JP2007238832A - Method for treating natural gas condensate and system for treating the same - Google Patents

Method for treating natural gas condensate and system for treating the same Download PDF

Info

Publication number
JP2007238832A
JP2007238832A JP2006065176A JP2006065176A JP2007238832A JP 2007238832 A JP2007238832 A JP 2007238832A JP 2006065176 A JP2006065176 A JP 2006065176A JP 2006065176 A JP2006065176 A JP 2006065176A JP 2007238832 A JP2007238832 A JP 2007238832A
Authority
JP
Japan
Prior art keywords
fraction
natural gas
ngl
gas condensate
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006065176A
Other languages
Japanese (ja)
Inventor
Hideo Kashiwagi
英雄 柏木
Shinichi Akaishi
信一 赤石
Yubun Inoue
雄文 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006065176A priority Critical patent/JP2007238832A/en
Publication of JP2007238832A publication Critical patent/JP2007238832A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an efficient, easily operable and low cost treatment method for separating and refining a natural gas condensate (NGL) produced in a natural gas production process into an LPG fraction, a light naphtha fraction, a heavy naphtha fraction, a kerosene fraction, a gas oil fraction, and the like. <P>SOLUTION: NGL is preliminarily treated to remove impurities contained in the NGL. The impurities-removed NGL is collectively subjected to a hydrodesulfurization treatment, and then distilled to separate into an LPG fraction, a light naphtha fraction, a heavy naphtha fraction, a kerosene fraction, and a gas oil fraction. In the preliminary treatment, salts contained in NGL are removed by a desalting treatment 21 and the dehydrating treatment 22, and the residues are then subjected to a mercury-removing treatment 23 to remove mercury largely contained in NGL. In the distillation treatment, the impurities-removed NGL is first subjected to an atmospheric distillation treatment 40 to separate into a gas component containing an LPG fraction and a naphtha fraction, a kerosene fraction, and a gas oil fraction. The gas component is further separated into an LPG fraction, a light naphtha fraction and a heavy naphtha fraction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、天然ガス採取プラントにおいて、採取時に天然ガスに随伴してくる液体成分である天然ガスコンデンセート(以下、NGLという)より、液化石油ガス(以下、LPGという)、軽質ナフサ、重質ナフサ、灯油、軽油などの製品を製造するためのNGL処理方法および処理システムに関する。   The present invention relates to a liquefied petroleum gas (hereinafter referred to as LPG), light naphtha, heavy naphtha, from natural gas condensate (hereinafter referred to as NGL) which is a liquid component accompanying the natural gas at the time of sampling in a natural gas sampling plant. The present invention relates to an NGL processing method and a processing system for manufacturing products such as kerosene and light oil.

天然ガス製造プラントで天然ガスに随伴して回収されるNGLは、その中にLPG、軽質ナフサ、重質ナフサ、灯油、軽油、残渣油留分などが含まれており、重要な天然資源である。特に、原油に比べて低沸点留分の含有率が格段に高く、LPG、ナフサ、灯油、軽油の生産に大きな役割を占めている。たとえば、NGLと原油の一般的な性状を見ると、軽質ガスとLPGを合わせた留分の比率は、NGLでは0〜15%程度なのに対し、原油では5%以下である。一方、重質分である残油留分は、原油には45〜65%存在するのに対し、NGL中の存在量は5%以下である。特にNGLは、ガソリンや石油化学製品の原料であるナフサ分が30〜90%と極めて高いという特徴がある。
特に、近年、地球温暖化防止対策として、単位発生エネルギー単位あたりの二酸化炭素生成量の少ない天然ガスが非常に注目されており、その開発が盛んになってきている。それに伴い随伴して生産されるNGLの量も増加傾向にある。前記のようにNGLは、低沸点成分が多いことから、前記各種石油精製製品の原料として優れた特性を有しており、このNGLを効率的に分離精製する技術が重要になってきている。
NGL recovered along with natural gas at a natural gas production plant contains LPG, light naphtha, heavy naphtha, kerosene, light oil, residual oil fraction, etc., and is an important natural resource. . In particular, the content of low-boiling fractions is significantly higher than that of crude oil, and occupies a large role in the production of LPG, naphtha, kerosene, and light oil. For example, looking at the general properties of NGL and crude oil, the fraction of light gas combined with LPG is about 0 to 15% for NGL, but 5% or less for crude oil. On the other hand, the residual oil fraction, which is a heavy component, is 45 to 65% in crude oil, whereas the abundance in NGL is 5% or less. In particular, NGL is characterized by a very high naphtha content of 30 to 90%, which is a raw material for gasoline and petrochemical products.
In particular, as a measure for preventing global warming, in recent years, natural gas with a small amount of carbon dioxide generated per unit of generated energy has attracted much attention, and its development has become active. Along with this, the amount of NGL produced along with it tends to increase. As described above, since NGL has many low-boiling components, it has excellent characteristics as a raw material for the various petroleum refined products, and a technique for efficiently separating and refining this NGL has become important.

NGLを各種石油留分に分離精製する方法としては、以下に示す方法が知られている。その1つは、NGLを原油に混合し、原油の分離精製処理に合わせて処理し、各留分の製品を得る方法である。図3にその概略の工程を示す。この方法では、原料であるNGLは通常の原油処理法で処理される。すなわち、NGL1は原油13に混合されて脱塩装置21で脱塩後、常圧蒸留塔40に送られナフサなどの軽質ガス成分、灯油留分、軽油留分、重油留分などに分離される。軽質ガス成分は、さらにスタビライザ50でLPG成分とナフサ留分に分離され、ナフサ留分はナフサ分留塔51でさらに軽質ナフサ留分と重質ナフサ留分に分離される。蒸留分離された各留分のうち、液相留分は、それぞれに水素化脱硫装置(301,302,303,304)で水素化脱硫処理を行い、硫黄分の少ない製品に転換される。ガス成分については、気相脱硫処理が行なわれるが、LPG留分については、硫化水素を除去するアミン洗浄装置52とメルカプタン成分を除去するソーダ洗浄装置53の2段階の洗浄が行なわれている。
原油が利用できない場合には、NGL単独で図3の原油に混合した場合と同一の処理を行うことができる。この場合の処理フローは、図3で原油13の供給ラインが無い場合と同一である。
The following methods are known as methods for separating and refining NGL into various petroleum fractions. One of them is a method in which NGL is mixed with crude oil and processed in accordance with the separation and purification of crude oil to obtain products of each fraction. FIG. 3 shows the schematic process. In this method, NGL as a raw material is processed by a normal crude oil processing method. That is, NGL 1 is mixed with crude oil 13, desalted by desalting apparatus 21, and then sent to atmospheric distillation tower 40 to be separated into light gas components such as naphtha, kerosene fraction, light oil fraction, and heavy oil fraction. . The light gas component is further separated into an LPG component and a naphtha fraction by a stabilizer 50, and the naphtha fraction is further separated into a light naphtha fraction and a heavy naphtha fraction by a naphtha fractionation tower 51. Among the fractions separated by distillation, the liquid phase fractions are hydrodesulfurized by hydrodesulfurization units (301, 302, 303, 304), respectively, and converted to products with low sulfur content. The gas component is subjected to vapor phase desulfurization treatment, while the LPG fraction is subjected to two-stage cleaning of an amine cleaning device 52 that removes hydrogen sulfide and a soda cleaning device 53 that removes a mercaptan component.
When crude oil cannot be used, the same processing as when NGL alone is mixed with the crude oil of FIG. 3 can be performed. The processing flow in this case is the same as in the case where there is no supply line for the crude oil 13 in FIG.

上記の方法では、NGLを常圧蒸留で各留分にしてから脱硫を行うため、製品中の硫黄分を除去するためには、各留分毎に水素化脱硫装置を設ける必要があり、設備の運転及び装置に係る費用が大きくなる。その対応として、NGLから予備蒸留塔(プレフラクショネータ)で、LPG留分を除去した後、水素化脱硫処理を行い、その後蒸留分離する方法が提案されている。図4にその概略工程を示す。この方法では、NGL1は、脱塩装置21で脱塩処理後、予備蒸留塔41に送られる。ここでLPGを含むガス成分が予備蒸留塔41塔頂から抜出されるが、続いてスタビライザ42で軽質ナフサを回収する。スタビライザ42で軽質ナフサ分を除去したLPGは、図3と同様にアミン洗浄装置52及びソーダ洗浄装置53で硫黄分を除去して製品LPG7となる。
スラビライザ42から回収された軽質ナフサと予備蒸留塔41の液相成分は一緒に水素化脱硫装置30に送られて水素化脱硫後、常圧蒸留塔40に送られる。常圧蒸留塔40で成分は、ナフサを主とするガス成分と灯油留分9、軽油留分10に分離される。ナフサを主とするガス成分は、スラビライザ50、ナフサ分留塔51により、LPG7、軽質ナフサ留分8、重質ナフサ留分9に分離される。この場合には、既に常圧蒸留前に水素化脱硫を行なっているため、常圧蒸留後の各留分について個別に水素化脱硫装置を設ける必要は無い。
上記の方法では、NGLを予備蒸留後水素化脱硫処理を行っているが、予備蒸留無しに全原料を水素化脱硫し、その後常圧蒸留により分離する方法が原油の処理方法について提案されている(特許文献1、2)。すなわち、特許文献1では、上記処理に適した触媒が提案されており、特許文献2では、原油を水素化脱硫処理後、蒸留して重質分をさらに処理する方法が提案されている。
一方、NGLは軽質炭化水素が多いという特性のほかに、水銀の含有量が多いという特徴がある。この水銀は、NGLから分離生成したナフサなどの製品留分を石油化学製品の原料として使用する場合、触媒を被毒するおそれがあるため、分離生成段階で除去する必要がある(特許文献3)。この水銀除去は、水素化脱硫処理と同様に、通常各留分毎に行なわれており、それに使用する水銀除去剤についても、固体酸(特許文献3)、モリブデンなどの金属硫化物(特許文献4)など多くの提案が出されているが、そのほとんどは、水銀除去剤あるいは水銀除去方法それのみに関するものであり、NGLの分離精製との関連では、蒸留により100℃以下の沸点の軽質炭化水素留分を分離し、この軽質炭化水素留分から水銀を除去する方法(特許文献5)や、メルカプタンを除去後水銀を除去する方法(特許文献6)が提案されているにとどまる。すなわち、NGLの分離精製については、原油の分離精製技術が適用され、前記NGLの特性に基づく技術としては水銀等の除去技術に限られているのが現状である。
In the above method, since desulfurization is performed after NGL is separated into each fraction by atmospheric distillation, it is necessary to provide a hydrodesulfurization device for each fraction in order to remove the sulfur content in the product. The cost associated with the operation and equipment is increased. As a countermeasure, a method has been proposed in which an LPG fraction is removed from NGL by a predistillation tower (prefractionator), hydrodesulfurization treatment is performed, and then distillation separation is performed. FIG. 4 shows the schematic process. In this method, NGL 1 is sent to the preliminary distillation column 41 after being desalted by the desalting apparatus 21. Here, although the gas component containing LPG is extracted from the top of the preliminary distillation column 41, the light naphtha is subsequently recovered by the stabilizer. The LPG from which the light naphtha is removed by the stabilizer 42 is subjected to removal of the sulfur by the amine cleaning device 52 and the soda cleaning device 53 as in FIG.
The light naphtha recovered from the stabilizer 42 and the liquid phase component of the preliminary distillation column 41 are sent together to the hydrodesulfurization apparatus 30, hydrodesulfurized, and then sent to the atmospheric distillation column 40. The components are separated into a gas component mainly composed of naphtha, a kerosene fraction 9 and a light oil fraction 10 in the atmospheric distillation tower 40. A gas component mainly composed of naphtha is separated into LPG 7, light naphtha fraction 8, and heavy naphtha fraction 9 by a stabilizer 50 and a naphtha fractionation tower 51. In this case, since hydrodesulfurization has already been performed before atmospheric distillation, it is not necessary to provide a hydrodesulfurization apparatus individually for each fraction after atmospheric distillation.
In the above method, hydrodesulfurization treatment is performed after NGL is predistilled, but a method of hydrodesulfurizing all raw materials without predistillation and then separating them by atmospheric distillation has been proposed as a crude oil treatment method. (Patent Documents 1 and 2). That is, Patent Document 1 proposes a catalyst suitable for the above treatment, and Patent Document 2 proposes a method of further treating heavy components by distillation after hydrodesulfurization of crude oil.
On the other hand, NGL is characterized by a high mercury content in addition to the characteristic that it contains a lot of light hydrocarbons. When using a product fraction such as naphtha separated and produced from NGL as a raw material for petrochemical products, this mercury needs to be removed at the separation and production stage because it may poison the catalyst (Patent Document 3). . This mercury removal is usually carried out for each fraction, as in the hydrodesulfurization treatment, and the mercury removal agent used therefor is a solid acid (Patent Document 3), a metal sulfide such as molybdenum (Patent Document) 4) have been proposed, most of which are related to the mercury removal agent or mercury removal method itself. In connection with the separation and purification of NGL, light carbonization with a boiling point of 100 ° C. or lower by distillation. Only a method of separating a hydrogen fraction and removing mercury from this light hydrocarbon fraction (Patent Document 5) and a method of removing mercury after removing a mercaptan (Patent Document 6) have been proposed. That is, as for the separation and purification of NGL, the separation and purification technology of crude oil is applied, and the technology based on the characteristics of the NGL is currently limited to the removal technology of mercury and the like.

特許第3669377号公報Japanese Patent No. 3669377 特開2003−49175号公報Japanese Patent Laid-Open No. 2003-49175 特開平2−269797号公報JP-A-2-2699797 特公平7−103377号公報Japanese Examined Patent Publication No. 7-103377 特開平11−181447号公報Japanese Patent Laid-Open No. 11-181447 特開平6−9965号公報JP-A-6-9965

このように、NGLについては、原油の分離精製技術をベースとして分離精製が行なわれており、上記の(軽質留分の含有量が多い、水銀の含有量が多い)というNGLの特性を考慮したNGL分離精製システムの検討はなされていない。
NGLの分離精製を既存の原油と混合し原油の分離精製系で処理することができれば、あまり大きな設備等の負担をせず処理できるが、原油生産設備が並存していない場合にはこの方法を採用することはできない。すなわち、NGL単独での分離精製技術が必要である。
NGLを単独で図3に示すように蒸留分離後、水素化脱硫する方法では留分毎に精製設備が必要であり先にも記載したように、設備、運転面での負担が大きい。予備蒸留でLPGを分離後、水素化脱硫処理を行う場合(図4)には、留分毎に水素化脱硫設備を設ける必要がないが、予備蒸留塔が必要となる。また、メルカプタン成分が水素化されずにLPG成分に移行するため、硫化水素除去のアミン洗浄装置と、メルカプタン除去のソーダ洗浄装置の2段の脱硫装置が必要という問題がある。
このような問題に対して、原油については原料を水素化脱硫後、蒸留する方法が提案されてはいるが、原油とNGLでは、上記のように特性が異なるため、そのまま適用することはできない。すなわち、NGLについては、これをそのまま適用しようとすると、水素化脱硫用の加熱器出口で供給NGLがほぼ全量ガス化されてしまう。その結果加熱管内表面に金属等の固化成分が析出したり、NGLに存在した夾雑物が堆積したりして加熱管の異常過熱を生じやすい。これは、50%前後の重質分を含有する原油では起こりえない現象である。
また、NGLに多量に含まれている水銀についても、NGLの分離精製において適した水銀処理方法が望まれている。
本発明は、以上の技術的問題を解決するためになされたものであって、その目的は、NGLを単独で各留分に分離精製するためのNGLの特性を考慮した効率的なNGLの処理方法及び処理システムを提供することにある。
In this way, NGL is separated and refined based on crude oil separation and purification technology, considering the above-mentioned NGL characteristics (high light fraction content and high mercury content). The NGL separation and purification system has not been studied.
If separation and refining of NGL can be mixed with existing crude oil and processed in the crude oil separation and refining system, it can be processed without burdening too much equipment, but this method can be used when crude oil production facilities do not coexist. It cannot be adopted. That is, a separation and purification technique using NGL alone is necessary.
As shown in FIG. 3, the method of hydrodesulfurizing NGL alone by distillation as shown in FIG. 3 requires refining equipment for each fraction, and as described above, the burden on equipment and operation is large. When hydrodesulfurization is performed after separating LPG by preliminary distillation (FIG. 4), it is not necessary to provide hydrodesulfurization equipment for each fraction, but a preliminary distillation column is required. In addition, since the mercaptan component shifts to the LPG component without being hydrogenated, there is a problem that a two-stage desulfurization device of an amine cleaning device for removing hydrogen sulfide and a soda cleaning device for removing mercaptan is necessary.
In order to deal with such problems, a method for distilling raw materials after hydrodesulfurization has been proposed for crude oil. However, since crude oil and NGL have different characteristics as described above, they cannot be applied as they are. That is, if NGL is applied as it is, almost all of the supplied NGL is gasified at the hydrodesulfurization heater outlet. As a result, solidified components such as metals are deposited on the inner surface of the heating tube, and impurities existing in the NGL are likely to be deposited, and abnormal heating of the heating tube is likely to occur. This is a phenomenon that cannot occur with crude oil containing around 50% heavy.
Further, a mercury treatment method suitable for separation and purification of NGL is also desired for mercury contained in a large amount in NGL.
The present invention has been made to solve the above technical problems, and an object of the present invention is to efficiently process NGL in consideration of the characteristics of NGL for separating and purifying NGL into individual fractions. It is to provide a method and a processing system.

本発明の第1の発明は、NGLを各留分の製品に分離精製するNGLの処理方法において、前記NGLを脱塩処理後、水素化脱硫処理を行い、水素化脱硫されたNGLを、さらに蒸留分離してLPG、軽質ナフサ留分、重質ナフサ留分、灯油留分、軽油留分に分離精製する。   According to a first aspect of the present invention, in the NGL treatment method for separating and purifying NGL into products of each fraction, hydrodesulfurization treatment is performed after the NGL is desalted and then hydrodesulfurized NGL is further added. It is separated and purified by distillation separation into LPG, light naphtha fraction, heavy naphtha fraction, kerosene fraction, and light oil fraction.

本発明の第2の発明は、第1の発明において、脱塩処理されたNGLを前記水素化脱硫処理する前に脱水処理を行うことを特徴とする。 According to a second aspect of the present invention, in the first aspect, the demineralized NGL is subjected to a dehydration treatment before the hydrodesulfurization treatment.

本発明の第3の発明は、第2の発明において、前記脱塩処理されたNGLを脱水処理する前に冷却することを特徴とする。 According to a third aspect of the present invention, in the second aspect, the desalted NGL is cooled before dehydration.

本発明の第4の発明は、第2及び第3の発明において、水銀を含むNGLを脱水処理した後に脱水銀処理し、その後に前記水素化脱硫処理を行うことを特徴とする。 According to a fourth aspect of the present invention, in the second and third aspects, the mercury-containing NGL is dehydrated and then demercured, and then the hydrodesulfurization is performed.

本発明の第5の発明は、第1ないし第4の発明において、前記水素化脱硫処理において、水素化脱硫されたNGLと水素を含む反応生成物を、圧力4.5〜8MPa、温度25〜50℃の条件にて気液分離を行い、水素を主とする気相成分と水素化脱硫されたNGLを主成分とする液相成分に分離することを特徴とする。 According to a fifth invention of the present invention, in the first to fourth inventions, in the hydrodesulfurization treatment, a reaction product containing hydrodesulfurized NGL and hydrogen is applied at a pressure of 4.5 to 8 MPa, a temperature of 25 to 25. Gas-liquid separation is performed under the condition of 50 ° C. to separate into a gas phase component mainly composed of hydrogen and a liquid phase component mainly composed of hydrodesulfurized NGL.

本発明の第6の発明は、第5の発明において、前記気液分離により分離された水素を主成分とする気相成分を、硫化水素の吸収性能を有する吸収液で洗浄して該気相成分に含まれる硫化水素を除去後、昇圧して水素化脱硫処理に再使用することを特徴とする。 According to a sixth aspect of the present invention, in the fifth aspect, the gas phase component containing hydrogen as a main component separated by the gas-liquid separation is washed with an absorbing solution having hydrogen sulfide absorption performance, and the gas phase is After removing the hydrogen sulfide contained in the components, the pressure is increased and reused for hydrodesulfurization treatment.

本発明の第7の発明は、第5の発明において、前記水素化脱硫されたNGLを主成分とする液相成分を蒸留してLPG及びナフサ留分を含む軽質ガス成分と、灯油留分と軽油留分とに分離し、前記軽質ガス成分をさらにLPG、軽質ナフサ留分、重質ナフサ留分に分離することを特徴とする。 According to a seventh aspect of the present invention, in the fifth aspect, a light gas component containing LPG and a naphtha fraction obtained by distilling the liquid phase component mainly composed of the hydrodesulfurized NGL, a kerosene fraction, A light oil fraction is separated, and the light gas component is further separated into LPG, a light naphtha fraction, and a heavy naphtha fraction.

本発明の第8の発明は、NGLの処理システムがNGLより塩分を除去する脱塩装置、該脱塩装置からのNGLを水素存在下で触媒により脱硫する水素化脱硫処理装置、水素化脱硫装置からの生成物の気液分離装置、気液分離装置で分離された気相成分を脱硫後、水素化脱硫装置にリサイクルする水素リサイクル装置、前記気液分離装置で分離された液相成分をLPG、軽質ナフサ留分、重質ナフサ留分、灯油留分、軽油留分に分離精製する蒸留精製装置を含んでなることを特徴とする。 The eighth invention of the present invention is a demineralizer for removing salt from an NGL by a NGL treatment system, a hydrodesulfurization apparatus for desulfurizing NGL from the demineralizer with a catalyst in the presence of hydrogen, and a hydrodesulfurization apparatus. The gas-liquid separation device of the product from, the gas phase component separated by the gas-liquid separation device is desulfurized and then recycled to the hydrodesulfurization device, and the liquid phase component separated by the gas-liquid separation device is LPG And a distillation purification apparatus for separating and purifying light naphtha fraction, heavy naphtha fraction, kerosene fraction and light oil fraction.

本発明の第9の発明は、第8の発明において、前記脱塩装置と前記水素化脱硫装置の間に脱水装置を設けることを特徴とする。   According to a ninth aspect of the present invention, in the eighth aspect, a dehydrator is provided between the demineralizer and the hydrodesulfurizer.

本発明の第10の発明は、第9の発明において、前記脱塩装置と前記脱水装置の間にNGLを冷却する冷却装置を設けることを特徴とする。   According to a tenth aspect of the present invention, in the ninth aspect, a cooling device for cooling NGL is provided between the desalting device and the dehydrating device.

本発明の第11の発明は、第9及び第10の発明において、前記脱水装置と前記水素化脱硫装置の間に脱水銀装置を設けることを特徴とする。   An eleventh aspect of the present invention is characterized in that, in the ninth and tenth aspects, a demercuring device is provided between the dehydrating device and the hydrodesulfurization device.

本発明の第12の発明は、第8ないし第11の発明において、前記蒸留精製装置が、水素化脱硫されたNGLをLPG及びナフサ留分を含む軽質ガス成分と、灯油留分と軽油留分に分離する常圧蒸留装置、該軽質ガス成分をナフサ留分とLPGに分離するスタビライザ、ナフサ留分を軽質ナフサ留分と重質ナフサ留分に分離するナフサ分留塔よりなることを特徴とする。 According to a twelfth aspect of the present invention, in the eighth to eleventh aspects, the distillation purification apparatus includes a light gas component containing hydrodesulfurized NGL containing LPG and a naphtha fraction, a kerosene fraction and a light oil fraction. An atmospheric distillation apparatus for separating the light gas component into a naphtha fraction and an LPG, and a naphtha fractionation tower for separating the naphtha fraction into a light naphtha fraction and a heavy naphtha fraction. To do.

本発明によれば、脱水銀、水素化脱硫が各留分毎ではなく、蒸留分離前のNGLに対して行なわれるため、各留分毎に脱水銀装置、水素化脱硫装置を設ける必要が無く、設備、運転、エネルギ面で効率的な処理を行うことができる。
また、予備蒸留塔が不要で、LPGも含めて水素化脱硫処理できることから、メルカプタンも水素化脱硫工程で硫化水素に転換されるため、LPGからソーダ洗浄装置によりメルカプタンを除去する必要が無く、ソーダ洗浄装置を省略できる。
前処理で脱塩、脱水、脱水銀を行なうことにより、NGLを蒸留分離せずに水素化脱硫処理しても、加熱器加熱管内での塩分、夾雑物、水銀などの堆積による加熱管破損、反応器、熱交換器、容器等への水銀堆積等のトラブルやそれに対応する保守作業が大幅に軽減されると共に、安定な運転が可能となる。また、脱硫処理を一括して前処理工程の後に行なうことにより、蒸留装置以降は、塩分、夾雑物、水銀だけでなく硫黄もほとんど無くなり、硫化物による機器の腐食等も著しく低減できる。
さらに、脱水銀装置の前に脱水装置を設けているため、活性炭のように水分が存在すると脱水銀性能が低下する除去剤も性能低下の懸念無く使用することができる。
According to the present invention, since mercury removal and hydrodesulfurization are performed not for each fraction but for NGL before distillation separation, there is no need to provide a mercury removal apparatus and a hydrodesulfurization apparatus for each fraction. In addition, efficient processing can be performed in terms of equipment, operation, and energy.
In addition, since a pre-distilling column is not required and hydrodesulfurization treatment including LPG can be performed, mercaptan is also converted into hydrogen sulfide in the hydrodesulfurization process, so there is no need to remove mercaptan from LPG by a soda washing device. The cleaning device can be omitted.
By performing desalting, dehydration, and mercury removal in the pretreatment, even if hydrodesulfurization treatment is performed without separating NGL by distillation, heating tube breakage due to accumulation of salt, contaminants, mercury, etc. in the heater heating tube, Troubles such as mercury accumulation in reactors, heat exchangers, containers, etc. and maintenance work corresponding thereto are greatly reduced, and stable operation becomes possible. Further, by performing the desulfurization treatment collectively after the pretreatment step, not only the salinity, impurities, and mercury but also sulfur is almost eliminated after the distillation apparatus, and the corrosion of the equipment due to the sulfide can be significantly reduced.
Furthermore, since a dehydrating device is provided in front of the demercuring device, a remover that lowers the demercuring performance when water is present, such as activated carbon, can be used without fear of performance degradation.

以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。   Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.

図1及び図2を用いて、本発明によるNGLの処理方法の実施態様を説明する。図1は本発明に示すNGLの処理方法を示すフロー図である。図1において、原料であるNGL1は、まず、前処理工程20に送られ、NGLに含まれる不純物が除去される。ここで除去対象となる不純物というのは、塩類、金属類など後流の水素化脱硫反応工程において、加熱器の加熱管内に堆積するおそれのある不純物であり、塩類、水銀などが該当する。
前処理工程20は、脱塩装置21、脱水装置22、脱水銀装置23の3段階で構成される。すなわち、後流の水素化脱硫反応工程で問題となるのは塩分と水銀であるので、まず脱塩装置21により塩分を除去する。この脱塩装置21としては、原油あるいはNGL精製設備で通常使われるものが使用できる。脱塩装置21で塩分を除去されたNGL中には、まだ遊離水が含まれており、そのため塩分が遊離水に溶解した形で0.5〜10ppm(重量)残存している。後流での安定処理のためには、この遊離水に溶解している塩類もできるだけ除去する必要があるので、脱塩装置21を出たNGLをさらに脱水装置22で脱水して、遊離水を除去する。この際、除去性能を上げるために、脱塩装置21から出てくる温度50〜120℃のNGLを冷却し、元々ある遊離水に加えて、NGLに溶解している水分も遊離水として析出させる。この冷却のレベルとしては、できれば20℃以上の温度低下(冷却後の温度として15〜100℃)となるように冷却することが好ましい。このようにして冷却により生じた遊離水と元々ある遊離水は次に、脱水装置22で溶解している塩分や夾雑物と共にプレフィルタあるいはコアレッサにより脱水除去される。
脱水装置22で脱水処理されたNGLは、さらに脱水銀装置23に入りNGL中の水銀が除去される。この脱水銀装置は、先の特許文献などに示された方法が使用できる。本発明の方法では、脱水処理を脱水銀処理の前に実施しているため、活性炭のような遊離水が存在すると脱水銀性能が低下するような除去剤も問題なく使用できるという効果がある。
前処理工程は、どのように構成するかは、処理するNGLの性状、設備の運転方法などを考慮して決められる。本発明では、NGLを蒸留分離する前に水素化脱硫を行うため、塩分の除去は必須である。前記のように塩分が残存すると、加熱管に堆積し破損等のトラブルを招くからである。塩分が少なく脱塩装置だけで、NGL中の塩分をある程度低下できる場合には、脱塩装置のみで構成することができる。脱塩装置だけでは、NGL中の塩分がかなり残存する場合や、運転・保守の信頼性を高くしたい場合には、脱水装置を設置して、塩分をさらに低下させることが望ましい。脱水前に冷却を行うことによりその効果をさらに上げることができる。
NGLに水銀が含まれる場合には、前記のように脱水装置の後、水素化脱硫装置の前に設置することが望ましい。前記のように、水銀は製品である各留分を、他の処理プロセスに使用する場合、触媒毒となる恐れがあるため、NGL処理のいずれかの段階で除去する必要があるからである。本発明では、水素化脱硫前で処理することにより、一括して処理することができる上、後流機器での水銀の析出によるトラブルも防ぐことができる。NGL中に水銀が含まれないか、あるいは含まれていてもその量が少なく、前記触媒毒となったり、後流機器に影響を与えたりするレベルに達しない場合は、脱水銀工程は不要である。
An embodiment of an NGL processing method according to the present invention will be described with reference to FIGS. FIG. 1 is a flowchart showing the NGL processing method according to the present invention. In FIG. 1, NGL1, which is a raw material, is first sent to a pretreatment step 20, where impurities contained in NGL are removed. The impurities to be removed here are impurities that may be deposited in the heating pipe of the heater in the downstream hydrodesulfurization reaction step such as salts and metals, and include salts and mercury.
The pretreatment process 20 includes three steps of a desalting apparatus 21, a dehydrating apparatus 22, and a mercury removing apparatus 23. That is, since salt and mercury are problems in the downstream hydrodesulfurization reaction step, the salt is first removed by the demineralizer 21. As this desalinization apparatus 21, what is normally used with crude oil or a NGL refinement | purification equipment can be used. The NGL from which the salt content has been removed by the desalting apparatus 21 still contains free water, so that 0.5 to 10 ppm (weight) remains in a form in which the salt content is dissolved in the free water. Since it is necessary to remove salts dissolved in the free water as much as possible for the stable treatment in the downstream, the NGL discharged from the desalting apparatus 21 is further dehydrated by the dehydrating apparatus 22 to remove the free water. Remove. At this time, in order to improve the removal performance, the NGL at a temperature of 50 to 120 ° C. coming out from the desalting apparatus 21 is cooled, and in addition to the original free water, the water dissolved in the NGL is also precipitated as free water. . As a level of this cooling, it is preferable to cool so that the temperature is lowered by 20 ° C. or more (the temperature after cooling is 15 to 100 ° C.) if possible. The free water thus generated by cooling and the original free water are then dehydrated and removed by the prefilter or coalescer together with the salt and impurities dissolved in the dehydrator 22.
The NGL dehydrated by the dehydrator 22 further enters the mercury removal apparatus 23 to remove mercury in the NGL. This mercury removal apparatus can use the method shown in the above patent document. In the method of the present invention, since the dehydration treatment is performed before the mercury removal treatment, there is an effect that a remover that can reduce the mercury removal performance when free water such as activated carbon is present can be used without any problem.
The configuration of the pretreatment process is determined in consideration of the properties of the NGL to be processed, the operation method of the equipment, and the like. In the present invention, since hydrodesulfurization is performed before NGL is separated by distillation, removal of salt is essential. This is because if salt remains as described above, it accumulates on the heating tube and causes troubles such as breakage. In the case where the salt content in the NGL can be reduced to some extent by using only a desalting apparatus with a small amount of salt, the desalinating apparatus alone can be used. In the case where the salt content in the NGL remains significantly only with the desalination apparatus, or when it is desired to increase the reliability of operation and maintenance, it is desirable to further reduce the salt content by installing a dehydrator. The effect can be further increased by cooling before dehydration.
When NGL contains mercury, it is desirable to install it after the dehydrator and before the hydrodesulfurizer as described above. As described above, mercury is required to be removed at any stage of the NGL treatment because each product fraction may become a catalyst poison when used in other treatment processes. In this invention, by processing before hydrodesulfurization, it can process collectively and can also prevent the trouble by precipitation of mercury in a downstream apparatus. If NGL does not contain mercury, or if it is contained, the amount is small, and if it does not reach the level that it becomes a catalyst poison or affects downstream equipment, the mercury removal process is unnecessary. is there.

脱水銀装置23を出た塩分、夾雑物、水銀などが除去されたNGL2は、次に水素化脱硫工程30に送られる。この水素化脱硫反応工程30の処理フローの例を図2により説明する。前処理工程20で不純物を除去されたNGL2は、補給用水素14及びリサイクル水素15と一緒に加熱器31に送られる。NGLは前記のように軽質留分が多く含まれるため、水素化脱硫反応器32の反応温度は、灯軽油の水素化脱硫時の反応温度よりも低く設定できるが、それでも250〜360℃程度は必要である。一方、NGLは300℃くらいでほぼ全量ガス化するため、前記のように加熱器31内で液相がほとんどない状態になるが、本発明では不純物を前処理で除去しているため、このガス化による加熱器31での不純物の堆積を防ぐことができることは、前記した通りである。
加熱器31で水素化脱硫反応器32の反応に必要な温度まで水素と共に加熱されたNGLは、水素化脱硫反応器32に送られ、水素および触媒の存在下、水素化脱硫反応器32で硫黄分が硫化水素に転換されて脱硫される。ここで、使用される触媒、反応器などに特に制限はなく、公知の脱硫反応器、脱硫触媒が使用できる。
水素化脱硫反応器32を出た脱硫NGLと水素を含む反応生成物は、熱交換器33で脱硫前のNGL及び水素を含む流体と熱交換して冷却後、さらに空冷装置34、水冷装置35により冷却され気液分離器36に送られる。
The NGL 2 from which salt, impurities, mercury and the like that have exited the mercury removal apparatus 23 have been removed is then sent to the hydrodesulfurization process 30. An example of the processing flow of the hydrodesulfurization reaction step 30 will be described with reference to FIG. The NGL 2 from which impurities are removed in the pretreatment step 20 is sent to the heater 31 together with the supplementary hydrogen 14 and the recycled hydrogen 15. Since NGL contains a lot of light fractions as described above, the reaction temperature of the hydrodesulfurization reactor 32 can be set lower than the reaction temperature at the time of hydrodesulfurization of kerosene oil, but still about 250 to 360 ° C. is necessary. On the other hand, since NGL is almost entirely gasified at about 300 ° C., there is almost no liquid phase in the heater 31 as described above. However, in the present invention, this gas is removed because impurities are removed by pretreatment. As described above, the accumulation of impurities in the heater 31 due to the conversion can be prevented.
The NGL heated together with hydrogen to the temperature required for the reaction of the hydrodesulfurization reactor 32 by the heater 31 is sent to the hydrodesulfurization reactor 32, and sulfur in the hydrodesulfurization reactor 32 in the presence of hydrogen and a catalyst. The portion is converted to hydrogen sulfide and desulfurized. Here, there is no restriction | limiting in particular in the catalyst, reactor, etc. which are used, A well-known desulfurization reactor and a desulfurization catalyst can be used.
The reaction product containing desulfurized NGL and hydrogen that has exited the hydrodesulfurization reactor 32 is heat-exchanged with a fluid containing NGL and hydrogen before desulfurization in the heat exchanger 33, and then cooled, and then, an air cooling device 34 and a water cooling device 35 And is sent to the gas-liquid separator 36.

気液分離器36の操作条件としては圧力4.5〜8MPa、温度25〜50℃が選定される。本発明では、図4に示す従来方式とは異なりLPGを分離せずに一括して水素化脱硫処理を行っている。その結果、LPG成分も水素化脱硫反応生成物に含まれるため、気液分離器36の操作条件が上記設定温度より高くなったり、設定圧力より低下したりするとLPG成分が気液分離器36で気相側に移行する量が増大する。LPGが気相側に移行する量が増えると相対的に気相中の水素の濃度が低下し、水素化脱硫反応に必要な水素圧を維持するために、反応圧力を高くする必要があるが、上記操作条件であれば、ほとんど影響がない。また、LPGを一括処理しても、液相に移行する水素の溶け込み量もわずかであり、許容範囲内である。気液分離器の操作条件を温度40℃、圧力4.69MPaとしたときの、上記気相水素濃度、液相溶解水素量の例を表1に示す。

Figure 2007238832

As operating conditions of the gas-liquid separator 36, a pressure of 4.5 to 8 MPa and a temperature of 25 to 50 ° C. are selected. In the present invention, unlike the conventional method shown in FIG. 4, the hydrodesulfurization treatment is performed collectively without separating the LPG. As a result, since the LPG component is also included in the hydrodesulfurization reaction product, when the operating condition of the gas-liquid separator 36 becomes higher than the set temperature or falls below the set pressure, the LPG component is transferred to the gas-liquid separator 36. The amount transferred to the gas phase side increases. As the amount of LPG transferred to the gas phase increases, the hydrogen concentration in the gas phase decreases relatively, and the reaction pressure needs to be increased in order to maintain the hydrogen pressure necessary for the hydrodesulfurization reaction. In the above operating conditions, there is almost no influence. In addition, even when LPG is collectively processed, the amount of hydrogen dissolved in the liquid phase is very small and within an allowable range. Table 1 shows examples of the gas phase hydrogen concentration and the liquid phase dissolved hydrogen amount when the operating conditions of the gas-liquid separator are a temperature of 40 ° C. and a pressure of 4.69 MPa.
Figure 2007238832

気液分離器36で分離された気相成分16は、硫化水素除去装置37にて水素化脱硫反応器32で生成した硫化水素を除去後、リサイクルガスコンプレッサ38により昇圧して、補補給用水素コンプレッサ39にて昇圧された補給用水素と共に前記水素化脱硫反応器に循環される。
一方、NGL成分は気液分離器36から液相3として抜出され常圧蒸留装置40に送られる。
The gas phase component 16 separated by the gas-liquid separator 36 removes the hydrogen sulfide generated by the hydrodesulfurization reactor 32 by the hydrogen sulfide removal device 37, and then the pressure is increased by the recycle gas compressor 38 to supply hydrogen for supplementary supply. It is circulated to the hydrodesulfurization reactor together with the supplementary hydrogen that has been pressurized by the compressor 39.
On the other hand, the NGL component is extracted from the gas-liquid separator 36 as the liquid phase 3 and sent to the atmospheric distillation apparatus 40.

図1で水素化脱硫反応工程30から出てきた脱硫されたNGL成分3は常圧蒸留装置40に送られて、圧力0〜0.1MPaGのほぼ常圧(大気圧)で蒸留分離される。その結果、常圧蒸留装置40の塔頂部からはLPG留分及びナフサ留分を含むガス成分4、上段からは灯油留分10、中段からは軽油留分11が抜出される。NGLは、重質分が少なくかつ水素化脱硫処理されているため、常圧蒸留装置40からは重油留分12はほとんど生じないが、NGLの重質分含有量が比較的高く、重油留分が存在する場合には塔底部から抜出される。
常圧蒸留装置40の塔頂部から抜出されたLPG留分及びナフサ留分を含むガス成分4は、次にスタビライザ50に送られ、LPG留分5とナフサ留分6に分離される。常圧蒸留装置塔頂部から抜き出されるガス成分4の温度は80〜120℃である。スタビライザ50は通常0.5〜1.5MPaG程度の圧力で操作され、スタビライザ50の塔頂部から抜出されるLPG留分の温度は50〜100℃である。このLPG留分5の中には、水素化脱硫反応工程30の気液分離器36で分離されずに液相に溶解していた硫化水素が含まれているためアミン洗浄装置52で硫化水素を除去して製品LPG留分7を得る。
一方、スタビライザ50の塔底部から抜きだされる150〜200℃のナフサ留分は、ナフサ分留塔51でさらに、軽質ナフサ留分8と重質ナフサ留分9に分離する。このナフサ分留塔の操作圧力は0〜0.3MPaG程度である。ナフサ分を軽質ナフサと重質ナフサに分離する必要が無い場合は、このナフサ分留塔は省略できる。
以上説明したように、本発明によれば、水素化脱硫反応工程30において、液相に溶解した硫化水素分を除去する以外は、水素化脱硫工程30の後流側に脱硫装置、脱水銀装置を設ける必要はない。
なお、NGLに重質分が多く含まれる場合には、脱水後の脱水銀のコストが増加する場合がある。このような場合には、重質分があるため、加熱器内で液相がほとんどなくなる恐れが減少するため、脱水までを行い、脱水銀操作については、個別の留分毎に行うこともできる。
In FIG. 1, the desulfurized NGL component 3 output from the hydrodesulfurization reaction step 30 is sent to the atmospheric distillation unit 40 and is distilled and separated at an atmospheric pressure (atmospheric pressure) of 0 to 0.1 MPaG. As a result, the gas component 4 including the LPG fraction and the naphtha fraction is extracted from the top of the atmospheric distillation apparatus 40, the kerosene fraction 10 is extracted from the upper stage, and the light oil fraction 11 is extracted from the middle stage. Since NGL has a small heavy content and is hydrodesulfurized, almost no heavy oil fraction 12 is produced from the atmospheric distillation apparatus 40, but the heavy content of NGL is relatively high, and the heavy oil fraction Is extracted from the bottom of the tower.
The gas component 4 containing the LPG fraction and the naphtha fraction extracted from the top of the atmospheric distillation apparatus 40 is then sent to the stabilizer 50 and separated into the LPG fraction 5 and the naphtha fraction 6. The temperature of the gas component 4 extracted from the top of the atmospheric distillation apparatus tower is 80 to 120 ° C. The stabilizer 50 is normally operated at a pressure of about 0.5 to 1.5 MPaG, and the temperature of the LPG fraction extracted from the top of the tower of the stabilizer 50 is 50 to 100 ° C. The LPG fraction 5 contains hydrogen sulfide that has been dissolved in the liquid phase without being separated by the gas-liquid separator 36 in the hydrodesulfurization reaction step 30. Remove to obtain product LPG fraction 7.
On the other hand, the naphtha fraction at 150 to 200 ° C. extracted from the bottom of the stabilizer 50 is further separated into a light naphtha fraction 8 and a heavy naphtha fraction 9 by the naphtha fractionation tower 51. The operating pressure of this naphtha fractionation tower is about 0 to 0.3 MPaG. If it is not necessary to separate the naphtha into light and heavy naphtha, this naphtha fractionation tower can be omitted.
As described above, according to the present invention, in the hydrodesulfurization reaction step 30, except for removing hydrogen sulfide dissolved in the liquid phase, a desulfurization device and a demercury device are provided on the downstream side of the hydrodesulfurization step 30. There is no need to provide.
If NGL contains a large amount of heavy components, the cost of demercuring after dehydration may increase. In such a case, since there is a heavy component, the risk of almost no liquid phase in the heater is reduced, so dehydration can be performed, and the mercury removal operation can be performed for each individual fraction. .

以上のように、本発明によれば、天然ガスコンデンセート(NGL)をその特性を考慮した効率的な分離精製方法で処理することができるため、NGLから、LPG、ナフサ、灯軽油などの石油製品、石油化学製品な原料を安価に提供することを可能にする。   As described above, according to the present invention, since natural gas condensate (NGL) can be processed by an efficient separation and purification method considering its characteristics, petroleum products such as LPG, naphtha, and kerosene are used from NGL. This makes it possible to provide petrochemical raw materials at a low cost.

本発明のNGLの処理方法の実施例を示すフロー図The flowchart which shows the Example of the processing method of NGL of this invention 本発明のNGL処理設備に使用される水素化脱硫反応工程の処理方法の例を示すフロー図The flowchart which shows the example of the processing method of the hydrodesulfurization reaction process used for the NGL processing equipment of this invention 従来のNGLの処理方法を示すフロー図Flow chart showing conventional NGL processing method 従来のNGLの処理方法を示す他のフロー図Another flow chart showing a conventional NGL processing method

符号の説明Explanation of symbols

1 原料天然ガスコンデンセート(NGL)
2 前処理をされたNGL
3 水素化脱硫工程を出た水素化脱硫反応生成物
4 常圧蒸留塔塔頂部抜出しガス成分
5 スタビライザ出口ガス成分

スタビライザ出口液成分
7 LPG留分
8 軽質ナフサ留分
9 重質ナフサ留分
10 灯油留分
11 軽油留分
12 重油留分
13 原油
14 補給用水素
15、16 リサイクル水素含有ガス
20 前処理工程
21 脱塩装置
22 脱水装置
23 脱水銀装置
30、301、302、303、304 水素化脱硫反応工程
31 加熱器
32 水素化脱硫反応器
33 熱交換器
34 空冷装置
35 水冷装置
36 気液分離器
37 硫化水素除去装置
38、39 水素コンプレッサ
40 常圧蒸留装置
41 予備蒸留塔
42、50 スタビライザ
51 ナフサ分留塔
52 アミン洗浄装置
53 ソーダ洗浄装置
54 脱硫装置
1 Raw material natural gas condensate (NGL)
2 NGL with pretreatment
3 Hydrodesulfurization reaction product from the hydrodesulfurization process 4 Gas component extracted from the top of the atmospheric distillation tower 5 Gas component at the outlet of the stabilizer 6
Stabilizer outlet liquid component 7 LPG fraction 8 Light naphtha fraction 9 Heavy naphtha fraction 10 Kerosene fraction 11 Light oil fraction 12 Heavy oil fraction 13 Crude oil 14 Supplementary hydrogen 15, 16 Recycled hydrogen-containing gas 20 Pretreatment process 21 Detreatment Salt device 22 Dehydration device 23 Demercury device 30, 301, 302, 303, 304 Hydrodesulfurization reaction step 31 Heater 32 Hydrodesulfurization reactor 33 Heat exchanger 34 Air cooling device 35 Water cooling device 36 Gas-liquid separator 37 Hydrogen sulfide 37 Removal equipment 38, 39 Hydrogen compressor 40 Atmospheric distillation equipment 41 Preliminary distillation tower 42, 50 Stabilizer 51 Naphtha fractionation tower 52 Amine washing equipment 53 Soda washing equipment 54 Desulfurization equipment

Claims (12)

天然ガスコンデンセートを各留分の製品に分離精製する天然ガスコンデンセートの処理方法において、前記天然ガスコンデンセートを脱塩処理後、水素化脱硫処理を行い、水素化脱硫された天然ガスコンデンセートを、さらに蒸留分離して液化石油ガス、軽質ナフサ留分、重質ナフサ留分、灯油留分、軽油留分に分離精製することを特徴とする天然ガスコンデンセートの処理方法。   In the natural gas condensate treatment method in which natural gas condensate is separated and purified into products of each fraction, the natural gas condensate is demineralized and then hydrodesulfurized, and the hydrodesulfurized natural gas condensate is further distilled. A method for treating natural gas condensate, which is separated and refined into liquefied petroleum gas, light naphtha fraction, heavy naphtha fraction, kerosene fraction, and light oil fraction. 前記天然ガスコンデンセートの処理方法において、脱塩処理された天然ガスコンデンセートを前記水素化脱硫処理する前に脱水処理を行うことを特徴とする請求項1記載の天然ガスコンデンセートの処理方法。   2. The natural gas condensate treatment method according to claim 1, wherein the demineralized natural gas condensate is dehydrated before the hydrodesulfurization treatment. 前記天然ガスコンデンセートの処理方法において、前記脱塩処理された天然ガスコンデンセートを脱水処理する前に冷却することを特徴とする請求項2記載の天然ガスコンデンセートの処理方法。   3. The natural gas condensate treatment method according to claim 2, wherein the desalted natural gas condensate is cooled before dehydration. 水銀を含む天然ガスコンデンセートを脱水処理した後に脱水銀処理し、その後に前記水素化脱硫処理を行うことを特徴とする請求項2ないし3記載の天然ガスコンデンセートの処理方法。   4. The method for treating natural gas condensate according to claim 2, wherein the mercury-containing natural gas condensate is demerged and then demercured, and then the hydrodesulfurization treatment is performed. 前記水素化脱硫処理において、水素化脱硫された天然ガスコンデンセートと水素を含む反応生成物を、圧力4.5〜8MPa、温度25〜50℃の条件にて気液分離を行い、水素を主とする気相成分と水素化脱硫された天然ガスコンデンセートを主成分とする液相成分に分離することを特徴とする請求項1ないし4記載の天然ガスコンデンセートの処理方法。 In the hydrodesulfurization treatment, a reaction product containing hydrodesulfurized natural gas condensate and hydrogen is subjected to gas-liquid separation under conditions of pressure 4.5 to 8 MPa and temperature 25 to 50 ° C. 5. The method for treating a natural gas condensate according to claim 1, wherein the gas phase component is separated into a liquid phase component mainly composed of hydrodesulfurized natural gas condensate. 前記気液分離により分離された水素を主成分とする気相成分を、硫化水素の吸収性能を有する吸収液で洗浄して該気相成分に含まれる硫化水素を除去後、昇圧して水素化脱硫処理に再使用することを特徴とする請求項5記載の天然ガスコンデンセートの処理方法。   The gas phase component mainly composed of hydrogen separated by the gas-liquid separation is washed with an absorption liquid having hydrogen sulfide absorption performance to remove hydrogen sulfide contained in the gas phase component, and then pressurized to hydrogenate. The method for treating natural gas condensate according to claim 5, wherein the method is used again for desulfurization treatment. 前記水素化脱硫された天然ガスコンデンセートを主成分とする液相成分を、蒸留して液化石油ガス及びナフサ留分を含む軽質ガス成分と、灯油留分と軽油留分とに分離し、前記軽質ガス成分をさらに液化石油ガス、軽質ナフサ留分、重質ナフサ留分に分離することを特徴とする請求項5記載の天然ガスコンデンセートの処理方法。   The liquid phase component mainly composed of the hydrodesulfurized natural gas condensate is separated by distillation into a light gas component containing a liquefied petroleum gas and a naphtha fraction, a kerosene fraction and a light oil fraction, 6. The method for treating natural gas condensate according to claim 5, wherein the gas component is further separated into a liquefied petroleum gas, a light naphtha fraction, and a heavy naphtha fraction. 天然ガスコンデンセートより塩分を除去する脱塩装置、該脱塩装置からの天然ガスコンデンセートを水素存在下で触媒により脱硫する水素化脱硫処理装置、水素化脱硫装置からの生成物の気液分離装置、気液分離装置で分離された気相成分を脱硫後、水素化脱硫装置にリサイクルする水素リサイクル装置、前記気液分離装置で分離された液相成分を液化石油ガス、軽質ナフサ留分、重質ナフサ留分、灯油留分、軽油留分に分離精製する蒸留精製装置を含んでなることを特徴とする天然ガスコンデンセートの処理システム。   A demineralizer for removing salt from natural gas condensate, a hydrodesulfurization treatment apparatus for desulfurizing natural gas condensate from the demineralizer with a catalyst in the presence of hydrogen, a gas-liquid separation apparatus for products from the hydrodesulfurization apparatus, A hydrogen recycling device that desulfurizes the gas phase components separated by the gas-liquid separation device and then recycles them to the hydrodesulfurization device. The liquid phase components separated by the gas-liquid separation device are liquefied petroleum gas, light naphtha fraction, heavy A natural gas condensate treatment system comprising a distillation purification apparatus for separating and purifying into a naphtha fraction, a kerosene fraction and a light oil fraction. 前記脱塩装置と前記水素化脱硫装置の間に脱水装置を設けることを特徴とする請求項8記載の天然ガスコンデンセートの処理システム。   The natural gas condensate treatment system according to claim 8, wherein a dehydrator is provided between the desalinator and the hydrodesulfurizer. 前記脱塩装置と前記脱水装置の間に天然ガスコンデンセートを冷却する冷却装置を設けることを特徴とする請求項9記載の天然ガスコンデンセートの処理システム。   The natural gas condensate treatment system according to claim 9, wherein a cooling device for cooling the natural gas condensate is provided between the desalting apparatus and the dehydrating apparatus. 前記脱水装置と前記水素化脱硫装置の間に脱水銀装置を設けることを特徴とする請求項9ないし10記載の天然ガスコンデンセートの処理システム。   The natural gas condensate treatment system according to claim 9, wherein a demercury apparatus is provided between the dehydration apparatus and the hydrodesulfurization apparatus. 前記蒸留精製装置が、水素化脱硫された天然ガスコンデンセートを液化石油ガス及びナフサ留分を含む軽質ガス成分と、灯油留分と軽油留分に分離する常圧蒸留装置、該軽質ガス成分をナフサ留分と液化石油ガスに分離するスタビライザ、ナフサ留分を軽質ナフサ留分と重質ナフサ留分に分離するナフサ分留塔よりなることを特徴とする請求項8ないし11記載の天然ガスコンデンセートの処理システム。   The distillation purification apparatus includes a light gas component containing a liquefied petroleum gas and a naphtha fraction, a normal pressure distillation apparatus that separates the hydrodesulfurized natural gas condensate into a kerosene fraction and a light oil fraction, and the light gas component is separated into a naphtha. The natural gas condensate according to any one of claims 8 to 11, comprising a stabilizer for separating the naphtha fraction into a light naphtha fraction and a heavy naphtha fraction. Processing system.
JP2006065176A 2006-03-10 2006-03-10 Method for treating natural gas condensate and system for treating the same Withdrawn JP2007238832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006065176A JP2007238832A (en) 2006-03-10 2006-03-10 Method for treating natural gas condensate and system for treating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006065176A JP2007238832A (en) 2006-03-10 2006-03-10 Method for treating natural gas condensate and system for treating the same

Publications (1)

Publication Number Publication Date
JP2007238832A true JP2007238832A (en) 2007-09-20

Family

ID=38584681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006065176A Withdrawn JP2007238832A (en) 2006-03-10 2006-03-10 Method for treating natural gas condensate and system for treating the same

Country Status (1)

Country Link
JP (1) JP2007238832A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095802A (en) * 2007-10-18 2009-05-07 Chiyoda Corp Reaction apparatus
JP2010111771A (en) * 2008-11-06 2010-05-20 Japan Energy Corp Method for producing purified hydrocarbon oil, and purified hydrocarbon oil
JP2010111769A (en) * 2008-11-06 2010-05-20 Japan Energy Corp Method for producing purified hydrocarbon oil, and purified hydrocarbon oil
JP2010111770A (en) * 2008-11-06 2010-05-20 Japan Energy Corp Method for producing purified hydrocarbon oil, and purified hydrocarbon oil
JP2013040263A (en) * 2011-08-12 2013-02-28 Kashima Oil Co Ltd Method for producing isopentane fraction, and apparatus for separating isopentane
KR101667750B1 (en) * 2015-05-14 2016-10-19 대우조선해양 주식회사 Condensate coalescer apparatus having cooler function
WO2017149790A1 (en) * 2016-03-02 2017-09-08 日揮株式会社 Condensate processing system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095802A (en) * 2007-10-18 2009-05-07 Chiyoda Corp Reaction apparatus
JP2010111771A (en) * 2008-11-06 2010-05-20 Japan Energy Corp Method for producing purified hydrocarbon oil, and purified hydrocarbon oil
JP2010111769A (en) * 2008-11-06 2010-05-20 Japan Energy Corp Method for producing purified hydrocarbon oil, and purified hydrocarbon oil
JP2010111770A (en) * 2008-11-06 2010-05-20 Japan Energy Corp Method for producing purified hydrocarbon oil, and purified hydrocarbon oil
JP2013040263A (en) * 2011-08-12 2013-02-28 Kashima Oil Co Ltd Method for producing isopentane fraction, and apparatus for separating isopentane
KR101667750B1 (en) * 2015-05-14 2016-10-19 대우조선해양 주식회사 Condensate coalescer apparatus having cooler function
WO2017149790A1 (en) * 2016-03-02 2017-09-08 日揮株式会社 Condensate processing system
RU2681314C1 (en) * 2016-03-02 2019-03-06 ДжейДжиСи КОРПОРЕЙШН Condensate processing system

Similar Documents

Publication Publication Date Title
KR101504384B1 (en) Process to reduce acidity of crude oil
JP2007238832A (en) Method for treating natural gas condensate and system for treating the same
JP6155049B2 (en) Method for removing mercury in hydrocarbon feedstock with hydrogen recycling
AU2010219005B2 (en) A method for recovering hydrocarbon compounds and a hydrocarbon recovery apparatus from a gaseous by-product
KR20070116074A (en) Method for producing base lubricating oil from waste oil
RU2666735C2 (en) Process for reining crude oil
RU2666589C1 (en) Method for hydrotreating gas oil in reactors in series with hydrogen recirculation
EP2351818B1 (en) Start-up method of a fractionator
CN113046127A (en) Demetallization of hydrocarbons
EA019522B1 (en) Method for producing liquid fuel products
JP5292511B2 (en) High pressure modification of low pressure distillate hydroprocessing equipment
RU2545181C2 (en) Hydrocarbon oil hydrotreating method
KR20100021085A (en) Method and apparatus for recovering hydrogen from petroleum desulfurization
JP5345298B2 (en) Method for refining hydrocarbon oil
JP5191865B2 (en) Manufacturing method of atmospheric distillation fraction
JP2009040844A (en) Method for producing reformed crude oil
US20140250946A1 (en) Method for recovering hydrocarbon compounds and a hydrocarbon recovery apparatus from a gaseous by-product
RU2757810C1 (en) Method for deasphalting of hydrocarbon raw materials
JP5483861B2 (en) Production method of purified fraction
EA039870B1 (en) Demetallization of hydrocarbons
US20240034940A1 (en) Enhanced hydrocarbon recovery
CA2520046C (en) Process for reducing the level of sulfur compounds from liquid hydrocarbon streams
JP2010111770A (en) Method for producing purified hydrocarbon oil, and purified hydrocarbon oil
WO2021086762A1 (en) Enhanced hydroprocessing process with ammonia and carbon dioxide recovery
JP2010111771A (en) Method for producing purified hydrocarbon oil, and purified hydrocarbon oil

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512