JP4337625B2 - River monitoring system - Google Patents

River monitoring system Download PDF

Info

Publication number
JP4337625B2
JP4337625B2 JP2004140531A JP2004140531A JP4337625B2 JP 4337625 B2 JP4337625 B2 JP 4337625B2 JP 2004140531 A JP2004140531 A JP 2004140531A JP 2004140531 A JP2004140531 A JP 2004140531A JP 4337625 B2 JP4337625 B2 JP 4337625B2
Authority
JP
Japan
Prior art keywords
water level
time
level data
upstream
river
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004140531A
Other languages
Japanese (ja)
Other versions
JP2005322090A (en
Inventor
一哉 ▲高▼橋
雅彦 齊藤
健 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004140531A priority Critical patent/JP4337625B2/en
Publication of JP2005322090A publication Critical patent/JP2005322090A/en
Application granted granted Critical
Publication of JP4337625B2 publication Critical patent/JP4337625B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Alarm Systems (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Description

本発明は、河川監視システムに関するものである。   The present invention relates to a river monitoring system.

河川の監視においては、河川沿いに観測点をいくつか設けて、これら観測点の観測データや画像を河川監視センタに配信して集中監視を行う河川監視システムが知られている。観測データとして代表的なものは水位計である。河川監視センタでは河川管理者が複数の観測点からの観測データと画像を切り替えて表示装置上に表示している。   In river monitoring, there are known river monitoring systems in which several observation points are provided along the river, and observation data and images of these observation points are distributed to a river monitoring center for centralized monitoring. A typical observation data is a water level gauge. At the river monitoring center, river managers switch observation data and images from a plurality of observation points and display them on a display device.

河川監視システムの中には、水位計毎に警戒水位と危険水位をあらかじめ設けておき、観測データが警戒水位または危険水位に達したことを判定して監視センタに通知するものもある。さらに、警戒水位または危険水位に達すると、観測データを蓄積し、後日に再び警戒水位または危険水位に達したときに、観測データと前記蓄積された観測データを表示装置上に並べて表示する防災管理システムが知られている(例えば特許文献1)。   Some river monitoring systems provide a warning water level and a dangerous water level for each water level meter in advance, determine that the observation data has reached the warning water level or the dangerous water level, and notify the monitoring center. Furthermore, when the warning water level or the dangerous water level is reached, the observation data is accumulated, and when the warning water level or the dangerous water level is reached again at a later date, the disaster prevention management displays the observation data and the accumulated observation data side by side on the display device. A system is known (for example, Patent Document 1).

しかしながら、従来の河川監視システムでは各観測点が警戒水位または危険水位に達するまで監視センタに通報されなかった。特に、大雨などにより水位が急上昇する場合は警戒水位に達してから危険水位に達するまでの期間が短く、関係部門や周辺住民への通知の迅速性が求められる。河川沿いの複数観測点のデータを、河川監視センタの表示装置に一括または切り替え表示して、該河川の上流から下流までの水位の変化を河川管理者に通知させるものもあるが、河川全体の水位の変化や下流地域の水位の上昇予測は監視員の経験に委ねている。また、過去に警戒水位または危険水位に達したことのない観測点では過去の警戒または危険水位時の観測データの蓄積がなく、河川管理者に観測データと蓄積データを並べて表示することができないこともある。更に、河川は改修工事により水位の状態も変化するので過去の蓄積データが参考にならないこともある。   However, in the conventional river monitoring system, the monitoring center was not notified until each observation point reached the warning water level or the dangerous water level. In particular, when the water level rises sharply due to heavy rain or the like, the period from reaching the warning water level to reaching the dangerous water level is short, and prompt notification to the related departments and surrounding residents is required. Some data of multiple observation points along the river are displayed on the display device of the river monitoring center in a batch or switched to notify the river manager of changes in the water level from upstream to downstream of the river. The change of the water level and the prediction of the water level rise in the downstream area are left to the experience of the observer. Also, observation points that have never reached the warning water level or the dangerous water level in the past have no accumulation of observation data at the past warning or dangerous water level, and the river administrator cannot display the observation data and the accumulated data side by side. There is also. In addition, rivers may change their water level due to renovation work, so past data may not be helpful.

特開2003−58969号JP 2003-58969 A

河川上流の観測点の観測データを用いて、監視対象の観測点で警戒または危険水位に達する前に通報する河川監視システムを提供する。   Provide a river monitoring system that uses observation data at upstream observation points to report before reaching the alert or dangerous water level at the observation point.

河川の水位を監視する河川監視システムにおいて、河川沿いの監視対象観測点に設置した第1の水位計と、監視対象観測点よりも河川上流に設置した第2の水位計と、第2の水位計の水位変化パターンと第1の水位計の水位変化パターンを照合して、第2の水位計設置場所から第1の水位計設置場所までの水位変化の伝搬時間を計測する伝搬時間計測手段を設けた河川監視システムとする。   In a river monitoring system for monitoring the water level of a river, a first water level meter installed at a monitoring observation point along the river, a second water level meter installed upstream of the monitoring observation point, and a second water level Propagation time measuring means for comparing the water level change pattern of the meter with the water level change pattern of the first water level meter and measuring the propagation time of the water level change from the second water level meter installation location to the first water level meter installation location The river monitoring system is provided.

本発明によれば、河川の上流から対象となる観測点までの水位の伝搬時間の分を先行して水位予測することで、より早いタイミングで水位上昇などの情報を入手する安全な河川監視システムを提供することができる。又、実河川における上流の水位変化と下流の水位を関連付けて自動更新するので、過去の警戒または危険水位時の観測データを必要とせず、手間がかからず最適な予測が可能となる。
According to the present invention, a safe river monitoring system that obtains information such as a rise in water level at an earlier timing by predicting the water level in advance by the amount of propagation time of the water level from the upstream of the river to the target observation point Can be provided. In addition, since the upstream water level change and the downstream water level in the actual river are automatically associated and updated, observation data at the time of past warning or dangerous water level is not required, and it is possible to make an optimal prediction without taking time and effort.

以下、本発明の実施例について図を用いて説明する。なお本発明は、これらの実施例に限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. The present invention is not limited to these examples.

図1は、本発明の河川監視システムを模式的に示した図である。河川監視システムは、上流観測点水位計101と、上流水位変化計測手段102と、上流特徴検出手段103と、上流水位保持手段104と、上流水位状態保持手段105と、水位計106と、水位変化計測手段107と、特徴検出手段108と、伝搬時間計測手段109と、関連水位データベース110と、更新制御手段111を有している。図中の矢印は、電気的信号の流れを示しており、有線,無線方式が考えられる。河川の監視対象観測点の水位を水位計106で計測し、監視対象観測点の上流の観測点の水位を上流観測点水位計101で計測し、上流観測点の水は監視対象の観測点まで流れていくものとする。   FIG. 1 is a diagram schematically showing a river monitoring system of the present invention. The river monitoring system includes an upstream observation point water level meter 101, an upstream water level change measuring unit 102, an upstream feature detection unit 103, an upstream water level holding unit 104, an upstream water level state holding unit 105, a water level meter 106, and a water level change. It has measuring means 107, feature detecting means 108, propagation time measuring means 109, related water level database 110, and update control means 111. The arrows in the figure indicate the flow of electrical signals, and wired and wireless systems are conceivable. The water level at the observation point of the river is measured with the water level meter 106, the water level at the observation point upstream of the monitoring point is measured with the upstream observation point water level meter 101, and the water at the upstream observation point reaches the monitoring point. It shall flow.

上流観測点水位計101の計測による水位データは、上流水位変化計測手段102によって一定時間毎に差分計算することで、水位が上昇,下降あるいは水位変化の少ない定常状態であることを判定する。判定結果は、観測点の水位状態として上流水位状態保持手段105に記憶する。上流特徴検出手段103は、水位状態の変化、たとえば上昇から定常、あるいは下降から定常、あるいは定常から上昇、あるいは定常から下降へ遷移した時刻を出力する。一方、監視対象観測点の水位計106の計測による水位データは、水位変化計測手段107で一定時間毎に差分計算することで、水位の上昇,定常,下降を計測し、この状態の変化をとらえて特徴検出手段108で状態の変化した時刻を出力する。上流特徴検出手段103と特徴検出手段108で同様の水位の状態遷移が認められた場合は、伝搬時間計測手段109にて各々の出力時刻の差を計算して水位の伝搬時間として出力する。上流特徴検出手段103と特徴検出手段108で特徴を検出できない場合に、伝搬時間計測手段109は、以前に計測した水位の伝搬時間を保持する。伝搬時間の信号は、図1では(C)と表記している。上流水位保持手段104は、伝搬時間だけ過去に遡った上流水位計のデータを図1の(A)として出力する。上流水位状態保持手段105は、伝搬時間だけ過去に遡った上流の水位状態、すなわち、上昇あるいは下降あるいは定常状態であるかを図1の(B)として出力する。関連水位データベース110は、上流観測点水位計101の設置場所の水位データと、伝搬時間経過後の監視対象観測点の水位計106の水位データを対応付けて保持する。すなわち、上流の水位変化に伴って変化する対象監視観測点の水位データがデータベース化している。そこで、上流観測点水位計101による最新の水位データで関連水位データベース110の水位データを参照すると、該当欄の水位データを、監視対象観測点の水位計106の伝搬時間後の予測水位とみなせる。また、更新制御手段111は、制御信号(D)をもって関連水位データベース110に対してデータ更新動作と予測水位出力動作の二つを切り替えることができる。データ更新動作と予測水位出力動作については後述する。   The water level data measured by the upstream observation point water level meter 101 is differentially calculated by the upstream water level change measuring means 102 at regular intervals to determine that the water level is in a steady state with little rise or fall or little change in water level. The determination result is stored in the upstream water level state holding means 105 as the water level state of the observation point. The upstream feature detection means 103 outputs a change in the water level state, for example, a time when the transition is made from rising to steady, falling to steady, steady to rising, or steady to falling. On the other hand, the water level data measured by the water level gauge 106 at the monitoring target observation point is subjected to a difference calculation at regular time intervals by the water level change measuring means 107 to measure the rise, steady state, and fall of the water level, and capture the change in this state. Then, the time when the state is changed is output by the feature detection means 108. When the upstream feature detection unit 103 and the feature detection unit 108 recognize similar water level transitions, the propagation time measurement unit 109 calculates the difference between the output times and outputs the difference as the water level propagation time. When the feature cannot be detected by the upstream feature detection unit 103 and the feature detection unit 108, the propagation time measurement unit 109 holds the propagation time of the water level measured before. The signal of the propagation time is expressed as (C) in FIG. The upstream water level holding means 104 outputs data of the upstream water level meter that goes back in the past by the propagation time as (A) in FIG. The upstream water level state holding means 105 outputs, as (B) in FIG. 1, whether the upstream water level state has gone back in the past by the propagation time, that is, whether it is rising, falling or steady state. The related water level database 110 holds the water level data of the installation site of the upstream observation point water level meter 101 and the water level data of the water level meter 106 of the monitoring target observation point after the passage of the propagation time. That is, the water level data of the target monitoring observation point that changes with the upstream water level change is made into a database. Therefore, when the water level data in the relevant water level database 110 is referred to with the latest water level data obtained by the upstream observation point water level meter 101, the water level data in the corresponding column can be regarded as the predicted water level after the propagation time of the water level meter 106 at the monitoring target observation point. Further, the update control means 111 can switch between the data update operation and the predicted water level output operation for the related water level database 110 with the control signal (D). The data update operation and the predicted water level output operation will be described later.

図2は、上流水位保持手段104の一例を示す図であって、水位記録欄201とポインタ202を有する。水位記録欄201は、上流観測点水位計101のデータを時系列で保持する。ポインタ202は、水位記録欄201の記録場所を制御し、時系列の水位データが一定期間保持される。伝搬時間計測手段109の出力する伝搬時間に従い、最新時刻から伝搬時間だけ過去にさかのぼった上流水位データを、関連水位データベース110に対して出力する。また、更新制御手段111は、制御信号(D)を介して上流水位保持手段104の動作を切り替えることが可能である。関連水位データベース110が予測水位出力動作のときは、ポインタ202は最新の上流水位データを出力するようにする。これは上流観測点水位計101の出力水位と同一である。なお、上流のデータ更新動作と予測水位出力動作は制御信号(D)で切り替えられる。   FIG. 2 is a diagram illustrating an example of the upstream water level holding unit 104, and includes a water level recording column 201 and a pointer 202. The water level record column 201 holds data of the upstream observation point water level meter 101 in time series. The pointer 202 controls the recording location of the water level recording column 201, and time-series water level data is held for a certain period. In accordance with the propagation time output from the propagation time measuring means 109, the upstream water level data traced back by the propagation time from the latest time is output to the related water level database 110. Moreover, the update control means 111 can switch the operation of the upstream water level holding means 104 via the control signal (D). When the related water level database 110 is the predicted water level output operation, the pointer 202 outputs the latest upstream water level data. This is the same as the output water level of the upstream observation point water level meter 101. The upstream data update operation and the predicted water level output operation are switched by the control signal (D).

図3は、上流水位状態保持手段105の一例を示す図であって、水位状態記録欄301とポインタ302を有する。水位状態記録欄301は、上流水位変化計測手段102の上流水位状態、すなわち上昇状態であるか,定常状態であるか,下降状態であるかを時系列で保持する。ポインタ302は、水位状態記録欄301の記録場所を制御し、時系列の水位状態データが一定期間保持される。伝搬時間計測手段109の出力する伝搬時間に従い、最新時刻から伝搬時間だけ過去にさかのぼった上流水位状態データを、関連水位データベース110に対して出力する。また、更新制御手段111は、制御信号(D)を介して上流水位状態保持手段105の動作を切り替えることが可能である。関連水位データベース110が予測水位出力動作のときは、ポインタ302は最新の上流水位状態データを出力するようにする。これは上流水位変化計測手段102の出力と同一である。なお、上流のデータ更新動作と予測水位出力動作は制御信号(D)で切り替えられる。   FIG. 3 is a diagram illustrating an example of the upstream water level state holding unit 105, which includes a water level state recording column 301 and a pointer 302. The water level state recording column 301 holds the upstream water level state of the upstream water level change measuring means 102, that is, whether it is an up state, a steady state, or a down state, in time series. The pointer 302 controls the recording location of the water level state recording column 301, and time-series water level state data is held for a certain period. In accordance with the propagation time output by the propagation time measuring means 109, the upstream water level state data traced back by the propagation time from the latest time is output to the related water level database 110. In addition, the update control unit 111 can switch the operation of the upstream water level state holding unit 105 via the control signal (D). When the related water level database 110 performs the predicted water level output operation, the pointer 302 outputs the latest upstream water level state data. This is the same as the output of the upstream water level change measuring means 102. The upstream data update operation and the predicted water level output operation are switched by the control signal (D).

図4は、関連水位データベース110の一例を示す図であって、上流水位ポインタ401と、アクセス領域選択手段402と、水位記録メモリ403と、入出力ポート404を有する。入出力ポート404は、更新制御手段111の出力信号で制御される。水位記録メモリ403は、3つの欄で構成され、第1の欄である上流水位欄405は上流観測点水位計101の取りうる水位値を区分して目盛り付けしている。第2の欄である上昇時水位記録欄406と第3の欄である下降時水位記録欄407は、それぞれ上昇時水位記録欄406の目盛りに対応する記憶領域を有するランダムアクセス可能なメモリである。上流水位ポインタ401は、上流水位保持手段104の水位値の該当する区分を上昇時水位記録欄
406から選んで、上昇時水位記録欄406または下降時水位記録欄407の該当メモリをアクセス可能とする。アクセス領域選択手段402は、上流水位状態保持手段105の出力に応じて水位記録メモリ403のアクセス可能な領域を上昇時水位記録欄406と下降時水位記録欄407から選択する。上流水位状態保持手段105の出力が水位上昇中を示していれば、上昇時水位記録欄406がアクセス可能となり、水位下降中を示していれば、下降時水位記録欄407がアクセス可能となる。すなわち水位記録メモリ403の上流の水位と水位状態に対応する領域がアクセス可能状態になる。
FIG. 4 is a diagram illustrating an example of the related water level database 110, and includes an upstream water level pointer 401, an access area selection unit 402, a water level recording memory 403, and an input / output port 404. The input / output port 404 is controlled by an output signal from the update control unit 111. The water level recording memory 403 is composed of three columns, and the first column, the upstream water level column 405 divides and calibrates the water level values that the upstream observation point water level meter 101 can take. The rising water level recording column 406 as the second column and the falling water level recording column 407 as the third column are randomly accessible memories each having a storage area corresponding to the scale of the rising water level recording column 406. . The upstream water level pointer 401 selects a corresponding category of the water level value of the upstream water level holding means 104 from the rising water level recording column 406 and makes the corresponding memory in the rising water level recording column 406 or the falling water level recording column 407 accessible. . The access area selection unit 402 selects an accessible area of the water level recording memory 403 from the rising water level recording column 406 and the falling water level recording column 407 according to the output of the upstream water level state holding unit 105. If the output of the upstream water level state holding means 105 indicates that the water level is rising, the rising water level recording column 406 is accessible, and if the output is indicating that the water level is falling, the falling water level recording column 407 is accessible. In other words, the water level upstream of the water level recording memory 403 and the area corresponding to the water level state are accessible.

関連水位データベース110には、データ更新動作と予測水位出力動作がある。更新制御手段111の制御信号(D)の作用で入出力ポート404が入力状態のときは、関連水位データベース110がデータ更新状態となる。このときは上流水位保持手段104の伝搬時間だけ遡った上流水位データと、上流水位状態保持手段105の保持する伝搬時間だけ遡った水位状態に応じて、水位記録メモリ403のアクセス場所が決まり、入出力ポート404は入力状態になって、水位計106の水位データで更新される。すなわち、上流観測点から、監視対象観測点までの水位の伝搬時間を計測した上で、伝搬時間だけ過去に遡る上流観測点の水位と水位状態に対応するデータベース領域を、最新の監視対象観測点の水位データで更新する。更新は最新のデータで書き換えることも可能であるが、最新データに最も加重の大きい加重平均演算で更新すると微小な変動雑音を相殺できる。加重の式はたとえば時間を独立変数とする指数関数を用いることができる。更に簡略化して、更新前のデータと最新データで加重平均をとることもできる。加重の式の一例は後記する。   The related water level database 110 includes a data update operation and a predicted water level output operation. When the input / output port 404 is in the input state by the action of the control signal (D) of the update control means 111, the related water level database 110 is in the data update state. At this time, the access location of the water level recording memory 403 is determined according to the upstream water level data that is back by the propagation time of the upstream water level holding means 104 and the water level state that is back by the propagation time held by the upstream water level state holding means 105. The output port 404 is in the input state and is updated with the water level data of the water level gauge 106. That is, after measuring the propagation time of the water level from the upstream observation point to the monitored observation point, the database area corresponding to the water level and water level state of the upstream observation point that goes back in the past by the propagation time is the latest monitored observation point. Update with water level data. The update can be rewritten with the latest data, but if the latest data is updated by a weighted average calculation having the largest weight, minute fluctuation noise can be offset. For example, an exponential function having time as an independent variable can be used as the weighting formula. Furthermore, it is possible to simplify and take a weighted average of the data before update and the latest data. An example of the weighting formula will be described later.

一方、更新制御手段111の制御信号(D)の作用で、入出力ポート404が出力状態のときは、関連水位データベース110は監視対象観測点における予測水位の出力動作となる。このときは上流水位保持手段104の最新の上流水位データと、上流水位状態保持手段105の最新の水位状態に応じて、水位記録メモリ403のアクセス場所が決まり、入出力ポート404は出力状態になって、前記アクセス場所の水位データが予測水位として出力される。すなわち、上流観測点水位計101の水位データを過去の水位データに照らして、水位と水位状態が類似のものを検索して、水位記録メモリ403内の対応する水位データを出力すると、これが伝搬時間後の前記観測点の予測水位とみなせる。   On the other hand, when the input / output port 404 is in an output state due to the action of the control signal (D) of the update control means 111, the related water level database 110 performs an output operation of the predicted water level at the monitoring target observation point. At this time, the access location of the water level recording memory 403 is determined according to the latest upstream water level data of the upstream water level holding unit 104 and the latest water level state of the upstream water level state holding unit 105, and the input / output port 404 is in the output state. Thus, the water level data of the access location is output as the predicted water level. That is, when the water level data of the upstream observation point water level meter 101 is compared with the past water level data and the water level and the water level state are similar, and the corresponding water level data in the water level recording memory 403 is output, this is the propagation time. It can be regarded as the predicted water level of the observation point later.

また、上流がこれまでにない増水に見舞われた場合は、上流観測点水位計101は、これまでにない高い水位を示し、従って水位記録メモリ403の上位水位欄の上限を超えることもあり得る。この場合に対応する関連水位データベースの例が、図6に示す関連水位データベースである。図6は、図4の関連水位データベースに、係数保持手段601と水位補正手段602を設けた構成である。係数保持手段601は、上流水位保持手段104の出力する水位データを、上流水位欄405の上限値で除した値を係数として保持する。この係数が1.0 を超える場合は、上記観測点水位計101が、これまでにない高い水位を示したとみなして、上流水位ポインタ401は上流水位欄405の上限を示す。一方、水位補正手段602は、入出力ポート404が出力するデータに前記係数を乗じて予測水位とする。この操作により、前記上流がこれまでにない増水に見舞われた場合でも予測水位を出力することができる。   Further, when the upstream is hit by an unprecedented increase in water level, the upstream observation point water level meter 101 indicates an unprecedented high water level, and thus may exceed the upper limit of the upper water level column of the water level recording memory 403. . An example of the related water level database corresponding to this case is the related water level database shown in FIG. FIG. 6 shows a configuration in which coefficient holding means 601 and water level correction means 602 are provided in the related water level database of FIG. The coefficient holding unit 601 holds a value obtained by dividing the water level data output from the upstream water level holding unit 104 by the upper limit value in the upstream water level column 405 as a coefficient. When this coefficient exceeds 1.0, it is considered that the observation point water level meter 101 indicates an unprecedented high water level, and the upstream water level pointer 401 indicates the upper limit of the upstream water level column 405. On the other hand, the water level correction means 602 multiplies the data output from the input / output port 404 by the coefficient to obtain the predicted water level. By this operation, the predicted water level can be output even when the upstream is hit by an unprecedented water increase.

図5は、水位記録メモリ403のデータ更新の際の最新データと過去データの、加重平均の際の加重の一例である。加重の式として(数1)を用いると最新データほど加重が重くなる。調整パラメータAと平均処理に用いる過去データの範囲τを調整することで重みを調整できる。   FIG. 5 is an example of the weighting at the time of the weighted average of the latest data and past data at the time of data update in the water level recording memory 403. If (Equation 1) is used as a weighting formula, the weight becomes heavier as the latest data. The weight can be adjusted by adjusting the adjustment parameter A and the range τ of past data used for the averaging process.

Figure 0004337625
Figure 0004337625

本発明は防災と河川管理を目的とした河川監視システムへの適用を想定している。従来は監視点の水位計などのセンサ情報を用いて、該監視点の警戒状態あるいは危険状態を判定していた。しかし、本発明の河川監視装置では上流観測点のセンサ情報を用いて警戒状態あるいは危険状態を判定するので、より早いタイミングで情報を入手することができる。   The present invention assumes application to a river monitoring system for the purpose of disaster prevention and river management. Conventionally, the warning state or the dangerous state of the monitoring point has been determined using sensor information such as a water level gauge at the monitoring point. However, in the river monitoring apparatus of the present invention, the alert state or the dangerous state is determined using the sensor information of the upstream observation point, so that the information can be obtained at an earlier timing.

他の河川監視装置では、実河川に河川モデルをフィッティングしてシミュレーションによる水位予測を行うものがあるが、実河川は改修や土砂によって常に変化するものであり、変化する実河川に河川モデルをフィッティングする手間がかかる。一方、本発明の河川監視装置は実河川における上流の水位変化と下流の水位を関連付けて自動更新するので、過去の警戒または危険水位時の観測データを必要とせず、手間がかからず最適な予測が可能である。   Other river monitoring devices include fitting a river model to an actual river and predicting the water level by simulation. However, an actual river always changes due to refurbishment or sediment, and fitting a river model to a changing actual river It takes time to do. On the other hand, since the river monitoring apparatus of the present invention automatically updates by associating the upstream water level change and the downstream water level in an actual river, it does not require past warning or observation data at the dangerous water level, and is optimal without any trouble. Prediction is possible.

本発明の一実施例である河川監視システムの模式図である。It is a schematic diagram of the river monitoring system which is one Example of this invention. 本発明の上流水位保持手段の一例を示す模式図である。It is a schematic diagram which shows an example of the upstream water level holding | maintenance means of this invention. 本発明の上流水位状態保持手段の一例を示す模式図である。It is a schematic diagram which shows an example of the upstream water level state holding | maintenance means of this invention. 本発明の関連水位データベースの一例を示す模式図である。It is a schematic diagram which shows an example of the related water level database of this invention. 本発明の関連水位データベースの他の例を示す模式図である。It is a schematic diagram which shows the other example of the related water level database of this invention. 本発明の加重平均を示すグラフである。It is a graph which shows the weighted average of this invention.

符号の説明Explanation of symbols

101…上流観測点水位計、102…上流水位変化計測手段、103…上流特徴検出手段、104…上流水位保持手段、105…上流水位状態保持手段、106…水位計、107…水位変化計測手段、108…特徴検出手段、109…伝搬時間計測手段、110…関連水位データベース、111…更新制御手段、201…水位記録欄、202,302…ポインタ、301…水位状態記録欄、401…上流水位ポインタ、402…アクセス領域選択手段、403…水位記録メモリ、404…入出力ポート、405…上流水位欄、406…上昇時水位記録欄、407…下降時水位記録欄。
DESCRIPTION OF SYMBOLS 101 ... Upstream observation point water level meter, 102 ... Upstream water level change measurement means, 103 ... Upstream characteristic detection means, 104 ... Upstream water level holding means, 105 ... Upstream water level state holding means, 106 ... Water level gauge, 107 ... Water level change measurement means, DESCRIPTION OF SYMBOLS 108 ... Feature detection means, 109 ... Propagation time measurement means, 110 ... Related water level database, 111 ... Update control means, 201 ... Water level recording column, 202, 302 ... Pointer, 301 ... Water level state recording column, 401 ... Upstream water level pointer, 402: access area selection means, 403 ... water level recording memory, 404 ... input / output port, 405 ... upstream water level column, 406 ... rising water level recording column, 407 ... falling water level recording column.

Claims (3)

河川の水位を監視する河川監視システムにおいて、河川沿いの監視対象観測点に設置した水位を測定する第1の水位計と、該第1の水位計で測定された水位データから水位の上昇,下降,定常への状態遷移を判定し、該状態遷移の特徴と状態の変化した時刻を検出する第1の特徴検出手段と、前記監視対象観測点よりも河川上流に設置した水位を測定する第2の水位計と、該第2の水位計で測定された水位データから水位の上昇,下降,定常への状態遷移を判定し、該状態遷移の特徴と状態の変化した時刻を検出する第2の特徴検出手段と、前記第2の特徴検出手段が検出した状態遷移の特徴と同様の状態遷移の特徴を前記第1の特徴検出手段が検出した場合は、前記第1の特徴検出手段と第2の特徴検出手段の検出した時刻の差を水位変化の伝搬時間として記録する伝搬時間計測手段と、前記第1の水位計で測定された時系列水位データと前記伝搬時間計測手段で記録される伝搬時間遡った前記第2の水位計で測定された時系列水位データを対応づけて記録する関連水位データベースと、を備え、前記第2の水位計で測定された水位データに水位と特徴が近似する水位データを該関連水位データベースに記録された第2の水位計の時系列水位データから検索し、検索された水位データの伝搬時間経過後の対応づけられる前記第1の水位計で測定された時系列水位データの水位を監視対象観測点の予測水位とする河川監視システム。 In a river monitoring system that monitors the water level of a river, a first water level meter that measures the water level installed at a monitoring observation point along the river, and a rise or fall of the water level from the water level data measured by the first water level meter The first feature detecting means for determining the state transition to the steady state and detecting the feature of the state transition and the time when the state changes, and the second for measuring the water level installed upstream of the monitoring target observation point A second water level gauge and a water level data measured by the second water level gauge to determine a state transition from rising to lowering to a steady state, and detecting a characteristic of the state transition and a time when the state changes. When the first feature detection unit detects a feature of the state transition similar to the feature of the state transition detected by the feature detection unit and the second feature detection unit, the first feature detection unit and the second feature detection unit The difference in time detected by the feature detection means of the water level changes Propagation time measuring means for recording as propagation time, time-series water level data measured by the first water level meter, and time measured by the second water level meter retroactive to the propagation time recorded by the propagation time measuring means An associated water level database that records the associated water level data in association with each other, and the water level data whose water level and characteristics approximate to the water level data measured by the second water level meter are recorded in the associated water level database. A search is made from time-series water level data of the water level gauge, and the water level of the time-series water level data measured by the first water level meter after the propagation time of the searched water level data is correlated with the predicted water level of the monitored observation point. River monitoring system. 前記関連水位データベースに記録された第2の水位計で測定された時系列水位データを越える水位データが第2の水位計で測定された場合は、該測定された水位データを前記第2の水位計で測定された時系列水位データの最大値で除した値を補正係数として係数保持手段に記録し、前記第2の水位計で測定された時系列水位データの最大値に対応づけられた第1の水位計で測定された時系列水位データに前記補正係数を乗じて監視対象観測点の予測水位とする請求項1に記載の河川監視システム。   When water level data exceeding the time-series water level data measured by the second water level meter recorded in the related water level database is measured by the second water level meter, the measured water level data is used as the second water level. The value divided by the maximum value of the time-series water level data measured by the gauge is recorded in the coefficient holding means as a correction coefficient, and is associated with the maximum value of the time-series water level data measured by the second water level gauge. The river monitoring system according to claim 1, wherein time series water level data measured by one water level gauge is multiplied by the correction coefficient to obtain a predicted water level at a monitoring target observation point. 前記関連水位データベースに記録された第1の水位計で測定された時系列水位データを更新する際は、過去の水位データと新たな水位データとの間で加重付き平均演算を行う請求項1又は2に記載の河川監視システム。   The weighted average calculation is performed between the past water level data and the new water level data when updating the time series water level data measured by the first water level meter recorded in the related water level database. The river monitoring system according to 2.
JP2004140531A 2004-05-11 2004-05-11 River monitoring system Expired - Fee Related JP4337625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004140531A JP4337625B2 (en) 2004-05-11 2004-05-11 River monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004140531A JP4337625B2 (en) 2004-05-11 2004-05-11 River monitoring system

Publications (2)

Publication Number Publication Date
JP2005322090A JP2005322090A (en) 2005-11-17
JP4337625B2 true JP4337625B2 (en) 2009-09-30

Family

ID=35469323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004140531A Expired - Fee Related JP4337625B2 (en) 2004-05-11 2004-05-11 River monitoring system

Country Status (1)

Country Link
JP (1) JP4337625B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006235965A (en) * 2005-02-24 2006-09-07 Fujitsu Ltd Device for determining abnormality in river
JP6076868B2 (en) * 2013-09-03 2017-02-08 株式会社東芝 PRESENTATION DATA STORAGE SYSTEM, DISPLAY DEVICE, PRESENTATION DATA PROVIDING METHOD, AND PROGRAM
CN104131527B (en) * 2014-07-09 2016-08-24 河海大学 Estuary coast engineering pipe bag dam information-aided construction system
CN115188163B (en) 2022-07-08 2023-08-29 黄河勘测规划设计研究院有限公司 Flood early warning method and system based on storm and flood similarity

Also Published As

Publication number Publication date
JP2005322090A (en) 2005-11-17

Similar Documents

Publication Publication Date Title
JP6605357B2 (en) Anomaly detection apparatus, anomaly detection system and method
US9441988B2 (en) System and method for identifying likely geographical locations of anomalies in a water utility network
JP6687913B2 (en) Leakage state estimation system, method, and recording medium
RU2517309C2 (en) Fire and flammable gas alarm method and system
EP3172540B1 (en) Weighing scale diagnostics method
JP4969886B2 (en) Building diagnostic system
JP6547743B2 (en) Detection system, detection device, detection method and computer readable recording medium
JP6635296B2 (en) Debris flow generation prediction system and debris flow generation prediction method
KR20200041515A (en) Early warning system and method of power plants using multiple prediction model
JP4337625B2 (en) River monitoring system
JP4341779B2 (en) Air conditioner abnormality detection device and abnormality detection method
JP2004183340A (en) Cut earth slope management support system, cut earth slope disruption risk degree determination system used in the system and earth moisture status measuring method
CN107430753B (en) Tap water usage detection system and method, observation system and method, and computer-readable recording medium
JP3635270B2 (en) Ground deformation measurement system
JP5526541B2 (en) Debris flow risk judgment device, debris flow risk judgment method, and debris flow risk judgment program
EP2631724B1 (en) Method for measuring health index of plant in which state of lower component is reflected, and computer-readable storage medium in which program for performing the method is stored
JP6664776B1 (en) Abnormality determination method and abnormality determination system for structure
JPH11353564A (en) Difference type fire alarm system
EP4105856A1 (en) Method for evaluating remaining life of component, functional module and system
JP6742014B1 (en) Abnormality discrimination method for structure and abnormality discrimination system
JP2019002684A (en) Measurement system, measurement method and measurement apparatus of rainfall rate and the like
JP2016211877A (en) Flow-in amount of wastewater measuring device
JP4606207B2 (en) Damage evaluation data processing method and damage monitoring device for coated steel pipe
JPWO2019187106A1 (en) Moisture contamination detection device, moisture contamination detection program, moisture contamination detection method, and moisture contamination detection system
CN113418546B (en) Dust screen blocking detection device and method and electronic equipment

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090622

R151 Written notification of patent or utility model registration

Ref document number: 4337625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees