WO2017150263A1 - Abnormality detection device, abnormality detection system, and method thereof - Google Patents

Abnormality detection device, abnormality detection system, and method thereof Download PDF

Info

Publication number
WO2017150263A1
WO2017150263A1 PCT/JP2017/006258 JP2017006258W WO2017150263A1 WO 2017150263 A1 WO2017150263 A1 WO 2017150263A1 JP 2017006258 W JP2017006258 W JP 2017006258W WO 2017150263 A1 WO2017150263 A1 WO 2017150263A1
Authority
WO
WIPO (PCT)
Prior art keywords
abnormality
determination
prediction
unit
prediction determination
Prior art date
Application number
PCT/JP2017/006258
Other languages
French (fr)
Japanese (ja)
Inventor
進吾 足立
信補 高橋
基朗 小熊
剛 武本
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2017150263A1 publication Critical patent/WO2017150263A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use

Definitions

  • the present invention relates to an anomaly detection device, an anomaly detection system, and a method thereof.
  • Non-Patent Document 1 calculates the predicted value of the next time from the observed value of the past time by applying support vector regression to the measured value time series of the flow rate and pressure of the water distribution process.
  • Disclosed is a method for detecting an abnormality in a water distribution process, such as the occurrence of water leakage, by performing property detection (Novelty detection).
  • Non-Patent Document 1 When performing abnormality detection of the water distribution process such as the occurrence of water leakage by the method of Non-Patent Document 1, it is impossible to detect abnormality such as the occurrence of small-scale water leakage.
  • This method uses a measurement value affected by the occurrence of water leakage to calculate a predicted value at the next time after the occurrence of water leakage. For this reason, in the case of small-scale water leakage, the predicted value is close to the measured value after the occurrence of water leakage, and the difference between the predicted value and the measured value is reduced. Therefore, if the water leak is large enough that the difference between the predicted value and the measured value is sufficiently large immediately after the occurrence of water leakage, the predicted value can be detected before being affected by the occurrence of water leakage, but small-scale water leakage cannot be detected.
  • the scale of the water leakage is a scale obtained by evaluating the change that the water leakage gives to the measured values of the sensor such as the flow rate and the pressure by a relative ratio to the fluctuation of the measured values in the normal time when no water leakage occurs. Even if the water flow leaks from the water pipe with a large absolute value of the flow rate, if the water leak occurs in a distribution area with a large amount of water distribution, the water leak will be small.
  • the disclosed abnormality detection device uses each of the plurality of prediction determination methods, based on the measurement value of the sensor of the monitored process in the data range according to the plurality of prediction determination methods, the first sensor of the determination time Predict the predicted value of the measured value, (1) the difference between the predicted value and the first measured value at the determination time, and (2) the first measured value outside the range between the upper limit value and the lower limit value of the predicted value
  • a prediction determination unit that determines an abnormality of the monitoring target process and outputs an abnormality determination result of determining an abnormality of a plurality of prediction determination methods, a second that an abnormality included in the abnormality determination result affects
  • the influence data selection unit that selects the range including the measured value of the measurement data as the influence data range as the influence data range, among the abnormality determination results, the reliability of the abnormality determination result based on the influence data included in the influence data range is lowered, and a plurality of Predictive judgment Having the abnormality determination integrating unit that integrates the determination result, and an output
  • the disclosed abnormality detection device even a process abnormality that gives a gradual change in the measured value can be detected.
  • FIG. 1 is a configuration diagram of an abnormality detection system 100 that monitors a water distribution process (water pipe network) based on sensor measurement values such as flow rate and pressure to detect an abnormality such as occurrence of water leakage.
  • the abnormality detection system 100 includes an abnormality detection device 101, a sensor 191 that obtains measurement values such as flow rate and pressure, a measurement value collection device 102, and an alarm display device 103.
  • the abnormality detection apparatus 101 includes an influence data selection unit 111, a determination integration unit 112, a prediction determination unit 131, a prediction determination unit 132, a measurement value collection unit 151, and an output unit 152, and a measurement value storage unit 121.
  • Each storage unit includes an auxiliary data storage unit 122 and a prediction determination method data storage unit 123.
  • the influence data selection unit 111 inputs an abnormality determination result from the prediction determination units 131 and 132 (hereinafter, the prediction determination unit 131 is representative when the prediction determination units 131 and 132 need not be individually described), and the abnormality If it is determined that the determination result is abnormal, a data range of measurement values affected by the abnormality is selected, and the selected data range is output to the determination integration unit 112 as an influence data range (described later). Details of the processing of the influence data selection unit 111 will be described later.
  • the determination integration unit 112 inputs the abnormality determination result from the prediction determination unit 131, inputs the influence data range from the influence data selection unit 111, and lowers the reliability (described later) of the abnormality determination result based on the input influence data range.
  • the abnormality determination result is integrated, and the integrated abnormality determination result is output to the output unit 152. Details of the processing of the determination integration unit 112 will be described later.
  • the prediction determination unit 131 reads measurement values from the measurement value storage unit 121, reads auxiliary data from the auxiliary data storage unit 122 as necessary, and reads prediction determination method data from the prediction determination method data storage unit 123.
  • the prediction determination unit 131 uses a predetermined prediction determination method to calculate a sensor predicted value (a value that the sensor will output as a measurement value at the prediction time) from the sensor measurement value in the data range defined by the prediction determination method data. The difference between the predicted value and the measured value of the predicted time (details will be described later, but the predicted value has the upper and lower limit values of the predicted value itself and the predicted value.
  • the prediction determination unit 132 also outputs an abnormality determination result based on a prediction determination method different from the prediction determination unit 131.
  • the prediction determination unit 131 adjusts the prediction determination method parameters (prediction determination method data) based on each input data including the measurement values, and sets the adjusted prediction determination method parameters. Stored in the prediction determination method data storage unit 123.
  • the prediction determination unit 131 learns the prediction determination method, and executes prediction processing of the predicted value of the sensor, and processing for determining abnormality of the monitored water pipe network from the difference between the predicted value and the measured value.
  • the prediction determination unit 131 uses a known technique such as a method using support vector regression or a neural network described in Non-Patent Document 1 for prediction and abnormality determination. Details of the processing of the prediction determination unit 131 will be described later.
  • the abnormality detection apparatus 101 may include a plurality of prediction determination units 131 and 132 in order to perform abnormality determination using different prediction determination methods.
  • the prediction determination part 131 may implement
  • the measurement value storage unit 121 stores the measurement value of the sensor installed in the monitored water pipe network from the measurement value collection unit 151.
  • the prediction determination unit 131 reads the measurement value from the measurement value storage unit 121.
  • the auxiliary data storage unit 122 stores auxiliary data used for the processing of the prediction determination unit 131.
  • the prediction determination unit 131 reads auxiliary data from the auxiliary data storage unit 122.
  • the auxiliary data storage unit 122 is a water pipe network to be monitored, such as a calendar, weather, social event, etc. for specifying the season, month, day of the week, etc., as auxiliary data for prediction determination by the prediction determination unit 131 Information that influences the state of is stored in advance.
  • the abnormality detection device 101 may collect these pieces of information from other devices outside the abnormality detection system 100 and store them in the auxiliary data storage unit 122.
  • the prediction determination method data storage unit 123 stores information such as parameters for determining each prediction determination method for a plurality of prediction determination methods used by the prediction determination unit 131.
  • the prediction determination unit 131 reads information on each prediction determination method from the prediction determination method data storage unit 123.
  • the prediction determination method data storage unit 123 receives and stores parameters of each prediction determination method adjusted by the prediction determination unit 131 through learning.
  • the information such as the parameters stored in the prediction determination method data storage unit 123 includes, for each prediction determination method, data relating to the prediction determination method ID, the adjusted parameter of the prediction determination method, and the measurement value used for the adjustment of this parameter. Range (described later).
  • the measurement value collection unit 151 receives the measurement values of the sensor 191 such as the pressure and flow rate installed in the monitored water pipe network from the measurement value collection device 102 and stores them in the measurement value storage unit 121.
  • the output unit 152 inputs the abnormality determination result integrated from the determination integration unit 112, and presents the abnormality determination result to the operator of the abnormality detection system 100. Further, the output unit 152 outputs an abnormality determination result to the alarm display device 103.
  • the output unit 152 displays the abnormality determination result on the display for the operator.
  • a smart device such as a smartphone or tablet held by the operator is used as the alarm display device 103, and an abnormality determination result is transmitted in response to a request from such a smart device.
  • the output unit 152 may notify the alarm display device 103 by a push type such as an email or an alarm. Good.
  • the measurement value collection device 102 collects measurement values from the sensor 191 that measures the state of the monitored water pipe network, and transmits the collected measurement values of the sensor 191 to the abnormality detection device 101.
  • the alarm display device 103 receives the abnormality determination result from the output unit 152 and displays the received abnormality determination result. Further, the alarm display device 103 may receive a notification of the abnormality determination result from the output unit 152 and display the abnormality determination result.
  • the abnormality detection apparatus 101 may be arrange
  • FIG. 2 is a hardware configuration example of the abnormality detection apparatus 101.
  • the abnormality detection apparatus 101 connects a CPU 201, a memory 202, a media input / output unit 203, an input unit 205, a communication control unit 204 connected to a network, a display unit 206 such as a display, and a peripheral device IF unit 207 via a bus 210. It is a so-called computer.
  • the CPU 201 executes the processing of each processing unit, and the memory 202 stores the program of each processing unit and the data of each storage unit.
  • abnormality detection apparatus 101 the measurement value collection apparatus 102, and the alarm display apparatus 103 may be implemented as different programs on the same computer.
  • FIG. 3 is a configuration example of a water pipe network to be monitored by the abnormality detection apparatus 101.
  • the water pipe network is composed of a plurality of DMAs (Distributed Metered Areas).
  • the DMA is an area of the water pipe network, and there are a small number of pipes (inflow / outflow pipes) into and out of the adjacent pipe network (inflow / outlet pipes), and in many cases there is only one. It is measured.
  • FIG. 3 is a configuration example of a water pipe network supplied from the distribution reservoir 301 and includes DMAs 340 and 341.
  • This water pipe network includes pipes such as the distribution reservoir 301 and the distribution pipe 351, and is composed of sensors such as a flow sensor 310 (rectangle in the figure) and a pressure sensor 320 (o in the figure), and incidental equipment such as a valve 361. Has been.
  • the DMA 340 has one inflow / outflow pipe in which a flow rate sensor 311 is installed, and a pipe valve 361 connected to an adjacent area (DMA 341) is closed. Further, pressure sensors 320 to 322 are installed in the DMA 340.
  • the DMA 341 has an inflow / outflow pipe in which a flow rate sensor 312 and a flow rate sensor 313 are installed.
  • the sensors 191 for collecting the measurement values by the measurement value collection device 102 are flow rate sensors 310-313 and pressure sensors 320-324.
  • FIG. 4 is a diagram showing prediction and abnormality determination by two prediction determination methods different from the measurement value of the flow rate sensor 311. Processing of the prediction determination unit 131 and the influence data selection unit 111 will be described with reference to FIG.
  • the prediction determination unit 131 is activated at a collection period of measurement values of the sensor 311, for example, at a period of 5 minutes.
  • the prediction determination unit 131 reads the measurement value of the sensor 311 from the measurement value storage unit 121, reads auxiliary data from the auxiliary data storage unit 122, and receives each prediction determination method data from the prediction determination method data storage unit 123. read out.
  • the prediction determination unit 131 obtains a prediction value corresponding to the latest measurement value of the sensor 311 using each prediction determination method as a prediction process.
  • the prediction determination unit 131 determines whether or not an abnormality has occurred in the monitored water pipe network based on the difference between the predicted value using each prediction determination method and the latest measured value.
  • the prediction determination unit 131 outputs an abnormality determination result using each prediction determination method to the influence data selection unit 111 and the determination integration unit 112 as a result output process.
  • the prediction determination results 491 and 492 are based on the prediction determination method 1 and the prediction determination method 2 output by the prediction determination unit 131.
  • the horizontal axis represents time
  • the vertical axis represents the measurement value (flow rate) of the flow sensor 311.
  • Circles 401 to 404 in the figure are measurement values of the flow sensor 311 at each time for each measurement value collection cycle. Note that the measurement values that the prediction determination unit 131 determines to be normal in each prediction determination method are white circles, and the measurement values that are determined to be abnormal are black circles.
  • the time series prediction values 411 and 412 are point prediction results by each prediction determination method, and the time series prediction upper limit values 421 and 422 and the prediction lower limit values 431 and 432 are section prediction results by each prediction determination method.
  • the point prediction result is the time-series data of the prediction value at each prediction time (predicted time), and the interval prediction result has a prediction upper limit value determined by the prediction accuracy because the prediction accuracy of the prediction value differs depending on each prediction determination method. It is time series data of a prediction lower limit. The difference between the prediction upper limit value and the prediction lower limit value is called an interval.
  • Prediction determination method 1 performs prediction and determination based on measured values in a time range (time zone) up to the latest time, as in the method described in Non-Patent Document 1.
  • the prediction determination unit 131 uses the measurement value of the time range 470 for prediction of the determination time (same as the above-described prediction time) 480, and the determination time 481
  • the measurement value in the time range 471 is used for the prediction.
  • the predicted value corresponding to the measured value at the determination time is predicted using the measured value in the time range up to 5 minutes before the determination time (the latest measurement value collection time).
  • Prediction determination method 2 performs prediction and determination based on measurement values in a time range before a predetermined time from the determination time. In other words, there is a predetermined time between the time when the last measured value in the time range is obtained and the determination time.
  • the prediction determination unit 131 calculates the measurement value of the time range 475 for prediction of the determination time 480 and measures the time range 476 for prediction of the determination time 481. Use each value. For example, the measurement value at the determination time is predicted using the measurement value 75 minutes before the determination time.
  • the predicted value at the determination time is a value predicted to be obtained as a measurement value at the determination time
  • the upper limit of the prediction accuracy (vibration width) of the predicted value is It is a prediction upper limit
  • a lower limit is a prediction lower limit.
  • a plurality of prediction determination methods are used by setting different times as the predetermined time of the prediction determination method based on the measurement values in the time range before the determination time.
  • the prediction determination method 1 is a method in which the predetermined time is 5 minutes
  • the prediction determination method 2 is a method in which the predetermined time is, for example, 75 minutes. Further, by changing the time range (changing the number of measurement values used for prediction), prediction determination methods with different prediction accuracy can be obtained.
  • the predetermined time used by the prediction determination method is used as a parameter, and the time range or the number of measured values is stored as a data range in the prediction determination method data storage unit 123 in association with the ID of the prediction determination method.
  • the prediction determination unit 131 uses the prediction determination method 1 and the prediction determination method 2 when the difference between the measured value and the predicted value at the determination time is equal to or greater than a predetermined threshold, and when the measured value deviates from the section prediction (upper limit value). If it exceeds or falls below the lower limit), it is determined as abnormal.
  • FIG. 4 shows data (measured values and predicted values) in which water leakage occurred in the DMA 340 immediately before the measurement time of the measured value 401.
  • the prediction determination unit 131 using the prediction determination method 1 determines that the measurement values 401 to 404 are normal because the measured values 401 to 404 are between the prediction upper limit value 421 and the prediction lower limit value 431 (section).
  • the prediction determination unit 131 using the prediction determination method 2 determines that the measurement value 402-404 exceeds the prediction upper limit value 422, and thus is abnormal.
  • the prediction determination method for the measurement value of the flow sensor 311 is described, but a value obtained by applying various processes such as filtering such as moving average and normalization may be used. Moreover, it is good also as performing prediction and determination which considered the correlation with the measured value of another sensor.
  • the prediction determination unit 131 determines that an abnormality has occurred, the prediction determination unit 131 also estimates the abnormality attribute including the abnormality occurrence time, type, location, occurrence location, and the like. Even when it is difficult to estimate each attribute included in the abnormal attribute, the prediction determination unit 131 estimates at least one attribute such as an occurrence time. In the prediction determination method 2, the measured value of the flow sensor 311 that measures the amount of flow into the DMA 340 continuously exceeds the predicted value from the time 480, indicating the characteristic of water leakage. For this reason, the prediction determination unit 131 determines that the abnormality occurrence time is around the determination time 480, the abnormality type is water leakage, the abnormality location is DMA 340, and the abnormality occurrence location is near the flow sensor 311. The prediction determination unit 131 uses a technique such as pattern matching of the increasing tendency of the difference between the predicted value and the measured value as described above in order to estimate the abnormal attribute.
  • the influence data selection unit 111 inputs the abnormality determination result and the abnormality attribute from the prediction determination unit 131. If the abnormality determination result is abnormal, the influence data selection unit selects the influence data range affected by the abnormality, and selects the selected influence data range. The result is output to the determination integration unit 112.
  • the selection process of the influence data selection unit 111 selects the influence data range affected by this abnormality based on the abnormality attribute input from the prediction determination unit 131.
  • the influence data selection unit 111 uses the position of the abnormality type and the location where the abnormality occurs and the measured value of the sensor as the influence data affected by the abnormality in the time zone after the occurrence time of the abnormality, and the range is set as the influence data range. Select.
  • the influence data range depends on the regional range and time range (time range) in which the abnormality affects, so the influence data is in the regional range in which the abnormality affects the region, and the abnormality is in time. It is a measured value of the time zone (time range) that has an influence on the environment.
  • the occurrence of water leakage is estimated by the DMA 340 after the determination time 480.
  • the sensor having a hydraulic connection relationship with the DMA 340 in the regional range), that is, the flow rate sensor 310-311 and the pressure sensor 320-
  • the measurement value of 322 is selected as the influence data range in which the abnormality affects.
  • the influence data selection unit 111 is hydraulically connected to one of the DMAs 340 and 341. All relevant sensors are selected as influence data ranges as regional ranges.
  • the influence data selection unit 111 excludes a sensor that is not affected by the abnormality determined by the prediction determination unit 131 by controlling the water pipe network from the influence data range. .
  • the influence data selection unit 111 is based on this control information.
  • the pressure sensor 320 determines that it is not affected by the abnormality determined by the prediction determination unit 131.
  • FIG. 5 is a process flowchart of the determination integration unit 112.
  • the determination integration unit 112 starts processing (S501)
  • the abnormality determination result is input from the prediction determination unit 131
  • the influence data range is input from the influence data selection unit 111 (S502).
  • the determination integration unit 112 calculates an initial value of reliability for the abnormality determination result by each prediction determination method input from the prediction determination unit 131 (S503).
  • the reliability is to quantify the reliability of the abnormality determination result by the prediction determination method. For example, the reciprocal of the size of the section (difference between the prediction upper limit value and the prediction lower limit value) in prediction time determination is used. Can do. That is, since the prediction accuracy is poor if the section is large, the reliability is low.
  • the initial value of reliability may be a fixed value for each prediction determination method, stored in advance in the prediction determination method data storage unit 123, and the determination integration unit 112 may read the initial value of reliability.
  • the determination integration unit 112 determines whether there is a result determined to be abnormal among the abnormality determination results by each prediction determination method input from the prediction determination unit 131 (S504).
  • the judgment integration unit 112 proceeds to S505 if there is an abnormality, and proceeds to S506 if there is no abnormality.
  • the determination integration unit 112 determines whether there is an abnormality determination result using the influence data included in the influence data range of the abnormality determination extracted in S504 among the abnormality determination results by each prediction determination method input from the prediction determination unit 131. And the process of lowering the reliability of the abnormality determination result using the influence data is performed. In the process of reducing the reliability, for example, the reliability of the abnormality determination result using the influence data is set to 0. The degree of reliability may be calculated more precisely according to the number of measurement values as influence data used by the prediction determination unit 131 for prediction determination. Further, the determination as to whether or not the influence data is used includes not only the measurement value used for the prediction but also the measurement value used for adjusting the parameter of the prediction determination method.
  • the determination integration unit 112 integrates the abnormality determination result by each prediction determination method input from the prediction determination unit 131 based on the reliability (S506).
  • the integration method for example, the abnormality determination result with the highest reliability is adopted.
  • an integration method may be used, such as taking a majority vote of abnormality determination results having a reliability level equal to or higher than a predetermined value, and averaging the abnormality determination results after weighting with reliability.
  • the determination integration unit 112 outputs the integrated abnormality determination result to the output unit 152 (S507), and ends the process (S508).
  • the prediction determination unit 131 for the measurement value 404 at the determination time 481 determines that the prediction determination result 491 using the prediction determination method 1 is normal and the prediction determination result 492 using the prediction determination method 2 is abnormal. . Since the prediction determination method 1 is determined using the most recent measurement value compared to the prediction determination method 2, the initial value of the reliability is higher in the prediction determination method 1 than in the prediction determination method 2. Is expensive.
  • the prediction determination unit 131 uses a measurement value (influence data) on which the abnormality determined by the prediction determination method 2 temporally affects the determination at the determination time 481 by the prediction determination method 1. For this reason, the determination integration unit 112 sets the reliability of the prediction determination method 1 to 0 (lowers the reliability), and adopts the result of the prediction determination method 2 with the highest reliability as a result.
  • FIG. 6 is a display example of the detection result of the occurrence of water leakage by the abnormality detection device 101. A method in which the output unit 152 presents the abnormality determination result to the operator will be described with reference to FIG.
  • the abnormality detection result window 601 displayed on the display unit 206 such as a display by the output unit 152 includes a prediction determination display panel 602 and a determination integrated display panel 603.
  • the output unit 152 displays the abnormality determination result input from the determination integration unit 112 on each panel of the abnormality detection result window 601.
  • the output unit 152 displays the abnormality determination result on the prediction determination display panel 602.
  • information corresponding to the prediction determination result 492 of FIG. 4 that is the basis for the abnormality determination is displayed.
  • an influence data range that is determined to be abnormal and the abnormality affects temporally is highlighted as an abnormal influence time range 621.
  • the operator operates the sensor selection box 611 and the prediction determination method selection box 612 to change the sensor and prediction determination method displayed on the prediction determination display panel 602 by the output unit 152.
  • the output unit 152 displays the determination result of each prediction determination method and information used for integration on the determination integrated display panel 603.
  • the ID of the prediction judgment method As information used for the integration, the ID of the prediction judgment method, its reliability, the judgment result of normal or abnormal, the presence or absence of use of the influence data, the abnormal part, the occurrence time of the abnormal, and The type is displayed.
  • the abnormality detection device 101 can detect even the occurrence of small-scale water leakage based on the measured values of the sensors such as the flow rate and pressure.
  • an abnormality detection device that does not include a prediction determination unit that performs prediction determination by a plurality of prediction determination methods and an integrated determination unit that integrates determination results, detects the occurrence of small-scale water leakage by increasing the sensitivity of abnormality determination. As a result, misreports frequently occur that determine that a change in the measured value of the sensor within the normal range is abnormal. For this reason, only the occurrence of large-scale water leakage can be detected practically.
  • the abnormality detection device of the present embodiment it is possible to detect even the occurrence of an abnormality such as a small-scale water leak that gives a gradual change in measured values such as flow rate and pressure.
  • the abnormality detection device evaluates the reliability of the prediction determination method based on whether or not the influence data affected by the abnormality is used, and then integrates the determination results to generate a false alarm. It is possible to detect the occurrence of small-scale water leakage by keeping the ratio of low.
  • the abnormality detection device of the present embodiment can detect events that increase gradually and become large-scale water leakage earlier.
  • FIG. 7 is a configuration diagram of the abnormality detection system 100 of the present embodiment.
  • the abnormality detection apparatus 101 includes a method selection unit 701 that selects a prediction determination method used by the prediction determination unit 131 based on the abnormality determination result of the determination integration unit 112. The description will focus on the differences from the first embodiment.
  • the prediction determination unit 131 is selected by the method selection unit 701 among the prediction determination methods stored in the prediction determination method data storage unit 123 (strictly, the prediction determination method determined by the prediction determination method data). Prediction and determination are performed by a prediction determination method.
  • the prediction determination method stored in the prediction determination method data storage unit 123 is referred to as a prediction determination method candidate.
  • the method selection unit 701 inputs the abnormality determination result and the influence data range from the determination integration unit 112.
  • the method selection unit 701 reads the prediction determination method candidate list from the prediction determination method data storage unit 123, refers to the input abnormality determination result and the influence data range, and uses the prediction determination unit to use the prediction determination unit from the read candidate list A method is selected, and the selected prediction determination method is output to the prediction determination unit 131.
  • the prediction determination unit 131 using the prediction determination method 2 does not use the influence data at the determination time 481, but the prediction determination unit 131 uses the prediction determination method 2 when more time elapses. Impact data must be used.
  • the method selection unit 701 measures the data range from which the influence data (measurement value) affected by the abnormality is excluded from the prediction determination method candidates when the determination integration unit 112 determines that the abnormality is present. Select the prediction judgment method that uses the value.
  • the method selection unit 701 selects a prediction determination method that uses a measurement value in the past time range further than the prediction determination method 2.
  • the method selection unit 701 does not use the measurement value of the DMA 340 sensor, and various auxiliary data such as day of the week and weather stored in the auxiliary data storage unit 122, and the water distribution flow rate of the DMA highly correlated with the DMA 340
  • the prediction determination method for predicting the flow rate of the flow rate sensor 311 is selected.
  • the criterion for abnormality determination that serves as a trigger for the method selection unit 701 to select the prediction determination method may be lower in certainty (the probability of the abnormality determination result) than the criterion for abnormality determination presented to the operator. That is, the prediction determination unit 131 provides a two-stage time interval (data range) to obtain a two-stage certainty and determines an abnormality, and the method selection unit 701 predicts using an abnormality determination result with a low certainty as a trigger. A determination method may be selected. In this case, the determination integration unit 112 outputs an abnormality determination result with a high degree of certainty to the output unit 152.
  • the method selection unit 701 selects the prediction determination method when the certainty level is less than a predetermined threshold, and the certainty level is predetermined.
  • the abnormality determination result may be output to the output unit 152 when the threshold value is equal to or greater than the threshold value.
  • the abnormality detection apparatus 101 selects the prediction determination method in which the method selection unit does not use the abnormality influence data, so that the degree of certainty of the abnormality determination result can be increased even when the abnormality continues for a long time. Maintained abnormality detection can be continued.
  • the abnormality detection apparatus 101 of the present embodiment can suppress the processing load of the abnormality detection apparatus 101 by selectively using a prediction determination method that is effective for determining abnormality.
  • the present embodiment is an abnormality detection apparatus 101 and an abnormality detection system 100 in which the method selection unit 701 instructs collection of measurement values.
  • the anomaly detection system 100 includes a sensor 191 that can collect measurement values according to an explicit instruction from the measurement value collection device 102, which corresponds to both periodic operation and demand-based operation, although the measurement value collection cycle in normal times is long. Including.
  • a sensor for example, it is a charge meter of a large-volume water consumer, and the water usage is measured and recorded in a cycle of 30 minutes, but the recorded measurement value is transmitted in a cycle of one day. It is a set smart meter.
  • the anomaly detection apparatus 101 uses the measurement value of the sensor corresponding to the measurement value collection instruction (demand) in the prediction determination method data storage unit 123 as a candidate for the prediction determination method for performing highly reliable prediction determination. As stored.
  • the method selection unit 701 selects the above-described candidate prediction determination method (data), outputs the selected prediction determination method to the prediction determination unit 131, and the selected prediction determination method.
  • the measurement value collection unit 151 is instructed to collect the measurement values required by.
  • the measurement value collection unit 151 instructs the measurement value collection device 102 to collect necessary measurement values.
  • the method selection unit 701 instructs the measurement value collection device 102 to collect the water usage measured by the smart meter, and selects the prediction determination method that uses the water usage measured by the smart meter as the measurement value.
  • use of the water similar to a water leak can be discriminate
  • the anomaly detection apparatus 101 of the present embodiment for example, by collecting the measured values from the smart meter for the water leakage and the water usage of the consumer, it is possible to suppress false reports of the occurrence of water leakage.
  • the prediction determination unit 131 outputs an abnormality determination result at a period according to each feature of the plurality of prediction determination methods.
  • the prediction determination method used by the prediction determination unit 131 includes a prediction determination method for performing prediction and determination based on the nighttime flow rate.
  • the nighttime flow rate is the minimum value of the flow rate observed in a specific time zone at midnight. Prediction / determination based on the nighttime flow rate is highly reliable, but it can be determined only once a day (the determination cycle is one day), and it takes time from the occurrence of water leakage to its detection. The abnormality determination result is also output once a day.
  • the determination integration unit 112 determines that the determination period is long and the reliability of the abnormality determination result when it is determined to be abnormal by the short determination period prediction determination method corresponding to the measurement value collection period as described in the first embodiment. Therefore, the abnormality determination result is integrated so as to select the determination of abnormality without adopting the determination result of the prediction determination method having a high value, that is, the prediction determination method based on the nighttime flow rate.
  • the abnormality detection device 101 of the present embodiment it is possible to detect the occurrence of water leakage with high reliability based on the nighttime flow rate and to detect the occurrence of water leakage in a short time from the occurrence of water leakage.
  • the abnormality detection device for monitoring the water pipe network has been described.
  • the monitoring target is not limited to the water pipe network, and the abnormality detection device can be used for various processes in which abnormality determination based on prediction is effective. It can be applied to anomaly detection.
  • the anomaly detection device sets the measurement items of the sensor (type of sensor) and auxiliary data to be used appropriately so that the water supply process, the water purification process, and the gas supply that supplies resources through the pipe network and pipeline Processes and chemical plant operation processes can be monitored.
  • the auxiliary data may be an operation plan or a control target value in a specific line of the plant, and various prediction judgment methods using these data may be used.
  • 100 Anomaly detection system
  • 101 Anomaly detection device
  • 102 Measurement value collection device
  • 103 Alarm display device
  • 111 Influence data selection unit
  • 112 Determination integration unit
  • 121 Measurement value storage unit
  • 122 Auxiliary data storage Unit
  • 123 prediction determination method data storage unit
  • 151 measurement value collection unit
  • 152 output unit
  • 191 sensor
  • 701 method selection unit.

Abstract

In the present invention, even a process abnormality that gives a moderate change to measured values is detected. An abnormality detection device has a prediction and assessment unit, an effect data selection unit, an assessment integration unit, and an output part. In the prediction and assessment unit: the prediction value of a first measurement value of a sensor in a monitored process at the point in time an assessment is made is predicted, using each of a plurality of prediction and assessment methods, on the basis of measurement values from the sensor over a data range corresponding to the plurality of prediction and assessment methods; the process to be monitored is assessed to be abnormal on the basis of (1) the difference between the prediction value and the first measurement value at the point in time the assessment is made, and/or (2) the first measurement value outside the range between the upper and lower limits of the prediction values; and the abnormality assessment results for when an abnormality was assessed to have occurred as obtained with the plurality of predictive assessment methods are outputted. In the effect data selection unit, a range that includes, as effect data, a second measurement value affected by the abnormality included in the abnormality assessment results is selected as the effect data range. In the assessment integration unit, the reliability of those, among the abnormality assessment results, that are abnormality assessment results based on the effect data included in the effect data range is lowered, and the abnormality assessment results of the plurality of prediction and assessment methods are integrated. The output part outputs the integrated abnormality assessment results.

Description

異常検知装置、異常検知システムおよびその方法Anomaly detection apparatus, anomaly detection system and method
 本発明は、異常検知装置、異常検知システムおよびその方法に関する。 The present invention relates to an anomaly detection device, an anomaly detection system, and a method thereof.
 非特許文献1は、水道配水プロセスの流量や圧力の計測値時系列に対して、サポートベクター回帰を応用することで、過去の時刻の観測値から次の時刻の予測値を計算し、さらに新規性検知(Novelty detection)を行うことで、漏水発生等の水道配水プロセスの異常検知を行う方法を開示している。 Non-Patent Document 1 calculates the predicted value of the next time from the observed value of the past time by applying support vector regression to the measured value time series of the flow rate and pressure of the water distribution process. Disclosed is a method for detecting an abnormality in a water distribution process, such as the occurrence of water leakage, by performing property detection (Novelty detection).
 非特許文献1の方法で漏水発生等の水道配水プロセスの異常検知を行う場合、小規模な漏水発生等の異常を検知できない。この方法は、漏水発生後の次の時刻の予測値算出に漏水発生の影響を受けた計測値を利用する。このため、小規模な漏水発生の場合、予測値が漏水発生後の計測値に近くなり、予測値と計測値との差が小さくなる。したがって、漏水発生直後に予測値と計測値の差が十分大きくなる大規模な漏水ならば、予測値が漏水発生の影響を受ける前に検知できるが、小規模な漏水は検知できない。 When performing abnormality detection of the water distribution process such as the occurrence of water leakage by the method of Non-Patent Document 1, it is impossible to detect abnormality such as the occurrence of small-scale water leakage. This method uses a measurement value affected by the occurrence of water leakage to calculate a predicted value at the next time after the occurrence of water leakage. For this reason, in the case of small-scale water leakage, the predicted value is close to the measured value after the occurrence of water leakage, and the difference between the predicted value and the measured value is reduced. Therefore, if the water leak is large enough that the difference between the predicted value and the measured value is sufficiently large immediately after the occurrence of water leakage, the predicted value can be detected before being affected by the occurrence of water leakage, but small-scale water leakage cannot be detected.
 ここで、漏水の規模とは、漏水が流量や圧力等のセンサの計測値に与える変化を、漏水が発生していない平常時の計測値の変動に対する相対的な比率で評価した規模とする。水道管からの漏水として流量の絶対値が大きい漏水であったとしても、その漏水が配水量の多い配水区域内で起きれば、小規模な漏水となる。 Here, the scale of the water leakage is a scale obtained by evaluating the change that the water leakage gives to the measured values of the sensor such as the flow rate and the pressure by a relative ratio to the fluctuation of the measured values in the normal time when no water leakage occurs. Even if the water flow leaks from the water pipe with a large absolute value of the flow rate, if the water leak occurs in a distribution area with a large amount of water distribution, the water leak will be small.
 そこで、流量や圧力等の計測値から、小規模な漏水の発生であっても検知できることが望まれる。言い換えると、計測値に緩やかな変化を与える、プロセスの異常であっても検知できることが望まれる。 Therefore, it is desirable that even small-scale water leakage can be detected from measured values such as flow rate and pressure. In other words, it is desirable to be able to detect even a process abnormality that gives a gradual change in the measured value.
 開示する異常検知装置は、複数の予測判定方式の各々を用いて、複数の予測判定方式に応じたデータ範囲の、監視対象プロセスのセンサの計測値に基づいて、判定時刻におけるセンサの第1の計測値の予測値を予測し、(1)予測値と判定時刻における第1の計測値との差、及び、(2)予測値の上限値と下限値との範囲外の第1の計測値、の少なくとも一方に基づいて、監視対象プロセスの異常を判定し、複数の予測判定方式の、異常を判定した異常判定結果を出力する予測判定部、異常判定結果が含む異常が影響を及ぼす第2の計測値を影響データとして含む範囲を影響データ範囲として選定する影響データ選定部、異常判定結果のうち、影響データ範囲に含まれる影響データに基づいた異常判定結果の信頼度を下げて、複数の予測判定方式の前記異常判定結果を統合する判定統合部、および統合した異常判定結果を出力する出力部を有する。 The disclosed abnormality detection device uses each of the plurality of prediction determination methods, based on the measurement value of the sensor of the monitored process in the data range according to the plurality of prediction determination methods, the first sensor of the determination time Predict the predicted value of the measured value, (1) the difference between the predicted value and the first measured value at the determination time, and (2) the first measured value outside the range between the upper limit value and the lower limit value of the predicted value Based on at least one of the above, a prediction determination unit that determines an abnormality of the monitoring target process and outputs an abnormality determination result of determining an abnormality of a plurality of prediction determination methods, a second that an abnormality included in the abnormality determination result affects The influence data selection unit that selects the range including the measured value of the measurement data as the influence data range as the influence data range, among the abnormality determination results, the reliability of the abnormality determination result based on the influence data included in the influence data range is lowered, and a plurality of Predictive judgment Having the abnormality determination integrating unit that integrates the determination result, and an output unit for outputting the integrated anomaly determination result of the expression.
 開示する異常検知装置によれば、計測値に緩やかな変化を与える、プロセスの異常であっても検知できる。 According to the disclosed abnormality detection device, even a process abnormality that gives a gradual change in the measured value can be detected.
異常検知システムの構成図である。It is a block diagram of an abnormality detection system. 異常検知装置のハードウェア構成例である。It is a hardware structural example of an abnormality detection apparatus. 異常検知装置が監視対象とする水道管網の構成例である。It is a structural example of the water pipe network which an abnormality detection apparatus makes the monitoring object. 異なる予測判定方式による予測および異常判定を示す図である。It is a figure which shows the prediction and abnormality determination by a different prediction determination system. 判定統合部の処理フローチャートである。It is a processing flowchart of a judgment integration part. 異常検知装置による漏水発生の検知結果の表示例である。It is a display example of the detection result of the occurrence of water leakage by the abnormality detection device. 実施例2の異常検知システムの構成図である。It is a block diagram of the abnormality detection system of Example 2.
 以下、図面を用いて実施例を説明する。 Hereinafter, examples will be described with reference to the drawings.
 図1は、流量、圧力等のセンサ計測値に基づいて、水道配水プロセス(水道管網)を監視して、漏水発生等の異常を検知する異常検知システム100の構成図である。異常検知システム100は、異常検知装置101、流量や圧力等の計測値を得るセンサ191、計測値収集装置102、および警報表示装置103を有する。 FIG. 1 is a configuration diagram of an abnormality detection system 100 that monitors a water distribution process (water pipe network) based on sensor measurement values such as flow rate and pressure to detect an abnormality such as occurrence of water leakage. The abnormality detection system 100 includes an abnormality detection device 101, a sensor 191 that obtains measurement values such as flow rate and pressure, a measurement value collection device 102, and an alarm display device 103.
 異常検知装置101は、影響データ選定部111、判定統合部112、予測判定部131、予測判定部132、計測値収集部151、および出力部152の各処理部、並びに、計測値記憶部121、補助データ記憶部122、および予測判定方式データ記憶部123の各記憶部を有する。 The abnormality detection apparatus 101 includes an influence data selection unit 111, a determination integration unit 112, a prediction determination unit 131, a prediction determination unit 132, a measurement value collection unit 151, and an output unit 152, and a measurement value storage unit 121. Each storage unit includes an auxiliary data storage unit 122 and a prediction determination method data storage unit 123.
 影響データ選定部111は、予測判定部131、132(以下、予測判定部131、132を個別に説明する必要がない場合は予測判定部131を代表させる。)から異常判定結果を入力し、異常判定結果が異常との判定であれば、この異常が影響を及ぼす計測値のデータ範囲を選定し、選定したデータ範囲を影響データ範囲(後述)として判定統合部112に出力する。影響データ選定部111の処理の詳細は後述する。 The influence data selection unit 111 inputs an abnormality determination result from the prediction determination units 131 and 132 (hereinafter, the prediction determination unit 131 is representative when the prediction determination units 131 and 132 need not be individually described), and the abnormality If it is determined that the determination result is abnormal, a data range of measurement values affected by the abnormality is selected, and the selected data range is output to the determination integration unit 112 as an influence data range (described later). Details of the processing of the influence data selection unit 111 will be described later.
 判定統合部112は、予測判定部131から異常判定結果を入力し、影響データ選定部111から影響データ範囲を入力し、入力した影響データ範囲に基づき、異常判定結果の信頼度(後述)を下げて異常判定結果を統合し、統合した異常判定結果を出力部152に出力する。判定統合部112の処理の詳細は後述する。 The determination integration unit 112 inputs the abnormality determination result from the prediction determination unit 131, inputs the influence data range from the influence data selection unit 111, and lowers the reliability (described later) of the abnormality determination result based on the input influence data range. The abnormality determination result is integrated, and the integrated abnormality determination result is output to the output unit 152. Details of the processing of the determination integration unit 112 will be described later.
 予測判定部131は、計測値記憶部121から計測値を読み出し、必要に応じて補助データ記憶部122から補助データを読み出し、予測判定方式データ記憶部123から予測判定方式データを読み出す。予測判定部131は、所定の予測判定方式を用いて、予測判定方式データで定められるデータ範囲のセンサの計測値からセンサの予測値(予測時刻にセンサが計測値として出力するだろう値)を予測し、予測値と予測時刻の計測値との差(詳細は後述するが、予測値は予測値そのものと予測値の上下限値を有するので、差だけでなく上下限値の範囲の内外を含む。)から監視対象の水道管網の異常を判定し、異常判定結果を求め、影響データ選定部111および判定統合部112に異常判定結果を出力する。予測判定部132も、予測判定部131と異なる予測判定方式に基づいた異常判定結果を出力する。 The prediction determination unit 131 reads measurement values from the measurement value storage unit 121, reads auxiliary data from the auxiliary data storage unit 122 as necessary, and reads prediction determination method data from the prediction determination method data storage unit 123. The prediction determination unit 131 uses a predetermined prediction determination method to calculate a sensor predicted value (a value that the sensor will output as a measurement value at the prediction time) from the sensor measurement value in the data range defined by the prediction determination method data. The difference between the predicted value and the measured value of the predicted time (details will be described later, but the predicted value has the upper and lower limit values of the predicted value itself and the predicted value. Including)), the abnormality of the water pipe network to be monitored is determined, the abnormality determination result is obtained, and the abnormality determination result is output to the influence data selection unit 111 and the determination integration unit 112. The prediction determination unit 132 also outputs an abnormality determination result based on a prediction determination method different from the prediction determination unit 131.
 また、予測判定部131は、計測値を含む各入力データに基づいて、予測判定方式の学習、すなわち、予測判定方式のパラメータ(予測判定方式データ)を調整し、調整した予測判定方式のパラメータを予測判定方式データ記憶部123に格納する。 Also, the prediction determination unit 131 adjusts the prediction determination method parameters (prediction determination method data) based on each input data including the measurement values, and sets the adjusted prediction determination method parameters. Stored in the prediction determination method data storage unit 123.
 予測判定部131は、予測判定方式の学習し、センサの予測値の予測、予測値と計測値の差から監視対象の水道管網の異常の判定の処理を実行する。 The prediction determination unit 131 learns the prediction determination method, and executes prediction processing of the predicted value of the sensor, and processing for determining abnormality of the monitored water pipe network from the difference between the predicted value and the measured value.
 予測判定部131は、予測および異常の判定には、例えば非特許文献1に記載のサポートベクター回帰やニューラルネットワークを使用した方式などの既知の技術を利用する。予測判定部131の処理の詳細は後述する。 The prediction determination unit 131 uses a known technique such as a method using support vector regression or a neural network described in Non-Patent Document 1 for prediction and abnormality determination. Details of the processing of the prediction determination unit 131 will be described later.
 異常検知装置101は、異なる予測判定方式によって異常判定を行うために、複数の予測判定部131、132を備えてもよい。又は、予測判定部131が、予測判定方式の論理を同じくして、予測判定方式のパラメータを異なる値に調整することによって、異なる予測判定方式を実現してもよい。 The abnormality detection apparatus 101 may include a plurality of prediction determination units 131 and 132 in order to perform abnormality determination using different prediction determination methods. Or the prediction determination part 131 may implement | achieve a different prediction determination system by adjusting the parameter of a prediction determination system to a different value by making the logic of a prediction determination system the same.
 計測値記憶部121は、計測値収集部151からの、監視対象の水道管網に設置されたセンサの計測値を格納する。予測判定部131が計測値記憶部121から計測値を読み出す。 The measurement value storage unit 121 stores the measurement value of the sensor installed in the monitored water pipe network from the measurement value collection unit 151. The prediction determination unit 131 reads the measurement value from the measurement value storage unit 121.
 補助データ記憶部122は、予測判定部131の処理に用いられる補助データを格納する。予測判定部131が補助データ記憶部122から補助データを読み出す。補助データ記憶部122は、予測判定部131による予測判定の補助データとして、例えば、季節、月日、曜日などを特定するためのカレンダー、天気、社会的なイベント等の、監視対象の水道管網の状態に影響を与える情報を予め格納しておく。異常検知装置101が、異常検知システム100外の他の装置からこれらの情報を収集し、補助データ記憶部122に格納するようにしてもよい。 The auxiliary data storage unit 122 stores auxiliary data used for the processing of the prediction determination unit 131. The prediction determination unit 131 reads auxiliary data from the auxiliary data storage unit 122. The auxiliary data storage unit 122 is a water pipe network to be monitored, such as a calendar, weather, social event, etc. for specifying the season, month, day of the week, etc., as auxiliary data for prediction determination by the prediction determination unit 131 Information that influences the state of is stored in advance. The abnormality detection device 101 may collect these pieces of information from other devices outside the abnormality detection system 100 and store them in the auxiliary data storage unit 122.
 予測判定方式データ記憶部123は、予測判定部131が用いる複数の予測判定方式について、各予測判定方式を定めるパラメータなどの情報を格納する。予測判定部131が予測判定方式データ記憶部123から各予測判定方式の情報を読み出す。また、予測判定方式データ記憶部123は、予測判定部131が学習によって調整した各予測判定方式のパラメータを入力して格納する。 The prediction determination method data storage unit 123 stores information such as parameters for determining each prediction determination method for a plurality of prediction determination methods used by the prediction determination unit 131. The prediction determination unit 131 reads information on each prediction determination method from the prediction determination method data storage unit 123. In addition, the prediction determination method data storage unit 123 receives and stores parameters of each prediction determination method adjusted by the prediction determination unit 131 through learning.
 予測判定方式データ記憶部123が格納するパラメータなどの情報は、各予測判定方式について、予測判定方式のID、予測判定方式の調整済みのパラメータ、およびこのパラメータの調整に使用した計測値に係るデータ範囲(後述)である。 The information such as the parameters stored in the prediction determination method data storage unit 123 includes, for each prediction determination method, data relating to the prediction determination method ID, the adjusted parameter of the prediction determination method, and the measurement value used for the adjustment of this parameter. Range (described later).
 計測値収集部151は、計測値収集装置102から監視対象の水道管網に設置された圧力や流量等のセンサ191の計測値を受信し、計測値記憶部121に格納する。 The measurement value collection unit 151 receives the measurement values of the sensor 191 such as the pressure and flow rate installed in the monitored water pipe network from the measurement value collection device 102 and stores them in the measurement value storage unit 121.
 出力部152は、判定統合部112から統合した異常判定結果を入力し、異常判定結果を異常検知システム100の操作者に提示する。また、出力部152は、警報表示装置103に異常判定結果を出力する。 The output unit 152 inputs the abnormality determination result integrated from the determination integration unit 112, and presents the abnormality determination result to the operator of the abnormality detection system 100. Further, the output unit 152 outputs an abnormality determination result to the alarm display device 103.
 例えば、出力部152は、操作者向けのディスプレイに異常判定結果を表示する。または、操作者の持つスマートフォンやタブレット等のスマートデバイスを警報表示装置103として用い、このようなスマートデバイスからの要求に応じて、異常判定結果を送信する。出力部152は、異常判定結果が予め設定された条件を満たす場合、例えば、所定規模以上の漏水発生と判定された場合、警報表示装置103に、メールやアラーム等のプッシュ型で通知してもよい。 For example, the output unit 152 displays the abnormality determination result on the display for the operator. Alternatively, a smart device such as a smartphone or tablet held by the operator is used as the alarm display device 103, and an abnormality determination result is transmitted in response to a request from such a smart device. When the abnormality determination result satisfies a preset condition, for example, when it is determined that water leakage of a predetermined size or more has occurred, the output unit 152 may notify the alarm display device 103 by a push type such as an email or an alarm. Good.
 計測値収集装置102は、監視対象の水道管網の状態を計測するセンサ191から計測値を収集し、収集したセンサ191の計測値を異常検知装置101に送信する。 The measurement value collection device 102 collects measurement values from the sensor 191 that measures the state of the monitored water pipe network, and transmits the collected measurement values of the sensor 191 to the abnormality detection device 101.
 警報表示装置103は、出力部152から異常判定結果を受信し、受信した異常判定結果を表示する。また、警報表示装置103は、出力部152からの異常判定結果の通知を受信し、異常判定結果を表示してもよい。 The alarm display device 103 receives the abnormality determination result from the output unit 152 and displays the received abnormality determination result. Further, the alarm display device 103 may receive a notification of the abnormality determination result from the output unit 152 and display the abnormality determination result.
 なお、異常検知装置101は、センサ191や計測値収集装置102が配置される監視対象の水道管網から遠隔地に配置されてもよい。 In addition, the abnormality detection apparatus 101 may be arrange | positioned in the remote place from the water pipe network of the monitoring object where the sensor 191 and the measured value collection apparatus 102 are arrange | positioned.
 図2は、異常検知装置101のハードウェア構成例である。異常検知装置101は、CPU201、メモリ202、メディア入出力部203、入力部205、ネットワークと接続する通信制御部204、ディスプレイ等の表示部206、および周辺機器IF部207をバス210によって接続する、いわゆるコンピュータである。 FIG. 2 is a hardware configuration example of the abnormality detection apparatus 101. The abnormality detection apparatus 101 connects a CPU 201, a memory 202, a media input / output unit 203, an input unit 205, a communication control unit 204 connected to a network, a display unit 206 such as a display, and a peripheral device IF unit 207 via a bus 210. It is a so-called computer.
 したがって、CPU201が各処理部の処理を実行し、メモリ202が各処理部のプログラムおよび各記憶部のデータを格納する。 Therefore, the CPU 201 executes the processing of each processing unit, and the memory 202 stores the program of each processing unit and the data of each storage unit.
 なお、異常検知装置101、計測値収集装置102、および警報表示装置103を同じコンピュータ上で、異なるプログラムとして実装してもよい。 Note that the abnormality detection apparatus 101, the measurement value collection apparatus 102, and the alarm display apparatus 103 may be implemented as different programs on the same computer.
 図3は、異常検知装置101が監視対象とする水道管網の構成例である。水道管網は、複数のDMA(District Metered Area)によって構成される。DMAは、水道管網の区域であり、隣接する管網との間で水が流入出する管(流入出管)が少数、多くの場合は1つであり、また各流入出管で流量が計測される。 FIG. 3 is a configuration example of a water pipe network to be monitored by the abnormality detection apparatus 101. The water pipe network is composed of a plurality of DMAs (Distributed Metered Areas). The DMA is an area of the water pipe network, and there are a small number of pipes (inflow / outflow pipes) into and out of the adjacent pipe network (inflow / outlet pipes), and in many cases there is only one. It is measured.
 図3は、配水池301から給水される水道管網の構成例であり、DMA340、341を含んでいる。この水道管網は、配水池301や配水管351等の管を含み、流量センサ310(図中、矩形)や圧力センサ320(図中、○)等のセンサ、バルブ361等の付帯設備で構成されている。 FIG. 3 is a configuration example of a water pipe network supplied from the distribution reservoir 301 and includes DMAs 340 and 341. This water pipe network includes pipes such as the distribution reservoir 301 and the distribution pipe 351, and is composed of sensors such as a flow sensor 310 (rectangle in the figure) and a pressure sensor 320 (o in the figure), and incidental equipment such as a valve 361. Has been.
 DMA340は、流量センサ311が設置された1つの流入出管を有し、隣接区域(DMA341)と接続する管のバルブ361が閉止されている。また、DMA340には、圧力センサ320-322が設置されている。DMA341は、流量センサ312および流量センサ313が設置された流入出管を有する。 The DMA 340 has one inflow / outflow pipe in which a flow rate sensor 311 is installed, and a pipe valve 361 connected to an adjacent area (DMA 341) is closed. Further, pressure sensors 320 to 322 are installed in the DMA 340. The DMA 341 has an inflow / outflow pipe in which a flow rate sensor 312 and a flow rate sensor 313 are installed.
 計測値収集装置102が計測値を収集するセンサ191は、図3の水道管網の例では流量センサ310-313および圧力センサ320-324である。 In the example of the water pipe network of FIG. 3, the sensors 191 for collecting the measurement values by the measurement value collection device 102 are flow rate sensors 310-313 and pressure sensors 320-324.
 図4は、流量センサ311の計測値と異なる二つの予測判定方式による予測および異常判定を示す図である。図4を参照して、予測判定部131および影響データ選定部111の処理を説明する。 FIG. 4 is a diagram showing prediction and abnormality determination by two prediction determination methods different from the measurement value of the flow rate sensor 311. Processing of the prediction determination unit 131 and the influence data selection unit 111 will be described with reference to FIG.
 予測判定部131は、センサ311の計測値の収集周期、たとえば、5分間周期で起動される。予測判定部131は、データ入力処理として、計測値記憶部121からセンサ311の計測値を読み出し、補助データ記憶部122から補助データを読み出し、予測判定方式データ記憶部123から各予測判定方式データを読み出す。予測判定部131は、予測処理として、各予測判定方式を用いて、センサ311の最新の計測値に対応する予測値を求める。予測判定部131は、判定処理として、各予測判定方式を用いた予測値と最新の計測値との差に基づいて監視対象の水道管網の異常発生の有無を判定する。予測判定部131は、結果出力処理として、各予測判定方式を用いた異常判定結果を、影響データ選定部111および判定統合部112に出力する。 The prediction determination unit 131 is activated at a collection period of measurement values of the sensor 311, for example, at a period of 5 minutes. As a data input process, the prediction determination unit 131 reads the measurement value of the sensor 311 from the measurement value storage unit 121, reads auxiliary data from the auxiliary data storage unit 122, and receives each prediction determination method data from the prediction determination method data storage unit 123. read out. The prediction determination unit 131 obtains a prediction value corresponding to the latest measurement value of the sensor 311 using each prediction determination method as a prediction process. As a determination process, the prediction determination unit 131 determines whether or not an abnormality has occurred in the monitored water pipe network based on the difference between the predicted value using each prediction determination method and the latest measured value. The prediction determination unit 131 outputs an abnormality determination result using each prediction determination method to the influence data selection unit 111 and the determination integration unit 112 as a result output process.
 図4において、予測判定結果491および492は、予測判定部131が出力した予測判定方式1および予測判定方式2によるものである。各予測判定結果のグラフで、横軸は時刻、縦軸は流量センサ311の計測値(流量)を表す。図中の丸印401-404は、計測値の収集周期毎の各時刻での流量センサ311の計測値である。なお、予測判定部131が各予測判定方式で正常と判定した計測値は白丸、異常と判定した計測値は黒丸で、図中に示している。 4, the prediction determination results 491 and 492 are based on the prediction determination method 1 and the prediction determination method 2 output by the prediction determination unit 131. In each prediction determination graph, the horizontal axis represents time, and the vertical axis represents the measurement value (flow rate) of the flow sensor 311. Circles 401 to 404 in the figure are measurement values of the flow sensor 311 at each time for each measurement value collection cycle. Note that the measurement values that the prediction determination unit 131 determines to be normal in each prediction determination method are white circles, and the measurement values that are determined to be abnormal are black circles.
 時系列の予測値411、412は各予測判定方式による点予測結果、時系列の予測上限値421、422および予測下限値431、432は各予測判定方式による区間予測結果である。点予測結果は、各予測時刻(予測する時刻)における予測値の時系列データであり、区間予測結果は、各予測判定方式により予測値の予測精度が異なるので、予測精度により定まる予測上限値および予測下限値の時系列データである。予測上限値と予測下限値との差を区間と呼ぶ。 The time series prediction values 411 and 412 are point prediction results by each prediction determination method, and the time series prediction upper limit values 421 and 422 and the prediction lower limit values 431 and 432 are section prediction results by each prediction determination method. The point prediction result is the time-series data of the prediction value at each prediction time (predicted time), and the interval prediction result has a prediction upper limit value determined by the prediction accuracy because the prediction accuracy of the prediction value differs depending on each prediction determination method. It is time series data of a prediction lower limit. The difference between the prediction upper limit value and the prediction lower limit value is called an interval.
 予測判定方式1は、非特許文献1に記載の方式のように、直近時刻までの時刻範囲(時間帯)の計測値に基づいて予測および判定を行う。予測判定部131は、予測値411、予測上限値421、および予測下限値431の算出に際して、判定時刻(前述の予測時刻と同じ)480の予測に時刻範囲470の計測値を用い、判定時刻481の予測に時刻範囲471の計測値を用いる。例えば、判定時刻より5分前(直近の計測値の収集時刻)までの時刻範囲の計測値を使用して判定時刻の計測値に対応する予測値を予測する。 Prediction determination method 1 performs prediction and determination based on measured values in a time range (time zone) up to the latest time, as in the method described in Non-Patent Document 1. When calculating the prediction value 411, the prediction upper limit value 421, and the prediction lower limit value 431, the prediction determination unit 131 uses the measurement value of the time range 470 for prediction of the determination time (same as the above-described prediction time) 480, and the determination time 481 The measurement value in the time range 471 is used for the prediction. For example, the predicted value corresponding to the measured value at the determination time is predicted using the measured value in the time range up to 5 minutes before the determination time (the latest measurement value collection time).
 予測判定方式2は、判定時刻より所定時間以前の時刻範囲の計測値にもとづいて予測および判定を行う。換言すると、時刻範囲の最後の計測値を得た時刻と判定時刻との間に所定時間を有する。予測判定部131は、予測値412、予測上限値422、および予測下限値432の算出に際して、判定時刻480の予測には時刻範囲475の計測値、判定時刻481の予測には時刻範囲476の計測値をそれぞれ使用する。例えば、判定時刻よりも75分前以前の計測値を使用して判定時刻の計測値を予測する。 Prediction determination method 2 performs prediction and determination based on measurement values in a time range before a predetermined time from the determination time. In other words, there is a predetermined time between the time when the last measured value in the time range is obtained and the determination time. When calculating the prediction value 412, the prediction upper limit value 422, and the prediction lower limit value 432, the prediction determination unit 131 calculates the measurement value of the time range 475 for prediction of the determination time 480 and measures the time range 476 for prediction of the determination time 481. Use each value. For example, the measurement value at the determination time is predicted using the measurement value 75 minutes before the determination time.
 予測判定方式1および予測判定方式2のいずれにおいても、判定時刻の予測値は、判定時刻に計測値として得られるだろうと予測した値であり、その予測値の予測精度(振れ幅)の上限が予測上限値であり、下限が予測下限値である。 In both prediction determination method 1 and prediction determination method 2, the predicted value at the determination time is a value predicted to be obtained as a measurement value at the determination time, and the upper limit of the prediction accuracy (vibration width) of the predicted value is It is a prediction upper limit, and a lower limit is a prediction lower limit.
 上記のように、判定時刻よりも所定時間以前の時刻範囲の計測値に基づく予測判定方式の所定時間として異なる複数の時間を設定することで、複数の予測判定方式を用いていることになる。予測判定方式1は、所定時間を5分とする方式であり、予測判定方式2は、所定時間をたとえば75分とする方式である。また、時刻範囲を変える(予測に使用する計測値の数を変える)ことによって、予測精度が異なる予測判定方式が得られる。予測判定方式が用いる所定時間をパラメータとして、時刻範囲又は計測値の数をデータ範囲として、予測判定方式データ記憶部123に予測判定方式のIDと対応付けて格納している。 As described above, a plurality of prediction determination methods are used by setting different times as the predetermined time of the prediction determination method based on the measurement values in the time range before the determination time. The prediction determination method 1 is a method in which the predetermined time is 5 minutes, and the prediction determination method 2 is a method in which the predetermined time is, for example, 75 minutes. Further, by changing the time range (changing the number of measurement values used for prediction), prediction determination methods with different prediction accuracy can be obtained. The predetermined time used by the prediction determination method is used as a parameter, and the time range or the number of measured values is stored as a data range in the prediction determination method data storage unit 123 in association with the ID of the prediction determination method.
 予測判定部131は、予測判定方式1および予測判定方式2において、判定時刻における計測値と予測値との差が所定の閾値以上の場合、及び、計測値が区間予測を外れた場合(上限値を超える又は下限値を下回る場合)、異常と判定する。 The prediction determination unit 131 uses the prediction determination method 1 and the prediction determination method 2 when the difference between the measured value and the predicted value at the determination time is equal to or greater than a predetermined threshold, and when the measured value deviates from the section prediction (upper limit value). If it exceeds or falls below the lower limit), it is determined as abnormal.
 図4に示す例を用いて、計測値が区間予測を外れた場合について説明する。図4は、計測値401の計測時刻直前にDMA340で漏水が発生したデータ(計測値および予測値)を示している。予測判定方式1を用いた予測判定部131は、計測値401-404が予測上限値421と予測下限値431の間(区間)にあるので、正常と判定している。一方、予測判定方式2を用いた予測判定部131は、計測値402-404が予測上限値422を超えるので、異常と判定している。 Referring to the example shown in FIG. 4, the case where the measured value deviates from the section prediction will be described. FIG. 4 shows data (measured values and predicted values) in which water leakage occurred in the DMA 340 immediately before the measurement time of the measured value 401. The prediction determination unit 131 using the prediction determination method 1 determines that the measurement values 401 to 404 are normal because the measured values 401 to 404 are between the prediction upper limit value 421 and the prediction lower limit value 431 (section). On the other hand, the prediction determination unit 131 using the prediction determination method 2 determines that the measurement value 402-404 exceeds the prediction upper limit value 422, and thus is abnormal.
 この例では、流量センサ311の計測値を対象とした予測判定方式を説明しているが、移動平均等のフィルタリング、正規化等の各種加工を加えた値を対象としてもよい。また、他のセンサの計測値との相関を考慮した予測と判定を行うこととしてもよい。 In this example, the prediction determination method for the measurement value of the flow sensor 311 is described, but a value obtained by applying various processes such as filtering such as moving average and normalization may be used. Moreover, it is good also as performing prediction and determination which considered the correlation with the measured value of another sensor.
 さらに予測判定部131は、異常と判定した場合に、異常の発生時刻、種別、場所、発生場所等を含む異常属性を併せて推定する。予測判定部131は、異常属性に含まれる各属性の推定が困難な場合でも、たとえば発生時刻のような少なくとも一つの属性を推定する。予測判定方式2においては、DMA340への流入量を計測する流量センサ311の計測値が、時刻480から継続的に予測値を超えており、漏水発生の特徴を示している。このため、予測判定部131は、異常の発生時刻は判定時刻480ごろ、異常の種別は漏水発生、異常の場所はDMA340、異常の発生場所は流量センサ311付近と判定する。予測判定部131は、異常属性の推定のために、上記のように予測値と計測値との差の拡大傾向をパターンマッチする等の技術を利用する。 Further, when the prediction determination unit 131 determines that an abnormality has occurred, the prediction determination unit 131 also estimates the abnormality attribute including the abnormality occurrence time, type, location, occurrence location, and the like. Even when it is difficult to estimate each attribute included in the abnormal attribute, the prediction determination unit 131 estimates at least one attribute such as an occurrence time. In the prediction determination method 2, the measured value of the flow sensor 311 that measures the amount of flow into the DMA 340 continuously exceeds the predicted value from the time 480, indicating the characteristic of water leakage. For this reason, the prediction determination unit 131 determines that the abnormality occurrence time is around the determination time 480, the abnormality type is water leakage, the abnormality location is DMA 340, and the abnormality occurrence location is near the flow sensor 311. The prediction determination unit 131 uses a technique such as pattern matching of the increasing tendency of the difference between the predicted value and the measured value as described above in order to estimate the abnormal attribute.
 影響データ選定部111は、予測判定部131より異常判定結果および異常属性を入力し、異常判定結果が異常であれば、この異常が影響を及ぼす影響データ範囲を選定し、選定した影響データ範囲を判定統合部112に出力する。 The influence data selection unit 111 inputs the abnormality determination result and the abnormality attribute from the prediction determination unit 131. If the abnormality determination result is abnormal, the influence data selection unit selects the influence data range affected by the abnormality, and selects the selected influence data range. The result is output to the determination integration unit 112.
 影響データ選定部111の選定処理は、予測判定部131から入力した異常属性に基づいて、この異常が影響を及ぼす影響データ範囲を選定する。影響データ選定部111は、異常の発生時刻後の時間帯に、異常の種別および発生場所が作用する位置およびセンサの計測値を、異常が影響を及ぼす影響データとして、その範囲を影響データ範囲として選定する。すなわち、影響データ範囲は、異常が影響を及ぼす、地域的範囲と時間的範囲(時刻範囲)によるので、影響データは、異常が地域的に影響を及ぼす地域的範囲に有って、異常が時間的に影響を及ぼす時間帯(時刻範囲)の計測値である。 The selection process of the influence data selection unit 111 selects the influence data range affected by this abnormality based on the abnormality attribute input from the prediction determination unit 131. The influence data selection unit 111 uses the position of the abnormality type and the location where the abnormality occurs and the measured value of the sensor as the influence data affected by the abnormality in the time zone after the occurrence time of the abnormality, and the range is set as the influence data range. Select. In other words, the influence data range depends on the regional range and time range (time range) in which the abnormality affects, so the influence data is in the regional range in which the abnormality affects the region, and the abnormality is in time. It is a measured value of the time zone (time range) that has an influence on the environment.
 図4の例では、予測判定方式2を用いる予測判定部131の予測判定結果492において、判定時刻480以降にDMA340で漏水発生と推定している。影響データ選定部111では、判定時刻480以降(時間帯)における、DMA340と水理的な接続関係のある(地域的範囲にある)センサ、すなわち、流量センサ310-311、および、圧力センサ320-322の計測値を、異常が影響を及ぼす影響データ範囲として選定する。 In the example of FIG. 4, in the prediction determination result 492 of the prediction determination unit 131 using the prediction determination method 2, the occurrence of water leakage is estimated by the DMA 340 after the determination time 480. In the influence data selection unit 111, after the determination time 480 (time zone), the sensor having a hydraulic connection relationship with the DMA 340 (in the regional range), that is, the flow rate sensor 310-311 and the pressure sensor 320- The measurement value of 322 is selected as the influence data range in which the abnormality affects.
 例えば、異常が、DMAブリーチと呼ばれる、バルブ361のようなDMA境界の閉止バルブが開放されるトラブルと推定されていれば、影響データ選定部111は、DMA340、341のいずれかと水理的な接続関係にある全てのセンサを地域的範囲としての影響データ範囲として選定する。 For example, if the abnormality is estimated to be a trouble that a DMA boundary closing valve such as the valve 361 is opened, which is called DMA breach, the influence data selection unit 111 is hydraulically connected to one of the DMAs 340 and 341. All relevant sensors are selected as influence data ranges as regional ranges.
 なお、影響データ選定部111は、水理的な接続関係があったとしても、水道管網の制御によって、予測判定部131が判定した異常の影響を受けないセンサは、影響データ範囲から除外する。例えば、配水池301にはポンプ施設があり、このポンプ施設が圧力センサ320を所定の制御目標量にするように制御されているとすれば、影響データ選定部111は、この制御の情報に基づいて、圧力センサ320は、予測判定部131が判定した異常の影響を受けていないと判断する。 In addition, even if there is a hydraulic connection relationship, the influence data selection unit 111 excludes a sensor that is not affected by the abnormality determined by the prediction determination unit 131 by controlling the water pipe network from the influence data range. . For example, if there is a pump facility in the distribution reservoir 301 and this pump facility is controlled so that the pressure sensor 320 is set to a predetermined control target amount, the influence data selection unit 111 is based on this control information. Thus, the pressure sensor 320 determines that it is not affected by the abnormality determined by the prediction determination unit 131.
 図5は、判定統合部112の処理フローチャートである。判定統合部112は処理を開始すると(S501)、予測判定部131から異常判定結果を入力し、影響データ選定部111から影響データ範囲を入力する(S502)。 FIG. 5 is a process flowchart of the determination integration unit 112. When the determination integration unit 112 starts processing (S501), the abnormality determination result is input from the prediction determination unit 131, and the influence data range is input from the influence data selection unit 111 (S502).
 判定統合部112は、予測判定部131から入力した各予測判定方式による異常判定結果に対する信頼度の初期値を計算する(S503)。信頼度は、予測判定方式による異常判定結果の信頼性を定量化するものであり、例えば、判定時刻の予測における区間(予測上限値と予測下限値との差)の大きさの逆数を用いることができる。すなわち、区間が大きければ予測精度が悪いので、低い信頼度となる。なお、信頼度の初期値は予測判定方式ごとに固定値とし、予測判定方式データ記憶部123に予め格納して、判定統合部112では信頼度の初期値を読み出すことにしてもよい。 The determination integration unit 112 calculates an initial value of reliability for the abnormality determination result by each prediction determination method input from the prediction determination unit 131 (S503). The reliability is to quantify the reliability of the abnormality determination result by the prediction determination method. For example, the reciprocal of the size of the section (difference between the prediction upper limit value and the prediction lower limit value) in prediction time determination is used. Can do. That is, since the prediction accuracy is poor if the section is large, the reliability is low. The initial value of reliability may be a fixed value for each prediction determination method, stored in advance in the prediction determination method data storage unit 123, and the determination integration unit 112 may read the initial value of reliability.
 判定統合部112は、予測判定部131から入力した各予測判定方式による異常判定結果の内で、異常ありと判定した結果があるかどうかを判定する(S504)。判定統合部112は、異常ありの場合、S505へ、異常なしの場合、S506へ進む。 The determination integration unit 112 determines whether there is a result determined to be abnormal among the abnormality determination results by each prediction determination method input from the prediction determination unit 131 (S504). The judgment integration unit 112 proceeds to S505 if there is an abnormality, and proceeds to S506 if there is no abnormality.
 判定統合部112は、予測判定部131から入力した各予測判定方式による異常判定結果の内で、S504で抽出した異常判定の影響データ範囲に含まれる影響データを用いた異常判定結果があるかどうかを判定し、影響データを用いた異常判定結果について、その信頼度を下げる処理を行う。信頼度を下げる処理は、例えば、影響データを使用した異常判定結果の信頼度を0とする。予測判定部131が予測判定に使用した影響データとしての計測値の数等に応じて、より精緻に信頼度を計算してもよい。また、影響データを用いたかどうかの判定は、予測に用いた計測値だけでなく、予測判定方式のパラメータの調整に用いた計測値を含める。 The determination integration unit 112 determines whether there is an abnormality determination result using the influence data included in the influence data range of the abnormality determination extracted in S504 among the abnormality determination results by each prediction determination method input from the prediction determination unit 131. And the process of lowering the reliability of the abnormality determination result using the influence data is performed. In the process of reducing the reliability, for example, the reliability of the abnormality determination result using the influence data is set to 0. The degree of reliability may be calculated more precisely according to the number of measurement values as influence data used by the prediction determination unit 131 for prediction determination. Further, the determination as to whether or not the influence data is used includes not only the measurement value used for the prediction but also the measurement value used for adjusting the parameter of the prediction determination method.
 判定統合部112は、予測判定部131から入力した各予測判定方式による異常判定結果を、信頼度に基づいて統合する(S506)。統合方法は、例えば、信頼度の最も高い異常判定結果を採用する。また、信頼度が所定以上の異常判定結果の多数決を取る、信頼度で重みづけしたうえで異常判定結果の平均をとる等の統合方法を用いてもよい。 The determination integration unit 112 integrates the abnormality determination result by each prediction determination method input from the prediction determination unit 131 based on the reliability (S506). As the integration method, for example, the abnormality determination result with the highest reliability is adopted. Alternatively, an integration method may be used, such as taking a majority vote of abnormality determination results having a reliability level equal to or higher than a predetermined value, and averaging the abnormality determination results after weighting with reliability.
 判定統合部112は、統合した異常判定結果を出力部152に出力し(S507)、処理を終了する(S508)。 The determination integration unit 112 outputs the integrated abnormality determination result to the output unit 152 (S507), and ends the process (S508).
 図4の例では、判定時刻481の計測値404に対する予測判定部131の、予測判定方式1を用いる予測判定結果491では正常、予測判定方式2を用いる予測判定結果492では異常と判定している。予測判定方式1の方が、予測判定方式2に比べてより直近の計測値までを用いて判定しているので、信頼度の初期値は予測判定方式1の方が、予測判定方式2に比べて高い。 In the example of FIG. 4, the prediction determination unit 131 for the measurement value 404 at the determination time 481 determines that the prediction determination result 491 using the prediction determination method 1 is normal and the prediction determination result 492 using the prediction determination method 2 is abnormal. . Since the prediction determination method 1 is determined using the most recent measurement value compared to the prediction determination method 2, the initial value of the reliability is higher in the prediction determination method 1 than in the prediction determination method 2. Is expensive.
 しかし、予測判定部131は、予測判定方式1による判定時刻481の判定のために、予測判定方式2が判定した異常が時間的に影響する計測値(影響データ)を用いている。このため、判定統合部112は、予測判定方式1の信頼度を0とし(信頼度を下げる)、結果として最も信頼度の高い予測判定方式2の結果を採用する。 However, the prediction determination unit 131 uses a measurement value (influence data) on which the abnormality determined by the prediction determination method 2 temporally affects the determination at the determination time 481 by the prediction determination method 1. For this reason, the determination integration unit 112 sets the reliability of the prediction determination method 1 to 0 (lowers the reliability), and adopts the result of the prediction determination method 2 with the highest reliability as a result.
 図6は、異常検知装置101による漏水発生の検知結果の表示例である。図6を参照して、出力部152が異常の判定結果を操作者へ提示する方法について説明する。 FIG. 6 is a display example of the detection result of the occurrence of water leakage by the abnormality detection device 101. A method in which the output unit 152 presents the abnormality determination result to the operator will be described with reference to FIG.
 出力部152がディスプレイ等の表示部206に表示する異常検知結果ウィンドウ601は、予測判定表示パネル602および判定統合表示パネル603を有する。出力部152は、判定統合部112から入力した異常判定結果を異常検知結果ウィンドウ601の各パネルに表示する。 The abnormality detection result window 601 displayed on the display unit 206 such as a display by the output unit 152 includes a prediction determination display panel 602 and a determination integrated display panel 603. The output unit 152 displays the abnormality determination result input from the determination integration unit 112 on each panel of the abnormality detection result window 601.
 出力部152は、予測判定表示パネル602に、異常判定結果を表示する。図6では、異常判定の根拠となった図4の予測判定結果492に対応する情報を表示している。特に、異常と判定され、異常が時間的に影響する影響データ範囲を、異常影響時刻範囲621として強調表示している。操作者は、センサ選択ボックス611、予測判定方式選択ボックス612を操作することで、出力部152が予測判定表示パネル602に表示するセンサ、予測判定方式を変更する。 The output unit 152 displays the abnormality determination result on the prediction determination display panel 602. In FIG. 6, information corresponding to the prediction determination result 492 of FIG. 4 that is the basis for the abnormality determination is displayed. In particular, an influence data range that is determined to be abnormal and the abnormality affects temporally is highlighted as an abnormal influence time range 621. The operator operates the sensor selection box 611 and the prediction determination method selection box 612 to change the sensor and prediction determination method displayed on the prediction determination display panel 602 by the output unit 152.
 出力部152は、判定統合表示パネル603に、各予測判定方式の判定結果と、統合に利用した情報を表示する。判定統合表示パネル603の表には、統合に利用した情報として、予測判定方式のID、その信頼度、正常または異常の判定結果、影響データの使用の有無、異常個所、異常の発生時刻、および種別を表示している。 The output unit 152 displays the determination result of each prediction determination method and information used for integration on the determination integrated display panel 603. In the table of the judgment integrated display panel 603, as information used for the integration, the ID of the prediction judgment method, its reliability, the judgment result of normal or abnormal, the presence or absence of use of the influence data, the abnormal part, the occurrence time of the abnormal, and The type is displayed.
 以上の構成により、異常検知装置101は、流量、圧力等のセンサの計測値に基づいて、小規模な漏水の発生であっても検知できる。 With the above configuration, the abnormality detection device 101 can detect even the occurrence of small-scale water leakage based on the measured values of the sensors such as the flow rate and pressure.
 なお、複数の予測判定方式による予測判定を行う予測判定部と、判定結果を統合する統合判定部とを備えていない異常検知装置で、異常判定の感度を上げて小規模な漏水の発生を検知すると、正常範囲内でのセンサの計測値の変化をも異常と判定する誤報が多発する。このため、実用的には大規模な漏水の発生しか検知できない。 In addition, an abnormality detection device that does not include a prediction determination unit that performs prediction determination by a plurality of prediction determination methods and an integrated determination unit that integrates determination results, detects the occurrence of small-scale water leakage by increasing the sensitivity of abnormality determination. As a result, misreports frequently occur that determine that a change in the measured value of the sensor within the normal range is abnormal. For this reason, only the occurrence of large-scale water leakage can be detected practically.
 本実施例の異常検知装置によれば、流量や圧力等の計測値に緩やかな変化を与える、小規模な漏水などの異常の発生であっても検知できる。 According to the abnormality detection device of the present embodiment, it is possible to detect even the occurrence of an abnormality such as a small-scale water leak that gives a gradual change in measured values such as flow rate and pressure.
 より具体的には、本実施例の異常検知装置は、異常が影響を及ぼした影響データの使用の有無で、予測判定方式の信頼度を評価したうえで、判定結果を統合することで、誤報の割合を低く抑えて、小規模な漏水の発生を検知できる。 More specifically, the abnormality detection device according to the present embodiment evaluates the reliability of the prediction determination method based on whether or not the influence data affected by the abnormality is used, and then integrates the determination results to generate a false alarm. It is possible to detect the occurrence of small-scale water leakage by keeping the ratio of low.
 また、小規模な漏水を検知できることによって、本実施例の異常検知装置は、緩やかなに増加して大規模な漏水となる事象をより早期に検知できる。 In addition, by detecting small-scale water leakage, the abnormality detection device of the present embodiment can detect events that increase gradually and become large-scale water leakage earlier.
 図7は、本実施例の異常検知システム100の構成図である。本実施例の異常検知装置101は、実施例1の構成に加えて、判定統合部112の異常判定結果にもとづいて予測判定部131が利用する予測判定方式を選択する方式選択部701を備える。実施例1と異なる点を中心に説明する。 FIG. 7 is a configuration diagram of the abnormality detection system 100 of the present embodiment. In addition to the configuration of the first embodiment, the abnormality detection apparatus 101 according to the present embodiment includes a method selection unit 701 that selects a prediction determination method used by the prediction determination unit 131 based on the abnormality determination result of the determination integration unit 112. The description will focus on the differences from the first embodiment.
 予測判定部131は、予測判定方式データ記憶部123に格納されている予測判定方式(厳密には、予測判定方式データによって定められた予測判定方式)の中で、方式選択部701によって選択された予測判定方式による予測および判定を行う。本実施例では、予測判定方式データ記憶部123に格納されている予測判定方式を、予測判定方式の候補と呼ぶ。 The prediction determination unit 131 is selected by the method selection unit 701 among the prediction determination methods stored in the prediction determination method data storage unit 123 (strictly, the prediction determination method determined by the prediction determination method data). Prediction and determination are performed by a prediction determination method. In the present embodiment, the prediction determination method stored in the prediction determination method data storage unit 123 is referred to as a prediction determination method candidate.
 方式選択部701は、判定統合部112から異常判定結果および影響データ範囲を入力する。方式選択部701は、予測判定方式データ記憶部123から予測判定方式の候補リストを読み出し、入力した異常判定結果および影響データ範囲を参照して、読み出した候補リストから予測判定部が利用する予測判定方式を選択し、選択した予測判定方式を予測判定部131に出力する。 The method selection unit 701 inputs the abnormality determination result and the influence data range from the determination integration unit 112. The method selection unit 701 reads the prediction determination method candidate list from the prediction determination method data storage unit 123, refers to the input abnormality determination result and the influence data range, and uses the prediction determination unit to use the prediction determination unit from the read candidate list A method is selected, and the selected prediction determination method is output to the prediction determination unit 131.
 漏水発生等の異常が検知されてから時間が経過すると、異常の影響データ範囲が広がり、異常の影響データを使用する予測判定方式が増える。図4の例において、判定時刻481では予測判定方式2を用いた予測判定部131は影響データを使用していないが、さらに時間が経過すると予測判定方式2を用いても、予測判定部131は影響データを使用せざるを得なくなる。 As time elapses after an abnormality such as occurrence of water leakage is detected, the influence data range of the abnormality expands, and the number of prediction judgment methods using the abnormality influence data increases. In the example of FIG. 4, the prediction determination unit 131 using the prediction determination method 2 does not use the influence data at the determination time 481, but the prediction determination unit 131 uses the prediction determination method 2 when more time elapses. Impact data must be used.
 方式選択部701は、具体的には、判定統合部112が異常と判定した際に、予測判定方式の候補のうち、この異常の影響を受ける影響データ(計測値)を除外したデータ範囲の計測値を利用する予測判定方式を選択する。 Specifically, the method selection unit 701 measures the data range from which the influence data (measurement value) affected by the abnormality is excluded from the prediction determination method candidates when the determination integration unit 112 determines that the abnormality is present. Select the prediction judgment method that uses the value.
 例えば、方式選択部701は、予測判定方式2よりも更に過去の時刻範囲の計測値を用いる予測判定方式を選択する。または、方式選択部701は、DMA340のセンサの計測値を使用せずに、補助データ記憶部122に格納されている曜日、天候等の各種の補助データや、DMA340と相関の高いDMAの配水流量などから流量センサ311の流量を予測する予測判定方式を選択する。 For example, the method selection unit 701 selects a prediction determination method that uses a measurement value in the past time range further than the prediction determination method 2. Alternatively, the method selection unit 701 does not use the measurement value of the DMA 340 sensor, and various auxiliary data such as day of the week and weather stored in the auxiliary data storage unit 122, and the water distribution flow rate of the DMA highly correlated with the DMA 340 For example, the prediction determination method for predicting the flow rate of the flow rate sensor 311 is selected.
 方式選択部701が予測判定方式を選択するトリガーとなる異常判定の基準は、操作者に提示する異常判定の基準よりも、確実度(異常判定結果の確からしさ)を低くしてもよい。すなわち、予測判定部131は、2段階の時刻区間(データ範囲)を設けて、2段階の確実度を求めると共に異常判定し、方式選択部701は、確実度の低い異常判定結果をトリガーとして予測判定方式を選択してもよい。この場合、判定統合部112は、確実度の高い異常判定結果を出力部152に出力する。予測判定部131が3段階以上の時刻区間を設けて確実度を求めると共に異常判定した場合、方式選択部701は、確実度が所定の閾値未満のとき予測判定方式を選択し、確実度が所定の閾値以上のとき異常判定結果を出力部152に出力してもよい。 The criterion for abnormality determination that serves as a trigger for the method selection unit 701 to select the prediction determination method may be lower in certainty (the probability of the abnormality determination result) than the criterion for abnormality determination presented to the operator. That is, the prediction determination unit 131 provides a two-stage time interval (data range) to obtain a two-stage certainty and determines an abnormality, and the method selection unit 701 predicts using an abnormality determination result with a low certainty as a trigger. A determination method may be selected. In this case, the determination integration unit 112 outputs an abnormality determination result with a high degree of certainty to the output unit 152. When the prediction determination unit 131 provides a time interval of three or more stages to obtain the certainty level and determines an abnormality, the method selection unit 701 selects the prediction determination method when the certainty level is less than a predetermined threshold, and the certainty level is predetermined. The abnormality determination result may be output to the output unit 152 when the threshold value is equal to or greater than the threshold value.
 以上により、本実施例の異常検知装置101は、方式選択部が異常の影響データを使用しない予測判定方式を選択することで、異常が長期間継続する場合においても、異常判定結果の確実度を維持した、異常の検知を継続できる。 As described above, the abnormality detection apparatus 101 according to the present embodiment selects the prediction determination method in which the method selection unit does not use the abnormality influence data, so that the degree of certainty of the abnormality determination result can be increased even when the abnormality continues for a long time. Maintained abnormality detection can be continued.
 また、本実施例の異常検知装置101は、異常の判定に有効な予測判定方式を選択的に用いることにより、異常検知装置101の処理負荷を抑制できる。 Moreover, the abnormality detection apparatus 101 of the present embodiment can suppress the processing load of the abnormality detection apparatus 101 by selectively using a prediction determination method that is effective for determining abnormality.
 本実施例は、実施例2に加えて、方式選択部701が、計測値の収集を指示する異常検知装置101および異常検知システム100である。 In addition to the second embodiment, the present embodiment is an abnormality detection apparatus 101 and an abnormality detection system 100 in which the method selection unit 701 instructs collection of measurement values.
 異常検知システム100は、平常時の計測値の収集周期は長いものの、計測値収集装置102からの明示的な指示によって計測値を収集できる、周期動作とデマンドによる動作の双方に対応するセンサ191を含む。センサの具体例としては、例えば、大口水需要者の料金メータであり、30分周期で水使用量を計測し、記録しているが、記録した計測値を1日周期での送信するように設定されたスマートメータ等である。 The anomaly detection system 100 includes a sensor 191 that can collect measurement values according to an explicit instruction from the measurement value collection device 102, which corresponds to both periodic operation and demand-based operation, although the measurement value collection cycle in normal times is long. Including. As a specific example of a sensor, for example, it is a charge meter of a large-volume water consumer, and the water usage is measured and recorded in a cycle of 30 minutes, but the recorded measurement value is transmitted in a cycle of one day. It is a set smart meter.
 異常検知装置101は、予測判定方式データ記憶部123に、計測値の収集の指示(デマンド)に対応するセンサの計測値を用いることで、信頼度の高い予測判定を実行する予測判定方式を候補として格納している。 The anomaly detection apparatus 101 uses the measurement value of the sensor corresponding to the measurement value collection instruction (demand) in the prediction determination method data storage unit 123 as a candidate for the prediction determination method for performing highly reliable prediction determination. As stored.
 方式選択部701は、判定統合部112からの異常判定結果の入力に応じて、前述の候補の予測判定方式(データ)を選択して、予測判定部131に出力すると共に、選択した予測判定方式が必要とする計測値の収集を計測値収集部151に指示する。計測値収集部151は、方式選択部701からの指示に応答して、計測値収集装置102に必要な計測値の収集を指示する。 In response to the input of the abnormality determination result from the determination integration unit 112, the method selection unit 701 selects the above-described candidate prediction determination method (data), outputs the selected prediction determination method to the prediction determination unit 131, and the selected prediction determination method. The measurement value collection unit 151 is instructed to collect the measurement values required by. In response to the instruction from the method selection unit 701, the measurement value collection unit 151 instructs the measurement value collection device 102 to collect necessary measurement values.
 例えば、図4の例にて、水の使用が、推定される漏水と類似する需要者がDMA340にあり、この需要者の料金メータが計測値の収集の指示に対応するスマートメータである場合、方式選択部701が、そのスマートメータが計測する水使用量の収集を計測値収集装置102に指示し、スマートメータが計測する水使用量を計測値として利用する予測判定方式を選択する。なお、漏水と類似する水の使用は、例えば、需要者への給水管の口径が、推定される漏水に相当する流量が流れる口径かどうかで判別できる。 For example, in the example of FIG. 4, if there is a consumer in the DMA 340 whose use of water is similar to the estimated water leakage, and the consumer's toll meter is a smart meter that corresponds to an instruction to collect measurement values, The method selection unit 701 instructs the measurement value collection device 102 to collect the water usage measured by the smart meter, and selects the prediction determination method that uses the water usage measured by the smart meter as the measurement value. In addition, use of the water similar to a water leak can be discriminate | determined by whether the diameter of the water supply pipe to a consumer is the diameter through which the flow volume equivalent to the estimated water leak flows.
 本実施例の異常検知装置101によれば、例えば漏水と需要者の水利用とを、スマートメータからの計測値を収集することで、漏水発生の誤報を抑制できる。 According to the anomaly detection apparatus 101 of the present embodiment, for example, by collecting the measured values from the smart meter for the water leakage and the water usage of the consumer, it is possible to suppress false reports of the occurrence of water leakage.
 本実施例の異常検知装置は、複数の予測判定方式のそれぞれの特徴に応じた周期で、予測判定部131が異常判定結果を出力する。 In the abnormality detection device of the present embodiment, the prediction determination unit 131 outputs an abnormality determination result at a period according to each feature of the plurality of prediction determination methods.
 例えば、予測判定部131が用いる複数の予測判定方式に、夜間流量に基づいた予測および判定をする予測判定方式として含む。夜間流量は、深夜の特定の時間帯に観測される流量の最小値である。夜間流量に基づいた予測・判定は、信頼性の高い漏水発生の判定が行えるものの、1日に1回しか判定できず(判定周期が1日)、漏水発生からその検知までに時間がかかり、異常判定結果も1日に1回の出力となる。 For example, the prediction determination method used by the prediction determination unit 131 includes a prediction determination method for performing prediction and determination based on the nighttime flow rate. The nighttime flow rate is the minimum value of the flow rate observed in a specific time zone at midnight. Prediction / determination based on the nighttime flow rate is highly reliable, but it can be determined only once a day (the determination cycle is one day), and it takes time from the occurrence of water leakage to its detection. The abnormality determination result is also output once a day.
 そこで、判定統合部112は、実施例1で説明したような、計測値の収集周期に対応した短い判定周期の予測判定方式により異常と判定されたとき、判定周期が長く異常判定結果の信頼度の高い予測判定方式、すなわち、夜間流量に基づいた予測判定方式の判定結果を採用せずに、異常との判定を選択するように異常判定結果を統合する。 Therefore, the determination integration unit 112 determines that the determination period is long and the reliability of the abnormality determination result when it is determined to be abnormal by the short determination period prediction determination method corresponding to the measurement value collection period as described in the first embodiment. Therefore, the abnormality determination result is integrated so as to select the determination of abnormality without adopting the determination result of the prediction determination method having a high value, that is, the prediction determination method based on the nighttime flow rate.
 本実施例の異常検知装置101によれば、夜間流量に基づいて漏水発生を信頼性高く検知すると共に、漏水発生から短時間で漏水発生を検知できる。 According to the abnormality detection device 101 of the present embodiment, it is possible to detect the occurrence of water leakage with high reliability based on the nighttime flow rate and to detect the occurrence of water leakage in a short time from the occurrence of water leakage.
 以上の実施例では、水道管網を監視対象とする異常検知装置を説明したが、監視対象は水道管網に限られるものではなく、異常検知装置は予測にもとづく異常判定が有効な各種プロセスの異常検知に適用できる。異常検知装置は、センサの計測項目(センサの種別)や、利用する補助データを適切に設定することで、水道の導送水プロセスや、浄水プロセス、管網とパイプラインで資源を供給するガス供給プロセスや、化学プラントの運転プロセス等を監視対象にできる。補助データを、例えばプラントの特定ラインにおける運転計画や制御目標値などとし、これらのデータを利用する各種予測判定方式を用いることができる。 In the above embodiment, the abnormality detection device for monitoring the water pipe network has been described. However, the monitoring target is not limited to the water pipe network, and the abnormality detection device can be used for various processes in which abnormality determination based on prediction is effective. It can be applied to anomaly detection. The anomaly detection device sets the measurement items of the sensor (type of sensor) and auxiliary data to be used appropriately so that the water supply process, the water purification process, and the gas supply that supplies resources through the pipe network and pipeline Processes and chemical plant operation processes can be monitored. For example, the auxiliary data may be an operation plan or a control target value in a specific line of the plant, and various prediction judgment methods using these data may be used.
 説明した実施形態によれば、流量や圧力等の計測値から小規模な漏水の発生を検知できる。 According to the described embodiment, it is possible to detect the occurrence of small-scale water leakage from measured values such as flow rate and pressure.
 100:異常検知システム、101:異常検知装置、102:計測値収集装置、103:警報表示装置、111:影響データ選定部、112:判定統合部、121:計測値記憶部、122:補助データ記憶部、123:予測判定方式データ記憶部、131:予測判定部、151:計測値収集部、152:出力部、191:センサ、701:方式選択部。 100: Anomaly detection system, 101: Anomaly detection device, 102: Measurement value collection device, 103: Alarm display device, 111: Influence data selection unit, 112: Determination integration unit, 121: Measurement value storage unit, 122: Auxiliary data storage Unit, 123: prediction determination method data storage unit, 131: prediction determination unit, 151: measurement value collection unit, 152: output unit, 191: sensor, 701: method selection unit.

Claims (13)

  1.  複数の予測判定方式の各々を用いて、複数の前記予測判定方式に応じたデータ範囲の、監視対象プロセスのセンサの計測値に基づいて、判定時刻における前記センサの第1の計測値の予測値を予測し、(1)前記予測値と前記判定時刻における前記第1の計測値との差、及び、(2)前記予測値の上限値と下限値との範囲外の前記第1の計測値、の少なくとも一方に基づいて、前記監視対象プロセスの異常を判定し、複数の前記予測判定方式の、前記異常を判定した異常判定結果を出力する予測判定部、
     前記異常判定結果が含む前記異常が影響を及ぼす第2の計測値を影響データとして含む範囲を影響データ範囲として選定する影響データ選定部、
     前記異常判定結果のうち、前記影響データ範囲に含まれる前記影響データに基づいた前記異常判定結果の信頼度を下げて、複数の前記予測判定方式の前記異常判定結果を統合する判定統合部、および
    前記統合した異常判定結果を出力する出力部を有することを特徴とする異常検知装置。
    A predicted value of the first measured value of the sensor at the determination time based on the measured value of the sensor of the monitoring target process in the data range corresponding to the multiple predicted determination methods using each of the plurality of prediction determination methods. (1) The difference between the predicted value and the first measured value at the determination time, and (2) the first measured value outside the range between the upper limit value and the lower limit value of the predicted value Based on at least one of the above, a prediction determination unit that determines an abnormality of the monitoring target process and outputs an abnormality determination result of determining the abnormality of the plurality of prediction determination methods,
    An influence data selection unit that selects, as the influence data range, a range including the second measurement value affected by the abnormality included in the abnormality determination result as the influence data;
    Among the abnormality determination results, a determination integration unit that lowers the reliability of the abnormality determination results based on the influence data included in the influence data range and integrates the abnormality determination results of the plurality of prediction determination methods, and An abnormality detection apparatus comprising an output unit that outputs the integrated abnormality determination result.
  2.  請求項1に記載の異常検知装置であって、
     前記判定統合部が統合した前記異常判定結果に基づいて、複数の前記予測判定方式から、前記予測判定部が用いる前記予測判定方式を選択する方式選択部をさらに有することを特徴とする異常検知装置。
    The abnormality detection device according to claim 1,
    The abnormality detection device further comprising: a method selection unit that selects the prediction determination method used by the prediction determination unit from a plurality of the prediction determination methods based on the abnormality determination result integrated by the determination integration unit. .
  3.  請求項2に記載の異常検知装置であって、
     前記方式選択部は、前記影響データを除外した前記計測値を前記データ範囲とする前記予測判定方式を選択することを特徴とする異常検知装置。
    The abnormality detection device according to claim 2,
    The abnormality detection device, wherein the method selection unit selects the prediction determination method in which the measurement value excluding the influence data is the data range.
  4.  請求項3に記載の異常検知装置であって、
     前記予測判定部は、前記監視対象プロセスを前記異常と判定したとき、前記異常の、発生時刻、種別、および発生場所の少なくとも一つを含む異常属性を推定し、
     前記影響データ選定部は、推定された前記異常属性に基づいて、前記異常の発生時刻後に前記異常が影響を及ぼす地域的範囲にある前記センサの前記第2の計測値を前記影響データとすることを特徴とする異常検知装置。
    The abnormality detection device according to claim 3,
    When the prediction determination unit determines that the monitored process is abnormal, it estimates an abnormality attribute including at least one of the occurrence time, type, and occurrence location of the abnormality,
    The influence data selection unit uses the second measurement value of the sensor in a regional range in which the abnormality affects after the occurrence time of the abnormality as the influence data based on the estimated abnormality attribute. An abnormality detection device characterized by.
  5.  請求項4に記載の異常検知装置であって、
     前記予測判定部は、前記データ範囲を定める複数段階の時刻区間を設け、前記異常を判定し、前記異常判定結果の確からしさを表す確実度を求め、
     前記方式選択部は、前記確実度が所定の閾値未満のとき前記予測判定方式を選択し、
     前記判定統合部は、前記確実度が前記所定の閾値以上のとき前記異常判定結果を前記出力部に出力することを特徴とする異常検知装置。
    The abnormality detection device according to claim 4,
    The prediction determination unit provides a plurality of time intervals that define the data range, determines the abnormality, and obtains a certainty degree representing the certainty of the abnormality determination result,
    The method selection unit selects the prediction determination method when the certainty is less than a predetermined threshold,
    The abnormality detection apparatus, wherein the determination integration unit outputs the abnormality determination result to the output unit when the certainty level is equal to or higher than the predetermined threshold.
  6.  請求項4に記載の異常検知装置であって、
     前記方式選択部は、前記予測判定方式の選択に伴って、選択した前記予測判定方式が用いる前記データ範囲に含まれる前記計測値の収集を、前記計測値を収集する計測値収集部に指示することを特徴とする異常検知装置。
    The abnormality detection device according to claim 4,
    In accordance with the selection of the prediction determination method, the method selection unit instructs the measurement value collection unit that collects the measurement values to collect the measurement values included in the data range used by the selected prediction determination method. An abnormality detection device characterized by that.
  7.  請求項1に記載の異常検知装置であって、
     前記予測判定部は、判定周期が短い前記予測判定方式および前記判定周期が長い前記予測判定方式を用いて、前記異常判定結果を複数出力し、
     前記判定統合部は、前記判定周期が短い前記予測判定方式の判定で前記異常と判定されたとき、前記判定周期が長い前記予測判定方式の判定結果を覆して、前記判定周期が短い前記予測判定方式の前記異常判定結果を選択することで前記異常判定結果を統合することを特徴とする異常検知装置。
    The abnormality detection device according to claim 1,
    The prediction determination unit outputs a plurality of the abnormality determination results using the prediction determination method with a short determination cycle and the prediction determination method with a long determination cycle,
    The determination integration unit reverses the determination result of the prediction determination method with a long determination cycle and determines the prediction determination with a short determination cycle when the abnormality is determined in the determination of the prediction determination method with a short determination cycle. An abnormality detection apparatus, wherein the abnormality determination result is integrated by selecting the abnormality determination result of a method.
  8.  請求項7に記載の異常検知装置であって、
     前記監視対象プロセスは、水道配水プロセスであって、前記異常属性の種別は漏水発生を含み、
     前記センサは、流量計および圧力計のいずれか一つを含み、
     前記影響データ選定部は、前記水道配水プロセスの水理的な接続関係から前記地域的範囲にある前記センサの前記計測値を前記影響データとし、
     前記予測判定部は、夜間の配水流量に基づく前記漏水発生を異常とする判定を含むことを特徴とする異常検知装置。
    The abnormality detection device according to claim 7,
    The monitored process is a water distribution process, and the type of the abnormal attribute includes occurrence of water leakage,
    The sensor includes any one of a flow meter and a pressure gauge,
    The influence data selection unit uses the measurement value of the sensor in the regional range from the hydraulic connection relationship of the water distribution process as the influence data,
    The abnormality determination device, wherein the prediction determination unit includes a determination that the occurrence of water leakage is abnormal based on a night water distribution flow rate.
  9.  請求項1に記載の異常検知装置であって、
     前記予測判定部は、前記監視対象プロセスを前記異常と判定したとき、前記異常の、発生時刻、種別、および発生場所の少なくとも一つを含む異常属性を推定し、
     前記影響データ選定部は、推定された前記異常属性に基づいて、前記異常の発生時刻後に前記異常が影響を及ぼす地域的範囲にある前記センサの前記第2の計測値を前記影響データとすることを特徴とする異常検知装置。
    The abnormality detection device according to claim 1,
    When the prediction determination unit determines that the monitored process is abnormal, it estimates an abnormality attribute including at least one of the occurrence time, type, and occurrence location of the abnormality,
    The influence data selection unit sets the second measurement value of the sensor in the regional range affected by the abnormality after the occurrence time of the abnormality as the influence data based on the estimated abnormality attribute. An abnormality detection device characterized by.
  10.  請求項9に記載の異常検知装置であって、
     前記監視対象プロセスは、水道配水プロセスであって、前記異常属性の種別は漏水発生を含み、
     前記センサは、流量計および圧力計のいずれか一つを含み、
     前記影響データ選定部は、前記水道配水プロセスの水理的な接続関係から前記地域的範囲にある前記センサの前記計測値を前記影響データとすることを特徴とする異常検知装置。
    The abnormality detection device according to claim 9,
    The monitored process is a water distribution process, and the type of the abnormal attribute includes occurrence of water leakage,
    The sensor includes any one of a flow meter and a pressure gauge,
    The said influence data selection part makes the said measured value of the said sensor in the said regional range the said influence data from the hydraulic connection relation of the said water distribution process, The abnormality detection apparatus characterized by the above-mentioned.
  11.  請求項1に記載の異常検知装置であって、
     前記予測判定部は、前記データ範囲は前記判定時刻よりも所定時間前の時間帯であって、前記複数の予測判定方式の各々は前記所定時間を互いに異にすることを特徴とする異常検知装置。
    The abnormality detection device according to claim 1,
    The abnormality determination apparatus, wherein the prediction determination unit is configured such that the data range is a time zone that is a predetermined time before the determination time, and each of the plurality of prediction determination methods has the predetermined time different from each other. .
  12.  プロセスを監視する異常検知システムであって、
     前記プロセスに設置されたセンサの計測値を収集する計測値収集装置、並びに、
     複数の予測判定方式の各々を用いて、複数の前記予測判定方式に応じたデータ範囲の、前記プロセスのセンサの計測値に基づいて、判定時刻における前記センサの第1の計測値の予測値を予測し、(1)前記予測値と前記判定時刻における前記第1の計測値との差、及び、(2)前記予測値の上限値と下限値との範囲外の前記第1の計測値、の少なくとも一方に基づいて、前記プロセスの異常を判定し、複数の前記予測判定方式の、前記異常を判定した異常判定結果を出力する予測判定部、
     前記異常判定結果が含む前記異常が影響を及ぼす第2の計測値を影響データとして含む範囲を影響データ範囲として選定する影響データ選定部と、
     前記異常判定結果のうち、前記影響データ範囲に含まれる前記影響データに基づいた前記異常判定結果の信頼度を下げて、複数の前記予測判定方式の前記異常判定結果を統合する判定統合部、および
    前記統合した異常判定結果を出力する出力部を有することを特徴とする異常検知システム。
    An anomaly detection system that monitors processes,
    A measurement value collection device for collecting measurement values of sensors installed in the process, and
    Using each of the plurality of prediction determination methods, the predicted value of the first measurement value of the sensor at the determination time is determined based on the measurement value of the sensor of the process in the data range corresponding to the plurality of prediction determination methods. Predicting, (1) a difference between the predicted value and the first measured value at the determination time, and (2) the first measured value outside the range between the upper limit value and the lower limit value of the predicted value, A prediction determination unit that determines abnormality of the process based on at least one of the plurality of prediction determination methods and outputs an abnormality determination result of determining the abnormality of the plurality of prediction determination methods;
    An influence data selection unit that selects, as the influence data range, a range including the second measurement value affected by the abnormality included in the abnormality determination result as the influence data;
    Among the abnormality determination results, a determination integration unit that lowers the reliability of the abnormality determination results based on the influence data included in the influence data range and integrates the abnormality determination results of the plurality of prediction determination methods, and An abnormality detection system comprising an output unit for outputting the integrated abnormality determination result.
  13.  プロセスを監視する異常検知装置による異常検知方法であって、前記異常検知装置は、
     複数の予測判定方式の各々を用いて、複数の前記予測判定方式に応じたデータ範囲の、監視対象プロセスのセンサの計測値に基づいて、判定時刻における前記センサの第1の計測値の予測値を予測し、
     (1)前記予測値と前記判定時刻における前記第1の計測値との差、及び、(2)前記予測値の上限値と下限値との範囲外の前記第1の計測値、の少なくとも一方に基づいて、前記監視対象プロセスの異常を判定し、
     複数の前記予測判定方式の、前記異常を判定した異常判定結果が含む前記異常が影響を及ぼす第2の計測値を影響データとして含む範囲を影響データ範囲として選定し、
     前記異常判定結果のうち、前記影響データ範囲に含まれる前記影響データに基づいた前記異常判定結果の信頼度を下げて、複数の前記予測判定方式の前記異常判定結果を統合し、
     前記統合した異常判定結果を出力することを特徴とする異常検知方法。
    An anomaly detection method by an anomaly detector that monitors a process, the anomaly detector is
    A predicted value of the first measured value of the sensor at the determination time based on the measured value of the sensor of the monitoring target process in the data range corresponding to the multiple predicted determination methods using each of the plurality of prediction determination methods. Predict
    (1) at least one of the difference between the predicted value and the first measured value at the determination time; and (2) the first measured value outside the range between the upper limit value and the lower limit value of the predicted value. To determine whether the monitored process is abnormal,
    A range including the second measurement value affected by the abnormality including the abnormality determination result of determining the abnormality of the plurality of prediction determination methods as the influence data is selected as the influence data range,
    Of the abnormality determination results, lowering the reliability of the abnormality determination results based on the influence data included in the influence data range, and integrating the abnormality determination results of a plurality of the prediction determination methods,
    An abnormality detection method comprising outputting the integrated abnormality determination result.
PCT/JP2017/006258 2016-02-29 2017-02-21 Abnormality detection device, abnormality detection system, and method thereof WO2017150263A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016037029A JP6605357B2 (en) 2016-02-29 2016-02-29 Anomaly detection apparatus, anomaly detection system and method
JP2016-037029 2016-02-29

Publications (1)

Publication Number Publication Date
WO2017150263A1 true WO2017150263A1 (en) 2017-09-08

Family

ID=59742907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006258 WO2017150263A1 (en) 2016-02-29 2017-02-21 Abnormality detection device, abnormality detection system, and method thereof

Country Status (2)

Country Link
JP (1) JP6605357B2 (en)
WO (1) WO2017150263A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142446A1 (en) * 2018-01-18 2019-07-25 株式会社日立製作所 Work terminal, oil leak detection device, and oil leak detection method
JP2019124678A (en) * 2018-01-18 2019-07-25 株式会社日立製作所 Work terminal, oil leak detection device, and oil leak detection method
JP2020042692A (en) * 2018-09-13 2020-03-19 株式会社日立製作所 Plant diagnostic data generating system and method
CN111212950A (en) * 2017-10-09 2020-05-29 维家技术有限及两合公司 Drinking water supply system with drinking water quality monitoring, control method thereof and computer program
CN113153551A (en) * 2020-01-07 2021-07-23 丰田自动车株式会社 Abnormality diagnosis device for air flow meter
US20220050004A1 (en) * 2020-08-13 2022-02-17 Alarm.Com Incorporated Periodic water leak detection
US11657121B2 (en) 2018-06-14 2023-05-23 Mitsubishi Electric Corporation Abnormality detection device, abnormality detection method and computer readable medium

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3074590B1 (en) * 2017-12-04 2023-03-17 Soc Air France METHOD FOR PREDICTING AN MALFUNCTION OF ONE OR MORE EQUIPMENT OF A SET
JP7063022B2 (en) * 2018-03-14 2022-05-09 オムロン株式会社 Anomaly detection system, support device and model generation method
CN111919185B (en) * 2018-03-20 2023-10-20 三菱电机株式会社 Display device, display system, and display screen generation method
US11624675B2 (en) * 2018-06-11 2023-04-11 Hitachi, Ltd. Water leakage detection method, water leakage detection apparatus, and vibration sensor terminal
JP7452311B2 (en) 2020-07-30 2024-03-19 株式会社明電舎 Water leak detection device and water leak detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050631A (en) * 2001-08-07 2003-02-21 Mitsui Eng & Shipbuild Co Ltd Method for generating learning data for abnormality diagnosing system, program for configuring the same system, program for diagnosing abnormality, device for configuring the same system and abnormality diagnosing system
JP2013156969A (en) * 2012-02-01 2013-08-15 Fuji Xerox Co Ltd Failure prediction system, failure prediction device and program
JP2014518580A (en) * 2011-04-29 2014-07-31 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Collaborative multi-agent vehicle fault diagnosis system and related method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4822990B2 (en) * 2006-09-07 2011-11-24 株式会社東芝 Water leakage monitoring system
JP4612696B2 (en) * 2008-02-13 2011-01-12 株式会社東芝 Water leakage diagnosis device and water leakage diagnosis method for water distribution pipe
WO2015063931A1 (en) * 2013-10-31 2015-05-07 株式会社日立製作所 Water-leak detector, water-leak detection system, and water-leak detection method
WO2015129031A1 (en) * 2014-02-28 2015-09-03 株式会社日立製作所 Water-leak detection system and water-leak detection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050631A (en) * 2001-08-07 2003-02-21 Mitsui Eng & Shipbuild Co Ltd Method for generating learning data for abnormality diagnosing system, program for configuring the same system, program for diagnosing abnormality, device for configuring the same system and abnormality diagnosing system
JP2014518580A (en) * 2011-04-29 2014-07-31 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Collaborative multi-agent vehicle fault diagnosis system and related method
JP2013156969A (en) * 2012-02-01 2013-08-15 Fuji Xerox Co Ltd Failure prediction system, failure prediction device and program

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111212950A (en) * 2017-10-09 2020-05-29 维家技术有限及两合公司 Drinking water supply system with drinking water quality monitoring, control method thereof and computer program
WO2019142446A1 (en) * 2018-01-18 2019-07-25 株式会社日立製作所 Work terminal, oil leak detection device, and oil leak detection method
JP2019124678A (en) * 2018-01-18 2019-07-25 株式会社日立製作所 Work terminal, oil leak detection device, and oil leak detection method
TWI714950B (en) * 2018-01-18 2021-01-01 日商日立製作所股份有限公司 Operation terminal, oil leakage detection device and oil leakage detection method
US11494888B2 (en) 2018-01-18 2022-11-08 Hitachi, Ltd. Work terminal, oil leakage detection apparatus, and oil leakage detection method
US11657121B2 (en) 2018-06-14 2023-05-23 Mitsubishi Electric Corporation Abnormality detection device, abnormality detection method and computer readable medium
JP2020042692A (en) * 2018-09-13 2020-03-19 株式会社日立製作所 Plant diagnostic data generating system and method
JP7002427B2 (en) 2018-09-13 2022-01-20 株式会社日立製作所 Data generation system and method for plant diagnosis
CN113153551A (en) * 2020-01-07 2021-07-23 丰田自动车株式会社 Abnormality diagnosis device for air flow meter
CN113153551B (en) * 2020-01-07 2023-02-17 丰田自动车株式会社 Abnormality diagnosis device for air flow meter
US20220050004A1 (en) * 2020-08-13 2022-02-17 Alarm.Com Incorporated Periodic water leak detection
US11788920B2 (en) * 2020-08-13 2023-10-17 Alarm.Com Incorporated Periodic water leak detection

Also Published As

Publication number Publication date
JP2017156818A (en) 2017-09-07
JP6605357B2 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
JP6605357B2 (en) Anomaly detection apparatus, anomaly detection system and method
US9968899B1 (en) Catalyst transfer pipe plug detection
US10401250B2 (en) Leakage detection and leakage location in supply networks
US8583386B2 (en) System and method for identifying likely geographical locations of anomalies in a water utility network
KR102060481B1 (en) Method of estimating flow rate and of detecting leak of wide area water using recurrent analysis, recurrent neural network and deep neural network
CN109325692B (en) Real-time data analysis method and device for water pipe network
US9310288B2 (en) Systems and methods to monitor operating processes
JP6848965B2 (en) Gas monitoring programs, systems, recording media and methods
US20130173178A1 (en) Apparatus and Method for Monitoring a Steam Plant
US10000912B2 (en) Freeze prediction system
US10726643B2 (en) Method for predicting corrosion potential, monitoring contaminant load and optimizing corrosion maintenance
KR20140092385A (en) System and method for identifying related events in a resource network monitoring system
JP4969886B2 (en) Building diagnostic system
EP3584657B1 (en) Risk assessment device, risk assessment method, and risk assessment program
US20220082409A1 (en) Method and system for monitoring a gas distribution network operating at low pressure
EP3584656B1 (en) Risk assessment device, risk assessment method, and risk assessment program
JP2016004298A (en) Pump abnormality detecting system, pump abnormality detecting method, and pump abnormality detecting program
EP3070561A1 (en) Failure factor identification supporting apparatus and failure factor identification supporting method
WO2016174958A1 (en) Water leak occurence position estimation device, system, and method
JP2009192397A (en) System for monitoring pressure regulator, gas meter, and mobile terminal
JP4337625B2 (en) River monitoring system
EP3647744A1 (en) Gas meter management system
JPWO2014091954A1 (en) Liquid leakage detection device, liquid leakage detection method, and recording medium
US20230265871A1 (en) Detection of an anomaly in a fluid power system
WO2015087378A1 (en) Water facility network abnormality detection device and abnormality detection method

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759729

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759729

Country of ref document: EP

Kind code of ref document: A1