WO2015156056A1 - Non-reciprocal circuit element and high-frequency module - Google Patents

Non-reciprocal circuit element and high-frequency module Download PDF

Info

Publication number
WO2015156056A1
WO2015156056A1 PCT/JP2015/055951 JP2015055951W WO2015156056A1 WO 2015156056 A1 WO2015156056 A1 WO 2015156056A1 JP 2015055951 W JP2015055951 W JP 2015055951W WO 2015156056 A1 WO2015156056 A1 WO 2015156056A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
input
antenna
output port
center electrode
Prior art date
Application number
PCT/JP2015/055951
Other languages
French (fr)
Japanese (ja)
Inventor
裕亮 楠本
和田 貴也
礼滋 中嶋
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2015156056A1 publication Critical patent/WO2015156056A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/38Circulators
    • H01P1/383Junction circulators, e.g. Y-circulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • the present invention relates to a nonreciprocal circuit device, and more particularly to a nonreciprocal circuit device such as a circulator used in a microwave band and a high-frequency module including the nonreciprocal circuit device.
  • This type of circulator is a three-port lumped constant type circulator, and the center electrodes L1, L2, L3 are arranged on one surface of the ferrite 10 so as to cross each other in an electrically insulated state.
  • the operating frequency is adjusted by the capacitance values of the capacitors C1, C2, and C3 arranged in parallel with the center electrodes L1, L2, and L3.
  • the high frequency signal input from the port P1 (TX) is transmitted to the port P2 (ANT), and the high frequency signal input from the port P2 (ANT) is transmitted to the port P3 (RX).
  • the isolation characteristics between the ports P1 and P3 depend on the tensor permeability of the ferrite 10 and the port impedances of the ports P1 and P3.
  • the isolation characteristic between the ports P1 and P3 also depends on the magnetic coupling A between the center electrodes L1 and L3. Since the center electrodes L1 and L3 are arranged adjacent to each other on the ferrite 10, it is difficult to obtain a large value of isolation characteristics in a wide frequency band.
  • the impedance of the antenna may vary depending on the environment around the antenna, and if such a variation in impedance occurs, the isolation characteristic from the transmission port TX to the reception port RX is greatly deteriorated. Has occurred.
  • the nonreciprocal circuit device is With ferrite, First, second, third, and fourth center electrodes, each of which is arranged to be wound around the ferrite in at least one turn in an insulated state, and each one end of which is connected to the ground, A first matching capacitor element connected to each of the other ends of the first, second and third center electrodes and connected to the ground; Between the other end of the first center electrode and the first input / output port, between the other end of the second center electrode and the second input / output port, and between the other end of the third center electrode and the third input A second matching capacitor element connected to the output port; It is provided with.
  • the high-frequency module according to the second aspect of the present invention is The non-reciprocal circuit device according to the first form is provided,
  • the first input / output port is a transmission port, the second input / output port is an antenna port, and the third input / output port is a reception port; It is characterized by.
  • the first, second, and third center electrodes are each wound at least one turn around the ferrite, so that the impedance is increased, and the insertion loss and the isolation characteristics are reduced. Broadband.
  • the isolation characteristic between the other end portions (ports) between two other center electrodes facing each other across the fourth center electrode is improved over a wide band.
  • the non-reciprocal circuit device is With ferrite, First, second, third, and fourth center electrodes, each of which is arranged to be wound around the ferrite in at least one turn in an insulated state, and each one end of which is connected to the ground, A first matching capacitor element connected to the other end of each of the first, second, third and fourth center electrodes and connected to the ground; Between the other end of the first center electrode and the first input / output port, between the other end of the second center electrode and the second input / output port, and the other end of the third center electrode and the third input / output port And a second matching capacitor element connected between the other end of the fourth center electrode and the fourth input / output port, It is provided with.
  • the high-frequency module according to the fourth aspect of the present invention is A non-reciprocal circuit device according to the third embodiment;
  • the first input / output port is a transmission port, the second input / output port is a first antenna port, the third input / output port is a second antenna port, and the fourth input / output port is a reception port. , It is characterized by.
  • the first, second, third, and fourth center electrodes are each wound at least one turn around the ferrite, so that the impedance is increased, and the insertion loss and the isolator are isolated.
  • Broadband characteristics In particular, if the second input / output port is the first antenna port and the third input / output port is the second antenna port, even if the impedance of the first or second antenna fluctuates, the signal is received from the transmission port. There is almost no deterioration in the isolation characteristics of the port.
  • the nonreciprocal circuit device is With ferrite, First, second, third, and fourth center electrodes, each of which is arranged to be wound around the ferrite in at least one turn in an insulated state, and each one end of which is connected to the ground, A first matching capacitor element connected to the other end of each of the first, second and fourth center electrodes and connected to the ground; Between the other end of the first center electrode and the first input / output port, between the other end of the second center electrode and the second input / output port, and between the other end of the fourth center electrode and the fourth input A second matching capacitor element connected to the output port; A resistance element connected to the other end of the third center electrode and connected to the ground; A filter having a fixed or variable pass characteristic connected between the other end of the third center electrode and the resistance element; It is provided with.
  • the high-frequency module according to the sixth aspect of the present invention is A nonreciprocal circuit device according to the fifth embodiment;
  • the first input / output port is a transmission port, the second input / output port is an antenna port, and the fourth input / output port is a reception port; It is characterized by.
  • the first, second, third, and fourth center electrodes are wound around the ferrite for at least one turn, so that the impedance is increased, and the insertion loss and the isolator are isolated.
  • Broadband characteristics In particular, if the first input / output port is a transmission port, the second input / output port is an antenna port, and the fourth input / output port is a reception port, even if the impedance of the antenna fluctuates, The isolation characteristic from the port to the receiving port hardly deteriorates.
  • the present invention it is possible to obtain a large isolation characteristic in a wide band, and it is possible to prevent deterioration of the isolation characteristic even if the impedance of the antenna fluctuates.
  • the nonreciprocal circuit device 1A is configured as a 4-port type lumped constant circulator as shown in the equivalent circuit of FIG. 1st, 2nd, 3rd, 4th center electrode L1, L2, L3, L4 which is arrange
  • a resistance element R connected to the ground (fourth input / output port P4) is connected to the other end of the fourth center electrode L4.
  • the first matching capacitor elements C1, C2, and C3 connected to the ground are connected to the other ends of the first, second, and third center electrodes L1, L2, and L3, respectively. Further, between the other end of the first center electrode L1 and the first input / output port P1 (transmission port TX), the other end of the second center electrode L2 and the second input / output port P2 (antenna port ANT). And second matching capacitor elements CS1, CS2 and CS3 are connected between the other end of the third center electrode L3 and the third input / output port P3 (receiving port RX), respectively. Yes.
  • One end portions of the first, second, third, and fourth center electrodes L1, L2, L3, and L4 are connected to the ground GND through a series resonance circuit including an inductance element L11 and a capacitor element C11. .
  • This series resonant circuit is not always necessary.
  • the center electrodes L1, L2, L3, and L4 are formed of a conductor pattern wound around the upper and lower surfaces of the rectangular ferrite 10, as shown in FIG.
  • the first center electrode L1 includes conductor patterns 31 and 33 provided on the top surface of the ferrite 10, a conductor pattern 32 provided on the bottom surface, and interlayer conductors 34a and 34b provided on the side surfaces.
  • One end is connected to the port P1
  • the other end of the conductor pattern 31 is connected to one end of the conductor pattern 32 via the interlayer conductor 34a
  • the other end of the conductor pattern 32 is connected to one end of the conductor pattern 33 via the interlayer conductor 34b. Is done.
  • the other end of the conductor pattern 33 is connected to the ground GND.
  • the second center electrode L2 includes conductor patterns 41 and 43 provided on the upper surface, a conductor pattern 42 provided on the lower surface, and interlayer conductors 44a and 44b provided on the side surfaces, and one end of the conductor pattern 41 is connected to the port P2.
  • the other end of the conductor pattern 41 is connected to one end of the conductor pattern 42 via the interlayer conductor 44a, and the other end of the conductor pattern 42 is connected to one end of the conductor pattern 43 via the interlayer conductor 44b.
  • the other end of the conductor pattern 43 is connected to the ground GND.
  • the third center electrode L3 includes conductor patterns 51 and 53 provided on the upper surface, a conductor pattern 52 provided on the lower surface, and interlayer conductors 54a and 54b provided on the side surfaces, and one end of the conductor pattern 51 is connected to the port P3.
  • the other end of the conductor pattern 51 is connected to one end of the conductor pattern 52 via the interlayer conductor 54a, and the other end of the conductor pattern 52 is connected to one end of the conductor pattern 53 via the interlayer conductor 54b.
  • the other end of the conductor pattern 53 is connected to the ground GND.
  • the fourth center electrode L4 includes conductor patterns 61 and 63 provided on the upper surface, a conductor pattern 62 provided on the lower surface, and interlayer conductors 64a and 64b provided on the side surfaces.
  • the other end of the conductor pattern 61 is connected to one end of the conductor pattern 62 via the interlayer conductor 64a, and the other end of the conductor pattern 62 is connected to one end of the conductor pattern 63 via the interlayer conductor 64b. ing. The other end of the conductor pattern 63 is connected to the ground GND.
  • one turn in which the center electrodes L1 to L4 are wound around the ferrite 10 means a state where the ferrite 10 is wound once. However, it is sufficient that the winding is substantially performed.
  • at the center electrode L1, at least the pattern 31, the interlayer conductor 34a, and the pattern 32 are referred to as one turn.
  • the operation of the 4-port type circulator having the above configuration is basically the same as that of the conventional 3-port type, and the high-frequency signal input from the first input / output port P1 (transmission port TX) is the second.
  • a high-frequency signal output from the input / output port P2 (antenna port ANT) and input from the second input / output port P2 (antenna port ANT) is output from the third input / output port P3 (reception port RX).
  • the first matching capacitor elements C1, C2, and C3 form part of different parallel resonance circuits with the first, second, and third center electrodes L1, L2, and L3, respectively (inductance element L11 and capacitor element C11).
  • the operation frequency is adjusted according to each capacitance value.
  • the first, second, and third center electrodes L1, L2, and L3 are wound around the ferrite 10 by 1.5 turns, respectively, and the insertion loss and isolation characteristics are broadened by increasing the impedance.
  • the second matching capacitor element CS1 is inserted between the first input / output port P1 (transmission port TX) and the first center electrode L1, and the second input / output port P2 (antenna port ANT) and the second input
  • the second matching capacitor element CS2 is inserted between the center electrode L2 and the second matching capacitor element CS3 is inserted between the third input / output port P3 (reception port RX) and the third center electrode L3.
  • the impedances of the ports P1, P2, and P3 can be easily adjusted by the capacitance values of the second matching capacitors CS1, CS2, and CS3, and deterioration of insertion loss in the operating frequency band as a circulator can be suppressed. .
  • center electrode L1, L2, L3 improves. Furthermore, by adjusting the inductance values of the center electrodes L1, L2, and L3 and the capacitance values of the first matching capacitor elements C1, C2, and C3, the attenuation amount of the insertion loss characteristic and the isolation characteristic can be freely adjusted in the operating frequency band. Can be designed.
  • FIG. 3 shows the isolation characteristics between ports P3 and P1 (see solid line) and the isolation characteristics between ports P1 and P3 (see dotted line).
  • the first center electrode L1 and the third center electrode L3 are opposed to each other, and are opposite to each other with the ground GND side as an end point (arrows a, a ').
  • the second center electrode L2 and the fourth center electrode L4 face each other and are wound in opposite directions (see b and b ′) with the ground GND side as an end point.
  • the first center electrode L1 and the third center electrode L3 are arranged in parallel to each other, the second center electrode L2 and the fourth center electrode L4 are arranged in parallel to each other, and the first and third center electrodes L1 and L3 and the second and fourth center electrodes L2 and L4 intersect each other at 90 °.
  • the opposing first center electrode L1 and third central electrode L3 are wound in opposite directions, and the opposing second center electrode L2 and fourth center electrode L4 are wound in opposite directions. Therefore, as shown in FIG. 4A, the insertion loss characteristic and the isolation characteristic between the ports P1 and P2 show good characteristics over a wide band.
  • the first center electrode L1 and the third center electrode L3 facing each other are wound in the same direction, and the second center electrode L2 and the fourth center electrode L4 facing each other are wound in the same direction.
  • the insertion loss characteristic and the isolation characteristic between the port P1 and the port P2 are as shown in FIG. 4B, and irreversibility cannot be obtained.
  • the irreversible circuit element 1A can simultaneously support a plurality of frequency bands used for wireless communication.
  • FIG. 5 shows a block diagram of a high-frequency module for a mobile phone including the nonreciprocal circuit element 1A.
  • the first input / output port P1 transmission port TX
  • the second input / output port P ⁇ b> 2 is connected to the antenna 84.
  • the third input / output port P3 (reception port RX) is connected to the reception filter 85 and further connected to the reception circuit 86.
  • the transmission signal output from the transmission circuit 83 is input to the antenna 84 from the nonreciprocal circuit element 1A. Then, the transmission signal reflected by the antenna 84 is reflected again by the reception filter 85, and this re-reflection signal is absorbed by the fourth input / output port P4 (resistive element R).
  • the reception signal input from the antenna 84 is input from the third input / output port P3 to the reception circuit 86 via the reception filter 85.
  • the nonreciprocal circuit device 1B has basically the same configuration as that of the first embodiment, and the first center electrode L1, counterclockwise in the drawing, A second center electrode L2, a third center electrode L3, and a fourth center electrode L4 are disposed.
  • the difference is that instead of the resistor element R, the first matching capacitor element C4 and the second matching capacitor element CS4 are connected to the other end of the fourth center electrode L4.
  • the second input / output port P2 which is the other end of the second center electrode L2 is an antenna port ANT1, and the third input / output port P3 which is the other end of the third center electrode L3 is a second antenna port. ANT2.
  • the fourth input / output port P4, which is the other end of the fourth center electrode L4, is a reception port RX.
  • the operation of the second embodiment is basically the same as that of the first embodiment, but the antenna connected to the antenna port ANT1 functions as a transmission-dedicated antenna, and is connected to the second antenna port ANT2.
  • the connected antenna functions as a transmission / reception antenna. That is, the high-frequency signal input from the first input / output port P1 (transmission port TX) is output from the second input / output port P2 (antenna port ANT1). On the other hand, a high-frequency signal input from the third input / output port P3 (second antenna port ANT2) is output from the fourth input / output port P4 (reception port RX).
  • the impedance changes, and a high-frequency signal input from the transmission port TX Is reflected by the transmission-dedicated antenna.
  • the second antenna port ANT2 is provided between the antenna port ANT1 and the reception port RX, the high frequency signal reflected by the transmission dedicated antenna is connected to the port P3 (ANT2). Output from the transmitting / receiving antenna. For this reason, it is possible to prevent the high frequency signal input from the transmission port TX from leaking to the reception port RX due to the impedance variation of the antenna connected to the antenna port ANT1, and the isolation between the ports P1 and P4 from deteriorating. Can do.
  • FIG. 7A when the voltage standing wave ratio (VSWR) of the transmission-dedicated antenna connected to the antenna port ANT1 is 3, the antenna impedance is a, b, c, d
  • FIG. 7B shows a change in isolation between the ports P1 to P4 (TX-RX) when changed to e and f
  • FIG. 7C shows the isolation characteristic between the ports P1-P3 (TX-RX) when the impedance in the conventional example shown in FIG. 16 changes from a to f.
  • an isolation characteristic of ⁇ 15 dB or more is obtained in the frequency band of 699 to 960 MHz.
  • the second antenna port ANT2 is not provided between the receiving port RX and the receiving port RX, it is greatly deteriorated.
  • the antenna connected to the antenna port ANT1 may correspond to the transmission signal and the reception signal, and the antenna connected to the second antenna port ANT2 may correspond to only the transmission signal.
  • the antenna 105 connected to the antenna port ANT1 is vertically arranged on the top of the housing 101, and the antenna 106 connected to the second antenna port ANT2 is placed in the housing 101.
  • a surface-mounted antenna 121 is disposed as a first antenna on a circuit board 110 provided with a ground electrode 111, and a whip antenna 122 is disposed as a second antenna. It may be arranged.
  • the surface-mounted antenna 121 is mounted such that the open end of the radiation electrode faces downward, so that the open end is kept away from the whip antenna 122.
  • the surface-mounted antenna 121 is mounted so that the open end of the radiation electrode faces the outside of the mobile terminal 100, so that the open end is kept away from the whip antenna 122. Yes. In any arrangement example, mutual interference between the surface-mounted antenna 121 and the whip antenna 122 is prevented.
  • the impedance of the first antenna and the second antenna can be changed due to environmental changes at the same time. Can be avoided.
  • the nonreciprocal circuit device 1C according to the third embodiment has basically the same configuration as that of the second embodiment (see FIG. 6).
  • These antennas correspond to both transmission signals and reception signals, and a filter F is inserted between the other end of the third center electrode L3 and the port P3.
  • the filter F may have either a fixed or variable pass characteristic.
  • the filter F passes a high-frequency signal input from the transmission port TX and reflected by the first antenna, and reflects a received signal of the first antenna. Has filter characteristics.
  • a high-frequency signal input from the first input / output port P1 (transmission port TX) is output from the second input / output port P2 (antenna port ANT1).
  • This transmission signal is selected from a plurality of frequency bands according to need.
  • the received signal input from the antenna connected to the port P2 (ANT1) is reflected by the filter F and input to the port P4 (receiving port RX).
  • the 2nd antenna should just respond
  • the nonreciprocal circuit device 1D As shown in FIG. 11, the nonreciprocal circuit device 1D according to the fourth embodiment basically has the same configuration as that of the third embodiment (see FIG. 10).
  • the resistance element R dropped to the ground is connected to the other end of the center electrode L3 through the filter F. Therefore, the port P3 is a termination, and the antenna port is only the port P2.
  • the filter F may have either a fixed or variable pass characteristic, and passes a high-frequency signal input from the transmission port TX and reflected by the antenna, It has a filter characteristic to reflect.
  • the antenna is compatible with both transmission signals and reception signals.
  • a high-frequency signal input from the first input / output port P1 (transmission port TX) is output from the second input / output port P2 (antenna port ANT).
  • the transmission signal is selected from a plurality of frequency bands as required.
  • the received signal input from the antenna connected to the port P2 is reflected by the filter F and input to the port P4 (receiving port RX).
  • FIG. 12 shows a block diagram of a high-frequency module constituting a front-end circuit including the nonreciprocal circuit element 1D.
  • the first input / output port P1 (transmission port TX) is connected to the transmission circuit 83 via the power amplifier 82.
  • the second input / output port P ⁇ b> 2 (antenna port ANT) is connected to the antenna 84.
  • the third input / output port P3 is connected to the other end of the third center electrode L3 via the filter F and the resistance element R.
  • the fourth input / output port P4 (reception port RX) is connected to the reception circuit 86.
  • filters may be arranged between the first input / output port P1 and the power amplifier 82 and between the fourth input / output port P4 and the receiving circuit 86.
  • the transmission signal output from the transmission circuit 83 is input to the antenna 84 from the first input / output port P1. Then, the transmission signal reflected by the antenna 84 passes through the filter F and is absorbed by the resistance element R. The reception signal input from the antenna 84 is reflected by the filter F and input to the reception circuit 86 from the fourth input / output port P4.
  • FIG. 13 when the voltage standing wave ratio (VSWR) of the antenna 84 is 3 as in FIG. 7B, the impedance of the antenna changes to a, b, c, d, e, f.
  • the change in isolation between ports P1-P4 (TX-RX) is shown.
  • a conventional example to be compared is FIG. 7C, and in the band of 699 to 960 MHz, the isolation characteristic of -15 dB or more is obtained in the example of the present invention.
  • FIG. 14A shows the change in the adjustment.
  • FIG. 14B shows a similar change in isolation in the conventional example shown in FIG.
  • the isolation characteristics of the example of the present invention are greatly improved at any impedance compared to the conventional example.
  • the isolation is ⁇ 7.3 to ⁇ 8.3 dB in the conventional example, whereas it is ⁇ 15.4 to ⁇ 19.7 dB in the example of the present invention.
  • the isolation characteristics of the present invention are not significantly deteriorated as compared with the conventional example. Therefore, even when the VSWR varies, by using the configuration of the present invention example, excellent isolation characteristics between TX and RX can be obtained over a wide frequency band.
  • the other multi-port device 2 is, for example, a CMOS duplexer using a transformer.
  • the transmission signal reflected by the load fluctuation of the antenna 84 can be absorbed by the resistance element R (may be a variable resistance element), and the reflected signal is transmitted to the reception circuit 86 side. It can prevent wrapping around. As a result, similar to the non-reciprocal circuit element, an effect of preventing deterioration of isolation between transmission and reception can be obtained.
  • the nonreciprocal circuit device and the high frequency module according to the present invention are not limited to the above-described embodiments, and can be variously modified within the scope of the gist thereof.
  • the specific shape of the center electrode is arbitrary.
  • the matching capacitor element may be built in the circuit board or may be mounted on the circuit board as a chip type.
  • the present invention is useful for non-reciprocal circuit elements and high-frequency modules. Particularly, a large value of isolation characteristics can be obtained in a wide band, and even if the impedance of the antenna fluctuates, the isolation characteristics can be obtained. It is excellent in that deterioration can be prevented.
  • Non-reciprocal circuit element (circulator) DESCRIPTION OF SYMBOLS 10 ... Ferrite 81 ... Transmission filter 83 ... Transmission circuit 84 ... Antenna 85 ... Reception filter 86 ... Reception circuit 100 ... Portable terminal 105,106 ... Antenna 121 ... Surface mount type antenna 122 ... Whip antenna L1-L4 ... Center electrode C1-C4 ... Capacitor elements CS1 to CS4 ... Capacitor elements R, R1 to R3 ... Resistance elements F ... Filters P1 to P4 ... Ports

Abstract

A non-reciprocal circuit element wherein high-value isolation properties are obtained across a wide range. The non-reciprocal circuit element comprises: ferrite (10); first, second, third, and fourth center electrodes (L1 L2, L3, L4) that are arranged wound at least one turn on to the ferrite (10), each in an insulated state, and having one end of each connected to a ground; first matching capacitor elements (C1, C2, C3) that are connected to the other end of the first, second, and third center electrodes (L1, L2, L3), respectively, and are connected to a ground; and second matching capacitor elements (CS1, CS2, CS3) that are connected between the other end of the first center electrode (L1) and a first I/O port (P1), the other end of the second center electrode (L2) and a second I/O port (P2), and the other end of the third center electrode (L3) and a third I/O port (P3), respectively.

Description

非可逆回路素子及び高周波モジュールNon-reciprocal circuit device and high-frequency module
 本発明は、非可逆回路素子、特に、マイクロ波帯で使用されるサーキュレータなどの非可逆回路素子及び該非可逆回路素子を備えた高周波モジュールに関する。 The present invention relates to a nonreciprocal circuit device, and more particularly to a nonreciprocal circuit device such as a circulator used in a microwave band and a high-frequency module including the nonreciprocal circuit device.
 従来より、携帯電話などの移動用の通信装置に採用されるサーキュレータ(非可逆回路素子)としては、特許文献1,2などに記載のものが知られている。具体的には、図16に示すように、直流磁界Xが印加されるフェライト10に三つの中心電極L1,L2,L3をそれぞれ絶縁状態で巻回し、それぞれの中心電極L1,L2,L3の一端部をグランドに接続し(インダクタンス素子L11とコンデンサ素子C11とからなる直列共振回路が挿入されている場合もある)、他端部に整合用コンデンサC1,C2,C3をそれぞれ並列に接続するとともに該他端部を入出力ポートP1(TX),P2(ANT),P3(RX)として構成したものが知られている。 Conventionally, as circulators (non-reciprocal circuit elements) employed in mobile communication devices such as mobile phones, those described in Patent Documents 1 and 2 are known. Specifically, as shown in FIG. 16, three center electrodes L1, L2, and L3 are wound around a ferrite 10 to which a DC magnetic field X is applied in an insulated state, and one end of each of the center electrodes L1, L2, and L3 is wound. Is connected to the ground (a series resonant circuit composed of an inductance element L11 and a capacitor element C11 may be inserted), and matching capacitors C1, C2, and C3 are connected in parallel to the other end, respectively. A device in which the other end is configured as an input / output port P1 (TX), P2 (ANT), or P3 (RX) is known.
 この種のサーキュレータは3ポートの集中定数型サーキュレータであって、中心電極L1,L2,L3はフェライト10の一面で互いに電気的に絶縁状態で交差するように配置されている。そして、中心電極L1,L2,L3と並列に配置されたコンデンサC1,C2,C3の容量値によって動作周波数を調整している。 This type of circulator is a three-port lumped constant type circulator, and the center electrodes L1, L2, L3 are arranged on one surface of the ferrite 10 so as to cross each other in an electrically insulated state. The operating frequency is adjusted by the capacitance values of the capacitors C1, C2, and C3 arranged in parallel with the center electrodes L1, L2, and L3.
 上述のサーキュレータにおいては、ポートP1(TX)から入力された高周波信号がポートP2(ANT)に伝達され、ポートP2(ANT)から入力された高周波信号がポートP3(RX)に伝達される。ポートP1-P3間のアイソレーション特性は、フェライト10のテンソル透磁率とポートP1,P3のポートインピーダンスに依存する。また、ポートP1-P3間のアイソレーション特性は、中心電極L1,L3間の磁気結合Aにも依存する。中心電極L1,L3はフェライト10上で隣り合うように配置されているため、広い周波数帯域にて大きな値のアイソレーション特性を得ることは困難であった。また、アンテナのインピーダンスは、アンテナの周囲の環境によって変動することがあり、このようなインピーダンスの変動が生じると、送信用ポートTXから受信用ポートRXへのアイソレーション特性が大きく劣化するという問題点が生じている。 In the circulator described above, the high frequency signal input from the port P1 (TX) is transmitted to the port P2 (ANT), and the high frequency signal input from the port P2 (ANT) is transmitted to the port P3 (RX). The isolation characteristics between the ports P1 and P3 depend on the tensor permeability of the ferrite 10 and the port impedances of the ports P1 and P3. The isolation characteristic between the ports P1 and P3 also depends on the magnetic coupling A between the center electrodes L1 and L3. Since the center electrodes L1 and L3 are arranged adjacent to each other on the ferrite 10, it is difficult to obtain a large value of isolation characteristics in a wide frequency band. Further, the impedance of the antenna may vary depending on the environment around the antenna, and if such a variation in impedance occurs, the isolation characteristic from the transmission port TX to the reception port RX is greatly deteriorated. Has occurred.
特開2002-100905号公報JP 2002-100905 A 国際公開第2011/118278号公報International Publication No. 2011/118278
 本発明の目的は、広帯域にて大きな値のアイソレーション特性を得ることのできる非可逆回路素子及び高周波モジュールを提供することにある。本発明の他の目的は、アンテナのインピーダンスが変動してもアイソレーション特性がほとんど劣化することのない非可逆回路素子及び高周波モジュールを提供することにある。 An object of the present invention is to provide a non-reciprocal circuit element and a high-frequency module that can obtain a large value of isolation characteristics in a wide band. Another object of the present invention is to provide a non-reciprocal circuit element and a high-frequency module in which isolation characteristics hardly deteriorate even when the impedance of the antenna fluctuates.
 本発明の第1の形態である非可逆回路素子は、
 フェライトと、
 前記フェライトにそれぞれ絶縁状態で少なくとも1ターン巻回されて配置され、それぞれの一端部がグランドに接続された第1、第2、第3、第4中心電極と、
 第1、第2、第3中心電極の他端部にそれぞれ接続されるとともにグランドに接続された第1整合用コンデンサ素子と、
 第1中心電極の他端部と第1入出力ポートとの間、第2中心電極の他端部と第2入出力ポートとの間、及び、第3中心電極の他端部と第3入出力ポートとの間に、それぞれ接続された第2整合用コンデンサ素子と、
 を備えたことを特徴とする。
The nonreciprocal circuit device according to the first aspect of the present invention is
With ferrite,
First, second, third, and fourth center electrodes, each of which is arranged to be wound around the ferrite in at least one turn in an insulated state, and each one end of which is connected to the ground,
A first matching capacitor element connected to each of the other ends of the first, second and third center electrodes and connected to the ground;
Between the other end of the first center electrode and the first input / output port, between the other end of the second center electrode and the second input / output port, and between the other end of the third center electrode and the third input A second matching capacitor element connected to the output port;
It is provided with.
 本発明の第2の形態である高周波モジュールは、
 前記第1の形態である非可逆回路素子を備え、
 第1入出力ポートが送信用ポートであり、第2入出力ポートがアンテナポートであり、第3入出力ポートが受信用ポートであること、
 を特徴とする。
The high-frequency module according to the second aspect of the present invention is
The non-reciprocal circuit device according to the first form is provided,
The first input / output port is a transmission port, the second input / output port is an antenna port, and the third input / output port is a reception port;
It is characterized by.
 前記第1の形態である非可逆回路素子において、第1、第2、第3中心電極はそれぞれフェライトに少なくとも1ターン巻回されていることにより、インピーダンスが高くなり、挿入損失とアイソレーション特性が広帯域化する。特に、第4中心電極を設けることで、第4中心電極を挟んで対向する二つの他の中心電極間の他端部(ポート)間のアイソレーション特性が広帯域にわたって向上する。 In the non-reciprocal circuit device according to the first aspect, the first, second, and third center electrodes are each wound at least one turn around the ferrite, so that the impedance is increased, and the insertion loss and the isolation characteristics are reduced. Broadband. In particular, by providing the fourth center electrode, the isolation characteristic between the other end portions (ports) between two other center electrodes facing each other across the fourth center electrode is improved over a wide band.
 本発明の第3の形態である非可逆回路素子は、
 フェライトと、
 前記フェライトにそれぞれ絶縁状態で少なくとも1ターン巻回されて配置され、それぞれの一端部がグランドに接続された第1、第2、第3、第4中心電極と、
 第1、第2、第3、第4中心電極の他端部にそれぞれ接続されるとともにグランドに接続された第1整合用コンデンサ素子と、
 第1中心電極の他端部と第1入出力ポートとの間、第2中心電極の他端部と第2入出力ポートとの間、第3中心電極の他端部と第3入出力ポートとの間、及び、第4中心電極の他端部と第4入出力ポートとの間に、それぞれ接続された第2整合用コンデンサ素子と、
 を備えたことを特徴とする。
The non-reciprocal circuit device according to the third aspect of the present invention is
With ferrite,
First, second, third, and fourth center electrodes, each of which is arranged to be wound around the ferrite in at least one turn in an insulated state, and each one end of which is connected to the ground,
A first matching capacitor element connected to the other end of each of the first, second, third and fourth center electrodes and connected to the ground;
Between the other end of the first center electrode and the first input / output port, between the other end of the second center electrode and the second input / output port, and the other end of the third center electrode and the third input / output port And a second matching capacitor element connected between the other end of the fourth center electrode and the fourth input / output port,
It is provided with.
 本発明の第4の形態である高周波モジュールは、
 前記第3の形態である非可逆回路素子を備え、
 第1入出力ポートが送信用ポートであり、第2入出力ポートが第1アンテナポートであり、第3入出力ポートが第2アンテナポートであり、第4入出力ポートが受信用ポートであること、
 を特徴とする。
The high-frequency module according to the fourth aspect of the present invention is
A non-reciprocal circuit device according to the third embodiment;
The first input / output port is a transmission port, the second input / output port is a first antenna port, the third input / output port is a second antenna port, and the fourth input / output port is a reception port. ,
It is characterized by.
 前記第3の形態である非可逆回路素子において、第1、第2、第3、第4中心電極はそれぞれフェライトに少なくとも1ターン巻回されていることにより、インピーダンスが高くなり、挿入損失とアイソレーション特性が広帯域化する。特に、第2入出力ポートを第1アンテナポートとし、第3入出力ポートを第2アンテナポートとすれば、第1又は第2アンテナのインピーダンスが変動した場合であっても、送信用ポートから受信用ポートへのアイソレーション特性が劣化することはほとんどない。 In the non-reciprocal circuit device according to the third aspect, the first, second, third, and fourth center electrodes are each wound at least one turn around the ferrite, so that the impedance is increased, and the insertion loss and the isolator are isolated. Broadband characteristics. In particular, if the second input / output port is the first antenna port and the third input / output port is the second antenna port, even if the impedance of the first or second antenna fluctuates, the signal is received from the transmission port. There is almost no deterioration in the isolation characteristics of the port.
 本発明の第5の形態である非可逆回路素子は、
 フェライトと、
 前記フェライトにそれぞれ絶縁状態で少なくとも1ターン巻回されて配置され、それぞれの一端部がグランドに接続された第1、第2、第3、第4中心電極と、
 第1、第2、第4中心電極の他端部にそれぞれ接続されるとともにグランドに接続された第1整合用コンデンサ素子と、
 第1中心電極の他端部と第1入出力ポートとの間、第2中心電極の他端部と第2入出力ポートとの間、及び、第4中心電極の他端部と第4入出力ポートとの間に、それぞれ接続された第2整合用コンデンサ素子と、
 第3中心電極の他端部に接続されるとともにグランドに接続された抵抗素子と、
 第3中心電極の他端部と前記抵抗素子との間に接続された、通過特性が固定又は可変なフィルタと、
 を備えたことを特徴とする。
The nonreciprocal circuit device according to the fifth aspect of the present invention is
With ferrite,
First, second, third, and fourth center electrodes, each of which is arranged to be wound around the ferrite in at least one turn in an insulated state, and each one end of which is connected to the ground,
A first matching capacitor element connected to the other end of each of the first, second and fourth center electrodes and connected to the ground;
Between the other end of the first center electrode and the first input / output port, between the other end of the second center electrode and the second input / output port, and between the other end of the fourth center electrode and the fourth input A second matching capacitor element connected to the output port;
A resistance element connected to the other end of the third center electrode and connected to the ground;
A filter having a fixed or variable pass characteristic connected between the other end of the third center electrode and the resistance element;
It is provided with.
 本発明の第6の形態である高周波モジュールは、
 前記第5の形態である非可逆回路素子を備え、
 第1入出力ポートが送信用ポートであり、第2入出力ポートがアンテナポートであり、第4入出力ポートが受信用ポートであること、
 を特徴とする。
The high-frequency module according to the sixth aspect of the present invention is
A nonreciprocal circuit device according to the fifth embodiment;
The first input / output port is a transmission port, the second input / output port is an antenna port, and the fourth input / output port is a reception port;
It is characterized by.
 前記第5の形態である非可逆回路素子において、第1、第2、第3、第4中心電極はそれぞれフェライトに少なくとも1ターン巻回されていることにより、インピーダンスが高くなり、挿入損失とアイソレーション特性が広帯域化する。特に、第1入出力ポートを送信用ポートとし、第2入出力ポートをアンテナポートとし、第4入出力ポートを受信用ポートとすれば、アンテナのインピーダンスが変動した場合であっても、送信用ポートから受信用ポートへのアイソレーション特性が劣化することはほとんどない。 In the non-reciprocal circuit device according to the fifth aspect, the first, second, third, and fourth center electrodes are wound around the ferrite for at least one turn, so that the impedance is increased, and the insertion loss and the isolator are isolated. Broadband characteristics. In particular, if the first input / output port is a transmission port, the second input / output port is an antenna port, and the fourth input / output port is a reception port, even if the impedance of the antenna fluctuates, The isolation characteristic from the port to the receiving port hardly deteriorates.
 本発明によれば、広帯域にて大きな値のアイソレーション特性を得ることができ、アンテナのインピーダンスが変動してもアイソレーション特性の劣化を防止可能である。 According to the present invention, it is possible to obtain a large isolation characteristic in a wide band, and it is possible to prevent deterioration of the isolation characteristic even if the impedance of the antenna fluctuates.
第1実施例である非可逆回路素子の等価回路図である。It is an equivalent circuit diagram of the nonreciprocal circuit device according to the first embodiment. 第1実施例を構成する中心電極の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the center electrode which comprises 1st Example. 第1実施例でのポートP1-P3間のアイソレーション特性を示すグラフである。3 is a graph showing isolation characteristics between ports P1 and P3 in the first embodiment. ポートP1-P2間での挿入損失特性及びポートP2-P1間でのアイソレーション特性を示すグラフであり、(A)は第1実施例での特性、(B)は比較例での特性を示す。4 is a graph showing insertion loss characteristics between ports P1 and P2 and isolation characteristics between ports P2 and P1, with (A) showing the characteristics in the first embodiment and (B) showing the characteristics in the comparative example. . 第1実施例である非可逆回路素子を用いた高周波モジュールを示すブロック図である。It is a block diagram which shows the high frequency module using the nonreciprocal circuit element which is 1st Example. 第2実施例である非可逆回路素子の等価回路である。It is the equivalent circuit of the nonreciprocal circuit device which is 2nd Example. 第2実施例である非可逆回路素子の特性を示すグラフであり、(A)はインピーダンス特性を示し、(B)はインピーダンスの変動に応じたアイソレーション特性を示し、(C)は参考のために従来例でのインピーダンスの変動に応じたアイソレーション特性を示す。It is a graph which shows the characteristic of the nonreciprocal circuit element which is 2nd Example, (A) shows an impedance characteristic, (B) shows the isolation characteristic according to the fluctuation | variation of an impedance, (C) is for reference Shows the isolation characteristics according to the impedance variation in the conventional example. 携帯電話の第1例を示す斜視図である。It is a perspective view which shows the 1st example of a mobile telephone. 携帯電話の第2例を示す平面図である。It is a top view which shows the 2nd example of a mobile telephone. 第3実施例である非可逆回路素子の等価回路図である。It is the equivalent circuit schematic of the nonreciprocal circuit device which is 3rd Example. 第4実施例である非可逆回路素子の等価回路図である。It is the equivalent circuit schematic of the nonreciprocal circuit device which is 4th Example. 第4実施例である非可逆回路素子を用いた高周波モジュールを示すブロック図である。It is a block diagram which shows the high frequency module using the nonreciprocal circuit device which is 4th Example. 第4実施例である非可逆回路素子の特性(アンテナのインピーダンスの変動に応じたアイソレーション特性)を示すグラフである。It is a graph which shows the characteristic (isolation characteristic according to the fluctuation | variation of the impedance of an antenna) of the nonreciprocal circuit element which is 4th Example. 第4実施例である非可逆回路素子の特性(アンテナの反射位相によるアイソレーション特性)を示すグラフであり、(A)は本発明例を示し、(B)は参考のための従来例を示す。It is a graph which shows the characteristic (isolation characteristic by the reflective phase of an antenna) of the nonreciprocal circuit element which is 4th Example, (A) shows this invention example, (B) shows the prior art example for reference. . 高周波モジュールの他の例を示すブロック図である。It is a block diagram which shows the other example of a high frequency module. 従来例である非可逆回路素子の等価回路図である。It is an equivalent circuit diagram of the nonreciprocal circuit device which is a conventional example.
 以下に、本発明に係る非可逆回路素子及び高周波モジュールの実施例について添付図面を参照して説明する。なお、各図において同じ部材には共通する符号を付し、重複する説明は省略する。 Hereinafter, embodiments of the non-reciprocal circuit device and the high-frequency module according to the present invention will be described with reference to the accompanying drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same member, and the overlapping description is abbreviate | omitted.
 (第1実施例、図1~図4)
 第1実施例である非可逆回路素子1Aは、図1の等価回路に示すように、4ポートタイプの集中定数型サーキュレータとして構成され、直流磁界Xが印加されるフェライト10と、フェライト10にそれぞれ絶縁状態で少なくとも1ターン巻回されて配置され、それぞれの一端部がグランドGNDに接続された第1、第2、第3、第4中心電極L1,L2,L3,L4と、を備えている。第4中心電極L4の他端部にはグランド(第4入出力ポートP4)に接続された抵抗素子Rが接続されている。
(First embodiment, FIGS. 1 to 4)
The nonreciprocal circuit device 1A according to the first embodiment is configured as a 4-port type lumped constant circulator as shown in the equivalent circuit of FIG. 1st, 2nd, 3rd, 4th center electrode L1, L2, L3, L4 which is arrange | positioned and wound at least 1 turn in the insulated state, and each one end part was connected to the ground GND is provided. . A resistance element R connected to the ground (fourth input / output port P4) is connected to the other end of the fourth center electrode L4.
 第1、第2、第3中心電極L1,L2,L3の他端部にはグランドに接続された第1整合用コンデンサ素子C1,C2,C3がそれぞれ接続されている。さらに、第1中心電極L1の他端部と第1入出力ポートP1(送信用ポートTX)との間、第2中心電極L2の他端部と第2入出力ポートP2(アンテナ用ポートANT)との間、及び、第3中心電極L3の他端部と第3入出力ポートP3(受信用ポートRX)との間には、それぞれ第2整合用コンデンサ素子CS1,CS2,CS3が接続されている。 The first matching capacitor elements C1, C2, and C3 connected to the ground are connected to the other ends of the first, second, and third center electrodes L1, L2, and L3, respectively. Further, between the other end of the first center electrode L1 and the first input / output port P1 (transmission port TX), the other end of the second center electrode L2 and the second input / output port P2 (antenna port ANT). And second matching capacitor elements CS1, CS2 and CS3 are connected between the other end of the third center electrode L3 and the third input / output port P3 (receiving port RX), respectively. Yes.
 なお、第1、第2、第3、第4中心電極L1,L2,L3,L4の一端部は、インダクタンス素子L11とコンデンサ素子C11とからなる直列共振回路を介してグランドGNDに接続されている。なお、この直列共振回路は必ずしも必要なものではない。 One end portions of the first, second, third, and fourth center electrodes L1, L2, L3, and L4 are connected to the ground GND through a series resonance circuit including an inductance element L11 and a capacitor element C11. . This series resonant circuit is not always necessary.
 中心電極L1,L2,L3,L4は、図2に示すように、矩形状フェライト10の上下面に巻回した導体パターンにて形成されている。詳しくは、第1中心電極L1は、フェライト10の上面に設けた導体パターン31,33と、下面に設けた導体パターン32と、側面に設けた層間導体34a,34bとからなり、導体パターン31の一端がポートP1に接続され、導体パターン31の他端が層間導体34aを介して導体パターン32の一端に接続され、導体パターン32の他端が層間導体34bを介して導体パターン33の一端に接続される。導体パターン33の他端がグランドGNDに接続されている。第2中心電極L2は、上面に設けた導体パターン41,43と、下面に設けた導体パターン42と、側面に設けた層間導体44a,44bとからなり、導体パターン41の一端がポートP2に接続され、導体パターン41の他端が層間導体44aを介して導体パターン42の一端に接続され、導体パターン42の他端が層間導体44bを介して導体パターン43の一端に接続されている。導体パターン43の他端がグランドGNDに接続される。 The center electrodes L1, L2, L3, and L4 are formed of a conductor pattern wound around the upper and lower surfaces of the rectangular ferrite 10, as shown in FIG. Specifically, the first center electrode L1 includes conductor patterns 31 and 33 provided on the top surface of the ferrite 10, a conductor pattern 32 provided on the bottom surface, and interlayer conductors 34a and 34b provided on the side surfaces. One end is connected to the port P1, the other end of the conductor pattern 31 is connected to one end of the conductor pattern 32 via the interlayer conductor 34a, and the other end of the conductor pattern 32 is connected to one end of the conductor pattern 33 via the interlayer conductor 34b. Is done. The other end of the conductor pattern 33 is connected to the ground GND. The second center electrode L2 includes conductor patterns 41 and 43 provided on the upper surface, a conductor pattern 42 provided on the lower surface, and interlayer conductors 44a and 44b provided on the side surfaces, and one end of the conductor pattern 41 is connected to the port P2. The other end of the conductor pattern 41 is connected to one end of the conductor pattern 42 via the interlayer conductor 44a, and the other end of the conductor pattern 42 is connected to one end of the conductor pattern 43 via the interlayer conductor 44b. The other end of the conductor pattern 43 is connected to the ground GND.
 第3中心電極L3は、上面に設けた導体パターン51,53と、下面に設けた導体パターン52と、側面に設けた層間導体54a,54bとからなり、導体パターン51の一端がポートP3に接続され、導体パターン51の他端が層間導体54aを介して導体パターン52の一端に接続され、導体パターン52の他端が層間導体54bを介して導体パターン53の一端に接続されている。導体パターン53の他端がグランドGNDに接続される。第4中心電極L4は、上面に設けた導体パターン61,63と、下面に設けた導体パターン62と、側面に設けた層間導体64a,64bとからなり、導体パターン61の一端がポートP4(図1参照)に接続され、導体パターン61の他端が層間導体64aを介して導体パターン62の一端に接続され、導体パターン62の他端が層間導体64bを介して導体パターン63の一端に接続されている。導体パターン63の他端がグランドGNDに接続される。 The third center electrode L3 includes conductor patterns 51 and 53 provided on the upper surface, a conductor pattern 52 provided on the lower surface, and interlayer conductors 54a and 54b provided on the side surfaces, and one end of the conductor pattern 51 is connected to the port P3. The other end of the conductor pattern 51 is connected to one end of the conductor pattern 52 via the interlayer conductor 54a, and the other end of the conductor pattern 52 is connected to one end of the conductor pattern 53 via the interlayer conductor 54b. The other end of the conductor pattern 53 is connected to the ground GND. The fourth center electrode L4 includes conductor patterns 61 and 63 provided on the upper surface, a conductor pattern 62 provided on the lower surface, and interlayer conductors 64a and 64b provided on the side surfaces. 1), the other end of the conductor pattern 61 is connected to one end of the conductor pattern 62 via the interlayer conductor 64a, and the other end of the conductor pattern 62 is connected to one end of the conductor pattern 63 via the interlayer conductor 64b. ing. The other end of the conductor pattern 63 is connected to the ground GND.
 ここで、中心電極L1~L4がフェライト10に巻回されている1ターンとは、フェライト10を1巻回している状態を意味する。但し、実質的に1巻回していればよく、例えば、中心電極L1においては少なくともパターン31と層間導体34aとパターン32で1ターンと称する。 Here, one turn in which the center electrodes L1 to L4 are wound around the ferrite 10 means a state where the ferrite 10 is wound once. However, it is sufficient that the winding is substantially performed. For example, at the center electrode L1, at least the pattern 31, the interlayer conductor 34a, and the pattern 32 are referred to as one turn.
 以上の構成からなる4ポート型のサーキュレータの動作は従来の3ポート型のものと基本的には同様であり、第1入出力ポートP1(送信用ポートTX)から入力された高周波信号は第2入出力ポートP2(アンテナ用ポートANT)から出力され、第2入出力ポートP2(アンテナ用ポートANT)から入力された高周波信号は第3入出力ポートP3(受信用ポートRX)から出力される。 The operation of the 4-port type circulator having the above configuration is basically the same as that of the conventional 3-port type, and the high-frequency signal input from the first input / output port P1 (transmission port TX) is the second. A high-frequency signal output from the input / output port P2 (antenna port ANT) and input from the second input / output port P2 (antenna port ANT) is output from the third input / output port P3 (reception port RX).
 第1整合用コンデンサ素子C1,C2,C3は、それぞれ、第1、第2、第3中心電極L1,L2,L3とで異なる並列共振回路の一部を構成し(インダクタンス素子L11及びコンデンサ素子C11も並列共振回路を構成している)、それぞれの容量値によって動作周波数を調整する。第1、第2、第3中心電極L1,L2,L3はフェライト10にそれぞれ1.5ターンずつ巻回されており、インピーダンスが高くなることにより、挿入損失とアイソレーション特性が広帯域化する。 The first matching capacitor elements C1, C2, and C3 form part of different parallel resonance circuits with the first, second, and third center electrodes L1, L2, and L3, respectively (inductance element L11 and capacitor element C11). The operation frequency is adjusted according to each capacitance value. The first, second, and third center electrodes L1, L2, and L3 are wound around the ferrite 10 by 1.5 turns, respectively, and the insertion loss and isolation characteristics are broadened by increasing the impedance.
 そして、第1入出力ポートP1(送信用ポートTX)と第1中心電極L1との間に第2整合用コンデンサ素子CS1を挿入し、第2入出力ポートP2(アンテナ用ポートANT)と第2中心電極L2との間に第2整合用コンデンサ素子CS2を挿入し、第3入出力ポートP3(受信用ポートRX)と第3中心電極L3との間に第2整合用コンデンサ素子CS3を挿入したため、第2整合用コンデンサCS1,CS2,CS3の容量値によって各ポートP1,P2,P3のインピーダンスを容易に調整することができ、サーキュレータとしての動作周波数帯での挿入損失の劣化を抑えることができる。これにより、中心電極L1,L2,L3の設計自由度が向上する。さらに、中心電極L1,L2,L3のインダクタンス値と第1整合用コンデンサ素子C1,C2,C3の容量値とを調整することにより、動作周波数帯で挿入損失特性及びアイソレーション特性の減衰量を自由に設計できる。 Then, the second matching capacitor element CS1 is inserted between the first input / output port P1 (transmission port TX) and the first center electrode L1, and the second input / output port P2 (antenna port ANT) and the second input The second matching capacitor element CS2 is inserted between the center electrode L2 and the second matching capacitor element CS3 is inserted between the third input / output port P3 (reception port RX) and the third center electrode L3. The impedances of the ports P1, P2, and P3 can be easily adjusted by the capacitance values of the second matching capacitors CS1, CS2, and CS3, and deterioration of insertion loss in the operating frequency band as a circulator can be suppressed. . Thereby, the design freedom of center electrode L1, L2, L3 improves. Furthermore, by adjusting the inductance values of the center electrodes L1, L2, and L3 and the capacitance values of the first matching capacitor elements C1, C2, and C3, the attenuation amount of the insertion loss characteristic and the isolation characteristic can be freely adjusted in the operating frequency band. Can be designed.
 ここで、第1実施例での特性を図3及び図4に示す。図3はポートP3-P1間のアイソレーション特性(実線参照)及びポートP1-P3間のアイソレーション特性(点線参照)を示しており、1700MHz以上の広帯域にわたって-20dB以上のアイソレーション特性を得ている。この結果から、第4中心電極L4を設けることで該中心電極L4を挟んで対向する二つの他の中心電極L1,L3の他端部(ポート)間のアイソレーション特性が広帯域にわたって向上することが確認できる。 Here, the characteristics in the first embodiment are shown in FIG. 3 and FIG. FIG. 3 shows the isolation characteristics between ports P3 and P1 (see solid line) and the isolation characteristics between ports P1 and P3 (see dotted line). Obtaining an isolation characteristic of -20 dB or more over a wide band of 1700 MHz or more. Yes. From this result, by providing the fourth center electrode L4, the isolation characteristic between the other end portions (ports) of the two other center electrodes L1 and L3 facing each other across the center electrode L4 is improved over a wide band. I can confirm.
 ところで、本第1実施例においては、図2に示すように、第1中心電極L1と第3中心電極L3とが互いに対向して、かつ、グランドGND側を終点に互いに逆方向(矢印a,a'参照)に巻回されている。第2中心電極L2と第4中心電極L4とが互いに対向して、かつ、グランドGND側を終点に互いに逆方向(b,b'参照)に巻回されている。また、第1中心電極L1と第3中心電極L3とが互いに平行に配置されるとともに第2中心電極L2と第4中心電極L4とが互いに平行に配置され、かつ、第1、第3中心電極L1,L3と第2、第4中心電極L2,L4とが互いに90°で交差している。 By the way, in the first embodiment, as shown in FIG. 2, the first center electrode L1 and the third center electrode L3 are opposed to each other, and are opposite to each other with the ground GND side as an end point (arrows a, a '). The second center electrode L2 and the fourth center electrode L4 face each other and are wound in opposite directions (see b and b ′) with the ground GND side as an end point. The first center electrode L1 and the third center electrode L3 are arranged in parallel to each other, the second center electrode L2 and the fourth center electrode L4 are arranged in parallel to each other, and the first and third center electrodes L1 and L3 and the second and fourth center electrodes L2 and L4 intersect each other at 90 °.
 対向する第1中心電極L1と第3中心電極L3とが互いに逆方向に巻回されていること、及び、対向する第2中心電極L2と第4中心電極L4とが互いに逆方向に巻回されていることにより、図4(A)に示すように、ポートP1-P2間の挿入損失特性及びアイソレーション特性は広帯域にわたって良好な特性を示している。これに対して、対向する第1中心電極L1と第3中心電極L3とを互いに同方向に巻回し、及び、対向する第2中心電極L2と第4中心電極L4とを互いに同方向に巻回した場合(比較例)、ポートP1-ポートP2間の挿入損失特性及びアイソレーション特性は図4(B)に示すとおりであり、非可逆性を得ることができない。 The opposing first center electrode L1 and third central electrode L3 are wound in opposite directions, and the opposing second center electrode L2 and fourth center electrode L4 are wound in opposite directions. Therefore, as shown in FIG. 4A, the insertion loss characteristic and the isolation characteristic between the ports P1 and P2 show good characteristics over a wide band. On the other hand, the first center electrode L1 and the third center electrode L3 facing each other are wound in the same direction, and the second center electrode L2 and the fourth center electrode L4 facing each other are wound in the same direction. In this case (comparative example), the insertion loss characteristic and the isolation characteristic between the port P1 and the port P2 are as shown in FIG. 4B, and irreversibility cannot be obtained.
 広帯域にわたって-20dB以上のアイソレーション特性を得られることで、非可逆回路素子1Aは、無線通信に使用される複数の周波数帯域に同時に対応できるようになる。 By obtaining an isolation characteristic of −20 dB or more over a wide band, the irreversible circuit element 1A can simultaneously support a plurality of frequency bands used for wireless communication.
 (高周波モジュールの例、図5参照)
 前記非可逆回路素子1Aを備えた携帯電話用の高周波モジュールのブロック図を図5に示す。第1入出力ポートP1(送信用ポートTX)は送信フィルタ81に接続され、さらにパワーアンプ82を介して送信回路83に接続される。第2入出力ポートP2(アンテナ用ポートANT)はアンテナ84に接続される。第3入出力ポートP3(受信用ポートRX)は受信フィルタ85に接続され、さらに受信回路86に接続される。
(Example of high-frequency module, see Fig. 5)
FIG. 5 shows a block diagram of a high-frequency module for a mobile phone including the nonreciprocal circuit element 1A. The first input / output port P1 (transmission port TX) is connected to the transmission filter 81 and further connected to the transmission circuit 83 via the power amplifier 82. The second input / output port P <b> 2 (antenna port ANT) is connected to the antenna 84. The third input / output port P3 (reception port RX) is connected to the reception filter 85 and further connected to the reception circuit 86.
 送信回路83から出力された送信信号は非可逆回路素子1Aからアンテナ84に入力される。そして、アンテナ84で反射された送信信号は受信フィルタ85で再度反射され、この再反射信号は第4入出力ポートP4(抵抗素子R)で吸収されることになる。アンテナ84から入力された受信信号は、第3入出力ポートP3から受信フィルタ85を介して受信回路86に入力される。 The transmission signal output from the transmission circuit 83 is input to the antenna 84 from the nonreciprocal circuit element 1A. Then, the transmission signal reflected by the antenna 84 is reflected again by the reception filter 85, and this re-reflection signal is absorbed by the fourth input / output port P4 (resistive element R). The reception signal input from the antenna 84 is input from the third input / output port P3 to the reception circuit 86 via the reception filter 85.
 (第2実施例、図6及び図7参照)
 第2実施例である非可逆回路素子1Bは、図6に示すように、前記第1実施例と基本的には同様の構成を有し、図中反時計回り方向に第1中心電極L1、第2中心電極L2、第3中心電極L3、第4中心電極L4を配置している。異なっているのは、第4中心電極L4の他端部に、抵抗素子Rに代えて、第1整合用コンデンサ素子C4及び第2整合用コンデンサ素子CS4を接続している。そして、第2中心電極L2の他端部である第2入出力ポートP2はアンテナ用ポートANT1とされ、第3中心電極L3の他端部である第3入出力ポートP3は第2アンテナ用ポートANT2とされている。また、第4中心電極L4の他端部である第4入出力ポートP4は受信用ポートRXとされている。
(Refer to the second embodiment, FIGS. 6 and 7)
As shown in FIG. 6, the nonreciprocal circuit device 1B according to the second embodiment has basically the same configuration as that of the first embodiment, and the first center electrode L1, counterclockwise in the drawing, A second center electrode L2, a third center electrode L3, and a fourth center electrode L4 are disposed. The difference is that instead of the resistor element R, the first matching capacitor element C4 and the second matching capacitor element CS4 are connected to the other end of the fourth center electrode L4. The second input / output port P2 which is the other end of the second center electrode L2 is an antenna port ANT1, and the third input / output port P3 which is the other end of the third center electrode L3 is a second antenna port. ANT2. The fourth input / output port P4, which is the other end of the fourth center electrode L4, is a reception port RX.
 本第2実施例においても、その作用は前記第1実施例と基本的には同様であるが、アンテナ用ポートANT1に接続されたアンテナは送信専用アンテナとして機能し、第2アンテナ用ポートANT2に接続されたアンテナは送受信兼用アンテナとして機能する。即ち、第1入出力ポートP1(送信用ポートTX)から入力された高周波信号は第2入出力ポートP2(アンテナ用ポートANT1)から出力される。一方、第3入出力ポートP3(第2アンテナ用ポートANT2)から入力された高周波信号は第4入出力ポートP4(受信用ポートRX)から出力される。 The operation of the second embodiment is basically the same as that of the first embodiment, but the antenna connected to the antenna port ANT1 functions as a transmission-dedicated antenna, and is connected to the second antenna port ANT2. The connected antenna functions as a transmission / reception antenna. That is, the high-frequency signal input from the first input / output port P1 (transmission port TX) is output from the second input / output port P2 (antenna port ANT1). On the other hand, a high-frequency signal input from the third input / output port P3 (second antenna port ANT2) is output from the fourth input / output port P4 (reception port RX).
 アンテナ用ポートANT1に接続された送信専用アンテナの周囲の環境が変化すると、例えば、アンテナに人の手や顔、頭が近づくと、そのインピーダンスが変動し、送信用ポートTXから入力された高周波信号の一部は、該送信専用アンテナで反射される。 When the environment around the transmission-only antenna connected to the antenna port ANT1 changes, for example, when a person's hand, face, or head approaches the antenna, the impedance changes, and a high-frequency signal input from the transmission port TX Is reflected by the transmission-dedicated antenna.
 非可逆回路素子1Bにおいて、アンテナ用ポートANT1と受信用ポートRXの間に第2アンテナ用ポートANT2を設けているので、送信専用アンテナで反射された高周波信号はポートP3(ANT2)に接続された送受信兼用アンテナから出力される。このため、アンテナ用ポートANT1に接続されたアンテナのインピーダンス変動により、送信用ポートTXから入力された高周波信号が受信用ポートRXに漏れ、ポートP1-P4間のアイソレーションが劣化することを防ぐことができる。 In the nonreciprocal circuit element 1B, since the second antenna port ANT2 is provided between the antenna port ANT1 and the reception port RX, the high frequency signal reflected by the transmission dedicated antenna is connected to the port P3 (ANT2). Output from the transmitting / receiving antenna. For this reason, it is possible to prevent the high frequency signal input from the transmission port TX from leaking to the reception port RX due to the impedance variation of the antenna connected to the antenna port ANT1, and the isolation between the ports P1 and P4 from deteriorating. Can do.
 詳しくは、図7(A)に示すように、アンテナ用ポートANT1に接続された送信専用アンテナの電圧定在波比(VSWR)が3の場合、アンテナのインピーダンスがa,b,c,d,e,fに変化した場合のポートP1-P4(TX-RX)間のアイソレーションの変化を図7(B)に示す。一方、図7(C)は図16に示した従来例でのインピーダンスがa~fに変化した場合のポートP1-P3(TX-RX)間のアイソレーション特性を示している。図7(B),(C)のグラフを比較すると明らかなように、周波数が699~960MHzの帯域において、本発明例では-15dB以上のアイソレーション特性を得ているが、アンテナ用ポートANTと受信用ポートRXとの間に第2アンテナ用ポートANT2を設けない従来例では大きく劣化している。 Specifically, as shown in FIG. 7A, when the voltage standing wave ratio (VSWR) of the transmission-dedicated antenna connected to the antenna port ANT1 is 3, the antenna impedance is a, b, c, d, FIG. 7B shows a change in isolation between the ports P1 to P4 (TX-RX) when changed to e and f. On the other hand, FIG. 7C shows the isolation characteristic between the ports P1-P3 (TX-RX) when the impedance in the conventional example shown in FIG. 16 changes from a to f. As is clear from the comparison of the graphs of FIGS. 7B and 7C, in the example of the present invention, an isolation characteristic of −15 dB or more is obtained in the frequency band of 699 to 960 MHz. In the conventional example in which the second antenna port ANT2 is not provided between the receiving port RX and the receiving port RX, it is greatly deteriorated.
 なお、アンテナ用ポートANT1に接続されるアンテナが送信信号と受信信号とに対応するものであり、第2アンテナ用ポートANT2に接続されるアンテナが送信信号のみに対応するものであってもよい。 The antenna connected to the antenna port ANT1 may correspond to the transmission signal and the reception signal, and the antenna connected to the second antenna port ANT2 may correspond to only the transmission signal.
 (アンテナの配置と動作モード、図8及び図9参照)
 図8に示すように、携帯端末100において、前記アンテナ用ポートANT1に接続されるアンテナ105を筺体101の上部に縦置き配置し、前記第2アンテナ用ポートANT2に接続されるアンテナ106を筺体101の下部に横置き配置するようにしてもよい。換言すれば、アンテナ105,106の設置位置が筺体101内において離れており、異なっていることが、互いの干渉を回避し、インピーダンスの変動を異ならしめる点で好ましい。
(Refer to antenna arrangement and operation mode, Fig. 8 and Fig. 9)
As shown in FIG. 8, in the mobile terminal 100, the antenna 105 connected to the antenna port ANT1 is vertically arranged on the top of the housing 101, and the antenna 106 connected to the second antenna port ANT2 is placed in the housing 101. You may make it arrange | position horizontally at the lower part of. In other words, it is preferable that the installation positions of the antennas 105 and 106 are separated in the housing 101 and are different from each other in terms of avoiding mutual interference and different impedance variations.
 また、図9(A),(B)に示すように、グランド電極111を設けた回路基板110に第1のアンテナとして表面実装型アンテナ121を配置するとともに、第2のアンテナとしてホイップアンテナ122を配置するようにしてもよい。図9(A)に示す配置例においては、表面実装型アンテナ121を放射電極の開放端が下方に向くように実装することで、その開放端をホイップアンテナ122から遠ざけている。また、図9(B)に示す配置例においては、表面実装型アンテナ121を放射電極の開放端が携帯端末100の外側を向くように実装することで、その開放端をホイップアンテナ122から遠ざけている。いずれの配置例においても表面実装型アンテナ121とホイップアンテナ122との相互干渉が防止される。 Further, as shown in FIGS. 9A and 9B, a surface-mounted antenna 121 is disposed as a first antenna on a circuit board 110 provided with a ground electrode 111, and a whip antenna 122 is disposed as a second antenna. It may be arranged. In the arrangement example shown in FIG. 9A, the surface-mounted antenna 121 is mounted such that the open end of the radiation electrode faces downward, so that the open end is kept away from the whip antenna 122. In the arrangement example shown in FIG. 9B, the surface-mounted antenna 121 is mounted so that the open end of the radiation electrode faces the outside of the mobile terminal 100, so that the open end is kept away from the whip antenna 122. Yes. In any arrangement example, mutual interference between the surface-mounted antenna 121 and the whip antenna 122 is prevented.
 また、第1のアンテナと第2のアンテナの種類を異ならせ、動作モードを換えたり、アンテナ同士を離したりすることにより、第1のアンテナと第2のアンテナが同時に周囲の環境変化によってそのインピーダンスが変動することを避けることができる。 In addition, by changing the types of the first antenna and the second antenna, changing the operation mode, or separating the antennas, the impedance of the first antenna and the second antenna can be changed due to environmental changes at the same time. Can be avoided.
 (第3実施例、図10参照)
 第3実施例である非可逆回路素子1Cは、図10に示すように、前記第2実施例(図6参照)と基本的には同様の構成を有し、異なっているのは、第1のアンテナは送信信号と受信信号の双方に対応する点と、第3中心電極L3の他端部とポートP3との間にフィルタFを挿入している点である。フィルタFは、通過特性が固定又は可変のいずれであってもよく、送信用ポートTXから入力されて第1のアンテナで反射された高周波信号を通過させ、第1のアンテナの受信信号を反射させるフィルタ特性を有している。
(Refer to the third embodiment, FIG. 10)
As shown in FIG. 10, the nonreciprocal circuit device 1C according to the third embodiment has basically the same configuration as that of the second embodiment (see FIG. 6). These antennas correspond to both transmission signals and reception signals, and a filter F is inserted between the other end of the third center electrode L3 and the port P3. The filter F may have either a fixed or variable pass characteristic. The filter F passes a high-frequency signal input from the transmission port TX and reflected by the first antenna, and reflects a received signal of the first antenna. Has filter characteristics.
 本第3実施例においては、第1入出力ポートP1(送信用ポートTX)から入力された高周波信号は第2入出力ポートP2(アンテナ用ポートANT1)から出力される。この送信信号は複数の周波数バンドから必要に応じて所定の周波数バンドのものが選択される。 In the third embodiment, a high-frequency signal input from the first input / output port P1 (transmission port TX) is output from the second input / output port P2 (antenna port ANT1). This transmission signal is selected from a plurality of frequency bands according to need.
 また、送信用ポートTXから入力された高周波信号の一部は、ポートP2(ANT1)に接続されたアンテナで反射されても、フィルタFを通過し、ポート3(ANT2)に出力される。ポート3には第2のアンテナが接続され、第1のアンテナで反射した信号は第2のアンテナから出力される。このため、アンテナの周囲の環境が変化してインピーダンスが変動したとしても、ポートP1-P4間のアイソレーション特性の劣化を極力防止することができる。この効果は前記第2実施例と同様である。 Further, even if a part of the high-frequency signal input from the transmission port TX is reflected by the antenna connected to the port P2 (ANT1), it passes through the filter F and is output to the port 3 (ANT2). A second antenna is connected to port 3, and a signal reflected by the first antenna is output from the second antenna. For this reason, even if the environment around the antenna changes and the impedance fluctuates, it is possible to prevent the deterioration of the isolation characteristics between the ports P1 and P4 as much as possible. This effect is the same as that of the second embodiment.
 一方で、ポートP2(ANT1)に接続されたアンテナから入力された受信信号は、フィルタFで反射されて、ポートP4(受信用ポートRX)に入力される。 On the other hand, the received signal input from the antenna connected to the port P2 (ANT1) is reflected by the filter F and input to the port P4 (receiving port RX).
 なお、ポートP3に第2のアンテナを接続する場合、第2のアンテナは少なくとも送信信号のみに対応すればよい。 In addition, when connecting a 2nd antenna to the port P3, the 2nd antenna should just respond | correspond only to a transmission signal at least.
 (第4実施例、図11~図14参照)
 第4実施例である非可逆回路素子1Dは、図11に示すように、前記第3実施例(図10参照)と基本的には同様の構成を有し、異なっているのは、第3中心電極L3の他端部に、フィルタFを介して、グランドに落とされた抵抗素子Rを接続した点である。従って、ポートP3は終端であり、アンテナポートはポートP2のみである。フィルタFは、第3実施例と同様に、通過特性が固定又は可変のいずれであってもよく、送信用ポートTXから入力されてアンテナで反射された高周波信号を通過させ、アンテナの受信信号を反射させるフィルタ特性を有している。また、アンテナは送信信号と受信信号の双方に対応している。
(Refer to the fourth embodiment, FIGS. 11 to 14)
As shown in FIG. 11, the nonreciprocal circuit device 1D according to the fourth embodiment basically has the same configuration as that of the third embodiment (see FIG. 10). The resistance element R dropped to the ground is connected to the other end of the center electrode L3 through the filter F. Therefore, the port P3 is a termination, and the antenna port is only the port P2. As in the third embodiment, the filter F may have either a fixed or variable pass characteristic, and passes a high-frequency signal input from the transmission port TX and reflected by the antenna, It has a filter characteristic to reflect. The antenna is compatible with both transmission signals and reception signals.
 本第4実施例においては、第1入出力ポートP1(送信用ポートTX)から入力された高周波信号は第2入出力ポートP2(アンテナ用ポートANT)から出力される。前記第3実施例と同様に、この送信信号は複数の周波数バンドから必要に応じて所定の周波数バンドのものが選択される。 In the fourth embodiment, a high-frequency signal input from the first input / output port P1 (transmission port TX) is output from the second input / output port P2 (antenna port ANT). As in the third embodiment, the transmission signal is selected from a plurality of frequency bands as required.
 また、送信用ポートTXから入力された高周波信号の一部は、ポートP2(ANT)に接続されたアンテナで反射されても、フィルタFを通過し、抵抗素子Rで吸収される。このため、アンテナの周囲の環境が変化してインピーダンスが変動したとしても、ポートP1-P4間のアイソレーション特性の劣化を極力防止することができる。この効果は前記第2実施例及び第3実施例と同様である。 Further, even if a part of the high frequency signal input from the transmission port TX is reflected by the antenna connected to the port P2 (ANT), it passes through the filter F and is absorbed by the resistance element R. For this reason, even if the environment around the antenna changes and the impedance fluctuates, it is possible to prevent the deterioration of the isolation characteristics between the ports P1 and P4 as much as possible. This effect is the same as in the second and third embodiments.
 一方で、ポートP2(ANT)に接続されたアンテナから入力された受信信号は、フィルタFで反射されて、ポートP4(受信用ポートRX)に入力される。 On the other hand, the received signal input from the antenna connected to the port P2 (ANT) is reflected by the filter F and input to the port P4 (receiving port RX).
 ここで、前記非可逆回路素子1Dを備えたフロントエンド回路を構成する高周波モジュールのブロック図を図12に示す。第1入出力ポートP1(送信用ポートTX)はパワーアンプ82を介して送信回路83に接続されている。第2入出力ポートP2(アンテナ用ポートANT)はアンテナ84に接続されている。第3入出力ポートP3は、フィルタF及び抵抗素子Rを介して、第3中心電極L3の他端部に接続されている。第4入出力ポートP4(受信用ポートRX)は受信回路86に接続されている。 Here, FIG. 12 shows a block diagram of a high-frequency module constituting a front-end circuit including the nonreciprocal circuit element 1D. The first input / output port P1 (transmission port TX) is connected to the transmission circuit 83 via the power amplifier 82. The second input / output port P <b> 2 (antenna port ANT) is connected to the antenna 84. The third input / output port P3 is connected to the other end of the third center electrode L3 via the filter F and the resistance element R. The fourth input / output port P4 (reception port RX) is connected to the reception circuit 86.
 なお、図12では省略しているが、第1入出力ポートP1とパワーアンプ82との間、及び、第4入出力ポートP4と受信回路86との間に、フィルタを配置してもよい。 Although omitted in FIG. 12, filters may be arranged between the first input / output port P1 and the power amplifier 82 and between the fourth input / output port P4 and the receiving circuit 86.
 送信回路83から出力された送信信号は第1入出力ポートP1からアンテナ84に入力される。そして、アンテナ84で反射された送信信号はフィルタFを透過して抵抗素子Rで吸収されることになる。アンテナ84から入力された受信信号は、フィルタFで反射され、第4入出力ポートP4から受信回路86に入力される。 The transmission signal output from the transmission circuit 83 is input to the antenna 84 from the first input / output port P1. Then, the transmission signal reflected by the antenna 84 passes through the filter F and is absorbed by the resistance element R. The reception signal input from the antenna 84 is reflected by the filter F and input to the reception circuit 86 from the fourth input / output port P4.
 図13に、前記図7(B)と同様の、アンテナ84の電圧定在波比(VSWR)が3の場合、アンテナのインピーダンスがa,b,c,d,e,fに変化した場合のポートP1-P4(TX-RX)間のアイソレーションの変化を示す。比較すべき従来例は図7(C)であり、周波数が699-960MHzの帯域において、本発明例では、-15dB以上のアイソレーション特性を得ている。 In FIG. 13, when the voltage standing wave ratio (VSWR) of the antenna 84 is 3 as in FIG. 7B, the impedance of the antenna changes to a, b, c, d, e, f. The change in isolation between ports P1-P4 (TX-RX) is shown. A conventional example to be compared is FIG. 7C, and in the band of 699 to 960 MHz, the isolation characteristic of -15 dB or more is obtained in the example of the present invention.
 アンテナ84のVSWRが1.5,2.0,3.0,6.0において、それぞれのVSWRの値でアンテナ84のインピーダンスを変化させた際のポートP1-P4(TX-RX)間のアイソレーションの変化を図14(A)に示す。一方、図14(B)は図16に示した従来例での同様のアイソレーションの変化を示している。図14(A),(B)のグラフを比較すると明らかなように、従来例よりも本発明例のほうがいずれのインピーダンスにおいても、アイソレーション特性が大きく向上している。例えば、VSWRが3.0のとき、従来例ではアイソレーションが-7.3~-8.3dBであるのに対して、本発明例では-15.4~-19.7dBである。また、VSWRが1.0である場合も、従来例と比較して本発明のアイソレーション特性が大きく劣化することはない。従って、VSWRが変動する場合であっても本発明例の構成を用いることで、広い周波数帯域にわたって、TX-RX間で優れたアイソレーション特性を得ることができる。 When the VSWR of the antenna 84 is 1.5, 2.0, 3.0, 6.0, the isolating between the ports P1-P4 (TX-RX) when the impedance of the antenna 84 is changed by the respective VSWR values. FIG. 14A shows the change in the adjustment. On the other hand, FIG. 14B shows a similar change in isolation in the conventional example shown in FIG. As is clear from the comparison of the graphs of FIGS. 14A and 14B, the isolation characteristics of the example of the present invention are greatly improved at any impedance compared to the conventional example. For example, when VSWR is 3.0, the isolation is −7.3 to −8.3 dB in the conventional example, whereas it is −15.4 to −19.7 dB in the example of the present invention. Also, when the VSWR is 1.0, the isolation characteristics of the present invention are not significantly deteriorated as compared with the conventional example. Therefore, even when the VSWR varies, by using the configuration of the present invention example, excellent isolation characteristics between TX and RX can be obtained over a wide frequency band.
 なお、図15に示すように、非可逆回路素子の代わりに、送信用ポートTX、受信用ポートRX、アンテナ用ポートANTを備えた他の複数ポートデバイス2を用いて高周波モジュールとしてもよい。他の複数ポートデバイス2とは、例えば、トランスを使ったCMOSデュプレクサである。 In addition, as shown in FIG. 15, it is good also as a high frequency module using other multiple port devices 2 provided with the port for transmission TX, the port for reception RX, and the port for antenna ANT instead of a nonreciprocal circuit element. The other multi-port device 2 is, for example, a CMOS duplexer using a transformer.
 図15に示した構造とすることにより、アンテナ84の負荷変動により反射した送信信号を抵抗素子R(可変抵抗素子であってもよい)で吸収させることができ、反射信号が受信回路86側へ回り込むことを防止できる。その結果、非可逆回路素子と同様に、送信―受信間のアイソレーションの劣化を防止する効果が得られる。 With the structure shown in FIG. 15, the transmission signal reflected by the load fluctuation of the antenna 84 can be absorbed by the resistance element R (may be a variable resistance element), and the reflected signal is transmitted to the reception circuit 86 side. It can prevent wrapping around. As a result, similar to the non-reciprocal circuit element, an effect of preventing deterioration of isolation between transmission and reception can be obtained.
 (他の実施例)
 なお、本発明に係る非可逆回路素子及び高周波モジュールは、前記実施例に限定されるものではなく、その要旨の範囲内で種々に変更することができる。
(Other examples)
The nonreciprocal circuit device and the high frequency module according to the present invention are not limited to the above-described embodiments, and can be variously modified within the scope of the gist thereof.
 例えば、中心電極の具体的な形状などは任意である。また、整合用コンデンサ素子は、回路基板に内蔵したものであっても、チップタイプとして回路基板上に実装したものであってもよい。 For example, the specific shape of the center electrode is arbitrary. Further, the matching capacitor element may be built in the circuit board or may be mounted on the circuit board as a chip type.
 以上のように、本発明は、非可逆回路素子及び高周波モジュールに有用であり、特に、広帯域にて大きな値のアイソレーション特性を得ることができ、アンテナのインピーダンスが変動してもアイソレーション特性の劣化を防止可能である点で優れている。 As described above, the present invention is useful for non-reciprocal circuit elements and high-frequency modules. Particularly, a large value of isolation characteristics can be obtained in a wide band, and even if the impedance of the antenna fluctuates, the isolation characteristics can be obtained. It is excellent in that deterioration can be prevented.
 1A~1D…非可逆回路素子(サーキュレータ)
 10…フェライト
 81…送信フィルタ
 83…送信回路
 84…アンテナ
 85…受信フィルタ
 86…受信回路
 100…携帯端末
 105,106…アンテナ
 121…表面実装型アンテナ
 122…ホイップアンテナ
 L1~L4…中心電極
 C1~C4…コンデンサ素子
 CS1~CS4…コンデンサ素子
 R,R1~R3…抵抗素子
 F…フィルタ
 P1~P4…ポート
1A-1D ... Non-reciprocal circuit element (circulator)
DESCRIPTION OF SYMBOLS 10 ... Ferrite 81 ... Transmission filter 83 ... Transmission circuit 84 ... Antenna 85 ... Reception filter 86 ... Reception circuit 100 ... Portable terminal 105,106 ... Antenna 121 ... Surface mount type antenna 122 ... Whip antenna L1-L4 ... Center electrode C1-C4 ... Capacitor elements CS1 to CS4 ... Capacitor elements R, R1 to R3 ... Resistance elements F ... Filters P1 to P4 ... Ports

Claims (16)

  1.  フェライトと、
     前記フェライトにそれぞれ絶縁状態で少なくとも1ターン巻回されて配置され、それぞれの一端部がグランドに接続された第1、第2、第3、第4中心電極と、
     第1、第2、第3中心電極の他端部にそれぞれ接続されるとともにグランドに接続された第1整合用コンデンサ素子と、
     第1中心電極の他端部と第1入出力ポートとの間、第2中心電極の他端部と第2入出力ポートとの間、及び、第3中心電極の他端部と第3入出力ポートとの間に、それぞれ接続された第2整合用コンデンサ素子と、
     を備えたことを特徴とする非可逆回路素子。
    With ferrite,
    First, second, third, and fourth center electrodes, each of which is arranged to be wound around the ferrite in at least one turn in an insulated state, and each one end of which is connected to the ground,
    A first matching capacitor element connected to each of the other ends of the first, second and third center electrodes and connected to the ground;
    Between the other end of the first center electrode and the first input / output port, between the other end of the second center electrode and the second input / output port, and between the other end of the third center electrode and the third input A second matching capacitor element connected to the output port;
    A non-reciprocal circuit device comprising:
  2.  第4中心電極の他端部に接続されるとともにグランドに接続された抵抗素子を備えたこと、を特徴とする請求項1に記載の非可逆回路素子。 The nonreciprocal circuit device according to claim 1, further comprising a resistance element connected to the other end of the fourth center electrode and connected to the ground.
  3.  第1中心電極と第3中心電極とが互いに対向して、かつ、互いに逆方向に巻回されており、
     第2中心電極と第4中心電極とが互いに対向して、かつ、互いに逆方向に巻回されていること、
     を特徴とする請求項1又は請求項2に記載の非可逆回路素子。
    The first center electrode and the third center electrode face each other and are wound in opposite directions;
    The second center electrode and the fourth center electrode are opposed to each other and wound in opposite directions;
    The nonreciprocal circuit device according to claim 1, wherein
  4.  第1中心電極と第3中心電極とが互いに平行に配置されるとともに第2中心電極と第4中心電極とが互いに平行に配置され、かつ、第1、第3中心電極と第2、第4中心電極とが互いに90°で交差していること、を特徴とする請求項1ないし請求項3のいずれかに記載の非可逆回路素子。 The first center electrode and the third center electrode are arranged in parallel to each other, the second center electrode and the fourth center electrode are arranged in parallel to each other, and the first, third center electrode, second, fourth The nonreciprocal circuit device according to any one of claims 1 to 3, wherein the center electrodes intersect each other at 90 °.
  5.  請求項1ないし請求項4のいずれかに記載の非可逆回路素子を備え、
     第1入出力ポートが送信用ポートであり、第2入出力ポートがアンテナポートであり、第3入出力ポートが受信用ポートであること、
     を特徴とする高周波モジュール。
    A nonreciprocal circuit device according to any one of claims 1 to 4,
    The first input / output port is a transmission port, the second input / output port is an antenna port, and the third input / output port is a reception port;
    High frequency module characterized by
  6.  第1入出力ポートは送信フィルタに接続され、第2入出力ポートはアンテナに接続され、第3入出力ポートは受信フィルタに接続されていること、を特徴とする請求項5に記載の高周波モジュール。 6. The high frequency module according to claim 5, wherein the first input / output port is connected to a transmission filter, the second input / output port is connected to an antenna, and the third input / output port is connected to a reception filter. .
  7.  フェライトと、
     前記フェライトにそれぞれ絶縁状態で少なくとも1ターン巻回されて配置され、それぞれの一端部がグランドに接続された第1、第2、第3、第4中心電極と、
     第1、第2、第3、第4中心電極の他端部にそれぞれ接続されるとともにグランドに接続された第1整合用コンデンサ素子と、
     第1中心電極の他端部と第1入出力ポートとの間、第2中心電極の他端部と第2入出力ポートとの間、第3中心電極の他端部と第3入出力ポートとの間、及び、第4中心電極の他端部と第4入出力ポートとの間に、それぞれ接続された第2整合用コンデンサ素子と、
     を備えたことを特徴とする非可逆回路素子。
    With ferrite,
    First, second, third, and fourth center electrodes, each of which is arranged to be wound around the ferrite in at least one turn in an insulated state, and each one end of which is connected to the ground,
    A first matching capacitor element connected to the other end of each of the first, second, third and fourth center electrodes and connected to the ground;
    Between the other end of the first center electrode and the first input / output port, between the other end of the second center electrode and the second input / output port, and the other end of the third center electrode and the third input / output port And a second matching capacitor element connected between the other end of the fourth center electrode and the fourth input / output port,
    A non-reciprocal circuit device comprising:
  8.  第3中心電極の他端部に、フィルタが接続されていること、を特徴とする請求項7に記載の非可逆回路素子。 The nonreciprocal circuit device according to claim 7, wherein a filter is connected to the other end of the third center electrode.
  9.  請求項7又は請求項8に記載の非可逆回路素子を備え、
     第1入出力ポートが送信用ポートであり、第2入出力ポートが第1アンテナポートであり、第3入出力ポートが第2アンテナポートであり、第4入出力ポートが受信用ポートであること、
     を特徴とする高周波モジュール。
    A nonreciprocal circuit device according to claim 7 or 8,
    The first input / output port is a transmission port, the second input / output port is a first antenna port, the third input / output port is a second antenna port, and the fourth input / output port is a reception port. ,
    High frequency module characterized by
  10.  第1アンテナポートに接続されるアンテナは送信信号と受信信号とに対応し、第2アンテナポートに接続されるアンテナは送信信号のみに対応すること、を特徴とする請求項9に記載の高周波モジュール。 The high-frequency module according to claim 9, wherein the antenna connected to the first antenna port corresponds to a transmission signal and a reception signal, and the antenna connected to the second antenna port corresponds to only a transmission signal. .
  11.  第1アンテナポートに接続されるアンテナは送信信号のみに対応し、第2アンテナポートに接続されるアンテナは送信信号と受信信号とに対応すること、を特徴とする請求項9に記載の高周波モジュール。 The high-frequency module according to claim 9, wherein the antenna connected to the first antenna port corresponds only to a transmission signal, and the antenna connected to the second antenna port corresponds to a transmission signal and a reception signal. .
  12.  第1アンテナポートに接続されるアンテナと第2アンテナポートに接続されるアンテナとは、それぞれ動作モードが異なること、を特徴とする請求項9ないし請求項11のいずれかに記載の高周波モジュール。 The high-frequency module according to any one of claims 9 to 11, wherein the antenna connected to the first antenna port and the antenna connected to the second antenna port have different operation modes.
  13.  第1アンテナポートに接続されるアンテナと第2アンテナポートに接続されるアンテナとは、それぞれ設置位置が異なること、を特徴とする請求項9ないし請求項12のいずれかに記載の高周波モジュール。 The high-frequency module according to any one of claims 9 to 12, wherein an antenna connected to the first antenna port and an antenna connected to the second antenna port have different installation positions.
  14.  フェライトと、
     前記フェライトにそれぞれ絶縁状態で少なくとも1ターン巻回されて配置され、それぞれの一端部がグランドに接続された第1、第2、第3、第4中心電極と、
     第1、第2、第4中心電極の他端部にそれぞれ接続されるとともにグランドに接続された第1整合用コンデンサ素子と、
     第1中心電極の他端部と第1入出力ポートとの間、第2中心電極の他端部と第2入出力ポートとの間、及び、第4中心電極の他端部と第4入出力ポートとの間に、それぞれ接続された第2整合用コンデンサ素子と、
     第3中心電極の他端部に接続されるとともにグランドに接続された抵抗素子と、
     第3中心電極の他端部と前記抵抗素子との間に接続された、通過特性が固定又は可変なフィルタと、
     を備えたことを特徴とする非可逆回路素子。
    With ferrite,
    First, second, third, and fourth center electrodes, each of which is arranged to be wound around the ferrite in at least one turn in an insulated state, and each one end of which is connected to the ground,
    A first matching capacitor element connected to the other end of each of the first, second and fourth center electrodes and connected to the ground;
    Between the other end of the first center electrode and the first input / output port, between the other end of the second center electrode and the second input / output port, and between the other end of the fourth center electrode and the fourth input A second matching capacitor element connected to the output port;
    A resistance element connected to the other end of the third center electrode and connected to the ground;
    A filter having a fixed or variable pass characteristic connected between the other end of the third center electrode and the resistance element;
    A non-reciprocal circuit device comprising:
  15.  請求項14に記載の非可逆回路素子を備え、
     第1入出力ポートが送信用ポートであり、第2入出力ポートがアンテナポートであり、第4入出力ポートが受信用ポートであること、
     を特徴とする高周波モジュール。
    A nonreciprocal circuit device according to claim 14,
    The first input / output port is a transmission port, the second input / output port is an antenna port, and the fourth input / output port is a reception port;
    High frequency module characterized by
  16.  第1入出力ポートは送信回路に接続され、第2入出力ポートはアンテナに接続され、第4入出力ポートは受信回路に接続されていること、を特徴とする請求項15に記載の高周波モジュール。 16. The high-frequency module according to claim 15, wherein the first input / output port is connected to a transmission circuit, the second input / output port is connected to an antenna, and the fourth input / output port is connected to a reception circuit. .
PCT/JP2015/055951 2014-04-09 2015-02-27 Non-reciprocal circuit element and high-frequency module WO2015156056A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-080349 2014-04-09
JP2014080349 2014-04-09
JP2014201338 2014-09-30
JP2014-201338 2014-09-30
JP2015054252 2015-02-17
JPPCT/JP2015/054252 2015-02-17

Publications (1)

Publication Number Publication Date
WO2015156056A1 true WO2015156056A1 (en) 2015-10-15

Family

ID=54287637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055951 WO2015156056A1 (en) 2014-04-09 2015-02-27 Non-reciprocal circuit element and high-frequency module

Country Status (1)

Country Link
WO (1) WO2015156056A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150619A1 (en) * 2016-03-03 2017-09-08 株式会社村田製作所 Irreversible circuit element, front-end circuit, and communication device
WO2023282808A1 (en) * 2021-07-08 2023-01-12 Telefonaktiebolaget Lm Ericsson (Publ) An improved electrical filter topology

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384611U (en) * 1989-12-18 1991-08-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384611U (en) * 1989-12-18 1991-08-28

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150619A1 (en) * 2016-03-03 2017-09-08 株式会社村田製作所 Irreversible circuit element, front-end circuit, and communication device
WO2023282808A1 (en) * 2021-07-08 2023-01-12 Telefonaktiebolaget Lm Ericsson (Publ) An improved electrical filter topology

Similar Documents

Publication Publication Date Title
US8412121B2 (en) Circuit integrating a tunable antenna with a standing wave rate correction
US10454450B2 (en) High frequency switch module
US9620838B2 (en) Non-reciprocal circuit device
EP2093827B1 (en) Non-reciprocal circuit device
WO2015156056A1 (en) Non-reciprocal circuit element and high-frequency module
US8723615B2 (en) Non-reciprocal circuit device and radio communication terminal device
US9172125B1 (en) Non-reciprocal circuit element
US9583808B2 (en) Nonreversible circuit device
US9419320B2 (en) Nonreciprocal circuit element and transceiver device
WO2011118278A1 (en) Nonreciprocal circuit element
US9455485B2 (en) Non-reciprocal circuit element, module of the same, and transmission and reception module
JP2012039444A (en) Isolator and communication equipment
US20040056731A1 (en) Nonreciprocal circuit device and communication device using same
JP6249104B2 (en) Non-reciprocal circuit element
JP6477731B2 (en) High frequency switch module
US9406989B2 (en) Two-port non-reciprocal circuit element
US6369668B1 (en) Duplexer and communication apparatus including the same
US20120056690A1 (en) Magnetic resonance type isolator
US20160240906A1 (en) Non-reciprocal circuit element
US20150303545A1 (en) Non-reciprocal circuit element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15776997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15776997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP