WO2017150915A1 - Positive electrode active material for lithium secondary battery, method for producing same and lithium secondary battery comprising same - Google Patents

Positive electrode active material for lithium secondary battery, method for producing same and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2017150915A1
WO2017150915A1 PCT/KR2017/002272 KR2017002272W WO2017150915A1 WO 2017150915 A1 WO2017150915 A1 WO 2017150915A1 KR 2017002272 W KR2017002272 W KR 2017002272W WO 2017150915 A1 WO2017150915 A1 WO 2017150915A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
active material
deintercalation
secondary battery
positive electrode
Prior art date
Application number
PCT/KR2017/002272
Other languages
French (fr)
Korean (ko)
Inventor
최수안
정호준
전상훈
양지운
신준호
정진성
안지선
정봉준
Original Assignee
주식회사 엘 앤 에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘 앤 에프 filed Critical 주식회사 엘 앤 에프
Publication of WO2017150915A1 publication Critical patent/WO2017150915A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the positive electrode active material for a lithium secondary battery the manufacturing method of the positive electrode active material for lithium secondary batteries, and a positive electrode active material for lithium secondary batteries.
  • a battery generates electric power by using an electrochemical reaction material for the positive electrode and the negative electrode.
  • a typical example of such a battery is a lithium secondary battery that generates electrical energy by a change in chemical potential when lithium ions are intercalated / deintercalated at a positive electrode and a negative electrode.
  • the lithium secondary battery is prepared by using a material capable of reversible intercalation / deintercalation of lithium ions as a positive electrode and a negative electrode active material, and layering an organic electrolyte or a polymer electrolyte between the positive electrode and the negative electrode.
  • a lithium composite metal compound is used as a cathode active material of a lithium secondary battery, and composite metal oxides such as LiCo0 2 , LiMn 2 0 4 , LiNi0 2 , and LiMn0 2 have been studied.
  • Mn-based cathode active materials such as LiMn 2 O 4 and LiMn0 2 are easy to synthesize, are relatively inexpensive, have the best thermal stability compared to other active materials during overheating, and have low environmental pollution and are attractive materials. Although it has a disadvantage, the capacity is small.
  • LiCo0 2 has a good electrical conductivity and a high battery voltage of about 3.7V, and also has excellent cycle life characteristics, stability, and discharge capacity. Thus, LiCo0 2 is a representative cathode active material commercially available and commercially available. But LiCo0 2 Since the price is expensive, it takes up more than 30% of the battery price, so there is a problem that the price competitiveness falls.
  • LiNi0 2 exhibits the highest discharge capacity of battery characteristics among the cathode active materials mentioned above, but has a disadvantage of being difficult to synthesize.
  • the high oxidation state of nickel causes a decrease in battery and electrode life, and there is a problem of severe self discharge and inferior reversibility.
  • it is difficult to commercialize the stability is not perfect.
  • the present invention provides a cathode active material for a lithium secondary battery having excellent high capacity, high efficiency, and lifespan characteristics, and provides a lithium secondary battery including a cathode including the cathode active material.
  • a compound capable of reversible intercalation and deintercalation of lithium comprising a compound capable of reversible intercalation and deintercalation of lithium; And a coating layer located on at least a portion of the surface of the compound capable of reversible intercalation and deintercalation of lithium, wherein the compound capable of reversible intercalation and deintercalation of lithium is doped with metals M and F
  • the metal M is at least one element selected from the group consisting of Mg, Ca, Ni, Ti, Al, Si, Sn, Mn, Cr, Fe and Zr
  • the coating layer is a lithium secondary including Li 3 P0 4
  • a battery positive electrode active material is provided.
  • A is Ni a Co p Mn Y
  • metal M is at least one element selected from the group consisting of Mg, Ca, Ni, Ti, Al, Si, Sn, Mn, Cr, Fe and Zr 0 ⁇ x ⁇ 0.1, 0 ⁇ y ⁇ 0.1, 0 ⁇ z ⁇ 0.1, 0 ⁇ ⁇ ⁇ 1, 0 ⁇ ⁇ 1 and 0 ⁇ Y ⁇ 0.49.
  • the metal M may be at least one element selected from the group consisting of Mg, Ca and Ti.
  • Metals M and F may be derived from metal compound raw materials for doping.
  • the coating layer may further comprise LiF.
  • Lithium in Li 3 PO 4 contained in the coating layer may be from Li included in a compound capable of reversible intercalation and deintercalation of lithium, or may be from a separate Li feed material.
  • Compounds capable of reversible intercalation and deintercalation of lithium include Li a A 1 -b X b D 2 (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5); Li a Ai- b X b 0 2 — J c (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05); LiE 1 - b X b 0 2- cDc (0 ⁇ b ⁇ 0.5, 0 ⁇ c
  • LiE 2 -bXbO4-cT c (0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05); Li a Ni ! -b - c Co b X c D a (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05, 0 ⁇ a ⁇ 2); Li a Nii- b - c Co b X c 0 2- a T a (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05, 0 ⁇ a ⁇ 2); Li a N — b — c Co b X c 02- a T 2 (0.90 ⁇ a ⁇ 1.8 , 0 ⁇ b ⁇ 0.5, 0 ⁇ c
  • Li a NiG b 0 2 - c T c (0.90 ⁇ a ⁇ 1.8, 0.001 ⁇ b ⁇ 0.1, 0 ⁇ c ⁇ 0.05 ); Li a CoG b 0 2 - c T c (0.90 ⁇ a ⁇ 1.8, 0.001 ⁇ b ⁇ 0.1, 0 ⁇ c ⁇ 0.05);
  • LiNiV0 4 it may be at least one selected from the group consisting of Li (3 - f) J 2 (P0 4 ) 3 (0 ⁇ f ⁇ 2).
  • A is selected from the group consisting of Ni, Co, Mn, and combinations thereof;
  • X is Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, rare earth elements and their Selected from the group consisting of combinations;
  • D is selected from the group consisting of 0, F, S, P, and combinations thereof;
  • E is selected from the group consisting of Co, Mn, and combinations thereof;
  • T is selected from the group consisting of F, S, P, and combinations thereof;
  • G is selected from the group consisting of Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, and combinations thereof;
  • Q is selected from the group consisting of Ti, Mo, Mn, and combinations thereof;
  • Z is selected from the group consisting of Cr, V, Fe, Sc, Y, and combinations thereof;
  • J is selected from the group consisting of V, Cr, Mn, Co, Ni, Cu, and combinations thereof.
  • the content of the coating layer relative to the total amount of positive electrode active material may be 0.2 to 2.0% by weight.
  • preparing a compound capable of reversible intercalation and deintercalation of lithium Preparing a phosphorus source; Dispersing a phosphorus source in a solvent to prepare a coating solution; Stirring and mixing a compound capable of reversible intercalation and deintercalation of lithium to the coating solution and uniformly attaching a phosphorus source to the surface of the compound capable of reversible intercalation and deintercalation of lithium ; Drying a compound capable of reversible intercalation and deintercalation of lithium with a phosphorus source; and heat treating the compound capable of reversible intercalation and deintercalation of lithium with a phosphorus source, It provides a method for producing a positive electrode active material for a lithium secondary battery comprising the step of obtaining a compound capable of reversible intercalation and deintercalation of lithium formed on the surface of the coating layer comprising Li 3 PO 4 .
  • the lithium source may be further dispersed in the step of dispersing the phosphorus source in a solvent to prepare a coating solution.
  • the heat treatment temperature may be 650 to 950 ° C.
  • the lithium source may be lithium carbonate, lithium nitrate, lithium sulfate, lithium acetate, lithium phosphate, lithium chloride, lithium hydroxide, lithium oxide, or a combination thereof. have.
  • the phosphorus source may be (NH 4 ) 2 HP0 4 , NH 4 H 2 PO 4 , (NH 4 ) 2 HP0 4 , Li 3 P0 4) P 2 0 5, or a combination thereof.
  • cathode active material having excellent battery characteristics and a lithium secondary battery including the same.
  • FIG. 1 is a schematic view of a lithium secondary battery.
  • Example 2 is 7Li MAS NMR analysis results of Example 1.
  • a compound capable of reversible intercalation and deintercalation of lithium comprising a compound capable of reversible intercalation and deintercalation of lithium; And a coating layer located on at least a portion of the surface of the compound capable of reversible intercalation and deintercalation of lithium, wherein the compound capable of reversible intercalation and deintercalation of lithium is referred to as metals M and F.
  • the metal M is at least one element selected from the group consisting of Mg, Ca, Ni, Ti, Al, Si, Sn, Mn, Cr, Fe and Zr
  • the coating layer is a lithium containing Li 3 P0 4
  • a cathode active material for a secondary battery is provided.
  • the positive electrode active material according to the embodiment of the present invention may improve battery characteristics of a lithium secondary battery.
  • improved battery characteristics include initial capacity and improved efficiency of the battery at high voltage characteristics.
  • the positive electrode active material comprises a coating layer containing Li 3 P0 4, the Li 3 P0 4 contained in the coating layer in the positive electrode active material It acts to increase the diffusion of Li ions (Driving Force) and improves battery characteristics with ion conductivity to facilitate the movement of Li ions. In particular, it contributes to the improvement of efficiency characteristics.
  • the positive electrode active material for a lithium secondary battery includes a compound capable of reversible intercalation and deintercalation of lithium.
  • Compounds capable of reversible intercalation and deintercalation of lithium are doped with metals M and F, with metals M being Mg, Ca, Ni, Ti, Al, Si, Sn, Mn, Cr, Fe, and Zr
  • metals M being Mg, Ca, Ni, Ti, Al, Si, Sn, Mn, Cr, Fe, and Zr
  • the coating layer including Li 3 P0 4 needs to be coated on a compound of a specific doping in order to play a role of improving battery characteristics.
  • the metals M and F may be derived from the metal compound raw material for doping.
  • the compound capable of reversible intercalation and deintercalation of lithium may be represented by the following Chemical Formula 1.
  • A is Ni a Co p Mn Y
  • metal M is at least one element selected from the group consisting of Mg, Ca, Ni, Ti, Al, Si, Sn, Mn, Cr, Fe and Zr , 0 ⁇ x ⁇ 0.1, 0 ⁇ y ⁇ 0.1, 0 ⁇ z ⁇ 0.1, 0 ⁇ ⁇ 1, 0 ⁇ ⁇ 1 and 0 ⁇ ⁇ 0.49.
  • the rocksalt structure is formed on the surface of the cathode material due to excess lithium, and the surface rearrangement reaction (Rocksalt ⁇ layered) occurs during the chemical reaction process in which Li 3 P0 4 is formed on the compound surface. Structural defects and impurities formed on the surface are controlled.
  • a general LiM0 2 (M is Ni, Co, or Mn) composition is applied, Li lack may occur in the process of forming Li 3 P0 4 , thereby deteriorating battery characteristics.
  • the Li 3 PO 4 coating is carried out in the composition, the formation of structural defects may be promoted by the reduction reaction generated between P and the surface of the cathode material.
  • the metal M may be at least one element selected from the group consisting of Mg, Ca and Ti.
  • the compound capable of reversible intercalation and deintercalation of lithium ⁇ a ⁇ 1.8, 0 ⁇ b
  • Li a Ai- b XbO2-cTc (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05); LiE 1 - b Xb0 2- cDc (0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05); LiE 2 - b X b 0 4 — C T C (0 ⁇ b
  • Li a NiG b 0 2 - c T c (0.90 ⁇ a ⁇ 1.8, 0.001 ⁇ b ⁇ 0.1, 0 ⁇ c ⁇ 0.05); Li a CoG b 0 2 - c T c (0.90 ⁇ a ⁇ 1.8, 0.001 ⁇ b
  • Li a Mn 2 G b 02-cT c (0.90 ⁇ a ⁇ 1.8, 0.001 ⁇ b ⁇ 0.1 0 ⁇ c ⁇ 0.05); Li a MnG v b P0 4 (0.90 ⁇ a ⁇ 1.8, 0.001 ⁇ b ⁇ 0.1); LiNiV0 4 ; And it may be at least one selected from the group consisting of Li ( 3-f) J 2 (P0 4 ) 3 (0 ⁇ f ⁇ 2).
  • A is selected from the group consisting of Ni, Co, Mn, and combinations thereof;
  • X is Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, rare earth elements and combinations thereof
  • D is selected from the group consisting of 0, F, S, P, and combinations thereof;
  • E is selected from the group consisting of Co, Mn, and combinations thereof;
  • T is F, S , P, and combinations thereof Selected;
  • G is selected from Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, and combinations thereof;
  • Q is selected from the group consisting of Ti, Mo, Mn, and combinations thereof;
  • Z is selected from the group consisting of Cr, V, Fe, Sc, Y, and combinations thereof;
  • J is selected from the group consisting of V, Cr, Mn, Co, Ni, Cu, and combinations thereof.
  • the coating layer comprises Li 3 P0 4 .
  • Li 3 P 0 4 included in the coating layer plays a role of increasing the diffusion of Li ions in the positive electrode active material (Dr iving Force) and improves battery characteristics with ion conductivity to facilitate the movement of Li ions. In particular, it contributes to the improvement of the filial piety.
  • Lithium in Li 3 PO 4 included in the coating layer may be from Li included in a compound capable of reversible intercalation and deintercalation of lithium, or may be from a separate Li feed material.
  • the coating layer may further comprise LiF.
  • LiF When LiF is further included, it is more advantageous to improve battery characteristics by contributing to the safety of surface structure by suppressing side reaction with electrolyte solution.
  • F may be derived from F contained in a compound capable of reversible intercalation and deintercalation of lithium.
  • the weight ratio of the coating layer to the total weight of the positive electrode active material may be 0.2 to 2.0 wt%. When the weight ratio of the coating layer is too small, the role of the coating layer may be reduced, and when the increase ratio of the coating layer is too large, a decrease in initial capacity and a decrease in charge and discharge efficiency may appear. However, it is not limited thereto.
  • preparing a compound capable of reversible intercalation and deintercalation of lithium Preparing a phosphorus source; Dispersing a phosphorus source in a solvent to prepare a coating solution; Stirring and mixing a compound capable of reversible intercalation and deintercalation of lithium to the coating solution to uniformly attach the phosphorus source to the surface of the compound capable of reversible intercalation and deintercalation of lithium; Drying a compound capable of reversible intercalation and deintercalation of lithium with a phosphorus source; and heat treating the compound capable of reversible intercalation and deintercalation of lithium with a phosphorus source; Reversible Lithium Formed on Surface with a Coating Layer Containing Li 3 P0 4 It provides a method for producing a positive electrode active material for a lithium secondary battery comprising a; obtaining a compound capable of intercalation and deintercalation.
  • a compound capable of reversible intercalation and deintercalation of lithium is prepared. Compounds capable of reversible intercalation and deintercalation of lithium are described above, and thus repeated descriptions are omitted. Next, prepare a source of phosphorus.
  • Phosphorus source is (NH 4 ) 2 HP0 4! NH 4 H 2 PO 4 , (NH 4 ) 2 HP0 4 , L 13PO 4 , P 2 O 5, or a combination thereof.
  • the phosphorus source is dispersed in a solvent to prepare a coating solution.
  • the solvent is not particularly limited as long as it is a solvent capable of uniformly dispersing a phosphorus source, and specifically, may be an ethanol solvent.
  • the lithium source can be further dispersed in a solvent.
  • the lithium source may be lithium carbonate, lithium nitrate, lithium sulfate, lithium acetate, lithium phosphate, lithium chloride, lithium hydroxide, lithium oxide, or a combination thereof.
  • a compound capable of reversible intercalation and deintercalation of lithium is stirred and mixed with the coating solution.
  • the phosphorus source is uniformly attached to the surface of the compound capable of reversible intercalation and deintercalation of lithium. Let it be.
  • the lithium source and the phosphorus source are uniformly attached to the surface of the compound capable of reversible intercalation and deintercalation of lithium.
  • the heat treatment temperature may be 650 to 950 ° C.
  • the coating layer formed on the surface of the positive electrode active material is stable Can play a role. If the coating liquid contains only a phosphorus source and no lithium source, lithium may be derived from U contained in the compound capable of reversible intercalation and deintercalation of lithium.
  • a lithium secondary battery including a positive electrode, a negative electrode and an electrolyte
  • the positive electrode includes a current collector and a positive electrode active material layer formed on the current collector, the positive electrode active material layer, the positive electrode It provides a lithium secondary battery containing an active material.
  • the positive electrode active material layer may include a binder and a conductive material.
  • the binder adheres positively to the positive electrode active material particles, and also serves to adhere the positive electrode active material to the current collector well, and representative examples thereof include polyvinyl alcohol, carboxymethyl cell rose, hydroxypropyl cell rose, and diacetyl cell rose.
  • Polyvinylchloride, carboxylated polyvinylchloride, polyvinylfluoride, polymers containing ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, Styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon and the like can be used, but is not limited thereto.
  • the conductive material is used to impart conductivity to the electrode, and any battery can be used as long as it is an electronic conductive material without causing chemical change in the battery.
  • any battery can be used as long as it is an electronic conductive material without causing chemical change in the battery.
  • Carbon-based materials such as black and carbon fiber;
  • Metal materials such as metal powder of copper, nickel, aluminum, silver or metal fiber;
  • Conductive polymers such as polyphenylene derivatives; Or an electroconductive material containing these mixture can be used.
  • the negative electrode includes a current collector and a negative electrode active material layer formed on the current collector, and the negative electrode active material layer includes a negative electrode active material.
  • the negative electrode active material includes a material capable of reversibly intercalating / deintercalating lithium ions, lithium metal, and lithium metal. Alloys, materials capable of doping and undoping lithium, or transition metal oxides.
  • any carbon-based negative electrode active material generally used in a lithium ion secondary battery may be used, and representative examples thereof include crystalline carbon. , Amorphous carbon or these can be used together.
  • the crystalline carbon may be graphite such as amorphous, plate, flake, spherical or fibrous natural graphite or artificial graphite, and the amorphous carbon may be soft carbon (soft carbon) Or hard carbon, mesophase pitch carbide, calcined coke, or the like.
  • alloy of the lithium metal examples include lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, and Sn. Alloys of the metals selected may be used.
  • Examples of a material capable of doping and undoping lithium include Si and SiO x (0 ⁇ x ⁇
  • Si-Y alloy Y is an element selected from the group consisting of alkali metal, alkaline earth metal, group 13 element, group 14 element, transition metal rare earth element and combinations thereof, not Si
  • Sn, Sn0 2 Sn_Y (Y is an element selected from the group consisting of alkali metals, alkaline earth metals, group 13 elements, group 14 elements, transition metals, rare earth elements, and combinations thereof, and not Sn). At least one of them may be used in combination with Si0 2 .
  • the element Y includes Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, 0s, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, and combinations thereof.
  • transition metal oxides examples include vanadium oxide and lithium vanadium oxide.
  • the negative electrode active material layer also includes a binder, and may optionally further include a conductive material.
  • the binder adheres the negative electrode active material particles to each other well, and also the negative electrode
  • the active material adheres well to the current collector, and typical examples thereof include polyvinyl alcohol, carboxymethyl salose, hydroxypropyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, and polyvinyl fluoride ethylene oxide. Containing polymers, polyvinylpyridone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon, etc. It may be, but is not limited thereto.
  • the conductive material is used to impart conductivity to the electrode, and any battery can be used as long as it is an electron conductive material without causing chemical change in the battery, and examples thereof include natural alum, artificial alum, carbon black, acetylene black, and ketjen.
  • Carbon-based materials such as black and carbon fiber;
  • Metal materials such as metal powder or metal fibers such as copper, nickel, aluminum and silver;
  • Conductive polymers such as polyphenylene derivatives; Or an electroconductive material containing these mixture can be used.
  • the current collector may be selected from the group consisting of copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with a conductive metal, and combinations thereof.
  • A1 may be used as the current collector, but is not limited thereto.
  • the negative electrode and the positive electrode are prepared by mixing an active material, a conductive material, and a binder in a solvent to prepare an active material composition, and applying the composition to a current collector. Detailed description will be omitted.
  • N-methylpyrrolidone may be used as the solvent, but is not limited thereto.
  • the electrolyte contains a non-aqueous organic solvent and a lithium salt.
  • the non-aqueous organic solvent serves as a medium in which the ions involved in the electrochemical reaction of the battery have been moved.
  • the non-aqueous organic solvent may be a carbonate ester, ether, ketone, alcohol, or aprotic solvent.
  • DMC dimethyl carbonate
  • DPC diethyl carbonate
  • DPC dipropyl carbonate
  • MPC methylpropyl carbonate
  • EPC ethylpropyl carbonate
  • MEC methylethyl carbonate
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • the ester solvent include methyl acetate, ethyl acetate, n- propyl acetate, dimethyl acetate, methyl propionate, ethyl propionate, ⁇ Butyrolactone decanolide, valerolactone, mevalonolactone, caprolactone, and the like can be used.
  • the ether solvent dibutyl ether, tetraglyme, diglyme, dimetheusethane, 2-methyltetrahydrofuran, tetrahydrofuran, and the like may be used.
  • the ketone solvent cyclonucleanone may be used. Can be.
  • the aprotic solvent may be R-CN (R is a straight-chain, branched, or cyclic hydrocarbon group having 2 to 20 carbon atoms. Amides such as round nitriles, dimethylformamide, dioxolanes of 1, 3-dioxolane, and sul folanes.
  • the non-aqueous organic solvent may be used alone or in combination of one or more, and the mixing ratio in the case of using one or more in combination can be appropriately adjusted according to the desired battery performance, which is widely understood by those skilled in the art. Can be.
  • the carbonate-based solvent it is preferable to use a combination of a cyclic carbonate and a chain carbonate.
  • the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of 1: 1 to 1: 9, so that the performance of the electrolyte may be excellent.
  • the non-aqueous organic solvent according to the embodiment of the present invention may further include an aromatic hydrocarbon organic solvent in the carbonate solvent.
  • the carbonate-based solvent and the aromatic hydrocarbon-based organic solvent may be mixed in a volume ratio of 1: 1 to 30: 1.
  • an aromatic hydrocarbon compound of Formula 2 may be used as the aromatic hydrocarbon organic solvent.
  • ⁇ to R 6 are each independently hydrogen, halogen, C1 to C10 alkyl group, haloalkyl group, or a combination thereof.
  • the aromatic hydrocarbon organic solvent is benzene, fluorobenzene, 1,2-difluorobenzene, 1, 3—difluorobenzene, 1,4-difluorobenzene, 1,2,3-trifluorobenzene , 1,2,4-trifluorobenzene, chlorobenzene, 1,2-dichlorobenzene
  • the non-aqueous electrolyte may further include vinylene carbonate or an ethylene carbonate compound represented by Chemical Formula 3 to improve battery life.
  • R 7 and 3 ⁇ 4 are each independently hydrogen, halogen group, cyano group (CN), nitro group (N0 2 ) or C1 to C5 fluoroalkyl group, at least one of R 7 and 3 ⁇ 4 is halogen Group, cyano group (CN), nitro group (N0 2 ) or C1 to C5 fluoroalkyl group.)
  • ethylene carbonate compound examples include difluoro ethylene carbonaneart chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate or fluoroethylene carbonate. Can be mentioned. In the case of further using such life improving additives, the amount thereof can be properly adjusted.
  • the lithium salt is a substance that dissolves in an organic solvent, acts as a source of lithium ions in the battery, thereby enabling the operation of a basic lithium secondary battery, and promoting the movement of lithium ions between the positive electrode and the negative electrode.
  • Representative examples of such lithium salts are LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 j LiC 4 F 9 S0 3 , LiC10 4 , LiA10 2 , LiAlCU, LiN (C x F 2x + 1 S0 2 ) (CyF 2y + 1 S0 2 ) (where x and y are natural numbers), LiCl, Li l and LiB (C 2 0 4 ) 2 (l ithium bis (oxalato) borate; LiBOB) Or at least two of them as supporting electrolyte salts
  • the lithium salt concentration is preferably in the range of 0.1 to 2.0 M. When the lithium salt concentration is in the above range, the electrolyte has an appropriate conductivity
  • a separator may exist between the positive electrode and the negative electrode.
  • polyethylene, polypropylene, polyvinylidene fluoride or two or more multilayer films thereof may be used, polyethylene / polypropylene two-layer separator, polyethylene / polypropylene / polyethylene three-layer separator, polypropylene / polyethylene
  • a mixed multilayer film such as a polypropylene three-layer separator can be used.
  • Lithium secondary batteries may be classified into lithium ion batteries, lithium ion polymer batteries, and lithium polymer batteries according to the type of separator and electrolyte used. According to the shape, it can be classified into cylindrical, square, coin type, pouch type, etc., and can be divided into bulk type and thin film type according to the size. Since the structure and manufacturing method of these batteries are well known in the art, detailed description thereof will be omitted.
  • the lithium secondary battery 1 schematically shows a typical structure of a lithium secondary battery of the present invention.
  • the lithium secondary battery 1 includes a positive electrode 3, a negative electrode 2, and an electrolyte solution impregnated in a separator 4 existing between the positive electrode 3 and the negative electrode 2.
  • the container 5 and the sealing member 6 which encloses the said battery container 5 are included.
  • the stoichiometric ratio of Co 3 O 4 and Li 2 CO 3 was mixed with MgC0 3 (0.01 wt), CaF 2 (0.005 wt), and Ti0 2 (0.005 wt>) based on the positive electrode active material. After dry mixing, the resultant was heat-treated at 1000 ° C for 10 hours to prepare a cathode active material.
  • Nio. 6oCoo. 2 oMn 0 .2o (OH) 2 and Li 2 C0 Chemical traces both compounds MgC0 3 (0.01wt%) as a positive electrode active material based on the stoichiometric ratio, CaF 2 (0.005wt%) of 3, and, Ti0 2 (0.005wt %) And dry mixed with the mixture, followed by heat treatment at 850 ° C. for 10 hours to prepare a positive electrode active material.
  • a coating solution was prepared by wet mixing 0.037 g of LiOH powder and 0.465 g of (NH 4 ) 2 HP0 4 powder in an ethanol solvent in a mixer. 100 g of the positive electrode active material prepared in Preparation Example 1 was mixed with the coating solution, and the coating solution was coated on the positive electrode active material, followed by drying. The mixture was prepared. This mixture was heat-treated at 800 ° C. for 6 hours to prepare a cathode active material.
  • a positive electrode active material was prepared in the same manner as in Example 1 except that the mixture was heat treated at 900 ° C. for 6 hours.
  • a positive electrode active material was prepared in the same manner as in Example 1 except that the mixture was heat treated at 650 ° C. for 6 hours in the heat treatment process.
  • a general LiCo0 2 positive electrode active material was prepared.
  • the positive electrode active material prepared in Preparation Example 1 was used.
  • a positive electrode active material was prepared in the same manner as in Example 1, except that general LiCo0 2 was used instead of the compound prepared in Preparation Example 1.
  • a positive electrode active material was prepared in the same manner as in Example 1 except that the mixture was heat treated at 400 ° C. for 6 hours.
  • LiNi 0 instead of the compound prepared in Preparation Example 1. 60 Co 0 .
  • a positive electrode active material was manufactured in the same manner as in Example 1, except that 20 Mn 0.20 0 2 was used.
  • Li-metal was used as the negative electrode.
  • a coin cell type half cell was manufactured using a cathode and a Li-metal prepared as a counter electrode and 1.15M LiPF 6EC: DMC (l: lvol%) as an electrolyte. Layer discharge was carried out in the range 4.5-3.0V. Life time was evaluated at 1.0C rate.
  • Table 1 shows 4.5V initial format ion, rate characteristic, lcyle, 20cycle, 30cycle capacity and life characteristic data of Examples and Comparative Examples.
  • the positive electrode active material including a coating layer on the doped bear has excellent characteristics in efficiency and lifespan compared to Comparative Example 1 ⁇
  • Example 1 which can confirm the difference according to the presence or absence of doping of the bear When comparing Comparative Example 3, it can be seen that the difference in battery characteristics is large depending on the presence or absence of doping of the bear. It is confirmed that simple coating treatment causes deterioration of battery characteristics at high voltage, and a doped bear is necessary.
  • Example 4 the difference in battery characteristics is also confirmed in Example 4 and Comparative Example 5 having different compositions.
  • Example 1 and Comparative Example 2 were subjected to 7Li MAS NMR analysis. Analyzes NMR
  • lithium secondary battery 2 negative electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

Provided is a positive electrode active material for a lithium secondary battery, the positive electrode active material comprising: a compound capable of reversible lithium intercalation/deintercalation; and a coating layer positioned on at least one portion of the surface of the compound capable of reversible lithium intercalation/deintercalation. The compound capable of reversible lithium intercalation/deintercalation is doped with a metal M and F, wherein the metal M is at least one element selected from the group consisting of Mg, Ca, Ni, Ti, Al, Si, Sn, Mn, Cr, Fe and Zr. The coating layer comprises Li3PO4.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지  Cathode active material for lithium secondary battery, manufacturing method thereof and lithium secondary battery comprising same
【기술분야】  Technical Field
리륨 이차 전지용 양극 활물질, 리튬 이차 전지용 양극 활물질의 제조 방법 및 리튬 이차전지용 양극 활물질에 관한 것이다.  The positive electrode active material for a lithium secondary battery, the manufacturing method of the positive electrode active material for lithium secondary batteries, and a positive electrode active material for lithium secondary batteries.
【발명의 배경이 되는 기술】  [Technique to become background of invention]
최근 휴대용 전자기기의 소형화 및 경량화 추세와 관련하여 이들 기기의 전원으로 사용되는 전지의 고성능화 및 대용량화에 대한 필요성이 높아지고 있다.  Recently, with the trend toward miniaturization and light weight of portable electronic devices, the need for high performance and high capacity of batteries used as power sources for these devices is increasing.
전지는 양극과 음극에 전기 화학 반웅이 가능한 물질을 사용함으로써 전력을 발생시키는 것이다. 이러한 전지 중 대표적인 예로는 양극 및 음극에서 리튬 이온이 인터칼레이션 /디인터칼레이션될 때의 화학전위 (chemical potent ial )의 변화에 의하여 전기 에너지를 생성하는 리튬 이차 전지가 있다.  A battery generates electric power by using an electrochemical reaction material for the positive electrode and the negative electrode. A typical example of such a battery is a lithium secondary battery that generates electrical energy by a change in chemical potential when lithium ions are intercalated / deintercalated at a positive electrode and a negative electrode.
상기 리튬 이차 전지는 리튬 이온의 가역적인 인터칼레이션 /디인터칼레이션이 가능한 물질을 양극과 음극 활물질로 사용하고, 상기 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 층전시켜 제조한다.  The lithium secondary battery is prepared by using a material capable of reversible intercalation / deintercalation of lithium ions as a positive electrode and a negative electrode active material, and layering an organic electrolyte or a polymer electrolyte between the positive electrode and the negative electrode.
리튬 이차 전지의 양극 활물질로는 리륨 복합금속 화합물이 사용되고 있으며, 그 예로 LiCo02, LiMn204, LiNi02, LiMn02 등의 복합금속 산화물들이 연구되고 있다. A lithium composite metal compound is used as a cathode active material of a lithium secondary battery, and composite metal oxides such as LiCo0 2 , LiMn 2 0 4 , LiNi0 2 , and LiMn0 2 have been studied.
상기 양극 활물질 중 LiMn204, LiMn02 등의 Mn계 양극 활물질은 합성하기도 쉽고, 값이 비교적 싸며, 과층전시 다른 활물질에 비하여 열적 안정성이 가장 우수하고, 환경에 대한 오염이 낮아 매력이 있는 물질이기는 하나, 용량이 적다는 단점을 가지고 있다. Among the cathode active materials, Mn-based cathode active materials such as LiMn 2 O 4 and LiMn0 2 are easy to synthesize, are relatively inexpensive, have the best thermal stability compared to other active materials during overheating, and have low environmental pollution and are attractive materials. Although it has a disadvantage, the capacity is small.
LiCo02는 양호한 전기 전도도와 약 3.7V 정도의 높은 전지 전압을 가지며, 사이클 수명 특성, 안정성 또한 방전 용량 역시 우수하므로, 현재 상업화되어 시판되고 있는 대표적인 양극 활물질이다. 그러나 LiCo02는 가격이 비싸기 때문에 전지 가격의 30% 이상을 차지하므로 가격 경쟁력이 떨어지는 문제점이 있다. LiCo0 2 has a good electrical conductivity and a high battery voltage of about 3.7V, and also has excellent cycle life characteristics, stability, and discharge capacity. Thus, LiCo0 2 is a representative cathode active material commercially available and commercially available. But LiCo0 2 Since the price is expensive, it takes up more than 30% of the battery price, so there is a problem that the price competitiveness falls.
또한 LiNi02는 위에서 언급한 양극 활물질 중 가장 높은 방전 용량의 전지 특성을 나타내고 있으나, 합성하기 어려운 단점이 있다. 또한 니켈의 높은 산화상태는 전지 및 전극 수명 저하의 원인이 되며, 자기 방전이 심하고 가역성이 떨어지는 문제가 있다. 아울러, 안정성 확보가 완전하지 않아서 상용화에 어려움을 겪고 있다. In addition, LiNi0 2 exhibits the highest discharge capacity of battery characteristics among the cathode active materials mentioned above, but has a disadvantage of being difficult to synthesize. In addition, the high oxidation state of nickel causes a decrease in battery and electrode life, and there is a problem of severe self discharge and inferior reversibility. In addition, it is difficult to commercialize the stability is not perfect.
상기와 같이 종전의 기술들에서 전지 특성을 향상 시키기 위한 다양한 코팅층을 포함하는 리튬 이차 전지용 양극 활물질이 제공되었다. 【발명의 내용】  As described above, a cathode active material for a rechargeable lithium battery including various coating layers for improving battery characteristics has been provided. [Content of invention]
【해결하고자 하는 과제】  Problem to be solved
고용량, 고효율 및 수명특성이 우수한 리튬 이차 전지용 양극 활물질을 제공하며, 상기 양극 활물질을 포함하는 양극을 포함하는 리튬 이차 전지를 제공하는 것이다.  The present invention provides a cathode active material for a lithium secondary battery having excellent high capacity, high efficiency, and lifespan characteristics, and provides a lithium secondary battery including a cathode including the cathode active material.
【과제의 해결 수단】  [Measures of problem]
본 발명의 일 구현예에서는, 리륨의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물; 및 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 표면의 적어도 일부에 위치하는 코팅층을 포함하고 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은 금속 M과 F로 도핑되어 있고, 금속 M은 Mg, Ca, Ni, Ti, Al , Si , Sn, Mn, Cr , Fe 및 Zr로 이루어진 군에서 선택되는 적어도 하나의 원소이며, 코팅층은 Li3P04를 포함하는 리튬 이차 전지용 양극 활물질을 제공한다. In one embodiment of the present invention, a compound capable of reversible intercalation and deintercalation of lithium; And a coating layer located on at least a portion of the surface of the compound capable of reversible intercalation and deintercalation of lithium, wherein the compound capable of reversible intercalation and deintercalation of lithium is doped with metals M and F The metal M is at least one element selected from the group consisting of Mg, Ca, Ni, Ti, Al, Si, Sn, Mn, Cr, Fe and Zr, the coating layer is a lithium secondary including Li 3 P0 4 Provided is a battery positive electrode active material.
리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은 하기 화학식 1로 표시될 수 있다.  Compounds capable of reversible intercalation and deintercalation of lithium may be represented by the following formula (1).
[화학식 1] [Formula 1]
Figure imgf000004_0001
Figure imgf000004_0001
상기 화학식 1에서, A는 Ni aCopMnY이고, 금속 M은 Mg, Ca, Ni , Ti, Al , Si , Sn, Mn, Cr , Fe 및 Zr로 이루어진 군에서 선택되는 적어도 하나의 원소이며, 0<x<0.1 , 0<y<0.1, 0<z<0.1이고, 0 ≤ α < 1, 0<β <1 및 0< Y <0.49 이다. In Formula 1, A is Ni a Co p Mn Y , metal M is at least one element selected from the group consisting of Mg, Ca, Ni, Ti, Al, Si, Sn, Mn, Cr, Fe and Zr 0 <x <0.1, 0 <y <0.1, 0 <z <0.1, 0 ≦ α <1, 0 <β <1 and 0 <Y <0.49.
금속 M은 Mg, Ca 및 Ti로 이루어진 군에서 선택되는 적어도 하나의 원소가 될 수 있다.  The metal M may be at least one element selected from the group consisting of Mg, Ca and Ti.
금속 M과 F는 도핑을 위한금속 화합물 원료로부터 기인될 수 있다. 코팅층은 LiF를 더 포함할수 있다.  Metals M and F may be derived from metal compound raw materials for doping. The coating layer may further comprise LiF.
코팅층 내 포함된 Li3P04에서의 리튬은, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물 내에 포함되는 Li으로부터 기인되거나, 별도의 Li 공급 물질로부터 기인될 수 있다. Lithium in Li 3 PO 4 contained in the coating layer may be from Li included in a compound capable of reversible intercalation and deintercalation of lithium, or may be from a separate Li feed material.
리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은, LiaA1-bXbD2(0.90 < a < 1.8, 0 < b < 0.5); LiaAi-bXb02— Jc(0.90 < a < 1.8, 0 < b < 0.5, 0 < c < 0.05); LiE1-bXb02-cDc(0 < b < 0.5, 0 < cCompounds capable of reversible intercalation and deintercalation of lithium include Li a A 1 -b X b D 2 (0.90 <a <1.8, 0 <b <0.5); Li a Ai- b X b 0 2 — J c (0.90 <a <1.8, 0 <b <0.5, 0 <c <0.05); LiE 1 - b X b 0 2- cDc (0 <b <0.5, 0 <c
< 0.05); LiE2-bXbO4-cTc(0 < b < 0.5, 0 < c < 0.05); LiaNi!-b- cCobXcDa(0.90 < a <1.8, 0 < b < 0.5, 0 < c < 0.05, 0 < a < 2); LiaNii-b-cCobXc02-aTa(0.90 < a < 1.8, 0 < b < 0.5, 0 < c < 0.05, 0 < a < 2); LiaN — bcCobXc02-aT2(0.90 < a < 1.8, 0 < b < 0.5, 0 < c<0.05); LiE 2 -bXbO4-cT c (0 <b <0.5, 0 <c <0.05); Li a Ni ! -b - c Co b X c D a (0.90 <a <1.8, 0 <b <0.5, 0 <c <0.05, 0 <a <2); Li a Nii- b - c Co b X c 0 2- a T a (0.90 <a <1.8, 0 <b <0.5, 0 <c <0.05, 0 <a <2); Li a N — bc Co b X c 02- a T 2 (0.90 <a < 1.8 , 0 <b <0.5, 0 <c
< 0.05, 0 < a < 2); LiaNii-b_cMnbXcDa(0.90 < a < 1.8, 0 < b < 0.5, 0 < c < 0.05, 0 < a < 2); LiaNii-b-cMnbXc02-aTa(0.90 < a < 1.8, 0<0.05, 0 <a <2); Li a Nii- b _ c Mn b X c D a (0.90 <a <1.8, 0 <b <0.5, 0 <c <0.05, 0 <a <2); Li a Nii- b - c Mn b X c 0 2 - a T a (0.90 <a <1.8, 0
< b < 0.5, 0 < c < 0.05, 0 < a < 2); LiaNii-b-cMnbXA-aTzC 0.90 < a<b <0.5, 0 <c <0.05, 0 <a <2); LiaNii-b-cMnbXA-aTzC 0.90 <a
< 1.8, 0 < b < 0.5, 0 < c < 0.05, 0 < α < 2); LiaNibEcGd02-eTe(0.90 < a < 1.8, 0 < b < 0.9, 0 < c < 0.5, 0.001 < d < 0.1, 0 < e<1.8, 0 <b <0.5, 0 <c <0.05, 0 <α <2); Li a Ni b E c G d 0 2 - e T e (0.90 <a <1.8, 0 <b <0.9, 0 <c <0.5, 0.001 <d <0.1, 0 <e
< 0.05); LiaNibCocMndGe02-fTf (0.90 < a < 1.8, 0 < b < 0.9, 0 < c<0.05); Li a Ni b Co c Mn d G e 0 2 - f T f (0.90 <a <1.8, 0 <b <0.9, 0 <c
< 0.5, 0 < d <0.5, 0.001 < e < 0.1, 0 < e < 0.05); LiaNiGb02-cTc (0.90 < a < 1.8, 0.001 < b < 0.1, 0 < c < 0.05); LiaCoGb02-cTc (0.90 < a < 1.8, 0.001 < b < 0.1, 0 < c < 0.05);
Figure imgf000005_0001
<0.5, 0 <d <0.5, 0.001 <e <0.1, 0 <e <0.05); Li a NiG b 0 2 - c T c (0.90 <a <1.8, 0.001 <b <0.1, 0 <c <0.05 ); Li a CoG b 0 2 - c T c (0.90 <a <1.8, 0.001 <b <0.1, 0 <c <0.05);
Figure imgf000005_0001
(0.90 < a < 1.8, 0.001 < b < 0.1, 0 < c < 0.05); ϋ3Μη2 02CTC (0.90 < a < 1.8, 0.001 < b < 0.1, 0 < c < 0.05); LiaMnG bP04(0.90(0.90 <a <1.8, 0.001 <b <0.1, 0 <c <0.05); ϋ 3 Μη 2 0 2C T C (0.90 <a <1.8, 0.001 <b <0.1, 0 <c <0.05); Li a MnG b P0 4 (0.90
< a < 1.8, 0.001 < b < 0.1); LiNiV04; 및 Li(3-f)J2(P04)3(0 < f < 2) 로 이루어진 군에서 선택된 적어도 하나일 수 있다. <a <1.8, 0.001 <b <0.1); LiNiV0 4 ; And it may be at least one selected from the group consisting of Li (3 - f) J 2 (P0 4 ) 3 (0 <f <2).
(단 이 때, A는 Ni, Co, Mn, 및 이들의 조합으로 이루어진 군에서 선택되고; X는 Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되고; D는 0 , F, S, P, 및 이들의 조합으로 이루어진 군에서 선택되고; E는 Co , Mn, 및 이들의 조합으로 이루어진 군에서 선택되고; T는 F, S, P, 및 이들의 조합으로 이루어진 군에서 선택되고; G는 Al , Cr , Mn, Fe , Mg, La, Ce , Sr , V, 및 이들의 조합으로 이루어진 군에서 선택되고; Q는 Ti , Mo , Mn,및 이들의 조합으로 이루어진 군에서 선택되고; Z는 Cr , V, Fe , Sc , Y, 및 이들의 조합으로 이루어진 군에서 선택되며; J는 V, Cr , Mn, Co , Ni , Cu , 및 이들의 조합으로 이루어진 군에서 선택된다. ) Wherein A is selected from the group consisting of Ni, Co, Mn, and combinations thereof; X is Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, rare earth elements and their Selected from the group consisting of combinations; D is selected from the group consisting of 0, F, S, P, and combinations thereof; E is selected from the group consisting of Co, Mn, and combinations thereof; T is selected from the group consisting of F, S, P, and combinations thereof; G is selected from the group consisting of Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, and combinations thereof; Q is selected from the group consisting of Ti, Mo, Mn, and combinations thereof; Z is selected from the group consisting of Cr, V, Fe, Sc, Y, and combinations thereof; J is selected from the group consisting of V, Cr, Mn, Co, Ni, Cu, and combinations thereof. )
양극 활물질의 총 증량에 대한 상기 코팅층의 함량은 0.2 내지 2.0 증량 %일 수 있다.  The content of the coating layer relative to the total amount of positive electrode active material may be 0.2 to 2.0% by weight.
본 발명의 다른 일 구현예에서는, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 준비하는 단계; 인 공급원을 준비하는 단계; 인 공급원을 용매에 분산하여 코팅액을 제조하는 단계; 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 상기 코팅액에 교반 흔합하여, 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 표면에 인 공급원을 균일하게 부착시키는 단계; 인 공급원이 부착된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 건조하는 단계: 및 인 공급원이 부착된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 열처리하여, Li3P04를 포함하는 코팅층이 표면에 형성된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 수득하는 단계;를 포함하는 리튬 이차전지용 양극 활물질의 제조 방법을 제공한다. In another embodiment of the present invention, preparing a compound capable of reversible intercalation and deintercalation of lithium; Preparing a phosphorus source; Dispersing a phosphorus source in a solvent to prepare a coating solution; Stirring and mixing a compound capable of reversible intercalation and deintercalation of lithium to the coating solution and uniformly attaching a phosphorus source to the surface of the compound capable of reversible intercalation and deintercalation of lithium ; Drying a compound capable of reversible intercalation and deintercalation of lithium with a phosphorus source; and heat treating the compound capable of reversible intercalation and deintercalation of lithium with a phosphorus source, It provides a method for producing a positive electrode active material for a lithium secondary battery comprising the step of obtaining a compound capable of reversible intercalation and deintercalation of lithium formed on the surface of the coating layer comprising Li 3 PO 4 .
인 공급원을 용매에 분산하여 코팅액을 제조하는 단계에서 리튬 공급원을 추가로 분산할수 있다.  The lithium source may be further dispersed in the step of dispersing the phosphorus source in a solvent to prepare a coating solution.
인 공급원이 부착된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 열처리하여, Li3P04를 포함하는 코팅층이 표면에 형성된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 수득하는 단계;에서, 열처리 온도는, 650 내지 950°C일 수 있다. 리튬 공급원은 탄산 리튬, 질산 리튬, 황산 리륨, 아세트산 리튬, 인산 리튬, 염화 리튬, 수산화 리튬, 산화 리튬, 또는 이들의 조합일 수 있다. By heat-treating a compound capable of reversible intercalation and deintercalation of lithium to which a phosphorus source is attached, reversible intercalation and deintercalation of lithium with a coating layer containing Li 3 P0 4 is possible. In the step of obtaining a compound, the heat treatment temperature may be 650 to 950 ° C. The lithium source may be lithium carbonate, lithium nitrate, lithium sulfate, lithium acetate, lithium phosphate, lithium chloride, lithium hydroxide, lithium oxide, or a combination thereof. have.
인 공급원은 (NH4)2HP04, NH4H2PO4 , (NH4)2HP04, Li3P04 ) P205 또는 이들의 조합일 수 있다. The phosphorus source may be (NH 4 ) 2 HP0 4 , NH 4 H 2 PO 4 , (NH 4 ) 2 HP0 4 , Li 3 P0 4) P 2 0 5, or a combination thereof.
본 발명의 또 다른 일 구현예에서는, 전술한 본 발명의 일 구현예에 따른 리튬 이차 전지용 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 및 전해질;을 포함하는 리튬 이차 전지를 제공한다.  In another embodiment of the present invention, a positive electrode including a positive active material for a lithium secondary battery according to an embodiment of the present invention described above; A negative electrode including a negative electrode active material; And it provides an lithium secondary battery comprising an electrolyte.
【발명의 효과】  【Effects of the Invention】
우수한 전지 특성을 갖는 양극 활물질 및 이를 포함하는 리튬 이차 전지를 제공할 수 있다.  It is possible to provide a cathode active material having excellent battery characteristics and a lithium secondary battery including the same.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 리튬 이차 전지의 개략도이다.  1 is a schematic view of a lithium secondary battery.
도 2는 실시예 1의 7Li MAS NMR분석결과이다.  2 is 7Li MAS NMR analysis results of Example 1.
도 3은 비교예 2의 7Li MAS NMR분석결과이다.  3 is a 7Li MAS NMR analysis result of Comparative Example 2.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.  Hereinafter, embodiments of the present invention will be described in detail. However, this is presented as an example, by which the present invention is not limited and the present invention is defined only by the scope of the claims to be described later.
본 발명의 일 구현예에서는, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물; 및 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 표면의 적어도 일부에 위치하는 코팅층을 포함하고, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은 금속 M과 F로 도핑되어 있고, 금속 M은 Mg, Ca, Ni , Ti , Al , Si , Sn, Mn, Cr , Fe 및 Zr로 이루어진 군에서 선택되는 적어도 하나의 원소이며, 코팅층은 Li3P04를 포함하는 리튬 이차 전지용 양극 활물질을 제공한다. In one embodiment of the present invention, a compound capable of reversible intercalation and deintercalation of lithium; And a coating layer located on at least a portion of the surface of the compound capable of reversible intercalation and deintercalation of lithium, wherein the compound capable of reversible intercalation and deintercalation of lithium is referred to as metals M and F. Doped, the metal M is at least one element selected from the group consisting of Mg, Ca, Ni, Ti, Al, Si, Sn, Mn, Cr, Fe and Zr, the coating layer is a lithium containing Li 3 P0 4 Provided is a cathode active material for a secondary battery.
본 발명의 일 구현예에 따른 양극 활물질은 리튬 이차 전지의 전지적 특성을 향상시킬 수 있다. 향상된 전지적 특성의 예로, 고전압 특성에서 전지의 초기 용량 및 향상된 효율 특성 등이 있다.  The positive electrode active material according to the embodiment of the present invention may improve battery characteristics of a lithium secondary battery. Examples of improved battery characteristics include initial capacity and improved efficiency of the battery at high voltage characteristics.
본 발명의 일 구현예에 따른 양극 활물질은 Li3P04를 포함하는 코팅층을 포함하며, 이 코팅층에 포함된 Li3P04는 양극 활물질 내의 Li이온의 확산도를 높이는 역할 (Driving Force)을 수행하며, Li 이온의 이동을 용이하게 하는 이온전도성으로 전지 특성 향상시킨다. 특히 효율 특성 향상에 기여한다. The positive electrode active material according to one embodiment of the present invention comprises a coating layer containing Li 3 P0 4, the Li 3 P0 4 contained in the coating layer in the positive electrode active material It acts to increase the diffusion of Li ions (Driving Force) and improves battery characteristics with ion conductivity to facilitate the movement of Li ions. In particular, it contributes to the improvement of efficiency characteristics.
이하에서는 각 구성별로 더욱 구체적으로 설명한다.  Hereinafter, each configuration will be described in more detail.
리튬 이차 전지용 양극 활물질은 리륨의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 포함한다. 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은 금속 M과 F로 도핑되어 있고, 금속 M은 Mg, Ca, Ni, Ti, Al, Si, Sn, Mn, Cr, Fe 및 Zr로 이루어진 군에서 선택되는 적어도 하나의 원소이다. Li3P04를 포함하는 코팅층이 전지 특성 향상의 역할을 수행하기 위해서는 특정 도핑의 화합물에 코팅될 필요가 있다. 이 때, 금속 M과 F는 도핑을 위한 금속 화합물 원료로부터 기인될 수 있다. The positive electrode active material for a lithium secondary battery includes a compound capable of reversible intercalation and deintercalation of lithium. Compounds capable of reversible intercalation and deintercalation of lithium are doped with metals M and F, with metals M being Mg, Ca, Ni, Ti, Al, Si, Sn, Mn, Cr, Fe, and Zr At least one element selected from the group consisting of: The coating layer including Li 3 P0 4 needs to be coated on a compound of a specific doping in order to play a role of improving battery characteristics. At this time, the metals M and F may be derived from the metal compound raw material for doping.
더욱 구체적으로 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은 하기 화학식 1로 표시될 수 있다.  More specifically, the compound capable of reversible intercalation and deintercalation of lithium may be represented by the following Chemical Formula 1.
[화학식 1] [Formula 1]
Figure imgf000008_0001
Figure imgf000008_0001
상기 화학식 1에서, A는 Ni aCopMnY이고, 금속 M은 Mg, Ca, Ni, Ti , Al, Si, Sn, Mn, Cr, Fe 및 Zr로 이루어진 군에서 선택되는 적어도 하나의 원소이며 , 0<x<0.1, 0<y<0.1, 0<z<0.1이고, 0 < α< 1, 0<β<1 및 0< γ <0.49 이다. In Formula 1, A is Ni a Co p Mn Y , metal M is at least one element selected from the group consisting of Mg, Ca, Ni, Ti, Al, Si, Sn, Mn, Cr, Fe and Zr , 0 <x <0.1, 0 <y <0.1, 0 <z <0.1, 0 <α <1, 0 <β <1 and 0 <γ <0.49.
전술한 화학식 1과 같은 Li-rich 조성계에서는 과잉 리튬으로 인해 rocksalt 구조가 양극소재 표면에 형성 되는데 화합물 표면에서 Li3P04가 형성되는 화학적 반웅 과정에서 표면 재배열 반웅이 (Rocksalt→layered)이 일어나 표면에 형성된 구조결함 및 불순물이 제어 된다. 이때 일반적인 LiM02(M은 Ni, Co, 또는 Mn) 조성을 적용할 경우 Li3P04가 형성되는 과정에서 Li 부족 현상이 발생되어 전지특성이 열화 될 수 있으며, 또한 금속 M과 F 도핑이 되지 않은 조성에 Li3P04 코팅을 진행할 경우 P와 양극재 표면간에 발생하는 환원반웅에 의해 오히려 구조결함 발생이 촉진될 수 있다. 결론적으로 전술한 화학식 1의 조성의 경우 (Li rich(Li/M ratio >1.0), 금속 M과 F 도핑) Li3P04가 형성되는 과정에서 일어나는 Li 부족 및 환원반웅에 의한 표면 결함을 억제하여 코팅층의 효과를 극대화 할 수 있는 표면을 제공할수 있게 된다. In the Li-rich composition system as described in Formula 1, the rocksalt structure is formed on the surface of the cathode material due to excess lithium, and the surface rearrangement reaction (Rocksalt → layered) occurs during the chemical reaction process in which Li 3 P0 4 is formed on the compound surface. Structural defects and impurities formed on the surface are controlled. In this case, if a general LiM0 2 (M is Ni, Co, or Mn) composition is applied, Li lack may occur in the process of forming Li 3 P0 4 , thereby deteriorating battery characteristics. When the Li 3 PO 4 coating is carried out in the composition, the formation of structural defects may be promoted by the reduction reaction generated between P and the surface of the cathode material. In conclusion, in the case of the above-described composition of Formula 1 (Li rich (Li / M ratio> 1.0), metal M and F doping) Li lack occurs in the process of forming Li 3 P0 4 and It is possible to provide a surface that can maximize the effect of the coating layer by suppressing the surface defects caused by the reduction reaction.
금속 M은 Mg, Ca 및 Ti로 이루어진 군에서 선택되는 적어도 하나의 원소가 될 수 있다.  The metal M may be at least one element selected from the group consisting of Mg, Ca and Ti.
더욱 구체적으로, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은,
Figure imgf000009_0001
< a < 1.8, 0 < b
More specifically, the compound capable of reversible intercalation and deintercalation of lithium,
Figure imgf000009_0001
<a <1.8, 0 <b
< 0.5); LiaAi-bXbO2-cTc(0.90 < a < 1.8, 0 < b < 0.5, 0 < c < 0.05); LiE1-bXb02-cDc(0 < b < 0.5, 0 < c < 0.05); LiE2-bXb04CTC(0 < b<0.5); Li a Ai- b XbO2-cTc (0.90 <a <1.8, 0 <b <0.5, 0 <c <0.05); LiE 1 - b Xb0 2- cDc (0 <b <0.5, 0 <c <0.05); LiE 2 - b X b 0 4C T C (0 <b
< 0.5, 0 < c < 0.05); LiaNii-b-cCobXcDQ(0.90 < a <1.8, 0 < b < 0.5 0 < c < 0.05, 0 < a < 2); LiaNii-b-cCobXc02-aTa(0.90 < a < 1.8, 0<0.5, 0 <c <0.05 ); Li a Nii- b - c Co b X c D Q (0.90 <a <1.8, 0 <b <0.5 0 <c <0.05, 0 <a <2); Li a Nii- b - c CobXc0 2 -aTa (0.90 <a <1.8, 0
< b < 0.5, 0 < c < 0.05, 0 < a < 2); Lia ii-b-cCobXc02-aT2(0.90 < a<b <0.5, 0 <c <0.05, 0 <a <2); Li a ii-b -cCobX c 02- a T 2 (0.90 <a
< 1.8, 0 < b < 0.5, 0 < c < 0.05, 0 < a < 2); LiaNii-b- cMnbXcDa(0.90 < a < 1.8, 0 < b < 0.5, 0 < c < 0.05, 0 < α < 2); LiaNii-b-cMnbXc02-aTa(0.90 < a < 1.8, 0 < b < 0.5, 0 < c < 0.05, 0 < a < 2); LiaNii-b-cMnbXc02-QT2( 0.90 < a < 1.8, 0 < b < 0.5, 0 < c<1.8, 0 <b <0.5, 0 <c <0.05, 0 <a <2); Li a Nii- b - c Mn b X c Da (0.90 <a <1.8, 0 <b <0.5, 0 <c <0.05, 0 <α <2); Li a Nii- b - c MnbXc 0 2 - a T a (0.90 <a <1.8, 0 <b <0.5, 0 <c <0.05, 0 <a <2); Li a Nii- b - c Mn b X c 0 2 - Q T2 (0.90 <a <1.8, 0 <b <0.5 , 0 <c
< 0.05, 0 < a < 2); LiaNibEcGd02-eTe(0.90 < a < 1.8, 0 < b < 0.9, 0<0.05, 0 <a <2); LiaNibEcG d 0 2 -eTe (0.90 <a <1.8, 0 <b <0.9, 0
< c < 0.5, 0.001 < d < 0.1, 0 < e < 0.05); LiaNibCocMndGe02-fTf (0.90 < a < 1.8, 0 < b < 0.9, 0 < c < 0.5, 0 < d <0.5, 0.001<c <0.5, 0.001 <d <0.1, 0 <e <0.05); Li a Ni b Co c Mn d G e 0 2 -f T f (0.90 <a <1.8, 0 <b <0.9, 0 <c < 0.5 , 0 <d <0.5, 0.001
< e < 0.1, 0 < e < 0.05); LiaNiGb02-cTc (0.90 < a < 1.8, 0.001 < b < 0.1, 0 < c < 0.05); LiaCoGb02-cTc (0.90 < a < 1.8, 0.001 < b<e <0.1, 0 <e <0.05); Li a NiG b 0 2 - c T c (0.90 <a <1.8, 0.001 <b <0.1, 0 <c <0.05); Li a CoG b 0 2 - c T c (0.90 <a <1.8, 0.001 <b
< 0.1, 0 < c < 0.05);
Figure imgf000009_0002
(0.90 < a < 1.8, 0.001 < b < 0.1, 0 < c < 0.05); LiaMn2Gb02-cTc (0.90 < a < 1.8, 0.001 < b < 0.1 0 < c < 0.05); LiaMnGv bP04(0.90 < a < 1.8, 0.001 < b < 0.1); LiNiV04; 및 Li(3-f)J2(P04)3(0 < f < 2) 로 이루어진 군에서 선택된 적어도 하나일 수 있다.
<0.1, 0 <c <0.05);
Figure imgf000009_0002
(0.90 <a <1.8, 0.001 <b <0.1, 0 <c <0.05); Li a Mn 2 G b 02-cT c (0.90 <a <1.8, 0.001 <b <0.1 0 <c <0.05); Li a MnG v b P0 4 (0.90 <a <1.8, 0.001 <b <0.1); LiNiV0 4 ; And it may be at least one selected from the group consisting of Li ( 3-f) J 2 (P0 4 ) 3 (0 <f <2).
(단 이 때, A는 Ni, Co, Mn, 및 이들의 조합으로 이루어진 군에서 선택되고; X는 Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되고; D는 0, F, S, P, 및 이들의 조합으로 이루어진 군에서 선택되고; E는 Co, Mn, 및 이들의 조합으로 이루어진 군에서 선택되고; T는 F, S, P, 및 이들의 조합으로 이루어진 군에서 선택되고; G는 Al , Cr , Mn, Fe, Mg, La, Ce, Sr , V, 및 이들의 조합으로 이루어진 군에서 선택되고; Q는 Ti , Mo, Mn,및 이들의 조합으로 이루어진 군에서 선택되고; Z는 Cr , V, Fe, Sc , Y, 및 이들의 조합으로 이루어진 군에서 선택되며 ; J는 V, Cr , Mn, Co, Ni , Cu, 및 이들의 조합으로 이루어진 군에서 선택된다. ) Wherein A is selected from the group consisting of Ni, Co, Mn, and combinations thereof; X is Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, rare earth elements and combinations thereof D is selected from the group consisting of 0, F, S, P, and combinations thereof; E is selected from the group consisting of Co, Mn, and combinations thereof; T is F, S , P, and combinations thereof Selected; G is selected from Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, and combinations thereof; Q is selected from the group consisting of Ti, Mo, Mn, and combinations thereof; Z is selected from the group consisting of Cr, V, Fe, Sc, Y, and combinations thereof; J is selected from the group consisting of V, Cr, Mn, Co, Ni, Cu, and combinations thereof. )
코팅층은 Li3P04를 포함한다. 코팅층에 포함된 Li3P04는 양극 활물질 내의 Li이온의 확산도를 높이는 역할 (Dr iving Force)을 수행하며, Li 이온의 이동을 용이하게 하는 이온전도성으로 전지 특성 향상시킨다. 특히 효을 특성 향상에 기여한다. The coating layer comprises Li 3 P0 4 . Li 3 P 0 4 included in the coating layer plays a role of increasing the diffusion of Li ions in the positive electrode active material (Dr iving Force) and improves battery characteristics with ion conductivity to facilitate the movement of Li ions. In particular, it contributes to the improvement of the filial piety.
코팅층 내 포함된 Li3P04에서의 리튬은, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물 내에 포함되는 Li으로부터 기인되거나, 별도의 Li 공급 물질로부터 기인될 수 있다. Lithium in Li 3 PO 4 included in the coating layer may be from Li included in a compound capable of reversible intercalation and deintercalation of lithium, or may be from a separate Li feed material.
코팅층은 LiF를 더 포함할 수 있다. LiF를 더 포함할 경우 전해액과의 부반웅 억제 하여 표면구조 안전화에 기여하여 전지 특성 향상에 더 유리하다. 이 때, F는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물 내에 포함되는 F에서 유래될 수 있다. 양극 활물질의 총 중량에 대한 코팅층의 중량비는 0.2 내지 2.0 중량 % 일 수 있다. 코팅층의 중량비가 너무 적은 경우 코팅층의 역할이 감소할 수 있으며, 코팅층의 증량비가 너무 많은 경우 초기용량 감소 및 충방전 효율의 감소가 나타날 수 있다. 다만 이에 제한되는 것은 아니다. 본 발명의 다른 일 구현예에서는, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 준비하는 단계; 인 공급원을 준비하는 단계; 인 공급원을 용매에 분산하여 코팅액을 제조하는 단계; 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 상기 코팅액에 교반 흔합하여, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 표면에 인 공급원을 균일하게 부착시키는 단계; 인 공급원이 부착된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 건조하는 단계: 및 인 공급원이 부착된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 열처리하여, Li3P04를 포함하는 코팅층이 표면에 형성된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 수득하는 단계;를 포함하는 리튬 이차전지용 양극 활물질의 제조 방법을 제공한다. The coating layer may further comprise LiF. When LiF is further included, it is more advantageous to improve battery characteristics by contributing to the safety of surface structure by suppressing side reaction with electrolyte solution. In this case, F may be derived from F contained in a compound capable of reversible intercalation and deintercalation of lithium. The weight ratio of the coating layer to the total weight of the positive electrode active material may be 0.2 to 2.0 wt%. When the weight ratio of the coating layer is too small, the role of the coating layer may be reduced, and when the increase ratio of the coating layer is too large, a decrease in initial capacity and a decrease in charge and discharge efficiency may appear. However, it is not limited thereto. In another embodiment of the present invention, preparing a compound capable of reversible intercalation and deintercalation of lithium; Preparing a phosphorus source; Dispersing a phosphorus source in a solvent to prepare a coating solution; Stirring and mixing a compound capable of reversible intercalation and deintercalation of lithium to the coating solution to uniformly attach the phosphorus source to the surface of the compound capable of reversible intercalation and deintercalation of lithium; Drying a compound capable of reversible intercalation and deintercalation of lithium with a phosphorus source; and heat treating the compound capable of reversible intercalation and deintercalation of lithium with a phosphorus source; Reversible Lithium Formed on Surface with a Coating Layer Containing Li 3 P0 4 It provides a method for producing a positive electrode active material for a lithium secondary battery comprising a; obtaining a compound capable of intercalation and deintercalation.
이하에서는 리튬 이차전지용 양극 활물질의 제조 방법을 각 단계별로 구체적으로 설명한다 .  Hereinafter, a method of manufacturing a cathode active material for a lithium secondary battery will be described in detail for each step.
먼저, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 준비한다. 리륨의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물에 대해서는 전술하였으므로, 반복되는 설명은 생략한다. 다음으로, 인 공급원을 준비한다.  First, a compound capable of reversible intercalation and deintercalation of lithium is prepared. Compounds capable of reversible intercalation and deintercalation of lithium are described above, and thus repeated descriptions are omitted. Next, prepare a source of phosphorus.
인 공급원은 (NH4)2HP04 ! NH4H2PO4 , (NH4)2HP04 , L 13PO4 , P2O5 또는 이들의 조합일 수 있다. Phosphorus source is (NH 4 ) 2 HP0 4! NH 4 H 2 PO 4 , (NH 4 ) 2 HP0 4 , L 13PO 4 , P 2 O 5, or a combination thereof.
다음으로, 인 공급원을 용매에 분산하여 코팅액을 제조한다. 이 때 용매는 인 공급원을 균일하게 분산시킬 수 있는 용매이면 특별히 제한하지 않으며, 구체적으로 에탄올 용매가 될 수 있다. 이 때, 리튬 공급원을 추가로 용매에 분산할수 있다.  Next, the phosphorus source is dispersed in a solvent to prepare a coating solution. In this case, the solvent is not particularly limited as long as it is a solvent capable of uniformly dispersing a phosphorus source, and specifically, may be an ethanol solvent. At this time, the lithium source can be further dispersed in a solvent.
구체적으로 리튬 공급원은 탄산 리튬, 질산 리튬, 황산 리튬, 아세트산 리튬, 인산 리튬, 염화 리튬, 수산화 리튬, 산화 리튬, 또는 이들의 조합일 수 있다.  Specifically, the lithium source may be lithium carbonate, lithium nitrate, lithium sulfate, lithium acetate, lithium phosphate, lithium chloride, lithium hydroxide, lithium oxide, or a combination thereof.
다음으로, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 상기 코팅액에 교반 흔합하예 리륨의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 표면에 인 공급원을 균일하게 부착시킨다. 코팅액에 리튬 공급원을 추가로 분산시킨 경우, 리튬의 가역적인 인터칼레아션 및 디인터칼레이션이 가능한 화합물의 표면에 리튬 공급원 및 인 공급원이 균일하게 부착된다.  Next, a compound capable of reversible intercalation and deintercalation of lithium is stirred and mixed with the coating solution. The phosphorus source is uniformly attached to the surface of the compound capable of reversible intercalation and deintercalation of lithium. Let it be. When the lithium source is further dispersed in the coating solution, the lithium source and the phosphorus source are uniformly attached to the surface of the compound capable of reversible intercalation and deintercalation of lithium.
다음으로, 인 공급원이 부착된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 건조한다.  Next, a compound capable of reversible intercalation and deintercalation of lithium with a phosphorus source is dried.
다음으로, 인 공급원이 부착된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 열처리하여, Li3P04를 포함하는 코팅층이 표면에 형성된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 수득한다. 이 때, 열처리 온도는, 650 내지 950°C일 수 있다. 전술한 온도범위에서, 양극 활물질 표면에 형성된 코팅층이 안정적인 역할을 수행 할 수 있다. 코팅액이 인 공급원만을 포함하고, 리튬 공급원을 포함하지 않는 경우, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물 내에 포함되는 U으로부터 리튬이 기인될 수 있다. Next, by heat-treating a compound capable of reversible intercalation and deintercalation of lithium to which a phosphorus source is attached, the reversible intercalation and deintercalation of lithium having a coating layer containing Li 3 P0 4 formed on its surface Obtain a compound that can be oxidized. At this time, the heat treatment temperature may be 650 to 950 ° C. In the above temperature range, the coating layer formed on the surface of the positive electrode active material is stable Can play a role. If the coating liquid contains only a phosphorus source and no lithium source, lithium may be derived from U contained in the compound capable of reversible intercalation and deintercalation of lithium.
본 발명의 또 다른 일 구현예에서는, 양극, 음극 및 전해질을 포함하는 리튬 이차 전지며, 양극은 전류 집전체 및 전류 집전체 상에 형성된 양극 활물질층을 포함하며, 양극 활물질층은, 전술한 양극 활물질을 포함하는 것인 리튬 이차 전지를 제공한다.  In another embodiment of the present invention, a lithium secondary battery including a positive electrode, a negative electrode and an electrolyte, the positive electrode includes a current collector and a positive electrode active material layer formed on the current collector, the positive electrode active material layer, the positive electrode It provides a lithium secondary battery containing an active material.
양극 활물질과 관련된 설명은 전술한 본 발명의 일 구현예와 동일하기 때문에 중복되는 설명을 생략하도록 한다.  Description related to the positive electrode active material is the same as the embodiment of the present invention described above will be omitted so that overlapping description.
상기 양극 활물질층은 바인더 및 도전재를 포함할 수 있다.  The positive electrode active material layer may include a binder and a conductive material.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로는 폴리비닐알콜, 카르복시메틸셀를로즈, 히드록시프로필셀를로즈, 디아세틸셀를로즈 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.  The binder adheres positively to the positive electrode active material particles, and also serves to adhere the positive electrode active material to the current collector well, and representative examples thereof include polyvinyl alcohol, carboxymethyl cell rose, hydroxypropyl cell rose, and diacetyl cell rose. Polyvinylchloride, carboxylated polyvinylchloride, polyvinylfluoride, polymers containing ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, Styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon and the like can be used, but is not limited thereto.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 둥의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 흔합물을 포함하는 도전성 재료를사용할 수 있다.  The conductive material is used to impart conductivity to the electrode, and any battery can be used as long as it is an electronic conductive material without causing chemical change in the battery. For example, natural graphite, artificial graphite, carbon black, acetylene black, and ketjen. Carbon-based materials such as black and carbon fiber; Metal materials such as metal powder of copper, nickel, aluminum, silver or metal fiber; Conductive polymers such as polyphenylene derivatives; Or an electroconductive material containing these mixture can be used.
상기 음극은 집전체 및 상기 집전체 위에 형성된 음극 활물질층을 포함하며, 상기 음극 활물질층은 음극 활물질을 포함한다.  The negative electrode includes a current collector and a negative electrode active material layer formed on the current collector, and the negative electrode active material layer includes a negative electrode active material.
상기 음극 활물질로는 리튬 이온을 가역적으로 인터칼레이션 /디인터칼레이션할 수 있는 물질, 리튬 금속, 리륨 금속의 합금, 리튬을 도프 및 탈도프할 수 있는 물질, 또는 전이 금속 산화물을 포함한다. The negative electrode active material includes a material capable of reversibly intercalating / deintercalating lithium ions, lithium metal, and lithium metal. Alloys, materials capable of doping and undoping lithium, or transition metal oxides.
상기 리튬 이온을 가역적으로 인터칼레이션 /디인터칼레이션할 수 있는 물질로는 탄소 물질로서, 리튬 이온 이차 전지에서 일반적으로 사용되는 탄소계 음극 활물질은 어떠한 것도 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 린편상 (flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본 (soft carbon: 저온 소성 탄소) 또는 하드 카본 (hard carbon) , 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.  As a material capable of reversibly intercalating / deintercalating the lithium ions, any carbon-based negative electrode active material generally used in a lithium ion secondary battery may be used, and representative examples thereof include crystalline carbon. , Amorphous carbon or these can be used together. Examples of the crystalline carbon may be graphite such as amorphous, plate, flake, spherical or fibrous natural graphite or artificial graphite, and the amorphous carbon may be soft carbon (soft carbon) Or hard carbon, mesophase pitch carbide, calcined coke, or the like.
상기 리튬 금속의 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속의 합금이 사용될 수 있다.  Examples of the alloy of the lithium metal include lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, and Sn. Alloys of the metals selected may be used.
상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0 < x <Examples of a material capable of doping and undoping lithium include Si and SiO x (0 <x <
2), Si-Y 합금 (상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이몌 Si은 아님), Sn, Sn02) Sn_Y (상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 Si02를 흔합하여 사용할 수도 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf , V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, 0s, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합으로 이루어진 군에서 선택될 수 있다. 2), Si-Y alloy (Y is an element selected from the group consisting of alkali metal, alkaline earth metal, group 13 element, group 14 element, transition metal rare earth element and combinations thereof, not Si), Sn, Sn0 2 ) Sn_Y (Y is an element selected from the group consisting of alkali metals, alkaline earth metals, group 13 elements, group 14 elements, transition metals, rare earth elements, and combinations thereof, and not Sn). At least one of them may be used in combination with Si0 2 . The element Y includes Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, 0s, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, and combinations thereof.
상기 전이 금속 산화물로는 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다.  Examples of the transition metal oxides include vanadium oxide and lithium vanadium oxide.
상기 음극 활물질 층은 또한 바인더를 포함하며, 선택적으로 도전재를 더욱 포함할수도 있다.  The negative electrode active material layer also includes a binder, and may optionally further include a conductive material.
상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로 폴리비닐알콜, 카르복시메틸샐를로즈, 히드록시프로필셀를로즈 , 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피를리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다. The binder adheres the negative electrode active material particles to each other well, and also the negative electrode The active material adheres well to the current collector, and typical examples thereof include polyvinyl alcohol, carboxymethyl salose, hydroxypropyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, and polyvinyl fluoride ethylene oxide. Containing polymers, polyvinylpyridone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon, etc. It may be, but is not limited thereto.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 혹연, 인조 혹연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 흔합물을 포함하는 도전성 재료를 사용할 수 있다.  The conductive material is used to impart conductivity to the electrode, and any battery can be used as long as it is an electron conductive material without causing chemical change in the battery, and examples thereof include natural alum, artificial alum, carbon black, acetylene black, and ketjen. Carbon-based materials such as black and carbon fiber; Metal materials such as metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive polymers such as polyphenylene derivatives; Or an electroconductive material containing these mixture can be used.
상기 집전체로는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포체 ( foam) , 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 및 이들의 조합으로 이루어진 군에서 선택되는것을사용할수 있다.  The current collector may be selected from the group consisting of copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with a conductive metal, and combinations thereof.
상기 전류 집전체로는 A1을 사용할 수 있으나 이에 한정되는 것은 아니다.  A1 may be used as the current collector, but is not limited thereto.
상기 음극과 양극은 활물질, 도전재 및 결착제를 용매 중에서 흔합하여 활물질 조성물을 제조하고, 이 조성물을 전류 집전체에 도포하여 제조한다ᅳ 이와 같은 전극 제조 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 상세한 설명은 생략하기로 한다. 상기 용매로는 N-메틸피롤리돈 등을사용할수 있으나 이에 한정되는 것은 아니다.  The negative electrode and the positive electrode are prepared by mixing an active material, a conductive material, and a binder in a solvent to prepare an active material composition, and applying the composition to a current collector. Detailed description will be omitted. N-methylpyrrolidone may be used as the solvent, but is not limited thereto.
상기 전해질은 비수성 유기 용매와 리튬염을 포함한다.  The electrolyte contains a non-aqueous organic solvent and a lithium salt.
상기 비수성 유기 용매는 전지의 전기화학적 반웅에 관여하는 이온들이 이동할수 았는 매질 역할을 한다.  The non-aqueous organic solvent serves as a medium in which the ions involved in the electrochemical reaction of the battery have been moved.
상기 비수성 유기용매로는 카보네이트계 에스테르계, 에테르계, 케톤계, 알코올계, 또는 비양성자성 용매를 사용할 수 있다. 상기 카보네이트계 용매로는 디메틸 카보네이트 (DMC)ᅳ 디에틸 카보네이트 (DEC) , 디프로필 카보네이트 (DPC) , 메틸프로필 카보네이트 (MPC) , 에틸프로필 카보네이트 (EPC) , 메틸에틸 카보네이트 (MEC) , 에틸렌 카보네이트 (EC) , 프로필렌 카보네이트 (PC) , 부틸렌 카보네이트 (BC) 등이 사용될 수 있으몌 상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, n-프로필 아세테이트, 디메틸아세테이트, 메틸프로피오네이트, 에틸프로피오네이트 γ -부티로락톤 데카놀라이드 (decanol ide) , 발레로락톤, 메발로노락톤 (mevalonolactone), 카프로락톤 (caprolactone), 등이 사용될 수 있다. 상기 에테르계 용매로는 디부틸 에테르, 테트라글라임, 디글라임, 디메특시에탄, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있으며, 상기 케톤계 용매로는 시클로핵사논 등이 사용될 수 있다. 또한 상기 알코올계 용매로는 에틸알코올, 이소프로필 알코올 등이 사용될 수 있으며, 상기 비양성자성 용매로는 R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상, 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 둥의 니트릴류 디메틸포름아미드 등의 아미드류, 1 , 3—디옥솔란둥의 디옥솔란류 설포란 (sul folane)류 등이 사용될 수 있다. 상기 비수성 유기 용매는 단독으로 또는 하나 이상 흔합하여 사용할 수 있으며, 하나 이상 흔합하여 사용하는 경우의 흔합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있고, 이는 당해 분야에 종사하는 사람들에게는 널리 이해될 수 있다. The non-aqueous organic solvent may be a carbonate ester, ether, ketone, alcohol, or aprotic solvent. remind As the carbonate solvent, dimethyl carbonate (DMC) ᅳ diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), ethylene carbonate (EC ), propylene carbonate (PC), butylene carbonate (BC), etc. this might be used mye the ester solvent include methyl acetate, ethyl acetate, n- propyl acetate, dimethyl acetate, methyl propionate, ethyl propionate, γ Butyrolactone decanolide, valerolactone, mevalonolactone, caprolactone, and the like can be used. As the ether solvent, dibutyl ether, tetraglyme, diglyme, dimetheusethane, 2-methyltetrahydrofuran, tetrahydrofuran, and the like may be used. As the ketone solvent, cyclonucleanone may be used. Can be. In addition, ethyl alcohol, isopropyl alcohol, etc. may be used as the alcohol solvent, and the aprotic solvent may be R-CN (R is a straight-chain, branched, or cyclic hydrocarbon group having 2 to 20 carbon atoms. Amides such as round nitriles, dimethylformamide, dioxolanes of 1, 3-dioxolane, and sul folanes. The non-aqueous organic solvent may be used alone or in combination of one or more, and the mixing ratio in the case of using one or more in combination can be appropriately adjusted according to the desired battery performance, which is widely understood by those skilled in the art. Can be.
또한, 상기 카보네이트계 용매의 경우 환형 (cycl i c) 카보네이트와 사슬형 (chain) 카보네이트를 흔합하여 사용하는 것이 좋다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 1 : 1 내지 1 : 9의 부피비로 흔합하여 사용하는 것이 전해액의 성능이 우수하게 나타날수 있다.  In addition, in the case of the carbonate-based solvent, it is preferable to use a combination of a cyclic carbonate and a chain carbonate. In this case, the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of 1: 1 to 1: 9, so that the performance of the electrolyte may be excellent.
본 발명의 일 구현예에 따른 비수성 유기용매는 상기 카보네이트계 용매에 방향족 탄화수소계 유기용매를 더 포함할 수도 있다. 이때 상기 카보네이트계 용매와 방향족 탄화수소계 유기용매는 1 : 1 내지 30 : 1의 부피비로 흔합될 수 있다.  The non-aqueous organic solvent according to the embodiment of the present invention may further include an aromatic hydrocarbon organic solvent in the carbonate solvent. In this case, the carbonate-based solvent and the aromatic hydrocarbon-based organic solvent may be mixed in a volume ratio of 1: 1 to 30: 1.
상기 방향족 탄화수소계 유기용매로는 하기 화학식 2의 방향족 탄화수소계 화합물이 사용될 수 있다.
Figure imgf000016_0001
As the aromatic hydrocarbon organic solvent, an aromatic hydrocarbon compound of Formula 2 may be used.
Figure imgf000016_0001
(상기 화학식 2에서, ^ 내지 R6는 각각 독립적으로 수소, 할로겐, C1 내지 C10 알킬기, 할로알킬기 또는 이들의 조합이다 J (In Formula 2, ^ to R 6 are each independently hydrogen, halogen, C1 to C10 alkyl group, haloalkyl group, or a combination thereof. J
상기 방향족 탄화수소계 유기용매는 벤젠, 플루오로벤젠, 1,2- 디플루오로벤젠, 1, 3—디플루오로벤젠, 1,4-디플루오로벤젠, 1,2,3- 트리플루오로벤젠, 1,2,4-트리플루오로벤젠, 클로로벤젠, 1,2-디클로로벤젠 The aromatic hydrocarbon organic solvent is benzene, fluorobenzene, 1,2-difluorobenzene, 1, 3—difluorobenzene, 1,4-difluorobenzene, 1,2,3-trifluorobenzene , 1,2,4-trifluorobenzene, chlorobenzene, 1,2-dichlorobenzene
1.3-디클로로벤젠 1ᅳ 4-디클로로벤젠, 1,2,3-트리클로로벤젠, 1,2,4_ 트리클로로벤젠, 아이오도벤젠, 1, 2—디아이오도벤젠, 1,3-디아이오도벤젠, 1,4-디아이오도벤젠, 1,2, 3-트리아이오도벤젠, 1,2,4-트리아이오도벤젠, 를루엔, 플루오로를루엔, 1,2-디플루오로를루엔, 1,3—디플루오로를루엔,1.3-dichlorobenzene 1 ᅳ 4-dichlorobenzene, 1,2,3-trichlorobenzene, 1,2,4_ trichlorobenzene, iodobenzene, 1, 2-dioodobenzene, 1,3-dioodobenzene, 1,2-Diiodobenzene, 1,2,3-triiodobenzene, 1,2,4-triiodobenzene, toluene, fluoroluene, 1,2-difluoroluene, 1, 3—difluoroluene ,
1.4-디플루오로를루엔, 1,2,3-트리플루오로를루엔, 1,2,4- 트리플루오로롤루엔, 클로로를루엔, 1,2-디클로로를루엔, 1,3- 디클로로톨루엔, 1, 4-디클로로를루엔, 1,2, 3-트리클로로틀루엔, 1,2,4- 트리클로로를루엔, 아이오도를루엔, 1, 2-디아이오도를루엔 1,3- 디아이오도를루엔, 1ᅳ 4-디아이오도를루엔, 1,2,3-트리아이오도를루엔, 1,2 ,4-트리아이오도를루엔, 자일렌, 및 이들의 조합으로 이루어진 군에서 선택되는 것이다. 1.4-difluoroluene, 1,2-3-trifluoroluene, 1,2-4-trifluorololluene, chloroluene, 1,2-dichloroluene, 1,3-dichlorotoluene , 1 , 4-dichloroluene, 1,2, 3-trichlorotoluene , 1,2,4-trichloroluene , iodoluene , 1 , 2-diaioluluene 1,3-diiodo Is selected from the group consisting of toluene, 1 ′ 4-diaiodoluene, 1,2,3-triiodoluene, 1,2,4-triiodoluene, xylene, and combinations thereof. .
상기 비수성 전해질은 전지 수명을 향상시키기 위하여 비닐렌 카보네이트 또는 하기 화학식 3의 에틸렌 카보네이트계 화합물을 더욱 포함할수도 있다.  The non-aqueous electrolyte may further include vinylene carbonate or an ethylene carbonate compound represented by Chemical Formula 3 to improve battery life.
[화학식 3]  [Formula 3]
Figure imgf000016_0002
(상기 화학식 3에서, R7 및 ¾는 각각 독립적으로 수소, 할로겐기, 시아노기 (CN) , 니트로기 (N02) 또는 C1 내지 C5 플루오로알킬기이고, 상기 R7과 ¾중 적어도 하나는 할로겐기, 시아노기 (CN) , 니트로기 (N02) 또는 C1 내지 C5의 플루오로알킬기이다. )
Figure imgf000016_0002
(In Formula 3, R 7 and ¾ are each independently hydrogen, halogen group, cyano group (CN), nitro group (N0 2 ) or C1 to C5 fluoroalkyl group, at least one of R 7 and ¾ is halogen Group, cyano group (CN), nitro group (N0 2 ) or C1 to C5 fluoroalkyl group.)
상기 에틸렌 카보네이트계 화합물의 대표적인 예로는 디플루오로 에틸렌카보네아트 클로로에틸렌 카보네이트, 디클로로에틸렌 카보네이트, 브로모에틸렌 카보네이트, 디브로모에틸렌 카보네이트, 니트로에틸렌 카보네이트, 시아노에틸렌 카보네이트 또는 플루오로에틸렌 카보네이트 둥을 들 수 있다. 이러한 수명 향상 첨가제를 더욱 사용하는 경우 그 사용량은 적절하게 조절할 수 있다.  Representative examples of the ethylene carbonate compound include difluoro ethylene carbonaneart chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate or fluoroethylene carbonate. Can be mentioned. In the case of further using such life improving additives, the amount thereof can be properly adjusted.
상기 리튬염은 유기 용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다. 이러한 리튬염의 대표적인 예로는 LiPF6, LiBF4, LiSbF6, LiAsF6 j LiC4F9S03, LiC104, LiA102, LiAlCU, LiN(CxF2x+1S02) (CyF2y+1S02) (여기서, x 및 y는 자연수임), LiCl , Li l 및 LiB(C204)2(리튬 비스옥살레이토 보레이트 ( l ithium bis(oxalato) borate; LiBOB)로 이루어진 군에서 선택되는 하나 또는 둘 이상을 지지 (support ing) 전해염으로 포함한다. 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다. The lithium salt is a substance that dissolves in an organic solvent, acts as a source of lithium ions in the battery, thereby enabling the operation of a basic lithium secondary battery, and promoting the movement of lithium ions between the positive electrode and the negative electrode. Representative examples of such lithium salts are LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 j LiC 4 F 9 S0 3 , LiC10 4 , LiA10 2 , LiAlCU, LiN (C x F 2x + 1 S0 2 ) (CyF 2y + 1 S0 2 ) (where x and y are natural numbers), LiCl, Li l and LiB (C 2 0 4 ) 2 (l ithium bis (oxalato) borate; LiBOB) Or at least two of them as supporting electrolyte salts The lithium salt concentration is preferably in the range of 0.1 to 2.0 M. When the lithium salt concentration is in the above range, the electrolyte has an appropriate conductivity and viscosity. It can exhibit excellent electrolyte performance, and lithium ions can move effectively.
리튬 이차 전지의 종류에 따라 양극과 음극 사이에 세퍼레이터가 존재할 수 도 있다. 이러한 세퍼레이터로는 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴 플루오라이드 또는 이들의 2층 이상의 다층막이 사용될 수 있으며, 폴리에틸렌 /폴리프로필렌 2층 세퍼레이터, 폴리에틸렌 /폴리프로필렌 /폴리에틸렌 3층 세퍼레아터, 폴리프로필렌 /폴리에틸렌 /폴리프로필렌 3층 세퍼레이터 등과 같은 흔합 다층막이 사용될 수 있음은 물른이다.  Depending on the type of lithium secondary battery, a separator may exist between the positive electrode and the negative electrode. As the separator, polyethylene, polypropylene, polyvinylidene fluoride or two or more multilayer films thereof may be used, polyethylene / polypropylene two-layer separator, polyethylene / polypropylene / polyethylene three-layer separator, polypropylene / polyethylene Of course, a mixed multilayer film such as a polypropylene three-layer separator can be used.
리튬 이차 전지는 사용하는 세퍼레이터와 전해질의 종류에 따라 리튬 이온 전지, 리튬 이온 폴리머 전지 및 리륨 폴리머 전지로 분류될 수 있고, 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 이들 전지의 구조와 제조방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략한다. Lithium secondary batteries may be classified into lithium ion batteries, lithium ion polymer batteries, and lithium polymer batteries according to the type of separator and electrolyte used. According to the shape, it can be classified into cylindrical, square, coin type, pouch type, etc., and can be divided into bulk type and thin film type according to the size. Since the structure and manufacturing method of these batteries are well known in the art, detailed description thereof will be omitted.
도 1에 본 발명의 리튬 이차 전지의 대표적인 구조를 개략적으로 나타내었다. 도 1에 나타낸 것과 같이 상기 리튬 이차 전지 ( 1)는 양극 (3), 음극 (2) 및 상기 양극 (3)과 음극 (2) 사이에 존재하는 세퍼레이터 (4)에 함침된 전해액을 포함하는 전지 용기 (5)와, 상기 전지 용기 (5)를 봉입하는 봉입 부재 (6)를 포함한다.  1 schematically shows a typical structure of a lithium secondary battery of the present invention. As shown in FIG. 1, the lithium secondary battery 1 includes a positive electrode 3, a negative electrode 2, and an electrolyte solution impregnated in a separator 4 existing between the positive electrode 3 and the negative electrode 2. The container 5 and the sealing member 6 which encloses the said battery container 5 are included.
이하 본 발명의 실시예 및 비교예를 기재한다. 그러나 하기의 실시예는 본 발명의 일 실시예 일뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다. 제조예 - 리륨의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물 제조  Hereinafter, examples and comparative examples of the present invention are described. However, the following examples are only examples of the present invention and the present invention is not limited to the following examples. Preparation Example-Preparation of compound capable of reversible intercalation and deintercalation of lithium
제조예 1  Preparation Example 1
Co304와 Li2C03의 화학양론적 비율의 흔합물에 양극 활물질 기준으로 MgC03 (0.01wt ) , CaF2(0.005wt ) , 및, Ti02(0.005wt >)가 되도록 흔합물과 건식 흔합한 후, 이를 1000 °C로 10 시간 동안 열처리하여 양극 활물질을 제조하였다. The stoichiometric ratio of Co 3 O 4 and Li 2 CO 3 was mixed with MgC0 3 (0.01 wt), CaF 2 (0.005 wt), and Ti0 2 (0.005 wt>) based on the positive electrode active material. After dry mixing, the resultant was heat-treated at 1000 ° C for 10 hours to prepare a cathode active material.
제조예 2  Preparation Example 2
Nio.6oCoo.2oMn0.2o(OH)2 와 Li2C03의 화학양론적 비율의 흔합물에 양극 활물질 기준으로 MgC03 (0.01wt%) , CaF2(0.005wt%) , 및, Ti02(0.005wt%)가 되게 흔합물과 건식 흔합한 후, 이를 850°C로 10 시간 동안 열처리하여 양극 활물질을 제조하였다. Nio. 6oCoo. 2 oMn 0 .2o (OH) 2 and Li 2 C0 Chemical traces both compounds MgC0 3 (0.01wt%) as a positive electrode active material based on the stoichiometric ratio, CaF 2 (0.005wt%) of 3, and, Ti0 2 (0.005wt %) And dry mixed with the mixture, followed by heat treatment at 850 ° C. for 10 hours to prepare a positive electrode active material.
실시예 -양극활물질의 제조  Example-Preparation of Anode Active Material
실시예 1  Example 1
믹서에 LiOH 분말 0.037g과 (NH4)2HP04 분말 0.465g을 에탄올 용매에 습식 흔합하여 코팅액을 제조하였다. 코팅액에 제조예 1에서 제조된 양극 활물질 100g을 흔합하여 양극 활물질에 코팅액을 코팅한 후 건조하여 흔합물을 제조하였다. 이 흔합물을 800 °C로 6시간 동안 열처리하여 양극 활물질을 제조하였다. A coating solution was prepared by wet mixing 0.037 g of LiOH powder and 0.465 g of (NH 4 ) 2 HP0 4 powder in an ethanol solvent in a mixer. 100 g of the positive electrode active material prepared in Preparation Example 1 was mixed with the coating solution, and the coating solution was coated on the positive electrode active material, followed by drying. The mixture was prepared. This mixture was heat-treated at 800 ° C. for 6 hours to prepare a cathode active material.
실시예 2  Example 2
열처리 과정에서 흔합물을 900 °C로 6시간 동안 열처리한 것을 제외하고는 실시예 1과 동일하게 양극 활물질을 제조하였다. A positive electrode active material was prepared in the same manner as in Example 1 except that the mixture was heat treated at 900 ° C. for 6 hours.
실시예 3  Example 3
믹서에 (NH4)2HP04 분말 0.465g을 에탄올 용매에 습식 흔합하여 코팅액을 제조하였다. 코팅액에 제조예 1에서 제조된 양극 활물질 100g을 흔합하여 양극 활물질에 코팅액을 코팅한 후 건조하여 흔합물을 제조하였다. 이 흔합물을 800 °C로 6시간 동안 열처리하여 양극 활물질을 제조하였다. 0.465 g of (NH 4 ) 2 HP0 4 powder was wet-mixed with an ethanol solvent in a mixer to prepare a coating solution. 100 g of the positive electrode active material prepared in Preparation Example 1 was mixed with the coating liquid to coat the coating liquid on the positive electrode active material, followed by drying to prepare a mixture. This mixture was heat-treated at 800 ° C. for 6 hours to prepare a cathode active material.
실시예 4  Example 4
열처리 과정에서 흔합물을 650°C로 6시간 동안 열처리한 것을 제외하고는 실시예 1과 동일하게 양극 활물질을 제조하였다.  A positive electrode active material was prepared in the same manner as in Example 1 except that the mixture was heat treated at 650 ° C. for 6 hours in the heat treatment process.
비교예 1  Comparative Example 1
일반적인 LiCo02 양극 활물질을 제조하였다. A general LiCo0 2 positive electrode active material was prepared.
비교예 2  Comparative Example 2
제조예 1에서 제조된 양극 활물질을사용하였다.  The positive electrode active material prepared in Preparation Example 1 was used.
비교예 3  Comparative Example 3
제조예 1에서 제조한 화합물 대신 일반적인 LiCo02을 사용한 것을 제외하고, 실시예 1과 동일하게 양극 활물질을 제조하였다. A positive electrode active material was prepared in the same manner as in Example 1, except that general LiCo0 2 was used instead of the compound prepared in Preparation Example 1.
비교예 4  Comparative Example 4
열처리 과정에서 흔합물을 400°C로 6시간 동안 열처리한 것을 제외하고는 실시예 1과 동일하게 양극 활물질을 제조하였다. A positive electrode active material was prepared in the same manner as in Example 1 except that the mixture was heat treated at 400 ° C. for 6 hours.
비교예 5  Comparative Example 5
제조예 1에서 제조한 화합물 대신 LiNi0.60Co0.20Mn0.2002을 사용한 것을 제외하고, 실시예 1과 동일하게 양극 활물질을 제조하였다. LiNi 0 instead of the compound prepared in Preparation Example 1. 60 Co 0 . A positive electrode active material was manufactured in the same manner as in Example 1, except that 20 Mn 0.20 0 2 was used.
코인셀의 제조  Production of coin cell
전술한 실시예 및 비교예에서 제조된 양극 활물질 95 중량 %, 도전제로 카본 블랙 (carbon black) 2.5 중량 %, 결합제로 PVDF 2.5중량% 를 용제 (솔벤트)인 N-메틸 -2 피를리돈 (NMP) 5.0 중량 %에 첨가하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 두께 20 내지 40卿의 양극 집전체인 알루미늄 (A1 ) 박막에 도포 및 진공 건조하고 롤 프레스 (rol l press)를 실시하여 양극을 제조하였다. 95% by weight of the positive electrode active material prepared in the above-described examples and comparative examples, 2.5% by weight of carbon black as a conductive material, 2.5% by weight of PVDF as a binder, N-methyl-2 pyridone (NMP) as a solvent (solvent) Anode by adding to 5.0% by weight) Slurry was prepared. The positive electrode slurry was applied to a thin film of aluminum (A1), which is a positive electrode current collector having a thickness of 20 to 40 kPa, vacuum dried, and roll pressed to prepare a positive electrode.
음극으로는 Li-금속을 이용하였다.  Li-metal was used as the negative electrode.
이와 같이 제조된 양극과 Li-금속을 대극으로, 전해액으로는 1. 15M LiPF6EC:DMC( l : lvol%)을사용하여 코인 셀 타입의 반쪽 전지를 제조하였다. 층방전은 4.5-3.0V 범위에서 실시하였다. 수명의 경우 1.0C 율로 평가하였다.  A coin cell type half cell was manufactured using a cathode and a Li-metal prepared as a counter electrode and 1.15M LiPF 6EC: DMC (l: lvol%) as an electrolyte. Layer discharge was carried out in the range 4.5-3.0V. Life time was evaluated at 1.0C rate.
실험예 1: 전지 특성 평가  Experimental Example 1 Battery Characteristic Evaluation
하기 표 1은 상기의 실시예 및 비교예의 4.5V 초기 Format ion, 율특성, lcyle, 20cycle , 30cycle 용량 및 수명특성 데이터이다.  Table 1 shows 4.5V initial format ion, rate characteristic, lcyle, 20cycle, 30cycle capacity and life characteristic data of Examples and Comparative Examples.
【표 1】 Table 1
Figure imgf000020_0001
표 1에서 나타나듯이, 실
Figure imgf000020_0001
As shown in Table 1
뛰어난 전지 특성이 확인된다. 보다 구체적으로, 상기 도핑 된 베어에 코팅층을 포함하는 포함하는 양극 활물질은 비교예 1보다 효율 및 수명 부분에서 뛰어난 특성이 확인 된다ᅳ 또한 베어의 도핑 유무에 따른 차이를 확인 할 수 있는 실시예 1과 비교예 3을 비교시 베어의 도핑 유무에 따라 전지특성의 차이가 큼을 확인 할 수 있다. 이는 단순한 코팅처리로는 고전압에서 전지특성 저하가 발생하며 도핑 된 베어가 필수적으로 필요함이 확인 된다. Excellent battery characteristics are confirmed. More specifically, the positive electrode active material including a coating layer on the doped bear has excellent characteristics in efficiency and lifespan compared to Comparative Example 1 ᅳ Also, Example 1 which can confirm the difference according to the presence or absence of doping of the bear When comparing Comparative Example 3, it can be seen that the difference in battery characteristics is large depending on the presence or absence of doping of the bear. It is confirmed that simple coating treatment causes deterioration of battery characteristics at high voltage, and a doped bear is necessary.
또한 열처리 온도에 따른 차이를 확인 할 수 있는 실시예 1 내지 2 및 비교예 4를 비교시 낮은 열처리 온도인 비교예 4일 경우 전지특성이 실시예 보다 떨어짐이 확인 된다.  In addition, when comparing the Examples 1 to 2 and Comparative Example 4, which can confirm the difference according to the heat treatment temperature, it is confirmed that the battery characteristics are lower than the case of Comparative Example 4 which is a low heat treatment temperature.
리튬 공급원을 제외하고 인 공급원만으로 코팅액을 제조한 실시예 Example in which a coating solution was prepared using only a phosphorus source except a lithium source
3에서도 뛰어난 전지 특성이 확인 된다. Excellent battery characteristics are also confirmed at 3.
또한 조성이 다른 실시예 4과 비교예 5에서도 전지 특성 차이가 확인 된다.  In addition, the difference in battery characteristics is also confirmed in Example 4 and Comparative Example 5 having different compositions.
실험예 2: 7Li MAS NMR분석  Experimental Example 2 7Li MAS NMR Analysis
실시예 1과 비교예 2를 7Li MAS NMR분석을 실시하였다. 분석은 NMR Example 1 and Comparative Example 2 were subjected to 7Li MAS NMR analysis. Analyzes NMR
Frequency : 194.2676 MHz , Del ay Time Dl : 10 sec , Number of Scan : 400 , π /2 pul se : 9 u s , Reference : LiCl = 0 ppm 으로 측정하였다. 그 결과는 도 2 및 도 3과 같다. 비교예 2와 달리 실시예 1에서 불순물 피크가 나타나지 않는 것을 확인 할 수 있다. 표면에서의 코팅처리에 의해 불순물에 제어 되는 것이 확인 된다. Frequency: 194.2676 MHz, Del ay Time Dl: 10 sec, Number of Scan: 400, π / 2 pulses: 9 u s, Reference: LiCl = 0 ppm. The results are shown in FIG. 2 and FIG. Unlike Comparative Example 2, it can be confirmed that the impurity peak does not appear in Example 1. It is confirmed that the impurities are controlled by coating on the surface.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.  The present invention is not limited to the above embodiments, but may be manufactured in various forms, and a person of ordinary skill in the art to which the present invention pertains does not change the technical spirit or essential features of the present invention. It will be appreciated that the present invention may be practiced as. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.
【부호의 설명】  [Explanation of code]
1 : 리튬 이차 전지 2: 음극  1: lithium secondary battery 2: negative electrode
3: 양극 4 : 세퍼레이터  3: anode 4: separator
5: 전지 용기 6 : 봉입 부재  5: battery container 6: sealing member

Claims

【청구범위】  [Claim]
【청구항 1】  [Claim 1]
리륨의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물; 상기 리륨의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 표면의 적어도 일부에 위치하는 코팅층을 포함하고,  Compounds capable of reversible intercalation and deintercalation of lithium; A coating layer on at least a portion of the surface of the compound capable of reversible intercalation and deintercalation of the lithium,
상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은 금속 Μ과 F로 도핑되어 있고, 상기 금속 Μ은 Mg, Ca, Ni, Ti, Al, Si, Sn, Mn, Cr, Fe 및 Zr로 이루어진 군에서 선택되는 적어도 하나의 원소이며,  Compounds capable of reversible intercalation and deintercalation of lithium are doped with metal Μ and F, and the metal Μ is Mg, Ca, Ni, Ti, Al, Si, Sn, Mn, Cr, Fe and At least one element selected from the group consisting of Zr,
상기 코팅층은 Li3P04를 포함하는 리튬 이차 전지용 양극 활물질. [청구항 2】 The coating layer is a lithium secondary battery positive electrode active material comprising Li 3 P0 4 . [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은 하기 화학식 1로 표시되는 리튬 이차 전지용 양극 활물질.  The compound capable of reversible intercalation and deintercalation of lithium is a cathode active material for a lithium secondary battery represented by Formula 1 below.
[화학식 1] [Formula 1]
Figure imgf000022_0001
Figure imgf000022_0001
상기 화학식 1에서, A는 Ni aCoPMny이고, 금속 M은 Mg, Ca, Ni , Ti Al, Si, Sn, Mn, Cr, Fe 및 Zr로 이루어진 군에서 선택되는 적어도 하나의 원소이며, 0<x<0.1, 0<y<0.1, 0<z<0.1이고, 0 < α< 1, 0<β<1 및 0< γ <0.49 이다.  In Formula 1, A is Ni aCoPMny, metal M is at least one element selected from the group consisting of Mg, Ca, Ni, Ti Al, Si, Sn, Mn, Cr, Fe and Zr, 0 <x < 0.1, 0 <y <0.1, 0 <z <0.1, 0 <α <1, 0 <β <1 and 0 <γ <0.49.
【청구항 3】  [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 금속 Μ은 Mg, Ca 및 Ti로 이루어진. 군에서 선택되는 적어도 하나의 원소인 리륨 이차 전지용 양극 활물질ᅳ The metal Μ consists of Mg, Ca and Ti . Cathode active material for lithium secondary battery, which is at least one element selected from the group
【청구항 4】  [Claim 4]
제 1항에 있어서,  The method of claim 1,
상기 금속 M과 F는 도핑을 위한 금속 화합물 원료로부터 기인되는 것인 리튬 이차 전지용 양극 활물질.  The metal M and F is a cathode active material for a lithium secondary battery that is derived from a metal compound raw material for doping.
【청구항 5】 제 1항에 있어서, [Claim 5] The method of claim 1,
상기 코팅층은 LiF를 더 포함하는 리튬 이차 전지용 양극 활물질. 【청구항 6】  The coating layer is a cathode active material for a lithium secondary battery further comprises LiF. [Claim 6]
제 1항에 있어서,  The method of claim 1,
상기 코팅층 내 포함된 Li3P04에서의 리튬은, 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물 내에 포함되는 Li으로부터 기인되거나, 별도의 Li 공급 물질로부터 기인되는 것인 리튬 이차 전지용 양극 활물질 . Lithium in Li 3 PO 4 contained in the coating layer is a lithium secondary that is derived from Li contained in the compound capable of reversible intercalation and deintercalation of the lithium, or from a separate Li supply material Cathode Active Material for Battery.
【청구항 7】  [Claim 7]
제 1항에 있어서,  The method of claim 1,
상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은,
Figure imgf000023_0001
< a < 1.8, 0 < b < 0.5); LiaAi-bXb02- Jc(0.90 < a < 1.8ᅳ 0 < b < 0.5, 0 < c < 0.05); LiEi— bXb02-cDc(0 < b < 0.5, 0 < c < 0.05); LiE2-bXb04-cTc(0 < b < 0.5, 0 < c < 0.05); LiaNii-b-cCobXcDa(0.90 < a <1.8, 0 < b < 0.5, 0 < c < 0.05, 0 < a
Compounds capable of reversible intercalation and deintercalation of lithium,
Figure imgf000023_0001
<a <1.8, 0 <b <0.5); Li a Ai- b X b 0 2 -Jc (0.90 <a <1.8 ᅳ 0 <b <0.5, 0 <c <0.05); LiEi— b X b 0 2 -c D c (0 <b <0.5, 0 <c <0.05); LiE 2 -bXb04-cT c (0 <b <0.5, 0 <c <0.05); Li a Nii- b - c Co b XcDa ( 0.90 <a <1.8, 0 <b <0.5, 0 <c <0.05, 0 <a
< 2); LiaNii— b-cCobXc02-aTa(0.90 < a < 1.8, 0 < b < 0.5, 0 < c < 0.05, 0 < a < 2);
Figure imgf000023_0002
0.90 < a < 1.8, 0 < b < 0.5, 0 < c < 0.05, 0 < a < 2); LiaNii--cMnbXcDa (0.90 < a < 1.8, 0 < b
Li a Nii— b - c Co b X c 0 2 - a T a (0.90 <a <1.8, 0 <b <0.5, 0 <c <0.05, 0 <a <2);
Figure imgf000023_0002
0.90 <a <1.8, 0 <b <0.5, 0 <c <0.05, 0 <a <2); Li a Nii-- c Mn b X c D a (0.90 <a <1.8, 0 <b
< 0.5, 0 < c < 0.05, 0 < a < 2); LiaNii— bcMnbXc02-aTa (0.90 < a < 1.8, 0 < b < 0.5, 0 < c < 0.05, 0 < a < 2); LiaN -b-cMnbXc02- aT2( 0.90 < a < 1.8, 0 < b < 0.5, 0 < c < 0.05, 0 < a < 2); LiaNibEcGd02-eTe(0.90 < a < 1.8, 0 < b < 0.9, 0 < c < 0.5, 0.001 < d < 0.1, 0 < e < 0.05); LiaNibCocMndGe02fTf (0.90 < a < 1.8, 0 < b<0.5, 0 <c <0.05, 0 <a <2); Li a Nii— bc Mn b X c 0 2 - a T a (0.90 <a <1.8, 0 <b <0.5, 0 <c < 0.05, 0 <a <2); Li a N- b - c Mn b X c 0 2 - a T 2 (0.90 <a <1.8, 0 <b <0.5, 0 <c <0.05 , 0 <a <2 Li a Ni b EcG d 02-eTe (0.90 <a <1.8, 0 <b <0.9, 0 <c <0.5, 0.001 <d <0.1, 0 <e <0.05); Li a Ni b Co c Mn d G e 0 2f T f (0.90 <a <1.8 , 0 <b
< 0.9, 0 < c < 0.5, 0 < d <0.5, 0.001 < e < 0.1, 0 < e < 0.05); LiaNiGb02-cTc (0.90 < a < 1.8, 0.001 < b < 0.1, 0 < c <<0.9, 0 <c <0.5, 0 <d <0.5, 0.001 <e <0.1, 0 <e <0.05); Li a NiGb0 2- cT c (0.90 <a <1.8, 0.001 <b <0.1, 0 < c <
0.05); LiaCoGb02-cTc (0.90 < a < 1.8, 0.001 < b < 0.1, 0 < c < 0.05); LiaMnG 02CTC (0.90 < a < 1.8, 0.001 < b < 0.1, 0 < c < 0.05); LiaMn2Gb02-cTc (0.90 < a < 1.8, 0.001 < b < 0.1, 0 < c < 0.05); LiaMnG bP04(0.90 < a < 1.8, 0.001 < b < 0.1); LiNiV04; 및 Li(3-f)J2(P04)3(0 ≤ f ≤ 2) 로 이루어진 군에서 선택된 적어도 하나인 리튬 이차 전지용 양극 활물질 . 0.05); Li a CoGb0 2 - c T c (0.90 <a <1.8, 0.001 <b <0.1, 0 <c <0.05); Li a MnG 0 2C T C (0.90 <a <1.8, 0.001 <b <0.1, 0 <c <0.05); Li a Mn 2 Gb0 2- cT c (0.90 <a <1.8, 0.001 <b <0.1, 0 <c <0.05); Li a MnG b P0 4 (0.90 <a < 1.8, 0.001 <b <0.1); LiNiV0 4 ; And Li (3 - f) J 2 (P0 4 ) 3 (0 ≦ f ≦ 2) lithium, which is at least one selected from the group consisting of Cathode Active Material for Secondary Battery.
(단 이 때, A는 Ni, Co, Mn, 및 이들의 조합으로 이루어진 군에서 선택되고; X는 Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, 회토류 원소 및 이들의 조합으로 이루어진 군에서 선택되고; D는 0, F, S, P, 및 이들의 조합으로 이루어진 군에서 선택되고; E는 Co, Mn, 및 이들의 조합으로 이루어진 군에서 선택되고; T는 F, S, P, 및 이들의 조합으로 이루어진 군에서 선택되고; G는 Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, 및 이들의 조합으로 이루어진 군에서 선택되고; Q는 Ti, Mo, Mn,및 이들의 조합으로 이루어진 군에서 선택되고; Z는 Cr, V, Fe, Sc, Y, 및 이들의 조합으로 이루어진 군에서 선택되며 ; J는 V, Cr, Mn, Co, Ni, Cu, 및 이들의 조합으로 이루어진 군에서 선택된다.)  Wherein A is selected from the group consisting of Ni, Co, Mn, and combinations thereof; X is Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, rare earth elements and their A combination thereof; D is selected from the group consisting of 0, F, S, P, and combinations thereof; E is selected from the group consisting of Co, Mn, and combinations thereof; T is F, S, P, and combinations thereof; G is selected from the group consisting of Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, and combinations thereof; Q is Ti, Mo, Mn, and combinations thereof; Z is selected from the group consisting of Cr, V, Fe, Sc, Y, and combinations thereof; J is V, Cr, Mn, Co, Ni, Cu, and combinations thereof.)
【청구항 8】  [Claim 8]
제 1항에 있어서,  The method of claim 1,
상기 양극 활물질의 총 중량에 대한 상기 코팅층의 함량은 0.2 내지 2.0 증량 %인 리튬 이차 전지용 양극 활물질.  A content of the coating layer with respect to the total weight of the positive electrode active material is 0.2 to 2.0% by weight of a positive electrode active material for a rechargeable lithium battery.
【청구항 9】  [Claim 9]
리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 준비하는 단계 ;  Preparing a compound capable of reversible intercalation and deintercalation of lithium;
인 공급원을 준비하는 단계 ;  Preparing a phosphorus source;
상기 인 공급원을 용매에 분산하여 코팅액을 제조하는 단계;  Dispersing the phosphorus source in a solvent to prepare a coating solution;
상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 상기 코팅액에 교반 흔합하여, 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 표면에 인 공급원을 균일하게 부착시키는 단계;  Stirring and mixing a compound capable of reversible intercalation and deintercalation of lithium to the coating solution to uniformly attach a phosphorus source to the surface of the compound capable of reversible intercalation and deintercalation of lithium step;
상기 인 공급원이 부착된 리륨의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 건조하는 단계: 및  Drying the compound capable of reversible intercalation and deintercalation of the phosphorus source attached lithium; and
상기 인 공급원이 부착된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 열처리하여, Li3P04를 포함하는 코팅층이 표면에 형성된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 수득하는 단계; 를 포함하는 리튬 이차전지용 양극 활물질의 제조 방법. By heat-treating a compound capable of reversible intercalation and deintercalation of lithium to which the phosphorus source is attached, reversible intercalation and deintercalation of lithium having a coating layer containing Li 3 P0 4 on its surface Obtaining a possible compound; Method for producing a cathode active material for a lithium secondary battery comprising a.
【청구항 10]  [Claim 10]
제 9항에 있어서,  The method of claim 9,
상기 인 공급원을 용매에 분산하여 코팅액을 제조하는 단계에서, 리튬 공급원을 추가로 용매에 분산하는 리튬 이차전지용 양극 활물질의 제조 방법.  In the step of dispersing the phosphorus source in a solvent to prepare a coating solution, the lithium source is further dispersed in a solvent manufacturing method of a positive electrode active material for a lithium secondary battery.
【청구항 11]  [Claim 11]
제 9항에 있어서,  The method of claim 9,
상기 인 공급원이 부착된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 열처리하여, Li3P04를 포함하는 코팅층이 표면에 형성된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 수득하는 단계;에서, By heat-treating a compound capable of reversible intercalation and deintercalation of lithium to which the phosphorus source is attached, reversible intercalation and deintercalation of lithium having a coating layer containing Li 3 P0 4 on its surface In obtaining a possible compound;
상기 열처리 온도는, 650 내지 950°C인 리튬 이차전지용 양극 활물질의 제조 방법. The heat treatment temperature is, 650 to 950 ° C. A method for producing a positive electrode active material for lithium secondary batteries.
【청구항 12】  [Claim 12]
제 10항에 있어서,  The method of claim 10,
상기 리튬 공급원은 탄산 리튬, 질산 리튬, 황산 리튬, 아세트산 리튬, 인산 리륨, 염화 리튬, 수산화 리륨, 산화 리튬, 또는 이들의 조합인 리튬 이차 전지용 양극 활물질의 제조 방법.  Said lithium source is lithium carbonate, lithium nitrate, lithium sulfate, lithium acetate, lithium phosphate, lithium chloride, lithium hydroxide, lithium oxide, or a combination thereof.
【청구항 13】  [Claim 13]
제 9항에 있어서,  The method of claim 9,
상기 인 공급원을 준비하는 단계;에서,  Preparing the phosphorus source;
상기 인 공급원은 (NH4)2HP04 , NH4H2PO4 , (NH4)2HP04, Li3P04 , P205 또는 이들의 조합인 리튬 이차 전지용 양극 활물질의 제조 방법 . The phosphorus source is (NH 4 ) 2 HP0 4 , NH4H2PO4, (NH4) 2 HP0 4 , Li 3 P0 4 , P 2 0 5 or a combination thereof.
【청구항 14】  [Claim 14]
제 1항 내지 게 8항 중 어느 한 항에 따른 리륨 이차 전지용 양극 활물질을 포함하는 양극;  A positive electrode comprising the positive electrode active material for a lithium secondary battery according to any one of claims 1 to 8;
음극 활물질을 포함하는 음극; 및  A negative electrode including a negative electrode active material; And
전해질;  Electrolyte;
을 포함하는 리튬 이차 전지 .  Lithium secondary battery comprising a.
PCT/KR2017/002272 2016-03-04 2017-03-02 Positive electrode active material for lithium secondary battery, method for producing same and lithium secondary battery comprising same WO2017150915A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160026496A KR20170103505A (en) 2016-03-04 2016-03-04 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR10-2016-0026496 2016-03-04

Publications (1)

Publication Number Publication Date
WO2017150915A1 true WO2017150915A1 (en) 2017-09-08

Family

ID=59744303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002272 WO2017150915A1 (en) 2016-03-04 2017-03-02 Positive electrode active material for lithium secondary battery, method for producing same and lithium secondary battery comprising same

Country Status (2)

Country Link
KR (1) KR20170103505A (en)
WO (1) WO2017150915A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109244366A (en) * 2018-11-27 2019-01-18 国联汽车动力电池研究院有限责任公司 A kind of richness surface recombination modified method of the lithium material and its rich lithium material of preparation
CN109546136A (en) * 2018-12-14 2019-03-29 淮安新能源材料技术研究院 A kind of preparation method and product of lithium phosphate cladding ternary ionic cell positive material
CN109686965A (en) * 2018-12-12 2019-04-26 无锡晶石新型能源股份有限公司 A kind of wet process technique of manganese titanate lithium
WO2020134048A1 (en) * 2018-12-27 2020-07-02 四川万邦胜辉机械设备有限公司 Cobalt-free, lithium-rich ternary positive electrode material nma and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019078689A2 (en) * 2017-10-20 2019-04-25 주식회사 엘지화학 Lithium secondary battery positive electrode active material, method for preparing same, and lithium secondary battery positive electrode and lithium secondary battery comprising same
KR102313092B1 (en) 2018-04-04 2021-10-18 주식회사 엘지화학 Method of manufacturing positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary, positive electrode for lithium secondary and lithium secondary comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071569A (en) * 2006-09-13 2008-03-27 Sanyo Electric Co Ltd Positive electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR20120028622A (en) * 2010-09-15 2012-03-23 한양대학교 산학협력단 Cathode active material for lithium secondary battery, method for manufacturing the same and lithium secondary battery using the same
KR20120099375A (en) * 2009-08-27 2012-09-10 엔비아 시스템즈 인코포레이티드 Metal oxide coated positive electrode materials for lithium-based batteries
KR20150063954A (en) * 2013-12-02 2015-06-10 주식회사 엘앤에프신소재 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20150063955A (en) * 2013-12-02 2015-06-10 주식회사 엘앤에프신소재 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071569A (en) * 2006-09-13 2008-03-27 Sanyo Electric Co Ltd Positive electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR20120099375A (en) * 2009-08-27 2012-09-10 엔비아 시스템즈 인코포레이티드 Metal oxide coated positive electrode materials for lithium-based batteries
KR20120028622A (en) * 2010-09-15 2012-03-23 한양대학교 산학협력단 Cathode active material for lithium secondary battery, method for manufacturing the same and lithium secondary battery using the same
KR20150063954A (en) * 2013-12-02 2015-06-10 주식회사 엘앤에프신소재 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20150063955A (en) * 2013-12-02 2015-06-10 주식회사 엘앤에프신소재 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109244366A (en) * 2018-11-27 2019-01-18 国联汽车动力电池研究院有限责任公司 A kind of richness surface recombination modified method of the lithium material and its rich lithium material of preparation
CN109686965A (en) * 2018-12-12 2019-04-26 无锡晶石新型能源股份有限公司 A kind of wet process technique of manganese titanate lithium
CN109546136A (en) * 2018-12-14 2019-03-29 淮安新能源材料技术研究院 A kind of preparation method and product of lithium phosphate cladding ternary ionic cell positive material
WO2020134048A1 (en) * 2018-12-27 2020-07-02 四川万邦胜辉机械设备有限公司 Cobalt-free, lithium-rich ternary positive electrode material nma and preparation method thereof

Also Published As

Publication number Publication date
KR20170103505A (en) 2017-09-13

Similar Documents

Publication Publication Date Title
KR101757628B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
WO2015083901A1 (en) Cathode active material for lithium secondary battery, method for producing same, and lithium secondary battery containing same
WO2015083900A1 (en) Positive electrode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
WO2015053586A1 (en) Anode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same
WO2015084026A1 (en) Cathode active material for lithium secondary battery, method for producing same, and lithium secondary battery containing same
KR101309149B1 (en) Method for manufacturing positive active material for rechargeable lithium battery and rechargeable lithium battery using the same
WO2017150915A1 (en) Positive electrode active material for lithium secondary battery, method for producing same and lithium secondary battery comprising same
WO2016032290A1 (en) Cathode active material for lithium secondary battery, method for preparing same and lithium secondary battery comprising same
KR102368363B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR102217753B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20170106810A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR102114229B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR102085247B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20110136001A (en) Method for manufacturing positive active material for rechargeable lithium battery and rechargeable lithium battery using the same
KR101904773B1 (en) Positive active material for rechargeable lithium battery
WO2016186479A1 (en) Cathode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
JP2013134990A (en) Positive electrode active material for lithium secondary battery, method for manufacturing the same, and lithium secondary battery including the positive electrode active material
KR20160083818A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR101673178B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR101668799B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
WO2016122278A1 (en) Positive active material for lithium secondary battery, method for producing same, and lithium secondary battery comprising same
KR102372645B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
WO2016122277A1 (en) Positive active material for lithium secondary battery, method for producing same, and lithium secondary battery comprising same
KR102600145B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
WO2015053446A1 (en) Anode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17760319

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17760319

Country of ref document: EP

Kind code of ref document: A1