)、与GD(i’))的目标TFT开启电压,但由于TFT开启电压在走线L上传输时存在线性衰减,各个栅极驱动IC GD(1)至GD(N)(或GD(1)至GD(N)、与GD(1’)至GD(N’))最终实际接收到的TFT开启电压相等,这就实现了实时动态调整TFT开启电压,使得不同像素显示区域的充电时间相等,能够消除水平区块问题,提高液晶显示面板的品质。
综上所述,本发明的液晶显示面板驱动方法及液晶显示面板驱动系统,时序控制器包括计数器、电性连接计数器的TFT开启电压计算模块、电性连接TFT开启电压计算模块与PWM IC的I2C指令模块,时序控制器向液晶显示面板每输出一行显示数据,该时序控制器内的计数器加1,每加到i×M/N时,该时序控制器内的TFT开启电压计算模块进行运算,得出第i+1个栅极驱动IC的目标TFT开启电压并传输给I2C指令模块,所述I2C指令模块控制PWM IC相应向第i+1个栅极驱IC输出与其对应的目标TFT开启电压,能够实时动态调整TFT开启电压,使各个栅极驱动IC实际接收到的TFT开启电压保持一致,从而使不同像素显示区域的充电时间相等,消除水平区块问题,提高液晶显示面板的品质。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (10)

  1. 一种液晶显示面板驱动方法,包括以下步骤:
    步骤1、提供一液晶显示面板驱动系统;
    所述液晶显示面板驱动系统包括:
    液晶显示面板,设M为正整数,所述液晶显示面板具有M行像素,设N为大于1且能够整除M的正整数,该液晶显示面板被划分为N个像素显示区域,每一像素显示区域包括M/N行像素;
    至少于所述液晶显示面板的一侧设置的N个栅极驱动IC,每一栅极驱动IC负责驱动一个像素显示区域的M/N行像素;
    通过走线向各个栅极驱动IC提供TFT开启电压的PWM IC;
    以及电性连接所述PWM IC的时序控制器;
    所述时序控制器包括计数器、电性连接所述计数器的TFT开启电压计算模块、电性连接所述TFT开启电压计算模块与PWM IC的I2C指令模块;
    步骤2、所述PWM IC先向对应驱动第1个像素显示区域的第1个栅极驱动IC提供初始的TFT开启电压;所述时序控制器开始向液晶显示面板逐行输出显示数据,每输出一行显示数据,该时序控制器内的计数器加1;
    步骤3、设i为正整数,且1≤i﹤N,当时序控制器内的计数器每加到i×M/N时,该时序控制器内的TFT开启电压计算模块进行运算,得出第i+1个栅极驱动IC的目标TFT开启电压并传输给I2C指令模块,所述I2C指令模块控制PWM IC相应向第i+1个栅极驱动IC输出与其对应的目标TFT开启电压;
    步骤4、当时序控制器内的计数器加到M时,该计数器复位清零。
  2. 如权利要求1所述的液晶显示面板驱动方法,其中,所述I2C指令模块与PWM IC之间通过I2C接口进行电性连接。
  3. 如权利要求1所述的液晶显示面板驱动方法,其中,液晶显示面板的另一侧也设置N个栅极驱动IC,一个像素显示区域的M/N行像素由位于该像素显示区域两侧的两个栅极驱动IC共同驱动。
  4. 如权利要求1所述的液晶显示面板驱动方法,其中,第i+1个栅极驱动IC的目标TFT开启电压大于第i个栅极驱动IC的目标TFT开启电压;各个栅极驱动IC最终实际接收到的TFT开启电压相等。
  5. 一种液晶显示面板驱动系统,包括:
    液晶显示面板,设M为正整数,所述液晶显示面板具有M行像素,设N为大于1且能够整除M的正整数,该液晶显示面板被划分为N个像素显示区域,每一像素显示区域包括M/N行像素;
    至少于所述液晶显示面板的一侧设置的N个栅极驱动IC,每一栅极驱动IC负责驱动一个像素显示区域的M/N行像素;
    通过走线向各个栅极驱动IC提供TFT开启电压的PWM IC;
    以及电性连接所述PWM IC的时序控制器;
    所述时序控制器包括计数器、电性连接所述计数器的TFT开启电压计算模块、电性连接所述TFT开启电压计算模块与PWM IC的I2C指令模块;
    所述PWM IC用于向第1个栅极驱动IC提供初始的TFT开启电压以及受I2C指令模块的控制向其它栅极驱动IC输出各自的目标TFT开启电压;所述时序控制器用于向液晶显示面板逐行输出显示数据,每输出一行显示数据,所述时序控制器内的计数器加1;设i为正整数,且1≤i﹤N,所述计数器每加到i×M/N时,该时序控制器内的TFT开启电压计算模块进行运算,得出第i+1个栅极驱动IC的目标TFT开启电压并传输给I2C指令模块,所述I2C指令模块控制PWM IC相应向第i+1个栅极驱动IC输出与其对应的目标TFT开启电压;当时序控制器内的计数器加到M时,该计数器复位清零。
  6. 如权利要求5所述的液晶显示面板驱动系统,其中,所述I2C指令模块与PWM IC之间通过I2C接口进行电性连接。
  7. 如权利要求5所述的液晶显示面板驱动系统,其中,液晶显示面板的另一侧也设置N个栅极驱动IC,一个像素显示区域的M/N行像素由位于该像素显示区域两侧的两个栅极驱动IC共同驱动。
  8. 如权利要求5所述的液晶显示面板驱动系统,其中,所述PWM IC与时序控制器均设在位于液晶显示面板各个像素显示区域以外的驱动控制电路板上。
  9. 一种液晶显示面板驱动方法,包括以下步骤:
    步骤1、提供一液晶显示面板驱动系统;
    所述液晶显示面板驱动系统包括:
    液晶显示面板,设M为正整数,所述液晶显示面板具有M行像素,设N为大于1且能够整除M的正整数,该液晶显示面板被划分为N个像素显示区域,每一像素显示区域包括M/N行像素;
    至少于所述液晶显示面板的一侧设置的N个栅极驱动IC,每一栅极驱 动IC负责驱动一个像素显示区域的M/N行像素;
    通过走线向各个栅极驱动IC提供TFT开启电压的PWM IC;
    以及电性连接所述PWM IC的时序控制器;
    所述时序控制器包括计数器、电性连接所述计数器的TFT开启电压计算模块、电性连接所述TFT开启电压计算模块与PWM IC的I2C指令模块;
    步骤2、所述PWM IC先向对应驱动第1个像素显示区域的第1个栅极驱动IC提供初始的TFT开启电压;所述时序控制器开始向液晶显示面板逐行输出显示数据,每输出一行显示数据,该时序控制器内的计数器加1;
    步骤3、设i为正整数,且1≤i﹤N,当时序控制器内的计数器每加到i×M/N时,该时序控制器内的TFT开启电压计算模块进行运算,得出第i+1个栅极驱动IC的目标TFT开启电压并传输给I2C指令模块,所述I2C指令模块控制PWM IC相应向第i+1个栅极驱动IC输出与其对应的目标TFT开启电压;
    步骤4、当时序控制器内的计数器加到M时,该计数器复位清零;
    其中,所述I2C指令模块与PWM IC之间通过I2C接口进行电性连接;
    其中,第i+1个栅极驱动IC的目标TFT开启电压大于第i个栅极驱动IC的目标TFT开启电压;各个栅极驱动IC最终实际接收到的TFT开启电压相等。
  10. 如权利要求9所述的液晶显示面板驱动方法,其中,液晶显示面板的另一侧也设置N个栅极驱动IC,一个像素显示区域的M/N行像素由位于该像素显示区域两侧的两个栅极驱动IC共同驱动。
PCT/CN2016/079012 2016-03-11 2016-04-12 液晶显示面板驱动方法及液晶显示面板驱动系统 WO2017152462A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/105,567 US9959831B1 (en) 2016-03-11 2016-04-12 Drive method of liquid crystal display panel and drive system of liquid crystal display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610140499.5A CN105590609B (zh) 2016-03-11 2016-03-11 液晶显示面板驱动方法及液晶显示面板驱动系统
CN201610140499.5 2016-03-11

Publications (1)

Publication Number Publication Date
WO2017152462A1 true WO2017152462A1 (zh) 2017-09-14

Family

ID=55930138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079012 WO2017152462A1 (zh) 2016-03-11 2016-04-12 液晶显示面板驱动方法及液晶显示面板驱动系统

Country Status (3)

Country Link
US (1) US9959831B1 (zh)
CN (1) CN105590609B (zh)
WO (1) WO2017152462A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106710563A (zh) * 2017-03-20 2017-05-24 深圳市华星光电技术有限公司 一种显示面板的驱动方法、时序控制器及液晶显示器
CN106875913A (zh) * 2017-04-21 2017-06-20 京东方科技集团股份有限公司 移位寄存器单元及其驱动方法、栅极驱动电路
CN109003591B (zh) * 2018-09-28 2021-11-30 惠科股份有限公司 驱动电压控制系统及显示装置
CN109300443B (zh) 2018-12-03 2020-08-18 惠科股份有限公司 一种显示面板驱动方法和驱动电路
CN110070818A (zh) * 2019-04-10 2019-07-30 深圳市华星光电技术有限公司 用于显示面板的栅极驱动方法
CN112017600B (zh) * 2019-05-30 2022-02-01 京东方科技集团股份有限公司 一种液晶显示面板的驱动装置及方法和显示装置
CN111681583A (zh) * 2020-06-04 2020-09-18 Tcl华星光电技术有限公司 Goa驱动电路及显示装置
CN113129847B (zh) * 2021-04-13 2022-07-12 Tcl华星光电技术有限公司 背光亮度控制方法、装置及显示设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030117356A1 (en) * 2001-12-20 2003-06-26 Moon Sung Woong Liquid crystal display of line-on-glass type
CN101369061A (zh) * 2008-10-15 2009-02-18 上海广电光电子有限公司 液晶显示面板的驱动方法
CN101866633A (zh) * 2010-05-21 2010-10-20 苏州汉朗光电有限公司 近晶态液晶显示屏用多区域扫描驱动方法
CN101950539A (zh) * 2010-03-19 2011-01-19 福建华映显示科技有限公司 一种消除液晶显示面板的亮暗线的方法
CN102855862A (zh) * 2012-09-29 2013-01-02 深圳市华星光电技术有限公司 一种液晶面板的驱动电路、液晶面板及液晶显示装置
CN105070243A (zh) * 2015-09-15 2015-11-18 重庆京东方光电科技有限公司 栅极开启电压补偿电路、显示面板、驱动方法及显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11149279A (ja) * 1997-11-18 1999-06-02 Advanced Display Inc 液晶表示装置
JP2004246087A (ja) * 2003-02-14 2004-09-02 Advanced Display Inc 表示装置とその駆動回路、駆動装置および駆動方法
CN101620832B (zh) * 2008-06-30 2011-07-13 中华映管股份有限公司 液晶显示器及其开关电压控制电路
CN101814278B (zh) * 2010-04-14 2013-01-09 福州华映视讯有限公司 双闸极液晶显示装置及其驱动方法
CN102237050B (zh) * 2010-04-27 2013-07-31 北京京东方光电科技有限公司 栅极驱动电路、栅极电压调节方法以及液晶显示器
US9013385B2 (en) * 2012-09-29 2015-04-21 Shenzhen China Star Optoelectronics Technology Co., Ltd Driving circuit of LCD panel, LCD panel, and LCD device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030117356A1 (en) * 2001-12-20 2003-06-26 Moon Sung Woong Liquid crystal display of line-on-glass type
CN101369061A (zh) * 2008-10-15 2009-02-18 上海广电光电子有限公司 液晶显示面板的驱动方法
CN101950539A (zh) * 2010-03-19 2011-01-19 福建华映显示科技有限公司 一种消除液晶显示面板的亮暗线的方法
CN101866633A (zh) * 2010-05-21 2010-10-20 苏州汉朗光电有限公司 近晶态液晶显示屏用多区域扫描驱动方法
CN102855862A (zh) * 2012-09-29 2013-01-02 深圳市华星光电技术有限公司 一种液晶面板的驱动电路、液晶面板及液晶显示装置
CN105070243A (zh) * 2015-09-15 2015-11-18 重庆京东方光电科技有限公司 栅极开启电压补偿电路、显示面板、驱动方法及显示装置

Also Published As

Publication number Publication date
CN105590609B (zh) 2019-01-22
US20180108315A1 (en) 2018-04-19
US9959831B1 (en) 2018-05-01
CN105590609A (zh) 2016-05-18

Similar Documents

Publication Publication Date Title
WO2017152462A1 (zh) 液晶显示面板驱动方法及液晶显示面板驱动系统
JP5302292B2 (ja) 液晶表示装置
WO2017152460A1 (zh) 液晶显示面板驱动方法
US8416231B2 (en) Liquid crystal display
US8368630B2 (en) Liquid crystal display
US10303019B2 (en) Light valve panel and liquid crystal display using the same
CN107464538B (zh) 显示装置及其驱动方法
US20080001882A1 (en) Liquid crystal display device and method of driving the same
WO2020107585A1 (zh) 显示面板的驱动方法
JP6968277B2 (ja) 液晶パネルの充電率を求める方法
WO2020168600A1 (zh) 改善背光频率变化引起亮暗带的液晶显示器
KR102278192B1 (ko) 액정표시장치
WO2020186605A1 (zh) 显示面板的驱动方法
KR20110072116A (ko) 액정 표시장치 및 그의 구동방법
KR101695018B1 (ko) 액정표시장치
KR20180014337A (ko) 액정표시장치
KR102043849B1 (ko) 액정표시장치
WO2020186604A1 (zh) 显示面板的驱动方法
KR102013378B1 (ko) 액정표시장치
KR102160121B1 (ko) 표시장치
US11830447B2 (en) Liquid crystal display drive device and method of driving the same, and image processor
KR100934826B1 (ko) 액정 표시소자의 감마 기준전압 설정방법
KR102298850B1 (ko) 액정표시장치
KR100980013B1 (ko) 액정 표시 장치 및 그 구동 방법
US20090315818A1 (en) Method and Related Apparatus for Driving a Flat Panel Display

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15105567

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893110

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893110

Country of ref document: EP

Kind code of ref document: A1