WO2017150619A1 - Irreversible circuit element, front-end circuit, and communication device - Google Patents

Irreversible circuit element, front-end circuit, and communication device Download PDF

Info

Publication number
WO2017150619A1
WO2017150619A1 PCT/JP2017/008125 JP2017008125W WO2017150619A1 WO 2017150619 A1 WO2017150619 A1 WO 2017150619A1 JP 2017008125 W JP2017008125 W JP 2017008125W WO 2017150619 A1 WO2017150619 A1 WO 2017150619A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
capacitor
port
central conductor
nonreciprocal
Prior art date
Application number
PCT/JP2017/008125
Other languages
French (fr)
Japanese (ja)
Inventor
裕亮 楠本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2017150619A1 publication Critical patent/WO2017150619A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/38Circulators
    • H01P1/383Junction circulators, e.g. Y-circulators

Definitions

  • the present invention allows a high-frequency signal input to a first port connected to a transmission-side circuit to pass through a third port connected to an antenna-side circuit, and causes the high-frequency signal input to the third port to pass through a reception-side circuit.
  • the present invention relates to a non-reciprocal circuit device that is passed to a second port connected to the.
  • Non-reciprocal circuit elements such as isolators and circulators have a characteristic of allowing signals to pass only in a predetermined specific direction and not substantially passing in the reverse direction.
  • an irreversible circuit element a configuration using the irreversibility of ferrite is known (for example, see Patent Document 1).
  • the Tx passing characteristic from the first port connected to the transmission side circuit to the third port connected to the antenna side circuit, and the third port In order to adjust the balance with the Rx pass characteristic from the first to the second port connected to the receiving side circuit, for example, the line width and line length of the central conductor (inner conductor) arranged in the ferrite, Design parameters need to be adjusted. However, if an attempt is made to adjust the design parameters inside the core part such as the core circulator, the center electrode formed by printing or the like on the ferrite is changed, which involves a significant design change. For this reason, there is a problem that it takes much time and effort to adjust the balance between the Tx passage characteristic from the first port to the third port and the Rx passage characteristic from the third port to the second port.
  • the present invention adjusts the balance between the Tx pass characteristic from the first port to the third port and the Rx pass characteristic from the third port to the second port without changing the design inside the core unit. It is an object of the present invention to provide a nonreciprocal circuit element that can be used, and a front-end circuit and a communication device having the nonreciprocal circuit element.
  • a nonreciprocal circuit device transmits a high-frequency signal input to a first port connected to a transmission-side circuit to a third port connected to an antenna-side circuit.
  • a non-reciprocal circuit element that passes and passes a high-frequency signal input to the third port to a second port connected to a receiving side circuit, and a DC magnetic field is applied by the permanent magnet and the permanent magnet.
  • the ferrite and the ferrite are each arranged in an insulated state so as to cross each other, one end of the first central conductor connected to the first port, and one end connected to the second port A core portion having two center conductors and a third center conductor having one end connected to the third port; and a frequency band used for the nonreciprocal circuit device disposed outside the core portion.
  • a regulating circuit for adjusting the balance between the passing characteristic from said third port and pass characteristic to the third port to the second port from.
  • the adjustment circuit can adjust the superiority of the Tx pass characteristic from the first port to the third port and the Rx pass characteristic from the third port to the second port.
  • the adjustment circuit that adjusts the balance between the Tx pass characteristic and the Rx pass characteristic is provided outside the core part, so that it is easy to change the design inside the core part.
  • the balance between the Tx pass characteristic and the Rx pass characteristic can be changed.
  • the adjustment circuit connects the other end of the first central conductor and the ground potential, and connects the other end of the second central conductor to the ground potential. You may decide to have at least one among the shunt connection type 2nd elements.
  • the adjustment circuit includes a first element that connects the other end of the first center conductor and the ground potential, and a second element that connects the other end of the second center conductor and the ground potential.
  • the first element includes a first capacitor
  • the second element includes a second capacitor, and the other end of the first center conductor and the other end of the third center conductor; At least one of a first inductor that connects the second inductor and a second inductor that connects the other end of the third central conductor and the other end of the second central conductor.
  • the adjustment circuit since the adjustment circuit has the first capacitor as the first element, the first center conductor and the first capacitor form a shunt-connected LC series resonance circuit. Therefore, by providing the first capacitor such that the LC series resonance circuit resonates in the vicinity of the use frequency band of the nonreciprocal circuit element, the first center conductor behaves as follows. That is, when a high-frequency signal is input from the first port, the first center conductor resonates by an LC series resonance circuit formed by the first capacitor in addition to resonance due to magnetic coupling with the second center conductor. . That is, by providing the first capacitor, it is possible to cause the first center conductor to resonate. At this time, if the first inductor is provided, a potential difference is generated between the other end of the first center conductor and the other end of the third center conductor. The pass characteristic can be widened.
  • the path to the ground potential on the first center conductor side is shortened, and unnecessary inductance components can be reduced. For this reason, the Tx pass characteristic can be widened.
  • the second capacitor and the second inductor can also widen the Rx pass characteristic by a mechanism similar to that of the first capacitor and the first inductor.
  • the adjustment circuit may include only the first capacitor of the first capacitor and the second capacitor.
  • the adjustment circuit may include only the second capacitor of the first capacitor and the second capacitor.
  • the adjustment circuit may include both the first capacitor and the second capacitor, and the first capacitor may have a larger capacitance value than the second capacitor.
  • the adjustment circuit may include both the first capacitor and the second capacitor, and the second capacitor may have a larger capacitance value than the first capacitor.
  • the adjustment circuit may include both the first capacitor and the second capacitor, and the first capacitor and the second capacitor may have substantially the same capacitance value.
  • the adjustment circuit may include both the first inductor and the second inductor.
  • the adjustment circuit includes both the first inductor and the second inductor, the balance between the Tx pass characteristic and the Rx pass characteristic can be easily changed only by changing the constants of the first capacitor and the second capacitor. Can do.
  • the nonreciprocal circuit element includes a circuit board on which the core unit is mounted and the adjustment circuit is provided, and at least one of the first inductor and the second inductor is provided on the circuit board.
  • the first center conductor, the second center conductor, and the third center conductor may be configured by a conductor that connects the other ends of the first center conductor, the second center conductor, and the third center conductor.
  • the number of parts can be reduced.
  • the adjustment circuit further includes a first matching capacitor that connects one end of each of the first center conductor, the second center conductor, and the third center conductor to a ground potential, and the first matching conductor. Second matching connected in series between the port and the first central conductor, between the second port and the second central conductor, and between the third port and the third central conductor, respectively. You may decide to have a capacitor.
  • the adjustment circuit since the adjustment circuit includes the first matching capacitor, the pass characteristic can be widened in the use frequency band of the nonreciprocal circuit element by appropriately selecting the capacitance value of the first matching capacitor. .
  • the adjustment circuit since the adjustment circuit includes the second matching capacitor, the impedance of the first to third ports can be easily adjusted by appropriately selecting the capacitance value of the second matching capacitor. For this reason, loss can be improved (deterioration of insertion loss is reduced).
  • the nonreciprocal circuit element includes a circuit board on which the core unit is mounted and the adjustment circuit is provided, and the circuit board includes a chip that constitutes each of the first element and the second element.
  • a surface electrode for mounting a component may be provided.
  • the circuit board is provided with the surface electrodes for mounting the chip components constituting each of the first element and the second element. Accordingly, the first element and the second element are appropriately mounted according to the required specifications using the common core portion and the circuit board, and thereby the nonreciprocal circuit element having a balance of pass characteristics according to the specifications. Can be realized. In other words, the width of the development (reuse) of the core portion is widened, and the cost can be reduced.
  • a front-end circuit includes a nonreciprocal circuit element, a transmission-side circuit connected to the first port, and a reception connected to the second port. A side circuit and an antenna terminal connected to the third port.
  • a desired pass characteristic can be realized by providing the nonreciprocal circuit element having a balance between the Tx pass characteristic and the Rx pass characteristic according to the required specifications.
  • a switch circuit for selectively connecting the second port and the receiving circuit may be provided.
  • the transmission side circuit may include two or more stages of power amplifiers that amplify the high frequency transmission signal.
  • a communication device includes a signal processing circuit that processes a high-frequency signal and a front-end circuit.
  • communication quality can be improved by providing the nonreciprocal circuit element having a balance between the Tx pass characteristic and the Rx pass characteristic according to the required specifications.
  • the Tx pass characteristic from the first port connected to the transmission side circuit to the third port connected to the antenna side circuit and the third port without changing the design inside the core unit the balance with the Rx pass characteristic to the second port connected to the receiving side circuit can be easily adjusted.
  • FIG. 6A is a top view showing the configuration of the circulator of the third application example.
  • FIG. 6B is an equivalent circuit diagram of the circulator of the third application example.
  • FIG. 6C is a graph showing pass characteristics of the circulator of the third application example.
  • FIG. 7A is a functional block diagram of an aspect of a communication device according to a modification of the embodiment.
  • FIG. 7B is a functional block diagram of another aspect of the communication device according to the variation of the embodiment.
  • each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code
  • the nonreciprocal circuit element is an element that passes a high-frequency signal input to the first port to the third port and passes a high-frequency signal input to the third port to the second port. It is configured.
  • FIG. 1 is an exploded perspective view showing a configuration of a circulator 1 according to a basic form of an embodiment.
  • the circulator 1 is mounted on, for example, a base station of a mobile phone, passes a transmission signal from the transmission side circuit to the antenna, and passes a reception signal received by the antenna to the reception side circuit. That is, the circulator 1 has a characteristic that allows a signal to pass only in a predetermined specific direction and does not substantially pass the signal in the reverse direction.
  • the lid body 11 and the case body 12 are made of, for example, a magnetic member, and are integrally coupled in a state where the core portion 40 and the adjustment circuit 50 are accommodated, and function as an electromagnetic shield and a ground conductor.
  • the case body 12 is integrally molded with a resin member 13, and is provided with a first port Port1, a second port Port2, and a third port Port3.
  • the circulator 1 may not include the lid body 11, the case body 12, and the resin member 13. That is, the first port Port1, the second port Port2, and the third port Port3 may be, for example, front surface electrodes (lands) for connecting a motherboard provided on the back side of the circuit board 51.
  • the center conductor assembly 20 is mounted on a circuit board 51, and a ferrite 25 to which a DC magnetic field is applied by a permanent magnet 30, and a first center conductor 21 and a first center conductor 21 which are arranged to intersect with each other in an insulated state. It has two center conductors 22 and a third center conductor 23.
  • the ferrite 25 is a rectangular member having magnetism, and the first center conductor 21, the second center conductor 22, and the third center conductor 23 are wound, for example, by two turns.
  • the material of the ferrite 25 for example, ferrite containing iron oxide as a main component and containing at least one of zinc, nickel, and copper is used.
  • the first center conductor 21, the second center conductor 22, and the third center conductor 23 are so-called internal conductors (also referred to as center electrodes) of the circulator 1, and a thin film conductor, a thick film conductor, or It can be formed as a conductor foil.
  • each of the first center conductor 21, the second center conductor 22, and the third center conductor 23 is predetermined with an insulator layer (not shown) laminated on the upper and lower surfaces of the ferrite 25 interposed therebetween. It is arranged to intersect at an angle of.
  • the permanent magnet 30 is placed on the central conductor assembly 20 and applies a DC magnetic field to the central conductor assembly 20.
  • the mounting position of the permanent magnet 30 is not limited to the center conductor assembly 20, and may be on the side of the center conductor assembly 20, for example.
  • the adjustment circuit 50 is disposed outside the core unit 40, and in the use frequency band of the circulator 1 (hereinafter simply referred to as “use frequency band”), the pass characteristic from the first port Port1 to the third port Port3 (ie, Tx)
  • Tx the pass characteristic from the first port Port1 to the third port Port3
  • the Rx pass characteristic the pass characteristic from the third port Port3 to the second port Port2
  • the Tx pass characteristic and the Rx pass characteristic are in a trade-off relationship. For example, when the Tx pass characteristic is improved, the Rx pass characteristic is lowered, and when the Tx pass characteristic is lowered, the Rx pass characteristic is improved.
  • the adjustment circuit 50 is a circuit for adjusting the balance between the Tx pass characteristic and the Rx pass characteristic in such a trade-off relationship to a desired balance according to the required specifications.
  • FIG. 2 is a top view showing an arrangement layout of the adjustment circuit 50 in the basic form.
  • a layout of, for example, a motherboard on which the circulator 1 is mounted is also shown. The same applies to the following top views.
  • the circuit board 51 has an insulating substrate body and various conductors. These various conductors include pattern conductors (hatched portions in the drawing) provided along the main surface of the circuit board 51 and via conductors provided in a direction perpendicular to the main surface.
  • the circuit configuration of the circulator 1 is realized by connecting the core portion 40 and the chip component 52 with these various conductors. The circuit configuration of the circulator 1 will be described later.
  • the surface electrode 151 for mounting the capacitors C1 to C3, Cs1 to Cs3, Cg1, Cg2, and Cj provided as the chip component 52 and the wiring for realizing the circuit configuration of the circulator 1 are provided.
  • the wiring conductor 152 to be configured and the surface electrodes Core-P1, Core-P2, and Core-P3 for mounting the core portion 40 (particularly, the central conductor assembly 20) are included.
  • an epoxy resin is used as the material of the substrate body, and silver or copper is used as various conductors.
  • the various conductors may be plated with gold, for example.
  • the circulator 1 configured as described above constitutes the following circuit.
  • FIG. 3 is an equivalent circuit diagram of the circulator 1 according to the basic form of the present embodiment. In the figure, the correspondence between the circuit configuration and the core unit 40 and the adjustment circuit 50 is also conceptually shown.
  • the inductors L1 to L3 are constituted by conductors provided on the ferrite 25. Specifically, the inductor L1 is constituted by the first central conductor 21, the inductor L2 is constituted by the second central conductor 22, and the inductor L3 is constituted by the third central conductor 23.
  • the inductor L1 (that is, the first central conductor 21) has one end L1a connected to the first port Port1, and the inductor L2 (that is, the second central conductor 22) has one end L2a connected to the second port Port2.
  • the inductor L3 (that is, the third central conductor 23) has one end L3a connected to the third port Port3.
  • Capacitors C 1 to C 3, Cs 1 to Cs 3, Cg 1, Cg 2, and Cj are chip capacitors configured by the chip component 52. Note that each of the capacitors C1 to C3, Cs1 to Cs3, Cg1, Cg2, and Cj does not have to be constituted by the chip component 52. For example, the capacitors C1 to C3, Cs1 to Cs3, Cg1, Cg2, and Cj The parasitic capacitance of the pattern conductor may be used.
  • the capacitors C1 to C3 and the capacitors Cs1 to Cs3 are matching capacitors provided corresponding to the first port Port1 to the third port Port3.
  • the capacitor C1 and the capacitor Cs1 correspond to the first port Port1, and the capacitors C2 and Cs3
  • the capacitor Cs2 corresponds to the second port Port2, and the capacitor C3 and the capacitor Cs3 correspond to the third port Port3.
  • Capacitors C1 to C3 and capacitors Cs1 to Cs3 are provided in the same manner except for the corresponding ports (that is, connected central conductors). Therefore, capacitor C1 and capacitor Cs1 will be described below, and capacitors C2, C3 and capacitors Description of Cs2 and Cs3 is omitted.
  • the capacitor C1 is a first matching capacitor that connects between one end L1a of the inductor L1 (that is, the first central conductor 21) and the ground potential.
  • one end of the capacitor C1 is connected to a connection node between the inductor L1 and the capacitor Cs1, and the other end is connected to a ground terminal (not shown) via the capacitor Cg1.
  • the capacitor Cs1 is a second matching capacitor connected in series between the first port Port1 and the inductor L1.
  • the capacitor Cs1 has one end connected to the first port Port1 and the other end connected to the inductor L1 and the capacitor C1.
  • the capacitor C1 and the capacitor Cs1 respectively include a shunt connection type matching capacitor that connects the connection node between the first port Port1 and the inductor L1 and the ground potential, and the first port Port1 and the inductor L1. It is a series connection type matching capacitor connected in series.
  • the capacitor Cg1 is a shunt-connected first element provided between the other end L1b of the inductor L1 (that is, the first central conductor 21) and the ground potential. That is, the adjustment circuit 50 includes the first capacitor (capacitor Cg1) as the first element.
  • capacitor Cg1 has one end connected to inductor L1 and capacitor C1, and the other end connected to a ground terminal (not shown).
  • the capacitor Cg2 is a shunt-connected second element provided between the other end L2b of the inductor L2 (that is, the second central conductor 22) and the ground potential. That is, the adjustment circuit 50 includes the second capacitor (capacitor Cg2) as the second element.
  • capacitor Cg2 has one end connected to inductor L2 and capacitor C2, and the other end connected to a ground terminal (not shown).
  • capacitors Cg1 and Cg2 are elements for adjusting the balance between the Tx pass characteristic and the Rx pass characteristic to a desired balance. For this reason, the constants of the capacitors Cg1 and Cg2 are appropriately set in the range of 0.0 pF to 5.0 pF, for example, according to the specifications required for the circulator 1. For this reason, in order to develop the circulator 1 in various specifications while sharing the core portion 40 and the circuit board 51, it is preferable that the capacitors Cg1 and Cg2 are formed of chip components 52. That is, as shown in FIG. 2, the circuit board 51 is provided with surface electrodes 151a and 151b for mounting chip components that constitute each of the capacitor Cg1 (first element) and the capacitor Cg2 (second element). It is preferable.
  • the capacitor Cj is connected between the first port Port1 and the second port Port2, one end is connected to the first port Port1, and the other end is connected to the second port Port2.
  • the circulator 1 having the capacitor Cj is suitable for, for example, a front end circuit (high frequency front end circuit) that requires a reduction in insertion loss from the transmission side circuit to the antenna.
  • the circulator 1 may not have the capacitor Cj.
  • the inductors Ls1 and Ls2 are provided on the circuit board 51 and connect the other ends L1b to L3b of the inductors L1 to L3 (that is, the other ends of the first central conductors 21 to 23). Consists of conductors. That is, the inductors Ls1 and Ls2 are parasitic inductances due to the wiring conductor 152 and the via conductor (not shown) provided on the circuit board 51. Note that at least one of the inductance components of at least one of the inductors Ls1 and Ls2 may be configured by a chip component.
  • the inductor Ls1 is a first inductor that connects the other end L1b of the inductor L1 (ie, the first central conductor 21) and the other end L3b of the inductor L3 (ie, the third central conductor 23). Specifically, the inductor Ls1 has one end connected to the inductor L1 and the other end connected to the inductors L3 and Ls2.
  • the inductor Ls2 is a second inductor that connects the other end L3b of the inductor L3 (ie, the third central conductor 23) and the other end L2b of the inductor L2 (ie, the second central conductor 22). Specifically, one end of the inductor Ls2 is connected to the inductors L3 and Ls1, and the other end is connected to the inductor L2.
  • a high-frequency signal for example, a transmission signal
  • a high-frequency signal for example, a received signal
  • a high-frequency signal for example, a received signal
  • the adjustment circuit 50 can set the balance between the Tx pass characteristic and the Rx pass characteristic to any one of the following three states by appropriately setting the constants of the capacitors Cg1 and Cg2. .
  • the adjustment circuit 50 (i) has a balanced balance between the Tx pass characteristic and the Rx pass characteristic according to the constants of the capacitors Cg1 and Cg2, and (ii) the Tx pass characteristic is superior to the Rx pass characteristic. Any one of the three states of balance and (iii) a balance in which the Rx pass characteristic is superior to the Tx pass characteristic can be set.
  • “equivalent” not only means that they are completely matched, but also means that they are substantially matched. That is, “equivalent” includes an error of about several percent.
  • FIG. 4A is a top view showing the configuration of the circulator 1A of the first application example.
  • FIG. 4B is an equivalent circuit diagram of the circulator 1A of the first application example.
  • the circulator 1A shown in these drawings has the same configuration as the circulator 1 according to the basic form described above.
  • the adjustment circuit 50 includes both a capacitor Cg1 (first capacitor) and a capacitor Cg2 (second capacitor), and the capacitors Cg1 and Cg2 have substantially the same capacitance value.
  • substantially the same not only means that they are completely matched, but also means that they are included in a range of a numerical value width of, for example, 10% or less.
  • FIG. 4C is a graph showing pass characteristics of the circulator 1A of the first application example.
  • the figure shows the Tx pass characteristic (S31_TX to ANT in the figure) and the Rx pass characteristic (S23_ANT to RX in the figure), where the horizontal axis is frequency and the vertical axis is input.
  • the intensity ratio (insertion loss) of the output high frequency signal to the intensity of the high frequency signal is shown.
  • the range of the used frequency band of the circulator 1A is indicated by markers 1 and 2.
  • the capacitance values of the capacitors Cg1 and Cg2 here, both are 2.5 pF
  • the graphs of the pass characteristics are shown. The same applies to the graphs of the pass characteristics.
  • the Tx pass characteristic and the Rx pass characteristic can be equally balanced in the used frequency band.
  • FIG. 5A is a top view showing the configuration of the circulator 1B of the second application example.
  • FIG. 5B is an equivalent circuit diagram of the circulator 1B of the second application example.
  • the circulator 1B shown in these drawings is different from the circulator 1 according to the basic embodiment described above in that the capacitor Cg2 is not provided. That is, in this application example, the adjustment circuit 50 includes only the capacitor Cg1 among the capacitor Cg1 (first capacitor) and the capacitor Cg2 (second capacitor). Specifically, since the capacitor Cg2 is not provided, as shown in FIG. 5A, the surface electrode 151b becomes an electrode in which a chip component is not mounted.
  • FIG. 5C is a graph showing pass characteristics of the circulator 1B of the second application example.
  • the capacitance value of the capacitor Cg1 when this pass characteristic is obtained is 5.0 pF.
  • FIG. 6A is a top view showing the configuration of the circulator 1C of the third application example.
  • FIG. 6B is an equivalent circuit diagram of the circulator 1C of the third application example.
  • the circulator 1C shown in these drawings is different from the circulator 1 according to the basic form described above in that the capacitor Cg1 is not provided. That is, in this application example, the adjustment circuit 50 includes only the capacitor Cg2 among the capacitor Cg1 (first capacitor) and the capacitor Cg2 (second capacitor). Specifically, since the capacitor Cg1 is not provided, as shown in FIG. 6A, the surface electrode 151a becomes an electrode in which a chip component is not mounted.
  • FIG. 6C is a graph showing pass characteristics of the circulator 1C of the third application example.
  • the capacitance value of the capacitor Cg2 when this pass characteristic is obtained is 5.0 pF.
  • the adjustment circuit 50 causes the Tx pass characteristic from the first port Port1 to the third port Port3 and The superiority with the Rx passage characteristic to the second port Port2 can be adjusted.
  • the adjustment circuit 50 that adjusts the balance between the Tx pass characteristic and the Rx pass characteristic is provided outside the core part 40, thereby changing the design inside the core part 40. Even without this, the balance between the Tx pass characteristic and the Rx pass characteristic can be easily changed.
  • the adjustment circuit 50 connects the other end of the first central conductor 21 (end L1b of the inductor L1) and the ground potential (in this embodiment, At least one of the capacitor Cg1) and the second element (capacitor Cg2 in this embodiment) that connects the other end of the second central conductor (end L2b of the inductor L2) and the ground potential.
  • the balance between the Tx pass characteristic and the Rx pass characteristic can be easily changed without changing the design inside the core unit 40.
  • the first inductor (inductor Ls1) is provided, a potential difference is generated between the other end of the first center conductor 21 and the other end of the third center conductor 23.
  • the Tx pass characteristic can be broadened by the double resonance of the conductor 21.
  • the path to the ground potential on the first center conductor 21 side is shortened, and unnecessary inductance components can be reduced. For this reason, the Tx pass characteristic can be widened.
  • the second capacitor (capacitor Cg2) and the second inductor (inductor Ls2) can also have a wide band of Rx pass characteristics by the same mechanism as the first capacitor and the first inductor.
  • the adjustment circuit 50 includes both the first capacitor and the second capacitor, and the first capacitor and the second capacitor have substantially the same capacitance value.
  • the circulator 1A of the first application example can balance the Tx pass characteristic and the Rx pass characteristic in the use frequency band.
  • the adjustment circuit 50 includes only the first capacitor among the first capacitor and the second capacitor. Therefore, the circulator 1B of the second application example can balance the Tx pass characteristic over the Rx pass characteristic in the used frequency band.
  • the adjustment circuit 50 includes only the second capacitor among the first capacitor and the second capacitor.
  • the circulator 1C of the third application example can balance the Rx pass characteristic over the Tx pass characteristic in the used frequency band.
  • the adjustment circuit 50 includes both the first inductor (inductor Ls1) and the second inductor (inductor Ls2), so that only the constants of the first capacitor and the second capacitor are changed.
  • the balance between the Tx pass characteristic and the Rx pass characteristic can be easily changed.
  • At least one of the first inductor and the second inductor (both in the present embodiment) is a conductor provided on the circuit board 51 (that is, the wiring conductor 152 and the via conductor (not shown). )), The number of parts can be reduced.
  • the adjustment circuit 50 includes the first matching capacitors (capacitors C1 to C3), so that the adjustment circuit 50 can pass in the use frequency band by appropriately selecting the capacitance value of the first matching capacitors.
  • the characteristics can be broadened.
  • the adjustment circuit 50 includes the second matching capacitors (capacitors Cs1 to Cs3), the impedance of the first to third ports Port1 to Port3 can be easily selected by appropriately selecting the capacitance value of the second matching capacitors. Can be adjusted. For this reason, loss can be improved (deterioration of insertion loss is reduced).
  • the circuit board 51 is provided with the chip components 52 constituting each of the first element (capacitor Cg1 in the present embodiment) and the second element (capacitor Cg2 in the present embodiment).
  • Surface electrodes 151a and 151b for mounting are provided.
  • the present invention can be realized not only as the above-described non-reciprocal circuit element (circulator in the above description) but also as a front-end circuit and a communication device including such a non-reciprocal circuit element. Therefore, hereinafter, a communication apparatus including the above-described non-reciprocal circuit element (that is, a communication apparatus incorporating a front-end circuit including the non-reciprocal circuit element) will be described.
  • FIG. 7A and 7B are functional block diagrams of a communication apparatus according to a modification including the circulator described in the embodiment.
  • FIG. 7A is a functional block diagram of a communication device 2A including the circulator 1A of the first application example of the embodiment.
  • FIG. 7B is a functional block diagram of a communication device 2C including the circulator 1C of the third application example of the embodiment.
  • the communication device 2A is, for example, a mobile phone base station including a front end circuit 100A having a circulator 1A, an RFIC (Radio Frequency Integrated Circuit) 200, and an antenna element 300.
  • the communication device 2A may not include the antenna element 300.
  • the front end circuit 100A is provided at the front end of the communication device 2A and propagates a transmission signal or a reception signal between the RFIC 200 and the antenna element 300.
  • the front end circuit 100A further includes a transmission side circuit such as a PA (Power Amplifier) 202, a BPF (Band Pass Filter) 203, and an LNA (Low Noise Amplifier). 204 and other receiving side circuits.
  • the front end circuit 100A is provided with a transmission terminal Ptx to which a transmission signal is input, an antenna terminal Pant to which the transmission signal is output and a reception signal is input, and a reception terminal Prx that outputs the reception signal.
  • the front end circuit 100A may not include the BPF 203, and may include a matching circuit other than the above, a transmission or reception filter, or the like.
  • the first port Port1 is connected to the transmission side circuit (here, PA202), the second port Port2 is connected to the reception side circuit (here, LNA204), and the third port Port3 is connected to the antenna terminal Pant.
  • the first port Port 1 is connected to the transmission terminal Ptx via the PA 202
  • the second port Port 2 is connected to the reception terminal Prx via the LNA 204
  • the third port Port 3 is connected to the antenna terminal Pant via the BPF 203. It is connected.
  • PA 202 is, for example, a power amplification module that amplifies a transmission signal (high-frequency transmission signal) input from the transmission terminal (TX in the drawing) of the RFIC 200 to the transmission terminal Ptx of the front-end circuit 100A.
  • the BPF 203 passes the transmission signal output from the circulator 1A after filtering it in a predetermined use frequency band. Further, the BPF 203 passes the received signal input from the antenna terminal Pant after filtering in the use frequency band.
  • the LNA 204 is, for example, a low noise amplification module that amplifies the reception signal (high frequency reception signal) output from the circulator 1A.
  • Such a front-end circuit 100A amplifies and filters the transmission signal input to the transmission terminal Ptx and outputs it from the antenna terminal Pant, and filters and amplifies the reception signal input to the antenna terminal Pant from the reception terminal Prx. Output.
  • the transmission signal passes through the Tx path of the circulator 1A, and the reception signal passes through the Rx path of the circulator 1A.
  • the RFIC 200 is a circuit that is connected to the transmission terminal Ptx and the reception terminal Prx of the front end circuit 100A and performs signal processing on the transmission signal or the reception signal. For example, the RFIC 200 up-converts a transmission signal input from a baseband signal processing circuit (not shown) and outputs it from a transmission terminal (TX in the figure), and inputs it from the front end circuit 100A to a reception terminal (RX in the figure). The received signal is down-converted and output to the baseband signal processing circuit.
  • the antenna element 300 is connected to the antenna terminal Pant of the front end circuit 100A, transmits a transmission signal, and receives a reception signal.
  • the shape and the like of the antenna element 300 are not particularly limited, and may be appropriately designed according to the use frequency band of the communication device 2A.
  • the communication device 2A in order to improve communication quality, for example, with respect to the circulator, for example, the transmission path path characteristics (that is, Tx path characteristics) and the reception path paths (that is, Rx). It is required to have an equivalent balance with the transmission characteristics. Therefore, the communication device 2A can improve communication quality by using the circulator 1A of the first application example described above as the circulator.
  • the switch 205 is a switch circuit that selectively connects the second port Port2 of the circulator 1C and the reception side circuit (here, the LNA 204). Specifically, the switch 205 has a common terminal connected to the circulator 1 ⁇ / b> C and two selection terminals connected to the LNA 204 or the termination resistor 206. For example, according to a control signal from the RFIC 200, the switch 205 connects a common terminal to a selection terminal connected to the termination resistor 206 at the time of transmission and to a selection terminal connected to the LNA 204 at the time of reception.
  • the switch 205 is not limited to the 1-input 2-output type.
  • the terminating resistor 206 is a shunt-connected resistor having one end connected to the selection terminal of the switch 205 and the other end connected to the ground potential, for example, having a resistance value of 50 ⁇ .
  • the switch 205 is provided as compared with the front-end circuit 100A, so that the transmission signal to the reception-side circuit (here, the LNA 204) can be suppressed. . Therefore, communication quality can be improved.
  • the passing characteristic from the antenna terminal Pant to the receiving terminal Prx may be slightly deteriorated. Therefore, the level of the reception signal output from the reception terminal Prx may be reduced.
  • the communication device 2C in order to improve communication quality, for example, it is required for the circulator to balance the Rx pass characteristic over the Tx pass characteristic. Therefore, the communication device 2C can improve the communication quality by suppressing the decrease in the level of the reception signal output from the reception terminal Prx by using the circulator 1C of the third application example described above as the circulator. That is, it is possible to suppress the deterioration of the passing characteristics from the antenna terminal Pant to the reception terminal Prx of the front end circuit 100C.
  • communication quality can be improved by providing the circulators 1A and 1C having a balance of pass characteristics according to required specifications.
  • circulator 1B may be provided instead of circulator 1A. According to such a configuration, the level of the transmission signal output from the antenna terminal Pant can be increased, which is particularly suitable for a mobile phone base station or the like.
  • the circulator having such an adjustment circuit 50 has a lower balance adjustment range than the circulator 1B of the second application example. However, like the circulator 1B, the circulator has a Tx pass characteristic higher than the Rx pass characteristic in the operating frequency band. An excellent balance can be achieved. Specifically, the circulator having such an adjustment circuit 50 has a Tx pass characteristic which is better than that of the first application example and deteriorated from the second application example, and an Rx pass characteristic which deteriorates from that of the first application example. It is better than the application example.
  • the adjustment circuit 50 includes both the first capacitor (capacitor Cg1) and the second capacitor (capacitor Cg2), and the second capacitor may have a larger capacitance value than the first capacitor.
  • the circulator having such an adjustment circuit 50 is inferior in the balance adjustment range as compared with the circulator 1C of the third application example, as in the circulator 1C, the Rx pass characteristic is higher than the Tx pass characteristic in the used frequency band. An excellent balance can be achieved.
  • the circulator having such an adjustment circuit 50 has a Tx pass characteristic that is worse than that of the first application example and is better than that of the third application example, and an Rx pass characteristic that is better than that of the first application example and third. Deteriorated from application examples.
  • the capacitor Cg1 is described as an example of the shunt connection type first element that connects the other end portion (end portion L1b) of the first central conductor 21 and the ground potential.
  • the capacitor Cg2 has been described as an example of the second element of the shunt connection type that connects the other end portion (end portion L2b) of the second central conductor 22 and the ground potential.
  • at least one of the first element and the second element may not be a capacitor.
  • the adjustment circuit 50 has both the first inductor (inductor Ls1) and the second inductor (inductor Ls2).
  • the adjustment circuit 50 may not have the second inductor when the capacitor Cg1 is included.
  • the adjustment circuit 50 does not have to include the first inductor when the capacitor Cg2 is provided. Even in such a configuration, the adjustment circuit 50 has the same mechanism as that of the configuration without the capacitor Cg1 and the second inductor. , Rx pass characteristics can be widened.
  • the adjustment circuit 50 has the first matching capacitors (capacitors C1 to C3) and the second matching capacitors (capacitors Cs1 to Cs3). However, the adjustment circuit 50 does not have at least a part of these. It doesn't matter.
  • the capacitor C1 is connected to the ground potential via the capacitor Cg1
  • the capacitor C2 is connected to the ground potential via the capacitor Cg2.
  • the capacitors C1 and C2 are directly connected to the ground potential. It does not matter.
  • nonreciprocal circuit element (circulator) is described as an example of the nonreciprocal circuit element.
  • the nonreciprocal circuit element may have a plurality of ports of four or more ports.
  • the ground potential may be a circuit ground potential (reference potential) of the non-reciprocal circuit element, and may be 0 V, a ground ground potential (that is, a ground reference potential), or a potential different from the frame ground.
  • the present invention can be widely used in communication devices such as mobile phone base stations as a circulator disposed in the front end of the communication device.

Abstract

This irreversible circuit element is provided with: a core section (40) having a permanent magnet (30), ferrite (25), and a first central conductor (21) having one end that is connected to a first port (Port1), a second central conductor (22) having one end that is connected to a second port (Port2), and a third central conductor (23) having one end that is connected to a third port (Port3), each being arranged so as to intersect one another in an insulated state in the ferrite (25); and an adjustment circuit (50) that is arranged on the exterior of the core section (40) and adjusts the balance between the pass characteristic from the first port (Port1) to the third port (Port3) and the pass characteristic from the third port (Port3) to the second port (Port2) in a usage frequency band.

Description

非可逆回路素子、フロントエンド回路及び通信装置Non-reciprocal circuit element, front-end circuit and communication device
 本発明は、送信側回路に接続される第1ポートに入力された高周波信号を、アンテナ側回路に接続される第3ポートへ通過させ、第3ポートに入力された高周波信号を、受信側回路に接続される第2ポートへ通過させる非可逆回路素子等に関する。 The present invention allows a high-frequency signal input to a first port connected to a transmission-side circuit to pass through a third port connected to an antenna-side circuit, and causes the high-frequency signal input to the third port to pass through a reception-side circuit. The present invention relates to a non-reciprocal circuit device that is passed to a second port connected to the.
 アイソレータやサーキュレータ等の非可逆回路素子は、予め定められた特定方向にのみ信号を通過させ、逆方向には実質的に通過させない特性を有している。このような非可逆回路素子として、フェライトの非可逆性を用いた構成が知られている(例えば、特許文献1参照)。 Non-reciprocal circuit elements such as isolators and circulators have a characteristic of allowing signals to pass only in a predetermined specific direction and not substantially passing in the reverse direction. As such an irreversible circuit element, a configuration using the irreversibility of ferrite is known (for example, see Patent Document 1).
 この構成によれば、印刷等によりフェライトに設けられた各中心導体の端部は、互いに接続されるとともに直列に接続されたインダクタンス素子と容量素子とを介してグランド電位に接続されている。このようなインダクタンス素子及び容量素子を設けることにより、この非可逆回路素子では通過帯域の広帯域化が図られている。 According to this configuration, the end portions of the central conductors provided on the ferrite by printing or the like are connected to the ground potential via the inductance element and the capacitance element that are connected to each other and connected in series. By providing such an inductance element and a capacitance element, the nonreciprocal circuit element is designed to widen the pass band.
国際公開第2013/168771号International Publication No. 2013/168771
 このような非可逆回路素子では、非可逆回路素子の使用周波数帯域において、送信側回路に接続される第1ポートからアンテナ側回路に接続される第3ポートへのTx通過特性と、第3ポートから受信側回路に接続される第2ポートへのRx通過特性とのバランスを調整するために、例えば、フェライトに配置される中心導体(内部導体)の線幅や線路長等、コア部内部の設計パラメータを調整する必要がある。しかしながら、コアサーキュレータ等のコア部内部の設計パラメータを調整しようとすると、フェライトに印刷等で形成された中心電極を変更することになるため、大幅な設計変更を伴う。このため、第1ポートから第3ポートへのTx通過特性と、第3ポートから第2ポートへのRx通過特性とのバランスを調整するために非常に手間がかかるという問題がある。 In such a nonreciprocal circuit element, in the use frequency band of the nonreciprocal circuit element, the Tx passing characteristic from the first port connected to the transmission side circuit to the third port connected to the antenna side circuit, and the third port In order to adjust the balance with the Rx pass characteristic from the first to the second port connected to the receiving side circuit, for example, the line width and line length of the central conductor (inner conductor) arranged in the ferrite, Design parameters need to be adjusted. However, if an attempt is made to adjust the design parameters inside the core part such as the core circulator, the center electrode formed by printing or the like on the ferrite is changed, which involves a significant design change. For this reason, there is a problem that it takes much time and effort to adjust the balance between the Tx passage characteristic from the first port to the third port and the Rx passage characteristic from the third port to the second port.
 そこで、本発明は、コア部内部の設計変更を行わなくても、第1ポートから第3ポートへのTx通過特性と、第3ポートから第2ポートへのRx通過特性とのバランスを調整することができる非可逆回路素子、ならびに、これを有するフロントエンド回路及び通信装置を提供することを目的とする。 Therefore, the present invention adjusts the balance between the Tx pass characteristic from the first port to the third port and the Rx pass characteristic from the third port to the second port without changing the design inside the core unit. It is an object of the present invention to provide a nonreciprocal circuit element that can be used, and a front-end circuit and a communication device having the nonreciprocal circuit element.
 上記目的を達成するために、本発明の一態様に係る非可逆回路素子は、送信側回路に接続される第1ポートに入力された高周波信号を、アンテナ側回路に接続される第3ポートへ通過させ、前記第3ポートに入力された高周波信号を、受信側回路に接続される第2ポートへ通過させる非可逆回路素子であって、永久磁石と、前記永久磁石により直流磁界が印加されるフェライトと、前記フェライトに各々が絶縁状態で互いに交差して配置され、一方の端部が前記第1ポートに接続された第1中心導体、一方の端部が前記第2ポートに接続された第2中心導体、及び、一方の端部が前記第3ポートに接続された第3中心導体と、を有する、コア部と、前記コア部の外部に配置され、前記非可逆回路素子の使用周波数帯域において、前記第1ポートから前記第3ポートへの通過特性と前記第3ポートから前記第2ポートへの通過特性とのバランスを調整する調整回路と、を備える。 To achieve the above object, a nonreciprocal circuit device according to an aspect of the present invention transmits a high-frequency signal input to a first port connected to a transmission-side circuit to a third port connected to an antenna-side circuit. A non-reciprocal circuit element that passes and passes a high-frequency signal input to the third port to a second port connected to a receiving side circuit, and a DC magnetic field is applied by the permanent magnet and the permanent magnet. The ferrite and the ferrite are each arranged in an insulated state so as to cross each other, one end of the first central conductor connected to the first port, and one end connected to the second port A core portion having two center conductors and a third center conductor having one end connected to the third port; and a frequency band used for the nonreciprocal circuit device disposed outside the core portion. In the first port And a regulating circuit for adjusting the balance between the passing characteristic from said third port and pass characteristic to the third port to the second port from.
 このように、調整回路によって、第1ポートから第3ポートへのTx通過特性と第3ポートから第2ポートへのRx通過特性との優位性を調整することができる。具体的には、本態様によれば、Tx通過特性とRx通過特性とのバランスを調整する調整回路が、コア部外部に設けられることにより、コア部内部の設計変更をしなくても、容易に、Tx通過特性とRx通過特性のバランスを変えることができる。 As described above, the adjustment circuit can adjust the superiority of the Tx pass characteristic from the first port to the third port and the Rx pass characteristic from the third port to the second port. Specifically, according to this aspect, the adjustment circuit that adjusts the balance between the Tx pass characteristic and the Rx pass characteristic is provided outside the core part, so that it is easy to change the design inside the core part. In addition, the balance between the Tx pass characteristic and the Rx pass characteristic can be changed.
 また、前記調整回路は、前記第1中心導体の他方の端部とグランド電位とを接続するシャント接続型の第1素子、及び、前記第2中心導体の他方の端部とグランド電位とを接続するシャント接続型の第2素子のうち少なくとも一方を有することにしてもよい。 The adjustment circuit connects the other end of the first central conductor and the ground potential, and connects the other end of the second central conductor to the ground potential. You may decide to have at least one among the shunt connection type 2nd elements.
 このように、調整回路が、第1中心導体の他方の端部とグランド電位とを接続する第1素子、及び、第2中心導体の他方の端部とグランド電位とを接続する第2素子のうち、少なくとも一方を有することにより、コア部内部の設計変更をしなくても、Tx通過特性とRx通過特性のバランスを変えることができる。 As described above, the adjustment circuit includes a first element that connects the other end of the first center conductor and the ground potential, and a second element that connects the other end of the second center conductor and the ground potential. By having at least one of them, the balance between the Tx pass characteristic and the Rx pass characteristic can be changed without changing the design inside the core part.
 また、前記第1素子は第1キャパシタを有し、前記第2素子は第2キャパシタを有し、さらに、前記第1中心導体の他方の端部と前記第3中心導体の他方の端部とを接続する第1インダクタ、及び、前記第3中心導体の他方の端部と前記第2中心導体の他方の端部とを接続する第2インダクタのうち少なくとも一方を有することにしてもよい。 The first element includes a first capacitor, the second element includes a second capacitor, and the other end of the first center conductor and the other end of the third center conductor; At least one of a first inductor that connects the second inductor and a second inductor that connects the other end of the third central conductor and the other end of the second central conductor.
 このように、調整回路が第1素子として第1キャパシタを有することにより、第1中心導体と第1キャパシタとがシャント接続型のLC直列共振回路を形成する。よって、LC直列共振回路が非可逆回路素子の使用周波数帯域近傍で共振するような第1キャパシタを設けることにより、第1中心導体は次のように振る舞う。すなわち、第1ポートから高周波信号が入力されると、第1中心導体は、第2中心導体との磁気結合による共振に加えて、第1キャパシタとで形成されるLC直列共振回路によっても共振する。つまり、第1キャパシタを設けることによって第1中心導体を複共振させることができる。このとき、第1インダクタが設けられていれば、第1中心導体の他方の端部と第3中心導体の他方の端部との間に電位差が生じるため、第1中心導体の複共振によってTx通過特性を広帯域化することができる。 Thus, since the adjustment circuit has the first capacitor as the first element, the first center conductor and the first capacitor form a shunt-connected LC series resonance circuit. Therefore, by providing the first capacitor such that the LC series resonance circuit resonates in the vicinity of the use frequency band of the nonreciprocal circuit element, the first center conductor behaves as follows. That is, when a high-frequency signal is input from the first port, the first center conductor resonates by an LC series resonance circuit formed by the first capacitor in addition to resonance due to magnetic coupling with the second center conductor. . That is, by providing the first capacitor, it is possible to cause the first center conductor to resonate. At this time, if the first inductor is provided, a potential difference is generated between the other end of the first center conductor and the other end of the third center conductor. The pass characteristic can be widened.
 言い換えると、第1キャパシタを設けることにより、第1中心導体側のグランド電位までの経路が短くなり不要なインダクタンス成分を低減することができる。このため、Tx通過特性を広帯域化することができる。 In other words, by providing the first capacitor, the path to the ground potential on the first center conductor side is shortened, and unnecessary inductance components can be reduced. For this reason, the Tx pass characteristic can be widened.
 なお、第2キャパシタ及び第2インダクタについても、第1キャパシタ及び第1インダクタと同様のメカニズムにより、Rx通過特性を広帯域化することができる。 Note that the second capacitor and the second inductor can also widen the Rx pass characteristic by a mechanism similar to that of the first capacitor and the first inductor.
 また、前記調整回路は、前記第1キャパシタ及び前記第2キャパシタのうち、前記第1キャパシタのみを有することにしてもよい。 The adjustment circuit may include only the first capacitor of the first capacitor and the second capacitor.
 これにより、非可逆回路素子の使用周波数帯域において、Tx通過特性を第Rx通過特性よりも優位なバランスにすることができる。 This makes it possible to balance the Tx pass characteristic over the Rx pass characteristic in the operating frequency band of the nonreciprocal circuit element.
 また、前記調整回路は、前記第1キャパシタ及び前記第2キャパシタのうち、前記第2キャパシタのみを有することにしてもよい。 The adjustment circuit may include only the second capacitor of the first capacitor and the second capacitor.
 これにより、非可逆回路素子の使用周波数帯域において、Rx通過特性をTx通過特性よりも優位なバランスにすることができる。 This makes it possible to balance the Rx pass characteristic over the Tx pass characteristic in the operating frequency band of the nonreciprocal circuit element.
 また、前記調整回路は、前記第1キャパシタ及び前記第2キャパシタの両方を有し、前記第1キャパシタは前記第2キャパシタよりも容量値が大きいことにしてもよい。 The adjustment circuit may include both the first capacitor and the second capacitor, and the first capacitor may have a larger capacitance value than the second capacitor.
 これにより、非可逆回路素子の使用周波数帯域において、Tx通過特性をRx通過特性よりも優位なバランスにすることができる。 This makes it possible to balance the Tx pass characteristic over the Rx pass characteristic in the operating frequency band of the nonreciprocal circuit element.
 また、前記調整回路は、前記第1キャパシタ及び前記第2キャパシタの両方を有し、前記第2キャパシタは前記第1キャパシタよりも容量値が大きいことにしてもよい。 The adjustment circuit may include both the first capacitor and the second capacitor, and the second capacitor may have a larger capacitance value than the first capacitor.
 これにより、非可逆回路素子の使用周波数帯域において、Rx通過特性をTx通過特性よりも優位なバランスにすることができる。 This makes it possible to balance the Rx pass characteristic over the Tx pass characteristic in the operating frequency band of the nonreciprocal circuit element.
 また、前記調整回路は、前記第1キャパシタ及び前記第2キャパシタの両方を有し、前記第1キャパシタと前記第2キャパシタとは、略同一の容量値を有することにしてもよい。 The adjustment circuit may include both the first capacitor and the second capacitor, and the first capacitor and the second capacitor may have substantially the same capacitance value.
 これにより、非可逆回路素子の使用周波数帯域において、Tx通過特性とRx通過特性とを同等のバランスにすることができる。 This makes it possible to balance the Tx pass characteristic and the Rx pass characteristic in the same frequency range in which the nonreciprocal circuit element is used.
 また、前記調整回路は、前記第1インダクタ及び前記第2インダクタの両方を有することにしてもよい。 Further, the adjustment circuit may include both the first inductor and the second inductor.
 このように、調整回路が第1インダクタ及び第2インダクタの両方を有することにより、第1キャパシタ及び第2キャパシタの定数を変えることのみで、Tx通過特性とRx通過特性のバランスを容易に変えることができる。 As described above, since the adjustment circuit includes both the first inductor and the second inductor, the balance between the Tx pass characteristic and the Rx pass characteristic can be easily changed only by changing the constants of the first capacitor and the second capacitor. Can do.
 また、前記非可逆回路素子は、前記コア部が搭載され、かつ、前記調整回路が設けられる回路基板を備え、前記第1インダクタ及び前記第2インダクタのうち前記少なくとも一方は、前記回路基板に設けられ、前記第1中心導体、前記第2中心導体及び前記第3中心導体の各々の他方の端部同士を接続する導体によって構成されることにしてもよい。 The nonreciprocal circuit element includes a circuit board on which the core unit is mounted and the adjustment circuit is provided, and at least one of the first inductor and the second inductor is provided on the circuit board. The first center conductor, the second center conductor, and the third center conductor may be configured by a conductor that connects the other ends of the first center conductor, the second center conductor, and the third center conductor.
 このように、第1インダクタ及び第2インダクタのうち少なくも一方が回路基板に設けられた導体によって構成されるため、部品点数を削減することができる。 Thus, since at least one of the first inductor and the second inductor is constituted by the conductor provided on the circuit board, the number of parts can be reduced.
 また、前記調整回路はさらに、前記第1中心導体、前記第2中心導体及び前記第3中心導体の各々の一方の端部とグランド電位とをそれぞれ接続する第1整合用キャパシタと、前記第1ポートと前記第1中心導体との間、前記第2ポートと前記第2中心導体との間、及び、前記第3ポートと前記第3中心導体との間でそれぞれ直列に接続された第2整合用キャパシタとを有することにしてもよい。 The adjustment circuit further includes a first matching capacitor that connects one end of each of the first center conductor, the second center conductor, and the third center conductor to a ground potential, and the first matching conductor. Second matching connected in series between the port and the first central conductor, between the second port and the second central conductor, and between the third port and the third central conductor, respectively. You may decide to have a capacitor.
 このように、調整回路が第1整合用キャパシタを有することにより、第1整合用キャパシタの容量値を適宜選択することによって、非可逆回路素子の使用周波数帯域において通過特性を広帯域化することができる。また、調整回路が第2整合用キャパシタを有することにより、第2整合用キャパシタの容量値を適宜選択することによって、第1~第3ポートのインピーダンスを容易に調整することができる。このため、ロスを改善(挿入損失の劣化を低減)することができる。 As described above, since the adjustment circuit includes the first matching capacitor, the pass characteristic can be widened in the use frequency band of the nonreciprocal circuit element by appropriately selecting the capacitance value of the first matching capacitor. . In addition, since the adjustment circuit includes the second matching capacitor, the impedance of the first to third ports can be easily adjusted by appropriately selecting the capacitance value of the second matching capacitor. For this reason, loss can be improved (deterioration of insertion loss is reduced).
 また、前記非可逆回路素子は、前記コア部が搭載され、かつ、前記調整回路が設けられる回路基板を備え、前記回路基板には、前記第1素子及び前記第2素子の各々を構成するチップ部品を実装するための表面電極が設けられていることにしてもよい。 The nonreciprocal circuit element includes a circuit board on which the core unit is mounted and the adjustment circuit is provided, and the circuit board includes a chip that constitutes each of the first element and the second element. A surface electrode for mounting a component may be provided.
 このように、回路基板には、第1素子及び第2素子の各々を構成するチップ部品を実装するための表面電極が設けられている。これにより、共通のコア部及び回路基板を用いて、要求される仕様に応じて第1素子及び第2素子を適宜実装することにより、当該仕様に応じた通過特性のバランスを有する非可逆回路素子を実現することができる。つまり、コア部の展開(使いまわし)の幅が広がり、コストダウンを図ることができる。 As described above, the circuit board is provided with the surface electrodes for mounting the chip components constituting each of the first element and the second element. Accordingly, the first element and the second element are appropriately mounted according to the required specifications using the common core portion and the circuit board, and thereby the nonreciprocal circuit element having a balance of pass characteristics according to the specifications. Can be realized. In other words, the width of the development (reuse) of the core portion is widened, and the cost can be reduced.
 また、本発明は上述した非可逆回路素子として実現できるだけでなく、非可逆回路素子を備えるフロントエンド回路としても実現できる。つまり、上記目的を達成するために、本発明の一態様に係るフロントエンド回路は、非可逆回路素子と、前記第1ポートに接続される送信側回路と、前記第2ポートに接続される受信側回路と、前記第3ポートに接続されるアンテナ端子と、を備える。 Further, the present invention can be realized not only as the above-described non-reciprocal circuit element but also as a front-end circuit including the non-reciprocal circuit element. In other words, in order to achieve the above object, a front-end circuit according to an aspect of the present invention includes a nonreciprocal circuit element, a transmission-side circuit connected to the first port, and a reception connected to the second port. A side circuit and an antenna terminal connected to the third port.
 このようなフロントエンド回路によれば、要求される仕様に応じたTx通過特性とRx通過特性のバランスを有する非可逆回路素子を備えることにより、所望の通過特性を実現することが可能となる。 According to such a front-end circuit, a desired pass characteristic can be realized by providing the nonreciprocal circuit element having a balance between the Tx pass characteristic and the Rx pass characteristic according to the required specifications.
 また、さらに、前記第2ポートと前記受信側回路とを選択的に接続するスイッチ回路を備えることにしてもよい。 Further, a switch circuit for selectively connecting the second port and the receiving circuit may be provided.
 これにより、送信時において、受信側回路への高周波信号の回り込みを抑制することができる。 Thereby, it is possible to suppress the wraparound of the high frequency signal to the receiving side circuit during transmission.
 また、前記送信側回路は、高周波送信信号を増幅する2段以上のパワーアンプを備えることにしてもよい。 Further, the transmission side circuit may include two or more stages of power amplifiers that amplify the high frequency transmission signal.
 これにより、Rx通過特性がTx通過特性よりも優位なバランスとなる非可逆回路素子を用いた場合であっても、高周波送信信号のレベルの低下を抑制して通信品質を維持することができる。 Thereby, even when a non-reciprocal circuit element in which the Rx pass characteristic has a superior balance to the Tx pass characteristic is used, it is possible to suppress the decrease in the level of the high-frequency transmission signal and maintain the communication quality.
 また、さらには、本発明は上述したフロントエンド回路としてだけでなく、フロントエンド回路を備える通信装置としても実現できる。つまり、上記目的を達成するために、本発明の一態様に係る通信装置は、高周波信号を処理する信号処理回路と、フロントエンド回路と、を備える。 Furthermore, the present invention can be realized not only as the above-described front end circuit but also as a communication device including the front end circuit. In other words, in order to achieve the above object, a communication device according to one embodiment of the present invention includes a signal processing circuit that processes a high-frequency signal and a front-end circuit.
 このような通信装置によれば、要求される仕様に応じたTx通過特性とRx通過特性のバランスを有する非可逆回路素子を備えることにより、通信品質の向上を図ることができる。 According to such a communication device, communication quality can be improved by providing the nonreciprocal circuit element having a balance between the Tx pass characteristic and the Rx pass characteristic according to the required specifications.
 本発明によれば、コア部内部の設計変更を行わなくても、送信側回路に接続される第1ポートからアンテナ側回路に接続される第3ポートへのTx通過特性と、第3ポートから受信側回路に接続される第2ポートへのRx通過特性とのバランスを、容易に調整することができる。 According to the present invention, the Tx pass characteristic from the first port connected to the transmission side circuit to the third port connected to the antenna side circuit and the third port without changing the design inside the core unit, The balance with the Rx pass characteristic to the second port connected to the receiving side circuit can be easily adjusted.
図1は、実施の形態の基本形態に係るサーキュレータの構成を示す分解斜視図である。FIG. 1 is an exploded perspective view showing a configuration of a circulator according to a basic form of an embodiment. 図2は、基本形態の調整回路の配置レイアウトを示す上面図である。FIG. 2 is a top view showing an arrangement layout of the adjustment circuit of the basic form. 図3は、基本形態に係るサーキュレータの等価回路図である。FIG. 3 is an equivalent circuit diagram of the circulator according to the basic form. 図4Aは、第1適用例のサーキュレータの構成を示す上面図である。FIG. 4A is a top view showing the configuration of the circulator of the first application example. 図4Bは、第1適用例のサーキュレータの等価回路図である。FIG. 4B is an equivalent circuit diagram of the circulator of the first application example. 図4Cは、第1適用例のサーキュレータの通過特性を示すグラフである。FIG. 4C is a graph showing pass characteristics of the circulator of the first application example. 図5Aは、第2適用例のサーキュレータの構成を示す上面図である。FIG. 5A is a top view showing the configuration of the circulator of the second application example. 図5Bは、第2適用例のサーキュレータの等価回路図である。FIG. 5B is an equivalent circuit diagram of the circulator of the second application example. 図5Cは、第2適用例のサーキュレータの通過特性を示すグラフである。FIG. 5C is a graph showing pass characteristics of the circulator of the second application example. 図6Aは、第3適用例のサーキュレータの構成を示す上面図である。FIG. 6A is a top view showing the configuration of the circulator of the third application example. 図6Bは、第3適用例のサーキュレータの等価回路図である。FIG. 6B is an equivalent circuit diagram of the circulator of the third application example. 図6Cは、第3適用例のサーキュレータの通過特性を示すグラフである。FIG. 6C is a graph showing pass characteristics of the circulator of the third application example. 図7Aは、実施の形態の変形例に係る通信装置の一態様の機能ブロック図である。FIG. 7A is a functional block diagram of an aspect of a communication device according to a modification of the embodiment. 図7Bは、実施の形態の変形例に係る通信装置の他の一態様の機能ブロック図である。FIG. 7B is a functional block diagram of another aspect of the communication device according to the variation of the embodiment.
 以下、図面を参照しながら、本発明の実施の形態に係る非可逆回路素子、フロントエンド回路及び通信装置について説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, a nonreciprocal circuit device, a front-end circuit, and a communication device according to an embodiment of the present invention will be described with reference to the drawings. Each of the embodiments described below shows a preferred specific example of the present invention. Numerical values, shapes, materials, constituent elements, arrangement positions and connection forms of constituent elements, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. In addition, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept are described as optional constituent elements.
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する場合がある。また、以下では、簡明のため、上面図にハッチングを施している場合がある。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected to the substantially same structure, The overlapping description may be abbreviate | omitted or simplified. In the following description, the top view may be hatched for simplicity.
 (実施の形態)
 非可逆回路素子は、第1ポートに入力された高周波信号を第3ポートへ通過させ、第3ポートに入力された高周波信号を第2ポートへ通過させる素子であり、本実施の形態ではサーキュレータとして構成されている。
(Embodiment)
The nonreciprocal circuit element is an element that passes a high-frequency signal input to the first port to the third port and passes a high-frequency signal input to the third port to the second port. It is configured.
 [基本形態]
 まず、本実施の形態に係るサーキュレータの基本形態について、説明する。
[Basic form]
First, the basic form of the circulator according to the present embodiment will be described.
 図1は、実施の形態の基本形態に係るサーキュレータ1の構成を示す分解斜視図である。 FIG. 1 is an exploded perspective view showing a configuration of a circulator 1 according to a basic form of an embodiment.
 サーキュレータ1は、例えば、携帯電話の基地局に搭載され、送信側回路からの送信信号をアンテナへと通過させ、アンテナで受信された受信信号を受信側回路へと通過させる。つまり、サーキュレータ1は、予め定められた特定方向にのみ信号を通過させ、逆方向には実質的に通過させない特性を有している。 The circulator 1 is mounted on, for example, a base station of a mobile phone, passes a transmission signal from the transmission side circuit to the antenna, and passes a reception signal received by the antenna to the reception side circuit. That is, the circulator 1 has a characteristic that allows a signal to pass only in a predetermined specific direction and does not substantially pass the signal in the reverse direction.
 図1に示すように、サーキュレータ1は、外部接続端子として、第1ポートPort1、第2ポートPort2及び第3ポートPort3を有し、第1ポートPort1から入力された高周波信号を第3ポートPort3へ通過させ、第3ポートPort3から入力された高周波信号を第2ポートPort2へ通過させる。本実施の形態では、第1ポートPort1は送信側回路(不図示)に接続されるTXポート(送信端子)であり、第2ポートPort2は受信側回路(不図示)に接続されるRXポート(受信端子)であり、第3ポートPort3はアンテナ側回路(不図示)に接続されるANTポート(アンテナ端子)である。 As shown in FIG. 1, the circulator 1 has a first port Port1, a second port Port2, and a third port Port3 as external connection terminals, and a high-frequency signal input from the first port Port1 is supplied to the third port Port3. The high-frequency signal input from the third port Port3 is passed to the second port Port2. In the present embodiment, the first port Port1 is a TX port (transmission terminal) connected to a transmission side circuit (not shown), and the second port Port2 is an RX port (not shown) connected to a reception side circuit (not shown). The third port Port3 is an ANT port (antenna terminal) connected to an antenna side circuit (not shown).
 サーキュレータ1は、具体的には、蓋体11と、ケース本体12と、中心導体組立体20及び永久磁石30によって構成されるコア部40と、回路基板51及びチップ部品52によって構成される調整回路50とを備える。 Specifically, the circulator 1 includes a lid 11, a case body 12, a core portion 40 constituted by the central conductor assembly 20 and the permanent magnet 30, an adjustment circuit constituted by a circuit board 51 and a chip component 52. 50.
 蓋体11とケース本体12とは、例えば、磁性を有する部材で構成され、コア部40と調整回路50とを収容した状態で一体的に結合され、電磁シールド及びグランド導体として機能する。ケース本体12には、樹脂部材13が一体的にモールドされているとともに、第1ポートPort1、第2ポートPort2及び第3ポートPort3が設けられている。なお、サーキュレータ1は、蓋体11、ケース本体12及び樹脂部材13を備えなくても構わない。つまり、第1ポートPort1、第2ポートPort2及び第3ポートPort3は、例えば、回路基板51の裏面側に設けられたマザーボード接続用の表面電極(ランド)であってもかまわない。 The lid body 11 and the case body 12 are made of, for example, a magnetic member, and are integrally coupled in a state where the core portion 40 and the adjustment circuit 50 are accommodated, and function as an electromagnetic shield and a ground conductor. The case body 12 is integrally molded with a resin member 13, and is provided with a first port Port1, a second port Port2, and a third port Port3. The circulator 1 may not include the lid body 11, the case body 12, and the resin member 13. That is, the first port Port1, the second port Port2, and the third port Port3 may be, for example, front surface electrodes (lands) for connecting a motherboard provided on the back side of the circuit board 51.
 中心導体組立体20は、回路基板51に実装され、永久磁石30により直流磁界が印加されるフェライト25と、フェライト25に各々が絶縁状態で互いに交差して配置された第1中心導体21、第2中心導体22及び第3中心導体23とを有する。 The center conductor assembly 20 is mounted on a circuit board 51, and a ferrite 25 to which a DC magnetic field is applied by a permanent magnet 30, and a first center conductor 21 and a first center conductor 21 which are arranged to intersect with each other in an insulated state. It has two center conductors 22 and a third center conductor 23.
 フェライト25は、磁性を有する矩形状の部材であり、第1中心導体21、第2中心導体22及び第3中心導体23が、例えば2ターンずつ巻回されている。このフェライト25の材料としては、例えば、酸化鉄を主成分とし、亜鉛、ニッケル及び銅のうち少なくとも1つ以上を含むフェライトが用いられる。 The ferrite 25 is a rectangular member having magnetism, and the first center conductor 21, the second center conductor 22, and the third center conductor 23 are wound, for example, by two turns. As the material of the ferrite 25, for example, ferrite containing iron oxide as a main component and containing at least one of zinc, nickel, and copper is used.
 第1中心導体21、第2中心導体22及び第3中心導体23は、サーキュレータ1のいわゆる内部導体(中心電極とも称される)であり、フェライト25の上に薄膜導体、厚膜導体、または、導体箔として形成することができる。具体的には、第1中心導体21、第2中心導体22及び第3中心導体23は、フェライト25の上下面に2層ずつ積層された絶縁体層(不図示)を介在させてそれぞれが所定の角度で交差するように配置されている。これら第1中心導体21、第2中心導体22及び第3中心導体23の材料としては、例えば、銀を主成分とする金属または合金が用いられる。 The first center conductor 21, the second center conductor 22, and the third center conductor 23 are so-called internal conductors (also referred to as center electrodes) of the circulator 1, and a thin film conductor, a thick film conductor, or It can be formed as a conductor foil. Specifically, each of the first center conductor 21, the second center conductor 22, and the third center conductor 23 is predetermined with an insulator layer (not shown) laminated on the upper and lower surfaces of the ferrite 25 interposed therebetween. It is arranged to intersect at an angle of. As a material of the first central conductor 21, the second central conductor 22, and the third central conductor 23, for example, a metal or alloy mainly containing silver is used.
 永久磁石30は、中心導体組立体20の上に載置され、中心導体組立体20に直流磁界を印加する。なお、永久磁石30の載置位置は、中心導体組立体20の上には限らず、例えば、中心導体組立体20の側方であってもかまわない。 The permanent magnet 30 is placed on the central conductor assembly 20 and applies a DC magnetic field to the central conductor assembly 20. The mounting position of the permanent magnet 30 is not limited to the center conductor assembly 20, and may be on the side of the center conductor assembly 20, for example.
 調整回路50は、コア部40の外部に配置され、サーキュレータ1の使用周波数帯域(以下、単に「使用周波数帯域」と記載)において、第1ポートPort1から第3ポートPort3への通過特性(すなわちTx通過特性)と第3ポートPort3から第2ポートPort2への通過特性(すなわちRx通過特性)とのバランスを調整する。具体的には、サーキュレータ1では、Tx通過特性とRxの通過特性とは、トレードオフの関係にある。例えば、Tx通過特性が向上するとRx通過特性が低下し、Tx通過特性が低下するとRx通過特性が向上する。調整回路50は、このようなトレードオフの関係にあるTx通過特性とRx通過特性とのバランスを、要求される仕様に応じた所望のバランスに調整するための回路である。 The adjustment circuit 50 is disposed outside the core unit 40, and in the use frequency band of the circulator 1 (hereinafter simply referred to as “use frequency band”), the pass characteristic from the first port Port1 to the third port Port3 (ie, Tx) The balance between the pass characteristic) and the pass characteristic from the third port Port3 to the second port Port2 (that is, the Rx pass characteristic) is adjusted. Specifically, in the circulator 1, the Tx pass characteristic and the Rx pass characteristic are in a trade-off relationship. For example, when the Tx pass characteristic is improved, the Rx pass characteristic is lowered, and when the Tx pass characteristic is lowered, the Rx pass characteristic is improved. The adjustment circuit 50 is a circuit for adjusting the balance between the Tx pass characteristic and the Rx pass characteristic in such a trade-off relationship to a desired balance according to the required specifications.
 具体的には、調整回路50は、使用周波数帯域における挿入損失を、第1ポートPort1から第3ポートPort3への伝搬経路であるTxパスと第3ポートPort3から第2ポートPort2への伝搬経路であるRxパスとの間で相対的に調整することにより、Tx通過特性とRx通過特性とのバランスを調整する。言い換えると、調整回路50は、挿入損失が所定値以下(例えば、0.8dB以下)となる挿入損失帯域幅(以下、通過帯域)を、TxパスとRxパスとの間で相対的に調整する。つまり、調整回路50は、Tx通過特性及びRx通過特性のうち一方の通過帯域を他方の通過帯域よりも広帯域化することにより、一方の通過特性を他方の通過特性よりも優位なバランスに調整する。 Specifically, the adjustment circuit 50 determines the insertion loss in the used frequency band in the propagation path from the first port Port1 to the third port Port3 and the propagation path from the third port Port3 to the second port Port2. The balance between the Tx pass characteristic and the Rx pass characteristic is adjusted by adjusting relative to a certain Rx path. In other words, the adjustment circuit 50 relatively adjusts the insertion loss bandwidth (hereinafter referred to as the passband) in which the insertion loss is equal to or less than a predetermined value (for example, 0.8 dB or less) between the Tx path and the Rx path. . That is, the adjustment circuit 50 adjusts one pass characteristic to a balance superior to the other pass characteristic by making one pass band of the Tx pass characteristic and the Rx pass characteristic wider than the other pass band. .
 ここで、調整回路50の具体的な配置レイアウトについて、図2を用いて説明する。 Here, a specific layout of the adjustment circuit 50 will be described with reference to FIG.
 図2は、基本形態の調整回路50の配置レイアウトを示す上面図である。なお、同図には、サーキュレータ1が実装される例えばマザーボードのレイアウトも併せて示されている。このことは、以降の上面図についても同様である。 FIG. 2 is a top view showing an arrangement layout of the adjustment circuit 50 in the basic form. In the figure, a layout of, for example, a motherboard on which the circulator 1 is mounted is also shown. The same applies to the following top views.
 回路基板51は、絶縁性を有する基板素体と、各種導体とを有する。この各種導体には、回路基板51の主面に沿って設けられたパターン導体(図中のハッチング部分)と、当該主面に垂直な方向に設けられたビア導体とが含まれる。この各種導体によって、コア部40とチップ部品52とが接続されることにより、サーキュレータ1の回路構成が実現される。なお、サーキュレータ1の回路構成については、後述する。 The circuit board 51 has an insulating substrate body and various conductors. These various conductors include pattern conductors (hatched portions in the drawing) provided along the main surface of the circuit board 51 and via conductors provided in a direction perpendicular to the main surface. The circuit configuration of the circulator 1 is realized by connecting the core portion 40 and the chip component 52 with these various conductors. The circuit configuration of the circulator 1 will be described later.
 上述のパターン導体には、チップ部品52として設けられたキャパシタC1~C3、Cs1~Cs3、Cg1、Cg2及びCjを実装するための表面電極151と、サーキュレータ1の回路構成を実現するための配線を構成する配線導体152と、コア部40(特には中心導体組立体20)を実装するための表面電極Core-P1、Core-P2及びCore-P3とが含まれる。 In the pattern conductor, the surface electrode 151 for mounting the capacitors C1 to C3, Cs1 to Cs3, Cg1, Cg2, and Cj provided as the chip component 52 and the wiring for realizing the circuit configuration of the circulator 1 are provided. The wiring conductor 152 to be configured and the surface electrodes Core-P1, Core-P2, and Core-P3 for mounting the core portion 40 (particularly, the central conductor assembly 20) are included.
 基板素体の材料としては、例えば、エポキシ系の樹脂が用いられ、各種導体としては銀または銅等が用いられる。なお、各種導体には、例えば、金めっき等が施されていてもかまわない。 For example, an epoxy resin is used as the material of the substrate body, and silver or copper is used as various conductors. The various conductors may be plated with gold, for example.
 以上のように構成されたサーキュレータ1は、次のような回路を構成する。 The circulator 1 configured as described above constitutes the following circuit.
 図3は、本実施の形態の基本形態に係るサーキュレータ1の等価回路図である。なお、同図では、回路構成とコア部40及び調整回路50との対応関係についても、概念的に示している。 FIG. 3 is an equivalent circuit diagram of the circulator 1 according to the basic form of the present embodiment. In the figure, the correspondence between the circuit configuration and the core unit 40 and the adjustment circuit 50 is also conceptually shown.
 同図に示すように、サーキュレータ1は、回路構成として、コア部40に設けられたインダクタL1~L3と、調整回路50に設けられたキャパシタC1~C3、Cs1~Cs3、Cg1、Cg2及びCjとインダクタLs1及びLs2とを含む。 As shown in the figure, the circulator 1 includes, as a circuit configuration, inductors L1 to L3 provided in the core unit 40, capacitors C1 to C3, Cs1 to Cs3, Cg1, Cg2, and Cj provided in the adjustment circuit 50. Inductors Ls1 and Ls2 are included.
 インダクタL1~L3は、フェライト25に設けられた導体によって構成される。具体的には、インダクタL1は第1中心導体21によって構成され、インダクタL2は第2中心導体22によって構成され、インダクタL3は第3中心導体23によって構成される。 The inductors L1 to L3 are constituted by conductors provided on the ferrite 25. Specifically, the inductor L1 is constituted by the first central conductor 21, the inductor L2 is constituted by the second central conductor 22, and the inductor L3 is constituted by the third central conductor 23.
 インダクタL1(すなわち第1中心導体21)は、一方の端部L1aが第1ポートPort1に接続され、インダクタL2(すなわち第2中心導体22)は、一方の端部L2aが第2ポートPort2に接続され、インダクタL3(すなわち第3中心導体23)は、一方の端部L3aが第3ポートPort3に接続されている。 The inductor L1 (that is, the first central conductor 21) has one end L1a connected to the first port Port1, and the inductor L2 (that is, the second central conductor 22) has one end L2a connected to the second port Port2. The inductor L3 (that is, the third central conductor 23) has one end L3a connected to the third port Port3.
 キャパシタC1~C3、Cs1~Cs3、Cg1、Cg2及びCjは、チップ部品52によって構成されたチップコンデンサである。なお、キャパシタC1~C3、Cs1~Cs3、Cg1、Cg2及びCjの各々は、チップ部品52によって構成されていなくてもよく、例えば、回路基板51に内蔵されていてもかまわないし、回路基板51のパターン導体の寄生容量であってもかまわない。 Capacitors C 1 to C 3, Cs 1 to Cs 3, Cg 1, Cg 2, and Cj are chip capacitors configured by the chip component 52. Note that each of the capacitors C1 to C3, Cs1 to Cs3, Cg1, Cg2, and Cj does not have to be constituted by the chip component 52. For example, the capacitors C1 to C3, Cs1 to Cs3, Cg1, Cg2, and Cj The parasitic capacitance of the pattern conductor may be used.
 キャパシタC1~C3及びキャパシタCs1~Cs3は、第1ポートPort1~第3ポートPort3に対応して設けられた整合用キャパシタであり、キャパシタC1及びキャパシタCs1は第1ポートPort1に対応し、キャパシタC2及びキャパシタCs2は第2ポートPort2に対応し、キャパシタC3及びキャパシタCs3は第3ポートPort3に対応する。なお、キャパシタC1~C3及びキャパシタCs1~Cs3は、対応するポート(すなわち接続される中心導体)を除いて同様に設けられるため、以下ではキャパシタC1及びキャパシタCs1について説明し、キャパシタC2、C3及びキャパシタCs2、Cs3については説明を省略する。 The capacitors C1 to C3 and the capacitors Cs1 to Cs3 are matching capacitors provided corresponding to the first port Port1 to the third port Port3. The capacitor C1 and the capacitor Cs1 correspond to the first port Port1, and the capacitors C2 and Cs3 The capacitor Cs2 corresponds to the second port Port2, and the capacitor C3 and the capacitor Cs3 correspond to the third port Port3. Capacitors C1 to C3 and capacitors Cs1 to Cs3 are provided in the same manner except for the corresponding ports (that is, connected central conductors). Therefore, capacitor C1 and capacitor Cs1 will be described below, and capacitors C2, C3 and capacitors Description of Cs2 and Cs3 is omitted.
 キャパシタC1は、インダクタL1(すなわち第1中心導体21)の一方の端部L1aとグランド電位との間を接続する第1整合用キャパシタである。本実施の形態では、キャパシタC1は、一端がインダクタL1とキャパシタCs1との接続ノードに接続され、他端がキャパシタCg1を介してグランド端子(不図示)に接続されている。 The capacitor C1 is a first matching capacitor that connects between one end L1a of the inductor L1 (that is, the first central conductor 21) and the ground potential. In the present embodiment, one end of the capacitor C1 is connected to a connection node between the inductor L1 and the capacitor Cs1, and the other end is connected to a ground terminal (not shown) via the capacitor Cg1.
 キャパシタCs1は、第1ポートPort1とインダクタL1との間で直列に接続された第2整合用キャパシタである。本実施の形態では、キャパシタCs1は、一端が第1ポートPort1に接続され、他端がインダクタL1及びキャパシタC1に接続されている。 The capacitor Cs1 is a second matching capacitor connected in series between the first port Port1 and the inductor L1. In the present embodiment, the capacitor Cs1 has one end connected to the first port Port1 and the other end connected to the inductor L1 and the capacitor C1.
 このように、キャパシタC1及びキャパシタCs1は、それぞれ、第1ポートPort1とインダクタL1との接続ノードとグランド電位とを接続するシャント接続型の整合用キャパシタ、及び、第1ポートPort1とインダクタL1との間で直列に接続されたシリーズ接続型の整合用キャパシタである。 As described above, the capacitor C1 and the capacitor Cs1 respectively include a shunt connection type matching capacitor that connects the connection node between the first port Port1 and the inductor L1 and the ground potential, and the first port Port1 and the inductor L1. It is a series connection type matching capacitor connected in series.
 キャパシタCg1は、インダクタL1(すなわち第1中心導体21)の他方の端部L1bとグランド電位との間に設けられたシャント接続型の第1素子である。つまり、調整回路50は、第1素子として、第1キャパシタ(キャパシタCg1)を有する。本実施の形態では、キャパシタCg1は、一端がインダクタL1及びキャパシタC1に接続され、他端がグランド端子(不図示)に接続されている。 The capacitor Cg1 is a shunt-connected first element provided between the other end L1b of the inductor L1 (that is, the first central conductor 21) and the ground potential. That is, the adjustment circuit 50 includes the first capacitor (capacitor Cg1) as the first element. In the present embodiment, capacitor Cg1 has one end connected to inductor L1 and capacitor C1, and the other end connected to a ground terminal (not shown).
 キャパシタCg2は、インダクタL2(すなわち第2中心導体22)の他方の端部L2bとグランド電位との間に設けられたシャント接続型の第2素子である。つまり、調整回路50は、第2素子として、第2キャパシタ(キャパシタCg2)を有する。本実施の形態では、キャパシタCg2は、一端がインダクタL2及びキャパシタC2に接続され、他端がグランド端子(不図示)に接続されている。 The capacitor Cg2 is a shunt-connected second element provided between the other end L2b of the inductor L2 (that is, the second central conductor 22) and the ground potential. That is, the adjustment circuit 50 includes the second capacitor (capacitor Cg2) as the second element. In the present embodiment, capacitor Cg2 has one end connected to inductor L2 and capacitor C2, and the other end connected to a ground terminal (not shown).
 これらキャパシタCg1及びCg2は、Tx通過特性とRx通過特性とのバランスを所望のバランスに調整するための素子である。このため、キャパシタCg1及びCg2の定数は、サーキュレータ1に要求される仕様に応じて、例えば0.0pF以上5.0pF以下の範囲で適宜設定される。このため、コア部40及び回路基板51を共通化しつつサーキュレータ1を各種仕様に展開するためには、キャパシタCg1及びCg2をチップ部品52で構成することが好ましい。つまり、図2に示すように、回路基板51には、キャパシタCg1(第1素子)及びキャパシタCg2(第2素子)の各々を構成するチップ部品を実装するための表面電極151a及び151bが設けられていることが好ましい。 These capacitors Cg1 and Cg2 are elements for adjusting the balance between the Tx pass characteristic and the Rx pass characteristic to a desired balance. For this reason, the constants of the capacitors Cg1 and Cg2 are appropriately set in the range of 0.0 pF to 5.0 pF, for example, according to the specifications required for the circulator 1. For this reason, in order to develop the circulator 1 in various specifications while sharing the core portion 40 and the circuit board 51, it is preferable that the capacitors Cg1 and Cg2 are formed of chip components 52. That is, as shown in FIG. 2, the circuit board 51 is provided with surface electrodes 151a and 151b for mounting chip components that constitute each of the capacitor Cg1 (first element) and the capacitor Cg2 (second element). It is preferable.
 キャパシタCjは、第1ポートPort1と第2ポートPort2との間に接続され、一端が第1ポートPort1に接続され、他端が第2ポートPort2に接続されている。このようなキャパシタCjを設けることにより、第1ポートPort1から第3ポートPort3への挿入損失を低減することができる。このため、キャパシタCjを有するサーキュレータ1は、例えば、送信側回路からアンテナへの挿入損失の低減が求められるフロントエンド回路(高周波フロントエンド回路)等に好適である。なお、サーキュレータ1はキャパシタCjを有していなくてもよい。 The capacitor Cj is connected between the first port Port1 and the second port Port2, one end is connected to the first port Port1, and the other end is connected to the second port Port2. By providing such a capacitor Cj, insertion loss from the first port Port1 to the third port Port3 can be reduced. For this reason, the circulator 1 having the capacitor Cj is suitable for, for example, a front end circuit (high frequency front end circuit) that requires a reduction in insertion loss from the transmission side circuit to the antenna. The circulator 1 may not have the capacitor Cj.
 インダクタLs1及びLs2は、本実施の形態では、回路基板51に設けられ、インダクタL1~L3の他方の端部L1b~L3b(すなわち第1中心導体21~23の他方の端部)同士を接続する導体によって構成される。つまり、インダクタLs1及びLs2は、回路基板51に設けられた配線導体152及びビア導体(不図示)による寄生インダクタンスである。なお、インダクタLs1及びLs2の少なくとも一方は、インダクタンス成分の少なくとも一部がチップ部品によって構成されていてもかまわない。 In the present embodiment, the inductors Ls1 and Ls2 are provided on the circuit board 51 and connect the other ends L1b to L3b of the inductors L1 to L3 (that is, the other ends of the first central conductors 21 to 23). Consists of conductors. That is, the inductors Ls1 and Ls2 are parasitic inductances due to the wiring conductor 152 and the via conductor (not shown) provided on the circuit board 51. Note that at least one of the inductance components of at least one of the inductors Ls1 and Ls2 may be configured by a chip component.
 インダクタLs1は、インダクタL1(すなわち第1中心導体21)の他方の端部L1bとインダクタL3(すなわち第3中心導体23)の他方の端部L3bとを接続する第1インダクタである。具体的には、インダクタLs1は、一端がインダクタL1に接続され、他端がインダクタL3及びLs2に接続されている。 The inductor Ls1 is a first inductor that connects the other end L1b of the inductor L1 (ie, the first central conductor 21) and the other end L3b of the inductor L3 (ie, the third central conductor 23). Specifically, the inductor Ls1 has one end connected to the inductor L1 and the other end connected to the inductors L3 and Ls2.
 インダクタLs2は、インダクタL3(すなわち第3中心導体23)の他方の端部L3bとインダクタL2(すなわち第2中心導体22)の他方の端部L2bとを接続する第2インダクタである。具体的には、インダクタLs2は、一端がインダクタL3及びLs1に接続され、他端がインダクタL2に接続されている。 The inductor Ls2 is a second inductor that connects the other end L3b of the inductor L3 (ie, the third central conductor 23) and the other end L2b of the inductor L2 (ie, the second central conductor 22). Specifically, one end of the inductor Ls2 is connected to the inductors L3 and Ls1, and the other end is connected to the inductor L2.
 以上のように構成されたサーキュレータ1では、第1ポートPort1に入力された高周波信号(例えば送信信号)は、第1中心導体21から磁気結合によって第3中心導体23へと伝搬し、第3ポートPort3から出力される。また、第3ポートPort3に入力された高周波信号(例えば受信信号)は、第3中心導体23から磁気結合によって第2中心導体22へと伝搬し、第2ポートPort2から出力される。 In the circulator 1 configured as described above, a high-frequency signal (for example, a transmission signal) input to the first port Port1 propagates from the first center conductor 21 to the third center conductor 23 by magnetic coupling, and the third port Output from Port3. A high-frequency signal (for example, a received signal) input to the third port Port3 propagates from the third center conductor 23 to the second center conductor 22 by magnetic coupling and is output from the second port Port2.
 このとき、調整回路50は、キャパシタCg1及びCg2の定数が適宜設定されることにより、Tx通過特性とRx通過特性とのバランスを次の3つの状態のうち任意の1つの状態にすることができる。具体的には、調整回路50は、キャパシタCg1及びCg2の定数に応じて、(i)Tx通過特性とRx通過特性とが同等のバランス、(ii)Tx通過特性がRx通過特性よりも優位なバランス、及び、(iii)Rx通過特性がTx通過特性よりも優位なバランス、の3つの状態のうち任意の1つの状態にすることができる。なお、同等とは、完全に一致することを意味するだけでなく、実質的に一致することも意味する。すなわち、「同等」とは、数%程度の誤差を含む。 At this time, the adjustment circuit 50 can set the balance between the Tx pass characteristic and the Rx pass characteristic to any one of the following three states by appropriately setting the constants of the capacitors Cg1 and Cg2. . Specifically, the adjustment circuit 50 (i) has a balanced balance between the Tx pass characteristic and the Rx pass characteristic according to the constants of the capacitors Cg1 and Cg2, and (ii) the Tx pass characteristic is superior to the Rx pass characteristic. Any one of the three states of balance and (iii) a balance in which the Rx pass characteristic is superior to the Tx pass characteristic can be set. Note that “equivalent” not only means that they are completely matched, but also means that they are substantially matched. That is, “equivalent” includes an error of about several percent.
 そこで、以下では、サーキュレータ1の適用例として、上記(i)~(iii)の3つのバランス各々を実現する構成について、説明する。 Therefore, hereinafter, as an application example of the circulator 1, a configuration for realizing each of the three balances (i) to (iii) will be described.
 [第1適用例]
 まず、第1適用例として、上述の(i)Tx通過特性とRx通過特性とが同等のバランスとなるサーキュレータ1Aについて、説明する。
[First application example]
First, as a first application example, a description will be given of a circulator 1A in which (i) the Tx pass characteristic and the Rx pass characteristic are in the same balance.
 図4Aは、第1適用例のサーキュレータ1Aの構成を示す上面図である。図4Bは、第1適用例のサーキュレータ1Aの等価回路図である。 FIG. 4A is a top view showing the configuration of the circulator 1A of the first application example. FIG. 4B is an equivalent circuit diagram of the circulator 1A of the first application example.
 これらの図に示すサーキュレータ1Aは、上述した基本形態に係るサーキュレータ1と同様の構成を有する。具体的には、本適用例では、調整回路50は、キャパシタCg1(第1キャパシタ)及びキャパシタCg2(第2キャパシタ)の両方を有し、キャパシタCg1とキャパシタCg2とは、略同一の容量値を有する。なお、略同一とは、完全に一致することを意味するだけでなく、例えば10%以下の数値幅の範囲に含まれることを意味する。 The circulator 1A shown in these drawings has the same configuration as the circulator 1 according to the basic form described above. Specifically, in this application example, the adjustment circuit 50 includes both a capacitor Cg1 (first capacitor) and a capacitor Cg2 (second capacitor), and the capacitors Cg1 and Cg2 have substantially the same capacitance value. Have. Note that “substantially the same” not only means that they are completely matched, but also means that they are included in a range of a numerical value width of, for example, 10% or less.
 図4Cは、第1適用例のサーキュレータ1Aの通過特性を示すグラフである。 FIG. 4C is a graph showing pass characteristics of the circulator 1A of the first application example.
 具体的には、同図には、Tx通過特性(図中のS31_TX to ANT)とRx通過特性(図中のS23_ANT to RX)とが示されており、横軸は周波数、縦軸は入力された高周波信号の強度に対する出力された高周波信号の強度比(挿入損失)を示す。また、グラフ中には、サーキュレータ1Aの使用周波数帯域の範囲がマーカ1及び2で示されている。また、グラフの上には、この通過特性が得られたときの、キャパシタCg1及びキャパシタCg2それぞれの容量値(ここでは、いずれも2.5pF)が示されている。これら通過特性のグラフに関する事項は、以降の通過特性のグラフについても同様である。 Specifically, the figure shows the Tx pass characteristic (S31_TX to ANT in the figure) and the Rx pass characteristic (S23_ANT to RX in the figure), where the horizontal axis is frequency and the vertical axis is input. The intensity ratio (insertion loss) of the output high frequency signal to the intensity of the high frequency signal is shown. In the graph, the range of the used frequency band of the circulator 1A is indicated by markers 1 and 2. Also, on the graph, the capacitance values of the capacitors Cg1 and Cg2 (here, both are 2.5 pF) when this pass characteristic is obtained are shown. The same applies to the graphs of the pass characteristics.
 図4Cに示すように、第1適用例のサーキュレータ1Aによれば、使用周波数帯域において、Tx通過特性とRx通過特性とを同等のバランスにすることができる。 As shown in FIG. 4C, according to the circulator 1A of the first application example, the Tx pass characteristic and the Rx pass characteristic can be equally balanced in the used frequency band.
 [第2適用例]
 次に、第2適用例として、上述の(ii)Tx通過特性がRx通過特性よりも優位なバランスとなるサーキュレータ1Bについて、説明する。
[Second application example]
Next, as a second application example, a description will be given of (ii) the circulator 1B in which the above-described Tx pass characteristic has a balance superior to the Rx pass characteristic.
 図5Aは、第2適用例のサーキュレータ1Bの構成を示す上面図である。図5Bは、第2適用例のサーキュレータ1Bの等価回路図である。 FIG. 5A is a top view showing the configuration of the circulator 1B of the second application example. FIG. 5B is an equivalent circuit diagram of the circulator 1B of the second application example.
 これらの図に示すサーキュレータ1Bは、上述した基本形態に係るサーキュレータ1に比べて、キャパシタCg2が設けられていない点が異なる。つまり、本適用例では、調整回路50は、キャパシタCg1(第1キャパシタ)及びキャパシタCg2(第2キャパシタ)のうち、キャパシタCg1のみを有する。具体的には、キャパシタCg2が設けられないことにより、図5Aに示すように、表面電極151bはチップ部品が非実装の電極となる。 The circulator 1B shown in these drawings is different from the circulator 1 according to the basic embodiment described above in that the capacitor Cg2 is not provided. That is, in this application example, the adjustment circuit 50 includes only the capacitor Cg1 among the capacitor Cg1 (first capacitor) and the capacitor Cg2 (second capacitor). Specifically, since the capacitor Cg2 is not provided, as shown in FIG. 5A, the surface electrode 151b becomes an electrode in which a chip component is not mounted.
 図5Cは、第2適用例のサーキュレータ1Bの通過特性を示すグラフである。この通過特性が得られたときのキャパシタCg1の容量値は5.0pFである。 FIG. 5C is a graph showing pass characteristics of the circulator 1B of the second application example. The capacitance value of the capacitor Cg1 when this pass characteristic is obtained is 5.0 pF.
 同図に示すように、第2適用例のサーキュレータ1Bによれば、使用周波数帯域において、Tx通過特性をRx通過特性よりも優位なバランスにすることができる。 As shown in the figure, according to the circulator 1B of the second application example, it is possible to balance the Tx pass characteristic over the Rx pass characteristic in the used frequency band.
 [第3適用例]
 次に、第3適用例として、上述の(iii)Rx通過特性がTx通過特性よりも優位なバランスとなるサーキュレータ1Cについて、説明する。
[Third application example]
Next, as a third application example, a description will be given of (iii) the circulator 1C in which the above-described (iii) Rx pass characteristic has a balance superior to the Tx pass characteristic.
 図6Aは、第3適用例のサーキュレータ1Cの構成を示す上面図である。図6Bは、第3適用例のサーキュレータ1Cの等価回路図である。 FIG. 6A is a top view showing the configuration of the circulator 1C of the third application example. FIG. 6B is an equivalent circuit diagram of the circulator 1C of the third application example.
 これらの図に示すサーキュレータ1Cは、上述した基本形態に係るサーキュレータ1に比べて、キャパシタCg1が設けられていない点が異なる。つまり、本適用例では、調整回路50は、キャパシタCg1(第1キャパシタ)及びキャパシタCg2(第2キャパシタ)のうち、キャパシタCg2のみを有する。具体的には、キャパシタCg1が設けられないことにより、図6Aに示すように、表面電極151aはチップ部品が非実装の電極となる。 The circulator 1C shown in these drawings is different from the circulator 1 according to the basic form described above in that the capacitor Cg1 is not provided. That is, in this application example, the adjustment circuit 50 includes only the capacitor Cg2 among the capacitor Cg1 (first capacitor) and the capacitor Cg2 (second capacitor). Specifically, since the capacitor Cg1 is not provided, as shown in FIG. 6A, the surface electrode 151a becomes an electrode in which a chip component is not mounted.
 図6Cは、第3適用例のサーキュレータ1Cの通過特性を示すグラフである。この通過特性が得られたときのキャパシタCg2の容量値は5.0pFである。 FIG. 6C is a graph showing pass characteristics of the circulator 1C of the third application example. The capacitance value of the capacitor Cg2 when this pass characteristic is obtained is 5.0 pF.
 同図に示すように、第3適用例のサーキュレータ1Cによれば、使用周波数帯域において、Rx通過特性をTx通過特性よりも優位なバランスにすることができる。 As shown in the figure, according to the circulator 1C of the third application example, it is possible to balance the Rx pass characteristic over the Tx pass characteristic in the used frequency band.
 [まとめ]
 以上の第1~第3適用例に示すように、本実施の形態に係るサーキュレータによれば、調整回路50によって、第1ポートPort1から第3ポートPort3へのTx通過特性と第3ポートPort3から第2ポートPort2へのRx通過特性との優位性を調整することができる。具体的には、本実施の形態によれば、Tx通過特性とRx通過特性とのバランスを調整する調整回路50が、コア部40外部に設けられることにより、コア部40内部の設計変更をしなくても、容易に、Tx通過特性とRx通過特性のバランスを変えることができる。
[Summary]
As shown in the first to third application examples described above, according to the circulator according to the present embodiment, the adjustment circuit 50 causes the Tx pass characteristic from the first port Port1 to the third port Port3 and The superiority with the Rx passage characteristic to the second port Port2 can be adjusted. Specifically, according to the present embodiment, the adjustment circuit 50 that adjusts the balance between the Tx pass characteristic and the Rx pass characteristic is provided outside the core part 40, thereby changing the design inside the core part 40. Even without this, the balance between the Tx pass characteristic and the Rx pass characteristic can be easily changed.
 詳細には、本実施の形態によれば、調整回路50が第1中心導体21の他方の端部(インダクタL1の端部L1b)とグランド電位とを接続する第1素子(本実施の形態ではキャパシタCg1)、及び、第2中心導体の他方の端部(インダクタL2の端部L2b)とグランド電位とを接続する第2素子(本実施の形態ではキャパシタCg2)のうち、少なくとも一方を有することにより、コア部40内部の設計変更をしなくても、容易に、Tx通過特性とRx通過特性のバランスを変えることができる。 Specifically, according to the present embodiment, the adjustment circuit 50 connects the other end of the first central conductor 21 (end L1b of the inductor L1) and the ground potential (in this embodiment, At least one of the capacitor Cg1) and the second element (capacitor Cg2 in this embodiment) that connects the other end of the second central conductor (end L2b of the inductor L2) and the ground potential. Thus, the balance between the Tx pass characteristic and the Rx pass characteristic can be easily changed without changing the design inside the core unit 40.
 また、本実施の形態によれば、調整回路50が、第1素子として第1キャパシタ(キャパシタCg1)を有することにより、第1中心導体21と第1キャパシタとがシャント接続型のLC直列共振回路を形成する。よって、LC直列共振回路が使用周波数帯域近傍で共振するような第1キャパシタを設けることにより、第1中心導体21は次のように振る舞う。すなわち、第1ポートPort1から高周波信号が入力されると、第1中心導体21は、第2中心導体22との磁気結合による共振に加えて、第1キャパシタとで形成されるLC直列共振回路によっても共振する。つまり、第1キャパシタを設けることによって第1中心導体21を複共振させることができる。このとき、第1インダクタ(インダクタLs1)が設けられていれば、第1中心導体21の他方の端部と第3中心導体23の他方の端部との間に電位差が生じるため、第1中心導体21の複共振によってTx通過特性を広帯域化することができる。 In addition, according to the present embodiment, the adjustment circuit 50 includes the first capacitor (capacitor Cg1) as the first element, so that the first central conductor 21 and the first capacitor are shunt-connected LC series resonance circuits. Form. Therefore, by providing the first capacitor that causes the LC series resonance circuit to resonate in the vicinity of the used frequency band, the first central conductor 21 behaves as follows. That is, when a high frequency signal is input from the first port Port 1, the first center conductor 21 is not only resonated by magnetic coupling with the second center conductor 22 but also by an LC series resonance circuit formed by the first capacitor. Also resonates. That is, the first center conductor 21 can be made to resonate by providing the first capacitor. At this time, if the first inductor (inductor Ls1) is provided, a potential difference is generated between the other end of the first center conductor 21 and the other end of the third center conductor 23. The Tx pass characteristic can be broadened by the double resonance of the conductor 21.
 言い換えると、第1キャパシタを設けることにより、第1中心導体21側のグランド電位までの経路が短くなり不要なインダクタンス成分を低減することができる。このため、Tx通過特性を広帯域化することができる。 In other words, by providing the first capacitor, the path to the ground potential on the first center conductor 21 side is shortened, and unnecessary inductance components can be reduced. For this reason, the Tx pass characteristic can be widened.
 なお、第2キャパシタ(キャパシタCg2)及び第2インダクタ(インダクタLs2)についても、第1キャパシタ及び第1インダクタと同様のメカニズムにより、Rx通過特性を広帯域化することができる。 Note that the second capacitor (capacitor Cg2) and the second inductor (inductor Ls2) can also have a wide band of Rx pass characteristics by the same mechanism as the first capacitor and the first inductor.
 例えば、第1適用例のサーキュレータ1Aによれば、調整回路50が第1キャパシタ及び第2キャパシタの両方を有し、第1キャパシタと第2キャパシタとが略同一の容量値を有する。これにより、第1適用例のサーキュレータ1Aは、使用周波数帯域において、Tx通過特性とRx通過特性とを同等のバランスにすることができる。 For example, according to the circulator 1A of the first application example, the adjustment circuit 50 includes both the first capacitor and the second capacitor, and the first capacitor and the second capacitor have substantially the same capacitance value. Thereby, the circulator 1A of the first application example can balance the Tx pass characteristic and the Rx pass characteristic in the use frequency band.
 また、例えば、第2適用例のサーキュレータ1Bによれば、調整回路50は第1キャパシタ及び第2キャパシタのうち第1キャパシタのみを有する。これにより、第2適用例のサーキュレータ1Bは、使用周波数帯域において、Tx通過特性をRx通過特性よりも優位なバランスにすることができる。 Further, for example, according to the circulator 1B of the second application example, the adjustment circuit 50 includes only the first capacitor among the first capacitor and the second capacitor. Thereby, the circulator 1B of the second application example can balance the Tx pass characteristic over the Rx pass characteristic in the used frequency band.
 また、例えば、第3適用例のサーキュレータ1Cによれば、調整回路50は第1キャパシタ及び第2キャパシタのうち第2キャパシタのみを有する。これにより、第3適用例のサーキュレータ1Cは、使用周波数帯域において、Rx通過特性をTx通過特性よりも優位なバランスにすることができる。 For example, according to the circulator 1C of the third application example, the adjustment circuit 50 includes only the second capacitor among the first capacitor and the second capacitor. As a result, the circulator 1C of the third application example can balance the Rx pass characteristic over the Tx pass characteristic in the used frequency band.
 また、本実施の形態によれば、調整回路50が第1インダクタ(インダクタLs1)及び第2インダクタ(インダクタLs2)の両方を有することにより、第1キャパシタ及び第2キャパシタの定数を変えることのみで、Tx通過特性とRx通過特性のバランスを容易に変えることができる。 Further, according to the present embodiment, the adjustment circuit 50 includes both the first inductor (inductor Ls1) and the second inductor (inductor Ls2), so that only the constants of the first capacitor and the second capacitor are changed. The balance between the Tx pass characteristic and the Rx pass characteristic can be easily changed.
 また、本実施の形態によれば、第1インダクタ及び第2インダクタのうち少なくも一方(本実施の形態では両方)が回路基板51に設けられた導体(すなわち配線導体152及びビア導体(不図示))によって構成されるため、部品点数を削減することができる。 Further, according to the present embodiment, at least one of the first inductor and the second inductor (both in the present embodiment) is a conductor provided on the circuit board 51 (that is, the wiring conductor 152 and the via conductor (not shown). )), The number of parts can be reduced.
 また、本実施の形態によれば、調整回路50が第1整合用キャパシタ(キャパシタC1~C3)を有することにより、第1整合用キャパシタの容量値を適宜選択することによって、使用周波数帯域において通過特性を広帯域化することができる。また、調整回路50が第2整合用キャパシタ(キャパシタCs1~Cs3)を有することにより、第2整合用キャパシタの容量値を適宜選択することによって、第1~第3ポートPort1~Port3のインピーダンスを容易に調整することができる。このため、ロスを改善(挿入損失の劣化を低減)することができる。 Further, according to the present embodiment, the adjustment circuit 50 includes the first matching capacitors (capacitors C1 to C3), so that the adjustment circuit 50 can pass in the use frequency band by appropriately selecting the capacitance value of the first matching capacitors. The characteristics can be broadened. Further, since the adjustment circuit 50 includes the second matching capacitors (capacitors Cs1 to Cs3), the impedance of the first to third ports Port1 to Port3 can be easily selected by appropriately selecting the capacitance value of the second matching capacitors. Can be adjusted. For this reason, loss can be improved (deterioration of insertion loss is reduced).
 また、本実施の形態によれば、回路基板51には、第1素子(本実施の形態ではキャパシタCg1)及び第2素子(本実施の形態ではキャパシタCg2)の各々を構成するチップ部品52を実装するための表面電極151a及び151bが設けられている。これにより、共通のコア部40及び回路基板51を用いて、要求される仕様に応じて第1素子及び第2素子を適宜実装することにより、当該仕様に応じた通過特性のバランスを有する非可逆回路素子(本実施の形態ではサーキュレータ)を実現することができる。つまり、コア部40の展開(使いまわし)の幅が広がり、コストダウンを図ることができる。 Further, according to the present embodiment, the circuit board 51 is provided with the chip components 52 constituting each of the first element (capacitor Cg1 in the present embodiment) and the second element (capacitor Cg2 in the present embodiment). Surface electrodes 151a and 151b for mounting are provided. Thereby, by using the common core part 40 and the circuit board 51, the first element and the second element are appropriately mounted according to the required specifications, so that the non-reciprocal characteristics have a balance of pass characteristics according to the specifications. A circuit element (a circulator in this embodiment) can be realized. That is, the range of development (reuse) of the core part 40 is widened, and the cost can be reduced.
 (実施の形態の変形例)
 本発明は上述した非可逆回路素子(上記説明ではサーキュレータ)として実現できるだけでなく、このような非可逆回路素子を備えるフロントエンド回路及び通信装置としても実現できる。そこで、以下、上述した非可逆回路素子を備える通信装置(すなわち、非可逆回路素子を含むフロントエンド回路を内蔵する通信装置)について、説明する。
(Modification of the embodiment)
The present invention can be realized not only as the above-described non-reciprocal circuit element (circulator in the above description) but also as a front-end circuit and a communication device including such a non-reciprocal circuit element. Therefore, hereinafter, a communication apparatus including the above-described non-reciprocal circuit element (that is, a communication apparatus incorporating a front-end circuit including the non-reciprocal circuit element) will be described.
 図7A及び図7Bは、実施の形態で説明したサーキュレータを備える変形例に係る通信装置の機能ブロック図である。具体的には、図7Aは、実施の形態の第1適用例のサーキュレータ1Aを備える通信装置2Aの機能ブロック図である。図7Bは、実施の形態の第3適用例のサーキュレータ1Cを備える通信装置2Cの機能ブロック図である。 7A and 7B are functional block diagrams of a communication apparatus according to a modification including the circulator described in the embodiment. Specifically, FIG. 7A is a functional block diagram of a communication device 2A including the circulator 1A of the first application example of the embodiment. FIG. 7B is a functional block diagram of a communication device 2C including the circulator 1C of the third application example of the embodiment.
 まず、図7Aに示す通信装置2Aについて説明する。 First, the communication device 2A shown in FIG. 7A will be described.
 図7Aに示すように、通信装置2Aは、サーキュレータ1Aを有するフロントエンド回路100Aと、RFIC(Radio Frequency Integrated Circuit)200と、アンテナ素子300とを備える、例えば携帯電話の基地局である。なお、通信装置2Aは、アンテナ素子300を備えなくてもかまわない。 As shown in FIG. 7A, the communication device 2A is, for example, a mobile phone base station including a front end circuit 100A having a circulator 1A, an RFIC (Radio Frequency Integrated Circuit) 200, and an antenna element 300. The communication device 2A may not include the antenna element 300.
 フロントエンド回路100Aは、通信装置2Aのフロントエンドに設けられ、RFIC200とアンテナ素子300との間で送信信号または受信信号を伝搬する。具体的には、フロントエンド回路100Aは、サーキュレータ1Aに加えて、さらに、PA(パワーアンプ:Power Amplifier)202等の送信側回路と、BPF(Band Pass Filter)203と、LNA(Low Noise Amplifier)204等の受信側回路とを有する。また、フロントエンド回路100Aには、送信信号が入力される送信端子Ptx、送信信号を出力して受信信号が入力されるアンテナ端子Pant、及び、受信信号を出力する受信端子Prxが設けられている。なお、フロントエンド回路100Aは、BPF203を備えなくてかまわないし、上記以外の整合回路あるいは送信用または受信用フィルタ等を備えてもかまわない。 The front end circuit 100A is provided at the front end of the communication device 2A and propagates a transmission signal or a reception signal between the RFIC 200 and the antenna element 300. Specifically, in addition to the circulator 1A, the front end circuit 100A further includes a transmission side circuit such as a PA (Power Amplifier) 202, a BPF (Band Pass Filter) 203, and an LNA (Low Noise Amplifier). 204 and other receiving side circuits. Further, the front end circuit 100A is provided with a transmission terminal Ptx to which a transmission signal is input, an antenna terminal Pant to which the transmission signal is output and a reception signal is input, and a reception terminal Prx that outputs the reception signal. . The front end circuit 100A may not include the BPF 203, and may include a matching circuit other than the above, a transmission or reception filter, or the like.
 サーキュレータ1Aは、第1ポートPort1が送信側回路(ここではPA202)に接続され、第2ポートPort2が受信側回路(ここではLNA204)に接続され、第3ポートPort3がアンテナ端子Pantに接続されている。具体的には、第1ポートPort1はPA202を介して送信端子Ptxに接続され、第2ポートPort2はLNA204を介して受信端子Prxに接続され、第3ポートPort3はBPF203を介してアンテナ端子Pantに接続されている。 In the circulator 1A, the first port Port1 is connected to the transmission side circuit (here, PA202), the second port Port2 is connected to the reception side circuit (here, LNA204), and the third port Port3 is connected to the antenna terminal Pant. Yes. Specifically, the first port Port 1 is connected to the transmission terminal Ptx via the PA 202, the second port Port 2 is connected to the reception terminal Prx via the LNA 204, and the third port Port 3 is connected to the antenna terminal Pant via the BPF 203. It is connected.
 PA202は、RFIC200の送信端子(図中のTX)からフロントエンド回路100Aの送信端子Ptxに入力された送信信号(高周波送信信号)を増幅する、例えば電力増幅モジュールである。 PA 202 is, for example, a power amplification module that amplifies a transmission signal (high-frequency transmission signal) input from the transmission terminal (TX in the drawing) of the RFIC 200 to the transmission terminal Ptx of the front-end circuit 100A.
 BPF203は、サーキュレータ1Aから出力された送信信号を所定の使用周波数帯域でフィルタリングして通過させる。また、BPF203は、アンテナ端子Pantから入力された受信信号を当該使用周波数帯域でフィルタリングして通過させる。 The BPF 203 passes the transmission signal output from the circulator 1A after filtering it in a predetermined use frequency band. Further, the BPF 203 passes the received signal input from the antenna terminal Pant after filtering in the use frequency band.
 LNA204は、サーキュレータ1Aから出力された受信信号(高周波受信信号)を増幅する、例えば低雑音増幅モジュールである。 The LNA 204 is, for example, a low noise amplification module that amplifies the reception signal (high frequency reception signal) output from the circulator 1A.
 このようなフロントエンド回路100Aは、送信端子Ptxに入力された送信信号を増幅かつフィルタリングしてアンテナ端子Pantから出力し、アンテナ端子Pantに入力された受信信号をフィルタリングかつ増幅して受信端子Prxから出力する。このとき、送信信号はサーキュレータ1AのTxパスを経由し、受信信号はサーキュレータ1AのRxパスを経由する。 Such a front-end circuit 100A amplifies and filters the transmission signal input to the transmission terminal Ptx and outputs it from the antenna terminal Pant, and filters and amplifies the reception signal input to the antenna terminal Pant from the reception terminal Prx. Output. At this time, the transmission signal passes through the Tx path of the circulator 1A, and the reception signal passes through the Rx path of the circulator 1A.
 RFIC200は、フロントエンド回路100Aの送信端子Ptx及び受信端子Prxに接続され、送信信号または受信信号を信号処理する回路である。例えば、RFIC200は、ベースバンド信号処理回路(不図示)から入力された送信信号をアップコンバートして送信端子(図中TX)から出力し、フロントエンド回路100Aから受信端子(図中RX)に入力された受信信号をダウンコンバートしてベースバンド信号処理回路に出力する。 The RFIC 200 is a circuit that is connected to the transmission terminal Ptx and the reception terminal Prx of the front end circuit 100A and performs signal processing on the transmission signal or the reception signal. For example, the RFIC 200 up-converts a transmission signal input from a baseband signal processing circuit (not shown) and outputs it from a transmission terminal (TX in the figure), and inputs it from the front end circuit 100A to a reception terminal (RX in the figure). The received signal is down-converted and output to the baseband signal processing circuit.
 アンテナ素子300は、フロントエンド回路100Aのアンテナ端子Pantに接続され、送信信号を送信し、受信信号を受信する。アンテナ素子300の形状等については特に限定されず、通信装置2Aの使用周波数帯域に応じて適宜設計されていればよい。 The antenna element 300 is connected to the antenna terminal Pant of the front end circuit 100A, transmits a transmission signal, and receives a reception signal. The shape and the like of the antenna element 300 are not particularly limited, and may be appropriately designed according to the use frequency band of the communication device 2A.
 以上のように構成された通信装置2Aでは、通信品質の向上を図るために、サーキュレータについて、例えば、送信系のパスの通過特性(すなわちTx通過特性)と受信系のパスの通過特性(すなわちRx通過特性)とを同等のバランスにすることが要求される。そこで、通信装置2Aは、サーキュレータとして上述した第1適用例のサーキュレータ1Aを用いることにより、通信品質の向上を図ることができる。 In the communication apparatus 2A configured as described above, in order to improve communication quality, for example, with respect to the circulator, for example, the transmission path path characteristics (that is, Tx path characteristics) and the reception path paths (that is, Rx). It is required to have an equivalent balance with the transmission characteristics. Therefore, the communication device 2A can improve communication quality by using the circulator 1A of the first application example described above as the circulator.
 次に、図7Bに示す通信装置2Cについて説明する。 Next, the communication device 2C shown in FIG. 7B will be described.
 図7Bに示すように、通信装置2Cは、通信装置2Aに比べて、フロントエンド回路100Aに代わりフロントエンド回路100Cを備える。このフロントエンド回路100Cは、フロントエンド回路100Aに比べて、サーキュレータ1A及びPA202に代わり、サーキュレータ1C及び複数段のPA(ここでは2段のPA202a及び202b)を有し、さらに、スイッチ205及び終端抵抗206を有する。 As shown in FIG. 7B, the communication device 2C includes a front-end circuit 100C instead of the front-end circuit 100A as compared with the communication device 2A. The front end circuit 100C includes a circulator 1C and a plurality of stages of PAs (here, two stages of PAs 202a and 202b) instead of the circulators 1A and PA 202, as compared with the front end circuit 100A. 206.
 PA202a及び202bは、複数段(ここでは2段)設けられていることにより、PA202よりも大きい増幅率で送信信号を増幅する。なお、PAの段数は2段に限らず、3段以上であってもかまわない。 The PAs 202a and 202b are provided with a plurality of stages (here, two stages), thereby amplifying the transmission signal with a larger amplification factor than the PA 202. The number of PA stages is not limited to two, and may be three or more.
 スイッチ205は、サーキュレータ1Cの第2ポートPort2と受信側回路(ここではLNA204)とを選択的に接続するスイッチ回路である。具体的には、スイッチ205は、サーキュレータ1Cに接続された共通端子と、LNA204または終端抵抗206に接続された2つの選択端子とを有する。このスイッチ205は、例えばRFIC200からの制御信号にしたがって、共通端子を、送信時には終端抵抗206に接続された選択端子に接続し、受信時にはLNA204に接続された選択端子に接続する。なお、スイッチ205は、1入力2出力型に限らない。 The switch 205 is a switch circuit that selectively connects the second port Port2 of the circulator 1C and the reception side circuit (here, the LNA 204). Specifically, the switch 205 has a common terminal connected to the circulator 1 </ b> C and two selection terminals connected to the LNA 204 or the termination resistor 206. For example, according to a control signal from the RFIC 200, the switch 205 connects a common terminal to a selection terminal connected to the termination resistor 206 at the time of transmission and to a selection terminal connected to the LNA 204 at the time of reception. The switch 205 is not limited to the 1-input 2-output type.
 終端抵抗206は、一端がスイッチ205の選択端子に接続され、他端がグランド電位に接続された、例えば抵抗値が50Ωのシャント接続型の抵抗である。 The terminating resistor 206 is a shunt-connected resistor having one end connected to the selection terminal of the switch 205 and the other end connected to the ground potential, for example, having a resistance value of 50Ω.
 以上のように構成されたフロントエンド回路100Cでは、フロントエンド回路100Aに比べてスイッチ205が設けられていることにより、受信側回路(ここではLNA204)への送信信号の回り込みを抑制することができる。よって、通信品質の向上を図ることができる。 In the front-end circuit 100C configured as described above, the switch 205 is provided as compared with the front-end circuit 100A, so that the transmission signal to the reception-side circuit (here, the LNA 204) can be suppressed. . Therefore, communication quality can be improved.
 ただし、フロントエンド回路100Cでは、スイッチ205を設けることにより、アンテナ端子Pantから受信端子Prxへの通過特性が僅かに劣化し得る。よって、受信端子Prxから出力される受信信号のレベルが低下する場合がある。 However, in the front end circuit 100C, by providing the switch 205, the passing characteristic from the antenna terminal Pant to the receiving terminal Prx may be slightly deteriorated. Therefore, the level of the reception signal output from the reception terminal Prx may be reduced.
 そこで、このような通信装置2Cでは、通信品質の向上を図るために、サーキュレータについて、例えば、Rx通過特性をTx通過特性よりも優位なバランスにすることが要求される。そこで、通信装置2Cは、サーキュレータとして上述した第3適用例のサーキュレータ1Cを用いることにより、受信端子Prxから出力される受信信号のレベルの低下を抑制して通信品質の向上を図ることができる。つまり、フロントエンド回路100Cのアンテナ端子Pantから受信端子Prxへの通過特性の劣化を抑制することができる。 Therefore, in such a communication device 2C, in order to improve communication quality, for example, it is required for the circulator to balance the Rx pass characteristic over the Tx pass characteristic. Therefore, the communication device 2C can improve the communication quality by suppressing the decrease in the level of the reception signal output from the reception terminal Prx by using the circulator 1C of the third application example described above as the circulator. That is, it is possible to suppress the deterioration of the passing characteristics from the antenna terminal Pant to the reception terminal Prx of the front end circuit 100C.
 また、フロントエンド回路100Cでは、サーキュレータ1Cにおいて、受信系のパスの通過特性が送信系のパスの通過特性よりも優位なバランスとなっていることにより、アンテナ端子Pantから出力される送信信号のレベルが低下し得る。そこで、PAを複数段(ここでは2段)設けて増幅率を大きくすることにより、送信信号のレベルの低下を抑制して通信品質を維持することができる。 Further, in the front end circuit 100C, in the circulator 1C, the level of the transmission signal output from the antenna terminal Pant is obtained because the pass characteristic of the reception system path is more balanced than the transmission characteristic of the transmission system path. Can be reduced. Therefore, by providing a plurality of PAs (in this case, two stages) to increase the amplification factor, it is possible to suppress the decrease in the level of the transmission signal and maintain the communication quality.
 以上説明した通信装置2A及び2Cによれば、要求される仕様に応じた通過特性のバランスを有するサーキュレータ1A及び1Cを備えることにより、通信品質の向上を図ることができる。 According to the communication devices 2A and 2C described above, communication quality can be improved by providing the circulators 1A and 1C having a balance of pass characteristics according to required specifications.
 なお、通信装置2Aでは、サーキュレータ1Aに代わり、サーキュレータ1Bが設けられてもかまわない。このような構成によれば、アンテナ端子Pantから出力される送信信号のレベルを大きくすることができるため、特に携帯電話の基地局等に好適である。 In communication device 2A, circulator 1B may be provided instead of circulator 1A. According to such a configuration, the level of the transmission signal output from the antenna terminal Pant can be increased, which is particularly suitable for a mobile phone base station or the like.
 (その他の変形例)
 以上、本発明の実施の形態に係る非可逆回路素子、フロントエンド回路及び通信装置について、実施の形態及び変形例を挙げて説明したが、本発明の非可逆回路素子、フロントエンド回路及び通信装置は、上記実施の形態に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本開示の非可逆回路素子を内蔵した各種機器も本発明に含まれる。
(Other variations)
The nonreciprocal circuit element, the front end circuit, and the communication device according to the embodiment of the present invention have been described with reference to the embodiment and the modified examples. Is not limited to the above embodiment. Another embodiment realized by combining arbitrary constituent elements in the above-described embodiment, and modifications obtained by applying various modifications conceivable by those skilled in the art to the above-described embodiment without departing from the gist of the present invention. Examples and various devices incorporating the nonreciprocal circuit device of the present disclosure are also included in the present invention.
 例えば、調整回路50は、第1キャパシタ(キャパシタCg1)及び第2キャパシタ(キャパシタCg2)の両方を有し、第1キャパシタは第2キャパシタよりも容量値が大きくてもかまわない。 For example, the adjustment circuit 50 includes both a first capacitor (capacitor Cg1) and a second capacitor (capacitor Cg2), and the first capacitor may have a larger capacitance value than the second capacitor.
 このような調整回路50を有するサーキュレータは、第2適用例のサーキュレータ1Bに比べてバランスの調整範囲は劣るものの、当該サーキュレータ1Bと同様に、使用周波数帯域において、Tx通過特性をRx通過特性よりも優位なバランスにすることができる。具体的には、このような調整回路50を有するサーキュレータは、Tx通過特性が第1適用例より良好かつ第2適用例より劣化し、かつ、Rx通過特性が第1適用例より劣化し第2適用例より良好となる。 The circulator having such an adjustment circuit 50 has a lower balance adjustment range than the circulator 1B of the second application example. However, like the circulator 1B, the circulator has a Tx pass characteristic higher than the Rx pass characteristic in the operating frequency band. An excellent balance can be achieved. Specifically, the circulator having such an adjustment circuit 50 has a Tx pass characteristic which is better than that of the first application example and deteriorated from the second application example, and an Rx pass characteristic which deteriorates from that of the first application example. It is better than the application example.
 また、例えば、調整回路50は、第1キャパシタ(キャパシタCg1)及び第2キャパシタ(キャパシタCg2)の両方を有し、第2キャパシタは第1キャパシタよりも容量値が大きくてもかまわない。 For example, the adjustment circuit 50 includes both the first capacitor (capacitor Cg1) and the second capacitor (capacitor Cg2), and the second capacitor may have a larger capacitance value than the first capacitor.
 このような調整回路50を有するサーキュレータは、第3適用例のサーキュレータ1Cに比べてバランスの調整範囲は劣るものの、当該サーキュレータ1Cと同様に、使用周波数帯域において、Rx通過特性をTx通過特性よりも優位なバランスにすることができる。具体的には、このような調整回路50を有するサーキュレータは、Tx通過特性が第1適用例より劣化かつ第3適用例より良好となり、かつ、Rx通過特性が第1適用例より良好かつ第3適用例より劣化する。 Although the circulator having such an adjustment circuit 50 is inferior in the balance adjustment range as compared with the circulator 1C of the third application example, as in the circulator 1C, the Rx pass characteristic is higher than the Tx pass characteristic in the used frequency band. An excellent balance can be achieved. Specifically, the circulator having such an adjustment circuit 50 has a Tx pass characteristic that is worse than that of the first application example and is better than that of the third application example, and an Rx pass characteristic that is better than that of the first application example and third. Deteriorated from application examples.
 また、上記説明では、第1中心導体21の他方の端部(端部L1b)とグランド電位とを接続するシャント接続型の第1素子として、キャパシタCg1を例に説明した。また、第2中心導体22の他方の端部(端部L2b)とグランド電位とを接続するシャント接続型の第2素子として、キャパシタCg2を例に説明した。しかし、第1素子及び第2素子の少なくとも一方はキャパシタでなくてもかまわない。 In the above description, the capacitor Cg1 is described as an example of the shunt connection type first element that connects the other end portion (end portion L1b) of the first central conductor 21 and the ground potential. Further, the capacitor Cg2 has been described as an example of the second element of the shunt connection type that connects the other end portion (end portion L2b) of the second central conductor 22 and the ground potential. However, at least one of the first element and the second element may not be a capacitor.
 また、上記説明では、調整回路50は、第1インダクタ(インダクタLs1)及び第2インダクタ(インダクタLs2)の両方を有するとしたが、少なくとも一方を有さなくてもかまわない。例えば、調整回路50は、キャパシタCg1を有する場合に第2インダクタを有さなくてもよい。このような構成であっても、第1中心導体21が複共振するときに第1中心導体21の他方の端部(端部L1b)と第3中心導体23の他方の端部(端部L3b)との間に電位差が生じることになるため、Tx通過特性を広帯域化することができる。同様に、調整回路50は、キャパシタCg2を有する場合に第1インダクタを有さなくてもよく、このような構成であっても、キャパシタCg1及び第2インダクタを有さない構成と同様のメカニズムにより、Rx通過特性を広帯域化することができる。 In the above description, the adjustment circuit 50 has both the first inductor (inductor Ls1) and the second inductor (inductor Ls2). For example, the adjustment circuit 50 may not have the second inductor when the capacitor Cg1 is included. Even in such a configuration, when the first center conductor 21 undergoes double resonance, the other end portion (end portion L1b) of the first center conductor 21 and the other end portion (end portion L3b) of the third center conductor 23 are arranged. ), The Tx pass characteristic can be widened. Similarly, the adjustment circuit 50 does not have to include the first inductor when the capacitor Cg2 is provided. Even in such a configuration, the adjustment circuit 50 has the same mechanism as that of the configuration without the capacitor Cg1 and the second inductor. , Rx pass characteristics can be widened.
 また、上記説明では、調整回路50は、第1整合用キャパシタ(キャパシタC1~C3)及び第2整合用キャパシタ(キャパシタCs1~Cs3)を有するとしたが、これらの少なくとも一部を有さなくてもかまわない。また、上記説明では、キャパシタC1はキャパシタCg1を介してグランド電位に接続され、キャパシタC2はキャパシタCg2を介してグランド電位に接続されていたが、キャパシタC1及びC2はそれぞれ、グランド電位に直接接続されていてもかまわない。 In the above description, the adjustment circuit 50 has the first matching capacitors (capacitors C1 to C3) and the second matching capacitors (capacitors Cs1 to Cs3). However, the adjustment circuit 50 does not have at least a part of these. It doesn't matter. In the above description, the capacitor C1 is connected to the ground potential via the capacitor Cg1, and the capacitor C2 is connected to the ground potential via the capacitor Cg2. However, the capacitors C1 and C2 are directly connected to the ground potential. It does not matter.
 また、上記実施の形態に係る非可逆回路素子、フロントエンド回路及び通信装置おいて、図面に開示された各回路素子および信号経路を接続する経路の間に別の回路素子および配線等が挿入されていてもかまわない。 Further, in the nonreciprocal circuit element, the front end circuit, and the communication device according to the above-described embodiment, another circuit element and wiring are inserted between the circuit elements disclosed in the drawings and the path connecting the signal paths. It does not matter.
 また、上記説明では、非可逆回路素子として3ポート型の非可逆回路素子(サーキュレータ)を例に説明したが、非可逆回路素子は4ポート以上の複数のポートを有してもかまわない。 In the above description, a three-port nonreciprocal circuit element (circulator) is described as an example of the nonreciprocal circuit element. However, the nonreciprocal circuit element may have a plurality of ports of four or more ports.
 また、グランド電位は、非可逆回路素子の回路グランドの電位(基準電位)であればよく、0V、大地グランドの電位(すなわちアースの基準電位)またはフレームグランドと異なる電位であってもかまわない。 The ground potential may be a circuit ground potential (reference potential) of the non-reciprocal circuit element, and may be 0 V, a ground ground potential (that is, a ground reference potential), or a potential different from the frame ground.
 本発明は、通信装置のフロンドエンド部に配置されるサーキュレータとして、携帯電話の基地局等の通信装置に広く利用できる。 The present invention can be widely used in communication devices such as mobile phone base stations as a circulator disposed in the front end of the communication device.
 1、1A、1B、1C  サーキュレータ
 2A、2C  通信装置
 11  蓋体
 12  ケース本体
 13  樹脂部材
 20  中心導体組立体
 21  第1中心導体
 22  第2中心導体
 23  第3中心導体
 25  フェライト
 30  永久磁石
 40  コア部
 50  調整回路
 51  回路基板
 52  チップ部品
 100A、100C  フロントエンド回路
 151、151a、151b  表面電極
 152  配線導体
 200  RFIC
 202、202a、202b  PA
 203  BPF
 204  LNA
 205  スイッチ
 206  終端抵抗
 300  アンテナ素子
 C1~C3、Cs1~Cs3、Cg1、Cg2  キャパシタ
 L1~L3、Ls1、Ls2  インダクタ
 L1a~L3a、L1b~L3b  端部(インダクタの端部)
 Pant  アンテナ端子
 Port1  第1ポート
 Port2  第2ポート
 Port3  第3ポート
 Prx  受信端子
 Ptx  送信端子
DESCRIPTION OF SYMBOLS 1, 1A, 1B, 1C Circulator 2A, 2C Communication apparatus 11 Cover body 12 Case main body 13 Resin member 20 Central conductor assembly 21 1st center conductor 22 2nd center conductor 23 3rd center conductor 25 Ferrite 30 Permanent magnet 40 Core part 50 adjustment circuit 51 circuit board 52 chip component 100A, 100C front end circuit 151, 151a, 151b surface electrode 152 wiring conductor 200 RFIC
202, 202a, 202b PA
203 BPF
204 LNA
205 Switch 206 Termination resistor 300 Antenna element C1 to C3, Cs1 to Cs3, Cg1, Cg2 Capacitor L1 to L3, Ls1, Ls2 Inductor L1a to L3a, L1b to L3b End (end of inductor)
Pant antenna terminal Port1 1st port Port2 2nd port Port3 3rd port Prx receiving terminal Ptx transmitting terminal

Claims (16)

  1.  送信側回路に接続される第1ポートに入力された高周波信号を、アンテナ側回路に接続される第3ポートへ通過させ、前記第3ポートに入力された高周波信号を、受信側回路に接続される第2ポートへ通過させる非可逆回路素子であって、
     永久磁石と、前記永久磁石により直流磁界が印加されるフェライトと、前記フェライトに各々が絶縁状態で互いに交差して配置され、一方の端部が前記第1ポートに接続された第1中心導体、一方の端部が前記第2ポートに接続された第2中心導体、及び、一方の端部が前記第3ポートに接続された第3中心導体と、を有する、コア部と、
     前記コア部の外部に配置され、前記非可逆回路素子の使用周波数帯域において、前記第1ポートから前記第3ポートへの通過特性と前記第3ポートから前記第2ポートへの通過特性とのバランスを調整する調整回路と、を備える、
     非可逆回路素子。
    The high-frequency signal input to the first port connected to the transmission-side circuit is passed to the third port connected to the antenna-side circuit, and the high-frequency signal input to the third port is connected to the reception-side circuit. A nonreciprocal circuit element that passes through the second port,
    A permanent magnet, a ferrite to which a DC magnetic field is applied by the permanent magnet, and a first central conductor, each of which is arranged to intersect with each other in an insulated state, one end of which is connected to the first port; A core portion having a second central conductor having one end connected to the second port and a third central conductor having one end connected to the third port;
    A balance between the pass characteristic from the first port to the third port and the pass characteristic from the third port to the second port in the frequency band of the nonreciprocal circuit element that is disposed outside the core unit. An adjustment circuit for adjusting
    Non-reciprocal circuit element.
  2.  前記調整回路は、前記第1中心導体の他方の端部とグランド電位とを接続するシャント接続型の第1素子、及び、前記第2中心導体の他方の端部とグランド電位とを接続するシャント接続型の第2素子のうち少なくとも一方を有する、
     請求項1に記載の非可逆回路素子。
    The adjustment circuit includes a shunt connection type first element that connects the other end of the first center conductor and a ground potential, and a shunt that connects the other end of the second center conductor and a ground potential. Having at least one of the connection-type second elements,
    The nonreciprocal circuit device according to claim 1.
  3.  前記第1素子は第1キャパシタを有し、前記第2素子は第2キャパシタを有し、
     さらに、前記第1中心導体の他方の端部と前記第3中心導体の他方の端部とを接続する第1インダクタ、及び、前記第3中心導体の他方の端部と前記第2中心導体の他方の端部とを接続する第2インダクタのうち少なくとも一方を有する、
     請求項2に記載の非可逆回路素子。
    The first element has a first capacitor; the second element has a second capacitor;
    A first inductor connecting the other end of the first central conductor and the other end of the third central conductor; and the other end of the third central conductor and the second central conductor. Having at least one of the second inductors connected to the other end,
    The nonreciprocal circuit device according to claim 2.
  4.  前記調整回路は、前記第1キャパシタ及び前記第2キャパシタのうち、前記第1キャパシタのみを有する、
     請求項3に記載の非可逆回路素子。
    The adjustment circuit includes only the first capacitor of the first capacitor and the second capacitor.
    The nonreciprocal circuit device according to claim 3.
  5.  前記調整回路は、前記第1キャパシタ及び前記第2キャパシタのうち、前記第2キャパシタのみを有する、
     請求項3に記載の非可逆回路素子。
    The adjustment circuit includes only the second capacitor among the first capacitor and the second capacitor.
    The nonreciprocal circuit device according to claim 3.
  6.  前記調整回路は、前記第1キャパシタ及び前記第2キャパシタの両方を有し、
     前記第1キャパシタは前記第2キャパシタよりも容量値が大きい、
     請求項3に記載の非可逆回路素子。
    The adjustment circuit includes both the first capacitor and the second capacitor;
    The first capacitor has a larger capacitance value than the second capacitor,
    The nonreciprocal circuit device according to claim 3.
  7.  前記調整回路は、前記第1キャパシタ及び前記第2キャパシタの両方を有し、
     前記第2キャパシタは前記第1キャパシタよりも容量値が大きい、
     請求項3に記載の非可逆回路素子。
    The adjustment circuit includes both the first capacitor and the second capacitor;
    The second capacitor has a larger capacitance value than the first capacitor,
    The nonreciprocal circuit device according to claim 3.
  8.  前記調整回路は、前記第1キャパシタ及び前記第2キャパシタの両方を有し、
     前記第1キャパシタと前記第2キャパシタとは、略同一の容量値を有する、
     請求項3に記載の非可逆回路素子。
    The adjustment circuit includes both the first capacitor and the second capacitor;
    The first capacitor and the second capacitor have substantially the same capacitance value.
    The nonreciprocal circuit device according to claim 3.
  9.  前記調整回路は、前記第1インダクタ及び前記第2インダクタの両方を有する、
     請求項3~8のいずれか1項に記載の非可逆回路素子。
    The adjustment circuit includes both the first inductor and the second inductor.
    The nonreciprocal circuit device according to any one of claims 3 to 8.
  10.  前記非可逆回路素子は、前記コア部が搭載され、かつ、前記調整回路が設けられる回路基板を備え、
     前記第1インダクタ及び前記第2インダクタのうち前記少なくとも一方は、前記回路基板に設けられ、前記第1中心導体、前記第2中心導体及び前記第3中心導体の各々の他方の端部同士を接続する導体によって構成される、
     請求項3~9のいずれか1項に記載の非可逆回路素子。
    The nonreciprocal circuit element includes a circuit board on which the core unit is mounted and the adjustment circuit is provided,
    At least one of the first inductor and the second inductor is provided on the circuit board, and connects the other ends of the first central conductor, the second central conductor, and the third central conductor to each other. Composed of conductors,
    The nonreciprocal circuit device according to any one of claims 3 to 9.
  11.  前記調整回路はさらに、
     前記第1中心導体、前記第2中心導体及び前記第3中心導体の各々の一方の端部とグランド電位とをそれぞれ接続する第1整合用キャパシタと、
     前記第1ポートと前記第1中心導体との間、前記第2ポートと前記第2中心導体との間、及び、前記第3ポートと前記第3中心導体との間でそれぞれ直列に接続された第2整合用キャパシタとを有する、
     請求項2~10のいずれか1項に記載の非可逆回路素子。
    The adjustment circuit further includes:
    A first matching capacitor that connects one end of each of the first central conductor, the second central conductor, and the third central conductor to a ground potential;
    Connected in series between the first port and the first central conductor, between the second port and the second central conductor, and between the third port and the third central conductor, respectively. A second matching capacitor;
    The nonreciprocal circuit device according to any one of claims 2 to 10.
  12.  前記非可逆回路素子は、前記コア部が搭載され、かつ、前記調整回路が設けられる回路基板を備え、
     前記回路基板には、前記第1素子及び前記第2素子の各々を構成するチップ部品を実装するための表面電極が設けられている、
     請求項2~11のいずれか1項に記載の非可逆回路素子。
    The nonreciprocal circuit element includes a circuit board on which the core unit is mounted and the adjustment circuit is provided,
    The circuit board is provided with surface electrodes for mounting chip components constituting each of the first element and the second element.
    The nonreciprocal circuit device according to any one of claims 2 to 11.
  13.  請求項1~11のいずれか1項に記載の非可逆回路素子と、
     前記第1ポートに接続される送信側回路と、
     前記第2ポートに接続される受信側回路と、
     前記第3ポートに接続されるアンテナ端子と、を備える、
     フロントエンド回路。
    A nonreciprocal circuit device according to any one of claims 1 to 11,
    A transmitting circuit connected to the first port;
    A receiving circuit connected to the second port;
    An antenna terminal connected to the third port,
    Front-end circuit.
  14.  さらに、前記第2ポートと前記受信側回路とを選択的に接続するスイッチ回路を備える、
     請求項13に記載のフロントエンド回路。
    And a switch circuit that selectively connects the second port and the receiving circuit.
    The front end circuit according to claim 13.
  15.  前記送信側回路は、高周波送信信号を増幅する2段以上のパワーアンプを備える、
     請求項13または14に記載のフロントエンド回路。
    The transmission circuit includes two or more power amplifiers for amplifying a high-frequency transmission signal.
    The front end circuit according to claim 13 or 14.
  16.  高周波信号を処理する信号処理回路と、
     請求項13~15のいずれか1項に記載のフロントエンド回路と、を備える、
     通信装置。
    A signal processing circuit for processing high-frequency signals;
    A front end circuit according to any one of claims 13 to 15.
    Communication device.
PCT/JP2017/008125 2016-03-03 2017-03-01 Irreversible circuit element, front-end circuit, and communication device WO2017150619A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-041583 2016-03-03
JP2016041583 2016-03-03

Publications (1)

Publication Number Publication Date
WO2017150619A1 true WO2017150619A1 (en) 2017-09-08

Family

ID=59744091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008125 WO2017150619A1 (en) 2016-03-03 2017-03-01 Irreversible circuit element, front-end circuit, and communication device

Country Status (1)

Country Link
WO (1) WO2017150619A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118278A1 (en) * 2010-03-25 2011-09-29 株式会社村田製作所 Nonreciprocal circuit element
WO2012124537A1 (en) * 2011-03-16 2012-09-20 株式会社村田製作所 Nonreciprocal circuit element and wireless communication terminal device
WO2014007014A1 (en) * 2012-07-02 2014-01-09 株式会社村田製作所 Non-reciprocal circuit element
WO2015156056A1 (en) * 2014-04-09 2015-10-15 株式会社村田製作所 Non-reciprocal circuit element and high-frequency module
WO2016021352A1 (en) * 2014-08-05 2016-02-11 株式会社村田製作所 Non-reciprocal circuit element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118278A1 (en) * 2010-03-25 2011-09-29 株式会社村田製作所 Nonreciprocal circuit element
WO2012124537A1 (en) * 2011-03-16 2012-09-20 株式会社村田製作所 Nonreciprocal circuit element and wireless communication terminal device
WO2014007014A1 (en) * 2012-07-02 2014-01-09 株式会社村田製作所 Non-reciprocal circuit element
WO2015156056A1 (en) * 2014-04-09 2015-10-15 株式会社村田製作所 Non-reciprocal circuit element and high-frequency module
WO2016021352A1 (en) * 2014-08-05 2016-02-11 株式会社村田製作所 Non-reciprocal circuit element

Similar Documents

Publication Publication Date Title
CN109586756B (en) High-frequency circuit, front-end module, and communication device
WO2019240097A1 (en) High-frequency module and communication device
US9705172B2 (en) Non-reciprocal circuit element
US8253510B2 (en) Non-reciprocal circuit element
WO2019240095A1 (en) High-frequency module and communication device
US10965326B2 (en) Front-end module and communication device
WO2016121455A1 (en) High-frequency module
US10027008B2 (en) Irreversible circuit element and module
WO2018123914A1 (en) High-frequency module and communication device
US9088064B2 (en) Non-reciprocal circuit element
JP5907267B2 (en) Transmission module
WO2017150619A1 (en) Irreversible circuit element, front-end circuit, and communication device
US9748624B2 (en) Non-reciprocal circuit element
US9455485B2 (en) Non-reciprocal circuit element, module of the same, and transmission and reception module
WO2020121874A1 (en) Matching circuit, matching circuit element, and communication device
JP2012039444A (en) Isolator and communication equipment
JP6930463B2 (en) Multiplexer and communication device
US20170373364A1 (en) Circulator, front-end circuit, antenna circuit, and communication apparatus
US20230027154A1 (en) Balun
US20230036529A1 (en) Balun
WO2019193826A1 (en) Filter circuit and communication device
WO2018092431A1 (en) Irreversible circuit element, front-end circuit, and communication device
US20160336634A1 (en) Non-reciprocal circuit element
JP2013207768A (en) Transmission module

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17760083

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17760083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP