WO2012124396A1 - Burner combustion apparatus - Google Patents

Burner combustion apparatus Download PDF

Info

Publication number
WO2012124396A1
WO2012124396A1 PCT/JP2012/052275 JP2012052275W WO2012124396A1 WO 2012124396 A1 WO2012124396 A1 WO 2012124396A1 JP 2012052275 W JP2012052275 W JP 2012052275W WO 2012124396 A1 WO2012124396 A1 WO 2012124396A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
flow path
pressure
fuel
variable orifice
Prior art date
Application number
PCT/JP2012/052275
Other languages
French (fr)
Japanese (ja)
Inventor
弘司 中垣
正夫 野々廣
加藤 潤一
Original Assignee
中外炉工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中外炉工業株式会社 filed Critical 中外炉工業株式会社
Publication of WO2012124396A1 publication Critical patent/WO2012124396A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/027Regulating fuel supply conjointly with air supply using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/06Air or combustion gas valves or dampers at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/08Air or combustion gas valves or dampers used with heat exchanges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/10Air or combustion gas valves or dampers power assisted, e.g. using electric motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to a burner combustion apparatus.
  • an orifice is provided in each of the fuel and combustion air flow paths, and a pressure equalizing valve is provided before and after the orifice of the fuel flow path so that the pressure of the fuel is equal to the pressure of the combustion air before and after the orifice.
  • a double pressure equalizing valve system that maintains a constant flow rate ratio between fuel and combustion air.
  • the air ratio can be set by adjusting the opening area of the orifice of the fuel flow path.
  • the air ratio can be accurately controlled by providing a flow meter capable of detecting the mass flow rate in each of the fuel and combustion air flow paths and controlling a valve that adjusts the flow rate of the combustion air in accordance with the flow rate of the fuel.
  • a flow meter capable of detecting the mass flow rate in each of the fuel and combustion air flow paths and controlling a valve that adjusts the flow rate of the combustion air in accordance with the flow rate of the fuel.
  • an object is to provide a simple burner combustion apparatus capable of keeping the air ratio constant.
  • a burner combustion apparatus is provided with a fixed orifice provided in an air flow path for supplying combustion air to a burner, a fuel flow path for supplying fuel to the burner, and an opening area.
  • a variable orifice that is capable of changing the pressure of the fuel upstream of the variable orifice of the fuel flow path and upstream of the fixed orifice of the air flow path.
  • a first pressure equalizing valve for making the pressure equal to the pressure of the combustion air on the side, and a downstream side of the variable orifice of the fuel flow path, and a pressure of the fuel on the downstream side of the variable orifice of the fuel flow path A second pressure equalizing valve for making the pressure equal to the pressure of the combustion air on the downstream side of the fixed orifice of the air flow path, provided in the air flow path, And an air temperature detector for detecting the temperature of the baked air, according to the temperature the detected air temperature detector, it is assumed that a control device for controlling the opening area of the variable orifice.
  • the pressure before and after the orifice of the fuel flow path and the air flow path becomes the same, and the opening area of the air flow path orifice can be adjusted according to the air temperature.
  • the fuel flow rate is optimized according to the air temperature, and the optimum air ratio can be achieved regardless of the air temperature. Thereby, it is not necessary to measure the mass flow rate of air or fuel, and the apparatus is not expensive.
  • variable orifice may have a mechanical minimum value of a ratio of an opening area to a flow path area of the fuel flow path between 0.2 and 0.28.
  • the opening area of the variable orifice can be appropriately adjusted with respect to a wide range of air ratio and air temperature. Also, a wide range of mechanically adjustable ranges of the opening area of the variable orifice can be actually used. For this reason, the adjustment unit amount of the opening area is small, and precise control is possible.
  • control device may store characteristic curve data that associates the temperature of the combustion air with the opening area of the variable orifice in a one-to-one relationship.
  • control device may store a plurality of different characteristic curve data.
  • the air ratio can be set by the user selecting a characteristic curve.
  • the opening area of the fuel orifice is adjusted according to the air temperature. For this reason, an optimal air ratio can be achieved with an inexpensive configuration regardless of the air temperature.
  • FIG. 1 It is a schematic block diagram of the burner combustion apparatus which is one embodiment of this invention. It is a figure which shows the characteristic curve of the opening ratio of the variable orifice in the burner combustion apparatus of FIG. It is a schematic front view of the valve body of the variable orifice of FIG. It is a figure which shows the relationship between the valve opening degree and opening ratio of the variable orifice of FIG. It is a figure which shows the characteristic curve of the opening ratio of the variable orifice of the alternative of FIG. It is a figure which shows the air ratio change in the conventional double pressure equalizing valve type combustion apparatus.
  • FIG. 1 shows a configuration of a burner combustion apparatus that is one embodiment of the present invention.
  • the burner combustion apparatus of the present embodiment includes a burner 2 provided in the combustion chamber 1, an air flow path 3 that supplies combustion air to the burner 2, and a fuel flow path 4 that supplies fuel to the burner 2.
  • the air flow path 3 is provided with a heat exchanger 6 for exchanging heat with the combustion exhaust gas discharged from the combustion chamber 1 through the flue 5 to preheat the air. Further, the air flow path 3 is provided with a main adjustment valve 7 for adjusting the air flow rate, and a fixed orifice 8 having a fixed opening area is disposed downstream of the main adjustment valve 7. The opening degree of the valve body of the main regulating valve 7 is adjusted by the PID controller 10 so that the detected value of the furnace temperature sensor 9 that detects the temperature in the combustion chamber 1 becomes the set temperature.
  • the air flow path 3 is also provided with an air temperature detector 11 for detecting the temperature of the combustion air.
  • a variable orifice 12 whose opening area can be adjusted is disposed. Further, in the fuel flow path 4, a first pressure equalizing valve 13 that adjusts the pressure upstream of the variable orifice 12 to the same pressure as the pressure upstream of the fixed orifice 8 of the air flow path 3, and downstream of the variable orifice 12. A second pressure equalizing valve 14 that adjusts the pressure on the side to the same pressure as the pressure on the downstream side of the fixed orifice 8 of the air flow path 3 is provided.
  • the opening area of the variable orifice 12 is adjusted by the orifice control device 15 according to the detection value of the air temperature detector 11 and the air ratio preset by the user.
  • the first pressure equalizing valve 13 and the second pressure equalizing valve 14 each have a diaphragm for driving the valve body.
  • the pressures of the two parts that should be equal to each other are guided to both sides of the diaphragm via the pressure guiding tubes 16 and 17.
  • the diaphragm is deformed by the difference in pressure between the two portions to drive the valve body.
  • FIG. 2 shows the ratio (opening ratio) of the opening area of the variable orifice 12 set by the orifice control device 15 to the flow area of the fuel flow path 4.
  • the orifice control device 15 is configured such that the user can set the air ratio ⁇ to a desired ratio selected from values in increments of 0.1 between 0.9 and 1.3.
  • the orifice control device 15 has characteristic curve data that correlates the air temperature detected by the air temperature detector 11 and the opening ratio of the variable orifice 12 on a one-to-one basis for each set value of each air ratio ⁇ . Is remembered.
  • the characteristic curve data is usually stored as a reference table in which an aperture ratio is assigned for each air temperature category. However, the characteristic curve may be stored as a function of air temperature so that the aperture ratio is determined by computation.
  • FIG. 3 shows the configuration of the variable orifice 12.
  • the variable orifice 12 includes a housing 18 having an inner diameter equal to the flow path diameter of the fuel flow path 4, and a disk-shaped valve body 19 held in the housing 18 by a drive shaft 20. That is, the variable orifice 12 is a butterfly type variable orifice in which the valve element 19 is inclined and the opening area is enlarged by the rotation of the drive shaft 20.
  • the diameter of the valve body 19 is smaller than the flow path diameter of the housing 18, and the maximum projected area of the valve body 19 is 80% of the flow path area of the housing 18.
  • the variable orifice 12 including the small valve body 19 has an opening ratio of 0.2 when the opening area is mechanically minimized.
  • FIG. 4 shows the relationship between the valve opening of the variable orifice 12 (1% corresponds to the rotation angle of the drive shaft 20 of 0.9 °) and the orifice opening ratio. It shows in contrast with the opening ratio when the valve body is used.
  • the drive shaft 20 is driven by a pulse motor, and the resolution (corresponding to one pulse) is 0.3% and the angle is 0.27 °.
  • the valve opening range up to an opening ratio of 0.48 when the air temperature is 20 ° C. is shown.
  • the small valve element 19 of the present embodiment is used in a valve opening in a much wider range than a normal valve element. That is, the variable orifice 12 having the small valve body 19 has a small amount of change in the aperture ratio per angular positioning unit drive amount of the drive shaft 20 and can be precisely controlled.
  • the characteristic curve data stored in the orifice control device 15 may be described as a value representing the opening ratio of the variable orifice 12 by the angle of the drive shaft 20.
  • the minimum value of the opening ratio of the variable orifice 12 is preferably between 0.2 in the case of FIG. 2 and 0.28 in the case of FIG. That is, it is preferable that the maximum projected area of the valve element 19 of the variable orifice 12 is in the range of 0.72 to 0.8 times the flow path area of the fuel flow path 4 (effective portion before and after the variable orifice 12).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

Provided is a burner combustion apparatus capable of maintaining a constant air ratio, which comprises a fixed orifice (8) where an air passage (3) is disposed to supply combustion air to a burner (2); a variable orifice (12) disposed at a fuel passage (4) supplying a fuel to the burner (2) and capable of changing an opening space; a first pressure equalizing valve (13) disposed at an upstream part of the variable orifice (12) of the fuel passage (4) to make fuel pressure at the position equal to pressure of the combustion air at an upstream part of the fixed orifice (8) of the air passage (3); a second pressure equalizing valve (14) disposed at a downstream part of the variable orifice (12) of the fuel passage (4) to make fuel pressure at the position equal to pressure of the combustion air at a downstream part of the fixed orifice (8) of the air passage (3); an air temperature detector (11) disposed at the air passage (3) to detect temperature of the combustion air; and a control device (15) controlling the opening space of the variable orifice (12) correspondingly to the temperature detected by the air temperature detector (11).

Description

バーナ燃焼装置Burner burner
 本発明は、バーナ燃焼装置に関する。 The present invention relates to a burner combustion apparatus.
 バーナでは、良好な燃焼状態を維持するために、燃料と燃焼空気との比を適正な値に保つ必要がある。つまり、実際に供給される空気量の燃料を完全燃焼させるために必要な理論空気量に対する比である空気比(空気量/理論空気量)を適切な値に保つ必要がある。一般に、バーナに求められる燃焼熱量を確保するために、燃料の流量が調整され、それに合わせて燃焼空気の流量も調整される。 In the burner, it is necessary to keep the ratio of fuel and combustion air at an appropriate value in order to maintain a good combustion state. That is, it is necessary to maintain an air ratio (air amount / theoretical air amount), which is a ratio of the actually supplied air amount to the theoretical air amount necessary for complete combustion of the fuel, at an appropriate value. Generally, in order to ensure the amount of combustion heat required for the burner, the flow rate of fuel is adjusted, and the flow rate of combustion air is adjusted accordingly.
 燃焼空気の流量を調整する方法として、特許文献1に記載されているように、燃料流路に流量計を設け、検出した燃料流量に応じて、空気流路のバルブの開度を調整し、空気比を一定に保つ方法がある。また、より簡素な構成として、特許文献2に記載されているように、燃料の圧力と燃焼空気の圧力とを等しく保つ均圧弁を設けることで、空気比を一定に保つ方法もある。 As a method for adjusting the flow rate of the combustion air, as described in Patent Document 1, a flow meter is provided in the fuel flow path, and the opening of the valve of the air flow path is adjusted according to the detected fuel flow rate, There is a way to keep the air ratio constant. As a simpler configuration, there is a method of keeping the air ratio constant by providing a pressure equalizing valve that keeps the fuel pressure and the combustion air pressure equal, as described in Patent Document 2.
 さらに、燃料および燃焼空気の流路にそれぞれオリフィスを設け、燃料流路のオリフィスの前後に、燃料の圧力をオリフィスの前後の燃焼空気の圧力とそれぞれ等しくする均圧弁を設けることで、オリフィスを通過する燃料と燃焼空気との流量比を一定に保つ二重均圧弁方式も知られている。二重均圧弁方式では、燃料流路のオリフィスの開口面積を調整することで、空気比を設定できる。 Furthermore, an orifice is provided in each of the fuel and combustion air flow paths, and a pressure equalizing valve is provided before and after the orifice of the fuel flow path so that the pressure of the fuel is equal to the pressure of the combustion air before and after the orifice. There is also known a double pressure equalizing valve system that maintains a constant flow rate ratio between fuel and combustion air. In the double pressure equalizing valve system, the air ratio can be set by adjusting the opening area of the orifice of the fuel flow path.
 これらの方法では、燃料および/または燃焼空気の温度が変化すると、気体の状態方程式にしたがって、燃料および/または燃焼空気の体積が温度に比例して変化するため、空気比を一定に保つことができないという問題がある。特に、燃焼排ガスから燃焼空気に熱回収を行う空気予熱式の燃焼装置では、燃焼空気の温度が大きく変化するため、上述の方法では、空気比を適切に調整できなかった。例えば、図6に示すように、350℃に予熱された空気について適正な空気比μ=1.1となるようにオリフィス径を選定したとしても、炉の立ち上げ時などにおいて実際の空気温度が50℃であれば、空気比μ=1.53となり、バーナが吹き消える畏れもある。 In these methods, when the temperature of the fuel and / or combustion air changes, the volume of the fuel and / or combustion air changes in proportion to the temperature according to the equation of state of the gas, so that the air ratio can be kept constant. There is a problem that you can not. In particular, in an air preheating type combustion apparatus that recovers heat from combustion exhaust gas to combustion air, the temperature of the combustion air changes greatly, and the above method cannot adjust the air ratio appropriately. For example, as shown in FIG. 6, even when the orifice diameter is selected so that the air ratio μ = 1.1 is appropriate for air preheated to 350 ° C., the actual air temperature at the start-up of the furnace, etc. If it is 50 ° C., the air ratio μ = 1.53, and the burner may blow off.
 燃料および燃焼空気の流路にそれぞれ質量流量を検出できる流量計を設け、燃料の流量に応じて燃焼空気の流量を調整するバルブを制御すれば、空気比を正確に制御することができる。しかしながら、それは、装置のコストが高くなるため、小型の燃焼装置に採用することは難しい。 The air ratio can be accurately controlled by providing a flow meter capable of detecting the mass flow rate in each of the fuel and combustion air flow paths and controlling a valve that adjusts the flow rate of the combustion air in accordance with the flow rate of the fuel. However, it is difficult to employ in a small combustion device because of the high cost of the device.
特許4234309号公報Japanese Patent No. 4234309 特開2010-230279号公報JP 2010-230279 A
 前記問題点に鑑みて、空気比を一定に保つことができる簡素なバーナ燃焼装置を提供することを課題とする。 In view of the above problems, an object is to provide a simple burner combustion apparatus capable of keeping the air ratio constant.
 前記課題を解決するために、本発明によるバーナ燃焼装置は、バーナに燃焼空気を供給する空気流路に設けられた固定オリフィスと、前記バーナに燃料を供給する燃料流路に設けられ、開口面積を変化させられる可変オリフィスと、前記燃料流路の前記可変オリフィスの上流側に設けられ、前記燃料流路の前記可変オリフィスの上流側における前記燃料の圧力を前記空気流路の前記固定オリフィスの上流側における前記燃焼空気の圧力と等しい圧力にする第1均圧弁と、前記燃料流路の前記可変オリフィスの下流側に設けられ、前記燃料流路の前記可変オリフィスの下流側における前記燃料の圧力を前記空気流路の前記固定オリフィスの下流側における前記燃焼空気の圧力と等しい圧力にする第2均圧弁と、前記空気流路に設けられ、前記燃焼空気の温度を検出する空気温度検出器と、前記空気温度検出器が検出した温度に応じて、前記可変オリフィスの開口面積を制御する制御装置とを有するものとする。 In order to solve the above problems, a burner combustion apparatus according to the present invention is provided with a fixed orifice provided in an air flow path for supplying combustion air to a burner, a fuel flow path for supplying fuel to the burner, and an opening area. A variable orifice that is capable of changing the pressure of the fuel upstream of the variable orifice of the fuel flow path and upstream of the fixed orifice of the air flow path. A first pressure equalizing valve for making the pressure equal to the pressure of the combustion air on the side, and a downstream side of the variable orifice of the fuel flow path, and a pressure of the fuel on the downstream side of the variable orifice of the fuel flow path A second pressure equalizing valve for making the pressure equal to the pressure of the combustion air on the downstream side of the fixed orifice of the air flow path, provided in the air flow path, And an air temperature detector for detecting the temperature of the baked air, according to the temperature the detected air temperature detector, it is assumed that a control device for controlling the opening area of the variable orifice.
 この構成によれば、燃料流路と空気流路のオリフィスの前後の圧力が同じになり、空気流路のオリフィスの開口面積が空気温度に応じて調整され得る。このため、空気温度に応じて燃料流量を最適化し、空気温度に拘わらず最適な空気比を達成できる。これにより、空気や燃料の質量流量を測定する必要がなく、装置が高価にならない。 According to this configuration, the pressure before and after the orifice of the fuel flow path and the air flow path becomes the same, and the opening area of the air flow path orifice can be adjusted according to the air temperature. For this reason, the fuel flow rate is optimized according to the air temperature, and the optimum air ratio can be achieved regardless of the air temperature. Thereby, it is not necessary to measure the mass flow rate of air or fuel, and the apparatus is not expensive.
 また、本発明のバーナ燃焼装置において、前記可変オリフィスは、前記燃料流路の流路面積に対する開口面積の比の機械的な最小値が0.2から0.28の間であってもよい。 In the burner combustion apparatus of the present invention, the variable orifice may have a mechanical minimum value of a ratio of an opening area to a flow path area of the fuel flow path between 0.2 and 0.28.
 この構成によれば、可変オリフィスの開口の面積を、広範囲の空気比および空気温度に対して適切に調整することができる。また、可変オリフィスの開口面積の機械的に調整可能な範囲の中の広い範囲を実際に使用することができる。このため、開口面積の調整単位量が小さく、精密な制御が可能である。 According to this configuration, the opening area of the variable orifice can be appropriately adjusted with respect to a wide range of air ratio and air temperature. Also, a wide range of mechanically adjustable ranges of the opening area of the variable orifice can be actually used. For this reason, the adjustment unit amount of the opening area is small, and precise control is possible.
 また、本発明のバーナ燃焼装置において、前記制御装置は、前記燃焼空気の温度と前記可変オリフィスの開口面積とを1対1に対応付ける特性曲線データを記憶してもよい。 In the burner combustion apparatus of the present invention, the control device may store characteristic curve data that associates the temperature of the combustion air with the opening area of the variable orifice in a one-to-one relationship.
 この構成によれば、可変オリフィスの制御に参照テーブルを使用する簡単な制御が適用できる。 こ の According to this configuration, simple control using a reference table can be applied to control the variable orifice.
 また、本発明のバーナ燃焼装置において、前記制御装置は、複数の異なる前記特性曲線データを記憶してもよい。 In the burner combustion apparatus of the present invention, the control device may store a plurality of different characteristic curve data.
 この構成によれば、ユーザが特性曲線を選択することによって空気比を設定することができる。 According to this configuration, the air ratio can be set by the user selecting a characteristic curve.
 上記のように、本発明によれば、二重均圧弁方式の燃焼装置において、燃料オリフィスの開口面積が空気温度に応じて調整される。このため、安価な構成で、空気温度に拘わらず最適な空気比を達成できる。 As described above, according to the present invention, in the double pressure equalizing valve type combustion apparatus, the opening area of the fuel orifice is adjusted according to the air temperature. For this reason, an optimal air ratio can be achieved with an inexpensive configuration regardless of the air temperature.
本発明の1つの実施形態であるバーナ燃焼装置の概略構成図である。It is a schematic block diagram of the burner combustion apparatus which is one embodiment of this invention. 図1のバーナ燃焼装置における可変オリフィスの開口比の特性曲線を示す図である。It is a figure which shows the characteristic curve of the opening ratio of the variable orifice in the burner combustion apparatus of FIG. 図1の可変オリフィスの弁体の概略正面図である。It is a schematic front view of the valve body of the variable orifice of FIG. 図3の可変オリフィスの弁開度と開口比の関係を示す図である。It is a figure which shows the relationship between the valve opening degree and opening ratio of the variable orifice of FIG. 図2の代案の可変オリフィスの開口比の特性曲線を示す図である。It is a figure which shows the characteristic curve of the opening ratio of the variable orifice of the alternative of FIG. 従来の二重均圧弁方式の燃焼装置における空気比変化を示す図である。It is a figure which shows the air ratio change in the conventional double pressure equalizing valve type combustion apparatus.
 図1に、本発明の1つの実施形態であるバーナ燃焼装置の構成を示す。本実施形態のバーナ燃焼装置は、燃焼室1に設けたバーナ2と、バーナ2に燃焼空気を供給する空気流路3と、バーナ2に燃料を供給する燃料流路4とを備える。 FIG. 1 shows a configuration of a burner combustion apparatus that is one embodiment of the present invention. The burner combustion apparatus of the present embodiment includes a burner 2 provided in the combustion chamber 1, an air flow path 3 that supplies combustion air to the burner 2, and a fuel flow path 4 that supplies fuel to the burner 2.
 空気流路3には、燃焼室1から煙道5を通して排出される燃焼排ガスと熱交換して空気を予熱するための熱交換器6が設けられている。さらに、空気流路3には、空気流量を調節するための主調整弁7が設けられ、主調整弁7の下流に、開口面積が固定された固定オリフィス8が配設されている。主調整弁7の弁体の開度は、燃焼室1内の温度を検出する炉内温度センサ9の検出値が設定温度になるように、PIDコントローラ10によって調整される。また、空気流路3には、燃焼空気の温度を検出する空気温度検出器11も設けられている。 The air flow path 3 is provided with a heat exchanger 6 for exchanging heat with the combustion exhaust gas discharged from the combustion chamber 1 through the flue 5 to preheat the air. Further, the air flow path 3 is provided with a main adjustment valve 7 for adjusting the air flow rate, and a fixed orifice 8 having a fixed opening area is disposed downstream of the main adjustment valve 7. The opening degree of the valve body of the main regulating valve 7 is adjusted by the PID controller 10 so that the detected value of the furnace temperature sensor 9 that detects the temperature in the combustion chamber 1 becomes the set temperature. The air flow path 3 is also provided with an air temperature detector 11 for detecting the temperature of the combustion air.
 燃料流路4には、開口面積を調整可能な可変オリフィス12が配設されている。さらに、燃料流路4には、可変オリフィス12の上流側の圧力を、空気流路3の固定オリフィス8の上流側の圧力と同じ圧力に調整する第1均圧弁13と、可変オリフィス12の下流側の圧力を、空気流路3の固定オリフィス8の下流側の圧力と同じ圧力に調整する第2均圧弁14とが設けられている。 In the fuel flow path 4, a variable orifice 12 whose opening area can be adjusted is disposed. Further, in the fuel flow path 4, a first pressure equalizing valve 13 that adjusts the pressure upstream of the variable orifice 12 to the same pressure as the pressure upstream of the fixed orifice 8 of the air flow path 3, and downstream of the variable orifice 12. A second pressure equalizing valve 14 that adjusts the pressure on the side to the same pressure as the pressure on the downstream side of the fixed orifice 8 of the air flow path 3 is provided.
 可変オリフィス12の開口面積は、オリフィス制御装置15によって、空気温度検出器11の検出値と、ユーザが予め設定する空気比とに応じて調整される。 The opening area of the variable orifice 12 is adjusted by the orifice control device 15 according to the detection value of the air temperature detector 11 and the air ratio preset by the user.
 第1均圧弁13および第2均圧弁14は、それぞれ、弁体を駆動するダイアフラムを有する。互いに圧力を等しくすべき2つの部分の圧力が、導圧管16,17を介してダイアフラムの両側に導かれる。2つの部分の圧力の差によってダイアフラムが変形して弁体を駆動する。 The first pressure equalizing valve 13 and the second pressure equalizing valve 14 each have a diaphragm for driving the valve body. The pressures of the two parts that should be equal to each other are guided to both sides of the diaphragm via the pressure guiding tubes 16 and 17. The diaphragm is deformed by the difference in pressure between the two portions to drive the valve body.
 図2に、オリフィス制御装置15によって設定される可変オリフィス12の開口面積の燃料流路4の流路面積に対する比(開口比)を示す。本実施形態は、オリフィス制御装置15において、ユーザが空気比μを0.9から1.3までの間で0.1刻みの値から選択した所望の比に設定できるように構成されている。 FIG. 2 shows the ratio (opening ratio) of the opening area of the variable orifice 12 set by the orifice control device 15 to the flow area of the fuel flow path 4. In the present embodiment, the orifice control device 15 is configured such that the user can set the air ratio μ to a desired ratio selected from values in increments of 0.1 between 0.9 and 1.3.
 オリフィス制御装置15は、図2に示すように、各空気比μの設定値毎に、空気温度検出器11が検出した空気温度と可変オリフィス12の開口比とを1対1に対応付ける特性曲線データを記憶している。特性曲線データは、通常、空気温度の区分毎に開口比を割り当てた参照テーブルとして記憶される。しかしながら、特性曲線は、開口比を演算によって決定するように、空気温度の関数として記憶されてもよい。 As shown in FIG. 2, the orifice control device 15 has characteristic curve data that correlates the air temperature detected by the air temperature detector 11 and the opening ratio of the variable orifice 12 on a one-to-one basis for each set value of each air ratio μ. Is remembered. The characteristic curve data is usually stored as a reference table in which an aperture ratio is assigned for each air temperature category. However, the characteristic curve may be stored as a function of air temperature so that the aperture ratio is determined by computation.
 図3に、可変オリフィス12の構成を示す。可変オリフィス12は、燃料流路4の流路径と等しい内径のハウジング18と、ハウジング18の中に駆動軸20によって保持された円盤状の弁体19とを有する。つまり、可変オリフィス12は、駆動軸20の回転によって、弁体19が傾斜して開口面積を拡大するバタフライタイプの可変オリフィスである。本実施形態の可変オリフィス12において、弁体19の径は、ハウジング18の流路径よりも小さく、弁体19の最大投影面積は、ハウジング18の流路面積の80%である。このように小型の弁体19を備える可変オリフィス12は、機械的に最も開口面積を小さくしたときの開口比が0.2になる。 FIG. 3 shows the configuration of the variable orifice 12. The variable orifice 12 includes a housing 18 having an inner diameter equal to the flow path diameter of the fuel flow path 4, and a disk-shaped valve body 19 held in the housing 18 by a drive shaft 20. That is, the variable orifice 12 is a butterfly type variable orifice in which the valve element 19 is inclined and the opening area is enlarged by the rotation of the drive shaft 20. In the variable orifice 12 of the present embodiment, the diameter of the valve body 19 is smaller than the flow path diameter of the housing 18, and the maximum projected area of the valve body 19 is 80% of the flow path area of the housing 18. Thus, the variable orifice 12 including the small valve body 19 has an opening ratio of 0.2 when the opening area is mechanically minimized.
 図4に、可変オリフィス12の弁開度(1%は、駆動軸20の回転角度0.9°に相当する)と、オリフィス開口比との関係を、径がハウジング18の内径に等しい通常の弁体を用いた場合の開口比と対比して示す。尚、駆動軸20は、パルスモータによって駆動され、その分解能(1パルスに相当)は、0.3%であり、角度にして0.27°である。 FIG. 4 shows the relationship between the valve opening of the variable orifice 12 (1% corresponds to the rotation angle of the drive shaft 20 of 0.9 °) and the orifice opening ratio. It shows in contrast with the opening ratio when the valve body is used. The drive shaft 20 is driven by a pulse motor, and the resolution (corresponding to one pulse) is 0.3% and the angle is 0.27 °.
 図4には、図2において、最も開口比が小さくなる空気比μ=1.3で空気温度500℃の場合の開口比0.20から、最も開口比が大きくなる空気比μ=0.9で空気温度20℃の場合の開口比0.48までの弁開度範囲を示す。図示するように、本実施形態の小型の弁体19は、通常の弁体に比べて格段に広い範囲の弁開度で使用される。即ち、小型の弁体19を有する可変オリフィス12は、駆動軸20の角度位置決め単位駆動量当たりの開口比の変化量が小さく、精密な制御が可能である。 FIG. 4 shows the air ratio μ = 0.9 at which the aperture ratio becomes the largest from the air ratio μ = 1.3 at which the aperture ratio becomes the smallest in FIG. The valve opening range up to an opening ratio of 0.48 when the air temperature is 20 ° C. is shown. As shown in the figure, the small valve element 19 of the present embodiment is used in a valve opening in a much wider range than a normal valve element. That is, the variable orifice 12 having the small valve body 19 has a small amount of change in the aperture ratio per angular positioning unit drive amount of the drive shaft 20 and can be precisely controlled.
 尚、オリフィス制御装置15が記憶する特性曲線データは、可変オリフィス12の開口比を、駆動軸20の角度で表した値として記述したものであってもよい。 The characteristic curve data stored in the orifice control device 15 may be described as a value representing the opening ratio of the variable orifice 12 by the angle of the drive shaft 20.
 一般に、オリフィス前後の圧力差とオリフィス開口比と応じて流量が正確に定められるのは、開口比0.2から0.66の範囲である。そこで、図5に、本実施形態において、最も開口比が小さくなる空気比μ=0.9で空気温度20℃の場合の開口比が、可変オリフィス12が流量を正確に定められるオリフィスとして機能し得る最大開口比である0.66になるように、弁体19の外径を設定した場合の特性曲線を示す。この場合、最も開口比が小さくなる空気比μ=1.3で空気温度500℃のとき、開口比は0.28となる。 Generally, the flow rate is accurately determined according to the pressure difference before and after the orifice and the orifice opening ratio in the range of the opening ratio of 0.2 to 0.66. Therefore, in FIG. 5, in this embodiment, the opening ratio when the air ratio μ = 0.9 and the air temperature is 20 ° C. at which the opening ratio is the smallest functions as the orifice in which the variable orifice 12 accurately determines the flow rate. A characteristic curve when the outer diameter of the valve body 19 is set so as to be 0.66 which is the maximum opening ratio to be obtained is shown. In this case, when the air ratio μ = 1.3 where the aperture ratio is the smallest and the air temperature is 500 ° C., the aperture ratio is 0.28.
 これらより、可変オリフィス12の開口比の最小値は、図2の場合の0.2から図5の場合の0.28の間であることが好ましい。つまり、可変オリフィス12の弁体19の最大投影面積が、燃料流路4(可変オリフィス12前後の実効部分)の流路面積の0.72倍から0.8倍の範囲内であることが好ましい Accordingly, the minimum value of the opening ratio of the variable orifice 12 is preferably between 0.2 in the case of FIG. 2 and 0.28 in the case of FIG. That is, it is preferable that the maximum projected area of the valve element 19 of the variable orifice 12 is in the range of 0.72 to 0.8 times the flow path area of the fuel flow path 4 (effective portion before and after the variable orifice 12).
  1…燃焼室
  2…バーナ
  3…空気流路
  4…燃料流路
  5…煙道
  6…熱交換器
  7…主調整弁
  8…固定オリフィス
  9…炉内温度センサ
  10…PIDコントローラ
  11…空気温度検出器
  12…可変オリフィス
  13…第1均圧弁
  14…第2均圧弁
  15…オリフィス制御装置
  16,17…導圧管
  18…ハウジング
  19…弁体
  20…駆動軸
DESCRIPTION OF SYMBOLS 1 ... Combustion chamber 2 ... Burner 3 ... Air flow path 4 ... Fuel flow path 5 ... Flue 6 ... Heat exchanger 7 ... Main adjustment valve 8 ... Fixed orifice 9 ... In-furnace temperature sensor 10 ... PID controller 11 ... Air temperature detection 12 ... Variable orifice 13 ... First pressure equalizing valve 14 ... Second pressure equalizing valve 15 ... Orifice control device 16, 17 ... Pressure guiding pipe 18 ... Housing 19 ... Valve element 20 ... Drive shaft

Claims (4)

  1.  バーナに燃焼空気を供給する空気流路に設けられた固定オリフィスと、
     前記バーナに燃料を供給する燃料流路に設けられ、開口面積を変化させられる可変オリフィスと、
     前記燃料流路の前記可変オリフィスの上流側に設けられ、前記燃料流路の前記可変オリフィスの上流側における前記燃料の圧力を前記空気流路の前記固定オリフィスの上流側における前記燃焼空気の圧力と等しい圧力にする第1均圧弁と、
     前記燃料流路の前記可変オリフィスの下流側に設けられ、前記燃料流路の前記可変オリフィスの下流側における前記燃料の圧力を前記空気流路の前記固定オリフィスの下流側における前記燃焼空気の圧力と等しい圧力にする第2均圧弁と、
     前記空気流路に設けられ、前記燃焼空気の温度を検出する空気温度検出器と、
     前記空気温度検出器が検出した温度に応じて、前記可変オリフィスの開口面積を制御する制御装置とを有することを特徴とするバーナ燃焼装置。
    A fixed orifice provided in an air flow path for supplying combustion air to the burner;
    A variable orifice provided in a fuel flow path for supplying fuel to the burner, the opening area of which can be changed;
    Provided on the upstream side of the variable orifice of the fuel flow path, and the pressure of the fuel on the upstream side of the variable orifice of the fuel flow path is the pressure of the combustion air on the upstream side of the fixed orifice of the air flow path. A first pressure equalizing valve for equal pressure;
    The fuel pressure is provided on the downstream side of the variable orifice of the fuel flow path, and the pressure of the fuel on the downstream side of the variable orifice of the fuel flow path is defined as the pressure of the combustion air on the downstream side of the fixed orifice of the air flow path. A second pressure equalizing valve for equal pressure;
    An air temperature detector provided in the air flow path for detecting the temperature of the combustion air;
    A burner combustion apparatus comprising: a control device that controls an opening area of the variable orifice according to a temperature detected by the air temperature detector.
  2.  前記可変オリフィスは、前記燃料流路の流路面積に対する開口面積の比の機械的な最小値が0.2から0.28の間であることを特徴とする請求項1に記載のバーナ燃焼装置。 2. The burner combustion apparatus according to claim 1, wherein the variable orifice has a mechanical minimum value of a ratio of an opening area to a flow path area of the fuel flow path between 0.2 and 0.28. 3. .
  3.  前記制御装置は、前記燃焼空気の温度と前記可変オリフィスの開口面積とを1対1に対応付ける特性曲線データを記憶していることを特徴とする請求項1または2に記載のバーナ燃焼装置。 3. The burner combustion apparatus according to claim 1 or 2, wherein the control device stores characteristic curve data that associates the temperature of the combustion air with the opening area of the variable orifice in a one-to-one relationship.
  4.  前記制御装置は、複数の異なる前記特性曲線データを記憶していることを特徴とする請求項3に記載のバーナ燃焼装置。 The burner combustion apparatus according to claim 3, wherein the control device stores a plurality of different characteristic curve data.
PCT/JP2012/052275 2011-03-14 2012-02-01 Burner combustion apparatus WO2012124396A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-055702 2011-03-14
JP2011055702A JP2012189299A (en) 2011-03-14 2011-03-14 Burner combustion device

Publications (1)

Publication Number Publication Date
WO2012124396A1 true WO2012124396A1 (en) 2012-09-20

Family

ID=46830477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052275 WO2012124396A1 (en) 2011-03-14 2012-02-01 Burner combustion apparatus

Country Status (2)

Country Link
JP (1) JP2012189299A (en)
WO (1) WO2012124396A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04283313A (en) * 1991-03-11 1992-10-08 Rozai Kogyo Kaisha Ltd Method for proportional control of air-fuel ratio
JPH1047654A (en) * 1996-07-31 1998-02-20 Tokyo Gas Co Ltd Air ratio automatic correcting system for combustion equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04283313A (en) * 1991-03-11 1992-10-08 Rozai Kogyo Kaisha Ltd Method for proportional control of air-fuel ratio
JPH1047654A (en) * 1996-07-31 1998-02-20 Tokyo Gas Co Ltd Air ratio automatic correcting system for combustion equipment

Also Published As

Publication number Publication date
JP2012189299A (en) 2012-10-04

Similar Documents

Publication Publication Date Title
US9028245B2 (en) Automated setup process for metered combustion control systems
US7241135B2 (en) Feedback control for modulating gas burner
CA2571522C (en) Method for setting the air ratio on a firing device and a firing device
US8230825B2 (en) Boiler control system
US10422531B2 (en) System and approach for controlling a combustion chamber
JP5800226B2 (en) boiler
JP2008528925A (en) Oil burner appropriate air-fuel ratio control system using air pressure sensor and control method thereof
JP2008157553A (en) Fuel conditioning device for boiler
JP2015535586A (en) Air proportional control type combustion apparatus and its calorific value adjustment method
KR101811946B1 (en) Rotary valve
JP2013092315A (en) Boiler
WO2012124396A1 (en) Burner combustion apparatus
JP2016020792A (en) Boiler device
WO2017149967A1 (en) Gas boiler combustion control mechanism
JP7073025B1 (en) Combustion equipment
JP3750062B2 (en) Gas flow control device
JP7517079B2 (en) boiler
JP7380331B2 (en) Boiler fuel gas supply mechanism and boiler
JPH11108346A (en) Combustor
JP4069844B2 (en) Gas combustion equipment
CN115076714A (en) Power recording and air ratio control by means of sensors in the combustion chamber
JPH1047654A (en) Air ratio automatic correcting system for combustion equipment
JP2023088161A (en) Premixing device
JP2004069147A (en) Gas flow rate control device
JPH07253211A (en) Fan controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12758035

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12758035

Country of ref document: EP

Kind code of ref document: A1