WO2017150188A1 - Transmission case - Google Patents

Transmission case Download PDF

Info

Publication number
WO2017150188A1
WO2017150188A1 PCT/JP2017/005473 JP2017005473W WO2017150188A1 WO 2017150188 A1 WO2017150188 A1 WO 2017150188A1 JP 2017005473 W JP2017005473 W JP 2017005473W WO 2017150188 A1 WO2017150188 A1 WO 2017150188A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
brake
shaft
oil
continuously variable
Prior art date
Application number
PCT/JP2017/005473
Other languages
French (fr)
Japanese (ja)
Inventor
光秀 大窪
祐史 山下
雅夫 嶋本
Original Assignee
ダイハツ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイハツ工業株式会社 filed Critical ダイハツ工業株式会社
Priority to MYPI2018702949A priority Critical patent/MY190041A/en
Publication of WO2017150188A1 publication Critical patent/WO2017150188A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating

Definitions

  • the present invention relates to a transmission case.
  • power from a drive source is input to an input shaft of a transmission, and power shifted by the transmission is transmitted from an output shaft to a drive wheel via a differential gear.
  • a continuously variable transmission mechanism that continuously changes engine power
  • a gear mechanism that transmits engine power without going through a continuously variable transmission mechanism
  • power from the continuously variable transmission mechanism And a planetary gear mechanism for synthesizing power from the gear mechanism
  • the power from the engine can be divided into a continuously variable transmission mechanism and a gear mechanism, and the divided powers can be combined by the planetary gear mechanism and transmitted to the wheels.
  • the applicant has also proposed a transmission capable of transmitting the power of the drive source by dividing it into two systems as a power split type continuously variable transmission.
  • the power split type continuously variable transmission includes a continuously variable transmission mechanism, a parallel shaft gear mechanism, and a planetary gear mechanism.
  • the continuously variable transmission mechanism has the same configuration as a known belt-type continuously variable transmission (CVT: Continuously Variable Transmission).
  • Engine power input to the input shaft is transmitted to the primary shaft of the continuously variable transmission mechanism.
  • the secondary shaft of the continuously variable transmission mechanism is connected to the sun gear of the planetary gear mechanism.
  • the parallel shaft gear mechanism includes a split drive gear that transmits / cuts off the power of the input shaft, and a split driven gear that forms a gear train with the split drive gear and rotates integrally with the carrier of the planetary gear mechanism.
  • An output shaft is connected to the ring gear of the planetary gear mechanism. The rotation of the output shaft is transmitted to the differential gear, and is transmitted from the differential gear to the left and right drive wheels.
  • a belt mode and a split mode are provided as power transmission modes during forward traveling.
  • the sun gear and ring gear of the planetary gear mechanism are directly connected by the engagement of the clutch. Further, the transmission of power from the input shaft to the split drive gear is interrupted, so that the split drive gear is in a free rotation state (free), and the carrier of the planetary gear mechanism is in a free rotation state. Therefore, the sun gear and the ring gear rotate integrally with the power output from the continuously variable transmission mechanism, and the output shaft rotates integrally with the ring gear. Therefore, in the belt mode, the gear ratio (unit gear ratio) of the power split continuously variable transmission matches the gear ratio (belt gear ratio) of the continuously variable transmission mechanism.
  • the split mode In the split mode, the direct connection between the sun gear and the ring gear of the planetary gear mechanism is released by releasing the clutch. Therefore, the sun gear is rotated by the power output from the continuously variable transmission mechanism. On the other hand, power is transmitted from the input shaft to the split drive gear, and the power is shifted from the split drive gear via the split driven gear at a constant split gear ratio and input to the carrier of the planetary gear mechanism. Therefore, in the split mode, the larger the belt speed ratio, the smaller the unit speed ratio, and a speed ratio that is less than or equal to the split speed ratio can be realized.
  • the brake engaged in reverse mode is released in split mode. Therefore, in the split mode, the differential rotation between the brake plate fixed to the case (transmission case) of the power split type continuously variable transmission and the brake disc provided on the carrier is large, and drag loss in the brake is reduced. large.
  • oil lubricating oil
  • the shear resistance that the brake disk receives from the oil increases, and drag loss further increases. The drag loss is a factor that deteriorates the running fuel consumption of the vehicle.
  • An object of the present invention is to provide a transmission case that can reduce drag loss in a brake.
  • a transmission case according to the present invention shifts power between an input shaft and an output shaft and is provided on the output shaft or the output shaft.
  • a transmission case used in a transmission having a brake for braking / permitting rotation of the motor and in this transmission case, a circumferential surface surrounding the periphery of the output shaft is formed, and the circumferential surface is included in the brake
  • a plurality of spline grooves are formed in the circumferential direction to fit the brake plate to be splined, and one of the spline grooves is located at a position facing the oil pan attached to the transmission case in the vertical direction from above.
  • a drain hole is formed to drain the oil toward the oil pan.
  • the transmission case is formed with a circumferential surface surrounding the periphery of the output shaft, and the spline for fitting the brake plate to the spline is formed on the circumferential surface where the brake is provided. Grooves are formed side by side in the circumferential direction. A drain hole is formed in one of the spline grooves, and oil (lubricating oil) supplied to the brake portion passes through the drain hole to an oil pan that is opposed to the drain hole in the vertical direction from below. It is discharged towards. Therefore, it is possible to suppress oil from being accumulated in the portion where the brake is provided. As a result, the shear resistance that the brake disc receives from the oil can be reduced, and drag loss in the brake can be reduced.
  • the drag loss in the brake can be reduced, so that the torque transmission efficiency of the transmission can be improved, and as a result, the fuel efficiency improvement effect of the vehicle on which the transmission is mounted can be exhibited.
  • FIG. 5 is a collinear diagram showing a relationship among rotation speeds (rotational speeds) of a sun gear, a carrier, and a ring gear of a planetary gear mechanism included in a power split continuously variable transmission.
  • It is a perspective view of the 2nd case of a transmission case. It is a side view of the 2nd case. It is a bottom view of the 2nd case.
  • FIG. 1 is a cross-sectional view showing a configuration of a vehicle drive system 1.
  • the hatching indicating the cross section is omitted.
  • the drive system 1 is mounted on a vehicle using an engine as a drive source, for example.
  • the engine output is input to a power split type continuously variable transmission (CVT) 4 via a torque converter 3.
  • CVT continuously variable transmission
  • the torque converter 3 includes a pump impeller 31, a turbine runner 32, and a lockup clutch 33.
  • An engine output shaft 21 is connected to the pump impeller 31, and the pump impeller 31 is provided so as to be integrally rotatable about the same rotation axis as the output shaft 21.
  • the turbine runner 32 is provided to be rotatable about the same rotation axis as the pump impeller 31.
  • the lockup clutch 33 is provided to directly connect / separate the pump impeller 31 and the turbine runner 32. When the lockup clutch 33 is engaged, the pump impeller 31 and the turbine runner 32 are directly connected, and when the lockup clutch 33 is released, the pump impeller 31 and the turbine runner 32 are separated.
  • the power split type continuously variable transmission 4 transmits the power input from the torque converter 3 to the differential gear 6.
  • the power split type continuously variable transmission 4 includes an input shaft 41, an output shaft 42, a continuously variable transmission mechanism 43, a reverse gear mechanism 44, a planetary gear mechanism 45, a split drive gear 46 and a split driven gear 47.
  • the input shaft 41 is connected to the turbine runner 32 of the torque converter 3 and is provided so as to be integrally rotatable about the same rotation axis as the turbine runner 32.
  • the output shaft 42 is provided in parallel with the input shaft 41.
  • An output gear 48 is formed integrally with the output shaft 42.
  • the output gear 48 meshes with the differential gear 6 (the input gear of the differential gear 6).
  • the continuously variable transmission mechanism 43 has the same configuration as a known belt-type continuously variable transmission (CVT: Continuously Variable Transmission). Specifically, the continuously variable transmission mechanism 43 includes a primary shaft 51, a secondary shaft 52 provided in parallel with the primary shaft 51, a primary pulley 53 supported by the primary shaft 51 so as not to be relatively rotatable, and a secondary shaft 52. And a secondary pulley 54 supported so as not to rotate relative thereto, and a primary pulley 53 and a belt 55 wound around the secondary pulley 54.
  • CVT Continuously Variable Transmission
  • the primary pulley 53 is disposed so as to face the fixed sheave 61 fixed to the primary shaft 51 with the belt 55 sandwiched between the fixed sheave 61 and is supported by the primary shaft 51 so as to be movable in the axial direction but not to be relatively rotatable.
  • (Primary sheave) 62 The primary pulley 53 is disposed so as to face the fixed sheave 61 fixed to the primary shaft 51 with the belt 55 sandwiched between the fixed sheave 61 and is supported by the primary shaft 51 so as to be movable in the axial direction but not to be relatively rotatable.
  • (Primary sheave) 62 A cylinder 63 fixed to the primary shaft 51 is provided on the opposite side of the movable sheave 62 from the fixed sheave 61, and a piston chamber (oil chamber) 64 is formed between the movable sheave 62 and the cylinder 63. Yes.
  • the secondary pulley 54 is arranged so as to be opposed to the fixed sheave 65 fixed to the secondary shaft 52 with the belt 55 sandwiched between the fixed sheave 65 and supported on the secondary shaft 52 so as to be movable in the axial direction but not to be relatively rotatable.
  • (Secondary sheave) 66 A cylinder 67 fixed to the secondary shaft 52 is provided on the opposite side of the movable sheave 66 from the fixed sheave 65, and a piston chamber (oil chamber) 68 is formed between the movable sheave 66 and the cylinder 67. Yes.
  • the hydraulic pressure supplied to the piston chambers 64 and 68 of the primary pulley 53 and the secondary pulley 54 is controlled, and the groove widths of the primary pulley 53 and the secondary pulley 54 are changed, so that the primary The pulley ratio between the pulley 53 and the secondary pulley 54 is continuously changed steplessly.
  • the thrust of the primary pulley 53 and the secondary pulley 54 needs to be large enough to prevent slippage between the primary pulley 53 and the secondary pulley 54 and the belt 55. Therefore, the hydraulic pressure supplied to the piston chamber 68 of the secondary pulley 54 is controlled so that a thrust according to the magnitude of the torque input to the input shaft 41 is obtained.
  • the reverse gear mechanism 44 is configured to transmit the power input to the input shaft 41 to the primary shaft 51 by reversely rotating and decelerating.
  • the reverse gear mechanism 44 includes an input shaft gear 71 formed integrally with the input shaft 41, a larger diameter and a larger number of teeth than the input shaft gear 71, and a rotation axis line by spline fitting to the primary shaft 51.
  • a primary shaft gear 72 that is supported so as to be movable in the direction and not to be relatively rotatable, and meshes with the input shaft gear 71.
  • the planetary gear mechanism 45 includes a sun gear 81, a carrier 82, and a ring gear 83.
  • the sun gear 81 is supported by the secondary shaft 52 so as to be movable in the rotational axis direction and not relatively rotatable by spline fitting.
  • the carrier 82 is fitted on the output shaft 42 so as to be relatively rotatable.
  • the carrier 82 rotatably supports a plurality of pinion gears 84.
  • the plurality of pinion gears 84 are arranged on the circumference and mesh with the sun gear 81.
  • the ring gear 83 has an annular shape that collectively surrounds the plurality of pinion gears 84, and meshes with the pinion gears 84 from the outside in the rotational radial direction of the secondary shaft 52.
  • the ring gear 83 is fixed to the output shaft 42, and the ring gear 83 is provided so as to be integrally rotatable about the same rotational axis as the output shaft 42.
  • the split drive gear 46 is fitted on the input shaft 41 so as to be relatively rotatable.
  • the split driven gear 47 is provided so as to be integrally rotatable about the same rotation axis as the carrier 82 of the planetary gear mechanism 45.
  • the split driven gear 47 is formed with a smaller diameter than the split drive gear 46 and has fewer teeth than the split drive gear 46.
  • the power split type continuously variable transmission 4 includes clutches C1 and C2 and a brake B1.
  • the clutch C1 is switched between an engaged state in which the input shaft 41 and the split drive gear 46 are directly coupled (coupled so as to be integrally rotatable) and a released state in which the direct coupling is released.
  • the clutch C2 is switched between an engagement state in which the sun gear 81 and the ring gear 83 of the planetary gear mechanism 45 are directly coupled (coupled so as to be integrally rotatable) and a released state in which the direct coupling is released.
  • the brake B1 is switched between an engaged state in which the carrier 82 of the planetary gear mechanism 45 is braked and a released state in which the carrier 82 is allowed to rotate.
  • FIG. 2 is a diagram illustrating states of the clutches C1 and C2 and the brake B1 when the vehicle is moving forward and backward.
  • “ ⁇ ” indicates that the clutches C1 and C2 and the brake B1 are engaged.
  • “X” indicates that the clutches C1 and C2 and the brake B1 are in the released state.
  • FIG. 3 is a collinear diagram showing the relationship between the rotational speeds (rotational speeds) of the sun gear 81, the carrier 82, and the ring gear 83 of the planetary gear mechanism 45.
  • the power split type continuously variable transmission 4 has a belt mode and a split mode as shift modes in the forward range.
  • the power input to the input shaft 41 is reversed and decelerated by the reverse gear mechanism 44 and transmitted to the primary shaft 51 of the continuously variable transmission mechanism 43 to rotate the primary shaft 51 and the primary pulley 53.
  • the rotation of the primary pulley 53 is transmitted to the secondary pulley 54 via the belt 55 to rotate the secondary pulley 54 and the secondary shaft 52. Since the sun gear 81 and the ring gear 83 of the planetary gear mechanism 45 are directly connected, the sun gear 81, the ring gear 83, and the output shaft 42 rotate together with the secondary shaft 52. Therefore, in the belt mode, as shown in FIG. 3, the gear ratio (unit gear ratio) of the power split type continuously variable transmission 4 matches the pulley ratio.
  • the power input to the input shaft 41 is reversed and decelerated by the reverse gear mechanism 44 and transmitted to the primary shaft 51 of the continuously variable transmission mechanism 43, and is transmitted from the primary shaft 51 via the primary pulley 53, the belt 55 and the secondary pulley 54. Is transmitted to the secondary shaft 52 and transmitted to the sun gear 81 of the planetary gear mechanism 45. On the other hand, the power input to the input shaft 41 is accelerated and transmitted from the split drive gear 46 to the carrier 82 of the planetary gear mechanism 45 through the split driven gear 47.
  • the reverse mode is set, and the clutches C1 and C2 are engaged and the brake B1 is released as shown in FIG.
  • the split drive gear 46 is disconnected from the input shaft 41, the sun gear 81 and the ring gear 83 of the planetary gear mechanism 45 are disconnected, and the carrier 82 of the planetary gear mechanism 45 is braked.
  • the power input to the input shaft 41 is reversed and decelerated by the reverse gear mechanism 44 and transmitted to the primary shaft 51 of the continuously variable transmission mechanism 43, and is transmitted from the primary shaft 51 via the primary pulley 53, the belt 55 and the secondary pulley 54.
  • the sun gear 81 of the planetary gear mechanism 45 is rotated integrally with the secondary shaft 52. Since the carrier 82 of the planetary gear mechanism 45 is braked, when the sun gear 81 rotates, the ring gear 83 of the planetary gear mechanism 45 rotates in the opposite direction to the sun gear 81.
  • the rotation direction of the ring gear 83 is opposite to the rotation direction of the ring gear 83 during forward movement (belt mode and split mode).
  • the output shaft 42 rotates integrally with the ring gear 83.
  • the rotation of the output shaft 42 is transmitted to the differential gear 6 via the output gear 48. Thereby, the drive shafts 7 and 8 of the vehicle rotate in the reverse direction.
  • Transmission case> The torque converter 3, the power split type continuously variable transmission 4, and the differential gear 6 are accommodated in a transmission case (transaxle case) 101 as shown in FIG.
  • the transmission case 101 is divided into a first case 102, a second case 103, and a third case 104.
  • the first case 102, the second case 103, and the third case 104 are arranged in this order from the engine side of the vehicle.
  • FIG. 4 is a perspective view of the second case 103.
  • FIG. 5 is a side view of the second case 103 (viewed from the engine side).
  • FIG. 6 is a bottom view of the second case 103.
  • the second case 103 has an outer wall portion 111 forming an outer shell, and a partition wall portion 112 formed so as to divide the space inside the outer wall portion 111 into two in the rotation axis direction.
  • the first arrangement portion 113 in which the split drive gear 46 and the clutch C ⁇ b> 1 are arranged, the output shaft 42, the planetary gear mechanism 45, and the split driven gear 47.
  • a second placement portion 114 where the clutch C2 and the brake B1 are placed and a third placement portion 115 where the differential gear 6 is placed are provided.
  • a continuously variable transmission mechanism 43 is disposed in a space surrounded by the outer wall 111 on the side opposite to the engine side with respect to the partition wall 112.
  • a first insertion hole 116 through which the input shaft 41 is inserted is formed at a position facing the first arrangement portion 113. Further, the partition wall portion 112 is formed with a second insertion hole 117 through which the secondary shaft 52 is inserted at a position facing the second arrangement portion 114. Further, the partition wall portion 112 is formed with a third insertion hole 118 through which the drive shaft 7 is inserted at a position facing the third arrangement portion 115.
  • the second case 103 has a circumferential surface 121 surrounding the output shaft 42 in the second arrangement portion 114.
  • a plurality of spline grooves 122 are formed in the circumferential surface 121 side by side in the circumferential direction.
  • the spline groove 122 is a groove for fitting the brake plate 123 (see FIG. 1) of the brake B1 with a spline.
  • the brake B1 has the same configuration as a known wet multi-plate clutch, and has a configuration in which a plurality of brake plates 123 and a plurality of brake disks 124 are alternately arranged in the rotation axis direction as shown in FIG. is doing.
  • one of the plurality of spline grooves 122 is located downstream of the lowermost spline groove 122 in the rotational direction of the brake disk 124 (counterclockwise in FIG. 5).
  • the adjacent spline groove 122A is formed longer in the circumferential direction than the other spline grooves 122.
  • An oil discharge hole 125 is formed on the bottom surface of the spline groove 122A.
  • the oil discharge hole 125 extends in the vertical direction, and is opened in the vertical direction as shown in FIG. As shown in FIG. 5, the lower end opening of the oil discharge hole 125 faces the oil pan 126 connected to the bottom surface of the transmission case 101 in the vertical direction from above.
  • the oil discharge hole 125 is below the center of the line segment connecting the rotation axis of the input shaft 41 and the rotation axis of the secondary shaft 52 in the side view shown in FIG. It is formed at a position facing the arrangement portion 113 in the rotation axis direction.
  • the transmission case 101 (second case 103) is formed with a circumferential surface 121 that surrounds the output shaft 42, and a portion of the circumferential surface 121 where the brake B1 is provided includes Spline grooves 122 for spline fitting the brake plate 123 are formed side by side in the circumferential direction.
  • An oil discharge hole 125 is formed in the spline groove 122A, which is one of the spline grooves 122, and oil (lubricating oil) supplied to the brake B1 portion passes through the oil discharge hole 125 and passes through the oil discharge hole 125. The oil is discharged from below toward the oil pan 126 facing in the vertical direction.
  • a portion 127 that is a mountain with respect to the spline groove 122A is formed on both sides of the spline groove 122A. Therefore, the oil flowing along with the rotation of the brake disk 124 is blocked by a crest portion 127 located on the downstream side in the rotation direction with respect to the oil discharge hole 125, and the spline groove 122A in which the oil discharge hole 125 is formed. You can collect the oil. Therefore, the effect which suppresses that oil accumulates in the part in which brake B1 is provided can be heightened.
  • the transmission to which the transmission case according to the present invention can be applied is not limited to the power split type continuously variable transmission 4, but a known continuously variable transmission.
  • CVT Continuously Variable Variable Transmission
  • AT Automatic Transmission

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Details Of Gearings (AREA)
  • Braking Arrangements (AREA)
  • Transmission Devices (AREA)

Abstract

Provided is a transmission case with which it is possible to reduce drag loss in a brake. A transmission case (101) (second case 103) has a circumferential surface (121) formed so as to surround an output shaft (42). On a portion of the circumferential surface (121) where a brake (B1) is to be provided, spline grooves (122) that allow a brake plate (123) to be spline-fitted thereto are formed side-by-side in the circumferential direction. An oil discharge hole (125) is formed in a spline groove (122A) that is one of the spline grooves (122), and oil (lubricant oil) supplied to the brake (B1) portion is discharged, through the oil discharge hole (125), toward an oil pan (126) that vertically opposes the oil discharge hole (125) from below.

Description

トランスミッションケースTransmission case
 本発明は、トランスミッションケースに関する。 The present invention relates to a transmission case.
 自動車などの車両では、駆動源からの動力が変速機(トランスミッション)のインプット軸に入力され、変速機で変速された動力がアウトプット軸からデファレンシャルギヤなどを介して駆動輪に伝達される。 In a vehicle such as an automobile, power from a drive source is input to an input shaft of a transmission, and power shifted by the transmission is transmitted from an output shaft to a drive wheel via a differential gear.
 車両に搭載される変速機として、エンジンの動力を無段階に変速する無段変速機構と、エンジンの動力を無段変速機構を経由せずに伝達する歯車機構と、無段変速機構からの動力と歯車機構からの動力とを合成するための遊星歯車機構とを備えたものが提案されている。この変速機では、エンジンからの動力を無段変速機構と歯車機構とに分割し、その分割された各動力を遊星歯車機構で合成して車輪に伝達することができる。 As a transmission mounted on a vehicle, a continuously variable transmission mechanism that continuously changes engine power, a gear mechanism that transmits engine power without going through a continuously variable transmission mechanism, and power from the continuously variable transmission mechanism And a planetary gear mechanism for synthesizing power from the gear mechanism have been proposed. In this transmission, the power from the engine can be divided into a continuously variable transmission mechanism and a gear mechanism, and the divided powers can be combined by the planetary gear mechanism and transmitted to the wheels.
特開2004-176890号公報JP 2004-176890 A
 駆動源の動力を2系統に分割して伝達可能な変速機は、動力分割式無段変速機として、出願人も提案している。 The applicant has also proposed a transmission capable of transmitting the power of the drive source by dividing it into two systems as a power split type continuously variable transmission.
 その提案に係る動力分割式無段変速機には、無段変速機構、平行軸式歯車機構および遊星歯車機構が含まれる。無段変速機構は、公知のベルト式の無段変速機(CVT:Continuously Variable Transmission)と同様の構成を有している。無段変速機構のプライマリ軸には、インプット軸に入力されるエンジンの動力が伝達される。無段変速機構のセカンダリ軸は、遊星歯車機構のサンギヤに接続されている。平行軸式歯車機構は、インプット軸の動力が伝達/遮断されるスプリットドライブギヤと、スプリットドライブギヤとギヤ列を構成し、遊星歯車機構のキャリアと一体回転するスプリットドリブンギヤとを備えている。遊星歯車機構のリングギヤには、アウトプット軸が接続されている。アウトプット軸の回転は、デファレンシャルギヤに伝達され、デファレンシャルギヤから左右の駆動輪に伝達される。 The power split type continuously variable transmission according to the proposal includes a continuously variable transmission mechanism, a parallel shaft gear mechanism, and a planetary gear mechanism. The continuously variable transmission mechanism has the same configuration as a known belt-type continuously variable transmission (CVT: Continuously Variable Transmission). Engine power input to the input shaft is transmitted to the primary shaft of the continuously variable transmission mechanism. The secondary shaft of the continuously variable transmission mechanism is connected to the sun gear of the planetary gear mechanism. The parallel shaft gear mechanism includes a split drive gear that transmits / cuts off the power of the input shaft, and a split driven gear that forms a gear train with the split drive gear and rotates integrally with the carrier of the planetary gear mechanism. An output shaft is connected to the ring gear of the planetary gear mechanism. The rotation of the output shaft is transmitted to the differential gear, and is transmitted from the differential gear to the left and right drive wheels.
 この動力分割式無段変速機では、前進走行時における動力伝達モードとして、ベルトモードおよびスプリットモードが設けられている。 In this power split type continuously variable transmission, a belt mode and a split mode are provided as power transmission modes during forward traveling.
 ベルトモードでは、クラッチの係合により、遊星歯車機構のサンギヤとリングギヤとが直結される。また、インプット軸からスプリットドライブギヤへの動力の伝達が遮断されることにより、スプリットドライブギヤが自由回転状態(フリー)にされ、遊星歯車機構のキャリアが自由回転状態にされる。そのため、無段変速機構から出力される動力により、サンギヤおよびリングギヤが一体的に回転し、アウトプット軸がリングギヤと一体的に回転する。したがって、ベルトモードでは、動力分割式無段変速機の変速比(ユニット変速比)が無段変速機構の変速比(ベルト変速比)と一致する。 In belt mode, the sun gear and ring gear of the planetary gear mechanism are directly connected by the engagement of the clutch. Further, the transmission of power from the input shaft to the split drive gear is interrupted, so that the split drive gear is in a free rotation state (free), and the carrier of the planetary gear mechanism is in a free rotation state. Therefore, the sun gear and the ring gear rotate integrally with the power output from the continuously variable transmission mechanism, and the output shaft rotates integrally with the ring gear. Therefore, in the belt mode, the gear ratio (unit gear ratio) of the power split continuously variable transmission matches the gear ratio (belt gear ratio) of the continuously variable transmission mechanism.
 スプリットモードでは、クラッチの解放により、遊星歯車機構のサンギヤとリングギヤとの直結が解除される。そのため、無段変速機構から出力される動力により、サンギヤが回転する。一方、インプット軸からスプリットドライブギヤに動力が伝達され、その動力がスプリットドライブギヤからスプリットドリブンギヤを介することにより一定のスプリット変速比で変速されて、遊星歯車機構のキャリアに入力される。そのため、スプリットモードでは、ベルト変速比が大きいほどユニット変速比が小さくなり、スプリット変速比以下の変速比を実現することができる。 In the split mode, the direct connection between the sun gear and the ring gear of the planetary gear mechanism is released by releasing the clutch. Therefore, the sun gear is rotated by the power output from the continuously variable transmission mechanism. On the other hand, power is transmitted from the input shaft to the split drive gear, and the power is shifted from the split drive gear via the split driven gear at a constant split gear ratio and input to the carrier of the planetary gear mechanism. Therefore, in the split mode, the larger the belt speed ratio, the smaller the unit speed ratio, and a speed ratio that is less than or equal to the split speed ratio can be realized.
 また、後進走行時のリバースモードでは、遊星歯車機構のサンギヤとリングギヤとの直結が解除された状態で、ブレーキの係合により、遊星歯車機構のキャリアが制動される。これにより、無段変速機構から出力される動力により、サンギヤが回転すると、リングギヤがサンギヤと逆方向に回転し、アウトプット軸がリングギヤと一体的に前進走行時とは逆方向に回転する。 In reverse mode during reverse travel, the carrier of the planetary gear mechanism is braked by the engagement of the brake while the direct connection between the sun gear and the ring gear of the planetary gear mechanism is released. As a result, when the sun gear is rotated by the power output from the continuously variable transmission mechanism, the ring gear rotates in the opposite direction to the sun gear, and the output shaft rotates in the opposite direction integrally with the ring gear during forward travel.
 リバースモードで係合されるブレーキは、スプリットモードで解放されている。そのため、スプリットモードでは、動力分割式無段変速機のケース(トランスミッションケース)に固定されているブレーキプレートとキャリアに設けられているブレーキディスクとの間での差回転が大きく、ブレーキにおける引き摺り損失が大きい。そのうえ、ブレーキ部分にオイル(潤滑油)が溜まると、ブレーキディスクがオイルから受けるせん断抵抗が大きくなるので、引き摺り損失がさらに大きくなる。引き摺り損失は、車両の走行燃費の悪化の要因である。 The brake engaged in reverse mode is released in split mode. Therefore, in the split mode, the differential rotation between the brake plate fixed to the case (transmission case) of the power split type continuously variable transmission and the brake disc provided on the carrier is large, and drag loss in the brake is reduced. large. In addition, when oil (lubricating oil) accumulates in the brake portion, the shear resistance that the brake disk receives from the oil increases, and drag loss further increases. The drag loss is a factor that deteriorates the running fuel consumption of the vehicle.
 本発明の目的は、ブレーキにおける引き摺り損失を低減することができる、トランスミッションケースを提供することである。 An object of the present invention is to provide a transmission case that can reduce drag loss in a brake.
 前記の目的を達成するため、本発明(の一の局面)に係るトランスミッションケースは、インプット軸とアウトプット軸との間で動力を変速し、アウトプット軸またはアウトプット軸上に設けられる回転体の回転を制動/許容するためのブレーキを備えるトランスミッションに用いられるトランスミッションケースであって、このトランスミッションケースでは、アウトプット軸の周囲を取り囲む円周面が形成され、円周面には、ブレーキに含まれるブレーキプレートをスプライン嵌合させるための複数のスプライン溝が周方向に並んで形成され、スプライン溝の1つには、トランスミッションケースに取り付けられるオイルパンに対して上方から上下方向に対向する位置に、オイルをオイルパンに向けて排出する排出穴が形成されている。 In order to achieve the above object, a transmission case according to the present invention (one aspect) shifts power between an input shaft and an output shaft and is provided on the output shaft or the output shaft. A transmission case used in a transmission having a brake for braking / permitting rotation of the motor, and in this transmission case, a circumferential surface surrounding the periphery of the output shaft is formed, and the circumferential surface is included in the brake A plurality of spline grooves are formed in the circumferential direction to fit the brake plate to be splined, and one of the spline grooves is located at a position facing the oil pan attached to the transmission case in the vertical direction from above. A drain hole is formed to drain the oil toward the oil pan.
 この構成によれば、トランスミッションケースには、アウトプット軸の周囲を取り囲む円周面が形成されており、その円周面におけるブレーキが設けられる部分には、ブレーキプレートをスプライン嵌合させるためのスプライン溝が周方向に並んで形成されている。そして、スプライン溝の1つには、排出穴が形成されており、ブレーキ部分に供給されるオイル(潤滑油)は、排出穴を通して、排出穴に対して下方から上下方向に対向するオイルパンに向けて排出される。そのため、ブレーキが設けられている部分にオイルが溜まることを抑制できる。その結果、ブレーキディスクがオイルから受けるせん断抵抗を低減することができ、ブレーキにおける引き摺り損失を低減することができる。 According to this configuration, the transmission case is formed with a circumferential surface surrounding the periphery of the output shaft, and the spline for fitting the brake plate to the spline is formed on the circumferential surface where the brake is provided. Grooves are formed side by side in the circumferential direction. A drain hole is formed in one of the spline grooves, and oil (lubricating oil) supplied to the brake portion passes through the drain hole to an oil pan that is opposed to the drain hole in the vertical direction from below. It is discharged towards. Therefore, it is possible to suppress oil from being accumulated in the portion where the brake is provided. As a result, the shear resistance that the brake disc receives from the oil can be reduced, and drag loss in the brake can be reduced.
 また、スプライン溝の両側には、スプライン溝に対して山となる部分が形成されている。そのため、ブレーキディスクの回転につられて流動するオイルを排出穴に対して回転方向下流側に位置する山となる部分で堰き止めて、排出穴が形成されているスプライン溝にオイルを集めることができる。よって、ブレーキが設けられている部分にオイルが溜まることを抑制する効果を高めることができる。 Also, on both sides of the spline groove, a portion that is a mountain with respect to the spline groove is formed. Therefore, the oil flowing along with the rotation of the brake disk can be dammed up at the crest portion located downstream in the rotation direction with respect to the discharge hole, and the oil can be collected in the spline groove in which the discharge hole is formed. . Therefore, the effect which suppresses that oil accumulates in the part in which the brake is provided can be heightened.
 本発明によれば、ブレーキにおける引き摺り損失を低減することができるので、トランスミッションのトルク伝達効率を向上させることができ、ひいては、トランスミッションが搭載される車両の燃費改善効果を発揮することができる。 According to the present invention, the drag loss in the brake can be reduced, so that the torque transmission efficiency of the transmission can be improved, and as a result, the fuel efficiency improvement effect of the vehicle on which the transmission is mounted can be exhibited.
車両の駆動系統の構成を示す断面図である。It is sectional drawing which shows the structure of the drive system of a vehicle. 動力分割式無段変速機に含まれる係合要素の状態を示す図である。It is a figure which shows the state of the engagement element contained in a power division type continuously variable transmission. 動力分割式無段変速機に含まれる遊星歯車機構のサンギヤ、キャリアおよびリングギヤの回転数(回転速度)の関係を示す共線図である。FIG. 5 is a collinear diagram showing a relationship among rotation speeds (rotational speeds) of a sun gear, a carrier, and a ring gear of a planetary gear mechanism included in a power split continuously variable transmission. トランスミッションケースの第2ケースの斜視図である。It is a perspective view of the 2nd case of a transmission case. 第2ケースの側面図である。It is a side view of the 2nd case. 第2ケースの底面図である。It is a bottom view of the 2nd case.
 以下では、本発明の実施の形態について、添付図面を参照しつつ詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
<車両の駆動系統>
 図1は、車両の駆動系統1の構成を示す断面図である。なお、図1では、断面を示すハッチングの付与が省略されている。
<Vehicle drive system>
FIG. 1 is a cross-sectional view showing a configuration of a vehicle drive system 1. In FIG. 1, the hatching indicating the cross section is omitted.
 駆動系統1は、たとえば、エンジンを駆動源とする車両に搭載される。エンジンの出力は、トルクコンバータ3を介して、動力分割式無段変速機(CVT:Continuously Variable Transmission)4に入力される。 The drive system 1 is mounted on a vehicle using an engine as a drive source, for example. The engine output is input to a power split type continuously variable transmission (CVT) 4 via a torque converter 3.
 トルクコンバータ3は、ポンプインペラ31、タービンランナ32およびロックアップクラッチ33を備えている。ポンプインペラ31には、エンジンの出力軸21が連結されており、ポンプインペラ31は、出力軸21と同一の回転軸線を中心に一体的に回転可能に設けられている。タービンランナ32は、ポンプインペラ31と同一の回転軸線を中心に回転可能に設けられている。ロックアップクラッチ33は、ポンプインペラ31とタービンランナ32とを直結/分離するために設けられている。ロックアップクラッチ33が係合されると、ポンプインペラ31とタービンランナ32とが直結され、ロックアップクラッチ33が解放されると、ポンプインペラ31とタービンランナ32とが分離される。 The torque converter 3 includes a pump impeller 31, a turbine runner 32, and a lockup clutch 33. An engine output shaft 21 is connected to the pump impeller 31, and the pump impeller 31 is provided so as to be integrally rotatable about the same rotation axis as the output shaft 21. The turbine runner 32 is provided to be rotatable about the same rotation axis as the pump impeller 31. The lockup clutch 33 is provided to directly connect / separate the pump impeller 31 and the turbine runner 32. When the lockup clutch 33 is engaged, the pump impeller 31 and the turbine runner 32 are directly connected, and when the lockup clutch 33 is released, the pump impeller 31 and the turbine runner 32 are separated.
 ロックアップクラッチ33が解放された状態において、エンジンの出力軸21が回転すると、ポンプインペラ31が回転する。ポンプインペラ31が回転すると、ポンプインペラ31からタービンランナ32に向かうオイルの流れが生じる。このオイルの流れがタービンランナ32で受けられて、タービンランナ32が回転する。このとき、トルクコンバータ3の増幅作用が生じ、タービンランナ32には、エンジンの出力軸21の動力(トルク)よりも大きな動力が発生する。 When the output shaft 21 of the engine rotates with the lockup clutch 33 released, the pump impeller 31 rotates. When the pump impeller 31 rotates, an oil flow from the pump impeller 31 toward the turbine runner 32 is generated. This oil flow is received by the turbine runner 32 and the turbine runner 32 rotates. At this time, the amplifying action of the torque converter 3 occurs, and the turbine runner 32 generates a power larger than the power (torque) of the output shaft 21 of the engine.
 ロックアップクラッチ33が係合された状態では、エンジンの出力軸21が回転すると、ポンプインペラ31およびタービンランナ32が一体となって回転する。 When the lockup clutch 33 is engaged, when the engine output shaft 21 rotates, the pump impeller 31 and the turbine runner 32 rotate together.
 動力分割式無段変速機4は、トルクコンバータ3から入力される動力をデファレンシャルギヤ6に伝達する。動力分割式無段変速機4は、インプット軸41、アウトプット軸42、無段変速機構43、逆転ギヤ機構44、遊星歯車機構45、スプリットドライブギヤ46およびスプリットドリブンギヤ47を備えている。 The power split type continuously variable transmission 4 transmits the power input from the torque converter 3 to the differential gear 6. The power split type continuously variable transmission 4 includes an input shaft 41, an output shaft 42, a continuously variable transmission mechanism 43, a reverse gear mechanism 44, a planetary gear mechanism 45, a split drive gear 46 and a split driven gear 47.
 インプット軸41は、トルクコンバータ3のタービンランナ32に連結され、タービンランナ32と同一の回転軸線を中心に一体的に回転可能に設けられている。 The input shaft 41 is connected to the turbine runner 32 of the torque converter 3 and is provided so as to be integrally rotatable about the same rotation axis as the turbine runner 32.
 アウトプット軸42は、インプット軸41と平行に設けられている。アウトプット軸42には、出力ギヤ48が一体に形成されている。出力ギヤ48は、デファレンシャルギヤ6(デファレンシャルギヤ6の入力ギヤ)と噛合している。 The output shaft 42 is provided in parallel with the input shaft 41. An output gear 48 is formed integrally with the output shaft 42. The output gear 48 meshes with the differential gear 6 (the input gear of the differential gear 6).
 無段変速機構43は、公知のベルト式の無段変速機(CVT:Continuously Variable Transmission)と同様の構成を有している。具体的には、無段変速機構43は、プライマリ軸51と、プライマリ軸51と平行に設けられたセカンダリ軸52と、プライマリ軸51に相対回転不能に支持されたプライマリプーリ53と、セカンダリ軸52に相対回転不能に支持されたセカンダリプーリ54と、プライマリプーリ53とセカンダリプーリ54とに巻き掛けられたベルト55とを備えている。 The continuously variable transmission mechanism 43 has the same configuration as a known belt-type continuously variable transmission (CVT: Continuously Variable Transmission). Specifically, the continuously variable transmission mechanism 43 includes a primary shaft 51, a secondary shaft 52 provided in parallel with the primary shaft 51, a primary pulley 53 supported by the primary shaft 51 so as not to be relatively rotatable, and a secondary shaft 52. And a secondary pulley 54 supported so as not to rotate relative thereto, and a primary pulley 53 and a belt 55 wound around the secondary pulley 54.
 プライマリプーリ53は、プライマリ軸51に固定された固定シーブ61と、固定シーブ61にベルト55を挟んで対向配置され、プライマリ軸51にその軸線方向に移動可能かつ相対回転不能に支持された可動シーブ(プライマリシーブ)62とを備えている。可動シーブ62に対して固定シーブ61と反対側には、プライマリ軸51に固定されたシリンダ63が設けられ、可動シーブ62とシリンダ63との間に、ピストン室(油室)64が形成されている。 The primary pulley 53 is disposed so as to face the fixed sheave 61 fixed to the primary shaft 51 with the belt 55 sandwiched between the fixed sheave 61 and is supported by the primary shaft 51 so as to be movable in the axial direction but not to be relatively rotatable. (Primary sheave) 62. A cylinder 63 fixed to the primary shaft 51 is provided on the opposite side of the movable sheave 62 from the fixed sheave 61, and a piston chamber (oil chamber) 64 is formed between the movable sheave 62 and the cylinder 63. Yes.
 セカンダリプーリ54は、セカンダリ軸52に固定された固定シーブ65と、固定シーブ65にベルト55を挟んで対向配置され、セカンダリ軸52にその軸線方向に移動可能かつ相対回転不能に支持された可動シーブ(セカンダリシーブ)66とを備えている。可動シーブ66に対して固定シーブ65と反対側には、セカンダリ軸52に固定されたシリンダ67が設けられ、可動シーブ66とシリンダ67との間に、ピストン室(油室)68が形成されている。回転軸線方向において、固定シーブ65と可動シーブ66との位置関係は、プライマリプーリ53の固定シーブ61と可動シーブ62との位置関係と逆転している。 The secondary pulley 54 is arranged so as to be opposed to the fixed sheave 65 fixed to the secondary shaft 52 with the belt 55 sandwiched between the fixed sheave 65 and supported on the secondary shaft 52 so as to be movable in the axial direction but not to be relatively rotatable. (Secondary sheave) 66. A cylinder 67 fixed to the secondary shaft 52 is provided on the opposite side of the movable sheave 66 from the fixed sheave 65, and a piston chamber (oil chamber) 68 is formed between the movable sheave 66 and the cylinder 67. Yes. In the rotational axis direction, the positional relationship between the fixed sheave 65 and the movable sheave 66 is reversed from the positional relationship between the fixed sheave 61 and the movable sheave 62 of the primary pulley 53.
 無段変速機構43では、プライマリプーリ53およびセカンダリプーリ54の各ピストン室64,68に供給される油圧が制御されて、プライマリプーリ53およびセカンダリプーリ54の各溝幅が変更されることにより、プライマリプーリ53とセカンダリプーリ54とのプーリ比が連続的に無段階で変更される。 In the continuously variable transmission mechanism 43, the hydraulic pressure supplied to the piston chambers 64 and 68 of the primary pulley 53 and the secondary pulley 54 is controlled, and the groove widths of the primary pulley 53 and the secondary pulley 54 are changed, so that the primary The pulley ratio between the pulley 53 and the secondary pulley 54 is continuously changed steplessly.
 具体的には、プーリ比が小さくされるときには、プライマリプーリ53のピストン室64に供給される油圧が上げられる。これにより、プライマリプーリ53の可動シーブ62が固定シーブ61側に移動し、固定シーブ61と可動シーブ62との間隔(溝幅)が小さくなる。これに伴い、プライマリプーリ53に対するベルト55の巻きかけ径が大きくなり、セカンダリプーリ54の固定シーブ65と可動シーブ66との間隔(溝幅)が大きくなる。その結果、プライマリプーリ53とセカンダリプーリ54とのプーリ比が小さくなる。 Specifically, when the pulley ratio is reduced, the hydraulic pressure supplied to the piston chamber 64 of the primary pulley 53 is increased. As a result, the movable sheave 62 of the primary pulley 53 moves to the fixed sheave 61 side, and the interval (groove width) between the fixed sheave 61 and the movable sheave 62 is reduced. Accordingly, the winding diameter of the belt 55 around the primary pulley 53 is increased, and the interval (groove width) between the fixed sheave 65 and the movable sheave 66 of the secondary pulley 54 is increased. As a result, the pulley ratio between the primary pulley 53 and the secondary pulley 54 is reduced.
 プーリ比が大きくされるときには、プライマリプーリ53のピストン室64に供給される油圧が下げられる。これにより、ベルト55に対するセカンダリプーリ54の推力がベルト55に対するプライマリプーリ53の推力よりも大きくなり、セカンダリプーリ54の固定シーブ65と可動シーブ66との間隔が小さくなるとともに、固定シーブ61と可動シーブ62との間隔が大きくなる。その結果、プライマリプーリ53とセカンダリプーリ54とのプーリ比が大きくなる。 When the pulley ratio is increased, the hydraulic pressure supplied to the piston chamber 64 of the primary pulley 53 is lowered. Thereby, the thrust of the secondary pulley 54 with respect to the belt 55 becomes larger than the thrust of the primary pulley 53 with respect to the belt 55, the interval between the fixed sheave 65 and the movable sheave 66 of the secondary pulley 54 is reduced, and the fixed sheave 61 and the movable sheave The distance from 62 increases. As a result, the pulley ratio between the primary pulley 53 and the secondary pulley 54 is increased.
 一方、プライマリプーリ53およびセカンダリプーリ54の推力は、プライマリプーリ53およびセカンダリプーリ54とベルト55との間で滑りが生じない大きさを必要とする。そのため、インプット軸41に入力されるトルクの大きさに応じた推力が得られるよう、セカンダリプーリ54のピストン室68に供給される油圧が制御される。 On the other hand, the thrust of the primary pulley 53 and the secondary pulley 54 needs to be large enough to prevent slippage between the primary pulley 53 and the secondary pulley 54 and the belt 55. Therefore, the hydraulic pressure supplied to the piston chamber 68 of the secondary pulley 54 is controlled so that a thrust according to the magnitude of the torque input to the input shaft 41 is obtained.
 逆転ギヤ機構44は、インプット軸41に入力される動力を逆転かつ減速させてプライマリ軸51に伝達する構成である。具体的には、逆転ギヤ機構44は、インプット軸41と一体に形成されたインプット軸ギヤ71と、インプット軸ギヤ71よりも大径で歯数が多く、プライマリ軸51にスプライン嵌合により回転軸線方向に移動可能かつ相対回転不能に支持されて、インプット軸ギヤ71と噛合するプライマリ軸ギヤ72とを含む。 The reverse gear mechanism 44 is configured to transmit the power input to the input shaft 41 to the primary shaft 51 by reversely rotating and decelerating. Specifically, the reverse gear mechanism 44 includes an input shaft gear 71 formed integrally with the input shaft 41, a larger diameter and a larger number of teeth than the input shaft gear 71, and a rotation axis line by spline fitting to the primary shaft 51. And a primary shaft gear 72 that is supported so as to be movable in the direction and not to be relatively rotatable, and meshes with the input shaft gear 71.
 遊星歯車機構45は、サンギヤ81、キャリア82およびリングギヤ83を備えている。サンギヤ81は、セカンダリ軸52にスプライン嵌合により回転軸線方向に移動可能かつ相対回転不能に支持されている。キャリア82は、アウトプット軸42に相対回転可能に外嵌されている。キャリア82は、複数個のピニオンギヤ84を回転可能に支持している。複数個のピニオンギヤ84は、円周上に配置され、サンギヤ81と噛合している。リングギヤ83は、複数個のピニオンギヤ84を一括して取り囲む円環状を有し、各ピニオンギヤ84にセカンダリ軸52の回転径方向の外側から噛合している。また、リングギヤ83は、アウトプット軸42に固定され、リングギヤ83は、アウトプット軸42と同一の回転軸線を中心に一体的に回転可能に設けられている。 The planetary gear mechanism 45 includes a sun gear 81, a carrier 82, and a ring gear 83. The sun gear 81 is supported by the secondary shaft 52 so as to be movable in the rotational axis direction and not relatively rotatable by spline fitting. The carrier 82 is fitted on the output shaft 42 so as to be relatively rotatable. The carrier 82 rotatably supports a plurality of pinion gears 84. The plurality of pinion gears 84 are arranged on the circumference and mesh with the sun gear 81. The ring gear 83 has an annular shape that collectively surrounds the plurality of pinion gears 84, and meshes with the pinion gears 84 from the outside in the rotational radial direction of the secondary shaft 52. The ring gear 83 is fixed to the output shaft 42, and the ring gear 83 is provided so as to be integrally rotatable about the same rotational axis as the output shaft 42.
 スプリットドライブギヤ46は、インプット軸41に相対回転可能に外嵌されている。 The split drive gear 46 is fitted on the input shaft 41 so as to be relatively rotatable.
 スプリットドリブンギヤ47は、遊星歯車機構45のキャリア82と同一の回転軸線を中心に一体的に回転可能に設けられている。スプリットドリブンギヤ47は、スプリットドライブギヤ46よりも小径に形成され、スプリットドライブギヤ46よりも少ない歯数を有している。 The split driven gear 47 is provided so as to be integrally rotatable about the same rotation axis as the carrier 82 of the planetary gear mechanism 45. The split driven gear 47 is formed with a smaller diameter than the split drive gear 46 and has fewer teeth than the split drive gear 46.
 また、動力分割式無段変速機4は、クラッチC1,C2およびブレーキB1を備えている。 The power split type continuously variable transmission 4 includes clutches C1 and C2 and a brake B1.
 クラッチC1は、インプット軸41とスプリットドライブギヤ46とを直結(一体回転可能に結合)する係合状態と、その直結を解除する解放状態とに切り替えられる。 The clutch C1 is switched between an engaged state in which the input shaft 41 and the split drive gear 46 are directly coupled (coupled so as to be integrally rotatable) and a released state in which the direct coupling is released.
 クラッチC2は、遊星歯車機構45のサンギヤ81とリングギヤ83とを直結(一体回転可能に結合)する係合状態と、その直結を解除する解放状態とに切り替えられる。 The clutch C2 is switched between an engagement state in which the sun gear 81 and the ring gear 83 of the planetary gear mechanism 45 are directly coupled (coupled so as to be integrally rotatable) and a released state in which the direct coupling is released.
 ブレーキB1は、遊星歯車機構45のキャリア82を制動する係合状態と、キャリア82の回転を許容する解放状態とに切り替えられる。 The brake B1 is switched between an engaged state in which the carrier 82 of the planetary gear mechanism 45 is braked and a released state in which the carrier 82 is allowed to rotate.
<変速モード>
 図2は、車両の前進時および後進時におけるクラッチC1,C2およびブレーキB1の状態を示す図である。図2において、「○」は、クラッチC1,C2およびブレーキB1が係合状態であることを示している。「×」は、クラッチC1,C2およびブレーキB1が解放状態であることを示している。図3は、遊星歯車機構45のサンギヤ81、キャリア82およびリングギヤ83の回転数(回転速度)の関係を示す共線図である。
<Transmission mode>
FIG. 2 is a diagram illustrating states of the clutches C1 and C2 and the brake B1 when the vehicle is moving forward and backward. In FIG. 2, “◯” indicates that the clutches C1 and C2 and the brake B1 are engaged. “X” indicates that the clutches C1 and C2 and the brake B1 are in the released state. FIG. 3 is a collinear diagram showing the relationship between the rotational speeds (rotational speeds) of the sun gear 81, the carrier 82, and the ring gear 83 of the planetary gear mechanism 45.
 動力分割式無段変速機4は、前進レンジにおける変速モードとして、ベルトモードおよびスプリットモードを有している。 The power split type continuously variable transmission 4 has a belt mode and a split mode as shift modes in the forward range.
 ベルトモードでは、図2に示されるように、クラッチC1およびブレーキB1が解放され、クラッチC2が係合される。これにより、スプリットドライブギヤ46がインプット軸41から切り離され、遊星歯車機構45のキャリア82がフリー(自由回転状態)になり、遊星歯車機構45のサンギヤ81とリングギヤ83とが直結される。 In the belt mode, as shown in FIG. 2, the clutch C1 and the brake B1 are released, and the clutch C2 is engaged. As a result, the split drive gear 46 is disconnected from the input shaft 41, the carrier 82 of the planetary gear mechanism 45 becomes free (free rotation state), and the sun gear 81 and the ring gear 83 of the planetary gear mechanism 45 are directly connected.
 インプット軸41に入力される動力は、逆転ギヤ機構44により逆転かつ減速されて、無段変速機構43のプライマリ軸51に伝達され、プライマリ軸51およびプライマリプーリ53を回転させる。プライマリプーリ53の回転は、ベルト55を介して、セカンダリプーリ54に伝達され、セカンダリプーリ54およびセカンダリ軸52を回転させる。遊星歯車機構45のサンギヤ81とリングギヤ83とが直結されているので、セカンダリ軸52と一体となって、サンギヤ81、リングギヤ83およびアウトプット軸42が回転する。したがって、ベルトモードでは、図3に示されるように、動力分割式無段変速機4の変速比(ユニット変速比)がプーリ比と一致する。 The power input to the input shaft 41 is reversed and decelerated by the reverse gear mechanism 44 and transmitted to the primary shaft 51 of the continuously variable transmission mechanism 43 to rotate the primary shaft 51 and the primary pulley 53. The rotation of the primary pulley 53 is transmitted to the secondary pulley 54 via the belt 55 to rotate the secondary pulley 54 and the secondary shaft 52. Since the sun gear 81 and the ring gear 83 of the planetary gear mechanism 45 are directly connected, the sun gear 81, the ring gear 83, and the output shaft 42 rotate together with the secondary shaft 52. Therefore, in the belt mode, as shown in FIG. 3, the gear ratio (unit gear ratio) of the power split type continuously variable transmission 4 matches the pulley ratio.
 スプリットモードでは、図2に示されるように、クラッチC1が係合され、クラッチC2およびブレーキB1が解放される。これにより、インプット軸41とスプリットドライブギヤ46とが直結され、遊星歯車機構45のキャリア82がフリーになり、遊星歯車機構45のサンギヤ81とリングギヤ83とが切り離される。 In the split mode, as shown in FIG. 2, the clutch C1 is engaged, and the clutch C2 and the brake B1 are released. Thereby, the input shaft 41 and the split drive gear 46 are directly connected, the carrier 82 of the planetary gear mechanism 45 becomes free, and the sun gear 81 and the ring gear 83 of the planetary gear mechanism 45 are disconnected.
 インプット軸41に入力される動力は、逆転ギヤ機構44により逆転かつ減速されて、無段変速機構43のプライマリ軸51に伝達され、プライマリ軸51からプライマリプーリ53、ベルト55およびセカンダリプーリ54を介してセカンダリ軸52に伝達され、遊星歯車機構45のサンギヤ81に伝達される。一方、インプット軸41に入力される動力は、スプリットドライブギヤ46からスプリットドリブンギヤ47を介して遊星歯車機構45のキャリア82に増速されて伝達される。 The power input to the input shaft 41 is reversed and decelerated by the reverse gear mechanism 44 and transmitted to the primary shaft 51 of the continuously variable transmission mechanism 43, and is transmitted from the primary shaft 51 via the primary pulley 53, the belt 55 and the secondary pulley 54. Is transmitted to the secondary shaft 52 and transmitted to the sun gear 81 of the planetary gear mechanism 45. On the other hand, the power input to the input shaft 41 is accelerated and transmitted from the split drive gear 46 to the carrier 82 of the planetary gear mechanism 45 through the split driven gear 47.
 スプリットドライブギヤ46とスプリットドリブンギヤ47とのギヤ比は一定で不変(固定)であるので、スプリットモードでは、インプット軸41に入力される動力が一定であれば、遊星歯車機構45のキャリア82の回転が一定速度に保持される。そのため、プーリ比が上げられると、遊星歯車機構45のサンギヤ81の回転数が下がるので、図3に破線で示されるように、遊星歯車機構45のリングギヤ83(アウトプット軸42)の回転数が上がる。その結果、スプリットモードでは、プーリ比が大きいほど、無段変速機構43の変速比が小さくなる。 Since the gear ratio between the split drive gear 46 and the split driven gear 47 is constant and unchanged (fixed), in the split mode, if the power input to the input shaft 41 is constant, the carrier 82 of the planetary gear mechanism 45 rotates. Is maintained at a constant speed. For this reason, when the pulley ratio is increased, the rotational speed of the sun gear 81 of the planetary gear mechanism 45 decreases, so that the rotational speed of the ring gear 83 (output shaft 42) of the planetary gear mechanism 45 is reduced as shown by a broken line in FIG. Go up. As a result, in the split mode, the gear ratio of the continuously variable transmission mechanism 43 decreases as the pulley ratio increases.
 ベルトモードおよびスプリットモードにおけるアウトプット軸42の回転は、出力ギヤ48を介して、デファレンシャルギヤ6に伝達される。これにより、車両のドライブシャフト7,8が前進方向に回転する。 The rotation of the output shaft 42 in the belt mode and the split mode is transmitted to the differential gear 6 via the output gear 48. As a result, the drive shafts 7 and 8 of the vehicle rotate in the forward direction.
 後進レンジでは、リバースモードとなり、図2に示されるように、クラッチC1,C2が係合され、ブレーキB1が解放される。これにより、スプリットドライブギヤ46がインプット軸41から切り離され、遊星歯車機構45のサンギヤ81とリングギヤ83とが切り離され、遊星歯車機構45のキャリア82が制動される。 In the reverse range, the reverse mode is set, and the clutches C1 and C2 are engaged and the brake B1 is released as shown in FIG. Thereby, the split drive gear 46 is disconnected from the input shaft 41, the sun gear 81 and the ring gear 83 of the planetary gear mechanism 45 are disconnected, and the carrier 82 of the planetary gear mechanism 45 is braked.
 インプット軸41に入力される動力は、逆転ギヤ機構44により逆転かつ減速されて、無段変速機構43のプライマリ軸51に伝達され、プライマリ軸51からプライマリプーリ53、ベルト55およびセカンダリプーリ54を介してセカンダリ軸52に伝達され、セカンダリ軸52と一体に、遊星歯車機構45のサンギヤ81を回転させる。遊星歯車機構45のキャリア82が制動されているので、サンギヤ81が回転すると、遊星歯車機構45のリングギヤ83がサンギヤ81と逆方向に回転する。このリングギヤ83の回転方向は、前進時(ベルトモードおよびスプリットモード)におけるリングギヤ83の回転方向と逆方向となる。そして、リングギヤ83と一体に、アウトプット軸42が回転する。アウトプット軸42の回転は、出力ギヤ48を介して、デファレンシャルギヤ6に伝達される。これにより、車両のドライブシャフト7,8が後進方向に回転する。 The power input to the input shaft 41 is reversed and decelerated by the reverse gear mechanism 44 and transmitted to the primary shaft 51 of the continuously variable transmission mechanism 43, and is transmitted from the primary shaft 51 via the primary pulley 53, the belt 55 and the secondary pulley 54. Then, the sun gear 81 of the planetary gear mechanism 45 is rotated integrally with the secondary shaft 52. Since the carrier 82 of the planetary gear mechanism 45 is braked, when the sun gear 81 rotates, the ring gear 83 of the planetary gear mechanism 45 rotates in the opposite direction to the sun gear 81. The rotation direction of the ring gear 83 is opposite to the rotation direction of the ring gear 83 during forward movement (belt mode and split mode). Then, the output shaft 42 rotates integrally with the ring gear 83. The rotation of the output shaft 42 is transmitted to the differential gear 6 via the output gear 48. Thereby, the drive shafts 7 and 8 of the vehicle rotate in the reverse direction.
<トランスミッションケース>
 トルクコンバータ3、動力分割式無段変速機4およびデファレンシャルギヤ6は、図1に示されるように、トランスミッションケース(トランスアクスルケース)101に収容されている。
<Transmission case>
The torque converter 3, the power split type continuously variable transmission 4, and the differential gear 6 are accommodated in a transmission case (transaxle case) 101 as shown in FIG.
 トランスミッションケース101は、第1ケース102、第2ケース103および第3ケース104に分割されている。第1ケース102、第2ケース103および第3ケース104は、車両のエンジン側からこの順に並ぶ。 The transmission case 101 is divided into a first case 102, a second case 103, and a third case 104. The first case 102, the second case 103, and the third case 104 are arranged in this order from the engine side of the vehicle.
 図4は、第2ケース103の斜視図である。図5は、第2ケース103の側面図(エンジン側から見た図)である。図6は、第2ケース103の底面図である。 FIG. 4 is a perspective view of the second case 103. FIG. 5 is a side view of the second case 103 (viewed from the engine side). FIG. 6 is a bottom view of the second case 103.
 第2ケース103は、外殻をなす外壁部111と、外壁部111の内側の空間を回転軸線方向に2分割するように形成された隔壁部112とを有している。 The second case 103 has an outer wall portion 111 forming an outer shell, and a partition wall portion 112 formed so as to divide the space inside the outer wall portion 111 into two in the rotation axis direction.
 隔壁部112に対してエンジン側で外壁部111に取り囲まれる空間には、スプリットドライブギヤ46およびクラッチC1が配置される第1配置部113と、アウトプット軸42、遊星歯車機構45、スプリットドリブンギヤ47、クラッチC2およびブレーキB1が配置される第2配置部114と、デファレンシャルギヤ6が配置される第3配置部115とが設けられている。 In the space surrounded by the outer wall 111 on the engine side with respect to the partition wall 112, the first arrangement portion 113 in which the split drive gear 46 and the clutch C <b> 1 are arranged, the output shaft 42, the planetary gear mechanism 45, and the split driven gear 47. A second placement portion 114 where the clutch C2 and the brake B1 are placed and a third placement portion 115 where the differential gear 6 is placed are provided.
 隔壁部112に対してエンジン側と反対側で外壁部111に取り囲まれる空間には、無段変速機構43が配置される。 A continuously variable transmission mechanism 43 is disposed in a space surrounded by the outer wall 111 on the side opposite to the engine side with respect to the partition wall 112.
 隔壁部112には、第1配置部113に臨む位置に、インプット軸41が挿通される第1挿通孔116が形成されている。また、隔壁部112には、第2配置部114に臨む位置に、セカンダリ軸52が挿通される第2挿通孔117が形成されている。さらに、隔壁部112には、第3配置部115に臨む位置に、ドライブシャフト7が挿通される第3挿通孔118が形成されている。 In the partition wall portion 112, a first insertion hole 116 through which the input shaft 41 is inserted is formed at a position facing the first arrangement portion 113. Further, the partition wall portion 112 is formed with a second insertion hole 117 through which the secondary shaft 52 is inserted at a position facing the second arrangement portion 114. Further, the partition wall portion 112 is formed with a third insertion hole 118 through which the drive shaft 7 is inserted at a position facing the third arrangement portion 115.
 第2ケース103は、第2配置部114に、アウトプット軸42の周囲を取り囲む円周面121を有している。円周面121には、複数のスプライン溝122が周方向に並んで形成されている。 The second case 103 has a circumferential surface 121 surrounding the output shaft 42 in the second arrangement portion 114. A plurality of spline grooves 122 are formed in the circumferential surface 121 side by side in the circumferential direction.
 スプライン溝122は、ブレーキB1のブレーキプレート123(図1参照)をスプライン嵌合させるための溝である。ブレーキB1は、公知の湿式多板式のクラッチと同一の構成であり、図1に示されるように、複数のブレーキプレート123と複数のブレーキディスク124とを回転軸線方向に交互に配列した構成を有している。 The spline groove 122 is a groove for fitting the brake plate 123 (see FIG. 1) of the brake B1 with a spline. The brake B1 has the same configuration as a known wet multi-plate clutch, and has a configuration in which a plurality of brake plates 123 and a plurality of brake disks 124 are alternately arranged in the rotation axis direction as shown in FIG. is doing.
 図4および図5に示されるように、複数のスプライン溝122のうち、最下に位置するスプライン溝122に対してブレーキディスク124の回転方向(図5における反時計回り)の下流側に1つ隣のスプライン溝122Aは、他のスプライン溝122よりも周方向に長く形成されている。そして、スプライン溝122Aの底面には、オイル排出穴125が形成されている。オイル排出穴125は、上下方向に延び、図6に示されるように、上下方向に開放されている。オイル排出穴125の下端開口は、図5に示されるように、トランスミッションケース101の底面に接続されるオイルパン126に対して、上方から上下方向に対向している。 As shown in FIGS. 4 and 5, one of the plurality of spline grooves 122 is located downstream of the lowermost spline groove 122 in the rotational direction of the brake disk 124 (counterclockwise in FIG. 5). The adjacent spline groove 122A is formed longer in the circumferential direction than the other spline grooves 122. An oil discharge hole 125 is formed on the bottom surface of the spline groove 122A. The oil discharge hole 125 extends in the vertical direction, and is opened in the vertical direction as shown in FIG. As shown in FIG. 5, the lower end opening of the oil discharge hole 125 faces the oil pan 126 connected to the bottom surface of the transmission case 101 in the vertical direction from above.
 別の観点から見ると、オイル排出穴125は、図5に示される側面視において、インプット軸41の回転軸線とセカンダリ軸52の回転軸線とを結ぶ線分の中央に対する下方であって、第1配置部113と回転軸線方向に対向する位置に形成されている。 From another point of view, the oil discharge hole 125 is below the center of the line segment connecting the rotation axis of the input shaft 41 and the rotation axis of the secondary shaft 52 in the side view shown in FIG. It is formed at a position facing the arrangement portion 113 in the rotation axis direction.
<作用効果>
 以上のように、トランスミッションケース101(第2ケース103)には、アウトプット軸42の周囲を取り囲む円周面121が形成されており、その円周面121におけるブレーキB1が設けられる部分には、ブレーキプレート123をスプライン嵌合させるためのスプライン溝122が周方向に並んで形成されている。そして、スプライン溝122の1つであるスプライン溝122Aには、オイル排出穴125が形成されており、ブレーキB1部分に供給されるオイル(潤滑油)は、オイル排出穴125を通して、オイル排出穴125に対して下方から上下方向に対向するオイルパン126に向けて排出される。そのため、ブレーキB1が設けられている部分、つまり、円周面121上にオイルが溜まることを抑制できる。その結果、ブレーキB1ディスクがオイルから受けるせん断抵抗を低減することができ、ブレーキB1における引き摺り損失を低減することができる。
<Effect>
As described above, the transmission case 101 (second case 103) is formed with a circumferential surface 121 that surrounds the output shaft 42, and a portion of the circumferential surface 121 where the brake B1 is provided includes Spline grooves 122 for spline fitting the brake plate 123 are formed side by side in the circumferential direction. An oil discharge hole 125 is formed in the spline groove 122A, which is one of the spline grooves 122, and oil (lubricating oil) supplied to the brake B1 portion passes through the oil discharge hole 125 and passes through the oil discharge hole 125. The oil is discharged from below toward the oil pan 126 facing in the vertical direction. Therefore, oil can be prevented from being accumulated on the portion where the brake B1 is provided, that is, on the circumferential surface 121. As a result, the shear resistance that the brake B1 disc receives from the oil can be reduced, and the drag loss in the brake B1 can be reduced.
 また、スプライン溝122Aの両側には、スプライン溝122Aに対して山となる部分127が形成されている。そのため、ブレーキディスク124の回転につられて流動するオイルをオイル排出穴125に対して回転方向下流側に位置する山となる部分127で堰き止めて、オイル排出穴125が形成されているスプライン溝122Aにオイルを集めることができる。よって、ブレーキB1が設けられている部分にオイルが溜まることを抑制する効果を高めることができる。 Further, on both sides of the spline groove 122A, a portion 127 that is a mountain with respect to the spline groove 122A is formed. Therefore, the oil flowing along with the rotation of the brake disk 124 is blocked by a crest portion 127 located on the downstream side in the rotation direction with respect to the oil discharge hole 125, and the spline groove 122A in which the oil discharge hole 125 is formed. You can collect the oil. Therefore, the effect which suppresses that oil accumulates in the part in which brake B1 is provided can be heightened.
<変形例>
 以上、本発明の一実施形態について説明したが、本発明は、他の形態で実施することもできる。
<Modification>
As mentioned above, although one Embodiment of this invention was described, this invention can also be implemented with another form.
 たとえば、トランスミッションの一例として、動力分割式無段変速機4を取り上げたが、本発明に係るトランスミッションケースが適用可能なトランスミッションは、動力分割式無段変速機4に限らず、公知の無段変速機(CVT:Continuously Variable Transmission)であってもよいし、有段式の自動変速機(AT:Automatic Transmission)であってもよい。 For example, although the power split type continuously variable transmission 4 is taken up as an example of the transmission, the transmission to which the transmission case according to the present invention can be applied is not limited to the power split type continuously variable transmission 4, but a known continuously variable transmission. (CVT: Continuously Variable Variable Transmission) or stepped automatic transmission (AT: Automatic Transmission).
 その他、前述の構成には、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。 In addition, various design changes can be made to the above-described configuration within the scope of the matters described in the claims.
 本国際出願は、2016年2月29日に出願された日本国特許出願である特願2016-037828号に基づく優先権を主張するものであり、当該日本国特許出願である特願2016-037828号の全内容は、本国際出願に援用される。 This international application claims priority based on Japanese Patent Application No. 2016-037828 filed on February 29, 2016, which is Japanese Patent Application No. 2016-037828. The entire contents of the issue are incorporated into this international application.
 本発明の特定の実施の形態についての上記説明は、例示を目的として提示したものである。それらは、網羅的であったり、記載した形態そのままに本発明を制限したりすることを意図したものではない。数多くの変形や変更が、上記の記載内容に照らして可能であることは当業者に自明である。 The above description of specific embodiments of the present invention has been presented for purposes of illustration. They are not intended to be exhaustive or to limit the invention to the precise form described. It will be apparent to those skilled in the art that many modifications and variations are possible in light of the above description.
 4    動力分割式無段変速機(トランスミッション)
 41   インプット軸
 42   アウトプット軸
 82   キャリア(回転体)
 101  トランスミッションケース
 103  第2ケース
 121  円周面
 122  スプライン溝
 122A スプライン溝
 123  ブレーキプレート
 125  オイル排出穴(排出穴)
 126  オイルパン
 B1   ブレーキ
4 Power split type continuously variable transmission (transmission)
41 Input shaft 42 Output shaft 82 Carrier (Rotating body)
101 Transmission case 103 Second case 121 Circumferential surface 122 Spline groove 122A Spline groove 123 Brake plate 125 Oil discharge hole (discharge hole)
126 Oil pan B1 Brake

Claims (1)

  1.  インプット軸とアウトプット軸との間で動力を変速し、前記アウトプット軸または前記アウトプット軸上に設けられる回転体の回転を制動/許容するためのブレーキを備えるトランスミッションに用いられるトランスミッションケースであって、
     前記アウトプット軸の周囲を取り囲む円周面が形成され、
     前記円周面には、前記ブレーキに含まれるブレーキプレートをスプライン嵌合させるための複数のスプライン溝が周方向に並んで形成され、
     前記スプライン溝の1つには、前記トランスミッションケースに取り付けられるオイルパンに対して上方から上下方向に対向する位置に、オイルを前記オイルパンに向けて排出する排出穴が形成されている、トランスミッションケース。
    A transmission case used in a transmission having a brake that shifts power between an input shaft and an output shaft and brakes / allows rotation of the output shaft or a rotating body provided on the output shaft. And
    A circumferential surface surrounding the periphery of the output shaft is formed;
    On the circumferential surface, a plurality of spline grooves for spline fitting a brake plate included in the brake are formed side by side in the circumferential direction,
    A transmission case for discharging oil toward the oil pan is formed in one of the spline grooves at a position facing the oil pan attached to the transmission case in the vertical direction from above. .
PCT/JP2017/005473 2016-02-29 2017-02-15 Transmission case WO2017150188A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MYPI2018702949A MY190041A (en) 2016-02-29 2017-02-15 Transmission case

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016037828A JP6366624B2 (en) 2016-02-29 2016-02-29 Transmission case
JP2016-037828 2016-02-29

Publications (1)

Publication Number Publication Date
WO2017150188A1 true WO2017150188A1 (en) 2017-09-08

Family

ID=59742819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005473 WO2017150188A1 (en) 2016-02-29 2017-02-15 Transmission case

Country Status (3)

Country Link
JP (1) JP6366624B2 (en)
MY (1) MY190041A (en)
WO (1) WO2017150188A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6713499B2 (en) 2018-03-13 2020-06-24 本田技研工業株式会社 Friction engagement device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135757U (en) * 1976-04-09 1977-10-15
JPS5715149A (en) * 1980-07-02 1982-01-26 Aisin Warner Ltd Automatic transmission for vehicle
JPH08277863A (en) * 1995-04-06 1996-10-22 Toyota Autom Loom Works Ltd Clutch driving device
JP2012202473A (en) * 2011-03-25 2012-10-22 Jatco Ltd Automatic transmission

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3715215B2 (en) * 2001-05-15 2005-11-09 本田技研工業株式会社 Wet friction plate
JP3952973B2 (en) * 2003-03-12 2007-08-01 トヨタ自動車株式会社 Tandem friction engagement device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135757U (en) * 1976-04-09 1977-10-15
JPS5715149A (en) * 1980-07-02 1982-01-26 Aisin Warner Ltd Automatic transmission for vehicle
JPH08277863A (en) * 1995-04-06 1996-10-22 Toyota Autom Loom Works Ltd Clutch driving device
JP2012202473A (en) * 2011-03-25 2012-10-22 Jatco Ltd Automatic transmission

Also Published As

Publication number Publication date
MY190041A (en) 2022-03-23
JP6366624B2 (en) 2018-08-01
JP2017155789A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
EP2853779B1 (en) Vehicle power transmission device
EP2998613B1 (en) Multi-stage transmission
US9068631B2 (en) Automatic transmission
US10138949B2 (en) Friction engagement element
US9784345B2 (en) Transmission device
JP3747913B2 (en) Lubrication structure of friction engagement device
JP6456540B2 (en) Transmission case
JP6366624B2 (en) Transmission case
WO2017022699A1 (en) Power-split-type continuously variable transmission and oil supply structure
JP6385990B2 (en) Transaxle
JP2008039164A (en) Planetary gear mechanism and vehicle transmission
JP6359044B2 (en) Power transmission mechanism
JP6594084B2 (en) Power split type continuously variable transmission
JP6552382B2 (en) Power split type continuously variable transmission
JP6328178B2 (en) Transmission unit
JP2003278797A (en) Speed change brake device of automatic transmission
JP6589717B2 (en) Power transmission device
JPS6148645A (en) Lubrication mechanism of automatic transmission
JP2017032090A (en) Power split continuously variable transmission
JP2017067207A (en) Power split type continuously variable transmission
JP2004076828A (en) Clutch device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759659

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759659

Country of ref document: EP

Kind code of ref document: A1