WO2017149967A1 - Gas boiler combustion control mechanism - Google Patents

Gas boiler combustion control mechanism Download PDF

Info

Publication number
WO2017149967A1
WO2017149967A1 PCT/JP2017/001496 JP2017001496W WO2017149967A1 WO 2017149967 A1 WO2017149967 A1 WO 2017149967A1 JP 2017001496 W JP2017001496 W JP 2017001496W WO 2017149967 A1 WO2017149967 A1 WO 2017149967A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
pressure
gas
fuel gas
valve
Prior art date
Application number
PCT/JP2017/001496
Other languages
French (fr)
Japanese (ja)
Inventor
浩平 山口
寛尚 加藤
Original Assignee
三浦工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三浦工業株式会社 filed Critical 三浦工業株式会社
Publication of WO2017149967A1 publication Critical patent/WO2017149967A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/26Details

Definitions

  • the present invention relates to a combustion control mechanism of a gas boiler.
  • This application claims priority based on Japanese Patent Application No. 2016-041423 for which it applied to Japan on March 3, 2016, and uses the content here.
  • a governor that adjusts the pressure of the fuel gas to a constant pressure is provided in the fuel gas supply path for supplying the fuel gas to the burner.
  • the flow rate is controlled.
  • the pressure fluctuation can be reduced when the fuel gas is continuously supplied, but the gas pressure may fluctuate if the gas flow rate is large, such as at the start of gas supply. It was an issue.
  • the governor is a mechanism that balances the pressure by the force of the diaphragm spring and the like to keep the secondary pressure constant.
  • the secondary pressure rapidly increases due to a response delay, and overshoot occurs.
  • the operation of closing the governor opening becomes excessive and undershoot occurs.
  • the governor opening is opened to increase the pressure, and overshoot occurs. Such overshooting and undershooting continues, and so-called hunting phenomenon occurs.
  • an object of the present invention is to provide a combustion control mechanism of a gas boiler that can stably supply fuel gas and stabilize combustion in the gas boiler, in order to solve the above problems.
  • a combustion control mechanism for a gas boiler includes a flow rate adjustment valve for adjusting a flow rate of a fuel gas in a fuel gas supply path for supplying the fuel gas to the gas boiler, and a flow rate adjustment valve.
  • a first control unit that adjusts and controls the opening; and a pressure sensor that detects a pressure on the primary side of the flow rate adjustment valve in the fuel gas supply path, and the first control unit controls the opening of the flow rate adjustment valve. Then, the flow rate of the flow rate adjusting valve is adjusted based on the flow rate of the fuel gas required from the gas boiler and the pressure on the primary side of the flow rate adjusting valve detected by the pressure sensor.
  • the first controller stores the relationship between the flow rate of the fuel gas required from the gas boiler and the opening of the flow rate adjustment valve, and the stored flow rate corresponding to the required flow rate of the fuel gas. You may adjust the opening degree of a flow regulating valve by applying the correction opening degree determined based on the primary side pressure with respect to the opening degree of an adjusting valve.
  • the combustion control mechanism of the gas boiler further includes a physical quantity calculation unit that calculates a physical quantity related to the flow rate of air in an air supply path that supplies air to the gas boiler, and the first control unit is configured to generate a gas boiler based on the physical quantity calculated by the physical quantity calculation unit.
  • the flow rate of the fuel gas required from the above may be determined.
  • the physical quantity calculation unit is a differential pressure sensor that detects the differential pressure of air in the air supply path, and may calculate the differential pressure of air as a physical quantity related to the flow rate of air.
  • the combustion control mechanism of the gas boiler includes a second control unit and a secondary side detection unit that detects the pressure or flow rate on the secondary side of the flow rate adjustment valve in the fuel gas supply path, and the second control unit includes a secondary control unit.
  • the detection value of the side detection unit is out of a predetermined range, one or more controls of further opening correction of the flow rate adjusting valve, alarm output, or emergency shutoff of gas fuel may be performed.
  • fuel gas can be stably supplied to the gas boiler even when the gas supply pressure fluctuates, combustion starts or stops, or the combustion amount changes. Can be stabilized, and instability of combustion such as vibration combustion and misfire can be prevented.
  • FIG. 1 is an overall configuration diagram of a combustion control mechanism 2 according to the embodiment.
  • the combustion control mechanism 2 supplies combustion air to the gas boiler 4 via the air supply path 6 and supplies fuel gas via the fuel gas supply path 8 so that a predetermined air ratio is maintained.
  • the control mechanism controls the flow rate of air and the flow rate of fuel gas.
  • the air supply path 6 is provided with a first flow path resistance 10 and a first pressure sensor 12.
  • the fuel gas supply path 8 includes a first shutoff valve 14, a second shutoff valve 16, a flow rate adjustment valve 18, an adjustment mechanism 20, a second flow path resistance 22, a second pressure sensor 24, A third pressure sensor 26 is provided.
  • the first flow path resistance 10 provided in the air supply path 6 is an element that becomes the flow path resistance of the air supply path 6 (for example, punching metal).
  • the first pressure sensor 12 detects the differential pressure of air before and after the first flow path resistance 10. As will be described later, the air pressure detected by the first pressure sensor 12 is transmitted to the control unit 28 as a detection signal.
  • the fuel gas supply path 8 is provided with a first shut-off valve 14, a second shut-off valve 16, a flow rate adjusting valve 18, and a second flow path resistance 22 in order from the upstream side.
  • a second pressure sensor 24 is connected between the second shutoff valve 16 and the flow rate adjustment valve 18, and a third pressure sensor 26 is connected between the flow rate adjustment valve 18 and the second flow path resistance 22.
  • the first cutoff valve 14 and the second cutoff valve 16 are valves that switch the fuel gas supply path 8 between full open and full close by opening and closing the valves.
  • the predetermined safety regarding the fuel gas is enhanced.
  • a so-called governor-equipped shut-off valve that supplies fuel gas at a constant pressure downstream is provided.
  • the shut-off valve with a governor is not required. For this reason, the primary pressure of the flow rate adjusting valve 18 located on the downstream side of the second cutoff valve 16 varies.
  • the flow rate adjustment valve 18 is a valve for adjusting the flow rate of the fuel gas in the fuel gas supply path 8, and the opening degree of the flow rate adjustment valve 18 is adjusted by the adjustment mechanism 20 so as to change substantially continuously.
  • the adjustment mechanism 20 includes a control unit 28 and a valve drive unit 30.
  • the control unit 28 is connected to the first pressure sensor 12, the second pressure sensor 24, and the third pressure sensor 26 described above, receives detection signals from the respective pressure sensors, and detects the pressure and the like represented by the detection signals.
  • the valve drive unit 30 is controlled based on all or part of the values.
  • the control unit 28 is configured by, for example, a microprocessor (not shown) including a CPU and a memory.
  • the valve drive unit 30 is a component that drives the flow rate adjustment valve 18, and is, for example, a stepping motor.
  • the valve opening degree of the flow rate adjusting valve 18 from the minimum flow rate to the maximum flow rate of the fuel gas may be precisely controlled in 200 steps or more, and a stepping motor ( Or a servo motor) is suitable for driving the flow rate adjusting valve 18.
  • a stepping motor Or a servo motor
  • the opening degree of the flow regulating valve 18 can be changed substantially continuously.
  • the second pressure sensor 24 is arranged to measure the pressure (primary pressure) on the upstream side of the flow rate adjustment valve 18. The primary pressure detected by the second pressure sensor 24 is transmitted to the control unit 28 as a detection signal.
  • the third pressure sensor 26 is arranged to measure the pressure (secondary pressure) on the downstream side of the flow regulating valve 18. The secondary pressure detected by the third pressure sensor 26 is transmitted to the control unit 28 as a detection signal.
  • the second flow path resistance 22 is an element that becomes a flow path resistance in the fuel gas supply path 8 (for example, an orifice).
  • the second flow path resistance 22 has a function of suppressing fluctuations in the flow rate of the fuel gas due to fluctuations in the furnace pressure of the gas boiler 4 and the like.
  • the flow rate of the fuel gas can be easily measured by measuring the differential pressure before and after the second flow path resistance 22.
  • the combustion control mechanism 2 when controlling the flow rate of the fuel gas by the flow rate adjusting valve 18, the combustion control mechanism 2 is controlled so as to stably supply the fuel gas to the gas boiler 4 while controlling the flow rate of the fuel gas to a desired flow rate. To do.
  • an example of a specific control method by the combustion control mechanism 2 will be described with reference to the flowchart of FIG.
  • the differential pressure in the air supply path 6 is measured (step S1). Specifically, the differential pressure in the air supply path 6 is measured by the first pressure sensor 12 and transmitted to the control unit 28 as a detection signal.
  • the required gas flow rate is calculated from the differential pressure of air (step S2).
  • the required gas flow rate is the flow rate of the fuel gas required from the gas boiler 4, and is the flow rate of the fuel gas that has a predetermined air ratio with respect to the flow rate of air.
  • the required gas flow rate is calculated from the differential pressure measured in step S ⁇ b> 1 by referring to the correspondence relationship between the air differential pressure and the required gas flow rate stored in advance in the control unit 28.
  • the correspondence relationship between the differential pressure of air and the required gas flow rate is obtained, for example, by experiment, using the flow rate of fuel gas with a constant air ratio as the required gas flow rate based on the flow rate of air calculated from the differential pressure of air. It is stored in the control unit 28 in relation to the differential pressure of air.
  • the flow rate of air is calculated from the differential pressure of air, and the flow rate of fuel gas corresponding to that (the air ratio is constant) is calculated as the required gas flow rate. Can be promptly requested.
  • the opening degree of the flow rate adjusting valve 18 is calculated from the required gas flow rate (step S3). Specifically, by referring to the correspondence relationship between the required gas flow rate and the opening degree of the flow rate adjustment valve 18 stored in advance in the control unit 28, the opening degree of the flow rate adjustment valve 18 from the required gas flow rate calculated in step S2. Is calculated. In the present embodiment, for example, the opening degree of the flow rate adjustment valve 18 is calculated as 30%.
  • step S4 the pressure on the primary side of the flow rate adjusting valve 18 in the fuel gas supply path 8 is measured (step S4). Specifically, the pressure (primary pressure) on the primary side of the flow rate adjustment valve 18 is measured by the second pressure sensor 24, and the primary pressure is transmitted to the control unit 28 as a measurement signal. In the present embodiment, for example, the primary pressure of the flow regulating valve 18 is measured as 40 kPa.
  • the corrected opening degree of the flow rate adjusting valve 18 is calculated based on the primary pressure (step S5). Specifically, the correction opening is calculated from the primary pressure measured in step S4 by referring to the relationship between the primary pressure and the correction opening stored in advance in the control unit 28. An example of the relationship between the primary pressure and the correction opening is shown in FIG.
  • a correction opening degree (%) corresponding to each primary pressure is determined, and the relationship between the primary pressure and the correction opening degree can be obtained in advance by an experiment or the like.
  • the measured value of the primary pressure is 40 kPa, and the corresponding correction opening is calculated as 15.0%.
  • the opening degree of the flow rate adjustment valve 18 is corrected (step S6). Specifically, the opening degree of the flow rate adjustment valve 18 calculated in step S3 is corrected by the correction opening degree calculated in step S5. For example, when the opening degree of the flow rate adjusting valve 18 calculated in step S3 is 30% and the corrected opening degree calculated in step S5 is 15%, the corrected opening degree of the flow rate adjusting valve 18 is 45% (30 % + 15%).
  • step S7 the corrected opening degree of the flow rate adjusting valve 18 is output (step S7).
  • the opening corrected in step S ⁇ b> 6 is output from the control unit 28 to the valve driving unit 30 as the opening of the flow rate adjustment valve 18.
  • the opening degree of the flow regulating valve 18 is output as 45%, for example.
  • the opening degree of the flow rate adjusting valve 18 is adjusted and output by adding the corrected opening degree calculated in step S5 to the opening degree calculated in step S3.
  • a case where a control valve with a governor for supplying fuel gas at a constant pressure downstream as a second shutoff valve 16 is provided and controlled can be considered.
  • the flow rate of the fuel gas is set to a desired value under the assumption that the pressure is constant.
  • the opening degree of the flow rate adjustment valve 18 is adjusted so that the flow rate is obtained.
  • FIG. 4A shows a shutoff valve (first shutoff valve 14 and second shutoff valve 16) opening / closing signal at the start of combustion, an in-furnace pressure (furnace pressure) and a fuel gas flow rate at the start of combustion in a combustion control mechanism having a conventional governor.
  • a shutoff valve first shutoff valve 14 and second shutoff valve 16
  • in-furnace pressure furnace pressure
  • fuel gas flow rate at the start of combustion in a combustion control mechanism having a conventional governor.
  • the ignition shock overlaps with the governor hunting phenomenon, so that the fuel gas flow rate largely fluctuates and the combustion amount of the gas boiler 4 fluctuates, which may lead to a vicious circle in which the furnace pressure further fluctuates.
  • the air ratio greatly fluctuates due to such fluctuations in the fuel gas flow rate and the furnace pressure, causing combustion instability such as vibration combustion and misfire.
  • FIG. 4B an example of control by the combustion control mechanism 2 of the present embodiment is shown in FIG. 4B.
  • the fuel gas flow rate does not have an overshoot immediately after the shutoff valves 14 and 16 are opened, and is immediately affected by the fluctuation of the furnace pressure due to the ignition impact (arrow B). Stabilize.
  • This effect is that the flow rate of the fuel gas supplied to the gas boiler 4 becomes a desired flow rate by correcting the opening degree of the flow rate adjustment valve 18 based on the required gas flow rate and the pressure on the primary side of the flow rate adjustment valve 18. It is obtained by adjusting to.
  • combustion control mechanism 2 of the present embodiment even when the combustion amount of the gas boiler 4 fluctuates in response to the start of combustion (ignition) or the required load of the boiler, a predetermined fuel gas can be stably supplied, Combustion in the gas boiler 4 can be stabilized, and combustion instability such as vibration combustion and misfire can be prevented.
  • step S8 the pressure on the secondary side of the flow regulating valve 18 is measured (step S8). Specifically, the pressure (secondary pressure) on the secondary side of the flow regulating valve 18 is measured by the third pressure sensor 26. The measurement result of the secondary pressure is transmitted to the control unit 28 as a detection signal.
  • step S9 abnormality detection is performed (step S9). Specifically, it is determined whether or not the secondary pressure measured in step S8 is a value within a predetermined range. When the secondary pressure exceeds a predetermined range, gas flow is excessive (air ratio is decreased) or gas is defective (air ratio is increased) due to malfunction of the flow rate adjusting valve 18, and vibration combustion occurs in the gas boiler 4. Phenomena such as misfire, incomplete combustion may appear.
  • an abnormality is detected, and further opening correction of the flow rate adjustment valve 18, alarm output, or fuel At least one of the emergency gas shutoffs is performed. By performing such control, occurrence of the above-described phenomenon can be suppressed, and fuel gas can be stably supplied from the gas boiler 4.
  • the opening degree correction value of the flow rate adjusting valve 18 is determined so that the secondary pressure after further opening degree correction falls within a predetermined range (FIG. 5A).
  • the alarm is output, for example, an alarm message is output to a user interface for the user to operate the combustion control mechanism 2 (see FIG. 5B).
  • the first shutoff valve 14 and the second shutoff valve 16 are closed, and the supply of air is also stopped.
  • a governor for adjusting the supply pressure to be constant is eliminated, and a second pressure sensor 24 for detecting the pressure on the primary side of the flow rate adjusting valve 18 is provided.
  • the opening degree of the flow rate adjustment valve 18 can be adjusted based on the fuel gas flow rate and the primary pressure.
  • the (gas) combustion control mechanism 2 without the governor is used, and by adjusting the fuel gas flow rate based on the required gas flow rate and the primary pressure, the predetermined fuel gas flow rate can be stably maintained even when the supply gas pressure fluctuates. Can supply.
  • feedforward control can be performed by instructing the opening degree of the flow rate adjusting valve 18, it is affected by sudden fluctuations in the fuel gas flow rate due to the start / stop of the gas boiler 4 and the change in the combustion stage, fluctuations in the pressure in the furnace of the gas boiler 4, and the like. Hateful. Further, detecting the pressure on the primary side of the flow rate adjusting valve 18 does not fluctuate in a wide range depending on the fuel gas flow rate as in the case of the pressure on the secondary side, and the measurement accuracy of the second pressure sensor 24 is relatively reduced. In addition to the merit that can be increased, the primary pressure is not affected by the control of the flow rate adjusting valve 18 and is easy to handle as a control signal.
  • the (first) control unit 28 stores the relationship between the required gas flow rate and the opening degree of the flow rate adjustment valve 18, and the flow rate adjustment valve 18 has the relationship stored.
  • a corrected opening determined based on the primary pressure is applied to the opening.
  • the opening degree of the flow rate adjustment valve 18 is quickly adjusted without performing complicated calculations such as PID control. Can be determined. Therefore, even when the combustion amount of the gas boiler 4 varies greatly and the required gas flow rate varies greatly, the opening degree of the flow rate adjustment valve 18 can be quickly controlled toward the target value.
  • the control is suitable for the gas boiler 4 in which combustion starts and stops and fluctuations in the combustion amount frequently occur.
  • the combustion control mechanism 2 of the gas boiler of this embodiment includes a flow rate adjusting valve 18 and a (first) control unit 28, and a physical quantity calculation unit (in this embodiment, the first physical quantity calculation unit) calculates a physical quantity related to the air flow rate in the air supply path 6. 1 pressure sensor 12).
  • the control unit 28 can determine the required gas flow rate based on the physical quantity (for example, the combustion air quantity) calculated by the physical quantity calculation unit. That is, the flow rate adjusting valve 18 and the control unit 28 are effective in simplifying the structure and reducing the cost of the combustion control mechanism 2 by integrating the adjustment of the fuel gas pressure and the adjustment of the fuel gas flow rate.
  • the physical quantity calculation unit can use a differential pressure sensor (first pressure sensor 12) that detects the differential pressure of air in the air supply path 6.
  • first pressure sensor 12 detects the differential pressure of air in the air supply path 6.
  • the flow rate of the air can be calculated from the differential pressure of the air, and the flow rate of the fuel gas with a constant air ratio with respect to the flow rate can be obtained as the required gas flow rate. Can be determined.
  • the combustion control mechanism 2 of the gas boiler includes a (second) control unit 28 and a secondary side detection unit (this main unit) that detects the pressure or flow rate on the secondary side of the flow rate adjusting valve 18 in the fuel gas supply path 8.
  • the control unit 28 includes a third pressure sensor 26), and the control unit 28 further corrects the opening degree of the flow rate adjustment valve 18 and alarms when the detection value of the secondary side detection unit is out of a predetermined range.
  • One or more controls for output or emergency shutdown of gas fuel According to such control, it is possible to monitor the control result of the control unit 28 and automatically take some measures when appropriate control is not performed. Moreover, the occurrence of an abnormal phenomenon in the gas boiler 4 due to the malfunction of the flow rate adjusting valve 18 can be suppressed, and the gas boiler 4 can be combusted stably.
  • the embodiment has been described above with reference to FIGS. 1 to 5A and 5B, other various modifications are possible.
  • the case has been described in which the differential pressure in the air supply path 6 is measured in step S1 and the flow rate of air is calculated from the differential pressure, but this is not a limitation.
  • elements other than the differential pressure of air may be measured as long as the flow rate of air can be calculated. That is, it may be a case where a “physical quantity relating to the air flow rate” (for example, a flow rate itself of an air flow meter or the like) that allows calculation of the air flow rate is measured.
  • the air flow rate may not be calculated.
  • the case where the required gas flow rate is memorized according to the combustion stage in the gas boiler 4 may be used.
  • the amount of fuel gas required from the boiler is 100%
  • the amount of gas for stopping combustion is 0%
  • the amount of fuel gas in the low combustion stage is 25%
  • the fuel gas flow rate of the high combustion stage is“ C ”Nm 3 / h
  • the opening degree of the flow rate adjusting valve 18 can be calculated from the fuel gas flow rate.
  • the second pressure sensor 24 is arranged to measure the pressure between the second shutoff valve 16 and the flow rate adjusting valve 18 as the primary pressure of the flow rate adjusting valve 18.
  • the present invention is not limited to such a case. . If it is the primary side (upstream side) of the flow regulating valve 18, the second pressure sensor 24 may be provided at an arbitrary position, for example, between the first cutoff valve 14 and the second cutoff valve 16, or the first cutoff. The pressure upstream of the valve 14 may be measured.
  • the corrected opening degree may be calculated using a “variation value” of the primary pressure (for example, a variation value of the primary pressure with respect to a reference value, a variation value of the primary pressure during a predetermined period), or the like.
  • the present invention is not limited to such a case.
  • a separate control unit may be provided, and the first control unit may perform opening degree correction of the flow rate adjusting valve 18 in steps S6 and S7, and the second control unit may perform abnormality detection in step S9.
  • step S9 abnormality detection in step S9 was performed based on the secondary pressure which the 3rd pressure sensor 26 detects, not only in such a case, the flow volume of the secondary side of the flow regulating valve 18 is demonstrated. May be performed based on In this way, when performing abnormality detection, a secondary side detection unit that detects the pressure or flow rate on the secondary side of the flow rate adjustment valve 18 may be provided.

Abstract

A gas boiler combustion control mechanism comprises: a flow control valve that adjusts the flow rate of a combustion gas in a combustion gas supplying channel that supplies combustion gas to a gas boiler; a first control unit that adjusts and controls the opening of the flow control valve; and a pressure sensor that detects pressure on the primary side of the flow control valve in the combustion gas supplying channel. The first control unit determines the amount to open the flow control valve on the basis of the flow rate of the combustion gas required for the gas boiler and the pressure on the primary side of the flow control valve detected by the pressure sensor and adjusts the opening of the flow control valve.

Description

ガスボイラの燃焼制御機構Combustion control mechanism of gas boiler
 本発明は、ガスボイラの燃焼制御機構に関する。本願は、2016年3月3日に日本に出願された特願2016-041423号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a combustion control mechanism of a gas boiler. This application claims priority based on Japanese Patent Application No. 2016-041423 for which it applied to Japan on March 3, 2016, and uses the content here.
 一般的なガス燃焼装置(ガスボイラ)では、バーナへ燃料ガスを供給する燃料ガス供給路に、燃料ガスの圧力を一定に調整するガバナ(整圧器)を設け、一定圧力のもとで燃料ガスの流量の制御を行っている。 In a general gas combustion apparatus (gas boiler), a governor (pressure regulator) that adjusts the pressure of the fuel gas to a constant pressure is provided in the fuel gas supply path for supplying the fuel gas to the burner. The flow rate is controlled.
特開1994-249431号公報JP-A-1994-249431 特開1995-208632号公報JP 1995-208632 A
 しかしながら、一般的なガバナでは、継続的に燃料ガスが供給される場合は圧力変動を緩和できるが、ガス供給の開始時などのガス流量の変動が大きい場合はガス圧が変動してしまうことが課題であった。 However, in a general governor, the pressure fluctuation can be reduced when the fuel gas is continuously supplied, but the gas pressure may fluctuate if the gas flow rate is large, such as at the start of gas supply. It was an issue.
 これは、ガバナがダイヤフラムのばね等の力によって圧力をバランスさせて2次圧を一定に保つ機構であることに起因している。2次圧がゼロの状態から、突然燃料ガスが流れると、応答遅れにより2次圧が急激に上昇し、オーバーシュートが発生する。これに反応して、ガバナ開度を閉める動作が過剰になり、アンダーシュートが発生する。また、圧力を上げようとしてガバナ開度を開き、オーバーシュートが発生する。このようなオーバーシュートとアンダーシュートの繰り返しが続き、いわゆるハンチング現象が発生する。 This is due to the fact that the governor is a mechanism that balances the pressure by the force of the diaphragm spring and the like to keep the secondary pressure constant. When the fuel gas suddenly flows from a state where the secondary pressure is zero, the secondary pressure rapidly increases due to a response delay, and overshoot occurs. In response to this, the operation of closing the governor opening becomes excessive and undershoot occurs. Further, the governor opening is opened to increase the pressure, and overshoot occurs. Such overshooting and undershooting continues, and so-called hunting phenomenon occurs.
 ガスボイラにおいて燃料ガスの圧力(流量)にハンチング現象が発生した場合、ガス圧力が安定せず、空気比が大きく上下し、振動燃焼などの燃焼の不安定化や失火の原因になる。負荷側の蒸気要求量に応じて燃焼の発停や燃焼量の変化が多いガスボイラでは、燃焼を安定的に行うためにガバナによるガス圧力制御に代わる燃焼制御方法の開発が求められていた。 When a hunting phenomenon occurs in the pressure (flow rate) of fuel gas in a gas boiler, the gas pressure is not stable, the air ratio is greatly increased and decreased, causing combustion instability such as vibration combustion and misfire. In gas boilers that frequently start and stop combustion and change in the amount of combustion according to the steam demand on the load side, the development of a combustion control method that replaces the gas pressure control by the governor has been required in order to perform combustion stably.
 特許文献1、2に記載の燃焼制御方法では、ガバナの1次側と2次側に設けられた遮断弁のうち、2次側の遮断弁の開時間を遅らせることでガス圧力変動を抑制するが、2次側の遮断弁が開いた際には大きな流量変動が起るなど、十分な解決策とはいえない。 In the combustion control methods described in Patent Documents 1 and 2, the gas pressure fluctuation is suppressed by delaying the opening time of the secondary side cutoff valve among the cutoff valves provided on the primary side and the secondary side of the governor. However, when the secondary side shut-off valve is opened, a large flow rate fluctuation occurs, which is not a sufficient solution.
 また、大型のガスガバナは高額であることからも、ガバナに代わる安価な方法が望まれていた。 Also, because large gas governors are expensive, an inexpensive alternative to governors has been desired.
 従って、本発明の目的は、上記問題を解決することにあって、燃料ガスを安定的に供給し、ガスボイラにおける燃焼を安定化させることができるガスボイラの燃焼制御機構を提供することにある。 Therefore, an object of the present invention is to provide a combustion control mechanism of a gas boiler that can stably supply fuel gas and stabilize combustion in the gas boiler, in order to solve the above problems.
 上記目的を達成するために、本発明の一態様であるガスボイラの燃焼制御機構は、ガスボイラに燃料ガスを供給する燃料ガス供給路における燃料ガスの流量を調整する流量調整弁と、流量調整弁の開度を調整して制御する第1制御部と、燃料ガス供給路における流量調整弁の一次側の圧力を検出する圧力センサと、を備え、第1制御部は、流量調整弁の開度を、ガスボイラから要求される燃料ガスの流量と、圧力センサにより検出した流量調整弁の一次側の圧力とに基づき決定して、流量調整弁の開度を調整する。 In order to achieve the above object, a combustion control mechanism for a gas boiler according to one aspect of the present invention includes a flow rate adjustment valve for adjusting a flow rate of a fuel gas in a fuel gas supply path for supplying the fuel gas to the gas boiler, and a flow rate adjustment valve. A first control unit that adjusts and controls the opening; and a pressure sensor that detects a pressure on the primary side of the flow rate adjustment valve in the fuel gas supply path, and the first control unit controls the opening of the flow rate adjustment valve. Then, the flow rate of the flow rate adjusting valve is adjusted based on the flow rate of the fuel gas required from the gas boiler and the pressure on the primary side of the flow rate adjusting valve detected by the pressure sensor.
 前記ガスボイラの燃焼制御機構において、第1制御部は、ガスボイラから要求される燃料ガスの流量と流量調整弁の開度の関係を記憶し、要求される燃料ガスの流量に対応する記憶された流量調整弁の開度に対して一次側の圧力に基づき決定した補正開度を適用することで、流量調整弁の開度を調整してもよい。 In the gas boiler combustion control mechanism, the first controller stores the relationship between the flow rate of the fuel gas required from the gas boiler and the opening of the flow rate adjustment valve, and the stored flow rate corresponding to the required flow rate of the fuel gas. You may adjust the opening degree of a flow regulating valve by applying the correction opening degree determined based on the primary side pressure with respect to the opening degree of an adjusting valve.
 前記ガスボイラの燃焼制御機構において、ガスボイラに空気を供給する空気供給路における空気の流量に関する物理量を算出する物理量算出部をさらに備え、第1制御部は、物理量算出部が算出する物理量に基づき、ガスボイラから要求される燃料ガスの流量を決定してもよい。 The combustion control mechanism of the gas boiler further includes a physical quantity calculation unit that calculates a physical quantity related to the flow rate of air in an air supply path that supplies air to the gas boiler, and the first control unit is configured to generate a gas boiler based on the physical quantity calculated by the physical quantity calculation unit. The flow rate of the fuel gas required from the above may be determined.
 前記ガスボイラの燃焼制御機構において、物理量算出部は、空気供給路における空気の差圧を検出する差圧センサであり、空気の差圧を空気の流量に関する物理量として算出してもよい。 In the combustion control mechanism of the gas boiler, the physical quantity calculation unit is a differential pressure sensor that detects the differential pressure of air in the air supply path, and may calculate the differential pressure of air as a physical quantity related to the flow rate of air.
 前記ガスボイラの燃焼制御機構において、第2制御部と、燃料ガス供給路における流量調整弁の二次側の圧力又は流量を検出する二次側検出部とを備え、第2制御部は、二次側検出部の検出値が所定範囲の値から外れている場合に、流量調整弁の更なる開度補正、警報出力或いはガス燃料の緊急遮断の一つ以上の制御を行ってもよい。 The combustion control mechanism of the gas boiler includes a second control unit and a secondary side detection unit that detects the pressure or flow rate on the secondary side of the flow rate adjustment valve in the fuel gas supply path, and the second control unit includes a secondary control unit. When the detection value of the side detection unit is out of a predetermined range, one or more controls of further opening correction of the flow rate adjusting valve, alarm output, or emergency shutoff of gas fuel may be performed.
 本発明のガスボイラの燃焼制御機構によれば、ガス供給圧の変動や燃焼の発停或いは燃焼量の変化があった場合でも、燃料ガスを安定的にガスボイラに供給することができ、ガスボイラにおける燃焼を安定化させ、振動燃焼などの燃焼の不安定化や失火を防止することができる。 According to the combustion control mechanism of a gas boiler of the present invention, fuel gas can be stably supplied to the gas boiler even when the gas supply pressure fluctuates, combustion starts or stops, or the combustion amount changes. Can be stabilized, and instability of combustion such as vibration combustion and misfire can be prevented.
実施形態に係るガスボイラの燃焼制御機構の全体構成図Overall configuration diagram of a combustion control mechanism of a gas boiler according to an embodiment 実施形態に係る燃焼制御機構による制御方法の一例を示すフローチャートThe flowchart which shows an example of the control method by the combustion control mechanism which concerns on embodiment 実施形態に係る制御部が記憶している補正開度のテーブルTable of correction opening degree memorized by control unit according to embodiment 従来のガバナを有する燃焼制御機構による制御例を示す模式図Schematic diagram showing an example of control by a combustion control mechanism having a conventional governor 実施形態に係る燃焼制御機構による制御例を示す模式図The schematic diagram which shows the example of control by the combustion control mechanism which concerns on embodiment 実施形態に係る制御部が異常検出時に更なる開度補正を行う場合のイメージ図(二次圧と時間)Image when the control unit according to the embodiment performs further opening correction when an abnormality is detected (secondary pressure and time) 実施形態に係る制御部が異常検出時に警報を行う場合のイメージ図(二次圧と時間)Image when the control unit according to the embodiment issues an alarm when an abnormality is detected (secondary pressure and time)
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、これらの実施形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited by these embodiments.
(実施形態)
 本発明の実施形態に係るガスボイラの燃焼制御機構2について、図面を参照しながら説明する。図1は、実施形態に係る燃焼制御機構2の全体構成図である。燃焼制御機構2は、ガスボイラ4に対して、空気供給路6を介して燃焼用の空気を供給し、燃料ガス供給路8を介して燃料ガスを供給する構成において、所定の空気比が維持されるように空気の流量と燃料ガスの流量を制御する制御機構である。
(Embodiment)
A combustion control mechanism 2 for a gas boiler according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an overall configuration diagram of a combustion control mechanism 2 according to the embodiment. The combustion control mechanism 2 supplies combustion air to the gas boiler 4 via the air supply path 6 and supplies fuel gas via the fuel gas supply path 8 so that a predetermined air ratio is maintained. The control mechanism controls the flow rate of air and the flow rate of fuel gas.
 図1に示すように、空気供給路6には、第1流路抵抗10と、第1圧力センサ12が設けられている。また、燃料ガス供給路8には、第1遮断弁14と、第2遮断弁16と、流量調整弁18と、調節機構20と、第2流路抵抗22と、第2圧力センサ24と、第3圧力センサ26とが設けられている。 As shown in FIG. 1, the air supply path 6 is provided with a first flow path resistance 10 and a first pressure sensor 12. Further, the fuel gas supply path 8 includes a first shutoff valve 14, a second shutoff valve 16, a flow rate adjustment valve 18, an adjustment mechanism 20, a second flow path resistance 22, a second pressure sensor 24, A third pressure sensor 26 is provided.
 空気供給路6に設けられた第1流路抵抗10は、空気供給路6の流路抵抗となる要素である(例えばパンチングメタル)。第1圧力センサ12は、第1流路抵抗10の前後における空気の差圧を検出する。後述するように、第1圧力センサ12で検出された空気の圧力は、制御部28に検出信号として送信される。 The first flow path resistance 10 provided in the air supply path 6 is an element that becomes the flow path resistance of the air supply path 6 (for example, punching metal). The first pressure sensor 12 detects the differential pressure of air before and after the first flow path resistance 10. As will be described later, the air pressure detected by the first pressure sensor 12 is transmitted to the control unit 28 as a detection signal.
 図1に示すように、燃料ガス供給路8には、上流側から順に、第1遮断弁14、第2遮断弁16、流量調整弁18、第2流路抵抗22が設けられる。第2遮断弁16と流量調整弁18の間には第2圧力センサ24が接続され、流量調整弁18と第2流路抵抗22の間には第3圧力センサ26が接続される。 As shown in FIG. 1, the fuel gas supply path 8 is provided with a first shut-off valve 14, a second shut-off valve 16, a flow rate adjusting valve 18, and a second flow path resistance 22 in order from the upstream side. A second pressure sensor 24 is connected between the second shutoff valve 16 and the flow rate adjustment valve 18, and a third pressure sensor 26 is connected between the flow rate adjustment valve 18 and the second flow path resistance 22.
 第1遮断弁14と第2遮断弁16は、弁を開閉することによって燃料ガス供給路8の全開と全閉を切り替える弁である。燃料ガス供給路8に2つの遮断弁を設けることにより、燃料ガスに関する所定の安全性が高められる。一般的には、燃料ガスを下流側に一定の圧力で供給するいわゆるガバナ付き遮断弁が設けられるが、本実施形態ではガバナ付き遮断弁は必要とされない。このため、第2遮断弁16の下流側に位置する流量調整弁18の一次圧力は変動する。 The first cutoff valve 14 and the second cutoff valve 16 are valves that switch the fuel gas supply path 8 between full open and full close by opening and closing the valves. By providing the two shutoff valves in the fuel gas supply path 8, the predetermined safety regarding the fuel gas is enhanced. Generally, a so-called governor-equipped shut-off valve that supplies fuel gas at a constant pressure downstream is provided. However, in this embodiment, the shut-off valve with a governor is not required. For this reason, the primary pressure of the flow rate adjusting valve 18 located on the downstream side of the second cutoff valve 16 varies.
 流量調整弁18は、燃料ガス供給路8における燃料ガスの流量を調整するための弁であり、流量調整弁18の開度は、調節機構20によって実質的に連続的に変化するように調節される。 The flow rate adjustment valve 18 is a valve for adjusting the flow rate of the fuel gas in the fuel gas supply path 8, and the opening degree of the flow rate adjustment valve 18 is adjusted by the adjustment mechanism 20 so as to change substantially continuously. The
 調節機構20は、制御部28と、弁駆動部30とを備える。制御部28は、前述した第1圧力センサ12、第2圧力センサ24および第3圧力センサ26に接続され、それぞれの圧力センサからの検出信号を受信し、当該検出信号で表される圧力等の値の全て或いは一部に基づいて弁駆動部30の制御を行う。制御部28は、例えばCPU及びメモリ含むマイクロプロセッサ(図示せず)により構成される。弁駆動部30は、流量調整弁18を駆動する構成部材であり、例えばステッピングモータである。燃料ガスの最小流量から最大流量に至る流量調整弁18の弁開度は、200以上のステップ(段階)で精密に制御される場合があり、そのような弁開度の制御にはステッピングモータ(やサーボモータ)により流量調整弁18を駆動することが適している。このように多数のステップを有することにより、流量調整弁18の開度を実質的に連続的に変化させることができる。 The adjustment mechanism 20 includes a control unit 28 and a valve drive unit 30. The control unit 28 is connected to the first pressure sensor 12, the second pressure sensor 24, and the third pressure sensor 26 described above, receives detection signals from the respective pressure sensors, and detects the pressure and the like represented by the detection signals. The valve drive unit 30 is controlled based on all or part of the values. The control unit 28 is configured by, for example, a microprocessor (not shown) including a CPU and a memory. The valve drive unit 30 is a component that drives the flow rate adjustment valve 18, and is, for example, a stepping motor. The valve opening degree of the flow rate adjusting valve 18 from the minimum flow rate to the maximum flow rate of the fuel gas may be precisely controlled in 200 steps or more, and a stepping motor ( Or a servo motor) is suitable for driving the flow rate adjusting valve 18. Thus, by having many steps, the opening degree of the flow regulating valve 18 can be changed substantially continuously.
 第2圧力センサ24は、流量調整弁18の上流側の圧力(一次圧)を測定するように配置されている。第2圧力センサ24で検出された一次圧は制御部28に検出信号として送信される。 The second pressure sensor 24 is arranged to measure the pressure (primary pressure) on the upstream side of the flow rate adjustment valve 18. The primary pressure detected by the second pressure sensor 24 is transmitted to the control unit 28 as a detection signal.
 第3圧力センサ26は、流量調整弁18の下流側の圧力(二次圧)を測定するように配置されている。第3圧力センサ26で検出された二次圧は、制御部28に検出信号として送信される。 The third pressure sensor 26 is arranged to measure the pressure (secondary pressure) on the downstream side of the flow regulating valve 18. The secondary pressure detected by the third pressure sensor 26 is transmitted to the control unit 28 as a detection signal.
 第2流路抵抗22は、燃料ガス供給路8での流路抵抗となる要素である(例えばオリフィス)。第2流路抵抗22は、ガスボイラ4の炉圧の変動等による燃料ガスの流量変動を抑える機能を有する。実施形態では図示していないが、第2流路抵抗22の前後の差圧を測定すれば、燃料ガスの流量を簡易的に測定することができる。 The second flow path resistance 22 is an element that becomes a flow path resistance in the fuel gas supply path 8 (for example, an orifice). The second flow path resistance 22 has a function of suppressing fluctuations in the flow rate of the fuel gas due to fluctuations in the furnace pressure of the gas boiler 4 and the like. Although not shown in the embodiment, the flow rate of the fuel gas can be easily measured by measuring the differential pressure before and after the second flow path resistance 22.
 このような構成において、燃焼制御機構2は、流量調整弁18により燃料ガスの流量を制御する際に、燃料ガスの流量を所望の流量に制御しながらガスボイラ4に安定的に供給するように制御する。以下、燃焼制御機構2による具体的な制御方法の一例について、図2のフローチャートを参照しながら説明する。 In such a configuration, when controlling the flow rate of the fuel gas by the flow rate adjusting valve 18, the combustion control mechanism 2 is controlled so as to stably supply the fuel gas to the gas boiler 4 while controlling the flow rate of the fuel gas to a desired flow rate. To do. Hereinafter, an example of a specific control method by the combustion control mechanism 2 will be described with reference to the flowchart of FIG.
 まず、空気供給路6における差圧を測定する(ステップS1)。具体的には、第1圧力センサ12により空気供給路6における差圧が測定され、検出信号として制御部28に送信される。 First, the differential pressure in the air supply path 6 is measured (step S1). Specifically, the differential pressure in the air supply path 6 is measured by the first pressure sensor 12 and transmitted to the control unit 28 as a detection signal.
 次に、空気の差圧から要求ガス流量を算出する(ステップS2)。要求ガス流量とは、ガスボイラ4から要求される燃料ガスの流量であり、空気の流量に対して所定の空気比となる燃料ガスの流量である。具体的な制御としては、制御部28に予め記憶された、空気の差圧と要求ガス流量の対応関係を参照することで、ステップS1で測定した差圧から要求ガス流量を算出する。空気の差圧と要求ガス流量の対応関係は、例えば、空気の差圧から算出される空気の流量に基づいて、空気比が一定となる燃料ガスの流量を要求ガス流量として実験などにより求め、空気の差圧に関係付けて制御部28に記憶しておく。 Next, the required gas flow rate is calculated from the differential pressure of air (step S2). The required gas flow rate is the flow rate of the fuel gas required from the gas boiler 4, and is the flow rate of the fuel gas that has a predetermined air ratio with respect to the flow rate of air. As specific control, the required gas flow rate is calculated from the differential pressure measured in step S <b> 1 by referring to the correspondence relationship between the air differential pressure and the required gas flow rate stored in advance in the control unit 28. The correspondence relationship between the differential pressure of air and the required gas flow rate is obtained, for example, by experiment, using the flow rate of fuel gas with a constant air ratio as the required gas flow rate based on the flow rate of air calculated from the differential pressure of air. It is stored in the control unit 28 in relation to the differential pressure of air.
 上述したステップS1、S2のように、空気の差圧から空気の流量を算出し、それに対応する(空気比が一定となる)燃料ガスの流量を要求ガス流量として算出することで、要求ガス流量を速やかに求めることができる。 As in steps S1 and S2 described above, the flow rate of air is calculated from the differential pressure of air, and the flow rate of fuel gas corresponding to that (the air ratio is constant) is calculated as the required gas flow rate. Can be promptly requested.
 次に、要求ガス流量から流量調整弁18の開度を算出する(ステップS3)。具体的には、制御部28に予め記憶された、要求ガス流量と流量調整弁18の開度の対応関係を参照することで、ステップS2で算出した要求ガス流量から流量調整弁18の開度を算出する。本実施形態では例えば、流量調整弁18の開度が30%と算出される。 Next, the opening degree of the flow rate adjusting valve 18 is calculated from the required gas flow rate (step S3). Specifically, by referring to the correspondence relationship between the required gas flow rate and the opening degree of the flow rate adjustment valve 18 stored in advance in the control unit 28, the opening degree of the flow rate adjustment valve 18 from the required gas flow rate calculated in step S2. Is calculated. In the present embodiment, for example, the opening degree of the flow rate adjustment valve 18 is calculated as 30%.
 一方、ステップS1-S3とは別のステップとして、燃料ガス供給路8における流量調整弁18の一次側の圧力を測定する(ステップS4)。具体的には、第2圧力センサ24により、流量調整弁18の一次側の圧力(一次圧)を測定し、一次圧を測定信号として制御部28に送信する。本実施形態では例えば、流量調整弁18の一次圧が40kPaと測定される。 On the other hand, as a step different from steps S1-S3, the pressure on the primary side of the flow rate adjusting valve 18 in the fuel gas supply path 8 is measured (step S4). Specifically, the pressure (primary pressure) on the primary side of the flow rate adjustment valve 18 is measured by the second pressure sensor 24, and the primary pressure is transmitted to the control unit 28 as a measurement signal. In the present embodiment, for example, the primary pressure of the flow regulating valve 18 is measured as 40 kPa.
 次に、一次圧に基づいて流量調整弁18の補正開度を算出する(ステップS5)。具体的には、制御部28に予め記憶された一次圧と補正開度の関係を参照することで、ステップS4で測定した一次圧から補正開度を算出する。一次圧と補正開度の関係の一例を図3に示す。 Next, the corrected opening degree of the flow rate adjusting valve 18 is calculated based on the primary pressure (step S5). Specifically, the correction opening is calculated from the primary pressure measured in step S4 by referring to the relationship between the primary pressure and the correction opening stored in advance in the control unit 28. An example of the relationship between the primary pressure and the correction opening is shown in FIG.
 図3に示すように、それぞれの一次圧に対応する補正開度(%)が定められており、この一次圧と補正開度の関係は実験などにより予め求めることができる。本実施形態では例えば、一次圧の測定値は40kPaであり、それに対応する補正開度は15.0%と算出される。 As shown in FIG. 3, a correction opening degree (%) corresponding to each primary pressure is determined, and the relationship between the primary pressure and the correction opening degree can be obtained in advance by an experiment or the like. In the present embodiment, for example, the measured value of the primary pressure is 40 kPa, and the corresponding correction opening is calculated as 15.0%.
 次に、流量調整弁18の開度を補正する(ステップS6)。具体的には、ステップS3で算出した流量調整弁18の開度を、ステップS5で算出した補正開度により補正する。例えば、ステップS3で算出した流量調整弁18の開度が30%であり、ステップS5で算出した補正開度が15%である場合、補正後の流量調整弁18の開度は45%(30%+15%)になる。 Next, the opening degree of the flow rate adjustment valve 18 is corrected (step S6). Specifically, the opening degree of the flow rate adjustment valve 18 calculated in step S3 is corrected by the correction opening degree calculated in step S5. For example, when the opening degree of the flow rate adjusting valve 18 calculated in step S3 is 30% and the corrected opening degree calculated in step S5 is 15%, the corrected opening degree of the flow rate adjusting valve 18 is 45% (30 % + 15%).
 次に、補正後の流量調整弁18の開度を出力する(ステップS7)。ステップS6で補正された開度を、流量調整弁18の開度として制御部28から弁駆動部30へ出力する。これにより、流量調整弁18の開度が例えば45%として出力される。このように、本実施形態では、ステップS3で算出した開度にステップS5で算出した補正開度を加算することにより、流量調整弁18の開度を調整して出力している。 Next, the corrected opening degree of the flow rate adjusting valve 18 is output (step S7). The opening corrected in step S <b> 6 is output from the control unit 28 to the valve driving unit 30 as the opening of the flow rate adjustment valve 18. Thereby, the opening degree of the flow regulating valve 18 is output as 45%, for example. Thus, in this embodiment, the opening degree of the flow rate adjusting valve 18 is adjusted and output by adding the corrected opening degree calculated in step S5 to the opening degree calculated in step S3.
 このような本実施形態の制御方法に対して、例えば、第2遮断弁16として燃料ガスを下流側に一定の圧力で供給するガバナ付き遮断弁を設けて制御する場合が考えられる。このような場合、第2遮断弁16の下流側にある流量調整弁18には一定の圧力の燃料ガスが供給されるため、圧力が一定という前提のもとで、燃料ガスの流量が所望の流量となるように、流量調整弁18の開度調整が行われる。 For such a control method of this embodiment, for example, a case where a control valve with a governor for supplying fuel gas at a constant pressure downstream as a second shutoff valve 16 is provided and controlled can be considered. In such a case, since the fuel gas having a constant pressure is supplied to the flow rate adjusting valve 18 on the downstream side of the second shutoff valve 16, the flow rate of the fuel gas is set to a desired value under the assumption that the pressure is constant. The opening degree of the flow rate adjustment valve 18 is adjusted so that the flow rate is obtained.
 図4Aは、従来のガバナを有する燃焼制御機構における、燃焼開始時の遮断弁(第1遮断弁14、第2遮断弁16)開閉信号、ガスボイラ4の炉内圧力(炉圧)及び燃料ガス流量を模式的に示したものである。遮断弁開信号により、燃料ガス供給路8に設けられた遮断弁14、16が開き、燃料ガス流量が急増し、その直後に急減する。さらに、ガスボイラ4の着火による炉圧の急激な変動(着火衝撃(矢印A))が、この燃料ガス流量の変動に重なり、燃料ガス流量と炉圧の変動が継続する。このように、ガバナのハンチング現象に着火衝撃が重なることで、燃料ガス流量が大きく変動してガスボイラ4の燃焼量が変動するために、更に炉圧が変動するという悪循環に陥ることもある。こうした、燃料ガス流量及び炉圧の変動により空気比は大きく上下し、振動燃焼などの燃焼の不安定化や失火の原因になる。 FIG. 4A shows a shutoff valve (first shutoff valve 14 and second shutoff valve 16) opening / closing signal at the start of combustion, an in-furnace pressure (furnace pressure) and a fuel gas flow rate at the start of combustion in a combustion control mechanism having a conventional governor. Is schematically shown. Due to the shut-off valve opening signal, the shut-off valves 14 and 16 provided in the fuel gas supply path 8 are opened, and the fuel gas flow rate increases rapidly and immediately after that. Further, the rapid fluctuation of the furnace pressure (ignition impact (arrow A)) due to the ignition of the gas boiler 4 overlaps with the fluctuation of the fuel gas flow rate, and the fluctuations of the fuel gas flow rate and the furnace pressure continue. As described above, the ignition shock overlaps with the governor hunting phenomenon, so that the fuel gas flow rate largely fluctuates and the combustion amount of the gas boiler 4 fluctuates, which may lead to a vicious circle in which the furnace pressure further fluctuates. The air ratio greatly fluctuates due to such fluctuations in the fuel gas flow rate and the furnace pressure, causing combustion instability such as vibration combustion and misfire.
 これに対して、本実施形態の燃焼制御機構2による制御例を図4Bに示す。図4Bに示すように、燃料ガス流量は、遮断弁14、16が開いた直後のオーバーシュートは無く、着火衝撃(矢印B)により炉圧が変動する影響を受けるものの、すぐに所定の流量に安定する。この効果は、流量調整弁18の開度を要求ガス流量と流量調整弁18の一次側の圧力とに基づいて補正することで、ガスボイラ4に供給する燃料ガスの流量を所望の流量となるように調整することにより得られるものである。本実施形態の燃焼制御機構2の制御によれば、燃焼開始(着火)やボイラの要求負荷に対応してガスボイラ4の燃焼量が変動した場合でも、安定的に所定の燃料ガスを供給でき、ガスボイラ4における燃焼を安定化させ、振動燃焼などの燃焼の不安定化や失火を防止することができる。 On the other hand, an example of control by the combustion control mechanism 2 of the present embodiment is shown in FIG. 4B. As shown in FIG. 4B, the fuel gas flow rate does not have an overshoot immediately after the shutoff valves 14 and 16 are opened, and is immediately affected by the fluctuation of the furnace pressure due to the ignition impact (arrow B). Stabilize. This effect is that the flow rate of the fuel gas supplied to the gas boiler 4 becomes a desired flow rate by correcting the opening degree of the flow rate adjustment valve 18 based on the required gas flow rate and the pressure on the primary side of the flow rate adjustment valve 18. It is obtained by adjusting to. According to the control of the combustion control mechanism 2 of the present embodiment, even when the combustion amount of the gas boiler 4 fluctuates in response to the start of combustion (ignition) or the required load of the boiler, a predetermined fuel gas can be stably supplied, Combustion in the gas boiler 4 can be stabilized, and combustion instability such as vibration combustion and misfire can be prevented.
 一方、ステップS1-S7とは別のステップとして、流量調整弁18の二次側の圧力を測定する(ステップS8)。具体的には、第3圧力センサ26により、流量調整弁18の二次側の圧力(二次圧)を測定する。二次圧の測定結果は、制御部28に検出信号として送信される。 On the other hand, as a step different from steps S1-S7, the pressure on the secondary side of the flow regulating valve 18 is measured (step S8). Specifically, the pressure (secondary pressure) on the secondary side of the flow regulating valve 18 is measured by the third pressure sensor 26. The measurement result of the secondary pressure is transmitted to the control unit 28 as a detection signal.
 次に、異常検出を行う(ステップS9)。具体的には、ステップS8で測定した二次圧が、予め定めた所定範囲内の値であるかどうかを判定する。二次圧が予め定めた所定範囲を超える場合には、流量調整弁18の動作不良等に起因して、ガス過多(空気比低下)又はガス不良(空気比上昇)となり、ガスボイラ4において振動燃焼、失火、不完全燃焼などの現象が現れる場合がある。これに対応するために、本実施形態では、二次圧が所定範囲の値から外れていると決定した場合に異常を検出するとともに、流量調整弁18の更なる開度補正、警報出力あるいは燃料ガスの緊急遮断のうちの少なくとも1つを行う。このような制御を行うことで、前述した現象の発生を抑制することができ、燃料ガスをガスボイラ4により安定的に供給することができる。 Next, abnormality detection is performed (step S9). Specifically, it is determined whether or not the secondary pressure measured in step S8 is a value within a predetermined range. When the secondary pressure exceeds a predetermined range, gas flow is excessive (air ratio is decreased) or gas is defective (air ratio is increased) due to malfunction of the flow rate adjusting valve 18, and vibration combustion occurs in the gas boiler 4. Phenomena such as misfire, incomplete combustion may appear. In order to cope with this, in the present embodiment, when it is determined that the secondary pressure is out of a predetermined range, an abnormality is detected, and further opening correction of the flow rate adjustment valve 18, alarm output, or fuel At least one of the emergency gas shutoffs is performed. By performing such control, occurrence of the above-described phenomenon can be suppressed, and fuel gas can be stably supplied from the gas boiler 4.
 流量調整弁18の更なる開度補正を行う場合には例えば、更なる開度補正後の二次圧が所定範囲内に収まるように、流量調整弁18の開度補正値を決定する(図5A参照)。警報出力を行う場合には例えば、ユーザが燃焼制御機構2を操作するためのユーザインタフェースに警報メッセージを出力する(図5B参照)。燃料ガスの緊急遮断を行う場合には例えば、第1遮断弁14および第2遮断弁16を閉じるとともに、空気の供給も停止する。 When performing further opening degree correction of the flow rate adjusting valve 18, for example, the opening degree correction value of the flow rate adjusting valve 18 is determined so that the secondary pressure after further opening degree correction falls within a predetermined range (FIG. 5A). When the alarm is output, for example, an alarm message is output to a user interface for the user to operate the combustion control mechanism 2 (see FIG. 5B). For example, when the emergency shutoff of the fuel gas is performed, the first shutoff valve 14 and the second shutoff valve 16 are closed, and the supply of air is also stopped.
 本実施形態のガスボイラの燃焼制御機構2では、供給圧力を一定に調整するためのガバナを廃し、流量調整弁18の一次側の圧力を検出する第2圧力センサ24を設け、ガスボイラ4から要求される燃料ガス流量と一次圧に基づき流量調整弁18の開度を調整できるように構成した。このように、ガバナの無い(ガス)燃焼制御機構2とし、要求ガス流量と一次圧に基づいて燃料ガス流量を調整することにより、供給ガス圧力が変動した場合でも所定の燃料ガス流量を安定的に供給できる。また、流量調整弁18の開度指示によるフィードフォワード制御にできるため、ガスボイラ4の発停や燃焼ステージの変化に伴う燃料ガス流量の急激な変動やガスボイラ4の炉内圧力変動等の影響を受けにくい。さらに、流量調整弁18の一次側の圧力を検出することは、二次側の圧力のように燃料ガス流量によって広い範囲で変動することがなく、第2圧力センサ24の測定精度を比較的に高くすることができるメリットがあると共に、一次圧は流量調整弁18の制御の影響を受けることがなく、制御信号として扱いやすい特徴がある。 In the combustion control mechanism 2 for the gas boiler of the present embodiment, a governor for adjusting the supply pressure to be constant is eliminated, and a second pressure sensor 24 for detecting the pressure on the primary side of the flow rate adjusting valve 18 is provided. The opening degree of the flow rate adjustment valve 18 can be adjusted based on the fuel gas flow rate and the primary pressure. As described above, the (gas) combustion control mechanism 2 without the governor is used, and by adjusting the fuel gas flow rate based on the required gas flow rate and the primary pressure, the predetermined fuel gas flow rate can be stably maintained even when the supply gas pressure fluctuates. Can supply. Further, since feedforward control can be performed by instructing the opening degree of the flow rate adjusting valve 18, it is affected by sudden fluctuations in the fuel gas flow rate due to the start / stop of the gas boiler 4 and the change in the combustion stage, fluctuations in the pressure in the furnace of the gas boiler 4, and the like. Hateful. Further, detecting the pressure on the primary side of the flow rate adjusting valve 18 does not fluctuate in a wide range depending on the fuel gas flow rate as in the case of the pressure on the secondary side, and the measurement accuracy of the second pressure sensor 24 is relatively reduced. In addition to the merit that can be increased, the primary pressure is not affected by the control of the flow rate adjusting valve 18 and is easy to handle as a control signal.
 また本実施形態のガスボイラの燃焼制御機構2では、(第1)制御部28は、要求ガス流量と流量調整弁18の開度の関係を記憶し、この記憶された関係から流量調整弁18の開度に対して一次圧に基づいて決定された補正開度を適用する。このような制御によれば、要求ガス流量を調整の目標値として流量調整弁18の開度を補正するため、PID制御等の複雑な演算を行わずに、流量調整弁18の開度を速やかに決定することができる。よって、ガスボイラ4の燃焼量が大きく変動して要求ガス流量が大きく変動した場合でも、流量調整弁18の開度を目標値に向けて速やかに制御することができる。特に、燃焼の発停や燃焼量の変動が頻繁に起こるガスボイラ4に適した制御である。 In the combustion control mechanism 2 for the gas boiler according to the present embodiment, the (first) control unit 28 stores the relationship between the required gas flow rate and the opening degree of the flow rate adjustment valve 18, and the flow rate adjustment valve 18 has the relationship stored. A corrected opening determined based on the primary pressure is applied to the opening. According to such control, since the opening degree of the flow rate adjustment valve 18 is corrected using the required gas flow rate as a target value for adjustment, the opening degree of the flow rate adjustment valve 18 is quickly adjusted without performing complicated calculations such as PID control. Can be determined. Therefore, even when the combustion amount of the gas boiler 4 varies greatly and the required gas flow rate varies greatly, the opening degree of the flow rate adjustment valve 18 can be quickly controlled toward the target value. In particular, the control is suitable for the gas boiler 4 in which combustion starts and stops and fluctuations in the combustion amount frequently occur.
 また本実施形態のガスボイラの燃焼制御機構2は、流量調整弁18と(第1)制御部28を備え、空気供給路6における空気の流量に関する物理量を算出する物理量算出部(本実施形態では第1圧力センサ12)をさらに備える。このような構成において、制御部28は、物理量算出部が算出する物理量(例えば、燃焼空気量)に基づいて要求ガス流量を決定することができる。つまり、流量調整弁18と制御部28は、燃料ガス圧力の調整と燃料ガス流量の調整を統合することで、燃焼制御機構2の構造簡素化及びコストダウンに効果がある。 Further, the combustion control mechanism 2 of the gas boiler of this embodiment includes a flow rate adjusting valve 18 and a (first) control unit 28, and a physical quantity calculation unit (in this embodiment, the first physical quantity calculation unit) calculates a physical quantity related to the air flow rate in the air supply path 6. 1 pressure sensor 12). In such a configuration, the control unit 28 can determine the required gas flow rate based on the physical quantity (for example, the combustion air quantity) calculated by the physical quantity calculation unit. That is, the flow rate adjusting valve 18 and the control unit 28 are effective in simplifying the structure and reducing the cost of the combustion control mechanism 2 by integrating the adjustment of the fuel gas pressure and the adjustment of the fuel gas flow rate.
 本実施形態のガスボイラの燃焼制御機構2において、物理量算出部は、空気供給路6における空気の差圧を検出する差圧センサ(第1圧力センサ12)を使うことができる。このような制御では、空気の差圧から空気の流量を算出し、当該流量に対して空気比が一定となる燃料ガスの流量を要求ガス流量として求めることができるため、要求ガス流量を速やかに決定することができる。 In the combustion control mechanism 2 of the gas boiler of the present embodiment, the physical quantity calculation unit can use a differential pressure sensor (first pressure sensor 12) that detects the differential pressure of air in the air supply path 6. In such control, the flow rate of the air can be calculated from the differential pressure of the air, and the flow rate of the fuel gas with a constant air ratio with respect to the flow rate can be obtained as the required gas flow rate. Can be determined.
 また本実施形態のガスボイラの燃焼制御機構2は、(第2)制御部28と、燃料ガス供給路8における流量調整弁18の二次側の圧力又は流量を検出する二次側検出部(本実施形態では第3圧力センサ26)とを備え、制御部28は、二次側検出部の検出値が所定範囲の値から外れている場合に、流量調整弁18の更なる開度補正、警報出力或いはガス燃料の緊急遮断の一つ以上の制御を行う。このような制御によれば、制御部28の制御結果を監視し、適正な制御が行われていない場合には自動的に幾つかの対策を講じることができる。また、流量調整弁18の動作不良等に起因するガスボイラ4での異常現象の発生を抑制することができ、ガスボイラ4を安定して燃焼することができる。 Further, the combustion control mechanism 2 of the gas boiler according to the present embodiment includes a (second) control unit 28 and a secondary side detection unit (this main unit) that detects the pressure or flow rate on the secondary side of the flow rate adjusting valve 18 in the fuel gas supply path 8. In the embodiment, the control unit 28 includes a third pressure sensor 26), and the control unit 28 further corrects the opening degree of the flow rate adjustment valve 18 and alarms when the detection value of the secondary side detection unit is out of a predetermined range. One or more controls for output or emergency shutdown of gas fuel. According to such control, it is possible to monitor the control result of the control unit 28 and automatically take some measures when appropriate control is not performed. Moreover, the occurrence of an abnormal phenomenon in the gas boiler 4 due to the malfunction of the flow rate adjusting valve 18 can be suppressed, and the gas boiler 4 can be combusted stably.
 以上、図1―図5A、5Bを用いて実施形態について説明したが、その他の各種変形例も可能である。例えば、実施形態では、ステップS1で空気供給路6における差圧を測定し、差圧から空気の流量を算出する場合について説明したが、このような場合に限らない。例えば、空気の流量を算出することができれば、空気の差圧以外の要素を測定してもよい。すなわち、空気の流量を算出可能とする「空気の流量に関する物理量」(例えば、空気流量計などの流量そのもの)を測定する場合であってもよい。 Although the embodiment has been described above with reference to FIGS. 1 to 5A and 5B, other various modifications are possible. For example, in the embodiment, the case has been described in which the differential pressure in the air supply path 6 is measured in step S1 and the flow rate of air is calculated from the differential pressure, but this is not a limitation. For example, elements other than the differential pressure of air may be measured as long as the flow rate of air can be calculated. That is, it may be a case where a “physical quantity relating to the air flow rate” (for example, a flow rate itself of an air flow meter or the like) that allows calculation of the air flow rate is measured.
 あるいは、空気の流量を算出しない場合であってもよい。例えば、ガスボイラ4における燃焼ステージに応じて要求ガス流量を記憶している場合であってもよい。例えば、最高の燃焼量で燃焼する燃焼ステージにおいてボイラから要求される燃料ガス量を100%として、燃焼停止のガス量を0%、低燃焼ステージの燃料ガス量を25%、中燃焼ステージの燃料ガス量を45%とする4段階の燃焼状態が存在する場合、低燃焼ステージの燃料ガス流量を「A」Nm/h(A=C×0.25)、中燃焼ステージの燃料ガス流量を「B」Nm/h(B=C×0.45)、高燃焼ステージの燃料ガス流量を「C」Nm/hとして、燃焼ステージと要求ガス流量(A、B、C)の関係を制御部28に記憶させ、燃料ガス流量から流量調整弁18の開度を算出することができる。 Alternatively, the air flow rate may not be calculated. For example, the case where the required gas flow rate is memorized according to the combustion stage in the gas boiler 4 may be used. For example, in the combustion stage that burns at the maximum combustion amount, the amount of fuel gas required from the boiler is 100%, the amount of gas for stopping combustion is 0%, the amount of fuel gas in the low combustion stage is 25%, and the fuel in the middle combustion stage When there are four stages of combustion states with a gas amount of 45%, the fuel gas flow rate of the low combustion stage is “A” Nm 3 / h (A = C × 0.25), and the fuel gas flow rate of the middle combustion stage is “B”. ”Nm 3 / h (B = C × 0.45), the fuel gas flow rate of the high combustion stage is“ C ”Nm 3 / h, and the relationship between the combustion stage and the required gas flow rate (A, B, C) The opening degree of the flow rate adjusting valve 18 can be calculated from the fuel gas flow rate.
 また実施形態では、流量調整弁18の一次圧として、第2遮断弁16と流量調整弁18の間の圧力を測定するように第2圧力センサ24を配置したが、このような場合に限らない。流量調整弁18の一次側(上流側)であれば、第2圧力センサ24を任意の位置に設けてもよく、例えば第1遮断弁14と第2遮断弁16の間、あるいは、第1遮断弁14の上流側の圧力を測定してもよい。 In the embodiment, the second pressure sensor 24 is arranged to measure the pressure between the second shutoff valve 16 and the flow rate adjusting valve 18 as the primary pressure of the flow rate adjusting valve 18. However, the present invention is not limited to such a case. . If it is the primary side (upstream side) of the flow regulating valve 18, the second pressure sensor 24 may be provided at an arbitrary position, for example, between the first cutoff valve 14 and the second cutoff valve 16, or the first cutoff. The pressure upstream of the valve 14 may be measured.
 また実施形態では、ステップS5で補正開度を算出する際に、流量調整弁18の一次側の圧力の「絶対値」を用いる場合について説明したが、このような場合に限らない。一次圧の「変動値」(例えば、基準値に対する一次圧の変動値、所定期間における一次圧の変動値)などを用いて補正開度を算出してもよい。 In the embodiment, the case where the “absolute value” of the pressure on the primary side of the flow rate adjustment valve 18 is used when calculating the corrected opening degree in step S5 has been described, but the present invention is not limited to such a case. The corrected opening degree may be calculated using a “variation value” of the primary pressure (for example, a variation value of the primary pressure with respect to a reference value, a variation value of the primary pressure during a predetermined period), or the like.
 また実施形態では、ステップS6、S7における流量調整弁18の開度補正およびステップS9における異常検出を1つの制御部28が制御して実行する場合について説明したが、このような場合に限らない。例えば、別々の制御部を設け、ステップS6、S7における流量調整弁18の開度補正を第1制御部が行い、ステップS9における異常検出を第2制御部が行ってもよい。 In the embodiment, the case where the single control unit 28 controls and executes the opening degree correction of the flow rate adjusting valve 18 in steps S6 and S7 and the abnormality detection in step S9 has been described, but the present invention is not limited to such a case. For example, a separate control unit may be provided, and the first control unit may perform opening degree correction of the flow rate adjusting valve 18 in steps S6 and S7, and the second control unit may perform abnormality detection in step S9.
 また実施形態では、ステップS9における異常検出を第3圧力センサ26が検出する二次圧に基づいて行う場合について説明したが、このような場合に限らず、流量調整弁18の二次側の流量に基づいて行ってもよい。このように、異常検出を行う場合には、流量調整弁18の二次側の圧力又は流量を検出する二次側検出部を設けて行ってもよい。 Moreover, although embodiment demonstrated the case where abnormality detection in step S9 was performed based on the secondary pressure which the 3rd pressure sensor 26 detects, not only in such a case, the flow volume of the secondary side of the flow regulating valve 18 is demonstrated. May be performed based on In this way, when performing abnormality detection, a secondary side detection unit that detects the pressure or flow rate on the secondary side of the flow rate adjustment valve 18 may be provided.
 以上、上述の実施形態を挙げて本発明を説明したが、本発明は上述の実施形態に限定されない。 As described above, the present invention has been described with reference to the above embodiment, but the present invention is not limited to the above embodiment.
 なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。 It should be noted that, by appropriately combining arbitrary embodiments of the above-described various embodiments, the effects possessed by them can be produced.
 2 燃焼制御機構
 4 ガスボイラ
 6 空気供給路
 8 燃料ガス供給路
 10 第1流路抵抗
 12 第1圧力センサ
 14 第1遮断弁
 16 第2遮断弁
 18 流量調整弁
 20 調節機構
 22 第2流路抵抗
 24 第2圧力センサ
 26 第3圧力センサ
 28 制御部
 30 弁駆動部
DESCRIPTION OF SYMBOLS 2 Combustion control mechanism 4 Gas boiler 6 Air supply path 8 Fuel gas supply path 10 1st flow path resistance 12 1st pressure sensor 14 1st shut-off valve 16 2nd shut-off valve 18 Flow control valve 20 Adjustment mechanism 22 2nd flow path resistance 24 2nd pressure sensor 26 3rd pressure sensor 28 Control part 30 Valve drive part

Claims (5)

  1.  ガスボイラの燃焼制御機構において、
     ガスボイラに燃料ガスを供給する燃料ガス供給路における燃料ガスの流量を調整する流量調整弁と、
     流量調整弁の開度を調整して制御する第1制御部と、
     燃料ガス供給路における流量調整弁の一次側の圧力を検出する圧力センサと、を備え、
     第1制御部は、
     流量調整弁の開度を、ガスボイラから要求される燃料ガスの流量と、圧力センサにより検出した流量調整弁の一次側の圧力とに基づき決定して、流量調整弁の開度を調整する、ガスボイラの燃焼制御機構。
    In the combustion control mechanism of a gas boiler,
    A flow rate adjusting valve for adjusting the flow rate of the fuel gas in the fuel gas supply path for supplying the fuel gas to the gas boiler;
    A first control unit that adjusts and controls the opening of the flow regulating valve;
    A pressure sensor for detecting the pressure on the primary side of the flow rate adjustment valve in the fuel gas supply path,
    The first control unit
    A gas boiler that adjusts the opening of the flow regulating valve by determining the opening of the flow regulating valve based on the flow rate of the fuel gas required from the gas boiler and the pressure on the primary side of the flow regulating valve detected by the pressure sensor. Combustion control mechanism.
  2.  第1制御部は、ガスボイラから要求される燃料ガスの流量と流量調整弁の開度の関係を記憶し、要求される燃料ガスの流量に対応する記憶された流量調整弁の開度に対して一次側の圧力に基づき決定した補正開度を適用することで、流量調整弁の開度を調整する、請求項1に記載のガスボイラの燃焼制御機構。 The first control unit stores the relationship between the flow rate of the fuel gas required from the gas boiler and the opening degree of the flow rate adjustment valve, and the stored opening degree of the flow rate adjustment valve corresponding to the required flow rate of the fuel gas. The combustion control mechanism for a gas boiler according to claim 1, wherein the opening degree of the flow rate adjusting valve is adjusted by applying a corrected opening degree determined based on the pressure on the primary side.
  3.  ガスボイラに空気を供給する空気供給路における空気の流量に関する物理量を算出する物理量算出部をさらに備え、
     第1制御部は、物理量算出部が算出する物理量に基づき、ガスボイラから要求される燃料ガスの流量を決定する、請求項2に記載のガスボイラの燃焼制御機構。
    A physical quantity calculation unit that calculates a physical quantity related to the flow rate of air in an air supply path that supplies air to the gas boiler;
    The combustion control mechanism for a gas boiler according to claim 2, wherein the first control unit determines the flow rate of the fuel gas required from the gas boiler based on the physical quantity calculated by the physical quantity calculation unit.
  4.  物理量算出部は、空気供給路における空気の差圧を検出する差圧センサであり、空気の差圧を空気の流量に関する物理量として算出する、請求項3に記載のガスボイラの燃焼制御機構。 The combustion control mechanism for a gas boiler according to claim 3, wherein the physical quantity calculation unit is a differential pressure sensor that detects the differential pressure of air in the air supply path, and calculates the differential pressure of air as a physical quantity related to the flow rate of air.
  5.  ガスボイラの燃焼制御機構において、
     第2制御部と、
     燃料ガス供給路における流量調整弁の二次側の圧力又は流量を検出する二次側検出部とを備え、
     第2制御部は、二次側検出部の検出値が所定範囲の値から外れている場合に、流量調整弁の更なる開度補正、警報出力或いはガス燃料の緊急遮断の一つ以上の制御を行う、請求項1から4のいずれか1つに記載のガスボイラの燃焼制御機構。
    In the combustion control mechanism of a gas boiler,
    A second control unit;
    A secondary side detector for detecting the pressure or flow rate on the secondary side of the flow rate adjustment valve in the fuel gas supply path,
    The second control unit performs one or more controls of further opening correction of the flow rate adjusting valve, alarm output, or emergency shutoff of the gas fuel when the detection value of the secondary side detection unit is out of a predetermined range. The combustion control mechanism for a gas boiler according to any one of claims 1 to 4, wherein:
PCT/JP2017/001496 2016-03-03 2017-01-18 Gas boiler combustion control mechanism WO2017149967A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016041423A JP6686537B2 (en) 2016-03-03 2016-03-03 Combustion control mechanism of gas boiler
JP2016-041423 2016-03-03

Publications (1)

Publication Number Publication Date
WO2017149967A1 true WO2017149967A1 (en) 2017-09-08

Family

ID=59743782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001496 WO2017149967A1 (en) 2016-03-03 2017-01-18 Gas boiler combustion control mechanism

Country Status (2)

Country Link
JP (1) JP6686537B2 (en)
WO (1) WO2017149967A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7386775B2 (en) 2020-10-15 2023-11-27 大阪瓦斯株式会社 Flow control system and combustion control system equipped with the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731554B2 (en) * 1989-10-23 1995-04-10 中外炉工業株式会社 Flow controller
JPH07233936A (en) * 1994-02-24 1995-09-05 Mitsubishi Heavy Ind Ltd Controlling method of flow rate of fuel of boiler
JP2785458B2 (en) * 1990-07-18 1998-08-13 松下電器産業株式会社 Gas supply equipment abnormality detector
JP2003254534A (en) * 2002-03-04 2003-09-10 Rinnai Corp Gas flow rate control device
JP2004069147A (en) * 2002-08-05 2004-03-04 Rinnai Corp Gas flow rate control device
JP2004353990A (en) * 2003-05-30 2004-12-16 Noritz Corp Gas combustion equipment
JP2006162142A (en) * 2004-12-06 2006-06-22 Chugoku Electric Power Co Inc:The Flow control device
JP2008164264A (en) * 2007-01-05 2008-07-17 Hitachi Ltd Flow control apparatus
JP2016008803A (en) * 2014-06-26 2016-01-18 三浦工業株式会社 Boiler equipment
JP2016020791A (en) * 2014-07-15 2016-02-04 三浦工業株式会社 Boiler system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731554B2 (en) * 1989-10-23 1995-04-10 中外炉工業株式会社 Flow controller
JP2785458B2 (en) * 1990-07-18 1998-08-13 松下電器産業株式会社 Gas supply equipment abnormality detector
JPH07233936A (en) * 1994-02-24 1995-09-05 Mitsubishi Heavy Ind Ltd Controlling method of flow rate of fuel of boiler
JP2003254534A (en) * 2002-03-04 2003-09-10 Rinnai Corp Gas flow rate control device
JP2004069147A (en) * 2002-08-05 2004-03-04 Rinnai Corp Gas flow rate control device
JP2004353990A (en) * 2003-05-30 2004-12-16 Noritz Corp Gas combustion equipment
JP2006162142A (en) * 2004-12-06 2006-06-22 Chugoku Electric Power Co Inc:The Flow control device
JP2008164264A (en) * 2007-01-05 2008-07-17 Hitachi Ltd Flow control apparatus
JP2016008803A (en) * 2014-06-26 2016-01-18 三浦工業株式会社 Boiler equipment
JP2016020791A (en) * 2014-07-15 2016-02-04 三浦工業株式会社 Boiler system

Also Published As

Publication number Publication date
JP6686537B2 (en) 2020-04-22
JP2017156047A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
EP3387508B1 (en) Pressure regulator
WO2017149967A1 (en) Gas boiler combustion control mechanism
KR102339509B1 (en) mass flow control unit
US11454993B2 (en) Flow rate control apparatus, flow rate control method, and program recording medium recording flow rate control program
KR20220071919A (en) Flow rate control apparatus, flow rate control method, and program recording medium in which program for flow rate control apparatus is recorded
JP4875989B2 (en) Flow control device
JPH025975B2 (en)
JP6212281B2 (en) Turbine control device and turbine control method
LT5091B (en) Method and system for controlling the ratio of a variable lead parameter and adjustable lag parameter for a lag-lead process
JP4714253B2 (en) Pressure controller and pressure regulator
JP7054297B2 (en) Program for fluid control device and fluid control device
JP6531431B2 (en) Gas boiler combustion control mechanism
JPH05141572A (en) Fluid valve control device
US9927121B2 (en) Servo gas system, gas burner and method for operating the gas burner
JP2023157738A (en) boiler
JP7474541B1 (en) Flow Control Device
JP6330404B2 (en) Boiler system
JP2014159886A (en) Boiler system
JP2007332856A (en) System and apparatus for controlling turbine bypass valve
JP2022083378A (en) Flow rate control device, flow rate control method, and program for flow rate control device
JP6307901B2 (en) Boiler system
JP2021139505A (en) Fuel gas-supplying mechanism for boiler, and boiler
WO2012124396A1 (en) Burner combustion apparatus
JP2022179847A (en) Combustion control method and combustion control device
JPH1047654A (en) Air ratio automatic correcting system for combustion equipment

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759439

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759439

Country of ref document: EP

Kind code of ref document: A1