WO2016122277A1 - Positive active material for lithium secondary battery, method for producing same, and lithium secondary battery comprising same - Google Patents

Positive active material for lithium secondary battery, method for producing same, and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2016122277A1
WO2016122277A1 PCT/KR2016/001073 KR2016001073W WO2016122277A1 WO 2016122277 A1 WO2016122277 A1 WO 2016122277A1 KR 2016001073 W KR2016001073 W KR 2016001073W WO 2016122277 A1 WO2016122277 A1 WO 2016122277A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
active material
metal
coating layer
positive electrode
Prior art date
Application number
PCT/KR2016/001073
Other languages
French (fr)
Korean (ko)
Inventor
최수안
정호준
전상훈
양지운
신준호
정진성
정봉준
Original Assignee
주식회사 엘앤에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘앤에프 filed Critical 주식회사 엘앤에프
Priority claimed from KR1020160012168A external-priority patent/KR20160094338A/en
Publication of WO2016122277A1 publication Critical patent/WO2016122277A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • It relates to a positive electrode active material for a lithium secondary battery, a manufacturing method thereof and a positive electrode active material for a lithium secondary battery.
  • a battery generates electric power by using an electrochemical reaction material for the positive electrode and the negative electrode.
  • a typical example of such a battery is a lithium secondary battery that generates electrical energy by a change in chemical potent al when lithium ions are intercalated / deintercalated at a positive electrode and a negative electrode.
  • the lithium secondary battery is prepared by using a material capable of reversible intercalation / deintercalation of lithium ions as a positive electrode and a negative electrode active material, and layering an organic electrolyte or a polymer electrolyte between the positive electrode and the negative electrode.
  • a lithium composite metal compound is used as a cathode active material of a lithium secondary battery, and composite metal oxides such as LiCo02, LiMn 2 O 4> LiNi0 2 , and LiMn0 2 have been studied.
  • Mn-based cathode active materials such as LiMn 2 0 4 and LiMn0 2 are easy to synthesize, are relatively inexpensive, have the best thermal stability compared to other active materials when overcharged, and have low environmental pollution and are attractive materials. Although it has a disadvantage, the capacity is small.
  • LiCo0 2 has a good electrical conductivity and a high battery voltage of about 3.7V, and also has excellent cycle life characteristics, stability, and discharge capacity. Thus, LiCo0 2 is a representative cathode active material commercially available and commercially available. However, since LiCo0 2 is expensive, it takes up more than 30% of the battery price, which leads to a problem of low price competitiveness.
  • LiNi0 2 exhibits the highest discharge capacity of battery characteristics among the cathode active materials mentioned above, but has a disadvantage in that it is difficult to synthesize. Also high of nickel The oxidized state causes deterioration of battery and electrode life, and causes severe self discharge and inferior reversibility. In addition, it is difficult to commercialize the stability is not perfect.
  • a cathode active material for a lithium secondary battery including various coating layers for improving battery characteristics has been provided.
  • the present invention provides a cathode active material for a lithium secondary battery having excellent high capacity, high efficiency, and lifespan, and provides a lithium secondary battery including a cathode including the cathode active material.
  • the metal M is at least one element selected from the group consisting of Ni, Co and Mn and M, is a group consisting of Zr ', Ti, Mg, Ca, V, Zn, W, Mo, Sn, Ga, B, and Al. At least one element selected from 0.90 ⁇ a ⁇ 1.10, 0.09 ⁇ b ⁇ 0.15,
  • It includes a coating layer located on at least a portion of the surface of the compound of Formula 1,
  • the coating layer includes Li 3 P0 4 , and the coating layer provides a cathode active material for a lithium secondary battery comprising a composite coating layer further comprising lithium metal oxide, metal oxide, or a combination thereof.
  • the metal M ⁇ may be at least one element selected from Mg, Ti, Zr, Al, and B. In Chemical Formula 1, The metal can be.
  • Li r i ch Li / M rat i o> 1.0
  • Li 3 PO 4 included in the composite coating layer, or lithium of lithium metal oxide is derived from Li contained in the compound capable of reversible intercalation and deintercalation of the lithium, or from a separate Li supply material Can be.
  • the metal in the lithium metal oxide, or metal oxide contained in the composite coating layer may be Na, K, Ca, Ni, Co, Ti, Al, Si, Sn, Mn, Cr, Fe, V, Zr, or a combination thereof. have.
  • the content of the composite coating layer relative to the total weight of the cathode active material is 0.2 to
  • the phosphorus source in a compound capable of reversible intercalation and deintercalation of lithium; And / or mixing a metal source to uniformly attach the phosphorus source to a surface of the compound capable of reversible intercalation and deintercalation of lithium; And
  • the phosphorus source or heat-treating a compound capable of reversible intercalation and deintercalation of lithium to which a metal source is attached, including Li 3 P0 4 , wherein the coating layer further comprises lithium metal oxide, metal oxide, or a combination thereof. It provides a method for producing a cathode active material for a lithium secondary battery comprising the step; obtaining; a compound capable of reversible intercalation and deintercalation of lithium comprising a composite coating layer. '
  • Metal M is at least one element selected from the group consisting of Ni, Co and Mn and M, is selected from the group consisting of Zr, Ti, Mg, Ca, V, Zn, W, Mo, Sn, Ga, B, and Al At least one element, and 0.90 ⁇ a ⁇ 1.10, 0.09 ⁇ b ⁇ 0.15.
  • the firing temperature may be 750 to 1,050 ° C.
  • the step of obtaining a compound capable of reversible intercalation and deintercalation of lithium comprising a composite coating layer further comprising; in the heat treatment temperature may be 650 to 950 ° C.
  • cathode active material having excellent battery characteristics and a lithium secondary battery including the same.
  • 1 is a schematic view of a lithium secondary battery. .
  • the metal M is at least one element selected from the group consisting of Ni, Co and Mn and M, is at least one selected from the group consisting of Zr, Ti, Mg, Ca, V, Zn, W, Mo, Sn, and Al. Elemental element, 0.90 ⁇ a ⁇ 1.10, 0.09 ⁇ b ⁇ 0.15
  • It includes a coating layer located on at least a portion of the surface of the compound of Formula 1,
  • the coating layer includes Li 3 PO 4 and the coating layer provides a cathode active material for a lithium secondary battery comprising a composite coating layer further comprising a lithium metal oxide, a metal oxide, or a combination thereof.
  • the metal may be at least one element selected from Mg, Ti, Zr, Al, and B.
  • Chemical Formula 1
  • the metal M ⁇ may be Mg. ...
  • the compound capable of reversible intercalation and deintercalation of lithium may be Li rich (Li / M ratio> 1.0) composition.
  • Li 3 P04 included in the composite coating layer, or lithium of lithium metal oxide may be derived from Li contained in the compound capable of reversible intercalation and deintercalation of the lithium, or may be derived from a separate Li supply material. .
  • the metal in the lithium metal oxide, or metal oxide contained in the composite coating layer may be Na, K, Ca, Ni, Co, Ti, Al, Si, Sn, Mn, Cr, Fe, V, Zr, or a combination thereof. have.
  • the content of the composite coating layer relative to the total weight of the positive electrode active material is 0.2 to Can be 2.0% by weight
  • Li 3 P0 4 Lithium metal oxide, a positive electrode active material including a composite coating layer further comprising a metal oxide or a combination thereof may improve battery characteristics of a lithium secondary battery. More specifically, it is possible to provide a cathode active material having a higher initial capacity, improved efficiency characteristics and excellent rate characteristics than conventional cathode active materials.
  • the metal compound including Li of the composite coating layer may serve to increase the diffusion degree of Li ions in the cathode active material to facilitate the movement of Li ions, thereby contributing to improvement of battery characteristics.
  • the above reversible intercalation and deintercalation compound of lithium may be particularly preferable for implementing battery characteristics by the coating layer if the specific doping element is excessively doped.
  • the LiM0 2 (M is Ni, Co, or Mn) composition system rock-salt structures can be formed on the surface of the anode material under the usual manufacturing conditions.
  • the rearrangement reaction (Rocksal t >> layered) occurs to control the structural defects and impurities formed on the surface.
  • LiM0 2 (M is Ni, Co, or Mn) when applying the composition Li 3 P0 4 is subject to the process is the Li shortage occurs battery characteristics, some degradation in the formed and also Li 3 in the composition that is not doped When the P0 4 coating is carried out, structural defects may be caused by the reduction reaction generated between P and the surface of the cathode material.
  • Li 3 P0 4 is applied when the coating treatment is applied to a compound having a composition of Li r ich (Li / M rat io> 1.0) and capable of reversible intercalation and deintercalation of a lithium that is excessively doped with a specific element.
  • Reversible intercalation of lithium represented by formula (1) Preparing a compound capable of deintercalation
  • Phosphorus source And / or preparing a metal source
  • Metal M is at least one element selected from the group consisting of Ni, Co and Mn and M, is selected from the group consisting of Zr, Ti, Mg, Ca, V, Zn, W, Mo, Sn, Ga, B, and Al At least one element, and 0.90 ⁇ a ⁇ L10 and 0.09 ⁇ b ⁇ 0.15.
  • the firing temperature may be between 750 and 1,050 ° C.
  • the phosphorus source or heat-treating a compound capable of reversible intercalation and deintercalation of lithium with a metal source attached thereto, comprising U3P04, wherein the coating layer comprises : Obtaining a compound capable of reversible intercalation and deintercalation of lithium, including a composite coating layer further comprising lithium metal oxide, metal oxide, or a combination thereof;
  • the heat treatment temperature may be 650 to 95CTC. Description of the rest of the configuration is the same as the embodiment of the present invention described above, so the description thereof will be omitted.
  • a lithium secondary battery comprising a positive electrode, a negative electrode and an electrolyte, the positive electrode includes a current collector and a positive electrode active material layer formed on the current collector, the positive electrode active material layer, It provides a lithium secondary battery comprising the positive electrode active material described above.
  • the positive electrode active material layer may include a binder and a conductive material.
  • the binder adheres positively to the positive electrode active material particles, and also serves to adhere the positive electrode active material to the current collector well, and representative examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose and diacetyl cellulose.
  • Polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polymers containing ethylene oxide, polyvinylpyridone, polyureth, polytetraple ⁇ oethylene, polyvinylidene fluoride, Polyethylene, polypropylene, styrene-butadiene rubber, acrylic styrene-butadiene rubber epoxy resin, nylon, etc. may be used, but is not limited thereto.
  • the conductive material is used to impart conductivity to the electrode, and any battery can be used as long as it is an electronic conductive material without causing chemical change in the battery.
  • any battery can be used as long as it is an electronic conductive material without causing chemical change in the battery.
  • natural alum, artificial alum, carbon black, acetylene black, ketjen Carbon-based materials such as black and carbon fiber;
  • Metal materials such as metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive polymers such as polyphenylene and derivatives; Or an electroconductive material containing these mixture can be used.
  • the negative electrode includes a current collector and a negative electrode active material layer formed on the current collector, and the negative electrode active material layer includes a negative electrode active material.
  • the negative electrode active material includes a material capable of reversibly intercalating / deintercalating lithium ions, a lithium metal, an alloy of lithium metal, a material capable of doping and undoping lithium, or a transition metal oxide. .
  • a carbon-based negative electrode active material generally used in a lithium ion secondary battery may be used, and representative examples thereof include crystalline carbon, Amorphous carbon or these may be used together.
  • the crystalline carbon are amorphous, plate, Graphite, such as flakes, spherical or fibrous natural or artificial agglomerates.
  • the amorphous carbon include soft carbon (low temperature calcined carbon) or hard carbon, mesophase. Pitch carbide, calcined coke, and the like.
  • alloy of the lithium metal lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr,
  • Alloys of metals selected from the group consisting of Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al and Sn can be used.
  • Examples of a material capable of doping and undoping lithium include Si, SiO x (0 ⁇ x ⁇ 2), and Si-Y alloys (wherein Y is an alkali metal, an alkaline earth metal, a Group 13 element, and a Group 14 element transition metal. Element selected from the group consisting of ash earth elements and combinations thereof, not Si), Sn, Sn0 2 , Sn-Y (Y is an alkali metal, alkaline earth metal, group 13 element, group 14 element, transition rapid, an element selected from rare earth elements and combinations thereof, Sn and the like are not), and may also use at least one common and Si0 2 were combined of them.
  • transition metal oxide examples include vanadium oxide, lithium vanadium oxide, and the like.
  • the negative electrode active material layer also includes a binder, and may optionally further include a conductive material.
  • the binder adheres the negative electrode active material particles to each other well, and also adheres the negative electrode active material to the current collector, and typical examples thereof include polyvinyl alcohol, carboxymethyl salose, hydroxypropyl cellulose, poly H, and the like.
  • Nyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polymers containing ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene Styrene ⁇ butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon and the like may be used, but is not limited thereto.
  • the conductive material is used to impart conductivity to the electrode
  • any electronic conductive material can be used without causing chemical change, and examples thereof include carbon-based materials such as natural alum, artificial alum, carbon black, acetylene black, ketjen black, and carbon fiber; Metal materials such as metal powder or metal fibers such as copper, nickel and aluminum silver; Conductive polymers such as polyphenylene derivatives; Or an electroconductive material containing these mixture can be used.
  • the current collector may be selected from the group consisting of copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with a conductive metal, and combinations thereof. .
  • a 1 may be used as the current collector, but is not limited thereto.
  • the negative electrode and the positive electrode are prepared by mixing an active material, a conductive material and a binder in a solvent to prepare an active material composition, and applying the composition to a current collector. Since such an electrode manufacturing method is well known in the art, detailed description thereof will be omitted.
  • N-methylpyridone may be used as the solvent, but is not limited thereto.
  • the electrolyte contains a non-aqueous organic solvent and a lithium salt.
  • the non-aqueous organic solvent serves as a medium for transfer of silver involved in the electrochemical reaction of the battery.
  • a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, or aprotic solvent may be used as the non-aqueous organic solvent.
  • the carbonate-based solvent may be dimethyl carbonate (DMC) or diethyl carbonate ( DEC), dipropyl carbonate (DPC), methyl propyl carbonate (MPC), ethyl propyl carbonate (EPC), methyl ethyl carbonate (MEC), ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), etc.
  • the ester solvent may be methyl acetate, ethyl acetate, n-propyl acetate, dimethyl acetate, methyl propionate, ethyl propionate, ⁇ -butyrolactone, decanoide.
  • Valerolactone, mevalonolactone (meva l ono l actone), caprolactone (capro lactone), and the like can be used.
  • the ether solvent dibutyl ether, tetraglyme, diglyme, dimetheethane, 2—methyltetrahydrofuran, tetrahydrofuran, and the like may be used, and the ketone solvent may be cyclohexanone or the like. This can be used.
  • ethyl alcohol, isopropyl alcohol, etc. may be used as the alcohol solvent, and as the aprotic solvent, R-CN (R is carbon number).
  • Amides such as nitrile dimethylformamide such as a linear, branched or ring structure hydrocarbon group of 2 to 20, which may include a double bond aromatic ring or an ether bond), 1,3-dioxolane and the like ⁇ Dioxolanes and sulfolanes can be used.
  • the non-aqueous organic solvent may be used alone or in combination of one or more, and the mixing ratio in the case of using one or more in combination may be appropriately adjusted according to the desired battery performance, which is widely understood by those skilled in the art. Can be.
  • the carbonate solvent it is preferable to use cyclic carbonate and chain carbonate in combination.
  • the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of 1: 1 to 1: 9, so that the performance of the electrolyte may be excellent.
  • the non-aqueous organic solvent according to the embodiment of the present invention may further include an aromatic hydrocarbon organic solvent in the carbonate solvent.
  • the carbonate-based solvent and the aromatic hydrocarbon-based organic solvent may be mixed in a volume ratio of 1: 1 to 30: 1.
  • an aromatic hydrocarbon compound of Formula 2 may be used as the aromatic hydrocarbon organic solvent.
  • the aromatic hydrocarbon organic solvent is benzene, fluorobenzene, 1,2-difluorobenzene, 1,3-difluorobenzene, 1,4-difluorobenzene, 1,2,3-trifluorobenzene , 1,2,4-trifluorobenzene, chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene, 1,2 , 4-trichlorobenzene, iodobenzene, 1,2-diodiodobenzene, 1,3-dioiobenzene, 1 ⁇ 4-dioiobenzene, 1,2,3-triiodobenzene, 1 ⁇ 2 , 4-triiodobenzene, toluene, fluorotoluene, 1,2-difluoroluene, 1,3-di Fluorolu
  • the non-aqueous electrolyte may further include vinylene carbonate or an ethylene carbonate compound of Formula 3 to improve battery life.
  • R 7 and 3 ⁇ 4 are each independently hydrogen, halogen group-cyano group (CN), nitro group ( ⁇ 0 2 ) or C1 to C5 fluoroalkyl group, at least one of R 7 and 3 ⁇ 4 is halogen Group, cyano group (CN), nitro group (N0 2 ) or C1 to C5 fluoroalkyl group.)
  • ethylene carbonate compound examples include difluoro ethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate or fluoroethylene carbonate. Etc. can be mentioned. If such life improving additives are used further, their amount can be adjusted accordingly.
  • the lithium salt is a substance that dissolves in an organic solvent and acts as a source of lithium ions in the battery to enable operation of a basic lithium secondary battery and to promote the movement of lithium ions between the positive electrode and the negative electrode.
  • Representative examples of such lithium salts are LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 ( LiC 4 F 9 S0 3l LiC10 4 , LiA10 2 , .LiAlCl 4 , LiN (C x F 2x + 1 S0 2 ) (C y F 2y) +1 S0 2 ) (where x and y are natural numbers), LiCl, Li I and LiB (C 2 0 4 ) 2 (lithium bis (oxalato) borate (LiBOB) One or more selected ones are included as supporting electrolytic salts.
  • the concentration of salt is preferably used in the range of 0.01 to 2.0M.
  • concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it may exhibit excellent electrolyte performance, and lithium ions may move effectively.
  • a separator may exist between the positive electrode and the negative electrode.
  • the separator polyethylene, polypropylene, polyvinylidene fluoride or two or more multilayer films thereof may be used .
  • a mixed multilayer film such as polyethylene / polypropylene two-layer separator, polyethylene / polypropylene / polyethylene three-layer separator, polypropylene / polyethylene / polypropylene three-layer separator, and the like can be used.
  • Lithium secondary batteries may be classified into lithium ion batteries, lithium ion polymer batteries, and lithium polymer batteries according to the type of separator and electrolyte used, and may be classified into cylindrical, square, coin, and pouch types according to their type. It can be divided into bulk type and thin film type according to the size. The structure, structure, and manufacturing method of these batteries are well known in the art, and thus detailed descriptions thereof are omitted.
  • the lithium secondary battery 1 schematically shows a typical structure of a lithium secondary battery of the present invention.
  • the lithium secondary battery 1 includes a positive electrode 3, a negative electrode 2, and an electrolyte solution impregnated in a separator 4 existing between the positive electrode 3 and the negative electrode 2.
  • the container 5 and the sealing member 6 which encloses the said battery container 5 are included.
  • Li A positive electrode active material was prepared as possible.
  • Example 2 100 g of the prepared cathode active material and Zr (0H) 4 powder. 0. 172 g of dry powder of Si0 2 powder 0.054g and (NH 4 ) 2 HP0 4 powder 0,387g to prepare a mixture in which the powder is attached to the surface of the positive electrode active material body and then the mixture to 800 ° C. Heat treatment was performed for 6 hours to prepare a positive electrode active material.
  • Example 2 100 g of the prepared cathode active material and Zr (0H) 4 powder. 0. 172 g of dry powder of Si0 2 powder 0.054g and (NH 4 ) 2 HP0 4 powder 0,387g to prepare a mixture in which the powder is attached to the surface of the positive electrode active material body and then the mixture to 800 ° C. Heat treatment was performed for 6 hours to prepare a positive electrode active material.
  • Example 2 100 g of the prepared cathode active material and Zr (0H) 4 powder. 0. 172 g of dry powder of Si0 2 powder 0.054g and (NH 4 )
  • the LiNi 0 .6oCoo.2oMno.2o0 2 was used. Production of coin cell
  • a positive electrode slurry was prepared by adding to 5.0 wt%.
  • the positive electrode slurry was applied to a thin film of aluminum (A1), which is a positive electrode current collector having a thickness of 20 to 40, and vacuum dried, followed by roll press to prepare a positive electrode.
  • Li-metal was used as the negative electrode.
  • a half cell of a coin sal type was manufactured using 1.15M LiPF 6 EC: DMC (l: lvol3 ⁇ 4) as an electrolyte.
  • Table 1 below is 4.5V initial Formation, rate characteristic, lcyle, 20cycle, 30cycle capacity and life characteristic data of the above Examples and Comparative Examples.
  • Example 1 192.47 97.79 186.10 181.13 177.23 97.33 95.23 96.66
  • Example 2 191.72 97.43 184.91 180.09 176.34 97.39 95.37 96.71
  • Example 3 202.47 91.07 196.22 183.74 180.11 93.64 91.79 91.14
  • Comparative Example 1184.92 95 9 292 195 295 195 295 195 295 195 295 179.14 174.12 96.25 93.55 95.61
  • the positive electrode active material including the excessively doped composite coating layer includes the composite coating layer, but Comparative Example 2, which is not doped, is confirmed to have a difference in battery characteristics. Excess doping is found to be useful for high voltages.
  • the positive electrode active material having a different composition is also confirmed to improve characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Provided is a positive active material for a lithium secondary battery, the material being a compound capable of reversible intercalation and deintercalation of lithium and represented by chemical formula 1: [chemical formula 1] LiaM1-bM'bO2, wherein metal M is at least one element selected from the group consisting of Ni, Co, and Mn; M' is at least one element selected from the group consisting of Zr, Ti, Mg, Ca, V, Zn, W, Mo, Sn, Ga, B, and Al; 0.90<a<1.10; and 0.09<b<0.15, the compound of chemical formula 1 comprising a coating layer positioned on at least a part of the surface thereof, wherein the coating layer comprises Li3PO4 and also comprises a composite coating layer further comprising lithium metal oxides, metal oxides, or a combination thereof.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지  Cathode active material for lithium secondary battery, manufacturing method thereof and lithium secondary battery comprising same
【기술분야】  Technical Field
리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 리튬 이차전지용 양극 활물질에 관한 것이다.  It relates to a positive electrode active material for a lithium secondary battery, a manufacturing method thereof and a positive electrode active material for a lithium secondary battery.
【배경기술】 Background Art
최근 휴대용 전자기기의 소형화 및 경량화 추세와 관련하여 이들 기기의 전원으로 사용되는 전지의 고성능화 및 대용량화에 대한 필요성이 높아지고 있다. 전지는 양극과 음극에 전기 화학 반웅이 가능한 물질을 사용함으로써 전력을 발생시키는 것이다. 이러한 전지 중 대표적인 예로는 양극 및 음극에서 리튬 이온이 인터칼레이션 /디인터칼레이션될 때의 화학전위 (chemical potent i al )의 변화에 의하여 전기 에너지를 생성하는 리튬 이차 전지가 있다.  Recently, with the trend toward miniaturization and light weight of portable electronic devices, the need for high performance and high capacity of batteries used as power sources for these devices is increasing. A battery generates electric power by using an electrochemical reaction material for the positive electrode and the negative electrode. A typical example of such a battery is a lithium secondary battery that generates electrical energy by a change in chemical potent al when lithium ions are intercalated / deintercalated at a positive electrode and a negative electrode.
상기 리튬 이차 전지는 리튬 이온의 가역적인 인터칼레이션 /디인터칼레이션이 가능한 물질을 양극과 음극 활물질로 사용하고, 상기 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 층전시켜 제조한다. 리튬 이차 전지의 양극 활물질로는 리튬 복합금속 화합물이 사용되고 있으며, 그 예로 LiCo02 , LiMn204 > LiNi02 , LiMn02 등의 복합금속 산화물들이 연구되고 있다. 상기 양극 활물질 중 LiMn204 , LiMn02 등의 Mn계 양극 활물질은 합성하기도 쉽고, 값이 비교적 싸며, 과충전시 다른 활물질에 비하여 열적 안정성이 가장 우수하고, 환경에 대한 오염이 낮아 매력이 있는 물질이기는 하나, 용량이 적다는 단점을 가지고 있다. The lithium secondary battery is prepared by using a material capable of reversible intercalation / deintercalation of lithium ions as a positive electrode and a negative electrode active material, and layering an organic electrolyte or a polymer electrolyte between the positive electrode and the negative electrode. A lithium composite metal compound is used as a cathode active material of a lithium secondary battery, and composite metal oxides such as LiCo02, LiMn 2 O 4> LiNi0 2 , and LiMn0 2 have been studied. Among the cathode active materials, Mn-based cathode active materials such as LiMn 2 0 4 and LiMn0 2 are easy to synthesize, are relatively inexpensive, have the best thermal stability compared to other active materials when overcharged, and have low environmental pollution and are attractive materials. Although it has a disadvantage, the capacity is small.
LiCo02는 양호한 전기 전도도와 약 3.7V 정도의 높은 전지 전압을 가지며, 사이클 수명 특성, 안정성 또한 방전 용량 역시 우수하므로, 현재 상업화되어 시판되고 있는 대표적인 양극 활물질이다. 그러나 LiCo02는 가격이 비싸기 때문에 전지 가격의 30% 이상을 차지하므로 가격 경쟁력이 떨어지는 문제점이 있다. LiCo0 2 has a good electrical conductivity and a high battery voltage of about 3.7V, and also has excellent cycle life characteristics, stability, and discharge capacity. Thus, LiCo0 2 is a representative cathode active material commercially available and commercially available. However, since LiCo0 2 is expensive, it takes up more than 30% of the battery price, which leads to a problem of low price competitiveness.
또한 LiNi02는 위에서 언급한 양극 활물질 중 가장 높은 방전 용량의 전지 특성을 나타내고 있으나, 합성하기 어려운 단점이 있다. 또한 니켈의 높은 산화상태는 전지 및 전극 수명 저하의 원인이 되며, 자기 방전이 심하고 가역성이 떨어지는 문제가 있다. 아울러, 안정성 확보가 완전하지 않아서 상용화에 어려움을 겪고 있다. In addition, LiNi0 2 exhibits the highest discharge capacity of battery characteristics among the cathode active materials mentioned above, but has a disadvantage in that it is difficult to synthesize. Also high of nickel The oxidized state causes deterioration of battery and electrode life, and causes severe self discharge and inferior reversibility. In addition, it is difficult to commercialize the stability is not perfect.
상기와 같이 종전의 기술들에서 전지 특성을 향상 시키기 위한 다양한 코팅층올 포함하는 리튬 이차 전지용 양극 활물질이 제공되어 왔었다.  As described above, a cathode active material for a lithium secondary battery including various coating layers for improving battery characteristics has been provided.
【발명의 내용】 [Content of invention]
【해결하려는 과제】  [Problem to solve]
고용량, 고효율 및 수명특성이 우수한 리튬 이차 전지용 양극 활물질을 제공하며, 상기 양극 활물질을 포함하는 양극을 포함하는 리튬 이차 전지를 제공하는 것이다.  The present invention provides a cathode active material for a lithium secondary battery having excellent high capacity, high efficiency, and lifespan, and provides a lithium secondary battery including a cathode including the cathode active material.
【과제의 해결 수단】 [Measures of problem]
본 발명의 일 구현예에서는, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물에 있어서,  In one embodiment of the present invention, in a compound capable of reversible intercalation and deintercalation of lithium,
상기 화합물은 하기 화학식 1로 표시 되며,  The compound is represented by the following formula (1),
[화학식 1]  [Formula 1]
LiaMi— bMᅳ b02 Li a Mi— b M ᅳ b 0 2
상기 화학식 1에서,  In Chemical Formula 1,
금속 M은 Ni, Co 및 Mn 으로 이루어진 군에서 선택되는 적어도 하나의 원소이며 M、는 Zrᅳ, Ti, Mg, Ca, V, Zn, W, Mo, Sn, Ga, B, 및 Al 에서 이루어진 군에서 선택되는 적어도 하나의 원소이고, 0.90<a<1.10, 0.09<b<0.15 이고,  The metal M is at least one element selected from the group consisting of Ni, Co and Mn and M, is a group consisting of Zr ', Ti, Mg, Ca, V, Zn, W, Mo, Sn, Ga, B, and Al. At least one element selected from 0.90 <a <1.10, 0.09 <b <0.15,
상기 화학식 1의 화합물의 표면의 적어도 일부에 위치하는 코팅층을 포함하고,  It includes a coating layer located on at least a portion of the surface of the compound of Formula 1,
상기 코팅층은 Li3P04를 포함하며, 상기 코팅층은 리튬 금속 산화물, 금속 산화물, 또는 이들의 조합을 더 포함하는 복합 코팅층올 포함하는 것인 리튬 이차 전지용 양극 활물질을 제공한다. The coating layer includes Li 3 P0 4 , and the coating layer provides a cathode active material for a lithium secondary battery comprising a composite coating layer further comprising lithium metal oxide, metal oxide, or a combination thereof.
상기 화학식 1에서,  In Chemical Formula 1,
금속 M、는 Mg, Ti, Zr, Al, B에서 선택되는 적어도 하나의 원소일 수 있다. 상기 화학식 1에서, 금속 는 일 수 있다. The metal M 、 may be at least one element selected from Mg, Ti, Zr, Al, and B. In Chemical Formula 1, The metal can be.
상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은 Compounds capable of reversible intercalation and deintercalation of lithium
Li r i ch(Li /M rat i o >1.0) 조성일 수 있다. Li r i ch (Li / M rat i o> 1.0) composition.
상기 복합 코팅층 내 포함된 Li3P04 , 또는 리튬 금속 산화물의 리튬은, 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물 내에 포함되는 Li으로부터 기인되거나, 별도의 Li 공급 물질로부터 기인될 수 있다. Li 3 PO 4 included in the composite coating layer, or lithium of lithium metal oxide is derived from Li contained in the compound capable of reversible intercalation and deintercalation of the lithium, or from a separate Li supply material Can be.
상기 복합 코팅층 내 포함된 리튬 금속 산화물, 또는 금속 산화물에서 금속은 Na , K, Ca , Ni, Co , Ti , Al , Si , Sn , Mn , Cr , Fe , V, Zr , 또는 이들의 조합일 수 있다.  The metal in the lithium metal oxide, or metal oxide contained in the composite coating layer may be Na, K, Ca, Ni, Co, Ti, Al, Si, Sn, Mn, Cr, Fe, V, Zr, or a combination thereof. have.
상기 양극 활물질의 총 중량에 대한 상기 복합 코팅층의 함량은 0.2 내지 The content of the composite coating layer relative to the total weight of the cathode active material is 0.2 to
2.0 중량 % 일 수 있다 Can be 2.0% by weight
본 발명의 다른 일 구현예에서는, 리튬 공급 물질, 전이 금속 전구체, 및 『 공급 물질을 건식 흔합하는 단계 ;  In another embodiment of the present invention, a dry mixing of a lithium feed material, a transition metal precursor, and a “feed material;
상기 흔합물을 소성하는 단계 ; 및  Firing the mixture; And
하기 화학식 1로 표시되는 화합물을 수득하는 단계 ;  Obtaining a compound represented by Formula 1;
하기 화학식 1로 표시되는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 준비하는 단계;  Preparing a compound capable of reversible intercalation and deintercalation of lithium represented by Formula 1;
인 공급원 ; 및 금속 공급원;을 준비하는 단계 ;  Phosphorus source; And preparing a metal source;
상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물에 상기 인 공급원; 및 /또는 금속 공급원을 흔합하여, 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 표면에 인 공급원; 및 /또는 금속 공급원을 균일하게 부착시키는 단계; 및  The phosphorus source in a compound capable of reversible intercalation and deintercalation of lithium; And / or mixing a metal source to uniformly attach the phosphorus source to a surface of the compound capable of reversible intercalation and deintercalation of lithium; And
상기 인 공급원; 또는 금속 공급원이 부착된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 열처리하여, Li3P04를 포함하며, 상기 코팅층은 리튬 금속 산화물, 금속 산화물, 또는 이들의 조합을 더 포함하는 복합 코팅층을 포함하는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 수득하는 단계;를 포함하는 리튬 이차 전지용 양극 활물질의 제조 방법을 제공한다. ' The phosphorus source; Or heat-treating a compound capable of reversible intercalation and deintercalation of lithium to which a metal source is attached, including Li 3 P0 4 , wherein the coating layer further comprises lithium metal oxide, metal oxide, or a combination thereof. It provides a method for producing a cathode active material for a lithium secondary battery comprising the step; obtaining; a compound capable of reversible intercalation and deintercalation of lithium comprising a composite coating layer. '
[화학식 1]  [Formula 1]
LiaMi-bM 02 상기 화학식 1에서, Li a Mi- b M 0 2 In Chemical Formula 1,
금속 M은 Ni, Co 및 Mn 으로 이루어진 군에서 선택되는 적어도 하나의 원소이며 M、는 Zr, Ti, Mg, Ca, V, Zn, W, Mo, Sn, Ga, B, 및 Al 이루어진 군에서 선택되는 적어도 하나의 원소이고, 0.90<a<1.10, 0.09<b<0.15 이다.  Metal M is at least one element selected from the group consisting of Ni, Co and Mn and M, is selected from the group consisting of Zr, Ti, Mg, Ca, V, Zn, W, Mo, Sn, Ga, B, and Al At least one element, and 0.90 <a <1.10, 0.09 <b <0.15.
상기 흔합물을 소성하는 단계;에서, 소성 온도는 750 내지 1,050 °C 일 수 있다. In the step of firing the mixture; the firing temperature may be 750 to 1,050 ° C.
상기 인 공급원; 및 /또는 금속 공급원이 부착된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 열처리하여, Li3P04를 포함하며, 상기 코팅층은 라튬 금속 산화물, 금속 산화물, 또는 이들의 조합을 더 포함하는 복합 코팅층을 포함하는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 수득하는 단계;에서, 열처리 온도는, 650 내지 950°C 일 수 있다. 본 발명의 또 다른 일 구현예에서는, 전술한 본 발명의 일 구현예에 따른 리튬 이차 전지용 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 및 전해질;을 포함하는 리튬 이차 전지를 제공한다. The phosphorus source; And / or heat treating a compound capable of reversible intercalation and deintercalation of lithium to which a metal source is attached, wherein Li 3 P0 4 is included, wherein the coating layer comprises lithium metal oxide, metal oxide, or a combination thereof. In the step of obtaining a compound capable of reversible intercalation and deintercalation of lithium comprising a composite coating layer further comprising; in the heat treatment temperature, may be 650 to 950 ° C. In another embodiment of the present invention, a positive electrode including a positive active material for a lithium secondary battery according to an embodiment of the present invention described above; A negative electrode including a negative electrode active material; And it provides an lithium secondary battery comprising an electrolyte.
【발명의 효과】 【Effects of the Invention】
우수한 전지 특성을 갖는 양극 활물질 및 이를 포함하는 리튬 이차 전지를 제공할 수 있다.  It is possible to provide a cathode active material having excellent battery characteristics and a lithium secondary battery including the same.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1은 리튬 이차 전지의 개략도이다.. 1 is a schematic view of a lithium secondary battery. .
【발명을 실시하기 위한 구체적인 내용】 [Specific contents to carry out invention]
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다. 본 발명의 일 구현예에서는, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물에 있어서, 상기 화합물은 하기 화학식 1로 표시 되며 , Hereinafter, embodiments of the present invention will be described in detail. However, this is presented as an example, whereby the present invention is not limited and the present invention is defined only by the scope of the claims to be described later. In one embodiment of the present invention, in a compound capable of reversible intercalation and deintercalation of lithium, The compound is represented by the following formula (1),
[화학식 1] 상기 화학식 1에서,  [Formula 1] In Formula 1,
금속 M은 Ni, Co 및 Mn 으로 이루어진 군에서 선택되는 적어도 하나의 원소이며 M、는 Zr, Ti, Mg, Ca, V, Zn, W, Mo, Sn, 및 Al 이루어진 군에서 선택되는 적어도 하나의 원소아고, 0.90<a<1.10, 0.09<b<0.15 이고,  The metal M is at least one element selected from the group consisting of Ni, Co and Mn and M, is at least one selected from the group consisting of Zr, Ti, Mg, Ca, V, Zn, W, Mo, Sn, and Al. Elemental element, 0.90 <a <1.10, 0.09 <b <0.15
상기 화학식 1의 화합물의 표면의 적어도 일부에 위치하는 코팅층을 포함하고,  It includes a coating layer located on at least a portion of the surface of the compound of Formula 1,
상기 코팅층은 Li3P04를 포함하며, 상기 코팅층은 리튬 금속 산화물, 금속 산화물, 또는 이들의 조합을 더 포함하는 복합 코팅층을 포함하는 것인 리튬 이차 전지용 양극 활물질을 제공한다. The coating layer includes Li 3 PO 4 and the coating layer provides a cathode active material for a lithium secondary battery comprising a composite coating layer further comprising a lithium metal oxide, a metal oxide, or a combination thereof.
상기 화학식 1에서,  In Chemical Formula 1,
금속 는 Mg, Ti, Zr, Al, B에서 선택되는 적어도 하나의 원소일 수 있다. 상기 화학식 1에서,  The metal may be at least one element selected from Mg, Ti, Zr, Al, and B. In Chemical Formula 1,
금속 M、는 Mg 일 수 있다. .. .  The metal M 、 may be Mg. ...
일반적인 양극 활물질에서 과량 도핑 된 경우에는 용량 저하 및 전지 특성이 떨어질 수 있다. 그러나 고전압에서는 상기의 과잉도핑으로 인하여 구조 안정화하여 고전압에 적합한 양극 활물질을 제공하게 된다.  In the case of excessive doping in a typical cathode active material, capacity degradation and battery characteristics may deteriorate. However, at a high voltage, due to the excessive doping, the structure is stabilized to provide a cathode active material suitable for high voltage.
또한 상기 금속 M、가 Mg 일 경우 고전압에서 Co4+ 용출을 억제하여 용출에 의한 전지 특성 열화를 억제한다.  In addition, when the metal M, Mg, Co4 + elution is suppressed at high voltage, thereby suppressing deterioration of battery characteristics.
상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은 Li rich(Li/M ratio >1.0) 조성일 수 있다.  The compound capable of reversible intercalation and deintercalation of lithium may be Li rich (Li / M ratio> 1.0) composition.
상기 복합 코팅층 내 포함된 Li3P04, 또는 리튬 금속 산화물의 리튬은 상기 리튬의 가역.적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물 내에 포함되는 Li으로부터 기인되거나, 별도의 Li 공급 물질로부터 기인될 수 있다.  Li 3 P04 included in the composite coating layer, or lithium of lithium metal oxide may be derived from Li contained in the compound capable of reversible intercalation and deintercalation of the lithium, or may be derived from a separate Li supply material. .
상기 복합 코팅층 내 포함된 리튬 금속 산화물, 또는 금속 산화물에서 금속은 Na, K, Ca, Ni , Co, Ti , Al , Si, Sn, Mn, Cr , Fe, V, Zr, 또는 이들의 조합일 수 있다.  The metal in the lithium metal oxide, or metal oxide contained in the composite coating layer may be Na, K, Ca, Ni, Co, Ti, Al, Si, Sn, Mn, Cr, Fe, V, Zr, or a combination thereof. have.
상기 양극 활물질의 총 중량에 대한 상기 복합 코팅충의 함량은 0.2 내지 2.0 중량 % 일 수 있다 The content of the composite coating layer relative to the total weight of the positive electrode active material is 0.2 to Can be 2.0% by weight
상기 Li3P04를 포함하고,. 리튬 금속 산화물, . 금속 산화물, 또는 이들의 조합을 더 포함하는 복합 코팅층을 포함하는 양극 활물질은 리튬 이차 전지의 전지적 특성을 향상시킬 수 있다. 보다 구체적으로, 기존의 양극 활물질 보다 높은 초기 용량, 향상된 효율 특성 및 뛰어난 율특성을 가지는 양극 활물질을 제공할 수 있다. And said Li 3 P0 4 . Lithium metal oxide,. A positive electrode active material including a composite coating layer further comprising a metal oxide or a combination thereof may improve battery characteristics of a lithium secondary battery. More specifically, it is possible to provide a cathode active material having a higher initial capacity, improved efficiency characteristics and excellent rate characteristics than conventional cathode active materials.
상기 복합 코팅층의 Li를 포함하는 금속화합물은 양극 활물질 내의 Li이온의 확산도를 높이는 역할 (Dr iving Force)을 수행하여 Li 이온의 이동을 용이하게 하여 전지 특성 향상에 기여할 수 있다.  The metal compound including Li of the composite coating layer may serve to increase the diffusion degree of Li ions in the cathode active material to facilitate the movement of Li ions, thereby contributing to improvement of battery characteristics.
전술한 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 특정 도핑원소가 과량으로 도핑되어 있다면 상기 코팅층에 의한 전지특성 구현에 특히 더 바람직할 수 있다. LiM02(M은 Ni , Co , 또는 Mn) 조성계에서는 통상적인 제조조건하에서 rock— sal t 구조가 양극소재 표면에 형성 될 수 있는데 본 발명과 같이 U3P04가 형성되는 화학적 반웅 과정에서 표면. 재배열 반웅이 (Rocksal t 一> layered)이 일어나 표면에 형성된 구조결함 및 불순물이 제어 된다. 이때 일반적인 LiM02(M은 Ni , Co , 또는 Mn) 조성을 적용할 경우 Li3P04가 형성되는 과정에서 Li 부족 현상이 발생되어 전지특성이 일부 열화 될 수 있으며 또한 도핑이 되지 않은 조성에 Li3P04 코팅을 진행할 경우 P와 양극재 표면간에 발생하는 환원반웅에 의해 구조결함이 발생 할 수도 있다. 결론적으로 Li r ich(Li /M rat io >1.0) 조성을 가지면서, 특정 원소가 과량 도핑된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물에 코팅 처리를 사용할 경우 Li3P04가 형성되는 과정에서 일어나는 Li 부족 및 환원반응에 의한 표면 결함을 억제하여 코팅층의 효과를 극대화 할 수 있는 표면을 특히 더 제공 할 수 있다. 본 발명의 다른 일 구현예에서는, 리튬 공급 물질, 전이 금속 전구체, 및 NT 공급 물질을 건식 흔합하는 단계 ; The above reversible intercalation and deintercalation compound of lithium may be particularly preferable for implementing battery characteristics by the coating layer if the specific doping element is excessively doped. In the LiM0 2 (M is Ni, Co, or Mn) composition system, rock-salt structures can be formed on the surface of the anode material under the usual manufacturing conditions. In the chemical reaction process in which U3P04 is formed as in the present invention. The rearrangement reaction (Rocksal t >> layered) occurs to control the structural defects and impurities formed on the surface. The general LiM0 2 (M is Ni, Co, or Mn) when applying the composition Li 3 P0 4 is subject to the process is the Li shortage occurs battery characteristics, some degradation in the formed and also Li 3 in the composition that is not doped When the P0 4 coating is carried out, structural defects may be caused by the reduction reaction generated between P and the surface of the cathode material. In conclusion, Li 3 P0 4 is applied when the coating treatment is applied to a compound having a composition of Li r ich (Li / M rat io> 1.0) and capable of reversible intercalation and deintercalation of a lithium that is excessively doped with a specific element. It is possible to further provide a surface that can maximize the effect of the coating layer by suppressing the surface defects due to the lack of Li and the reduction reaction occurring during the formation. In another embodiment of the invention, dry mixing a lithium feed material, a transition metal precursor, and an NT feed material;
상기 흔합물을 소성하는 단계 ; 및  Firing the mixture; And
하기 화학식 1로 표시되는 화합물을 수득하는 단계 ;  Obtaining a compound represented by Formula 1;
하기 화학식 1로 표시되는 리륨의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 준비하는 단계; Reversible intercalation of lithium, represented by formula (1) Preparing a compound capable of deintercalation;
인 공급원 ; 및 /또는 금속 공급원;을 준비하는 단계 ;  Phosphorus source; And / or preparing a metal source;
상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물에 상기 인 공급원; 및 /또는 금속 공급원을 흔합하여, 상기 리륨의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 표면에 인 공급원; 및 /또는 금속 공급원을 균일하게 부착시키는 단계; 및  The phosphorus source in a compound capable of reversible intercalation and deintercalation of lithium; And / or a phosphorus source on the surface of a compound capable of combining a metal source to enable reversible intercalation and deintercalation of the lithium; And / or attaching the metal source uniformly; And
상기 인 공급원; 및 /또는 금속 공급원이 부착된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 열처리하여, Li3P04를 포함하며 상기 코팅층은 리튬 금속 산화물, 금속 산화물, 또는 이들의 조합을 더 포함하는 복합 코팅층을 포함하는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 수득하는 단계;를 포함하는 리튬 이차 전지용 양극 활물질의 제조 방법을 제공한다. The phosphorus source; And / or heat-treating a compound capable of reversible intercalation and deintercalation of lithium to which a metal source is attached, comprising Li 3 P0 4 , wherein the coating layer further comprises lithium metal oxide, metal oxide, or a combination thereof. It provides a method for producing a positive electrode active material for a lithium secondary battery comprising the step; obtaining; a compound capable of reversible intercalation and deintercalation of lithium comprising a composite coating layer comprising.
[화학식 1]  [Formula 1]
LiaMi-bM~ b02 .. . . 상기 화학식 1에서, Li a Mi-bM ~ b 0 2 ... . In Chemical Formula 1,
금속 M은 Ni, Co 및 Mn 으로 이루어진 군에서 선택되는 적어도 하나의 원소이며 M、는 Zr, Ti, Mg, Ca, V, Zn, W, Mo, Sn, Ga, B, 및 Al 이루어진 군에서 선택되는 적어도 하나의 원소이고, 0.90<a<L10, 0.09<b<0.15이다.  Metal M is at least one element selected from the group consisting of Ni, Co and Mn and M, is selected from the group consisting of Zr, Ti, Mg, Ca, V, Zn, W, Mo, Sn, Ga, B, and Al At least one element, and 0.90 <a <L10 and 0.09 <b <0.15.
상기 흔합물을 소성하는 단계;에서,  Calcining the mixture;
소성 온도는 750 내지 1,050 °C 일 수 있다. The firing temperature may be between 750 and 1,050 ° C.
상기 인 공급원; 또는 금속 공급원이 부착된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 열처리하여, U3P04를 포함하며, 상기 코팅층은. 리튬 금속 산화물, 금속 산화물, 또는 이들의 조합을 더 포함하는 복합 코팅층을 포함하는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 수득하는 단계;에서, The phosphorus source; Or heat-treating a compound capable of reversible intercalation and deintercalation of lithium with a metal source attached thereto, comprising U3P04, wherein the coating layer comprises : Obtaining a compound capable of reversible intercalation and deintercalation of lithium, including a composite coating layer further comprising lithium metal oxide, metal oxide, or a combination thereof;
열처리 온도는, 650 내지 95CTC 일 수 있다. 나머지 구성에 대한 설명은 전술한 본 발명의 일 구현예와 동일하기 때문에 그 설명을 생략하도록 한다ᅳ 본 발명의 또 다른 일 구현예에서는, 양극, 음극 및 전해질을 포함하는 리튬 이차 전지며, 상기 양극은 전류 집전체 및 상기 전류 집전체 상에 형성된 양극 활물질층을 포함하며, 상기 양극 활물질층은, 전술한 양극 활물질을 포함하는 것인 리튬 이차 전지를 제공한다. The heat treatment temperature may be 650 to 95CTC. Description of the rest of the configuration is the same as the embodiment of the present invention described above, so the description thereof will be omitted. In another embodiment of the present invention, a lithium secondary battery comprising a positive electrode, a negative electrode and an electrolyte, the positive electrode includes a current collector and a positive electrode active material layer formed on the current collector, the positive electrode active material layer, It provides a lithium secondary battery comprising the positive electrode active material described above.
상기 양극 활물질과 관련된 설명은 전술한 본 발명의 일 구현예와 동일하기 때문에 생략하도록 한다.  Descriptions related to the cathode active material are omitted because they are the same as the above-described embodiments of the present invention.
상기 양극 활물질층은 바인더 및 도전재를 포함할 수 있다.  The positive electrode active material layer may include a binder and a conductive material.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질 을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로는 폴리비닐알콜, 카르복시메틸셀롤로즈, 히드록시프로필셀를로즈, 디아세틸셀를로즈, 폴리비닐클로 라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이 드를 포함하는 폴리머, 폴리비닐피를리돈, 폴리우레¾ , 폴리테트라플^오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아 크릴레이티드 스티렌-부타디엔 러버 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.  The binder adheres positively to the positive electrode active material particles, and also serves to adhere the positive electrode active material to the current collector well, and representative examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose and diacetyl cellulose. , Polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polymers containing ethylene oxide, polyvinylpyridone, polyureth, polytetraple ^ oethylene, polyvinylidene fluoride, Polyethylene, polypropylene, styrene-butadiene rubber, acrylic styrene-butadiene rubber epoxy resin, nylon, etc. may be used, but is not limited thereto.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용 가능하며, 그 예로 천연 혹연, 인조 혹연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌.유도체 등의 도 성 폴리머; 또는 이들의 혼합 물을 포함하는 도전성 재료를 사용할 수 있다.  The conductive material is used to impart conductivity to the electrode, and any battery can be used as long as it is an electronic conductive material without causing chemical change in the battery. For example, natural alum, artificial alum, carbon black, acetylene black, ketjen Carbon-based materials such as black and carbon fiber; Metal materials such as metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive polymers such as polyphenylene and derivatives; Or an electroconductive material containing these mixture can be used.
상기 음극은 집전체 및 상기 집전체 위에 형성된 음극 활물질층을 포함하며, 상기 음극 활물질층은 음극 활물질을 포함한다.  The negative electrode includes a current collector and a negative electrode active material layer formed on the current collector, and the negative electrode active material layer includes a negative electrode active material.
상기 음극 활물질로는 리튬 이온을 가역적으로.인터칼레이션 /디인터칼레이션 할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬을 도프 및 탈도프할 수 있는 물질, 또는 전이 금속 산화물을 포함한다.  The negative electrode active material includes a material capable of reversibly intercalating / deintercalating lithium ions, a lithium metal, an alloy of lithium metal, a material capable of doping and undoping lithium, or a transition metal oxide. .
상기 리튬 이온을 가역적으로 인터칼레이션 /디인터칼레이션할 수 있는 물질 로는 탄소 물질로서, 리튬 이온 이차 전지에서 일반적으로 사용되는 탄소계 음극 활물질은 어떠한 것도 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 .이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 린편상 (flake), 구형 또는 섬유형의 천연 혹연 또는 인조 혹연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본 (soft carbon: 저온 소성 탄소) 또는 하드 카본 (hard carbon) , 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다. As a material capable of reversibly intercalating / deintercalating the lithium ions, a carbon-based negative electrode active material generally used in a lithium ion secondary battery may be used, and representative examples thereof include crystalline carbon, Amorphous carbon or these may be used together. Examples of the crystalline carbon are amorphous, plate, Graphite, such as flakes, spherical or fibrous natural or artificial agglomerates. Examples of the amorphous carbon include soft carbon (low temperature calcined carbon) or hard carbon, mesophase. Pitch carbide, calcined coke, and the like.
상기 리튬 금속의 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, As the alloy of the lithium metal, lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr,
Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속의 합금이 사용될 수 있다. Alloys of metals selected from the group consisting of Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al and Sn can be used.
상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0 < x < 2), Si-Y 합금 (상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소 전이금속., 회 토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, Sn02, Sn-Y (상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이 급속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 Si02를 흔합하여 사용할 수도 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr , Hf , Rf , V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, 0s, Hs, Rh, Ir, Pd, Pt , Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti ,, Ge, P, As, Sb, Bi. S, Se, Te, Po, 및 이들의 조 합으로 이루어진 군에서 선택될 수 있다. Examples of a material capable of doping and undoping lithium include Si, SiO x (0 <x <2), and Si-Y alloys (wherein Y is an alkali metal, an alkaline earth metal, a Group 13 element, and a Group 14 element transition metal. Element selected from the group consisting of ash earth elements and combinations thereof, not Si), Sn, Sn0 2 , Sn-Y (Y is an alkali metal, alkaline earth metal, group 13 element, group 14 element, transition rapid, an element selected from rare earth elements and combinations thereof, Sn and the like are not), and may also use at least one common and Si0 2 were combined of them. As the element Y, Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, 0s, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti ,, Ge, P, As, Sb, Bi. S, Se, Te, Po, and combinations thereof.
상기 전이 금속 산화물로는 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다.  Examples of the transition metal oxide include vanadium oxide, lithium vanadium oxide, and the like.
상기 음극 활물질 층은 또한 바인더를 포함하며, 선택적으로 도전재를 더욱 포함할 수도 있다.  The negative electrode active material layer also includes a binder, and may optionally further include a conductive material.
상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질 을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적안 예로 폴리비닐알콜, 카 르복시메틸샐를로즈, 히드록시프로필셀를로즈, 폴리 Hᅵ닐클로라이드, 카르복실화된 폴리비닐클로라이드, .폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라 이드, 폴리에틸렌, 폴리프로필렌, 스티렌ᅳ부타디엔 러버, 아크릴레이티드 스티렌- 부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.  The binder adheres the negative electrode active material particles to each other well, and also adheres the negative electrode active material to the current collector, and typical examples thereof include polyvinyl alcohol, carboxymethyl salose, hydroxypropyl cellulose, poly H, and the like. Nyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polymers containing ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene Styrene ᅳ butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon and the like may be used, but is not limited thereto.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용 가능하며, 그 예로 천연 혹연, 인조 혹연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄卜은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질 ; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 흔합 물을 포함하는 도전성 재료를 사용할 수 있다. The conductive material is used to impart conductivity to the electrode, In the battery, any electronic conductive material can be used without causing chemical change, and examples thereof include carbon-based materials such as natural alum, artificial alum, carbon black, acetylene black, ketjen black, and carbon fiber; Metal materials such as metal powder or metal fibers such as copper, nickel and aluminum silver; Conductive polymers such as polyphenylene derivatives; Or an electroconductive material containing these mixture can be used.
상기 집전체로는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포 체 ( foam) , 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.  The current collector may be selected from the group consisting of copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with a conductive metal, and combinations thereof. .
상기 전류 집전체로는 A 1을 사용할 수 있으나 이에 한정되는 것은 아니다. 상기 음극과 양극은 활물질, 도전재 및 결착제를 용매 중에서 흔합하여 활물질 조성물을 제조하고, 이 조성물을 전류 집전체에 도포하여 제조한다. 이와 같은 전극 제조 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 상세한 설명은 생략하기로 한다. 상기 용매로는 N-메틸피를리돈 등을 사용할 수 있으나 이에 한정되는 것은 아니다.  A 1 may be used as the current collector, but is not limited thereto. The negative electrode and the positive electrode are prepared by mixing an active material, a conductive material and a binder in a solvent to prepare an active material composition, and applying the composition to a current collector. Since such an electrode manufacturing method is well known in the art, detailed description thereof will be omitted. N-methylpyridone may be used as the solvent, but is not limited thereto.
상기 전해질은 비수성 유기 용매와 리튬염을 포함한다.  The electrolyte contains a non-aqueous organic solvent and a lithium salt.
상기 비수성 유기 용매는 전지의 전기화학적 반응에 관여하는 이은들이 이동 할 수 있는 매질 역할을 한다.  The non-aqueous organic solvent serves as a medium for transfer of silver involved in the electrochemical reaction of the battery.
상기 비수성 유기용매로는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알 코올계, 또는 비양성자성 용매를 사용할 수 있다ᅳ 상기 카보네이트계 용매로는 디 메틸 카보네이트 (DMC) , 디에틸 카보네이트 (DEC) , 디프로필 카보네이트 (DPC) , 메틸 프로필 카보네이트 (MPC) , 에틸프로필 카보네이트 (EPC) , 메틸에틸 카보네이트 (MEC) , 에틸렌 카보네이트 (EC) , 프로필렌 카보네이트 (PC) , 부틸렌 카보네이트 (BC) 등이 사 용될 수 있으며, 상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, n- 프로필 아세테이트, 디메틸아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, γ-부티로락톤, 데카놀라이드 (decano l i de) , 발레로락톤, 메발로노락톤 (meva l ono l actone) , 카프로락톤 ( capro l actone), 등이 사용될 수 있다. 상기 에테 르계 용매로는 디부틸 에테르 , 테트라글라임, 디글라임 , 디메특시에탄, 2—메틸테트 라히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있으며, 상기 케톤계 용매로는 시 클로핵사논 등이 사용될 수 있다. 또한 상기 알코올계 용매로는 에틸알코을, 이소 프로필 알코올 등이 사용될 수 있으며, 상기 비양성자성 용매로는 R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상, 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 았다) 등의 니트릴류 디메틸포름아미드 등의 아미드 류, 1,3-디옥솔란 등의 디옥솔란류설포란 (sulfolane)류 등이 사용될 수 있다. As the non-aqueous organic solvent, a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, or aprotic solvent may be used. The carbonate-based solvent may be dimethyl carbonate (DMC) or diethyl carbonate ( DEC), dipropyl carbonate (DPC), methyl propyl carbonate (MPC), ethyl propyl carbonate (EPC), methyl ethyl carbonate (MEC), ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), etc. The ester solvent may be methyl acetate, ethyl acetate, n-propyl acetate, dimethyl acetate, methyl propionate, ethyl propionate, γ -butyrolactone, decanoide. , Valerolactone, mevalonolactone (meva l ono l actone), caprolactone (capro lactone), and the like can be used. As the ether solvent, dibutyl ether, tetraglyme, diglyme, dimetheethane, 2—methyltetrahydrofuran, tetrahydrofuran, and the like may be used, and the ketone solvent may be cyclohexanone or the like. This can be used. In addition, ethyl alcohol, isopropyl alcohol, etc. may be used as the alcohol solvent, and as the aprotic solvent, R-CN (R is carbon number). Amides such as nitrile dimethylformamide such as a linear, branched or ring structure hydrocarbon group of 2 to 20, which may include a double bond aromatic ring or an ether bond), 1,3-dioxolane and the like Dioxolanes and sulfolanes can be used.
상기 비수성 유기 용매는 단독으로 또는 하나 이상 흔합하여 사용할 수 있으 며 하나 이상 흔합하여 사용하는 경우의 흔합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있고, 이는 당해 분야에 종사하는 사람들에게는 널리 이해될 수 있다.  The non-aqueous organic solvent may be used alone or in combination of one or more, and the mixing ratio in the case of using one or more in combination may be appropriately adjusted according to the desired battery performance, which is widely understood by those skilled in the art. Can be.
또한, 상기 카보네이트계 용매의 경우 환형 (cyclic) 카보네이트와 사슬형 (chain) 카보네이트를 흔합하여 사용하는 것이 좋다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 1:1 내지 1:9의 부피비로 흔합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.  In addition, in the case of the carbonate solvent, it is preferable to use cyclic carbonate and chain carbonate in combination. In this case, the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of 1: 1 to 1: 9, so that the performance of the electrolyte may be excellent.
본 발명의 일 구현예에 따른 비수성 유기용매는 상기 카보네이트계 용매에 방향족 탄화수소계 유기용매를 더 포함할 수도 있다. 이때 상기 카보네이트계 용 매와 방향족 탄화수소계 유기용매는 1:1 내지 30:1의 부피비로 흔합될 수.있다. 상기 방향족 탄화수소계 유기용매로는 하기 화학식 2의 방향족 탄화수소계 화합물이 사용될 수 있다.  The non-aqueous organic solvent according to the embodiment of the present invention may further include an aromatic hydrocarbon organic solvent in the carbonate solvent. In this case, the carbonate-based solvent and the aromatic hydrocarbon-based organic solvent may be mixed in a volume ratio of 1: 1 to 30: 1. As the aromatic hydrocarbon organic solvent, an aromatic hydrocarbon compound of Formula 2 may be used.
[화학식 2]  [Formula 2]
Figure imgf000013_0001
Figure imgf000013_0001
(상기 화학식 2에서, 내지 는 각각 독립적으로 수소, 할로겐, C1 내지 C10 알킬기, 할로알킬기 또는 이들의 조합이다.) (In Formula 2, to are each independently hydrogen, halogen, C1 to C10 alkyl group, haloalkyl group or a combination thereof.)
상기 방향족 탄화수소계 유기용매는 벤젠, 플루오로벤젠, 1,2-디플루오로벤 젠, 1,3-디플루오로벤젠, 1,4-디플루오로벤젠, 1,2,3-트리플루오로벤젠, 1,2,4-트 리플루오로벤젠, 클로로벤젠, 1,2-디클로로벤젠, 1,3-디클로로벤젠, 1,4-디클로로 벤젠, 1,2,3-트리클로로벤젠, 1,2,4-트리클로로벤젠, 아이오도벤젠, 1,2-디아이오 도벤젠, 1,3-디아이오도벤젠, 1ᅳ 4-디아이오도벤젠, 1,2,3-트리아이오도벤젠, 1ᅳ 2, 4-트리아이오도벤젠, 를루엔, 플루오로틀루엔, 1,2-디플루오로를루엔, 1,3-디 플루오로를루엔, 1,4ᅳ디플루오로를루엔ᅳ 1,2,3-트리플루오로를루엔, 1,2, 4-트리플 루오로틀루엔, 클로로를루엔, 1,2-다클로로를루엔, 1,3-디클로로를루엔, 1,4-디클 로로를루엔, 1,2,3—트리클로로를루엔, 1,2,4-트리클로로틀루엔, 아이오도를루엔, 1,2ᅳ디아이오도틀루엔, 1,3ᅳ디아이오도를루엔, 1,4-디아이오도를루엔, 1,2,3-트리 아이오도를루엔, 1,2,4-트리아이오도를루엔, 자일렌, 및 이들의 조합으로 이루어진 군에서 선택되는 것이다. The aromatic hydrocarbon organic solvent is benzene, fluorobenzene, 1,2-difluorobenzene, 1,3-difluorobenzene, 1,4-difluorobenzene, 1,2,3-trifluorobenzene , 1,2,4-trifluorobenzene, chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene, 1,2 , 4-trichlorobenzene, iodobenzene, 1,2-diodiodobenzene, 1,3-dioiobenzene, 1 ᅳ 4-dioiobenzene, 1,2,3-triiodobenzene, 1 ᅳ 2 , 4-triiodobenzene, toluene, fluorotoluene, 1,2-difluoroluene, 1,3-di Fluoroluene, 1,4'difluoroluene ᅳ 1,2,3-trifluoroluene, 1,2,4-trifluoroluene, chloroluene, 1,2-dachloroluene , 1,3-dichloroluene, 1,4-dichloroluene, 1,2,3-trichloroluene, 1,2,4-trichlorotoluene, iodoluene, 1,2 Odo Toluene, 1,3 ᅳ diaioluluene, 1,4-diaioluluene, 1,2,3-triiodoluene, 1,2,4-triiodoluene, xylene, and It is selected from the group consisting of these combinations.
상기 비수성 전해질은 전지 수명을 향상시키기 위하여 비닐렌 카보네이트 또 는 하기 화학식 3의 에틸렌 카보네이트계 화합물을 더욱 포함할 수도 있다.  The non-aqueous electrolyte may further include vinylene carbonate or an ethylene carbonate compound of Formula 3 to improve battery life.
[화학식 3]  [Formula 3]
Figure imgf000014_0001
Figure imgf000014_0001
(상기 화학식 3에서, R7 및 ¾는 각각 독립적으로 수소, 할로겐기ᅳ 시아노기 (CN), 니트로기 (Ν02) 또는 C1 내지 C5 플루오로알킬기이고, 상기 R7과 ¾중 적어도 하나는 할로겐기 , 시아노기 (CN), 니트로기 (N02) 또는 C1 내지 C5의 플루오로알킬기 이다.) (In Formula 3, R 7 and ¾ are each independently hydrogen, halogen group-cyano group (CN), nitro group (Ν0 2 ) or C1 to C5 fluoroalkyl group, at least one of R 7 and ¾ is halogen Group, cyano group (CN), nitro group (N0 2 ) or C1 to C5 fluoroalkyl group.)
상기 에틸렌 카보네이트계 화합물의 대표적인 예로는 디플루오로 에틸렌카보 네이트, 클로로에틸렌 카보네이트, 디클로로에틸렌 카보네이트, 브로모에틸렌 카보 네이트, 디브로모에틸렌 카보네이트, 니트로에틸렌 카보네이트, 시아노에틸렌 카보 네이트 또는 플루오로에틸렌 카보네이트 등을 들 수 있다. 이러한 수명 향상 첨가 제를 더욱.사용하는 경우 그 사용량은 적절하게 조절할 수 있다.  Representative examples of the ethylene carbonate compound include difluoro ethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate or fluoroethylene carbonate. Etc. can be mentioned. If such life improving additives are used further, their amount can be adjusted accordingly.
상기 리튬염은 유기 용매에 용해되어, 전지 내에서 리륨 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다. 이러한 리튬염의 대표적인 예로는 LiPF6, LiBF4, LiSbF6, LiAsF6( LiC4F9S03l LiC104, LiA102, . LiAlCl4, LiN(CxF2x+1S02)(CyF2y+1S02) (여기서, x 및 y는 자연수임), LiCl, Li I 및 LiB(C204)2(리 튬 비스옥살레이토 보레이트 (lithium bis(oxalato) borate; LiBOB)로 이루어진 군 에서 선택되는 하나 또는 둘 이상을 지지 (supporting) 전해염으로 포함한다. 리튬 염의 농도는 0. 1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상 기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다. The lithium salt is a substance that dissolves in an organic solvent and acts as a source of lithium ions in the battery to enable operation of a basic lithium secondary battery and to promote the movement of lithium ions between the positive electrode and the negative electrode. Representative examples of such lithium salts are LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 ( LiC 4 F 9 S0 3l LiC10 4 , LiA10 2 , .LiAlCl 4 , LiN (C x F 2x + 1 S0 2 ) (C y F 2y) +1 S0 2 ) (where x and y are natural numbers), LiCl, Li I and LiB (C 2 0 4 ) 2 (lithium bis (oxalato) borate (LiBOB) One or more selected ones are included as supporting electrolytic salts. The concentration of salt is preferably used in the range of 0.01 to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it may exhibit excellent electrolyte performance, and lithium ions may move effectively.
리튬 이차 전지의 종류에 따라 양극과 음극 사이에 세퍼레이터가 존재할 수 도 있다. 이러한 세퍼레이터로는 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴 플루오라이드 또는 이들의 2층 이상의 다층막이 사용될 수 있으며,. 폴리에틸렌 /폴리프로필렌 2층 세퍼레이터, 폴리에틸렌 /폴리프로필렌 /폴리에틸렌 3층 세퍼레이터, 폴리프로필렌 /폴리에틸렌 /폴리프로필렌 3층 세퍼레이터 등과 같은 흔합 다층막이 사용될 수 있음은 물론이다. Depending on the type of lithium secondary battery, a separator may exist between the positive electrode and the negative electrode. As the separator, polyethylene, polypropylene, polyvinylidene fluoride or two or more multilayer films thereof may be used . Of course, a mixed multilayer film such as polyethylene / polypropylene two-layer separator, polyethylene / polypropylene / polyethylene three-layer separator, polypropylene / polyethylene / polypropylene three-layer separator, and the like can be used.
리튬 이차 전지는 사용하는 세퍼레이터와 전해질의 종류에 따라 리튬 이온 전지, 리튬 이온 폴리머 전지 및 리튬 폴리머 전지로 분류될 수 있고, 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수, .있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 이들 전지의.,구조와 제조방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략한다.  Lithium secondary batteries may be classified into lithium ion batteries, lithium ion polymer batteries, and lithium polymer batteries according to the type of separator and electrolyte used, and may be classified into cylindrical, square, coin, and pouch types according to their type. It can be divided into bulk type and thin film type according to the size. The structure, structure, and manufacturing method of these batteries are well known in the art, and thus detailed descriptions thereof are omitted.
도 1에 본 발명의 리튬 이차 전지의 대표적인 구조를 개략적으로 나타내었다. 도 1에 나타낸 것과 같이 상기 리튬 아차 전지 ( 1 )는 양극 (3) , 음극 (2) 및 상기 양극 (3)과 음극 (2) 사이에 존재하는 세퍼레이터 (4)에 함침된 전해액을 포함하는 전지 용기 (5)와, 상기 전지 용기 (5)를 봉입하는 봉입 부재 (6)를 포함한다. 이하 본 발명의 실시예 및 비교예를 기재한다. 그러나 하기의 실시예는 본 발명의 일 실시예 일뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다. 실시예  1 schematically shows a typical structure of a lithium secondary battery of the present invention. As shown in FIG. 1, the lithium secondary battery 1 includes a positive electrode 3, a negative electrode 2, and an electrolyte solution impregnated in a separator 4 existing between the positive electrode 3 and the negative electrode 2. The container 5 and the sealing member 6 which encloses the said battery container 5 are included. Hereinafter, examples and comparative examples of the present invention are described. However, the following examples are only examples of the present invention and the present invention is not limited to the following examples. Example
실시예 1  Example 1
Co304, Li2C03및 MgC03 흔합물을 건식 흔합한 후, 흔합물을 lOCXTC로 10 시간 동안 열처리하여 Li
Figure imgf000015_0001
되도록 양극 활물질을 제조하였다.
After dry mixing the Co 3 0 4 , Li 2 C0 3 and MgC0 3 mixtures, the mixture is heat treated with lOCXTC for 10 hours to obtain Li
Figure imgf000015_0001
A positive electrode active material was prepared as possible.
상기 제조 된 양극 활물질 100g과 Zr (0H)4 분말 . 0. 172g과 Si02 분말 0.054g과 (NH4)2HP04 분말 0 , 387g을 건식 흔합하여 상기 분말이 양극 활물질 본체의 표면에 부착된 흔합물을 제조 한 후 상기 흔합물을 800 °C로 6시간 열처리하여 양극 활물질올 제조하였다. 실시예 2 100 g of the prepared cathode active material and Zr (0H) 4 powder. 0. 172 g of dry powder of Si0 2 powder 0.054g and (NH 4 ) 2 HP0 4 powder 0,387g to prepare a mixture in which the powder is attached to the surface of the positive electrode active material body and then the mixture to 800 ° C. Heat treatment was performed for 6 hours to prepare a positive electrode active material. Example 2
Co304, Li2C03 및 Zr02 흔합물을 건식 흔합한 후; 흔합물을 KXXTC로 10 시간 동안 열처리하여 Li nCoQ.gZnuOz 되도록 양극 활물질을 제조하였다. After dry mixing the Co 3 O 4 , Li 2 CO 3 and Zr0 2 mixtures; The mixture was heat-treated with KXXTC for 10 hours to prepare a cathode active material such that Li nCoQ.gZnuOz.
상기 제조 된 양극 활물질 100g과 Zr (0H)4 분말 0. 172g과 Si02 분말 0.054g과100g of the prepared cathode active material and Zr (0H) 4 powder 0.15g and Si0 2 powder 0.054g
(NH4)2HP04 분말 0.387g을 건식 흔합하여 상기 분말이 양극 활물질 본체의 표면에 부착된 흔합물을 제조 한 후 상기 흔합물을 800 °C로 6시간 열처리하여 양극 활물질을 제조하였다. 실시예 3 0.387 g of (NH 4 ) 2 HP0 4 powder was dry mixed to prepare a mixture having the powder attached to the surface of the positive electrode active material body, and the mixture was heat-treated at 800 ° C. for 6 hours to prepare a positive electrode active material. Example 3
Ni0.6Co0.2Mn0.2(0H)2, Li2C03 및 MgC03 흔합물을 건식 흔합한 후, 흔합물을 800°C로 12 시간 동안 열처리하여 Li
Figure imgf000016_0001
되도록 양극 활물질을 제조하였다.
Ni 0 . 6 Co 0 . After dry mixing 2 Mn 0.2 (0H) 2 , Li 2 CO 3 and MgC0 3 mixtures, the mixture was heat treated at 800 ° C. for 12 hours to obtain Li
Figure imgf000016_0001
A positive electrode active material was prepared as possible.
상기 제조 된 양극 활물질 100g과 Zr (0H)4 분말 0. 172g과 Si02 분말 0.054g과 (NH4)2HP04 분말 0.387g을 건식 흔합하여 상기 분말이 양극 활물질 본체의 표면에 부착된 흔합물을 제조 한 후 상기 흔합물을 650 , °C로 6시간 열처라하여 양극 활물질을 제조하였다. 비교예. 1 . 100 g of the prepared cathode active material, 0.172 g of Zr (0H) 4 powder, 172 g of Si0 2 powder, and 0.054 g of (NH 4 ) 2 HP0 4 powder were mixed in a dry mixture, and the powder adhered to the surface of the cathode active material body. After the preparation, the mixture was heated at 650 ° C. for 6 hours to prepare a cathode active material. Comparative example. One .
C03O4, Li2C03및 MgC03 흔합물을 건식 흔합한 후, 흔합물을 KXXTC로 10 시간 동안 열처리하여 Lh.02coo.8Mgo.202 되도록 양극 활물질을 제조하였다. After dry mixing the C03O4 , Li 2 CO 3 and MgC0 3 mixture, the mixture was heat-treated with KXXTC for 10 hours to prepare a cathode active material such that Lh.02coo.8Mgo.202.
상기 제조 된 양극 활물질 100g과 Zr (0H)4 분말 0. 172g과 Si02 분말 0.054g과 (NH4)2HP04 분말 0.387g을 건식 흔합하여 상기 분말이 양극 활물질 본체의 표면에 부착된 흔합물을 제조 한 후 상기 흔합물을 800 °C로 6시간 열처리하여 양극 활물질올 제조하였다. 비교예 2 100 g of the prepared cathode active material, 0.172 g of Zr (0H) 4 powder, 172 g of Si0 2 powder, and 0.054 g of (NH 4 ) 2 HP0 4 powder were mixed in a dry mixture, and the powder adhered to the surface of the cathode active material body. After the preparation, the mixture was heat-treated at 800 ° C. for 6 hours to prepare a cathode active material. Comparative Example 2
LiCo02 100g과 Zr (0H)4 분말 0. 172g과 Si02 분말 0.054g과 (NH4)2HP04 분말 0.387g을 건식 흔합하여 상기 분말이 양극 활물질 본체의 표면에 부착된 흔합물을 제조 한 후 상기 흔합물을 800 'C로 6시간 열처리하여 양극 활물질을 제조하였다. 비교예 3 100 g of LiCo0 2 and Zr (0H) 4 powder, 172 g, 0.054 g of Si0 2 powder and 0.387 g of (NH 4 ) 2 HP0 4 powder were dry mixed to prepare a mixture having the powder attached to the surface of the positive electrode active material body. After the mixture was heat-treated at 800 ' C for 6 hours to prepare a cathode active material. Comparative Example 3
LiCo02를 사용하였다. 비교예 .4 LiCo0 2 was used. Comparative Example .4
LiNi0.6oCoo.2oMno.2o02 를 사용하였다. 코인셀의 제조 The LiNi 0 .6oCoo.2oMno.2o0 2 was used. Production of coin cell
상기 실시예 및 비교예에서 제조된 양극 활물질 95 중량 %, 도전제로 카본 블랙 (carbon black) 2.5 중량 %, 결합제로 PVDF 2.5중량% 를 용제 (솔벤트)인 N- 메틸 -2 피를리돈 (NMP) 5.0 중량 %에 첨가하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 두께 20 내지 40 의 양극 집전체인 알루미늄 (A1) 박막에 도포 및 진공 건조하고 를 프레스 (roll press)를 실시하여 양극을 제조하였다.  95% by weight of the positive electrode active material prepared in Examples and Comparative Examples, 2.5% by weight of carbon black as a conductive agent, 2.5% by weight of PVDF as a binder, N-methyl-2 pyridone (NMP) as a solvent (solvent) A positive electrode slurry was prepared by adding to 5.0 wt%. The positive electrode slurry was applied to a thin film of aluminum (A1), which is a positive electrode current collector having a thickness of 20 to 40, and vacuum dried, followed by roll press to prepare a positive electrode.
음극으로는 Li-금속을 이용하였다.  Li-metal was used as the negative electrode.
이와 같이 제조된 양극과 Li-금속을 대극으로, 전해액으로는 1.15M LiPF6 EC:DMC(l:lvol¾ 을 사용하여 코인 샐 타입의 반쪽 전지를 제조하였다. As a counter electrode and a Li-metal prepared as described above, a half cell of a coin sal type was manufactured using 1.15M LiPF 6 EC: DMC (l: lvol¾) as an electrolyte.
층방전은 4.5-3.0V 범위에서 실시하였다. 실험예 1: 전지 특성 평가  Layer discharge was carried out in the range 4.5-3.0V. Experimental Example 1 Battery Characteristic Evaluation
하기 표 1은 상기의 실시예 및 비교예의 4.5V 초기 Formation, 율특성, lcyle, 20cycle, 30cycle 용량 및 수명특성 데이터이다.  Table 1 below is 4.5V initial Formation, rate characteristic, lcyle, 20cycle, 30cycle capacity and life characteristic data of the above Examples and Comparative Examples.
[표 1]  TABLE 1
수명특성 수명특성  Life Characteristics Life Characteristics
방전용량 1CY 20CY 30CY 트서 효을  Discharge capacity 1CY 20CY 30CY
(mAh/g) a (■저요 at (20CY/ (30CY/  (mAh / g) a (medium at (20CY / (30CY /
방전용량 방전용량 (1.0/0.2C, %)  Discharge Capacity Discharge Capacity (1.0 / 0.2C,%)
1CY, %) 1CY, %)  1CY,%) 1CY,%)
실시에 1 192.47 97.79 186.10 181.13 177.23 97.33 95.23 96.66 실시예 2 191.72 97.43 184.91 180.09 176.34 97.39 95.37 96.71 실시예 3 202.47 91.07 196.22 183.74 180.11 93.64 91.79 91.14 비교예 1 190.31 95.92 184.69 175.19 173.22 94.86 93.79 93.92 비교예 2 191.75 96.57 186.12 179.14 174.12 96.25 93.55 95.61 비교예 3 189.74 95.11 185.22 160.81 147.54 86.82 79.66 92.81 비교예 4 204. 1 1 87.91 1 95.68 1 77.54 1 66. 1 7 90.73 84.92 88.89 Example 1 192.47 97.79 186.10 181.13 177.23 97.33 95.23 96.66 Example 2 191.72 97.43 184.91 180.09 176.34 97.39 95.37 96.71 Example 3 202.47 91.07 196.22 183.74 180.11 93.64 91.79 91.14 Comparative Example 1184.92 95 9 292 195 295 195 295 195 295 179.14 174.12 96.25 93.55 95.61 Comparative Example 3 189.74 95.11 185.22 160.81 147.54 86.82 79.66 92.81 Comparative Example 4 20 1 1 87.91 1 95.68 1 77.54 1 66. 1 7 90.73 84.92 88.89
상기 표 1에서 실시예 1 내지 3은 비교예 1 내지 4 보다 뛰어난 전지 특성이 확인된다. In Table 1, Examples 1 to 3 are confirmed battery characteristics superior to Comparative Examples 1 to 4.
실시예 1 내지 2에서 과량 도핑 된 복합 코팅층을 포함하는 양극 활물질은 복합 코팅층을 포함하나 도핑 되지 않은 비교예 2는 전지 특성에서 차이가 남이 확인 된다. 과량 도핑이 고전압에 유용함이 확인 된다.  In Examples 1 to 2, the positive electrode active material including the excessively doped composite coating layer includes the composite coating layer, but Comparative Example 2, which is not doped, is confirmed to have a difference in battery characteristics. Excess doping is found to be useful for high voltages.
보다 더 과량 도핑 된 비교예 1과 비교시 과도한 도핑은 전지 특성에 효과가 떨어짐이 확인된다.  Excessive doping was found to be less effective in battery characteristics compared to Comparative Example 1, which is more heavily doped.
또한 조성이 다른 양극 활물질 역시 특성 향상이 확인 된다.  In addition, the positive electrode active material having a different composition is also confirmed to improve characteristics.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. The present invention is not limited to the above embodiments, but may be manufactured in various forms, and a person of ordinary skill in the art to which the present invention pertains does not change the technical spirit or essential features of the present invention. It will be appreciated that the present invention may be practiced as. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims

【특허청구범위】 【청구항 1】 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물에 있어서, 상기 화합물은 하기 화학식 1로 표시 되며, 【Patent Claims】 【Claim 1】 In the compound capable of reversible intercalation and deintercalation of lithium, the compound is represented by the following formula 1,
[화학식 1] [Formula 1]
LiaMi-bM' b02 Li a Mi-bM ' b 0 2
상기 화학식 1에서, In Formula 1,
금속 M은 Ni, Co 및 Mn 으로 이루어진 군에서 선택되는 적어도 하나의 원소이며 Mᅳ는 Zr, Ti, Mg, Ca, V, Zn, W, Mo, Sn, Ga, B, 및 Al 에서 이루어진 군에서 선택되는 적어도 하나의 원소이고, 0.90<a<1.10, 0.09<b<0.15 이고, Metal M is at least one element selected from the group consisting of Ni, Co, and Mn, and Mᅳ is from the group consisting of Zr, Ti, Mg, Ca, V, Zn, W, Mo, Sn, Ga, B, and Al. At least one element is selected, and 0.90<a<1.10, 0.09<b<0.15,
상기 화학식 1의 화.합물의 표면의 적어도 일부에 위치하는 코팅층을 포함하고, Compound of Formula 1. It includes a coating layer located on at least a portion of the surface of the compound,
상기 코팅층은 Li3P04를 포함하며, 상기 코팅층은 리튬 금속 산화물, 금속 산화물, 또는 이들의 조합을 더 포함하는 복합 코팅층을 포함하는 것인 리튬 이차 전지용 양극 활물질. The coating layer includes Li 3 P0 4 , and the coating layer includes a composite coating layer further including lithium metal oxide, metal oxide, or a combination thereof.
【청구항 2] [Claim 2]
제 1항에 있어서, In clause 1,
상기 화학식 1에서, In Formula 1,
금속 Mᅳ는 Mg, Ti, Zr, Al, B 에서 선택되는 적어도 하나의 원소인 것인 리튬 이차 전지용 양극 활물질. A cathode active material for a lithium secondary battery, wherein the metal M is at least one element selected from Mg, Ti, Zr, Al, and B.
【청구항 3] [Claim 3]
제 1항에 있어서, In clause 1,
상기 화학식 1에서, . In Formula 1 above, .
금속 M'는 Mg인 것인 리튬 이차 전지용 양극 활물질 . A positive electrode active material for a lithium secondary battery, wherein the metal M ' is Mg.
【청구항 4] [Claim 4]
제 1항에 있어서, In clause 1,
상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은 Li rich(Li/M ratio >1.0) 조성 인 것인 리튬 이차 전퓌용 양극 활물질. Compounds capable of reversible intercalation and deintercalation of lithium are A positive electrode active material for lithium secondary batteries having a Li rich (Li/M ratio >1.0) composition.
【청구항 5】 【Claim 5】
제 1항에 있어서, In clause 1,
상기 복합 코팅층 내 포함된 Li3P04, 또는 리튬 금속 산화물의 리튬은, 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물 내에 포함되는 Li으로부터 기인되거나, 별도의 Li 공급 물질로부터 기인된 것인 리튬 이차 전지용 양극 활물질. Li 3 P0 4 contained in the composite coating layer, or lithium of lithium metal oxide, originates from Li contained in a compound capable of reversible intercalation and deintercalation of the lithium, or originates from a separate Li supply material. A positive electrode active material for lithium secondary batteries.
【청구항 6】 【Claim 6】
게 1항에 있어서, In paragraph 1,
상기 복합 코팅층 내 포함된 리튬 금속 산화물, 또는 금속 산화물에서 금속은 Na, K, Ca, Ni , Co, Ti, Al , Si, Sn, Mn, Cr, Fe, V, Zr, 또는 이들의 조합인 것인 리튬 이차 전지용 양극 활물질. In the lithium metal oxide or metal oxide contained in the composite coating layer, the metal is Na, K, Ca, Ni, Co, Ti, Al, Si, Sn, Mn, Cr, Fe, V, Zr, or a combination thereof. Cathode active material for phosphorus lithium secondary batteries.
【청구항 7】 【Claim 7】
제 1항에 있어,서, In paragraph 1,
상기 양극 활물질의 총 중량에 대한 상기 복합 코팅층의 함량은 0.2 내지 2.0 중량 % 인 것인 리튬 이차 전지용 양극 활물질. A positive electrode active material for a lithium secondary battery, wherein the content of the composite coating layer relative to the total weight of the positive electrode active material is 0.2 to 2.0% by weight.
【청구항 8】 【Claim 8】
리튬 공급 물질, 전이 금속 전구체, 및 M' 공급 물질을 건식 흔합하는 단계; 상기 흔합물을 소성하는 단계 ; 및 Dry mixing the lithium supply material, transition metal precursor, and M ' supply material; Calcining the mixture; and
하기 화학식 1로 표시되는 화합물올 수득하는 단계 ; Obtaining a compound represented by the following formula (1);
. 하기 . 화학식 1로 표시되는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 준비하는 단계; . do . Preparing a compound capable of reversible intercalation and deintercalation of lithium represented by Formula 1;
인 공급원 ; 및 /또는 금속 공급원;을 준비하는 단계 ; Phosphorus source; and/or preparing a metal source;
상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물에 상기 인 공급원; 및 /또는 금속 공급원을 흔합하여, 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 표면에 인 공급원; 및 /또는 금속 공급원을 균일하게 부착시키는 단계 ; 및 The phosphorus source is added to the compound capable of reversible intercalation and deintercalation of lithium; and/or a phosphorus source on the surface of the compound capable of reversible intercalation and deintercalation of lithium by combining a metal source; and/or uniformly attaching the metal source; and
상기 인 공급원; 및 /또는 금속 공급원이 부착된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 열처리하여 Li3P04를 포함하며 상기 코팅층은 리튬 금속 산화물, 금속 산화물, 또는 이들의 조합을 더 포함하는 복합 코팅층을 포함하는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 수득하는 단계 ; the phosphorus source; and/or Li 3 P0 4 by heat treating a compound capable of reversible intercalation and deintercalation of lithium to which a metal source is attached, and the coating layer further includes lithium metal oxide, metal oxide, or a combination thereof. Obtaining a compound capable of reversible intercalation and deintercalation of lithium including a composite coating layer;
를 포함하는 리튬 이차 전지용 양극 활물질의 제조 방법: Method for producing a positive electrode active material for a lithium secondary battery comprising:
[화학식 1] [Formula 1]
Figure imgf000021_0001
Figure imgf000021_0001
(상기 화학식 1에서, (In Formula 1 above,
금속 M은 Ni, Co 및 Mn 으로 이루어진 군에서 선택되는 적어도 하나의 원소이며 는 Zr, Ti , Mg, Ca, V, Zn, ff, Mo, Sn, Ga, B, 및 Al 이루어진 군에서 선택되는 적어도 하나의 원소이고, 0.90<a<1.10, 0.09<b<0.15 이다.) Metal M is at least one element selected from the group consisting of Ni, Co, and Mn, and is at least one element selected from the group consisting of Zr, Ti, Mg, Ca, V, Zn, ff, Mo, Sn, Ga, B, and Al. It is one element, 0.90<a<1.10, 0.09<b<0.15.)
【청구항 9】 【Claim 9】
게 8항에. 있어서, In paragraph 8 . Because,
상기 흔합물을소성하는 단계;에서, In the step of calcining the mixture,
소성 온도는 750 내지 1,050 °C인 것인 리튬 이차 전지용 양극 활물질의 제조 방법. . A method for producing a positive electrode active material for a lithium secondary battery, wherein the sintering temperature is 750 to 1,050 ° C. .
【청구항 10】 【Claim 10】
거 18항에 있어서, In paragraph 18,
상기 리튬 공급원; 인 공급원; 및 /또는 금속 공급원이 부착된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 열처리하여, Li3P04를 포함하며, 상기 코팅층은 리튬 금속 산화물, 금속 산화물, 및 /또는 이들의 조합을 더 포함하는 복합 코팅층을 포함하는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 수득하는 단계;에서, the lithium source; phosphorus source; and/or heat-treating a compound capable of reversible intercalation and deintercalation of lithium to which a metal source is attached, including Li3P04, and the coating layer further includes lithium metal oxide, metal oxide, and/or a combination thereof. In the step of obtaining a compound capable of reversible intercalation and deintercalation of lithium comprising a composite coating layer comprising:
열처리 온도는, 650 내지 950°C인 것인 리튬 이차전지용 양극 활물질의 제조 방법. 【청구항 11】 A method of producing a positive electrode active material for a lithium secondary battery, wherein the heat treatment temperature is 650 to 950 ° C. 【Claim 11】
거 U항 내지 제 7항 중 어느 한 항에 따른 리튬 이차 전지용 양극 활물질을 포함하는 양극; . . A positive electrode containing the positive electrode active material for a lithium secondary battery according to any one of claims U to 7; . .
음극 활물질을 포함하는 음극; 및 A negative electrode containing a negative electrode active material; and
전해질; electrolyte;
을 포함하는 리튬 이차 전지 . Lithium secondary battery containing.
PCT/KR2016/001073 2015-01-30 2016-02-01 Positive active material for lithium secondary battery, method for producing same, and lithium secondary battery comprising same WO2016122277A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150014641 2015-01-30
KR10-2015-0014641 2015-01-30
KR10-2016-0012168 2016-02-01
KR1020160012168A KR20160094338A (en) 2015-01-30 2016-02-01 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Publications (1)

Publication Number Publication Date
WO2016122277A1 true WO2016122277A1 (en) 2016-08-04

Family

ID=56543798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001073 WO2016122277A1 (en) 2015-01-30 2016-02-01 Positive active material for lithium secondary battery, method for producing same, and lithium secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2016122277A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112635722A (en) * 2019-10-09 2021-04-09 北京卫蓝新能源科技有限公司 Composite positive electrode material of lithium ion battery and preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071569A (en) * 2006-09-13 2008-03-27 Sanyo Electric Co Ltd Positive electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR100914406B1 (en) * 2008-03-24 2009-08-31 주식회사 엘 앤 에프 Method of preparing positive active material for rechargeable lithium battery
KR20110103320A (en) * 2010-03-12 2011-09-20 산요덴키가부시키가이샤 Nonaqueous electrolyte secondary battery and method for the same
KR20140141975A (en) * 2013-06-03 2014-12-11 주식회사 엘지화학 The Method for Preparing Cathode Active Material for Secondary Battery and Cathode Active Material Using The Same
JP2015015169A (en) * 2013-07-05 2015-01-22 日立マクセル株式会社 Nonaqueous electrolyte secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071569A (en) * 2006-09-13 2008-03-27 Sanyo Electric Co Ltd Positive electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR100914406B1 (en) * 2008-03-24 2009-08-31 주식회사 엘 앤 에프 Method of preparing positive active material for rechargeable lithium battery
KR20110103320A (en) * 2010-03-12 2011-09-20 산요덴키가부시키가이샤 Nonaqueous electrolyte secondary battery and method for the same
KR20140141975A (en) * 2013-06-03 2014-12-11 주식회사 엘지화학 The Method for Preparing Cathode Active Material for Secondary Battery and Cathode Active Material Using The Same
JP2015015169A (en) * 2013-07-05 2015-01-22 日立マクセル株式会社 Nonaqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112635722A (en) * 2019-10-09 2021-04-09 北京卫蓝新能源科技有限公司 Composite positive electrode material of lithium ion battery and preparation method
CN112635722B (en) * 2019-10-09 2022-04-15 北京卫蓝新能源科技有限公司 Composite positive electrode material of lithium ion battery and preparation method

Similar Documents

Publication Publication Date Title
KR101757628B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR101682502B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR101625838B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR101553582B1 (en) Cathode active material and cathode and lithium battery comprising same
WO2015083900A1 (en) Positive electrode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
WO2015083901A1 (en) Cathode active material for lithium secondary battery, method for producing same, and lithium secondary battery containing same
KR101309149B1 (en) Method for manufacturing positive active material for rechargeable lithium battery and rechargeable lithium battery using the same
KR101788561B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR102217753B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR102368363B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
WO2017150915A1 (en) Positive electrode active material for lithium secondary battery, method for producing same and lithium secondary battery comprising same
KR20140095810A (en) Positive active material for lithium secondary battery and lithium secondary battery
KR20170106810A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR102114229B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR101904773B1 (en) Positive active material for rechargeable lithium battery
JP5601721B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
WO2016186479A1 (en) Cathode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
KR101673178B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR101668799B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20160083818A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
WO2016122278A1 (en) Positive active material for lithium secondary battery, method for producing same, and lithium secondary battery comprising same
KR102372645B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
WO2016122277A1 (en) Positive active material for lithium secondary battery, method for producing same, and lithium secondary battery comprising same
KR102600145B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR101673177B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743755

Country of ref document: EP

Kind code of ref document: A1