WO2017150634A1 - 歯科材料 - Google Patents

歯科材料 Download PDF

Info

Publication number
WO2017150634A1
WO2017150634A1 PCT/JP2017/008181 JP2017008181W WO2017150634A1 WO 2017150634 A1 WO2017150634 A1 WO 2017150634A1 JP 2017008181 W JP2017008181 W JP 2017008181W WO 2017150634 A1 WO2017150634 A1 WO 2017150634A1
Authority
WO
WIPO (PCT)
Prior art keywords
jis
mpa
range
compressive strength
iso
Prior art date
Application number
PCT/JP2017/008181
Other languages
English (en)
French (fr)
Inventor
拓也 栗山
Original Assignee
拓也 栗山
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 拓也 栗山 filed Critical 拓也 栗山
Priority to KR1020187026269A priority Critical patent/KR20180114917A/ko
Priority to AU2017226654A priority patent/AU2017226654A1/en
Priority to CA3016113A priority patent/CA3016113A1/en
Priority to EP17760098.8A priority patent/EP3424485A4/en
Priority to US16/080,916 priority patent/US20190125632A1/en
Priority to JP2018503382A priority patent/JPWO2017150634A1/ja
Publication of WO2017150634A1 publication Critical patent/WO2017150634A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/50Preparations specially adapted for dental root treatment
    • A61K6/54Filling; Sealing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/884Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • A61C13/087Artificial resin teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/10Fastening of artificial teeth to denture palates or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C5/00Filling or capping teeth
    • A61C5/50Implements for filling root canals; Methods or instruments for medication of tooth nerve channels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/831Preparations for artificial teeth, for filling teeth or for capping teeth comprising non-metallic elements or compounds thereof, e.g. carbon
    • A61K6/838Phosphorus compounds, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/884Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
    • A61K6/887Compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/884Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
    • A61K6/898Polysaccharides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C5/00Filling or capping teeth
    • A61C5/70Tooth crowns; Making thereof
    • A61C5/77Methods or devices for making crowns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/20Protective coatings for natural or artificial teeth, e.g. sealings, dye coatings or varnish
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/30Compositions for temporarily or permanently fixing teeth or palates, e.g. primers for dental adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/0047Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L24/0073Composite materials, i.e. containing one material dispersed in a matrix of the same or different material with a macromolecular matrix
    • A61L24/0084Composite materials, i.e. containing one material dispersed in a matrix of the same or different material with a macromolecular matrix containing fillers of phosphorus-containing inorganic compounds, e.g. apatite

Definitions

  • the present invention relates to a dental material used in dentistry.
  • the oral environment is partly due to breathing even when it is wet by saliva, due to changes in pH caused by ingestion of acidic or alkaline foods, changes in temperature due to ingestion of hot or cold foods , Dry occlusion, large occlusal force and impact force associated with mastication, wear due to occlusion and mastication and wear due to brushing, etc. It is a special environment where it becomes liquid and is subject to electrochemical changes. Because of these specialities, dental materials used in the oral cavity have excellent biocompatibility, mechanical strength suitable for the living body (for example, resistance to bite force in the oral cavity), and durability. It is required to be a thing.
  • a metal material such as titanium is used because of durability, biocompatibility, and high compressive strength.
  • a metal material such as titanium generally has a mechanical strength that is too high, and may cause adverse effects on the human body, such as a crown of a counter tooth and a crack of a tooth root.
  • cellulose which is the main component of plant cell walls, has abundant resources and is excellent in terms of durability, strength, and the like, and therefore, its application in various fields is being studied.
  • a resin composition having high mechanical strength and excellent impact strength and excellent moldability is obtained. It has been proposed to obtain a molded body particularly useful as an automobile member (see Patent Document 1).
  • a dry film having high strength can be formed by a resin composition containing cellulose fibers and a resin emulsion satisfying a predetermined condition, and using this film forming action, an adhesive, It has been proposed to be applied as a paint, wax, or a raw material for producing them (see Patent Document 2).
  • the present invention has been made in view of the circumstances as described above, has biocompatibility, has mechanical strength suitable for a living body such as resistance to occlusal force in the oral cavity, and The object is to provide a durable dental material.
  • the present inventor has achieved biocompatibility and occlusal force in the oral cavity by applying nanofibers (particularly cellulose nanofibers), which have not been attempted in the field of dental materials, to dental materials. It was unexpectedly found that a dental material having mechanical strength suitable for a living body, such as resistance, and durability is provided.
  • Patent Documents 1 and 2 are primarily materials that are intended for industrial use and use nanofibers as a resin reinforcing material. Specifically, a material having the strength required for industrial use is too hard as a dental material and does not have properties suitable for the special environment in the oral cavity. However, there is a problem that the dental material itself is broken or detached due to the action of the occlusal force due to occlusion or mastication. In addition to the dental material itself, not only the teeth and tissues to which the dental material is applied, but also the tissues adjacent to the dental material, symptoms such as cracks and inflammation occur due to compatibility with the dental material and differences in physical properties. There was a problem that there was concern about doing.
  • thermoplastic resins and thermosetting resins In industrial applications, it is acceptable to use various thermoplastic resins and thermosetting resins. However, for example, phenol resins that are generally used at high frequency are concerned about carcinogenicity. It was impossible to use it as a raw material for dental materials used in the oral cavity.
  • nanofibers especially cellulose nanofibers
  • the dental material of the present invention is a dental material containing nanofibers and biocompatible resin.
  • the nanofiber is a cellulose nanofiber or a cellulose nanofiber composite.
  • the nanofiber further includes one or more of chitosan nanofiber and chitin nanofiber.
  • the dental material includes an antimicrobial substance.
  • the dental material is an implant material, a prosthetic material, a denture material, a filler, a denture base material, a molding restoration material, or an impression material.
  • the dental material is an implant material, a prosthetic material, or a denture material, and has a compressive strength within a range of 300 MPa to 400 MPa.
  • the dental material is a filler and has a compressive strength in the range of 150 MPa to 250 MPa.
  • the dental material is a denture base material and has a compressive strength within a range of 60 MPa to 100 MPa.
  • the dental material is a molding restoration material or an impression material, and has a compressive strength within a range of 30 MPa to 50 MPa.
  • the present invention provides the following.
  • (Item 1) Dental material containing nanofiber and biocompatible resin.
  • (Item 2) Item 2.
  • (Item 3) Item 3.
  • (Item 4) The dental material according to any one of items 1 to 3, wherein the dental material contains an antibacterial substance.
  • (Item 5) The dental material according to any one of items 1 to 4, wherein the dental material is an implant material, a prosthetic material, a denture material, a filler, a denture base material, a molding restoration material, or an impression material.
  • the dental material according to Item 5 wherein the dental material is a molding restoration material or an impression material, and has a compressive strength within a range of 30 MPa to 50 MPa.
  • the compressive strength is JIS T6123, JIS T6501, JIS T6502, JIS T6503, JIS T6505, JIS T6506, JIS T6508, JIST6509, JIS T6512, JIS T6513, JIS T6514, JIS T6515, JIS T6517, JIS T6518, JIS T6519, JIST6520, JIS T6521, JIS T6522, JIS T6523, JIS T6524, JIS T6525-1, JIS T6525-2, JIS T6527, JIST6601, JIS T6604, JIS T6605, JIS T6608, JIS T6609-1, JIS T6609-2, JIS T6610 Item 10.
  • Dental material A material comprising nanofibers and a resin, (1) A material further comprising a coating agent and (2) a substance selected from the group consisting of an additive selected from the group consisting of lead, tungsten, boron, graphite, graphene, and cadmium.
  • Item 12 Item 11. A material according to item 11, for strengthening a fuel rod cask, as a radiation shield, or for reinforcing a body of a car, ship, spacecraft, space base, rocket, aircraft, or motorcycle.
  • the material according to Item 12 As material, as adhesive material after crushing space debris, as material for debris bumper spacecraft or space base, as material for robot frame, as roof material including radiation shielding material, or as building material Material for use.
  • the resin comprises methyl methacrylate (MMA), polymethyl methacrylate (PMMA), 2-hydroxyethyl methacrylate (HEMA), tri-n-butylborane (TBB), and 4-methacryloxyethyl trimellitate anhydride (4- 12.
  • the coating agent is polyurea.
  • the compressive strength is JIS A1106: 2006, JIS A1107; 2012, JIS A1108; 2006, JIS A1113: 2006, JISA1114; 2011, JIS A1132; 2014, JIS A1136; 1993, JIS A1142; 2007, JIS D4610: 1993, JISH7701: 2008, JIS R3222; 2003, JIS S1200; 2012, JIS S1203; 1998, JIS S1205; 1998, JISZ8841; 1; 1993, AST MD953-95, ISO / TS20746: 2016, ISO 75-3: 2004, ISO 1752020 : 2016, ISO1920-4; 2005, ISO 1920-5: 2004, ISO 2633: 1974, ISO 3185: 2008, ISO 3186: 2008, ISO3193; 2008, ISO-3202: 1997, ISO-3203; 1993, ISO- 7689; 2008, ISO-8168;
  • a dental material having excellent resistance to occlusal force in the oral cavity, mechanical strength suitable for a living body, and durability is provided.
  • dental material includes materials used in the oral cavity and materials for producing the same.
  • a dental material eg, an implant material, prosthetic material, denture material, filler, denture base material, or molded restorative material
  • a dental material eg, an implant material, prosthetic material, denture material, filler, denture base material, or molded restorative material
  • a dental material applied to the oral cavity is applied to at least a portion of the dental material when applied to the oral cavity. This means that the occlusal force by occlusion or mastication acts directly or indirectly.
  • examples of the dental material of the present invention include implant materials, prosthetic materials (inlays, crowns, cores, bridges, etc.), denture materials (artificial teeth), denture base materials (denture base stabilizers, denture bases). ), Molding restoration materials (root canal filling material, gutta percha material, pit and fissure filling material, other sealers, sealants, etc.), impression material (molding material), filling material (filling resin) Etc.), a model material, a wax material, an investment material, a bonding material and the like, but are not limited thereto.
  • nanofiber refers to a fibrous substance having a nanoscale with an average outer diameter in the range of 1 nm to 100 nm and having a length that is at least 100 times the average outer diameter.
  • examples of the nanofiber include a nanotube having a hollow structure, a nanorod having no hollow structure, and a nanowire having a conductive or semiconductive property.
  • biocompatibility refers to harm that exceeds at least the desired intended effect with respect to the interaction between the dental material and the living body, as well as the local and systemic reactions of the tissue adjacent to the dental material. It means not giving.
  • the biocompatibility of the implant material means that the living body recovers its function and / or at the interface between the living body to which the implant material is applied and the implant material. It refers to the property of being able to heal and provide the state in which the implant material remains functional.
  • the biocompatibility of the dental material can be evaluated, for example, from the viewpoints of surface (interface) compatibility and mechanical compatibility.
  • implant material refers to a material used by being embedded in the submucosa or jawbone in the oral cavity.
  • the implant material include, but are not limited to, an intraosseous implant, a subperiosteal implant, and an endodontic intraosseous implant.
  • the “prosthetic material” refers to a material used to repair a tooth defect.
  • Examples of prosthetic materials include, but are not limited to, inlays, crowns, cores, bridges, and the like.
  • a material containing the nanofiber of the present invention and a biocompatible material is excellent as a dental material.
  • the dental material of the present invention comprises nanofibers and a biocompatible resin.
  • the cellulose nanofiber is not particularly limited, and a commercially available product or a product produced by a known production method may be used.
  • raw materials used for producing cellulose nanofibers include plant-derived fibers contained in wood, bamboo, hemp, jute, kenaf, cotton, beet and the like.
  • a preferable raw material is wood, for example, pine, cedar, cypress, eucalyptus, acacia and the like.
  • paper obtained using these woods as raw materials, waste paper, or the like can also be used.
  • a plant-derived fiber may be used individually by 1 type, and may use 2 or more types together.
  • examples of the cellulose nanofiber include pulp obtained from the plant fiber-containing material, cellulose nanofiber subjected to mercerization, and regenerated cellulose nanofiber such as rayon, cellophane, and lyocell. From the viewpoint of resource recycling, it is preferable to use cellulose nanofibers obtained from waste materials or agricultural waste.
  • the cellulose nanofiber is referred to as a composite of cellulose nanofiber and another substance (referred to as “cellulose nanofiber composite” in the present specification) depending on the type and use of dental material, required characteristics, and the like. ) May be used.
  • examples of other substances that are combined with cellulose nanofibers include calcium carbonate, tricalcium phosphate, and calcium sulfate.
  • the use of a composite of cellulose nanofibers and calcium carbonate and a composite of cellulose nanofibers and tricalcium phosphate are preferably considered.
  • a cellulose nanofiber may be used individually by 1 type, and may use 2 or more types together.
  • nanofibers may be used alone or in combination of two or more.
  • the nanofibers preferably further include one or more of chitosan nanofibers and chitin nanofibers.
  • the antibacterial property of a dental material can be improved more.
  • the type and combination of nanofibers can be appropriately selected according to the type and use of dental material, required characteristics, and the like.
  • the biocompatible resin include monomers such as acrylic acid, acrylic acid ester, methacrylic acid, methacrylic acid ester, carbonate, propylene, styrene, amide, imide, glycolic acid, lactic acid, maltose, and dextrin, oligomers, and polymers.
  • examples of the biocompatible resin include methyl methacrylate (MMA), polymethyl methacrylate (PMMA); ethyl methacrylate (EMA), n-butyl methacrylate, isobutyl methacrylate, tert-butyl methacrylate, 2-ethylhexyl.
  • MMA methyl methacrylate
  • PMMA polymethyl methacrylate
  • EMA ethyl methacrylate
  • n-butyl methacrylate isobutyl methacrylate
  • tert-butyl methacrylate 2-ethylhexyl.
  • Alkyl esters of methacrylic acid such as methacrylate, n-lauryl methacrylate, alkyl (C12-13) methacrylate, n-stearyl methacrylate, tridecyl methacrylate; dimethylaminoethyl methacrylate, methyl chloride salt of dimethylaminoethyl methacrylate, dimethylaminoethyl methacrylate Dialkylaminoethyl esters of methacrylic acid such as benzyl chloride salt and diethylaminoethyl methacrylate; Carboxylic acid-containing esters of methacrylic acid such as loxyethyl phthalate, 2-methacryloyloxyethyl phthalate, 2-methacryloyloxyethyl hexahydrophthalate; fluoroalkyl esters of methacrylic acid such as 2,2,2-trifluoroethyl methacrylate; cyclohe
  • MMA, PMMA, HEMA, TBB, and 4-META are preferably considered.
  • a biocompatible resin may be used individually by 1 type, and may use 2 or more types together.
  • the dental material which concerns on this embodiment contains an antibacterial substance. Thereby, the antibacterial property of a dental material can be improved more.
  • the antibacterial substance is not particularly limited as long as it is a substance having antibacterial activity and does not adversely affect the human body, and can be appropriately selected according to the type and use of dental materials, required characteristics, and the like.
  • Examples thereof include, but are not limited to, chitosan (including chitosan derivatives), chitin (including chitin derivatives), drugs having antibacterial activity, metal ions (for example, copper ions, silver ions, etc.), and the like.
  • antibacterial agents, metal ions, etc. as antibacterial substances, from the viewpoint of more effectively exhibiting the antibacterial properties of dental materials, include those antibacterial substances in microcapsules and include them in dental materials. Are preferably considered. (4.
  • the dental material includes a lubricant, a wax, a colorant, a stabilizer, a filler, and other various additives as long as the effects of the present invention are not impaired. May be included.
  • a compatibilizing agent may be added to the dental material in order to facilitate mixing of the nanofibers and the biocompatible resin.
  • a coloring agent may be added to the dental material according to the color tone of the living body to which the dental material is applied and / or the tissue adjacent to the dental material.
  • the dental material according to the present embodiment can be subjected to a modification treatment such as a surface modification treatment according to the type and application of the dental material, required characteristics, and the like.
  • a modification treatment such as a surface modification treatment according to the type and application of the dental material, required characteristics, and the like.
  • the hydrophilic / hydrophobic property of the dental material can be adjusted by coating the whole or part of the surface of the dental material with a hydrophilic or hydrophobic substance.
  • the dental material of the present invention can typically be evaluated for its mechanical properties, physical properties, chemical properties, biological stability, mechanical stability, etc. using the following items as indices.
  • the compressive strength is obtained by measuring a dental material sample as JIST6123, JIS T6501, JIS T6502, JIS T6503, JIS T6505, JIS T6506, JIS T6508, JIS T6509, JIST6512, JIST6513, JIS T6514, JIS T6515.
  • the compressive strength may apply the same test method irrespective of the type of dental material, or may apply a different test method depending on the type of dental material.
  • the dental material of the present invention is a dental material containing nanofibers and biocompatible resin, it has excellent resistance to occlusal force in the oral cavity.
  • the dental material of the present invention can appropriately control the compressive strength, it is possible to prevent cracking of the root caused by the compressive strength being too high. Compared to conventional dental materials.
  • the elastic modulus (GPa) and / or the yield value (MPa) of the dental material of interest are measured by an arbitrary testing machine in accordance with a normal test method.
  • the dental material of the present invention is a dental material containing nanofibers and a biocompatible resin, it is manufactured so as to have the same or superior elastic modulus and / or yield value as compared with conventional dental materials. It is possible.
  • the dental material of the present invention is a dental material containing nanofibers and a biocompatible resin, it has the same or superior bending strength and / or bending elastic modulus as compared with conventional dental materials. It is possible to manufacture.
  • the impact strength (kgf ⁇ cm / cm) of the target dental material is measured by a known Charpy method, Izod method or the like.
  • the dental material of the present invention is a dental material containing nanofibers and a biocompatible resin, it can be manufactured to have equivalent or superior impact strength compared to conventional dental materials. is there.
  • the Brinell hardness (H B ), Vickers hardness (H v ), Knoop hardness (H K ), Shore hardness, etc. of the target dental material are measured by a known indentation method, elasticity method, scratching method, etc. .
  • the dental material of the present invention is a dental material containing nanofibers and a biocompatible resin, it can be manufactured to have the same or superior hardness as compared with conventional dental materials. .
  • the fracture toughness (MN / m 3/2 ) of the target dental material is measured by a generally known IM method, CSF method, CN method, SENB method or the like.
  • the dental material of the present invention is a dental material containing nanofibers and a biocompatible resin, it can be manufactured to have the same or superior fracture toughness as compared with conventional dental materials. .
  • the dental material of the present invention is a dental material containing nanofibers and biocompatible resin, it is superior in dimensional stability compared to conventional dental materials.
  • it is possible to more accurately control the shape and size after curing by making implant materials and denture materials and impression materials (molding materials) with dental materials of the same component It is.
  • the wear resistance of the target dental material is measured by a known wear / friction tester or the like.
  • the dental material of the present invention is a dental material containing nanofibers and biocompatible resin, it is superior in wear resistance compared to conventional dental materials.
  • the dental material of the present invention is a dental material containing nanofibers and biocompatible resin, the dimensional change is suppressed.
  • the dental material of the present invention is a dental material containing nanofibers and a biocompatible resin, it has excellent chemical stability against both acid and alkali.
  • the dental material of the present invention is a dental material containing nanofibers and a biocompatible resin. Since the nanofibers and the biocompatible resin are compounded in a close state, compared with conventional dental materials. Has equivalent or superior water resistance.
  • the porosity (%) and / or the pore diameter ( ⁇ m, nm) are measured by electron microscopy.
  • the dental material of the present invention is a dental material containing nanofibers and biocompatible resins, and the nanofibers and biocompatible resins are complexed in a close state, so that the porosity is minimal.
  • the dental material of the present invention is a dental material containing nanofibers and a biocompatible resin, and since the nanofibers and the biocompatible resin are compounded in a close state, the appearance is good, and Since it has a color similar to that of teeth, it has good aesthetics.
  • the dental material of the present invention is a dental material containing nanofibers and a biocompatible resin. Since the nanofibers and the biocompatible resin are compounded in a close state, compared with conventional dental materials. It has excellent color stability and retains aesthetics over a longer period. Further, since the dental material of the present invention is a white material having high transparency, it is possible to easily achieve a desired color tone by adjusting the kind and amount of the colorant added during the production.
  • the dental material of the present invention is a dental material containing nanofibers and a biocompatible resin, it has the same or better biocompatibility than conventional dental materials. (7. Specific examples of dental materials)
  • an implant material, a prosthetic material, a denture material, a filler, a denture base material, a molding restoration material, and an impression material will be described.
  • the dental material of the present invention is an implant material, a prosthetic material or a denture material, and has a compressive strength in the range of 300 MPa to 400 MPa.
  • the compressive strength in the range of 300 MPa to 400 MPa is obtained by testing in accordance with JIST6123.
  • the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing in accordance with JIS T6501.
  • the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing in accordance with JIST6502.
  • the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing according to JIS T6503. In another aspect of the present embodiment, the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing according to JIST6505. In another aspect of the present embodiment, the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing in accordance with JIS T6506. In another aspect of the present embodiment, the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing in accordance with JIST6508. In another aspect of the present embodiment, the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing in accordance with JIS T6509.
  • the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing in accordance with JIST6512. In another aspect of the present embodiment, the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing according to JIS T6513. In another aspect of the present embodiment, the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing in accordance with JIST6514. In another aspect of the present embodiment, the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing according to JIS T6515. In another aspect of the present embodiment, the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing in accordance with JIST6517.
  • the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing in accordance with JIS T6518. In another aspect of the present embodiment, the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing in accordance with JIST6519. In another aspect of the present embodiment, the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing in accordance with JIS T6520. In another aspect of the present embodiment, the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing in accordance with JIST6521. In another aspect of the present embodiment, the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing according to JIS T6522.
  • the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing in accordance with JIST6523. In another aspect of the present embodiment, the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing according to JIS T6524. In another aspect of the present embodiment, the compressive strength in the range of 300 MPa to 400 MPa is obtained by testing in accordance with JIST6525-1. In another aspect of the present embodiment, the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing in accordance with JIS T6525-2. In another aspect of the present embodiment, the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing according to JIST6527.
  • the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing in accordance with JIS T6601. In another aspect of the present embodiment, the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing according to JIST6604. In another aspect of the present embodiment, the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing in accordance with JIS T6605. In another aspect of the present embodiment, the compressive strength in the range of 300 MPa to 400 MPa is obtained by testing in accordance with JIST6608. In another aspect of the present embodiment, the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing in accordance with JIS T6609-1.
  • the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing according to JIST6609-2. In another aspect of the present embodiment, the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing in accordance with JIS T6610. In another aspect of the present embodiment, the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing in accordance with JIST6611. In another aspect of the present embodiment, the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing in accordance with JIS T6612.
  • the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing in accordance with JIS T6003. In another aspect of the present embodiment, the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing in accordance with JIST6005. In another aspect of the present embodiment, the compressive strength within the range of 300 MPa to 400 MPa is obtained by testing in accordance with JIS K 7718. More specifically, for example, the compressive strength in the range of 300 MPa to 400 MPa in the denture material according to the present embodiment can be obtained by testing in accordance with JIST6517.
  • the compressive strength in the range of 300 MPa to 400 MPa in the denture material according to the present embodiment can be obtained by testing in accordance with JIS T6518. Further, the compressive strength within the range of 300 MPa to 400 MPa in the denture material according to the present embodiment can be obtained by testing in accordance with JIST6525-1. Further, the compressive strength within the range of 300 MPa to 400 MPa in the denture material according to the present embodiment can be obtained by testing in accordance with JIST6525-2.
  • the content of the nanofiber with respect to the total mass of the dental material is preferably in the range of 70% to 90%, more preferably in the range of 75% to 90%, and more preferably in the range of 80% to 90%. More preferably, it is within the range of 85%.
  • the ratio of biocompatible resin among components other than the nanofiber in the dental material is at least 90% or more.
  • those content can be suitably set according to the kind of dental material, a use, a required characteristic, etc.
  • an implant material, prosthetic material, or denture material having mechanical strength suitable for an application site of an implant material, prosthetic material, or denture material in a living body, excellent in dimensional stability, and excellent in wear resistance. be able to.
  • the compressive strength of the implant material, prosthetic material or denture material according to the present embodiment can be controlled, when these are applied to the oral cavity, it is possible to suppress an excessive burden on the teeth when an occlusal force is applied. Is done.
  • the antibacterial property of the implant material, prosthetic material, or denture material according to the present embodiment makes it difficult for plaque to adhere to the teeth and is less likely to be affected by bacteria, so that secondary caries can be suppressed.
  • the dental material of the present invention is a filler and has a compressive strength in the range of 150 MPa to 250 MPa.
  • the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing in accordance with JIST6123.
  • the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing in accordance with JIS T6501.
  • the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing in accordance with JIST6502.
  • the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing according to JIS T6503.
  • the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing in accordance with JIST6505. In another aspect of the present embodiment, the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing according to JIS T6506. In another aspect of the present embodiment, the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing in accordance with JIST6508. In another aspect of the present embodiment, the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing in accordance with JIS T6509. In another aspect of the present embodiment, the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing in accordance with JIST6512.
  • the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing according to JIS T6513. In another aspect of the present embodiment, the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing in accordance with JIST6514. In another aspect of the present embodiment, the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing according to JIS T6515. In another aspect of the present embodiment, the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing according to JIST6517. In another aspect of the present embodiment, the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing according to JIS T6518.
  • the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing in accordance with JIST6519. In another aspect of the present embodiment, the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing according to JIS T6520. In another aspect of the present embodiment, the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing in accordance with JIST6521. In another aspect of the present embodiment, the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing in accordance with JIS T6522. In another aspect of the present embodiment, the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing in accordance with JIST6523.
  • the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing in accordance with JIS T6524. In another aspect of the present embodiment, the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing in accordance with JIST6525-1. In another aspect of the present embodiment, the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing in accordance with JIS T6525-2. In another aspect of the present embodiment, the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing in accordance with JIST6527. In another aspect of the present embodiment, the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing in accordance with JIS T6601.
  • the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing in accordance with JIST6604. In another aspect of the present embodiment, the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing according to JIS T6605.
  • the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing in accordance with JIS T6608. In another aspect of the present embodiment, the compressive strength in the range of 150 MPa to 250 MPa is obtained by testing in accordance with JIST6609-1. In another aspect of the present embodiment, the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing in accordance with JIS T6609-2. In another aspect of the present embodiment, the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing in accordance with JIST6610. In another aspect of the present embodiment, the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing in accordance with JIS T6611.
  • the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing in accordance with JIST6612. In another aspect of the present embodiment, the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing in accordance with JIS T6003. In another aspect of the present embodiment, the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing in accordance with JIST6005. In another aspect of the present embodiment, the compressive strength within the range of 150 MPa to 250 MPa is obtained by testing in accordance with JIS K 7718.
  • the content of the nanofiber with respect to the total mass of the dental material is preferably in the range of 50% to 80%, more preferably in the range of 55% to 75%, and more preferably 60% to More preferably, it is in the range of 70%.
  • the ratio of biocompatible resin among components other than the nanofiber in the dental material is at least 90% or more.
  • those content can be suitably set according to the kind of dental material, a use, a required characteristic, etc.
  • the dental material of the present invention is a denture base material and has a compressive strength in the range of 60 MPa to 100 MPa.
  • the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing in accordance with JIST6123.
  • the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing in accordance with JIS T6501.
  • the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing in accordance with JIST6502.
  • the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing according to JIS T6503.
  • the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing in accordance with JIST6505. In another aspect of the present embodiment, the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing in accordance with JIS T6506. In another aspect of the present embodiment, the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing in accordance with JIST6508. In another aspect of the present embodiment, the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing in accordance with JIS T6509. In another aspect of the present embodiment, the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing according to JIS T6512.
  • the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing in accordance with JIST6513. In another aspect of the present embodiment, the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing in accordance with JIS T6514. In another aspect of the present embodiment, the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing in accordance with JIST6515. In another aspect of the present embodiment, the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing in accordance with JIS T6517. In another aspect of the present embodiment, the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing in accordance with JIST6518.
  • the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing in accordance with JIS T6519. In another aspect of the present embodiment, the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing in accordance with JIST6520. In another aspect of the present embodiment, the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing according to JIS T6521. In another aspect of the present embodiment, the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing in accordance with JIST6522. In another aspect of the present embodiment, the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing according to JIS T6523.
  • the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing in accordance with JIST6524. In another aspect of the present embodiment, the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing in accordance with JIS T6525-1. In another aspect of the present embodiment, the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing according to JIST6525-2. In another aspect of the present embodiment, the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing in accordance with JIS T6527. In another aspect of the present embodiment, the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing in accordance with JIST6601.
  • the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing according to JIS T6604. In another aspect of the present embodiment, the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing in accordance with JIST6605. In another aspect of the present embodiment, the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing according to JIS T6608. In another aspect of the present embodiment, the compressive strength in the range of 60 MPa to 100 MPa is obtained by testing in accordance with JIST6609-1. In another aspect of the present embodiment, the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing in accordance with JIS T6609-2.
  • the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing in accordance with JIST6610. In another aspect of the present embodiment, the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing in accordance with JIS T6611. In another aspect of the present embodiment, the compressive strength in the range of 60 MPa to 100 MPa is obtained by testing in accordance with JIST6612. In another aspect of the present embodiment, the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing in accordance with JIS T6003. In another aspect of the present embodiment, the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing in accordance with JIST6005.
  • the compressive strength within the range of 60 MPa to 100 MPa is obtained by testing in accordance with JIS K 7181. More specifically, for example, the compressive strength in the range of 60 MPa to 100 MPa in the denture base material according to the present embodiment can be obtained by testing in accordance with JIST6501.
  • the content of the nanofiber with respect to the total mass of the dental material is preferably in the range of 30% to 70%, more preferably in the range of 35% to 65%, and more preferably in the range of 40% to More preferably, it is in the range of 60%.
  • the ratio of biocompatible resin among components other than the nanofiber in the dental material is at least 90% or more.
  • those content can be suitably set according to the kind of dental material, a use, a required characteristic, etc.
  • a denture base material having mechanical strength suitable for the application site of the denture base material in a living body, excellent in dimensional stability, and excellent in wear resistance can be obtained.
  • the denture base material according to the present embodiment the denture base material and the denture material can be made from a common component, so that dimensional deviation that may occur when the materials are different is suppressed, More precise control of dimensions is possible, and biocompatibility as a whole dental material is further improved.
  • the dental material of the present invention is a molding restorative material and has a compressive strength in the range of 30 MPa to 50 MPa.
  • the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6123.
  • the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing according to JIS T6501.
  • the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6502.
  • the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing according to JIS T6503. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6505. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing according to JIS T6506. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6508. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIS T6509.
  • the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6512. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing according to JIS T6513. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6514. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing according to JIS T6515. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6517.
  • the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing according to JIS T6518. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6519. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing according to JIS T6520. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6521. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing according to JIS T6522.
  • the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6523. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIS T6524. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6525-1. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing according to JIS T6525-2. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6527.
  • the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIS T6601. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing according to JIST6604. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIS T6605. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing according to JIST6608. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing according to JIS T6609-1.
  • the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6609-2. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIS T6610. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6611. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing according to JIS T6612. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6003.
  • the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing according to JIS T6005. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JISK 7181. More specifically, for example, the compressive strength in the range of 30 MPa to 50 MPa in the molding / restoring material according to the present embodiment can be obtained by testing in accordance with JIST6514. Further, the compressive strength within the range of 30 MPa to 50 MPa in the molding / restoring material according to the present embodiment can be obtained by testing in accordance with JIS T6515.
  • the compressive strength within the range of 30 MPa to 50 MPa in the molding / restoring material according to this embodiment can be obtained by testing in accordance with JIST6522. Further, the compressive strength within the range of 30 MPa to 50 MPa in the molding / restoring material according to the present embodiment can be obtained by testing in accordance with JIS T6524.
  • the content of the nanofiber with respect to the total mass of the dental material is preferably at least 20% or more, more preferably in the range of 20% to 50%, and in the range of 20% to 45%. More preferably, it is within. Moreover, it is preferable that the ratio of biocompatible resin among components other than the nanofiber in the dental material is at least 90% or more. Moreover, when mix
  • the molding / restoring material having mechanical strength suitable for an application site of the molding / restoring material in a living body, excellent in dimensional stability, and excellent in wear resistance.
  • the compressive strength of the shaping restoration material which concerns on this embodiment is controllable, when it applies to an oral cavity, when an occlusal force is added, it will suppress that an excessive burden is applied to a tooth
  • the antibacterial property of the molding restorative material according to the present embodiment makes it difficult for plaque to adhere to the teeth and is less likely to be attacked by bacteria, so that secondary caries can be suppressed.
  • the dental material of the present invention is an impression material and has a compressive strength in the range of 30 MPa to 50 MPa.
  • the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6123.
  • the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing according to JIS T6501.
  • the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6502.
  • the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing according to JIS T6503.
  • the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6505. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing according to JIS T6506. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6508. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIS T6509. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6512.
  • the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing according to JIS T6513. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6514. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing according to JIS T6515. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6517. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing according to JIS T6518.
  • the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6519. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing according to JIS T6520. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6521. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing according to JIS T6522. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6523.
  • the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIS T6524. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6525-1. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing according to JIS T6525-2. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6527.
  • the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIS T6601. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing according to JIST6604. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIS T6605. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing according to JIST6608. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIS T6609-1.
  • the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6609-2. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIS T6610. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6611. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIS T6612.
  • the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIS T6003. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing in accordance with JIST6005. In another aspect of the present embodiment, the compressive strength within the range of 30 MPa to 50 MPa is obtained by testing according to JIS K 7718. More specifically, for example, the compressive strength within the range of 30 MPa to 50 MPa in the impression material according to the present embodiment can be obtained by testing in accordance with JIST6512. Further, the compressive strength within the range of 30 MPa to 50 MPa in the impression material according to the present embodiment can be obtained by testing in accordance with JIS T6513. In addition, the compressive strength within the range of 30 MPa to 50 MPa in the impression material according to the present embodiment can be obtained by testing in accordance with JIST6527.
  • the content of the nanofiber with respect to the total mass of the dental material is preferably at least 20% or more, more preferably in the range of 20% to 50%, and in the range of 20% to 45%. More preferably, it is within. Moreover, it is preferable that the ratio of biocompatible resin among components other than the nanofiber in the dental material is at least 90% or more. Moreover, when mix
  • the dental material of the present invention is produced by mixing (melt-kneading) nanofibers and biocompatible resin at a predetermined ratio. As a mixing method, generally known methods can be applied.
  • a uniaxial kneader, a multi-axial kneader, a kneader, or the like can be used, and the blending order of nanofibers and biocompatible resin in the mixing step, the timing of melting, etc. are not particularly limited.
  • the nanofiber and the biocompatible resin may be melted and kneaded, or the biocompatible resin may be melted in advance, and the nanofiber may be added and mixed during kneading.
  • blending order, the timing of melting, etc. can be adjusted suitably.
  • the mixing temperature is not particularly limited, and can be appropriately set according to the types and combinations of nanofibers and biocompatible resins.
  • the mixing ratio of the nanofiber and the biocompatible resin can be appropriately adjusted according to the type and use of the dental material, required characteristics, and the like.
  • a dispersion medium can be used from the viewpoint of ensuring dispersibility between the nanofiber and the biocompatible resin.
  • the dispersion medium can be appropriately selected according to the type and combination of nanofibers and biocompatible resin.
  • alcohols such as water, methanol, ethanol, isopropanol, dimethylformamide, N-methyl-2- Examples thereof include amides such as pyrrolidone (NMP), and mixed solvents thereof.
  • the dispersion medium can be dispersed more uniformly in consideration of the affinity between the nanofibers and the biocompatible resin and the dispersion medium in the range that does not inhibit the purpose and effect of the present invention, for example, Sodium dodecylbenzenesulfonate, sodium dodecyl sulfate, sodium cholate, sodium deoxycholate and the like may be added as a dispersant, and other additives may be added according to the required purpose.
  • the dental material thus obtained can be used as it is as a target dental material, or can be molded as necessary to obtain a target dental material.
  • the dental material of the present invention is molded with high dimensional accuracy by filling (filling) the cavity as a filling material as it is, performing a curing treatment, and then shaping and polishing fine parts using a grinding tool or the like. Can be processed.
  • the dental material of the present invention can be molded into a desired inlay, crown, or the like using a CAD / CAM system.
  • the target inlay, A crown or the like can be molded with high dimensional accuracy.
  • the target inlay, A crown or the like can be molded with high dimensional accuracy.
  • the material containing the nanofiber and the biocompatible material of the present invention is excellent not only for dental materials but also for other applications. ⁇ A.
  • the material containing the nanofiber of the present invention and the biocompatible material described in ⁇ Dental Material> may be used other than the dental material, for example, for reinforcing a fuel rod cask, as a radiation shield, or as a car, ship, As a stiffener for spacecraft, space base, rocket, aircraft, or motorcycle body, as adhesive material after crushing space debris, as material for debris bumper spacecraft or space base, or material for robot frame Or as a roofing material containing a radiation shielding material or as a building material.
  • the above ⁇ A a coating agent and / or an additive can be added to the material containing the nanofiber of the present invention and the biocompatible material described in ⁇ Dental Material>.
  • nanofiber As nanofiber, ⁇ A.
  • the nanofibers of the present invention described in ⁇ Dental Material> can be used.
  • Examples of the nanofiber include, but are not limited to, cellulose nanofiber.
  • biocompatible resin of the present invention described in ⁇ Dental material> can be used.
  • Biocompatible resins include methyl methacrylate (MMA), polymethyl methacrylate (PMMA), 2-hydroxyethyl methacrylate (HEMA), tri-n-butylborane (TBB), and 4-methacryloxyethyl trimellitate anhydride.
  • a resin selected from the group consisting of (4-META), for example, 4-META is exemplified, but not limited thereto.
  • biocompatibility is not important in applications other than dental materials, the above ⁇ A. The biocompatibility is not necessarily required as long as the resin has the same properties as the biocompatible resin described in Dental Materials>.
  • polyurea can be used, but is not limited thereto.
  • additive for example, lead, tungsten, boron, graphite, graphene, cadmium, and a mixture thereof can be selected according to the purpose of use.
  • Other optional additives may be added to the material of the present invention depending on the purpose.
  • the moisture of the raw material can be replaced with the monomer of the adhesive material to perform hydrophobic processing, thereby increasing the adhesive strength of the material It is. Further, when a material is driven into a formwork or a frame, vibrations of 20 Hz to 50 Hz, 50 Hz to 120 Hz, and / or 120 Hz to 240 Hz can be intermittently applied to create a stronger molded body.
  • the material of the present invention preferably has a strength of 1 GPa to 3 GPa (typically compressive strength), but is not limited thereto.
  • the strength (typically compressive strength) is determined according to JIS ⁇ A1106: 2006, JIS A1107; 2012, JIS; A1108; 2006, JIS A1113: 2006, JISA1114; 2011, JIS A1132; 2014, JIS A1136; 1993, JIS A1142; 2007, JIS46D4610: 1993, JISH7701: 2008, JIS R3222; 2003, JIS S1200; 2012, JIS S1203; 1998, JIS S1205; 1998, JISZ8841; 1; 1993, AST MD953-95, ISO / TS20746: 2016, ISO75-3: 2004, ISO175752020: 2016, ISO1920-4; 2005, ISO1920-5: 2004, ISO2633: 1974, ISO3185: 2008, ISO3186: 2008, ISO3193; 2008, , ISO-3202: 1997, ISO3185: 2008, ISO
  • a strength within the range of 1 GPa to 3 GPa is obtained by testing in accordance with JIS A1106: 2006.
  • a strength within the range of 1 GPa to 3 GPa is obtained by testing in accordance with JIS A1107; 2012.
  • a strength within the range of 1 GPa to 3 GPa is obtained by testing in accordance with JIS A1108; 2006.
  • a strength within the range of 1 GPa to 3 GPa is obtained by testing in accordance with JIS A 1113: 2006.
  • a strength within the range of 1 GPa to 3 GPa is obtained by testing in accordance with JISA1114; 2011. In another aspect of the present embodiment, a strength within the range of 1 GPa to 3 GPa (typically compressive strength) is obtained by testing in accordance with JIS A1132; 2014. In another aspect of the present embodiment, a strength within the range of 1 GPa to 3 GPa (typically compressive strength) is obtained by testing in accordance with JISA1136; 1993. In another aspect of the present embodiment, a strength within the range of 1 GPa to 3 GPa (typically compressive strength) is obtained by testing in accordance with JISA1142; 2007.
  • a strength within the range of 1 GPa to 3 GPa is obtained by testing in accordance with JISD4610: 1993. In another aspect of the present embodiment, a strength within the range of 1 GPa to 3 GPa (typically compressive strength) is obtained by testing in accordance with JIS H7701: 2008. In another aspect of the present embodiment, a strength within the range of 1 GPa to 3 GPa (typically compressive strength) is obtained by testing in accordance with JISR3222; 2003. In another aspect of the present embodiment, a strength within the range of 1 GPa to 3 GPa (typically compressive strength) is obtained by testing in accordance with JISS1200; 2012.
  • a strength within the range of 1 GPa to 3 GPa is obtained by testing in accordance with JISS1203; 1998.
  • a strength within the range of 1 GPa to 3 GPa is obtained by testing in accordance with JISS1205; 1998.
  • a strength within the range of 1 GPa to 3 GPa is obtained by testing in accordance with JISZ8841; 1; 1993.
  • a strength within the range of 1 GPa to 3 GPa is obtained by testing according to ASTM D953-95.
  • a strength within the range of 1 GPa to 3 GPa is obtained by testing according to ISO / TS20746: 2016. In another aspect of the present embodiment, a strength within the range of 1 GPa to 3 GPa (typically compressive strength) is obtained by testing in accordance with ISO75-3: 2004. In another aspect of the present embodiment, a strength within the range of 1 GPa to 3 GPa (typically compressive strength) is obtained by testing in accordance with ISO1752020: 2016. In another aspect of the present embodiment, a strength within the range of 1 GPa to 3 GPa (typically compressive strength) is obtained by testing in accordance with ISO1920-4; 2005.
  • a strength within the range of 1 GPa to 3 GPa is obtained by testing in accordance with ISO 1920-5: 2004. In another aspect of the present embodiment, a strength within the range of 1 GPa to 3 GPa (typically compressive strength) is obtained by testing in accordance with ISO 2633: 1974. In another aspect of the present embodiment, a strength within the range of 1 GPa to 3 GPa (typically compressive strength) is obtained by testing in accordance with ISO 3185: 2008. In another aspect of the present embodiment, a strength within the range of 1 GPa to 3 GPa (typically compressive strength) is obtained by testing in accordance with ISO 3186: 2008.
  • a strength within the range of 1 GPa to 3 GPa is obtained by testing in accordance with ISO 3193; 2008. In another aspect of the present embodiment, a strength within the range of 1 GPa to 3 GPa (typically compressive strength) is obtained by testing in accordance with ISO-3202: 1997. In another aspect of the present embodiment, a strength within the range of 1 GPa to 3 GPa (typically compressive strength) is obtained by testing in accordance with ISO-3203; 1993. In another aspect of the present embodiment, a strength within the range of 1 GPa to 3 GPa (typically compressive strength) is obtained by testing in accordance with ISO-7689; 2008.
  • a strength (typically compressive strength) within the range of 1 GPa to 3 GPa is obtained by testing according to ISO-8168; 2016. In another aspect of the present embodiment, a strength within the range of 1 GPa to 3 GPa (typically compressive strength) is obtained by testing according to ISO-5856; 2008. In another aspect of the present embodiment, a strength within the range of 1 GPa to 3 GPa (typically compressive strength) is obtained by testing in accordance with ISO-5857; 2008. In another aspect of this embodiment, a strength within the range of 1 GPa to 3 GPa (typically compressive strength) is obtained by testing according to ISO-7173; 1989.
  • strength within the range of 1 GPa to 3 GPa is obtained by testing in accordance with ISO-7176; 8; 2014.
  • a strength (typically compressive strength) within the range of 1 GPa to 3 GPa is obtained by testing in accordance with ISO-9152; 1998.
  • a strength within the range of 1 GPa to 3 GPa is obtained by testing in accordance with ISO-9154; 2016.
  • a strength within the range of 1 GPa to 3 GPa is obtained by testing in accordance with ISO-9254: 1993.
  • a strength within the range of 1 GPa to 3 GPa is obtained by testing in accordance with ISO-9255; 2008. In another aspect of the present embodiment, a strength within the range of 1 GPa to 3 GPa (typically compressive strength) is obtained by testing in accordance with ISO-9256; 1993. In another aspect of the present embodiment, a strength within the range of 1 GPa to 3 GPa (typically compressive strength) is obtained by testing in accordance with ISO-9709; 2005. In another aspect of the present embodiment, a strength within the range of 1 GPa to 3 GPa (typically compressive strength) is obtained by testing according to ISO-9845-1; 1992.
  • a strength within the range of 1 GPa to 3 GPa is obtained by testing in accordance with ISO-12258; 1998.
  • a strength within the range of 1 GPa to 3 GPa is obtained by testing according to ISO-12260; 2016.
  • a strength within the range of 1 GPa to 3 GPa is obtained by testing in accordance with ISO-12261; 2016.
  • a strength within the range of 1 GPa to 3 GPa is obtained by testing according to ISO-1391; 2008.
  • Example 1 Cellulose nanofibers are used as nanofibers, methacrylate monomers and polymethacrylates are used as biocompatible resins, and dispersed in water so that the mass ratio of nanofibers to biocompatible resins is 85:15, and stirred well. Then, it is put into a kneader and melt kneaded at a predetermined temperature for an appropriate time to obtain a dental material.
  • This dental material is molded into a predetermined shape to obtain an implant material, a prosthetic material, and a denture material.
  • a dental material is obtained in the same manner as in Example 1 except that the mass ratio of the nanofiber and the biocompatible resin is 83:17.
  • This dental material is molded into a predetermined shape to obtain an implant material, a prosthetic material, and a denture material.
  • a dental material is obtained in the same manner as in Example 1 except that the mass ratio of the nanofiber and the biocompatible resin is 88:12.
  • This dental material is molded into a predetermined shape to obtain an implant material, a prosthetic material, and a denture material.
  • a dental material is obtained in the same manner as in Example 1 except that the mass ratio of the nanofiber and the biocompatible resin is 80:20.
  • This dental material is molded into a predetermined shape to obtain an implant material, a prosthetic material, and a denture material.
  • a dental material is obtained in the same manner as in Example 1 except that the mass ratio of the nanofiber and the biocompatible resin is 75:25.
  • This dental material is molded into a predetermined shape to obtain an implant material, a prosthetic material, and a denture material.
  • a dental material is obtained in the same manner as in Example 1 except that a composite of cellulose nanofiber and calcium carbonate is used as the nanofiber.
  • This dental material is molded into a predetermined shape to obtain an implant material, a prosthetic material, and a denture material.
  • a dental material is obtained in the same manner as in Example 1 except that cellulose nanofibers and chitosan nanofibers mixed at a mass ratio of 90:10 are used as the nanofibers.
  • This dental material is molded into a predetermined shape to obtain an implant material, a prosthetic material, and a denture material.
  • a microcapsule encapsulating copper ions as an antibacterial substance was used, and the same as in Example 1, except that the mass ratio was 85: 13: 2. Get the material.
  • This dental material is molded into a predetermined shape to obtain an implant material, a prosthetic material, and a denture material.
  • a dental material is obtained in the same manner as in Example 1 except that the mass ratio of the nanofiber and the biocompatible resin is 65:35.
  • This dental material is used as a filler.
  • Example 10 A dental material is obtained in the same manner as in Example 1 except that the mass ratio of the nanofiber and the biocompatible resin is 50:50.
  • This dental material is a denture base material.
  • Example 11 A dental material is obtained in the same manner as in Example 1 except that the mass ratio of the nanofiber and the biocompatible resin is 30:70.
  • This dental material is used as a molding restorative material.
  • Example 12 A dental material is obtained in the same manner as in Example 1 except that the mass ratio of the nanofiber and the biocompatible resin is 20:80.
  • This dental material is used as an impression material.
  • the dental materials obtained in this way are all excellent in resistance to occlusal force in the oral cavity, have mechanical strength suitable for living organisms, have excellent dimensional stability, and have durability. ing.

Abstract

本発明は、ナノファイバーと生体適合性樹脂とを含む歯科材料を提供する。一実施形態において、本発明の歯科材料はインプラント材、補綴材または義歯材であり、生体における適用部位に適した機械的強度を有し、寸法安定性に優れ、耐摩耗性に優れている。圧縮強さはコントロール可能であるため、口腔に適用すると、咬合力が加わった際に歯へ過剰な負担がかかることが抑制される。また、抗菌性によって、歯に歯垢が付着しにくく、細菌によって侵されにくくなるため、二次う蝕を抑制することができる。本発明の歯科材料は、そのまま目的の歯科材料とすることもでき、必要に応じて成形加工を行って、目的の歯科材料とすることもできる。また、本発明のナノファイバーと樹脂とから作製される材料は、歯科材料以外にも応用可能である。

Description

歯科材料
 本発明は、歯科医療において用いられる歯科材料に関する。
 口腔内環境は、酸性もしくはアルカリ性の食物を摂取することによるpHの変化が生じること、熱い食物もしくは冷たい食物を摂取することによる温度変化が生じること、唾液による湿潤状態でありながらも呼吸によって部分的に乾燥状態になること、咀嚼に伴う大きな咬合力および衝撃力が加わること、咬合や咀嚼による咬耗およびブラッシング等による摩耗が生じること、歯垢の堆積によって細菌の温床となること、唾液が電解液となり電気化学的変化が起こりやすいことなど、特殊な環境である。このような特殊性のため、口腔内で用いられる歯科材料では、生体適合性、生体に適した機械的強度(例えば、口腔内での咬合力への抵抗性)、および、耐久性に優れたものであることが要求される。
 例えば、歯科インプラント材としては、耐久性および生体適合性や高い圧縮強さから、チタンなどの金属材料が用いられている。しかしながら、チタンなどの金属材料は、一般的に、機械的強度が高すぎるため、対合歯の歯冠および歯根の割れなどの人体への悪影響を引き起こすことがある。
 ところで、近年、生物由来の有機資源としてナノファイバーに着目した新たな材料開発の試みがなされている。中でも、植物細胞壁の主成分であるセルロースは、資源量が豊富であり、耐久性や強度等の点でも優れているため、様々な分野での応用が検討されている。
 例えば、熱可塑性樹脂、セルロース繊維および無機物を所定の割合で含有させることによって、高い機械的強度と優れた衝撃強度を有し、かつ、成形性に優れた樹脂組成物とし、この樹脂組成物を用いて、特に自動車部材として有用な成形体を得ることが提案されている(特許文献1を参照)。また、所定の条件を満たすセルロース繊維と樹脂エマルジョンを含む樹脂組成物によって高い強度(弾性率、破断応力)を有する乾燥皮膜を形成することができ、この皮膜形成作用を利用して、接着剤、塗料、ワックスまたはそれらの製造原料として適用することが提案されている(特許文献2を参照)。
特開2012-201767号公報 特開2009-197122号公報
 本発明は、以上のとおりの事情に鑑みてなされたものであり、生体適合性を有し、口腔内での咬合力への抵抗性などの生体に適した機械的強度を有し、かつ、耐久性を有する歯科材料を提供することを目的としている。
 本発明者は、歯科材料の分野において適用する試みがなされていなかったナノファイバー(特に、セルロースナノファイバー)を歯科材料に適用することによって、生体適合性を有し、口腔内での咬合力への抵抗性などの生体に適した機械的強度を有し、かつ、耐久性を有する歯科材料が提供されることを予想外に見出した。
 特許文献1および2に記載されるような樹脂組成物は、主として工業用途を想定し、樹脂補強材としてナノファイバーを用いたものであるため、そもそも、歯科材料として適用可能な材料ではなかった。具体的には、工業用途で必要とされる強度を有する材料は、歯科材料としては硬すぎ、また、口腔内の特殊な環境に見合った性質を備えていないため、歯科材料として適用した場合には、咬合または咀嚼による咬合力の作用等によって歯科材料自体が割れたり、外れたりするなどして、不具合を生じることが懸念されるという課題があった。また、歯科材料自体のみならず、当該歯科材料が適用された歯や組織、歯科材料に隣接する組織等についても、歯科材料との適合性や物性の相違等によって割れや炎症等の症状が発生することなどが懸念されるという課題があった。
 また、工業用途の場合には、種々の熱可塑性樹脂や熱硬化性樹脂を使用することが許容され得るが、例えば、一般的に高い頻度で使用されるフェノール樹脂等は発がん性が懸念されため、口腔内で用いられる歯科材料の原料として用いることは不可能であった。
 したがって、ナノファイバー(特に、セルロースナノファイバー)が歯科材料に適用できること、さらにそれによって生体適合性を有し、口腔内での咬合力への抵抗性などの生体に適した機械的強度を有し、かつ、耐久性を有する歯科材料が提供され得ることは、予想外であった。
 本発明の歯科材料は、ナノファイバーと生体適合性樹脂とを含む歯科材料であることを特徴とする。
 一実施形態において、前記ナノファイバーは、セルロースナノファイバーまたはセルロースナノファイバー複合体である。
 一実施形態において、前記ナノファイバーは、キトサンナノファイバーおよびキチンナノファイバーのうちの一種以上をさらに含む。
 一実施形態において、前記歯科材料は抗菌物質を含む。
 一実施形態において、前記歯科材料は、インプラント材、補綴材、義歯材、充填材、義歯床材、成形修復材または印象材である。
 一実施形態において、前記歯科材料はインプラント材、補綴材または義歯材であり、300MPa~400MPaの範囲内の圧縮強さを有する。
 一実施形態において、前記歯科材料は充填材であり、150MPa~250MPaの範囲内の圧縮強さを有する。
 一実施形態において、前記歯科材料は義歯床材であり、60MPa~100MPaの範囲内の圧縮強さを有する。
 一実施形態において、前記歯科材料が成形修復材または印象材であり、30MPa~50MPaの範囲内の圧縮強さを有する。
 本発明は、例えば、以下を提供する。
(項目1)
 ナノファイバーと生体適合性樹脂とを含む歯科材料。
(項目2)
 前記ナノファイバーが、セルロースナノファイバーである、項目1に記載の歯科材料。
(項目3)
 前記ナノファイバーが、キトサンナノファイバーおよびキチンナノファイバーのうちの一種以上をさらに含む、項目2に記載の歯科材料。
(項目4)
 前記歯科材料が抗菌物質を含む、項目1から3のうちのいずれか一項に記載の歯科材料。
(項目5)
 前記歯科材料が、インプラント材、補綴材、義歯材、充填材、義歯床材、成形修復材または印象材である、項目1から4のうちのいずれか一項に記載の歯科材料。
(項目6)
 前記歯科材料がインプラント材、補綴材または義歯材であり、300MPa~400MPaの範囲内の圧縮強さを有する、項目5に記載の歯科材料。
(項目7)
 前記歯科材料が充填材であり、150MPa~250MPaの範囲内の圧縮強さを有する、項目5に記載の歯科材料。
(項目8)
 前記歯科材料が義歯床材であり、60MPa~100MPaの範囲内の圧縮強さを有する、項目5に記載の歯科材料。
(項目9)
 前記歯科材料が成形修復材または印象材であり、30MPa~50MPaの範囲内の圧縮強さを有する、項目5に記載の歯科材料。
(項目10)
 前記圧縮強さが、JIS T6123、JIS T6501、JIS T6502、JIS T6503、JIS T6505、JIS T6506、JIS T6508、JIST6509、JIS T6512、JIS T6513、JIS T6514、JIS T6515、JIS T6517、JIS T6518、JIS T6519、JIST6520、JIS T6521、JIS T6522、JIS T6523、JIS T6524、JIS T6525-1、JIS T6525-2、JIS T6527、JIST6601、JIS T6604、JIS T6605、JIS T6608、JIS T6609-1、JIS T6609-2、JIS T6610、JIS T6611、JIST6612、JIS T6003、JIS T6005、およびJIS K 7181から選択される1つ以上の規格に準拠して試験することによって得られる、項目6~9のうちのいずれか一項に記載の歯科材料。
(項目11)
 ナノファイバーと樹脂とを含む材料であって、さらに、
(1)コーティング剤、ならびに
(2)鉛、タングステン、ホウ素、グラファイト、グラフェン、およびカドミニウムからなる群から選択される添加剤
からなる群から選択される物質をさらに含む材料。
(項目12)
 項目11に記載の材料であって、燃料棒のキャスクの強化のため、あるいは、放射線遮蔽物として、あるいは、車、船、宇宙船、宇宙基地、ロケット、航空機、または、モーターサイクルのボディの補強材として、あるいは、スペースデブリ破砕後接着材料として、あるいは、デブリバンパー宇宙船または宇宙基地の材料として、あるいは、ロボットフレームの材料として、あるいは、放射線遮蔽材料を含む屋根材として、あるいは、建築材料として使用するための、材料。
(項目13)
 前記ナノファイバーが、セルロースナノファイバーである、項目11に記載の材料。
(項目14)
 前記樹脂が、メチルメタクリレート(MMA)、ポリメチルメタクリレート(PMMA)、2-ヒドロキシエチルメタクリレート(HEMA)、トリ-n-ブチルボラン(TBB)、および、4-メタクリロキシエチルトリメリテートアンハイドライド(4-META)からなる群から選択される、項目11に記載の材料。
(項目15)
 前記コーティング剤が、ポリウレアである、項目11に記載の材料。
(項目16)
 1GPa~3GPaの範囲内の圧縮強さを有する、項目11~15のいずれか一項に記載の材料。
(項目17)
 前記圧縮強さが、JIS A1106:2006、JIS A1107;2012、JIS A1108;2006、JIS A1113:2006、JISA1114;2011、JIS A1132;2014、JIS A1136;1993、JIS A1142;2007、JIS D4610:1993、JISH7701:2008、JIS R3222;2003、JIS S1200;2012、JIS S1203;1998、JIS S1205;1998、JISZ8841;1;1993、AST MD953-95、ISO/TS20746:2016、ISO 75-3:2004、ISO 1752020:2016、ISO1920-4;2005、ISO 1920-5:2004、ISO 2633:1974、ISO 3185:2008、ISO 3186:2008、ISO3193;2008,、ISO-3202:1997、ISO-3203;1993、ISO-7689;2008、ISO-8168;2016、ISO-5856;2008、ISO-5857;2008、ISO-7173;1989、ISO-7176;8;2014、ISO-9152;1998、ISO-9154;2016、ISO-9254:1993、ISO-9255;2008、ISO-9256;1993、ISO-9709;2005、ISO-9845-1;1992、ISO-12258;1998、ISO-12260;2016、ISO-12261;2016、ISO-1391;2008から選択される1つ以上の規格に準拠して試験することによって得られる、項目16に記載の歯科材料。
 本発明によれば、口腔内での咬合力への抵抗性に優れ、生体に適した機械的強度を有し、かつ、耐久性を有する歯科材料が提供される。
 以下、本発明の実施形態について、詳細に説明する。
<定義>
 本明細書において、「歯科材料」とは、口腔内で用いられる材料およびそれを作製するための材料を包含する。口腔内に適用される歯科材料(例えば、インプラント材、補綴材、義歯材、充填材、義歯床材、または、成形修復材)は、口腔内に適用された際に、少なくともその一部分に対して咬合または咀嚼による咬合力が直接的または間接的に作用するものをいう。
 より具体的には、本発明の歯科材料としては、例えば、インプラント材、補綴材(インレー、クラウン、コア、ブリッジ等)、義歯材(人工歯)、義歯床材(義歯床安定材、義歯床用裏装着材等を含む)、成形修復材(根管充填材、ガッタパーチャ材、小窩裂溝填塞材、その他のシーラー、シーラント等)、印象材(型取り材)、充填材(充填用レジン等)、模型材、ワックス材、埋没材、合着材等が挙げられるが、これらに限定されない。
 本明細書において、「ナノファイバー」とは、外径の平均値が1nm~100nmの範囲内のナノスケールであり、長さが外径の平均値の100倍以上である繊維状物質を指すものとする。ナノファイバーとしては、中空構造を有するナノチューブ、中空構造を有しないナノロッド、導電性もしくは半導電性の性質を有するナノワイヤー等が挙げられる。
 本明細書において、「生体適合性」とは、歯科材料と生体間の相互作用、ならびに、歯科材料に隣接する組織の局所的反応および全身的反応に関し、少なくとも所望の意図した効果を超える害を与えないことを意味する。
 より具体的には、例えば、歯科材料がインプラント材である場合において、インプラント材の生体適合性とは、インプラント材が適用される生体と当該インプラント材との界面において、生体が機能回復および/または治癒し、当該インプラント材は機能を維持している状態を提供できる性質をいう。なお、歯科材料の生体適合性は、例えば、表面(界面)適合性の観点、力学的適合性の観点から評価することができる。
 本明細書において、「インプラント材」とは、口腔内の粘膜下や顎骨内に埋め込まれて使用される材料をいう。インプラント材としては、例えば、骨内インプラント、骨膜下インプラント、歯内骨内インプラント等が挙げられるが、これらに限定されない。
 本明細書において、「補綴材」とは、歯の欠損部を修復するために使用される材料をいう。補綴材としては、例えば、インレー、クラウン、コア、ブリッジ等が挙げられるが、これらに限定されない。
<A.歯科材料>
 本発明のナノファイバーと生体適合性材料を含む材料は、歯科材料として優れている。一実施形態において、本発明の歯科材料は、ナノファイバーと生体適合性樹脂とを含む。
(1.ナノファイバー)
 ナノファイバーとしては、特に審美性の観点から、白色もしくは乳白色のものを用いることが好ましい。例えば、セルロースナノファイバーは、生体適合性を有し、再生可能な天然資源であるため、歯科材料としての所要の特性を得る観点に加えて、環境保護や資源リサイクルの観点からも好ましく用いることができる。
 セルロースナノファイバーとしては、特に限定されず、市販品を用いても、公知の製造方法により製造したものを用いてもよい。セルロースナノファイバーを製造するのに使用する原料としては、例えば、木材、竹、麻、ジュート、ケナフ、綿、ビート等に含まれる植物由来の繊維が挙げられる。好ましい原料としては木材が挙げられ、例えば、マツ、スギ、ヒノキ、ユーカリ、アカシア等が挙げられる。また、これらの木材を原料として得られる紙、あるいは古紙等を用いることもできる。なお、植物由来の繊維は、一種を単独で用いてもよく、二種以上を併用してもよい。
 また、セルロースナノファイバーとしては、前記植物繊維含有材料から得られるパルプ、マーセル化を施したセルロースナノファイバー、レーヨンやセロファン、リヨセル等の再生セルロースナノファイバー等を含むものも挙げられる。また、資源リサイクルの観点から、廃材や農業廃棄物から得られるセルロースナノファイバーを用いることが好ましく考慮される。
 また、セルロースナノファイバーとしては、歯科材料の種類や用途、所要の特性等に応じて、セルロースナノファイバーと他の物質との複合体(本明細書では、「セルロースナノファイバー複合体」と称する。)を用いてもよい。セルロースナノファイバーと複合化される他の物質としては、例えば、炭酸カルシウム、リン酸三カルシウム、硫酸カルシウム等が挙げられる。これらのうち、セルロースナノファイバーと炭酸カルシウムとの複合体、セルロースナノファイバーとリン酸三カルシウムとの複合体を用いることが好ましく考慮される。なお、セルロースナノファイバーは、一種を単独で用いてもよく、二種以上を併用してもよい。
 本実施形態に係る歯科材料において、ナノファイバーは、一種を単独で用いてもよく、二種以上を併用してもよい。一実施形態において、ナノファイバーは、キトサンナノファイバーおよびキチンナノファイバーのうちの一種以上をさらに含むことが好ましい。これにより、歯科材料の抗菌性をより向上させることができる。このように、歯科材料の種類や用途、所要の特性等に応じて、ナノファイバーの種類や組み合わせを適宜選択することができる。
(2.生体適合性樹脂)
 生体適合性樹脂としては、例えば、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、カーボネート、プロピレン、スチレン、アミド、イミド、グリコール酸、乳酸、マルトース、デキストリン等のモノマー、オリゴマーおよびポリマー等が挙げられるが、これらに限定されない。より具体的には、生体適合性樹脂としては、例えば、メチルメタクリレート(MMA)、ポリメチルメタクリレート(PMMA);エチルメタクリレート(EMA)、n-ブチルメタクリレート、イソブチルメタクリレート、tert-ブチルメタクリレート、2-エチルヘキシルメタクリレート、n-ラウリルメタクリレート、アルキル(C12~13)メタクリレート、n-ステアリルメタクリレート、トリデシルメタクリレート等のメタクリル酸のアルキルエステル;ジメチルアミノエチルメタクリレート、ジメチルアミノエチルメタクリレートのメチルクロライド塩、ジメチルアミノエチルメタクリレートのベンジルクロライド塩、ジエチルアミノエチルメタクリレート等のメタクリル酸のジアルキルアミノエチルエステル;メタクリロキシエチルフタレート、2-メタクリロイルオキシエチルフタレート、2-メタクリロイルオキシエチルヘキサヒドロフタレート等のメタクリル酸のカルボン酸含有エステル;2,2,2-トリフルオロエチルメタクリレート等のメタクリル酸のフルオロアルキルエステル;シクロヘキシルメタクリレート、フェニルメタクリレート、ベンジルメタクリレート、イソボルニルメタクリレート、グリシジルメタクリレート、テトラヒドロフルフリルメタクリレート、アリルメタクリレート、2-ヒドロキシエチルメタクリレート(HEMA)、2-ヒドロキシプロピルメタクリレート、2-メトキシエチルメタクリレート、2-エトキシエチルメタクリレート、ヒドロキシナフトキシプロピルメタクリレート(HNPM)、エチレングリコールジメタクリレート(EDMA)、トリエチレングリコールジメタクリレート(TriEDMA)、1,3-ブタンジオールジメタクリレート(1,3-BuDMA)、1,3-ブチレングリコールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、ポリプロピレングリコールメタクリレート、トリメチロールプロパントリメタクリレート、2,2-ビス[4-(2-ヒドロキシ-3-メタクリロキシプロポキシ)フェニル]プロパン(Bis-GMA)、2,2-ビス(4-メタクリロキシフェニル)プロパン(BPDMA)、2,2-ビス(4-メタクリロキシエトキシフェニル)プロパン(Bis-MEPP)、ジ(メタクリロキシエチル)トリメチルヘキサメチレンジウレタン(UDMA)、トリ-n-ブチルボラン(TBB)、メタクリロキシエチルフェニルホスフェート(Phenyl-P)、4-メタクリロキシエチルトリメリテートアンハイドライド(4-META)、4-メタクリロキシエチルトリメリット酸(4-MET)、11-メタクリロキシ-1,1-ウンデカジカルボン酸(MAC-10)、10-メタクリロキシデカメチレンリン酸(MDP)、4-アクリロキシエチルトリメリット酸(4-AET)等が挙げられるが、これらに限定されない。これらのうち、MMA、PMMA、HEMA、TBB、4-METAを用いることが好ましく考慮される。なお、生体適合性樹脂は、一種を単独でも用いてもよく、二種以上を併用してもよい。
(3.抗菌物質)
 また、本実施形態に係る歯科材料は、抗菌物質を含むことが好ましい。これにより、歯科材料の抗菌性をより向上させることができる。抗菌物質としては、抗菌活性を有する物質であって人体に悪影響を与えない限りにおいて特に限定されず、歯科材料の種類や用途、所要の特性等に応じて適宜選択することができる。例えば、キトサン(キトサン誘導体を含む)、キチン(キチン誘導体を含む)、抗菌活性を有する薬剤、金属イオン(例えば、銅イオン、銀イオン等)などが挙げられるが、これらに限定されない。また、抗菌物質として抗菌活性を有する薬剤、金属イオン等を用いる場合、歯科材料の抗菌性をより効果的に発揮させる観点から、それらの抗菌物質をマイクロカプセルに内包させて、歯科材料に含めることが好ましく考慮される。
(4.その他の添加剤)
 なお、本実施形態に係る歯科材料においては、必要に応じて、本発明の効果を阻害しない範囲において、歯科材料に滑材、ワックス類、着色剤、安定剤、フィラー、その他の各種の添加剤を含めてもよい。例えば、ナノファイバーと生体適合性樹脂との混合を容易にするために、歯科材料に相溶化剤を添加してもよい。必要に応じて、歯科材料を適用する生体および/または歯科材料に隣接する組織の色調等に合わせて、歯科材料に着色剤を添加してもよい。
(5.改質処理)
 また、本実施形態に係る歯科材料は、歯科材料の種類や用途、所要の特性等に応じて、必要に応じて、表面改質処理等の改質処理を施すことができる。例えば、歯科材料の表面の全体もしくは一部に親水性または疎水性の物質をコーティングするなどして、歯科材料の親水性/疎水性を調整することができる。
(6.特性)
 本発明の歯科材料は、代表的には、以下の項目を指標として、その機械的特性、物理的特性、化学的特性、生物学的安定性、力学的安定性等を評価することができる。
 (6-1.圧縮強さ、引張強さ、伸び)
 通常の圧縮試験法、引張試験法に準拠し、対象の歯科材料に直線的な荷重を加えることによって、圧縮強さ(MPa)、引張強さ(MPa)および/または伸び(%)を測定する。本発明においては、圧縮強さは、対象の歯科材料の試料を、JIST6123、JIS T6501、JIS T6502、JIS T6503、JIS T6505、JIS T6506、JIS T6508、JIS T6509、JIST6512、JIST6513、JIS T6514、JIS T6515、JIS T6517、JIS T6518、JIS T6519、JIS T6520、JIST6521、JIS T6522、JIS T6523、JIS T6524、JIS T6525-1、JIS T6525-2、JIS T6527、JIS T6601、JIST6604、JIS T6605、JIS T6608、JIS T6609-1、JIS T6609-2、JIS T6610、JIS T6611、JIS T6612、JIST6003、JIS T6005、およびJIS K 7181から選択される1つ以上の規格に準拠して試験することによって得られる値とする。また、圧縮強さは、歯科材料の種類によらず同一の試験方法を適用してもよく、歯科材料の種類に応じて異なる試験方法を適用してもよい。
 本発明の歯科材料は、ナノファイバーと生体適合性樹脂とを含む歯科材料であるので、口腔内での咬合力に対する抵抗性に優れている。また、本発明の歯科材料は、圧縮強さを適切にコントロールすることが可能であるため、圧縮強さが高すぎることに起因する歯根の割れを防止することも可能であり、この点においても従来の歯科材料と比較して優れている。
 (6-2.弾性率、降伏値)
 通常の試験法に準拠し、任意の試験機によって、対象の歯科材料の弾性率(GPa)および/または降伏値(MPa)を測定する。
 本発明の歯科材料は、ナノファイバーと生体適合性樹脂とを含む歯科材料であるので、従来の歯科材料と比較して同等の、または優れた弾性率および/または降伏値を有するように製造することが可能である。
 (6-3.曲げ強さ、曲げ弾性率)
 JIS T6501等に準拠し、対象の歯科材料の曲げ強さ(MPa)および/または曲げ弾性率(MPa)を測定する。
 本発明の歯科材料は、ナノファイバーと生体適合性樹脂とを含む歯科材料であるので、従来の歯科材料と比較して同等の、または優れた曲げ強さおよび/または曲げ弾性率を有するように製造することが可能である。
 (6-4.衝撃強さ)
 一般に公知のシャルピー法、アイゾット法等により、対象の歯科材料の衝撃強さ(kgf・cm/cm)を測定する。
 本発明の歯科材料は、ナノファイバーと生体適合性樹脂とを含む歯科材料であるので、従来の歯科材料と比較して同等の、または優れた衝撃強さを有するように製造することが可能である。
 (6-5.硬さ)
 一般に公知の圧痕法、弾性法、引っかき法等により、対象の歯科材料のブリネル硬さ(H)、ビッカース硬さ(H)、ヌープ硬さ(H)、ショア硬さ等を測定する。
 本発明の歯科材料は、ナノファイバーと生体適合性樹脂とを含む歯科材料であるので、従来の歯科材料と比較して同等の、または優れた硬さを有するように製造することが可能である。
 (6-6.破壊靱性)
 一般に公知のIM法、CSF法、CN法、SENB法等により、対象の歯科材料の破壊靱性(MN/m3/2)を測定する。
 本発明の歯科材料は、ナノファイバーと生体適合性樹脂とを含む歯科材料であるので、従来の歯科材料と比較して同等の、または優れた破壊靱性を有するように製造することが可能である。
 (6-7.寸法安定性)
 JIS T6506等に準拠し、対象の歯科材料の寸法試験を行う。
 本発明の歯科材料は、ナノファイバーと生体適合性樹脂とを含む歯科材料であるので、従来の歯科材料と比較して寸法安定性に優れている。また、本発明に従って、インプラント材および義歯材などと、印象材(型取り材)とを同じ成分の歯科材料によって作製することによって、硬化後の形状大きさ等をより正確に制御することが可能である。
 (6-8.耐久性)
 一般に公知の摩耗・摩擦試験機等により、対象の歯科材料の耐摩耗性を測定する。
 本発明の歯科材料は、ナノファイバーと生体適合性樹脂とを含む歯科材料であるので、従来の歯科材料と比較して耐摩耗性に優れている。
 (6-9.熱膨張)
 通常の熱膨張試験法に準拠し、熱膨張試験機等によって、対象の歯科材料の線膨張係数(×10-6/℃)等を測定する。
 本発明の歯科材料は、ナノファイバーと生体適合性樹脂とを含む歯科材料であるので、寸法変化が抑制されている。
 (6-10.溶解性)
 一般に公知の酸・アルカリ溶解性試験等にしたがって、対象の歯科材料の酸・アルカリへの溶解性を測定する。
 本発明の歯科材料は、ナノファイバーと生体適合性樹脂とを含む歯科材料であるので、酸およびアルカリのいずれに対しても優れた化学的安定性を有する。
 (6-11.吸水率)
 JIS T6501等に準拠し、対象の歯科材料の吸水率(%)を測定する。
 本発明の歯科材料は、ナノファイバーと生体適合性樹脂とを含む歯科材料であり、ナノファイバーと生体適合性樹脂とが緊密な状態で複合化されているため、従来の歯科材料と比較して同等の、または優れた耐水性を有する。
 (6-12.気孔率、気孔径)
 対象の歯科材料の任意の断面について、電子顕微鏡観察によって気孔率(%)および/または気孔径(μm、nm)を測定する。
 本発明の歯科材料は、ナノファイバーと生体適合性樹脂とを含む歯科材料であり、ナノファイバーと生体適合性樹脂とが緊密な状態で複合化されているため、気孔率は極小である。
 (6-13.外観評価)
 目視により、またはルーペ等を用いて、対象の歯科材料の外観を観察する。
 本発明の歯科材料は、ナノファイバーと生体適合性樹脂とを含む歯科材料であり、ナノファイバーと生体適合性樹脂とが緊密な状態で複合化されているため、外観が良好であり、また、歯と同系色の色彩を有するため、審美性が良い。
 (6-14.色調安定性)
 JIS T6003に準拠し、対象の歯科材料の色調安定性を測定する。
 本発明の歯科材料は、ナノファイバーと生体適合性樹脂とを含む歯科材料であり、ナノファイバーと生体適合性樹脂とが緊密な状態で複合化されているため、従来の歯科材料と比較して優れた色調安定性を有し、より長期間にわたって審美性が保持される。また、本発明の歯科材料は透明度の高い白色材料であるため、製造の際に添加する着色剤の種類および量を調整することによって、所望の色調を容易に達成することが可能である。
 (6-15.生体適合性)
 ISO10993からの試験「医療機器の生物学的評価」、USP/USPクラスVIの生物学的試験等に準拠し、対象の歯科材料の生体適合性を試験する。
 本発明の歯科材料は、ナノファイバーと生体適合性樹脂とを含む歯科材料であるため、従来の歯科材料と比較して同等の、または優れた生体適合性を有する。
(7.歯科材料の具体的な例示)
 次に、本発明の歯科材料のより具体的な実施形態として、インプラント材、補綴材、義歯材、充填材、義歯床材、成形修復材、印象材について説明する。
 (7-1.インプラント材、補綴材、義歯材)
 一実施形態において、本発明の歯科材料は、インプラント材、補綴材または義歯材であり、300MPa~400MPaの範囲内の圧縮強さを有する。本実施形態の一局面において、300MPa~400MPaの範囲内の圧縮強さは、JIST6123に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIS T6501に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIST6502に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIS T6503に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIST6505に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIS T6506に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIST6508に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIS T6509に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIST6512に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIS T6513に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIST6514に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIS T6515に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIST6517に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIS T6518に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIST6519に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIS T6520に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIST6521に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIS T6522に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIST6523に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIS T6524に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIST6525-1に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIS T6525-2に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIST6527に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIS T6601に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIST6604に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIS T6605に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIST6608に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIS T6609-1に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIST6609-2に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIS T6610に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIST6611に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIS T6612に準拠して試験することによって得られる。
 本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIS T6003に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIST6005に準拠して試験することによって得られる。本実施形態の別の局面において、300MPa~400MPaの範囲内の圧縮強さは、JIS K 7181に準拠して試験することによって得られる。より具体的には、例えば、本実施形態に係る義歯材における300MPa~400MPaの範囲内の圧縮強さは、JIST6517に準拠して試験することによって得られる。また、本実施形態に係る義歯材における300MPa~400MPaの範囲内の圧縮強さは、JIS T6518に準拠して試験することによって得られる。また、本実施形態に係る義歯材における300MPa~400MPaの範囲内の圧縮強さは、JIST6525-1に準拠して試験することによって得られる。また、本実施形態に係る義歯材における300MPa~400MPaの範囲内の圧縮強さは、JIST6525-2に準拠して試験することによって得られる。
 本実施形態では、歯科材料の総質量に対するナノファイバーの含有量は、70%~90%の範囲内であることが好ましく、75%~90%の範囲内であることがより好ましく、80%~85%の範囲内であることがさらに好ましい。また、歯科材料におけるナノファイバー以外の成分のうち、生体適合性樹脂の割合は、少なくとも90%以上とすることが好ましい。また、抗菌物質およびその他の添加剤を配合する場合、それらの含有量は、歯科材料の種類や用途、所要の特性等に応じて、適宜設定することができる。
 これにより、生体におけるインプラント材、補綴材または義歯材の適用部位に適した機械的強度を有し、寸法安定性に優れ、かつ、耐摩耗性に優れたインプラント材、補綴材または義歯材とすることができる。また、本実施形態に係るインプラント材、補綴材または義歯材の圧縮強さはコントロール可能であるため、これらを口腔に適用すると、咬合力が加わった際に歯へ過剰な負担がかかることが抑制される。また、本実施形態に係るインプラント材、補綴材または義歯材が有する抗菌性によって、歯に歯垢が付着しにくく、細菌によって侵されにくくなるため、二次う蝕を抑制することができる。
 (7-2.充填材)
 一実施形態において、本発明の歯科材料は、充填材であり、150MPa~250MPaの範囲内の圧縮強さを有する。本実施形態の一局面において、150MPa~250MPaの範囲内の圧縮強さは、JIST6123に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIS T6501に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIST6502に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIS T6503に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIST6505に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIS T6506に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIST6508に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIS T6509に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIST6512に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIS T6513に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIST6514に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIS T6515に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIST6517に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIS T6518に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIST6519に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIS T6520に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIST6521に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIS T6522に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIST6523に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIS T6524に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIST6525-1に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIS T6525-2に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIST6527に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIS T6601に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIST6604に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIS T6605に準拠して試験することによって得られる。
 本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIS T6608に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIST6609-1に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIS T6609-2に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIST6610に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIS T6611に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIST6612に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIS T6003に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIST6005に準拠して試験することによって得られる。本実施形態の別の局面において、150MPa~250MPaの範囲内の圧縮強さは、JIS K 7181に準拠して試験することによって得られる。
 本実施形態では、歯科材料の総質量に対するナノファイバーの含有量は、50%~80%の範囲内であることが好ましく、55%~75%の範囲内であることがより好ましく、60%~70%の範囲内であることがさらに好ましい。また、歯科材料におけるナノファイバー以外の成分のうち、生体適合性樹脂の割合は、少なくとも90%以上とすることが好ましい。また、抗菌物質およびその他の添加剤を配合する場合、それらの含有量は、歯科材料の種類や用途、所要の特性等に応じて、適宜設定することができる。
 これにより、生体における充填材の適用部位に適した機械的強度を有し、寸法安定性に優れ、かつ、耐摩耗性に優れた充填材とすることができる。また、本実施形態に係る充填材の圧縮強さはコントロール可能であるため、口腔に適用すると、咬合力が加わった際に歯へ過剰な負担がかかることが抑制される。また、本実施形態に係る充填材が有する抗菌性によって、歯に歯垢が付着しにくく、細菌によって侵されにくくなるため、二次う蝕を抑制することができる。
 (7-3.義歯床材)
 一実施形態において、本発明の歯科材料は、義歯床材であり、60MPa~100MPaの範囲内の圧縮強さを有する。本実施形態の一局面において、60MPa~100MPaの範囲内の圧縮強さは、JIST6123に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIS T6501に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIST6502に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIS T6503に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIST6505に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIS T6506に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIST6508に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIS T6509に準拠して試験することによって得られる。本実
施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIS T6512に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIST6513に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIS T6514に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIST6515に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIS T6517に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIST6518に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIS T6519に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIST6520に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIS T6521に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIST6522に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIS T6523に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIST6524に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIS T6525-1に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIST6525-2に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIS T6527に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIST6601に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIS T6604に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIST6605に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIS T6608に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIST6609-1に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIS T6609-2に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIST6610に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIS T6611に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIST6612に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIS T6003に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIST6005に準拠して試験することによって得られる。本実施形態の別の局面において、60MPa~100MPaの範囲内の圧縮強さは、JIS K 7181に準拠して試験することによって得られる。より具体的には、例えば、本実施形態に係る義歯床材における60MPa~100MPaの範囲内の圧縮強さは、JIST6501に準拠して試験することによって得られる。
 本実施形態では、歯科材料の総質量に対するナノファイバーの含有量は、30%~70%の範囲内であることが好ましく、35%~65%の範囲内であることがより好ましく、40%~60%の範囲内であることがさらに好ましい。また、歯科材料におけるナノファイバー以外の成分のうち、生体適合性樹脂の割合は、少なくとも90%以上とすることが好ましい。また、抗菌物質およびその他の添加剤を配合する場合、それらの含有量は、歯科材料の種類や用途、所要の特性等に応じて、適宜設定することができる。
 これにより、生体における義歯床材の適用部位に適した機械的強度を有し、寸法安定性に優れ、かつ、耐摩耗性に優れた義歯床材とすることができる。また、本実施形態に係る義歯床材を適用することにより、義歯床材と義歯材とを、共通の成分から作製することができるため、材質が異なる場合に生じ得る寸法の狂いが抑制され、より精密な寸法のコントロールが可能となり、歯科材料全体としての生体適合性がより向上する。
 (7-4.成形修復材)
 一実施形態において、本発明の歯科材料は、成形修復材であり、30MPa~50MPaの範囲内の圧縮強さを有する。本実施形態の一局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6123に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6501に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6502に準拠して試験することによって得られる。
 本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6503に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6505に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6506に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6508に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6509に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6512に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6513に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6514に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6515に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6517に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6518に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6519に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6520に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6521に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6522に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6523に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6524に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6525-1に準拠して試験することによって得られる。本実施
形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6525-2に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6527に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6601に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6604に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6605に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6608に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6609-1に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6609-2に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6610に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6611に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6612に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6003に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6005に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JISK 7181に準拠して試験することによって得られる。より具体的には、例えば、本実施形態に係る成形修復材における30MPa~50MPaの範囲内の圧縮強さは、JIST6514に準拠して試験することによって得られる。また、本実施形態に係る成形修復材における30MPa~50MPaの範囲内の圧縮強さは、JIS T6515に準拠して試験することによって得られる。また、本実施形態に係る成形修復材における30MPa~50MPaの範囲内の圧縮強さは、JIST6522に準拠して試験することによって得られる。また、本実施形態に係る成形修復材における30MPa~50MPaの範囲内の圧縮強さは、JIS T6524に準拠して試験することによって得られる。
 本実施形態では、歯科材料の総質量に対するナノファイバーの含有量は、少なくとも20%以上であることが好ましく、20%~50%の範囲内であることがより好ましく、20%~45%の範囲内であることがさらに好ましい。また、歯科材料におけるナノファイバー以外の成分のうち、生体適合性樹脂の割合は、少なくとも90%以上とすることが好ましい。また、抗菌物質およびその他の添加剤を配合する場合、それらの含有量は、歯科材料の種類や用途、所要の特性等に応じて、適宜設定することができる。
 これにより、生体における成形修復材の適用部位に適した機械的強度を有し、寸法安定性に優れ、かつ、耐摩耗性に優れた成形修復材とすることができる。また、本実施形態に係る成形修復材の圧縮強さはコントロール可能であるため、口腔に適用すると、咬合力が加わった際に歯へ過剰な負担がかかることが抑制される。また、本実施形態に係る成形修復材が有する抗菌性によって、歯に歯垢が付着しにくく、細菌によって侵されにくくなるので、二次う蝕を抑制することができる。
 (7-5.印象材)
 一実施形態において、本発明の歯科材料は、印象材であり、30MPa~50MPaの範囲内の圧縮強さを有する。本実施形態の一局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6123に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6501に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6502に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6503に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6505に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6506に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6508に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6509に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6512に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6513に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6514に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6515に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6517に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6518に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6519に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6520に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6521に準拠して試験することによって得られる。本実施形態の別の局面において
、30MPa~50MPaの範囲内の圧縮強さは、JIS T6522に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6523に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6524に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6525-1に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6525-2に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6527に準拠して試験することによって得られる。
 本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6601に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6604に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6605に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6608に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6609-1に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6609-2に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6610に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6611に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6612に準拠して試験することによって得られる。
 本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS T6003に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIST6005に準拠して試験することによって得られる。本実施形態の別の局面において、30MPa~50MPaの範囲内の圧縮強さは、JIS K 7181に準拠して試験することによって得られる。より具体的には、例えば、本実施形態に係る印象材における30MPa~50MPaの範囲内の圧縮強さは、JIST6512に準拠して試験することによって得られる。また、本実施形態に係る印象材における30MPa~50MPaの範囲内の圧縮強さは、JIS T6513に準拠して試験することによって得られる。また、本実施形態に係る印象材における30MPa~50MPaの範囲内の圧縮強さは、JIST6527に準拠して試験することによって得られる。
 本実施形態では、歯科材料の総質量に対するナノファイバーの含有量は、少なくとも20%以上であることが好ましく、20%~50%の範囲内であることがより好ましく、20%~45%の範囲内であることがさらに好ましい。また、歯科材料におけるナノファイバー以外の成分のうち、生体適合性樹脂の割合は、少なくとも90%以上とすることが好ましい。また、抗菌物質およびその他の添加剤を配合する場合、それらの含有量は、歯科材料の種類や用途、所要の特性等に応じて、適宜設定することができる。
 これにより、生体における印象材の適用部位に適した機械的強度を有し、寸法安定性に優れ、かつ、耐摩耗性に優れた印象材とすることができる。本実施形態に係る印象材は、寸法変化が抑制され、操作性に優れている。
<歯科材料の製造方法>
 本発明の歯科材料は、ナノファイバーと生体適合性樹脂とを所定の割合で混合(溶融混練)することによって作製される。混合方法としては、一般に公知の方法を適用することができる。例えば、一軸混練機または多軸混練機、ニーダー等を用いることができ、混合工程におけるナノファイバーと生体適合性樹脂との配合順序や溶融のタイミング等は特に限定されない。例えば、ナノファイバーと生体適合性樹脂とを溶融して混練してもよく、または、予め生体適合性樹脂を溶融しておき、混練時にナノファイバーを添加して混合してもよい。なお、抗菌物質およびその他の添加剤を配合する場合においても、その配合順序や溶融のタイミング等は、適宜調節することができる。混合温度は特に限定されず、ナノファイバーおよび生体適合性樹脂の種類や組み合わせ等に応じて適宜設定することができる。また、ナノファイバーと生体適合性樹脂との混合割合は、歯科材料の種類や用途、所要の特性等に応じて適宜調整することができる。
 また、前記混合工程では、ナノファイバーと生体適合性樹脂との分散性を確保する観点等から、分散媒を用いることができる。分散媒としては、ナノファイバーおよび生体適合性樹脂の種類や組み合わせ等に応じて適宜選択することができ、例えば、水、メタノール、エタノール、イソプロパノール等のアルコール類、ジメチルホルムアミド、N-メチル-2-ピロリドン(NMP)等のアミド類、およびこれらの混合溶媒等が挙げられる。また、分散媒は、本発明の目的、効果を阻害しない範囲において、ナノファイバーおよび生体適合性樹脂と分散媒との親和性等を考慮して、より均一に分散させることを目的に、例えば、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム、コール酸ナトリウム、デオキシコール酸ナトリウム等が分散剤として添加されていてもよく、また、所要の目的に応じてその他の添加剤が添加されていてもよい。
 このようにして得られる歯科材料は、そのまま目的の歯科材料とすることもでき、また、必要に応じて成形加工を行って、目的の歯科材料とすることもできる。例えば、本発明の歯科材料は、そのまま充填材として窩洞に充填(填入)し、硬化処理を施した後に、研削器具等を用いて細かい部分の整形や研磨を行うことによって、寸法精度良く成形加工することができる。また、本発明の歯科材料は、CAD/CAMシステムを用いて、所望のインレー、クラウン等に成形加工することができる。例えば、3次元カメラで撮影したう蝕処置後の窩洞の光学印象から、モニター上で窩洞外形を設定し、ミリングチャンバー中のディスクでブロック状の歯科材料を切削加工することによって、目的のインレー、クラウン等を寸法精度良く成形加工することができる。
<B.歯科材料以外の応用>
 本発明のナノファイバーと生体適合性材料を含む材料は、歯科材料のみならず、それ以外の用途においても優れている。上記<A.歯科材料>において説明した本発明のナノファイバーと生体適合性材料を含む材料は、歯科材料以外に、例えば、燃料棒のキャスクの強化のため、あるいは、放射線遮蔽物として、あるいは、車、船、宇宙船、宇宙基地、ロケット、航空機、または、モーターサイクルのボディの補強材として、あるいは、スペースデブリ破砕後接着材料として、あるいは、デブリバンパー宇宙船または宇宙基地の材料として、あるいは、ロボットフレームの材料として、あるいは、放射線遮蔽材料を含む屋根材として、あるいは、建築材料としても利用可能である。
 上記の歯科材料以外への適用の場合は、上記<A.歯科材料>において説明した本発明のナノファイバーと生体適合性材料を含む材料に対して、必要に応じて、コーティング剤、および/または添加剤を追加することができる。
 ナノファイバーとしては、上記<A.歯科材料>において説明した本発明のナノファイバーを使用することができる。ナノファイバーとしては、例えば、セルロースナノファイバーが挙げられるがこれに限定されない。
 生体適合性材料としては、上記<A.歯科材料>において説明した本発明の生体適合性樹脂を使用することができる。生体適合性樹脂としては、メチルメタクリレート(MMA)、ポリメチルメタクリレート(PMMA)、2-ヒドロキシエチルメタクリレート(HEMA)、トリ-n-ブチルボラン(TBB)、および、4-メタクリロキシエチルトリメリテートアンハイドライド(4-META)からなる群から選択される樹脂、例えば4-METAが挙げられるがこれに限定されない。また、歯科材料以外の適用においては生体適合性が重要とならないことから、上記<A.歯科材料>において説明した生体適合性樹脂と同様の性質を持つ樹脂であれば、必ずしも生体適合性は必要ではない。
 コーティング剤としては、例えば、ポリウレアを使用することが可能であるが、これに限定されない。
 添加物としては、例えば、鉛、タングステン、ホウ素、グラファイト、グラフェン、カドミニウム、およびこれらの混合物を、使用目的に応じて選択することが可能である。目的に応じて他の任意の添加物を本発明の材料に添加してもよい。
 上記の材料を生成する場合、原材料がスラリーであっても、粉末であっても、原材料の水分を接着材料のモノマーと置換して疎水加工を施す事により、材料の接着力を高める事が可能である。また、材料を型枠やフレームに打ち込む時に20Hzから50Hz、50Hzから120Hz、および/または、120Hzから240Hzの振動を断続的に加える事で、より強固な成形体を作成する事が可能となる。
 一実施形態において、本発明の上記材料は、好ましくは、1GPa~3GPaの強度(代表的には圧縮強度)を有するが、これに限定されない。本発明において、強度(代表的には圧縮強度)は、目的とする材料を、JIS A1106:2006、JIS A1107;2012、JIS A1108;2006、JIS A1113:2006、JISA1114;2011、JIS A1132;2014、JIS A1136;1993、JIS A1142;2007、JIS D4610:1993、JISH7701:2008、JIS R3222;2003、JIS S1200;2012、JIS S1203;1998、JIS S1205;1998、JISZ8841;1;1993、AST MD953-95、ISO/TS20746:2016、ISO 75-3:2004、ISO 1752020:2016、ISO1920-4;2005、ISO 1920-5:2004、ISO 2633:1974、ISO 3185:2008、ISO 3186:2008、ISO3193;2008,、ISO-3202:1997、ISO-3203;1993、ISO-7689;2008、ISO-8168;2016、ISO-5856;2008、ISO-5857;2008、ISO-7173;1989、ISO-7176;8;2014、ISO-9152;1998、ISO-9154;2016、ISO-9254:1993、ISO-9255;2008、ISO-9256;1993、ISO-9709;2005、ISO-9845-1;1992、ISO-12258;1998、ISO-12260;2016、ISO-12261;2016、ISO-1391;2008から選択される1つ以上の規格に準拠して試験することによって得られる値とする。また、圧縮強さは、材料の種類によらず同一の試験方法を適用してもよく、材料の種類に応じて異なる試験方法を適用してもよい。
 本実施形態の一局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、JIS A1106:2006に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、JISA1107;2012に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、JISA1108;2006に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、JISA1113:2006に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、JISA1114;2011に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、JISA1132;2014に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、JISA1136;1993に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、JISA1142;2007に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、JISD4610:1993に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、JISH7701:2008に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、JISR3222;2003に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、JISS1200;2012に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、JISS1203;1998に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、JISS1205;1998に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、JISZ8841;1;1993に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ASTMD953-95に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ISO/TS20746:2016に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ISO75-3:2004に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ISO1752020:2016に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ISO1920-4;2005に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ISO1920-5:2004に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ISO2633:1974に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ISO3185:2008に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ISO3186:2008に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ISO3193;2008,に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ISO-3202:1997に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ISO-3203;1993に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ISO-7689;2008に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ISO-8168;2016に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ISO-5856;2008に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ISO-5857;2008に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ISO-7173;1989に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ISO-7176;8;2014に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ISO-9152;1998に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ISO-9154;2016に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ISO-9254:1993に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ISO-9255;2008に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ISO-9256;1993に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ISO-9709;2005に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ISO-9845-1;1992に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ISO-12258;1998に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ISO-12260;2016に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ISO-12261;2016に準拠して試験することによって得られる。本実施形態の別の局面において、1GPa~3GPaの範囲内の強度(代表的には圧縮強度)は、ISO-1391;2008に準拠して試験することによって得られる。
 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
<実施例1>
 ナノファイバーとしてセルロースナノファイバーを用い、生体適合性樹脂としてメタクリレートモノマーとポリメタクリレートとを用いて、ナノファイバーと生体適合性樹脂との質量比が85:15となるように水中に分散させ、よく攪拌した後、混練機に投入し、所定の温度で適切な時間溶融混練して、歯科材料を得る。
 この歯科材料を所定の形状に成形加工して、インプラント材、補綴材、義歯材とする。
<実施例2>
 ナノファイバーと生体適合性樹脂との質量比を83:17とすること以外は実施例1と同様にして、歯科材料を得る。
 この歯科材料を所定の形状に成形加工して、インプラント材、補綴材、義歯材とする。
<実施例3>
 ナノファイバーと生体適合性樹脂との質量比を88:12とすること以外は実施例1と同様にして、歯科材料を得る。
 この歯科材料を所定の形状に成形加工して、インプラント材、補綴材、義歯材とする。
<実施例4>
 ナノファイバーと生体適合性樹脂との質量比を80:20とすること以外は実施例1と同様にして、歯科材料を得る。
 この歯科材料を所定の形状に成形加工して、インプラント材、補綴材、義歯材とする。
<実施例5>
 ナノファイバーと生体適合性樹脂との質量比を75:25とすること以外は実施例1と同様にして、歯科材料を得る。
 この歯科材料を所定の形状に成形加工して、インプラント材、補綴材、義歯材とする。
<実施例6>
 ナノファイバーとして、セルロースナノファイバーと炭酸カルシウムとの複合体を用いること以外は実施例1と同様にして、歯科材料を得る。
 この歯科材料を所定の形状に成形加工して、インプラント材、補綴材、義歯材とする。
<実施例7>
 ナノファイバーとして、セルロースナノファイバーとキトサンナノファイバーとを質量比で90:10の割合で混合したものを用いること以外は実施例1と同様にして、歯科材料を得る。
 この歯科材料を所定の形状に成形加工して、インプラント材、補綴材、義歯材とする。
<実施例8>
 ナノファイバーおよび生体適合性樹脂に加えて、抗菌物質として銅イオンを内包したマイクロカプセルを用い、質量比が85:13:2となるように配合すること以外は実施例1と同様にして、歯科材料を得る。
 この歯科材料を所定の形状に成形加工して、インプラント材、補綴材、義歯材とする。
<実施例9>
 ナノファイバーと生体適合性樹脂との質量比を65:35とすること以外は実施例1と同様にして、歯科材料を得る。
 この歯科材料を充填材とする。
<実施例10>
 ナノファイバーと生体適合性樹脂との質量比を50:50とすること以外は実施例1と同様にして、歯科材料を得る。
 この歯科材料を義歯床材とする。
<実施例11>
 ナノファイバーと生体適合性樹脂との質量比を30:70とすること以外は実施例1と同様にして、歯科材料を得る。
 この歯科材料を成形修復材とする。
<実施例12>
 ナノファイバーと生体適合性樹脂との質量比を20:80とすること以外は実施例1と同様にして、歯科材料を得る。
 この歯科材料を印象材とする。
 このようにして得られる歯科材料は、いずれも、口腔内での咬合力への抵抗性に優れ、生体に適した機械的強度を有し、寸法安定性に優れ、かつ、耐久性を有している。
 以上、本発明の実施形態を詳述してきたが、具体的な形態はこれらの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲における設計の変更等があっても本発明に含まれる。

Claims (17)

  1.  ナノファイバーと生体適合性樹脂とを含む歯科材料。
  2.  前記ナノファイバーが、セルロースナノファイバーである、請求項1に記載の歯科材料。
  3.  前記ナノファイバーが、キトサンナノファイバーおよびキチンナノファイバーのうちの一種以上をさらに含む、請求項2に記載の歯科材料。
  4.  前記歯科材料が抗菌物質を含む、請求項1から3のうちのいずれか一項に記載の歯科材料。
  5.  前記歯科材料が、インプラント材、補綴材、義歯材、充填材、義歯床材、成形修復材または印象材である、請求項1から4のうちのいずれか一項に記載の歯科材料。
  6.  前記歯科材料がインプラント材、補綴材または義歯材であり、300MPa~400MPaの範囲内の圧縮強さを有する、請求項5に記載の歯科材料。
  7.  前記歯科材料が充填材であり、150MPa~250MPaの範囲内の圧縮強さを有する、請求項5に記載の歯科材料。
  8.  前記歯科材料が義歯床材であり、60MPa~100MPaの範囲内の圧縮強さを有する、請求項5に記載の歯科材料。
  9.  前記歯科材料が成形修復材または印象材であり、30MPa~50MPaの範囲内の圧縮強さを有する、請求項5に記載の歯科材料。
  10.  前記圧縮強さが、JIS T6123、JIS T6501、JIS T6502、JIS T6503、JIS T6505、JIS T6506、JIS T6508、JIST6509、JIS T6512、JIS T6513、JIS T6514、JIS T6515、JIS T6517、JIS T6518、JIS T6519、JIST6520、JIS T6521、JIS T6522、JIS T6523、JIS T6524、JIS T6525-1、JIS T6525-2、JIS T6527、JIST6601、JIS T6604、JIS T6605、JIS T6608、JIS T6609-1、JIS T6609-2、JIS T6610、JIS T6611、JIST6612、JIS T6003、JIS T6005、およびJIS K 7181から選択される1つ以上の規格に準拠して試験することによって得られる、請求項6~9のうちのいずれか一項に記載の歯科材料。
  11.  ナノファイバーと樹脂とを含む材料であって、さらに、
    (1)コーティング剤、ならびに
    (2)鉛、タングステン、ホウ素、グラファイト、グラフェン、およびカドミニウムからなる群から選択される添加剤
    からなる群から選択される物質をさらに含む材料。
  12.  請求項11に記載の材料であって、燃料棒のキャスクの強化のため、あるいは、放射線遮蔽物として、あるいは、車、船、宇宙船、宇宙基地、ロケット、航空機、または、モーターサイクルのボディの補強材として、あるいは、スペースデブリ破砕後接着材料として、あるいは、デブリバンパー宇宙船または宇宙基地の材料として、あるいは、ロボットフレームの材料として、あるいは、放射線遮蔽材料を含む屋根材として、あるいは、建築材料として使用するための、材料。
  13.  前記ナノファイバーが、セルロースナノファイバーである、請求項11に記載の材料。
  14.  前記樹脂が、メチルメタクリレート(MMA)、ポリメチルメタクリレート(PMMA)、2-ヒドロキシエチルメタクリレート(HEMA)、トリ-n-ブチルボラン(TBB)、および、4-メタクリロキシエチルトリメリテートアンハイドライド(4-META)からなる群から選択される、請求項11に記載の材料。
  15.  前記コーティング剤が、ポリウレアである、請求項11に記載の材料。
  16.  1GPa~3GPaの範囲内の圧縮強さを有する、請求項11~15のいずれか一項に記載の材料。
  17.  前記圧縮強さが、JIS A1106:2006、JIS A1107;2012、JIS A1108;2006、JIS A1113:2006、JISA1114;2011、JIS A1132;2014、JIS A1136;1993、JIS A1142;2007、JIS D4610:1993、JISH7701:2008、JIS R3222;2003、JIS S1200;2012、JIS S1203;1998、JIS S1205;1998、JISZ8841;1;1993、AST MD953-95、ISO/TS20746:2016、ISO 75-3:2004、ISO 1752020:2016、ISO1920-4;2005、ISO 1920-5:2004、ISO 2633:1974、ISO 3185:2008、ISO 3186:2008、ISO3193;2008,、ISO-3202:1997、ISO-3203;1993、ISO-7689;2008、ISO-8168;2016、ISO-5856;2008、ISO-5857;2008、ISO-7173;1989、ISO-7176;8;2014、ISO-9152;1998、ISO-9154;2016、ISO-9254:1993、ISO-9255;2008、ISO-9256;1993、ISO-9709;2005、ISO-9845-1;1992、ISO-12258;1998、ISO-12260;2016、ISO-12261;2016、ISO-1391;2008から選択される1つ以上の規格に準拠して試験することによって得られる、請求項16に記載の歯科材料。
PCT/JP2017/008181 2016-03-01 2017-03-01 歯科材料 WO2017150634A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020187026269A KR20180114917A (ko) 2016-03-01 2017-03-01 치과 재료
AU2017226654A AU2017226654A1 (en) 2016-03-01 2017-03-01 Dental material
CA3016113A CA3016113A1 (en) 2016-03-01 2017-03-01 Dental material
EP17760098.8A EP3424485A4 (en) 2016-03-01 2017-03-01 DENTAL MATERIAL
US16/080,916 US20190125632A1 (en) 2016-03-01 2017-03-01 Dental material
JP2018503382A JPWO2017150634A1 (ja) 2016-03-01 2017-03-01 歯科材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-039051 2016-03-01
JP2016039051 2016-03-01

Publications (1)

Publication Number Publication Date
WO2017150634A1 true WO2017150634A1 (ja) 2017-09-08

Family

ID=59744130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008181 WO2017150634A1 (ja) 2016-03-01 2017-03-01 歯科材料

Country Status (7)

Country Link
US (1) US20190125632A1 (ja)
EP (1) EP3424485A4 (ja)
JP (1) JPWO2017150634A1 (ja)
KR (1) KR20180114917A (ja)
AU (1) AU2017226654A1 (ja)
CA (1) CA3016113A1 (ja)
WO (1) WO2017150634A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2740252C1 (ru) * 2020-08-19 2021-01-12 Акционерное общество "Опытно-Экспериментальный завод "ВладМиВа" Способ определения прочности соединения стоматологического материала для фиксации с твердыми тканями зуба и материалом несъемных зубных протезов и приспособление для его реализации
KR102359407B1 (ko) * 2021-07-08 2022-02-08 (주)스피덴트 수용성 임시 근관충전재 및 이의 제조방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238402A (ja) * 1988-06-10 1990-02-07 Bayer Ag 充填剤を含有する重合可能な物質およびその使用
JP2006001910A (ja) * 2004-06-21 2006-01-05 Kazunori Kusano 歯科用根管充填材および歯科用糊剤
JP2006510763A (ja) * 2002-12-19 2006-03-30 ランクセス ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング カーボンブラックおよびカーボンナノファイバーを含有する導電性の熱可塑性樹脂
JP2007332040A (ja) * 2006-06-12 2007-12-27 Shinshu Univ カーボンナノチューブを含む抗菌剤とそれを用いた材料及び製剤
JP2013095665A (ja) * 2011-10-27 2013-05-20 Tokuyama Dental Corp 歯科用アルジネート印象材組成物
JP2013535532A (ja) * 2010-07-14 2013-09-12 ザ・キュレーターズ・オブ・ザ・ユニバーシティ・オブ・ミズーリ ポリマー複合体およびその作製
WO2016043145A1 (ja) * 2014-09-17 2016-03-24 国立大学法人名古屋大学 導電性組成物及びその製造方法
JP2016193876A (ja) * 2015-03-31 2016-11-17 株式会社松風 医科歯科用硬化性組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2751939B2 (ja) * 1989-10-19 1998-05-18 宣男 中林 移植用材料およびその製造方法
CN101884599B (zh) * 2010-07-09 2012-11-28 武汉高登齿科材料有限公司 一种正畸用可见光固化胶粘剂及其制备方法
KR101370023B1 (ko) * 2012-04-06 2014-03-06 서울대학교산학협력단 합성고분자 나노섬유메시와 mta를 포함하는 치수질환 치료용 조성물
GB201313898D0 (en) * 2013-08-02 2013-09-18 Bradford Formulations and materials with cationic polymers
CN103622837B (zh) * 2013-12-02 2016-04-06 上海纳米技术及应用国家工程研究中心有限公司 自酸蚀双亲性齿科粘结剂及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238402A (ja) * 1988-06-10 1990-02-07 Bayer Ag 充填剤を含有する重合可能な物質およびその使用
JP2006510763A (ja) * 2002-12-19 2006-03-30 ランクセス ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング カーボンブラックおよびカーボンナノファイバーを含有する導電性の熱可塑性樹脂
JP2006001910A (ja) * 2004-06-21 2006-01-05 Kazunori Kusano 歯科用根管充填材および歯科用糊剤
JP2007332040A (ja) * 2006-06-12 2007-12-27 Shinshu Univ カーボンナノチューブを含む抗菌剤とそれを用いた材料及び製剤
JP2013535532A (ja) * 2010-07-14 2013-09-12 ザ・キュレーターズ・オブ・ザ・ユニバーシティ・オブ・ミズーリ ポリマー複合体およびその作製
JP2013095665A (ja) * 2011-10-27 2013-05-20 Tokuyama Dental Corp 歯科用アルジネート印象材組成物
WO2016043145A1 (ja) * 2014-09-17 2016-03-24 国立大学法人名古屋大学 導電性組成物及びその製造方法
JP2016193876A (ja) * 2015-03-31 2016-11-17 株式会社松風 医科歯科用硬化性組成物

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
See also references of EP3424485A4 *
SILVA,RAFAEL.M ET AL.: "Dental glass ionomer cement reinforced by cellulose microfibers and cellulose nanocrystals", MATERIALS SCIENCE AND ENGINEERING C, vol. 58, 29 August 2015 (2015-08-29), pages 389 - 395, XP055414982 *
SUN,WEI ET AL.: "Post-draw PAN-PMMA nanofiber reinforced and toughened Bis-GMA dental restorative composite", DENTAL MATERIALS, vol. 26, no. 9, 2010, pages 873 - 880, XP055414979 *
UYAR,TANSEL ET AL.: "Electrospun nanofiber reinforcement of dental composites with electromagnetic alignment approach", MATERIALS SCIENCE AND ENGINEERING C, vol. 62, 4 February 2016 (2016-02-04), pages 762 - 770, XP029452966 *

Also Published As

Publication number Publication date
EP3424485A1 (en) 2019-01-09
AU2017226654A1 (en) 2018-09-20
KR20180114917A (ko) 2018-10-19
US20190125632A1 (en) 2019-05-02
CA3016113A1 (en) 2017-09-08
JPWO2017150634A1 (ja) 2019-02-07
EP3424485A4 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
Cho et al. Dental resin composites: A review on materials to product realizations
Jandt et al. Future perspectives of resin-based dental materials
Garoushi et al. Use of short fiber-reinforced composite with semi-interpenetrating polymer network matrix in fixed partial dentures
JP7086656B2 (ja) 間接的歯科修復物を作製するためのミリングブランク、対応する使用および方法
EP3760181B1 (de) Dentaler kompositblock zur herstellung permanenter indirekter restaurationen im cad/cam verfahren
Wu et al. Development of a new class of self-healing and therapeutic dental resins
Najeeb et al. Nano glass ionomer cement: Modification for biodental applications
Singh et al. Overview and recent advances in composite resin: A review
WO2017150634A1 (ja) 歯科材料
Vichi et al. The effect of different storage conditions and duration on the fracture strength of three types of translucent fiber posts
Bakhadher Modification of glass ionomer restorative material: A review of literature
De Souza Nanoparticles in restorative materials
EP3267963B1 (de) Polymerisierbares dentalmaterial mit phasentransferkatalysator
Tyliszczak et al. Acrylates in dental applications
Helvey Creating super dentin: using flowable composites as luting agents to help prevent secondary caries
KR101228290B1 (ko) 요변성과 주형성이 우수한 치과용 복합체 조성물
Ariyoshi et al. Microtensile bond strengths of composite cores to pulpal floor dentin with resin coating
Cetintas et al. Fiber materials used in prosthetic dentistry
Khadr et al. Nanotechnology in resin composite restorative material
CN107898649B (zh) 一种齿科用修复材料
Drzewiecka et al. Mechanical properties of composite material modified with amorphous calcium phosphate
Kumar et al. Advances in reinforced restorations: A review
Akgül et al. Effect of Thermocycling On Mechanical and Surface Properties of Three Posterior Restorative Materials
Voicu et al. Simulation of Mechanical Behaviour in Milling and Polishing of Dental Polymeric (resin) Composites
Mali A Comparative Study of the Mechanical Properties of Poly Methyl Methacrylate on Microaddition of Halloysite Nanotubes and Hydroxyapatite Nano: An in Vitro Study

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2018503382

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 3016113

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017226654

Country of ref document: AU

Date of ref document: 20170301

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017760098

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017760098

Country of ref document: EP

Effective date: 20181001

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17760098

Country of ref document: EP

Kind code of ref document: A1