WO2017149790A1 - Condensate processing system - Google Patents

Condensate processing system Download PDF

Info

Publication number
WO2017149790A1
WO2017149790A1 PCT/JP2016/063876 JP2016063876W WO2017149790A1 WO 2017149790 A1 WO2017149790 A1 WO 2017149790A1 JP 2016063876 W JP2016063876 W JP 2016063876W WO 2017149790 A1 WO2017149790 A1 WO 2017149790A1
Authority
WO
WIPO (PCT)
Prior art keywords
fraction
distillation column
condensate
heavy
preflash
Prior art date
Application number
PCT/JP2016/063876
Other languages
French (fr)
Japanese (ja)
Inventor
直明 澤井
渡邉 哲哉
厚徳 佐藤
基永 久米
Original Assignee
日揮株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮株式会社 filed Critical 日揮株式会社
Priority to JP2016549816A priority Critical patent/JP6026714B1/en
Priority to RU2018110056A priority patent/RU2681314C1/en
Publication of WO2017149790A1 publication Critical patent/WO2017149790A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/14Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including at least two different refining steps in the absence of hydrogen

Definitions

  • the present invention relates to a system for processing condensate to produce products such as LPG (Liquefied Petroleum Gas), light naphtha, heavy naphtha, kerosene and light oil.
  • LPG Liquefied Petroleum Gas
  • light naphtha Light naphtha
  • heavy naphtha heavy naphtha
  • kerosene light oil
  • This hydrocarbon is called natural gas condensate or condensate oil, and has the characteristics that it has more light fractions and less heavy fractions than crude oil. It is a natural resource that is expected as a source of chemical raw materials and energy. is there. In the present application, this hydrocarbon is simply referred to as “condensate”. As a method of hydrorefining condensate (desulfurization), if the condensate is fractionated into each fraction and desulfurization is performed for each fraction, a desulfurization unit for each product is required. Soaring.
  • Patent Document 1 in order to solve such a problem, hydrodesulfurization treatment is collectively performed on the condensate, the desulfurized condensate is distilled and separated by an atmospheric distillation apparatus, and LPG and naphtha distillate are separated. Extraction of a naphtha fraction, a kerosene fraction and a light oil fraction, and separation of a naphtha fraction into light naphtha and heavy naphtha in a naphtha fractionation tower.
  • Patent Document 2 also describes a technique in which hydrodesulfurization treatment is collectively performed on condensate and fractional distillation is similarly performed in an atmospheric distillation column. In this way, condensate is a useful resource, and the technology for extracting each product is known, but it reduces the construction cost of the condensate treatment facility, that is, the hydrocarbon oil production system, and the operating energy. It is requested.
  • the present invention has been made under such circumstances, and is a system capable of reducing operating energy when manufacturing products such as LPG, light naphtha, heavy naphtha, kerosene and light oil by processing condensate. Is to provide.
  • the present invention is a system for processing condensate, A desulfurization unit for hydrodesulfurizing condensate; Condensate hydrodesulfurized by the desulfurizer is supplied, and includes gas components including liquefied petroleum gas and light naphtha fraction, and heavy naphtha fraction and heavy fraction having a higher boiling point than heavy naphtha fraction.
  • condensate is collectively hydrodesulfurized, and then supplied to a preflash distillation column to extract LPG and light naphtha fractions.
  • a preflash distillation column For heavy fractions containing heavy naphtha fractions, It is fed to a tower and fractionated into a heavy naphtha fraction, a kerosene fraction and a light oil fraction, or further fractionated into a heavy residue. Since the condensate contains a large amount of light components and the light components are separated by the preflash distillation column, the operating pressure in the main distillation column can be lowered.
  • the amount of fuel consumed in the heating section provided in the front stage of the main distillation column can be kept low, and the system can be operated with less energy.
  • the fact that the system can be operated with less energy can reduce the size of the heating part and the cooling part, so that the construction cost can be expected to be kept low.
  • the condensate treatment system of the present invention is provided with a reaction tower 1 which is a hydrotreating section (desulfurization apparatus) for performing desulfurization all at once before fractionating the condensate.
  • a reaction tower 1 which is a hydrotreating section (desulfurization apparatus) for performing desulfurization all at once before fractionating the condensate.
  • the reaction tower 1 for example, a plurality of catalyst layers formed by supporting a hydrogenation catalyst on a carrier are provided.
  • the hydrogenation catalyst a Co—Mo system, a Ni—Mo system, a Ni—Co—Mo system, or the like can be used, but is not limited thereto.
  • a supply line 1a that is a pipe that forms a flow path is connected to the upper portion of the reaction tower 1, and a heating furnace 10 that is a heating unit is provided in the supply pipe 1a.
  • the condensate is mixed with hydrogen gas, for example, at the front stage of the heating furnace 10, heated to, for example, 250 ° C. to 370 ° C. in the heating furnace 10, and supplied into the reaction tower 1 from the upper part of the reaction tower 1.
  • hydrogen gas for example, at the front stage of the heating furnace 10
  • the pressure in the reaction tower 1 is set to, for example, 4.0 MPaG to 7.0 MPaG.
  • a feed line 1b consisting of piping that forms a flow path for extracting the condensate in the reaction tower 1 and sending it to the pre-flash distillation tower 2 at the subsequent stage, and downstream of this feed line 1b.
  • the side is connected to the central part of the preflash distillation column 2, for example between the top and the bottom of the column.
  • An extraction line 2 a for extracting a liquid component is connected to the bottom of the preflash distillation column 2.
  • a pump 21 and a heating furnace 3 as a heating unit are connected, and the downstream end of the extraction line 2a is connected to the main distillation column 4.
  • a branch line 2b is branched from the downstream side of the pump 21 in the extraction line 2a, a reboiler 22 is provided in the middle of the branch line 2b, and the downstream side of the branch line 2b is connected to the bottom of the preflash distillation column 2. It is connected. That is, a part of the extraction line 2a and the branch line 2b form a circulation line for returning the liquid component accumulated at the bottom of the preflash distillation column 2 to the bottom.
  • the heating temperature in the reboiler 22 is set to 200 ° C. to 300 ° C., for example.
  • the condensate supplied to the preflash distillation column 2 is heated by the reboiler 22 under pressure, from a light fraction, which is a gas component containing LPG and a light naphtha fraction, from a heavy naphtha fraction and a heavy naphtha fraction. And a liquid component containing a heavy fraction having a high boiling point. Since the condensate contains 30% or more of light naphtha, for example, the heavy fraction extracted from the bottom of the column is less than 70% of the condensate supplied to the preflash distillation column 2, for example.
  • the heavy fraction withdrawn from the bottom of the preflash distillation column 2 is heated to a temperature higher than the heating temperature of the reboiler 22, for example, 250 ° C. to 350 ° C. in the heating furnace 3 as a heating unit.
  • the main distillation column 4 is an atmospheric distillation column composed of, for example, a plate column, and the extraction line 2a is connected to a position below the lowermost tray, for example.
  • stripping with steam is performed at the bottom of the tower to remove the light fractions in the heavy residue, so that the outlet temperature of the previous heating furnace does not rise too much.
  • the connection position of the supply line is a position where the raw material is supplied to, for example, the fourth to tenth trays of the distillation column.
  • the outlet temperature of the heating furnace 3 is specified without stripping by steam. It does not increase to a value (for example, 375 ° C.), and the flash point specification of heavy residue is satisfied. Therefore, when viewed from the downstream side of the extraction line 2a, that is, from the main distillation column 4, the supply position of the raw material supply line is set to a position below the lowermost tray.
  • the main distillation column 4 is operated at a pressure of, for example, 0 MPaG to 0.2 MPaG.
  • a liquid component containing a heavy naphtha fraction extracted from the bottom of the preflash distillation column 2 and a heavy fraction having a boiling point higher than that of the heavy naphtha fraction is fractionated in the main distillation column 4,
  • a heavy naphtha fraction is extracted from the top extraction line 4a, and a kerosene fraction and a light oil fraction are extracted from the extraction lines 4b and 4c on the side wall of the tower, respectively.
  • a heavy oil fraction, which is a heavy residue is extracted from the extraction line 4d at the bottom of the tower.
  • Condensate has a heavy residue content of, for example, 10% by mass or less, and is considerably low. Depending on the condensate used as a raw material, when extraction line 4d is not used, that is, when heavy residue is not fractionally separated There is also.
  • a light fraction that is a gas component including LPG and a light naphtha fraction is extracted from the extraction line 2c at the top of the preflash distillation column 2.
  • the extraction line 2 c is provided with a heat exchanger 51, and the downstream end of the extraction line 2 c is connected to the debutane tower 5.
  • An extraction line 5a for extracting a light naphtha fraction, which is a liquid component, is connected to the bottom of the debutane tower 5, and a branch line 5b branches from the middle of the extraction line 5a.
  • the branch line 5b is provided with a reboiler B3 that is heated by steam, and the bottom of the column is heated to 120 ° C. to 220 ° C., for example.
  • the reboiler B3 is heated to be fractionated into LPG as a gas component and a light naphtha fraction as a liquid component. Therefore, LPG is extracted from the extraction line 5c at the top of the column, and a light naphtha fraction is extracted from the extraction line 5a at the bottom of the column. A part of the liquid component at the bottom of the column circulates from the extraction line 5a through the branch line 5b, and a part of the extraction line 5a and the branch line 5b form a circulation line.
  • the light naphtha fraction extracted to the extraction line 5a is cooled by heat exchange with the liquid component extracted from the top of the preflash distillation column 2 by the heat exchanger 51.
  • the condensate is collectively desulfurized in the hydrotreating section (reaction tower 1), and then separated into a light fraction and a heavy fraction in the preflash distillation tower 2, and the heavy fraction is separated.
  • the portion is fed to the main distillation column 4. Since the condensate contains a lot of light fractions, and the light fractions are removed in the preflash distillation column 2 before being supplied to the main distillation column 4, the operation pressure in the main distillation column 4 can be reduced. Generation of off-gas is suppressed. Thus, since the raw material supplied to the main distillation column 4 is small and the operating pressure of the main distillation column 4 can be lowered, the fuel in the heating furnace 3 can be reduced.
  • the stripper reboiler and reflux provided in each of the kerosene fraction extraction line 4b and the light oil fraction extraction line 4c connected to the side wall of the main distillation column 4 Each operating energy of the condenser and the cooler provided on the road can be kept small. Note that devices such as the stripper described here are not shown in FIG. Moreover, since the operating pressure of the main distillation column 4 is low, high separation performance can be expected in the main distillation column 4.
  • the system of the above-described embodiment requires a facility called a preflash distillation column 2 as compared with Patent Documents 1 and 2 described above, but as can be seen from the examples described later, Get smaller.
  • the operating energy is small, the size of the heating furnace and the cooler is reduced, so that a naphtha splitter is not necessary, and the construction cost can be kept low. Therefore, the system of the present invention is an extremely effective system for producing petroleum products using condensate as a raw material.
  • the condensate processing system of the present invention (hereinafter referred to as “the present invention system”) is superior to the condensate processing technology (hereinafter referred to as “comparison system”) described in Patent Documents 1 and 2 described above.
  • the operating energy was calculated for each of the inventive system and the comparative system. The system used for the calculation is shown in FIGS.
  • FIG. 2 shows the system of the present invention, which is described more specifically than FIG.
  • A1 is a condenser provided in the extraction line 2c at the top of the preflash distillation column 2
  • A2 is a condenser provided in the extraction line 4a at the top of the main distillation column 4.
  • A3 is a cooler provided in the reflux path at the top of the tower
  • A4 is a cooler provided in the reflux path of the kerosene fraction extraction area
  • A5 is a cooler provided in the reflux path of the diesel oil fraction extraction area. is there.
  • A6 is a condenser provided in the extraction line 5c at the top of the debutane tower 5.
  • kerosene fraction extraction line 4b is a stripper provided in a kerosene fraction extraction line 4b from which a kerosene fraction is extracted from the main distillation column 4
  • B1 is a reboiler provided in a circulation path at the bottom of the stripper 41.
  • Reference numeral 42 denotes a stripper provided in a light oil fraction extraction line 4 c from which a light oil fraction is extracted from the main distillation column 4
  • B 2 denotes a reboiler provided in a circulation path at the bottom of the stripper 42.
  • the operating energy required for heating is the operating energy of the reboiler 22, and the operating energy required for cooling is the operating energy of the condenser A1.
  • the operating energy required for heating is the operating energy of the heating furnace 3 and the reboilers B1 and B2, and the operating energy required for cooling is the operating energy of the condenser A2 and the coolers A3 to A5.
  • the operating energy required for heating is the operating energy of the reboiler B3, and the operating energy required for cooling is the operating energy of the condenser A6.
  • the comparative system is a system in which the condensate after batch desulfurization is heated by a heater 101 and then supplied to a main distillation column 102 which is an atmospheric distillation column and fractionated into each fraction. is there.
  • the gas components obtained from the top of the main distillation column 102 are fractionated into LPG and naphtha fractions in the debutane tower 105 in the latter stage, and the naphtha fraction is separated from the light naphtha fraction and heavy by the naphtha splitter 106. It is fractionated into naphtha fractions.
  • C1 is a condenser provided in the extraction line at the top of the main distillation column 102
  • C2 is a cooler provided in the reflux path at the top of the tower
  • C3 is a cooler provided in the reflux path in the extraction region of the kerosene fraction.
  • C4 is a cooler provided in the reflux path of the extraction region of the light oil fraction.
  • C5 is a condenser provided in the extraction line at the top of the debutane tower 105
  • C6 is a condenser provided in the extraction line at the top of the naphtha splitter 106.
  • 103 is a stripper provided in a kerosene fraction extraction line from which a kerosene fraction is extracted from the main distillation column 102
  • D1 is a reboiler provided in a circulation path at the bottom of the stripper 103.
  • 104 is a stripper provided in a gas oil fraction extraction line from which a light oil fraction is extracted from the main distillation column 4, and D ⁇ b> 2 is a reboiler provided in a circulation path at the bottom of the stripper 104.
  • D3 is a reboiler provided in the circulation path at the bottom of the debutanizer tower 105
  • D4 is a reboiler provided in the circulation path at the bottom of the naphtha splitter 106.
  • the main distillation column 102 When using the system shown in FIG. 3 and supplying each product after supplying the desulfurized condensate to the main distillation column 102 at 100,000 BPSD, the main distillation column 102, the debutane column 105, and the naphtha splitter 106 are obtained. In each, the operating energy required for heating and the operating energy required for cooling were determined. The calculation results of the operating energy are shown in Table 1 described later. In the naphtha splitter 106, the operating energy required for heating is the operating energy of the reboiler D4, and the operating energy required for cooling is the operating energy of the condenser C6.
  • Table 1 shows the calculation result of the operation energy in the system of the present invention and the calculation result of the operation energy in the system of the present invention.
  • the inventive system can reduce the energy required for heating by approximately 37% and the energy required for cooling by approximately 25% compared to the comparative system. Therefore, it is understood that the present invention has an effect that the operation energy can be greatly reduced as compared with the conventional system in which the condensate is desulfurized in a lump and then fractionated in the main distillation column.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

[Problem] To provide a system that is capable of keeping operating energy low in the production of products such as LPG, light naphtha, heavy naphtha, kerosene, and gas oil by processing condensate. [Solution] After collective hydrodesulfurization at a hydrogenation processing unit 1, condensate is supplied to a preflash distillation column 2 to separate the condensate into a gas component that includes LPG and a light naphtha fraction, and a heavy fraction which is a liquid component that includes a heavy naphtha fraction. The heavy fraction is supplied to a later stage main distillation column 4 and fractionated into the heavy naphtha fraction, a kerosene fraction, and a gas oil fraction, or further fractionated into heavy residue. The gas component is fractionated into LPG and light naphtha in a debutanizer column 5.

Description

コンデンセートの処理システムCondensate processing system
 本発明は、コンデンセートを処理してLPG(Liquefied Petroleum Gas)、軽質ナフサ、重質ナフサ、灯油及び軽油などの製品を製造するシステムに関する。 The present invention relates to a system for processing condensate to produce products such as LPG (Liquefied Petroleum Gas), light naphtha, heavy naphtha, kerosene and light oil.
 天然ガスを産出するとき、気相の一部が減圧、降温により液化して軽質液状の炭化水素が得られる。この炭化水素は天然ガスコンデンセートあるいはコンデンセート油と呼ばれ、原油に比べて軽質留分が多く、重質留分が少ないという特徴があり、化学原料やエネルギーの供給源として期待されている天然資源である。本願ではこの炭化水素を単に「コンデンセート」と呼ぶものとする。 
 コンデンセートを水素化精製(脱硫)する手法として、コンデンセートを各留分に分留して各分留ごとに脱硫を行うと、各製品用の脱硫装置が必要になるので、建設費、運転費が高騰する。
When producing natural gas, a part of the gas phase is liquefied by depressurization and cooling, and light liquid hydrocarbons are obtained. This hydrocarbon is called natural gas condensate or condensate oil, and has the characteristics that it has more light fractions and less heavy fractions than crude oil. It is a natural resource that is expected as a source of chemical raw materials and energy. is there. In the present application, this hydrocarbon is simply referred to as “condensate”.
As a method of hydrorefining condensate (desulfurization), if the condensate is fractionated into each fraction and desulfurization is performed for each fraction, a desulfurization unit for each product is required. Soaring.
 特許文献1には、このような問題を解決するためにコンデンセートに対して一括して水素化脱硫処理を行うこと、脱硫処理されたコンデンセートを常圧蒸留装置にて蒸留分離し、LPG、ナフサ留分、灯油留分、軽油留分を抜き出すこと、ナフサ留分をナフサ分留塔にて軽質ナフサと重質ナフサに分離すること、が記載されている。また特許文献2においても、コンデンセートに対して一括して水素化脱硫処理を行い、常圧蒸留塔で同様に分留する技術が記載されている。 
 このようにコンデンセートは有用な資源であり、各製品を抜き出す技術が知られているが、コンデンセートの処理設備、即ち炭化水素油の製造システムの建設費をより低減すること、運転エネルギーをより削減することが要請されている。
In Patent Document 1, in order to solve such a problem, hydrodesulfurization treatment is collectively performed on the condensate, the desulfurized condensate is distilled and separated by an atmospheric distillation apparatus, and LPG and naphtha distillate are separated. Extraction of a naphtha fraction, a kerosene fraction and a light oil fraction, and separation of a naphtha fraction into light naphtha and heavy naphtha in a naphtha fractionation tower. Patent Document 2 also describes a technique in which hydrodesulfurization treatment is collectively performed on condensate and fractional distillation is similarly performed in an atmospheric distillation column.
In this way, condensate is a useful resource, and the technology for extracting each product is known, but it reduces the construction cost of the condensate treatment facility, that is, the hydrocarbon oil production system, and the operating energy. It is requested.
特開2007-238832号公報JP 2007-238832 A 特開2010-111778号公報JP 2010-1111778 A
 本発明はこのような事情の下になされたものであり、コンデンセートを処理してLPG、軽質ナフサ、重質ナフサ、灯油及び軽油などの製品を製造するにあたって、運転エネルギーを低く抑えることのできるシステムを提供することにある。 The present invention has been made under such circumstances, and is a system capable of reducing operating energy when manufacturing products such as LPG, light naphtha, heavy naphtha, kerosene and light oil by processing condensate. Is to provide.
 本発明は、コンデンセートを処理するシステムであって、
 コンデンセートを水素化脱硫する脱硫装置と、
 前記脱硫装置で水素化脱硫されたコンデンセートが供給され、液化石油ガス及び軽質ナフサ留分を含むガス成分と、重質ナフサ留分及び重質ナフサ留分よりも沸点の高い重質留分を含む液体成分と、に分留するプレフラッシュ蒸留塔と、
 前記プレフラッシュ蒸留塔の塔底部の液体成分を加熱するためのリボイラーと、
 前記プレフラッシュ蒸留塔の塔底部から取り出された前記液体成分を前記リボイラーの温度よりも高い温度に加熱する加熱部と、
 前記加熱部にて加熱された前記液体成分を、少なくとも重質ナフサ留分、灯油留分及び軽油留分に分留する主蒸留塔と、を備えたことを特徴とする。
The present invention is a system for processing condensate,
A desulfurization unit for hydrodesulfurizing condensate;
Condensate hydrodesulfurized by the desulfurizer is supplied, and includes gas components including liquefied petroleum gas and light naphtha fraction, and heavy naphtha fraction and heavy fraction having a higher boiling point than heavy naphtha fraction. A liquid component, a preflash distillation column for fractional distillation,
A reboiler for heating the liquid component at the bottom of the preflash distillation column;
A heating unit for heating the liquid component taken out from the bottom of the preflash distillation column to a temperature higher than the temperature of the reboiler;
A main distillation column for fractionating the liquid component heated in the heating unit into at least a heavy naphtha fraction, a kerosene fraction, and a light oil fraction.
 本発明は、コンデンセートを一括して水素化脱硫した後、プレフラッシュ蒸留塔に供給してLPG及び軽質ナフサ留分を抜き出し、重質ナフサ留分を含む重質留分については、後段の主蒸留塔に供給して重質ナフサ留分、灯油留分及び軽油留分に分留し、あるいは更に重質残渣に分留している。コンデンセートは軽質分を多く含有し、軽質分をプレフラッシュ蒸留塔にて分離しているため、主蒸留塔における運転圧力を低くすることができる。従って主蒸留塔に供給される原料が少ないことも加わって、主蒸留塔の前段に設けられる加熱部における燃料の消費量が低く抑えられ、少ないエネルギーでシステムを運転することができる。また少ないエネルギーでシステムを運転できるということは、加熱部や冷却部のサイズを小さくできるので、建設費を低く抑えられることが期待できる。 In the present invention, condensate is collectively hydrodesulfurized, and then supplied to a preflash distillation column to extract LPG and light naphtha fractions. For heavy fractions containing heavy naphtha fractions, It is fed to a tower and fractionated into a heavy naphtha fraction, a kerosene fraction and a light oil fraction, or further fractionated into a heavy residue. Since the condensate contains a large amount of light components and the light components are separated by the preflash distillation column, the operating pressure in the main distillation column can be lowered. Therefore, in addition to the fact that the raw material supplied to the main distillation column is small, the amount of fuel consumed in the heating section provided in the front stage of the main distillation column can be kept low, and the system can be operated with less energy. In addition, the fact that the system can be operated with less energy can reduce the size of the heating part and the cooling part, so that the construction cost can be expected to be kept low.
本発明の実施形態に係るコンデンセートの処理システムの全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the processing system of the condensate which concerns on embodiment of this invention. 運転エネルギーの計算に用いた、本発明に対応するコンデンセートの処理システムの全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the processing system of the condensate used for calculation of an operating energy corresponding to this invention. 運転エネルギーの計算に用いた、比較例に対応するコンデンセートの処理システムの全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the processing system of the condensate corresponding to the comparative example used for calculation of operating energy.
 本発明のコンデンセートの処理システムは、コンデンセートを分留する前に一括して脱硫するための水素化処理部(脱硫装置)である反応塔1が設けられている。反応塔1内には、水素化触媒を担体に担持して形成された触媒層が例えば複数段設けられている。水素化触媒としては、Co-Mo系、Ni-Mo系、Ni-Co-Mo系などを用いることができるが、これらに限られるものではない。反応塔1の上部には、流路を形成する配管である供給ライン1aが接続され、供給管1aには加熱部である加熱炉10が設けられている。コンデンセートは、例えば加熱炉10の前段にて、水素ガスと混合され、加熱炉10にて例えば250℃~370℃に加熱され、反応塔1の上部から反応塔1内に供給される。 
 そしてコンデンセートは水素ガスと共に触媒層を通過するときに水素化反応により、コンデンセートに含まれる硫黄が硫化水素に転化される。反応塔1内の圧力は、例えば4.0MPaG~7.0MPaGに設定される。
The condensate treatment system of the present invention is provided with a reaction tower 1 which is a hydrotreating section (desulfurization apparatus) for performing desulfurization all at once before fractionating the condensate. In the reaction tower 1, for example, a plurality of catalyst layers formed by supporting a hydrogenation catalyst on a carrier are provided. As the hydrogenation catalyst, a Co—Mo system, a Ni—Mo system, a Ni—Co—Mo system, or the like can be used, but is not limited thereto. A supply line 1a that is a pipe that forms a flow path is connected to the upper portion of the reaction tower 1, and a heating furnace 10 that is a heating unit is provided in the supply pipe 1a. The condensate is mixed with hydrogen gas, for example, at the front stage of the heating furnace 10, heated to, for example, 250 ° C. to 370 ° C. in the heating furnace 10, and supplied into the reaction tower 1 from the upper part of the reaction tower 1.
When the condensate passes through the catalyst layer together with hydrogen gas, sulfur contained in the condensate is converted into hydrogen sulfide by a hydrogenation reaction. The pressure in the reaction tower 1 is set to, for example, 4.0 MPaG to 7.0 MPaG.
 反応塔1の底部には、反応塔1内のコンデンセートを抜き出して後段のプレフラッシュ蒸留塔2に送るための、流路を形成する配管からなる送りライン1bが接続され、この送りライン1bの下流側は、プレフラッシュ蒸留塔2の例えば塔頂部及び塔底部の間の中央部位に接続されている。プレフラッシュ蒸留塔2の塔底部には、液体成分を抜き出す抜き出しライン2aが接続されている。この抜き出しライン2aの途中には、ポンプ21、及び加熱部である加熱炉3が接続され、抜き出しライン2aの下流端は主蒸留塔4に接続されている。 Connected to the bottom of the reaction tower 1 is a feed line 1b consisting of piping that forms a flow path for extracting the condensate in the reaction tower 1 and sending it to the pre-flash distillation tower 2 at the subsequent stage, and downstream of this feed line 1b. The side is connected to the central part of the preflash distillation column 2, for example between the top and the bottom of the column. An extraction line 2 a for extracting a liquid component is connected to the bottom of the preflash distillation column 2. In the middle of this extraction line 2a, a pump 21 and a heating furnace 3 as a heating unit are connected, and the downstream end of the extraction line 2a is connected to the main distillation column 4.
 また抜き出しライン2aにおけるポンプ21の下流側からは分岐ライン2bが分岐され、分岐ライン2bの途中にはリボイラー22が設けられると共に、分岐ライン2bの下流側は、プレフラッシュ蒸留塔2の塔底部に接続されている。即ち、抜き出しライン2aの一部及び分岐ライン2bは、プレフラッシュ蒸留塔2の塔底部に溜まる液体成分を当該塔底部に戻すための循環ラインを形成していることになる。リボイラー22における加熱温度は、例えば200℃~300℃に設定される。 A branch line 2b is branched from the downstream side of the pump 21 in the extraction line 2a, a reboiler 22 is provided in the middle of the branch line 2b, and the downstream side of the branch line 2b is connected to the bottom of the preflash distillation column 2. It is connected. That is, a part of the extraction line 2a and the branch line 2b form a circulation line for returning the liquid component accumulated at the bottom of the preflash distillation column 2 to the bottom. The heating temperature in the reboiler 22 is set to 200 ° C. to 300 ° C., for example.
 プレフラッシュ蒸留塔2に供給されたコンデンセートは、加圧下においてリボイラー22の加熱により、LPG及び軽質ナフサ留分を含むガス成分である軽質留分と、重質ナフサ留分及び重質ナフサ留分よりも沸点の高い重質留分を含む液体成分と、に分留される。コンデンセートは軽質ナフサが例えば30%以上含まれていることから、塔底部から抜き出される重質留分は、プレフラッシュ蒸留塔2に供給されるコンデンセートの例えば70%に満たない量である。 The condensate supplied to the preflash distillation column 2 is heated by the reboiler 22 under pressure, from a light fraction, which is a gas component containing LPG and a light naphtha fraction, from a heavy naphtha fraction and a heavy naphtha fraction. And a liquid component containing a heavy fraction having a high boiling point. Since the condensate contains 30% or more of light naphtha, for example, the heavy fraction extracted from the bottom of the column is less than 70% of the condensate supplied to the preflash distillation column 2, for example.
 プレフラッシュ蒸留塔2の塔底部から抜き出される重質留分は、加熱部である加熱炉3にてリボイラー22の加熱温度よりも高い温度、例えば250℃~350℃に加熱される。 
 主蒸留塔4は例えば棚段塔により構成される常圧蒸留塔であり、抜き出しライン2aは、例えば最下段のトレイよりも下方側の位置に接続される。 
 一般の原油精製の場合には、塔底部にてスチームによるストリッピングを行って重質残渣中の軽質留分を除去することで、前段の加熱炉の出口温度が上がり過ぎないようにしており、供給ラインの接続位置を、蒸留塔の例えば4段目~10段目のトレイに原料を供給する位置としている。これに対して本実施形態では、原料がコンデンセートであることから軽質であり、また主蒸留塔4の運転圧力が低いことから、スチームによるストリッピングを行わなくても加熱炉3の出口温度が規定値(例えば375℃)まで上がらず、また重質残渣の引火点のスペックが満たされる。このため抜き出しライン2aの下流側、即ち主蒸留塔4からみれば原料供給ラインの供給位置は、最下段のトレイよりも下方側の位置とされる。
The heavy fraction withdrawn from the bottom of the preflash distillation column 2 is heated to a temperature higher than the heating temperature of the reboiler 22, for example, 250 ° C. to 350 ° C. in the heating furnace 3 as a heating unit.
The main distillation column 4 is an atmospheric distillation column composed of, for example, a plate column, and the extraction line 2a is connected to a position below the lowermost tray, for example.
In the case of general crude oil refining, stripping with steam is performed at the bottom of the tower to remove the light fractions in the heavy residue, so that the outlet temperature of the previous heating furnace does not rise too much. The connection position of the supply line is a position where the raw material is supplied to, for example, the fourth to tenth trays of the distillation column. On the other hand, in this embodiment, since the raw material is condensate, it is light, and since the operating pressure of the main distillation column 4 is low, the outlet temperature of the heating furnace 3 is specified without stripping by steam. It does not increase to a value (for example, 375 ° C.), and the flash point specification of heavy residue is satisfied. Therefore, when viewed from the downstream side of the extraction line 2a, that is, from the main distillation column 4, the supply position of the raw material supply line is set to a position below the lowermost tray.
 主蒸留塔4においては、圧力は例えば0MPaG~0.2MPaGにて運転される。プレフラッシュ蒸留塔2の塔底部から抜き出された、重質ナフサ留分及び重質ナフサ留分よりも沸点の高い重質留分を含む液体成分が主蒸留塔4にて分留され、塔頂部の抜き出しライン4aからは重質ナフサ留分が取り出され、塔の側壁部の抜き出しライン4b、4cからは、夫々灯油留分及び軽油留分が抜き出される。また塔底部の抜き出しライン4dからは重質残渣である重油留分が抜き出される。なおコンデンセートは重質残渣の含有量が例えば10質量%以下であり、かなり少ないことから、原料として使用されるコンデンセートによっては、抜き出しライン4dを使用しない場合、即ち重質残渣を分留分離しない場合もある。 The main distillation column 4 is operated at a pressure of, for example, 0 MPaG to 0.2 MPaG. A liquid component containing a heavy naphtha fraction extracted from the bottom of the preflash distillation column 2 and a heavy fraction having a boiling point higher than that of the heavy naphtha fraction is fractionated in the main distillation column 4, A heavy naphtha fraction is extracted from the top extraction line 4a, and a kerosene fraction and a light oil fraction are extracted from the extraction lines 4b and 4c on the side wall of the tower, respectively. A heavy oil fraction, which is a heavy residue, is extracted from the extraction line 4d at the bottom of the tower. Condensate has a heavy residue content of, for example, 10% by mass or less, and is considerably low. Depending on the condensate used as a raw material, when extraction line 4d is not used, that is, when heavy residue is not fractionally separated There is also.
 一方、プレフラッシュ蒸留塔2の塔頂部の抜き出しライン2cからは、LPG及び軽質ナフサ留分を含むガス成分である軽質留分が抜き出される。抜き出しライン2cには、熱交換器51が設けられ、抜き出しライン2cの下流端は脱ブタン塔5に接続されている。脱ブタン塔5の塔底部には液体成分である軽質ナフサ留分を抜き出すための抜き出しライン5aが接続されており、抜き出しライン5aの途中からは分岐ライン5bが分岐している。分岐ライン5bにはスチームで加熱するリボイラーB3が設けられており、塔底部を例えば120℃~220℃に加熱している。 On the other hand, from the extraction line 2c at the top of the preflash distillation column 2, a light fraction that is a gas component including LPG and a light naphtha fraction is extracted. The extraction line 2 c is provided with a heat exchanger 51, and the downstream end of the extraction line 2 c is connected to the debutane tower 5. An extraction line 5a for extracting a light naphtha fraction, which is a liquid component, is connected to the bottom of the debutane tower 5, and a branch line 5b branches from the middle of the extraction line 5a. The branch line 5b is provided with a reboiler B3 that is heated by steam, and the bottom of the column is heated to 120 ° C. to 220 ° C., for example.
 脱ブタン塔5においては、リボイラーB3の加熱によりガス成分であるLPGと液体成分である軽質ナフサ留分とに分留される。従って塔頂部の抜き出しライン5cからはLPGが抜き出され、塔底部の抜き出しライン5aからは軽質ナフサ留分が抜き出される。なお、塔底部の液体成分の一部は抜き出しライン5aから分岐ライン5bを介して循環しており、抜き出しライン5aの一部及び分岐ライン5bは循環ラインを形成している。抜き出しライン5aに抜き出された軽質ナフサ留分は、熱交換器51にてプレフラッシュ蒸留塔2の塔頂部から抜き出された液体成分と熱交換されて冷却される。 In the debutane tower 5, the reboiler B3 is heated to be fractionated into LPG as a gas component and a light naphtha fraction as a liquid component. Therefore, LPG is extracted from the extraction line 5c at the top of the column, and a light naphtha fraction is extracted from the extraction line 5a at the bottom of the column. A part of the liquid component at the bottom of the column circulates from the extraction line 5a through the branch line 5b, and a part of the extraction line 5a and the branch line 5b form a circulation line. The light naphtha fraction extracted to the extraction line 5a is cooled by heat exchange with the liquid component extracted from the top of the preflash distillation column 2 by the heat exchanger 51.
 上述の実施形態では、コンデンセートを水素化処理部(反応塔1)にて一括して脱硫を行い、次いでプレフラッシュ蒸留塔2にて軽質留分と重質留分とに分離し、重質留分を主蒸留塔4に供給している。コンデンセートには軽質留分が多く含まれ、主蒸留塔4に供給される前にプレフラッシュ蒸留塔2にて軽質留分が取り除かれているので、主蒸留塔4においては運転圧力を下げてもオフガスの発生が抑えられる。このように主蒸留塔4に供給される原料が少なく、また主蒸留塔4の運転圧力を低くすることができることから、加熱炉3における燃料を削減することができる。 In the above-described embodiment, the condensate is collectively desulfurized in the hydrotreating section (reaction tower 1), and then separated into a light fraction and a heavy fraction in the preflash distillation tower 2, and the heavy fraction is separated. The portion is fed to the main distillation column 4. Since the condensate contains a lot of light fractions, and the light fractions are removed in the preflash distillation column 2 before being supplied to the main distillation column 4, the operation pressure in the main distillation column 4 can be reduced. Generation of off-gas is suppressed. Thus, since the raw material supplied to the main distillation column 4 is small and the operating pressure of the main distillation column 4 can be lowered, the fuel in the heating furnace 3 can be reduced.
 更にまた主蒸留塔4の運転圧力を低くできることから、主蒸留塔4の側壁に接続された灯油留分の抜き出しライン4b及び軽油留分の抜き出しライン4cの各々に設けられたストリッパーのリボイラー、還流路に設けられたコンデンサ-や冷却器の各運転エネルギーを小さく抑えることができる。なお、ここに記載したストリッパーなどの機器は、図1では図示していない。また主蒸留塔4の運転圧力が低いことから、主蒸留塔4において高い分離性能が期待できる。 
 そしてプレフラッシュ蒸留塔2にて重質ナフサ留分が分離された液体成分(LPG及び軽質ナフサ留分)が脱ブタン塔5に供給されることから、脱ブタン塔5のリボイラーB3におけるスチーム等のエネルギー消費量が少なくなり、また脱ブタン塔5の後段にナフサスプリッタ―を設けなくて済む。
Furthermore, since the operating pressure of the main distillation column 4 can be lowered, the stripper reboiler and reflux provided in each of the kerosene fraction extraction line 4b and the light oil fraction extraction line 4c connected to the side wall of the main distillation column 4 Each operating energy of the condenser and the cooler provided on the road can be kept small. Note that devices such as the stripper described here are not shown in FIG. Moreover, since the operating pressure of the main distillation column 4 is low, high separation performance can be expected in the main distillation column 4.
And since the liquid component (LPG and light naphtha fraction) from which the heavy naphtha fraction was separated in the preflash distillation tower 2 is supplied to the debutane tower 5, steam in the reboiler B3 of the debutane tower 5 or the like Energy consumption is reduced, and it is not necessary to provide a naphtha splitter after the debutane tower 5.
 従って、上述実施形態のシステムは、既述の特許文献1、2と比較してプレフラッシュ蒸留塔2という設備が必要であるが、後述の実施例からもわかるように設備全体の運転エネルギーとしては小さくなる。また運転エネルギーが小さいことから、加熱炉や冷却器のサイズが小さくなるため、ナフサスプリッターが不要であることも加わって、建設費を低く抑えることができる。従って本発明のシステムは、コンデンセートを原料として石油製品を製造するにあたって極めて有効なシステムである。 Therefore, the system of the above-described embodiment requires a facility called a preflash distillation column 2 as compared with Patent Documents 1 and 2 described above, but as can be seen from the examples described later, Get smaller. In addition, since the operating energy is small, the size of the heating furnace and the cooler is reduced, so that a naphtha splitter is not necessary, and the construction cost can be kept low. Therefore, the system of the present invention is an extremely effective system for producing petroleum products using condensate as a raw material.
 本発明のコンデンセートの処理システム(以下「本発明システム」という)が既述の特許文献1、2に記載されているコンデンセートの処理技術(以下「比較システム」という)と比較して、優れていることを実証するために、本発明システム及び比較システムの夫々について運転エネルギーを計算した。計算に用いたシステムを図2及び図3に示す。 The condensate processing system of the present invention (hereinafter referred to as “the present invention system”) is superior to the condensate processing technology (hereinafter referred to as “comparison system”) described in Patent Documents 1 and 2 described above. In order to demonstrate this, the operating energy was calculated for each of the inventive system and the comparative system. The system used for the calculation is shown in FIGS.
 <本発明システム> 
 図2は、本発明システムであり、図1よりも具体的に記載されている。図1に対応する部位については同じ符号を付している。A1は、プレフラッシュ蒸留塔2の塔頂部の抜き出しライン2cに設けられたコンデンサー、A2は、主蒸留塔4の塔頂部の抜き出しライン4aに設けられたコンデンサーである。A3は塔頂部の還流路に設けられた冷却器、A4は灯油留分の抜き出し領域の還流路に設けられた冷却器、A5は軽油留分の抜き出し領域の還流路に設けられた冷却器である。A6は、脱ブタン塔5の塔頂部の抜き出しライン5c設けられたコンデンサーである。
<Invention System>
FIG. 2 shows the system of the present invention, which is described more specifically than FIG. The parts corresponding to those in FIG. A1 is a condenser provided in the extraction line 2c at the top of the preflash distillation column 2, and A2 is a condenser provided in the extraction line 4a at the top of the main distillation column 4. A3 is a cooler provided in the reflux path at the top of the tower, A4 is a cooler provided in the reflux path of the kerosene fraction extraction area, and A5 is a cooler provided in the reflux path of the diesel oil fraction extraction area. is there. A6 is a condenser provided in the extraction line 5c at the top of the debutane tower 5.
 41は、主蒸留塔4から灯油留分が抜き出される灯油留分の抜き出しライン4bに設けられたストリッパー、B1はストリッパー41の底部の循環路に設けられたリボイラーである。42は、主蒸留塔4から軽油留分が抜き出される軽油留分の抜き出しライン4cに設けられたストリッパー、B2はストリッパー42の底部の循環路に設けられたリボイラーである。 41 is a stripper provided in a kerosene fraction extraction line 4b from which a kerosene fraction is extracted from the main distillation column 4, and B1 is a reboiler provided in a circulation path at the bottom of the stripper 41. Reference numeral 42 denotes a stripper provided in a light oil fraction extraction line 4 c from which a light oil fraction is extracted from the main distillation column 4, and B 2 denotes a reboiler provided in a circulation path at the bottom of the stripper 42.
 図2に示すシステムを用い、一括脱硫した後のコンデンセートを100,000BPSDでプレフラッシュ蒸留塔2に供給して各製品を得たとしたときに、プレフラッシュ蒸留塔2、主蒸留塔4及び脱ブタン塔5の各々において、加熱に要する運転エネルギーと冷却に要する運転エネルギーとを求めた。運転エネルギーの計算結果は、後述の比較システムに関する説明の後の表1に記載した。 When using the system shown in FIG. 2 and supplying each batch of desulfurized condensate to the preflash distillation column 2 at 100,000 BPSD to obtain each product, the preflash distillation column 2, the main distillation column 4 and the debutane In each of the towers 5, the operating energy required for heating and the operating energy required for cooling were determined. The calculation results of the operating energy are shown in Table 1 after the description on the comparison system described later.
 プレフラッシュ蒸留塔2においては、加熱に要する運転エネルギーは、リボイラー22の運転エネルギーであり、冷却に要する運転エネルギーはコンデンサーA1の運転エネルギーである。主蒸留塔4においては、加熱に要する運転エネルギーは、加熱炉3、リボイラーB1、B2の運転エネルギーであり、冷却に要する運転エネルギーは、コンデンサーA2、冷却器A3~A5の運転エネルギーである。脱ブタン塔5においては、加熱に要する運転エネルギーは、リボイラーB3の運転エネルギーであり、冷却に要する運転エネルギーはコンデンサーA6の運転エネルギーである。 In the preflash distillation column 2, the operating energy required for heating is the operating energy of the reboiler 22, and the operating energy required for cooling is the operating energy of the condenser A1. In the main distillation column 4, the operating energy required for heating is the operating energy of the heating furnace 3 and the reboilers B1 and B2, and the operating energy required for cooling is the operating energy of the condenser A2 and the coolers A3 to A5. In the debutane tower 5, the operating energy required for heating is the operating energy of the reboiler B3, and the operating energy required for cooling is the operating energy of the condenser A6.
 <比較システム> 
 比較システムは、図3に示すように、一括脱硫下後のコンデンセートを加熱器101にて加熱した後、常圧蒸留塔である主蒸留塔102に供給して各留分に分留するシステムである。主蒸留塔102の塔頂から得られたガス成分は、後段の脱ブタン塔105にてLPGとナフサ留分に分留され、ナフサ留分は、ナフサスプリッター106にて軽質ナフサ留分と重質ナフサ留分とに分留される。
<Comparison system>
As shown in FIG. 3, the comparative system is a system in which the condensate after batch desulfurization is heated by a heater 101 and then supplied to a main distillation column 102 which is an atmospheric distillation column and fractionated into each fraction. is there. The gas components obtained from the top of the main distillation column 102 are fractionated into LPG and naphtha fractions in the debutane tower 105 in the latter stage, and the naphtha fraction is separated from the light naphtha fraction and heavy by the naphtha splitter 106. It is fractionated into naphtha fractions.
 C1は、主蒸留塔102の塔頂部の抜き出しラインに設けられたコンデンサー、C2は塔頂部の還流路に設けられた冷却器、C3は灯油留分の抜き出し領域の還流路に設けられた冷却器、C4は軽油留分の抜き出し領域の還流路に設けられた冷却器である。C5は、脱ブタン塔105の塔頂部の抜き出しライン設けられたコンデンサー、C6はナフサスプリッタ―106の塔頂部の抜き出しラインに設けられたコンデンサーである。 C1 is a condenser provided in the extraction line at the top of the main distillation column 102, C2 is a cooler provided in the reflux path at the top of the tower, and C3 is a cooler provided in the reflux path in the extraction region of the kerosene fraction. , C4 is a cooler provided in the reflux path of the extraction region of the light oil fraction. C5 is a condenser provided in the extraction line at the top of the debutane tower 105, and C6 is a condenser provided in the extraction line at the top of the naphtha splitter 106.
 103は、主蒸留塔102から灯油留分が抜き出される灯油留分の抜き出しラインに設けられたストリッパー、D1はストリッパー103の底部の循環路に設けられたリボイラーである。104は、主蒸留塔4から軽油留分が抜き出される軽油留分の抜き出しラインに設けられたストリッパー、D2はストリッパー104の底部の循環路に設けられたリボイラーである。D3は、脱ブタン塔105の底部の循環路に設けられたリボイラー、D4は、ナフサスプリッタ―106の底部の循環路に設けられたリボイラーである。 103 is a stripper provided in a kerosene fraction extraction line from which a kerosene fraction is extracted from the main distillation column 102, and D1 is a reboiler provided in a circulation path at the bottom of the stripper 103. 104 is a stripper provided in a gas oil fraction extraction line from which a light oil fraction is extracted from the main distillation column 4, and D <b> 2 is a reboiler provided in a circulation path at the bottom of the stripper 104. D3 is a reboiler provided in the circulation path at the bottom of the debutanizer tower 105, and D4 is a reboiler provided in the circulation path at the bottom of the naphtha splitter 106.
 図3に示すシステムを用い、一括脱硫した後のコンデンセートを100,000BPSDで主蒸留塔102に供給して各製品を得たとしたときに、主蒸留塔102、脱ブタン塔105及びナフサスプリッタ―106の各々において、加熱に要する運転エネルギーと冷却に要する運転エネルギーとを求めた。運転エネルギーの計算結果は、後述の表1に記載した。 
 ナフサスプリッタ―106においては、加熱に要する運転エネルギーは、リボイラーD4の運転エネルギーであり、冷却に要する運転エネルギーはコンデンサーC6の運転エネルギーである。
When using the system shown in FIG. 3 and supplying each product after supplying the desulfurized condensate to the main distillation column 102 at 100,000 BPSD, the main distillation column 102, the debutane column 105, and the naphtha splitter 106 are obtained. In each, the operating energy required for heating and the operating energy required for cooling were determined. The calculation results of the operating energy are shown in Table 1 described later.
In the naphtha splitter 106, the operating energy required for heating is the operating energy of the reboiler D4, and the operating energy required for cooling is the operating energy of the condenser C6.
 <運転エネルギーの計算結果> 
 表1は、本発明システムにおける運転エネルギーの計算結果と本発明システムにおける運転エネルギーの計算結果とを示したものである。
<Calculation result of operating energy>
Table 1 shows the calculation result of the operation energy in the system of the present invention and the calculation result of the operation energy in the system of the present invention.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から分かるように、本発明システムは、比較システムに比べて、加熱に要するエネルギーがおよそ37%削減することができ、冷却に要するエネルギーがおよそ25%削減することができる。従って本発明は、コンデンセートを一括脱硫した後、主蒸留塔にて分留する従来のシステムに比べて、運転エネルギーを大幅に削減できる効果があることが理解される。

 
As can be seen from the results in Table 1, the inventive system can reduce the energy required for heating by approximately 37% and the energy required for cooling by approximately 25% compared to the comparative system. Therefore, it is understood that the present invention has an effect that the operation energy can be greatly reduced as compared with the conventional system in which the condensate is desulfurized in a lump and then fractionated in the main distillation column.

Claims (6)

  1.  コンデンセートを処理するシステムであって、
     コンデンセートを水素化脱硫する脱硫装置と、
     前記脱硫装置で水素化脱硫されたコンデンセートが供給され、液化石油ガス及び軽質ナフサ留分を含むガス成分と、重質ナフサ留分及び重質ナフサ留分よりも沸点の高い重質留分を含む液体成分と、に分留するプレフラッシュ蒸留塔と、
     前記プレフラッシュ蒸留塔の塔底部の液体成分を加熱するためのリボイラーと、
     前記プレフラッシュ蒸留塔の塔底部から取り出された前記液体成分を前記リボイラーの温度よりも高い温度に加熱する加熱部と、
     前記加熱部にて加熱された前記液体成分を、少なくとも重質ナフサ留分、灯油留分及び軽油留分に分留する主蒸留塔と、を備えたことを特徴とするコンデンセートの処理システム。
    A system for processing condensate,
    A desulfurization unit for hydrodesulfurizing condensate;
    Condensate hydrodesulfurized by the desulfurizer is supplied, and includes gas components including liquefied petroleum gas and light naphtha fraction, and heavy naphtha fraction and heavy fraction having a higher boiling point than heavy naphtha fraction. A liquid component, a preflash distillation column for fractional distillation,
    A reboiler for heating the liquid component at the bottom of the preflash distillation column;
    A heating unit for heating the liquid component taken out from the bottom of the preflash distillation column to a temperature higher than the temperature of the reboiler;
    A condensate treatment system comprising: a main distillation tower for fractionating the liquid component heated in the heating unit into at least a heavy naphtha fraction, a kerosene fraction and a light oil fraction.
  2.  前記主蒸留塔は前記液体成分を、重質ナフサ留分、灯油留分、軽油留分及び重質残渣に分留することを特徴とする請求項1記載のコンデンセートの処理システム。 The condensate treatment system according to claim 1, wherein the main distillation column fractionates the liquid component into a heavy naphtha fraction, a kerosene fraction, a light oil fraction and a heavy residue.
  3.  前記リボイラーの温度は200℃~300℃であることを特徴とする請求項1記載のコンデンセートの処理システム。 The condensate treatment system according to claim 1, wherein the temperature of the reboiler is 200 ° C to 300 ° C.
  4.  前記加熱部による加熱温度は、250℃~350℃であることを特徴とする請求項1記載のコンデンセートの処理システム。 The condensate treatment system according to claim 1, wherein the heating temperature of the heating unit is 250 ° C to 350 ° C.
  5.  前記主蒸留塔は棚段塔により構成され、
     前記主蒸留塔における前記液体成分の供給位置は、最下段のトレイよりも下方側であることを特徴とする請求項1記載のコンデンセートの処理システム。
    The main distillation column is composed of a plate column,
    2. The condensate treatment system according to claim 1, wherein a supply position of the liquid component in the main distillation column is lower than a lowermost tray.
  6.  前記プレフラッシュ蒸留塔から取り出された前記ガス成分を液化石油ガス及び軽質ナフサ留分に分留するための蒸留塔を備えたことを特徴とする請求項1記載のコンデンセートの処理システム。 2. The condensate treatment system according to claim 1, further comprising a distillation column for fractionating the gas component taken out from the preflash distillation column into a liquefied petroleum gas and a light naphtha fraction.
PCT/JP2016/063876 2016-03-02 2016-05-10 Condensate processing system WO2017149790A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016549816A JP6026714B1 (en) 2016-03-02 2016-05-10 Condensate processing system
RU2018110056A RU2681314C1 (en) 2016-03-02 2016-05-10 Condensate processing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-040436 2016-03-02
JP2016040436 2016-03-02

Publications (1)

Publication Number Publication Date
WO2017149790A1 true WO2017149790A1 (en) 2017-09-08

Family

ID=59742662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063876 WO2017149790A1 (en) 2016-03-02 2016-05-10 Condensate processing system

Country Status (3)

Country Link
MY (1) MY163237A (en)
RU (1) RU2681314C1 (en)
WO (1) WO2017149790A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108949232A (en) * 2018-07-26 2018-12-07 江苏金橡塑新材料有限公司 A kind of slag lasaxing Oilfield system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11181447A (en) * 1997-10-14 1999-07-06 Taiyo Engineering Kk Removal of mercury from hydrocarbon oil
JP2007238832A (en) * 2006-03-10 2007-09-20 Mitsubishi Heavy Ind Ltd Method for treating natural gas condensate and system for treating the same
JP2008280451A (en) * 2007-05-11 2008-11-20 Japan Energy Corp Method for refining hydrocarbon oil

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5483861B2 (en) * 2008-11-06 2014-05-07 Jx日鉱日石エネルギー株式会社 Production method of purified fraction
CN102471701A (en) * 2009-07-15 2012-05-23 国际壳牌研究有限公司 Process for the conversion of a hydrocarbonaceous feedstock

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11181447A (en) * 1997-10-14 1999-07-06 Taiyo Engineering Kk Removal of mercury from hydrocarbon oil
JP2007238832A (en) * 2006-03-10 2007-09-20 Mitsubishi Heavy Ind Ltd Method for treating natural gas condensate and system for treating the same
JP2008280451A (en) * 2007-05-11 2008-11-20 Japan Energy Corp Method for refining hydrocarbon oil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108949232A (en) * 2018-07-26 2018-12-07 江苏金橡塑新材料有限公司 A kind of slag lasaxing Oilfield system

Also Published As

Publication number Publication date
MY163237A (en) 2017-08-30
RU2681314C1 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
US9783741B2 (en) Process for vacuum distillation of a crude hydrocarbon stream
US9568256B2 (en) Energy-efficient and environmentally advanced configurations for naphtha hydrotreating process
RU2543719C2 (en) Hydrocarbon stock conversion procedure
NO169903B (en) PROCEDURE FOR SEPARATION OF COMPONENTS IN RAA OIL
CN103146426B (en) Method of converting fischer-tropsch synthesis products into naphtha, diesel and liquefied petroleum gas
JP7202388B2 (en) Use of upper dividing wall in isomerization unit
JP2023085323A (en) Network of dividing-wall column in complex process unit
EA019522B1 (en) Method for producing liquid fuel products
CN114989856B (en) Method and device for separating aromatic hydrocarbon or sulfur-containing compound from gasoline fraction
JP6026714B1 (en) Condensate processing system
WO2017149790A1 (en) Condensate processing system
US20160160130A1 (en) Integrated Vacuum Distillate Recovery Process
CN105377393B (en) The method of the destilling tower of the C3 cuts of FCC apparatus is derived from come the loop heating of the water heated by means of the stream for belonging to the device in the upstream of FCC apparatus and/or downstream
RU2619931C2 (en) Gas-oil fraction production method
CN102041030B (en) Method for controlling and reforming ultrahigh final boiling point of high-octane gasoline blending component
CN111534327B (en) Reforming pretreatment system, reforming pretreatment method and application
CN109477003A (en) System and method for separating hydrocarbon stream
US10160918B2 (en) Preflash arrangements and feedstock multiple injection in a process for distillation of crude oil
RU2535493C2 (en) Method of kerosene fractions stabilizing
CN202595054U (en) Hydrogenation process unit for producing cleaning products
CN106957680B (en) Apparatus and method for co-compressing acid gas of a hydroconversion or hydrotreatment unit and gas effluent of a catalytic cracking unit
CN102443408A (en) Pressure reduction distillation process method
WO2018033381A1 (en) High conversion hydrocracking process and plant
EP3500653A1 (en) High conversion hydrocracking process and plant
CN102333845A (en) Method for recovering hydrocarbon compound from gaseous by-product and hydrocarbon recovery apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016549816

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892629

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892629

Country of ref document: EP

Kind code of ref document: A1