JP2009040844A - Method for producing reformed crude oil - Google Patents

Method for producing reformed crude oil Download PDF

Info

Publication number
JP2009040844A
JP2009040844A JP2007205701A JP2007205701A JP2009040844A JP 2009040844 A JP2009040844 A JP 2009040844A JP 2007205701 A JP2007205701 A JP 2007205701A JP 2007205701 A JP2007205701 A JP 2007205701A JP 2009040844 A JP2009040844 A JP 2009040844A
Authority
JP
Japan
Prior art keywords
crude oil
naphtha fraction
hydrotreating
producing
naphtha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007205701A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ota
信之 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2007205701A priority Critical patent/JP2009040844A/en
Priority to PCT/JP2008/062503 priority patent/WO2009019954A1/en
Publication of JP2009040844A publication Critical patent/JP2009040844A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a reformed crude oil for efficiently improving quality of a low-quality crude oil. <P>SOLUTION: The method for producing a reformed crude oil comprises: a step of separating a naphtha fraction from a crude oil to produce a topped crude oil (a naphtha fraction separation step); a step of hydrogenating the topped crude oil (a topped crude oil hydrogenation step); and a step of utilizing the naphtha fraction for the production of the reformed crude oil (a naphtha fraction utilization step). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は改質原油の製造方法に関し、より詳しくは、特定の工程を含むことで効率化が達成された、改質原油の製造方法に関する。   The present invention relates to a method for producing reformed crude oil, and more particularly, to a method for producing reformed crude oil in which efficiency is achieved by including a specific step.

原油の精製処理においては、一般に、原油を常圧蒸留して各留分に分離したのち、分離した各留分に対して、脱硫等の精製処理をする方法がとられている。しかしながら、この方法は精油設備の基数が多く、かつ工程が煩雑である上、製品の冷却、加熱を繰り返すためにエネルギー効率が悪いなどの問題があり、必ずしも満足しうるものではなくより効率的な原油の精製処理方法が求められている。このような理由で、近年原油又はナフサ留分を除いた原油の一括処理が試みられている。例えば、特許文献1は、原油中のナフサ留分を蒸留分離したのち、ナフサ留分を除いた残油を一括水素化脱硫処理し、次いで蒸留して各製品に分離する方法を開示し、特許文献2は、原油を水素化脱金属処理、水素化分解処理、水素化脱硫処理し、次いで気液分離した気相流体を水素化改質する原油の処理方法を開示する。   In the refining treatment of crude oil, generally, after crude oil is distilled under atmospheric pressure and separated into fractions, a purification treatment such as desulfurization is performed on each separated fraction. However, this method has a large number of essential oil facilities and a complicated process, and has problems such as poor energy efficiency due to repeated cooling and heating of the product, which is not always satisfactory and more efficient. There is a need for a method for refining crude oil. For these reasons, batch processing of crude oil excluding crude oil or naphtha fraction has been attempted in recent years. For example, Patent Document 1 discloses a method in which a naphtha fraction in crude oil is distilled and separated, and then the residual oil from which the naphtha fraction has been removed is collectively hydrodesulfurized and then distilled to separate each product. Document 2 discloses a crude oil treatment method in which crude oil is hydrodemetallized, hydrocracked, hydrodesulfurized and then gas-liquid separated gas-phase fluid is hydroreformed.

ところで、原油はその産地等の違いにより、含まれる炭化水素の種類やその割合が異なるが、近年においては、産出原油の重質化傾向や重質原油と軽質原油の価格差の拡大等が原因で、重質分を多く含む劣質な原油の品質を改善し、これを有効に利用することが求められている。しかしながら、現状ではこのような劣質な原油の品質を改善することは効率の面で課題があり、さらなる技術開発が必要な状況にある。   By the way, crude oil has different types and proportions of hydrocarbons depending on the production area, etc., but in recent years it is caused by the tendency of the crude oil produced to become heavier and the price difference between heavy crude oil and light crude oil. Therefore, it is required to improve the quality of inferior crude oil containing a large amount of heavy components and to use it effectively. However, at present, there is a problem in terms of efficiency to improve the quality of such inferior crude oil, and further technological development is necessary.

特開平3−294390号公報JP-A-3-294390 特開2000−136391号公報JP 2000-136391 A

本発明はこのような状況でなされたもので、劣質な原油においても効率よく品質を改善することができる、改質原油の製造方法を提供することを目的とするものである。   The present invention has been made in such a situation, and an object of the present invention is to provide a method for producing a reformed crude oil which can efficiently improve the quality even in poor quality crude oil.

原油は蒸留により各留分に分けられ、その後精製処理等により種々の石油製品が製造される。この留分別の消費量は各地域の産業や社会環境等の影響を受けるため、需要の高い留分は地域ごとに異なる。例えば、ナフサ留分はガソリンや石油化学工業における原料として需要が高いが、全ての地域においてこれらの用途があるとは限らず、新たな用途開発も必要である。
本発明者らは、鋭意研究の結果、特定の工程を含み、ナフサ留分の特性を利用することで、上記の劣質な原油においても効率よく品質が改善されることを見出し、本発明を完成するに至った。すなわち、本発明は、
(1)原油からナフサ留分を分離し抜頭原油を得る工程(ナフサ留分分離工程)、該抜頭原油を水素化処理する工程(抜頭原油水素化処理工程)および該ナフサ留分を改質原油の製造に利用する工程(ナフサ留分利用工程)を含む、改質原油の製造方法であって、ナフサ留分利用工程が、ナフサ留分分離工程で得られたナフサ留分の一部又は全てを、抜頭原油水素化処理工程でクエンチ油として使用するものであることを特徴とする、改質原油の製造方法、
(2)原油からナフサ留分を分離し抜頭原油を得る工程(ナフサ留分分離工程)、該抜頭原油を水素化処理する工程(抜頭原油水素化処理工程)および該ナフサ留分を改質原油の製造に利用する工程(ナフサ留分利用工程)を含む、改質原油の製造方法であって、ナフサ留分利用工程が、ナフサ留分分離工程で得られたナフサ留分の一部又は全てを原料として水素を製造し、該水素を抜頭原油水素化処理工程で使用するものであることを特徴とする、改質原油の製造方法、
(3)ナフサ留分利用工程が、ナフサ留分分離工程で得られたナフサ留分に対して水素化脱硫処理をした後、当該処理後のナフサ留分を原料として水素を製造し、該水素の一部を抜頭原油水素化処理工程で使用し、残りの水素の少なくとも一部を、前記ナフサ留分に対する水素化脱硫処理に用いるものであることを特徴とする、上記(2)に記載の改質原油の製造方法、
(4)原油からナフサ留分を分離し抜頭原油を得る工程(ナフサ留分分離工程)、該抜頭原油を水素化処理する工程(抜頭原油水素化処理工程)および該ナフサ留分を改質原油の製造に利用する工程(ナフサ留分利用工程)を含む、改質原油の製造方法であって、ナフサ留分利用工程が、ナフサ留分分離工程で得られたナフサ留分をスイートニング処理して得られるスイートニングナフサの少なくとも一部を、抜頭原油水素化処理工程を経た改質抜頭原油に混合するものであることを特徴とする、改質原油の製造方法、
(5)原油からナフサ留分を分離し抜頭原油を得る工程(ナフサ留分分離工程)、該抜頭原油を水素化処理する工程(抜頭原油水素化処理工程)および該ナフサ留分を改質原油の製造に利用する工程(ナフサ留分利用工程)を含む、改質原油の製造方法であって、ナフサ留分利用工程が、ナフサ留分分離工程で得られたナフサ留分を水素化脱硫処理した後、接触改質処理して得られるガソリン基材の少なくとも一部を、抜頭原油水素化処理工程を経た改質抜頭原油に混合するものであることを特徴とする、改質原油の製造方法および
(6)抜頭原油水素化処理工程が、水素化脱金属工程、水素化分解工程、及び水素化脱硫工程の少なくとも一工程を含む、上記(1)〜(5)のいずれかに記載の、改質原油の製造方法
を提供するものである。
なお、本明細書において、品質を改善することを「改質」と称することがあり、水素化処理等により品質が改善された抜頭原油を「改質抜頭原油」、品質が改善された原油を「改質原油」と称する。
Crude oil is divided into fractions by distillation, and then various petroleum products are produced by refining treatment and the like. Since the consumption by this fraction is affected by the industry and social environment in each region, the fraction with high demand varies from region to region. For example, naphtha distillate is in high demand as a raw material in the gasoline and petrochemical industries, but these applications are not always available in all regions, and new application development is also necessary.
As a result of diligent research, the present inventors have found that the quality can be efficiently improved even in the above-mentioned poor crude oil by including the specific process and utilizing the characteristics of the naphtha fraction. It came to do. That is, the present invention
(1) Separating a naphtha fraction from crude oil to obtain a truncated crude oil (naphtha fraction separation process), hydrotreating the truncated crude oil (trapped crude oil hydrotreating process), and modifying the naphtha fraction into a modified crude oil A method for producing reformed crude oil, including a step (naphtha fraction use step) used for the production of naphtha, wherein the naphtha fraction use step is part or all of the naphtha fraction obtained in the naphtha fraction separation step A method for producing a modified crude oil characterized in that
(2) A process for separating a naphtha fraction from crude oil to obtain a truncated crude oil (naphtha fraction separation process), a process for hydrotreating the truncated crude oil (headed crude oil hydrotreating process), and a modified crude oil from the naphtha fraction A method for producing reformed crude oil, including a step (naphtha fraction use step) used for the production of naphtha, wherein the naphtha fraction use step is part or all of the naphtha fraction obtained in the naphtha fraction separation step A process for producing reformed crude oil, characterized in that hydrogen is produced from the raw material and the hydrogen is used in a crude oil hydrotreating process,
(3) After the naphtha fraction use step performs hydrodesulfurization treatment on the naphtha fraction obtained in the naphtha fraction separation step, hydrogen is produced using the treated naphtha fraction as a raw material, and the hydrogen (2), wherein a part of the crude oil is used in a crude oil hydrotreating process, and at least a part of the remaining hydrogen is used for hydrodesulfurization treatment of the naphtha fraction. A method for producing modified crude oil,
(4) Separating naphtha fraction from crude oil to obtain truncated crude oil (naphtha fraction separation process), hydrotreating the truncated crude oil (trapped crude oil hydrotreating process), and reforming crude oil into the naphtha fraction A method for producing reformed crude oil, including a process (naphtha fraction utilization process) used for the production of naphtha, wherein the naphtha fraction utilization process sweetens the naphtha fraction obtained in the naphtha fraction separation process. A method for producing a reformed crude oil, characterized in that at least a part of the sweetening naphtha obtained by mixing with the refined extracted crude oil that has undergone a pre-cracked crude oil hydrotreating process,
(5) A process for separating a naphtha fraction from crude oil to obtain a truncated crude oil (naphtha fraction separation process), a process for hydrotreating the truncated crude oil (headed crude oil hydrotreating process), and reforming the naphtha fraction into a modified crude oil A method for producing reformed crude oil, including a process (naphtha distillate utilization process) used for the production of naphtha, in which the naphtha distillate utilization process hydrotreats the naphtha distillate obtained in the naphtha distillate separation process. Then, at least a part of the gasoline base material obtained by the catalytic reforming process is mixed with the reformed and extracted crude oil that has undergone the extracted crude oil hydrogenation process, And (6) the extracted crude oil hydrotreating step includes at least one of a hydrodemetallation step, a hydrocracking step, and a hydrodesulfurization step, according to any one of (1) to (5) above, A method for producing reformed crude oil is provided.
In this specification, improving quality is sometimes referred to as “reforming”, and a crude oil whose quality has been improved by hydroprocessing or the like is referred to as a “reformed natural oil”, and a crude oil whose quality has been improved. It is called “reformed crude oil”.

本発明によれば、劣質な原油においても効率よく品質を改善することができる、改質原油の製造方法が提供される。当該改質原油の製造方法は、原油からナフサ留分を分離し抜頭原油を得る工程(ナフサ留分分離工程)、該抜頭原油を水素化処理する工程(抜頭原油水素化処理工程)および該ナフサ留分を改質原油の製造に利用する工程(ナフサ留分利用工程)を含む。この結果、改質原油の製造における効率化が図れるとともに、ナフサ留分を新たな用途において使用することができ、石油製品の需給バランスの調整が容易になる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of reformed crude oil which can improve quality efficiently also in poor quality crude oil is provided. The method for producing the modified crude oil includes a step of separating a naphtha fraction from crude oil to obtain a truncated crude oil (a naphtha fraction separation step), a step of hydrotreating the truncated crude oil (a truncated crude oil hydrotreating step), and the naphtha. Including a step of using the fraction for production of reformed crude oil (a naphtha fraction use step). As a result, efficiency in the production of the reformed crude oil can be improved, and the naphtha fraction can be used for a new application, so that the supply and demand balance of petroleum products can be easily adjusted.

本発明の改質原油の製造方法は、原油からナフサ留分を分離し抜頭原油を得る工程(ナフサ留分分離工程)、該抜頭原油を水素化処理する工程(抜頭原油水素化処理工程)および該ナフサ留分を改質原油の製造に利用する工程(ナフサ留分利用工程)を含む。
原油に対して水素化処理をするにあたり、一般に、ナフサ留分より軽い留分が存在するとこれらの気化により気相の水素分圧が低下しやすく、効率的な水素化処理が達成されにくい。また、原油からナフサ留分を分離せずに改質原油を製造すると、当該改質原油を蒸留して得られるナフサ、灯油、軽油留分中の硫黄分が増加しやすい。したがって、本発明においては原油からナフサ留分を分離し、抜頭原油(原油からナフサ留分を分離した残分)を得たのち、抜頭原油に対して水素化処理を行う。さらにナフサ留分分離工程で得られたナフサ留分を改質原油の製造に利用することで、より効率よく改質原油を製造することができる。本発明の工程図を図1〜4に示す。
以下に、本発明の改質原油の製造方法を工程ごとに説明する。
The method for producing a modified crude oil of the present invention includes a step of separating a naphtha fraction from crude oil to obtain a truncated crude oil (a naphtha fraction separation step), a step of hydrotreating the truncated crude oil (a truncated crude oil hydrotreating step), and Including a step of using the naphtha fraction for the production of reformed crude oil (a naphtha fraction utilization step).
When hydrotreating crude oil, generally, if there is a fraction lighter than a naphtha fraction, the vapor partial pressure of the gas phase tends to decrease due to the vaporization of these fractions, making it difficult to achieve efficient hydrotreatment. In addition, when the modified crude oil is produced without separating the naphtha fraction from the crude oil, the sulfur content in the naphtha, kerosene, and light oil fractions obtained by distilling the modified crude oil tends to increase. Therefore, in the present invention, the naphtha fraction is separated from the crude oil to obtain a truncated crude oil (residue obtained by separating the naphtha fraction from the crude oil), and then hydrogenation treatment is performed on the truncated crude oil. Furthermore, by using the naphtha fraction obtained in the naphtha fraction separation step for the production of the reformed crude oil, the reformed crude oil can be produced more efficiently. Process diagrams of the present invention are shown in FIGS.
Below, the manufacturing method of the reformed crude oil of this invention is demonstrated for every process.

〔ナフサ留分分離工程〕
ナフサ留分分離工程は、原油からナフサ留分を分離し、抜頭原油を得る工程である。
本発明で使用する原油とは、油井由来の未処理油(石油系原油)に限らず、石炭液化油、タールサンド油、オイルサンド油、オイルシェール油、オリノコタール等、あるいはこれらから得られる合成原油であっても良い。また、上記の原油二種以上からなる混合油を使用しても良い。
[Naphtha fraction separation process]
The naphtha fraction separation step is a step of separating a naphtha fraction from crude oil to obtain a truncated crude oil.
The crude oil used in the present invention is not limited to oil well-derived untreated oil (petroleum-based crude oil), but also coal liquefied oil, tar sand oil, oil sand oil, oil shale oil, orinocotal, etc., or a synthesis obtained therefrom. It may be crude oil. Moreover, you may use the mixed oil which consists of said crude oil 2 types or more.

本発明の原油は、好ましくはアスファルテン(本明細書において、アスファルテンとは、原油に対してn−ヘプタンで抽出処理したときのn−ヘプタン不溶解分を意味する。)の含有量が1質量%以上であり、2質量%以上がより好ましい。1質量%未満の原油を使用しても得られる改質原油の性状に問題はないが、費用対効果の面や、省エネルギー化の点から好ましくない。また、上限については特に制限はないが、装置運転上、15質量%未満が好ましい。また、同様の理由からバナジウム、ニッケルを10質量ppm以上、硫黄分を0.1質量%以上含有する原油が好ましく使用される。
原油は必要に応じて、前処理を施すことが好ましい。例えば、塩分濃度が高い場合は、脱塩処理を施し、塩化ナトリウムを10質量ppm以下にすることが好ましい。また固形分が多い場合は、10μm程度のフィルターを通すことが好ましい。
The crude oil of the present invention preferably has a content of asphaltene (in the present specification, asphaltene means an n-heptane insoluble matter when extracted from crude oil with n-heptane). It is above, and 2 mass% or more is more preferable. Although there is no problem with the properties of the modified crude oil obtained even if crude oil of less than 1% by mass is used, it is not preferable from the viewpoint of cost effectiveness and energy saving. Moreover, although there is no restriction | limiting in particular about an upper limit, Less than 15 mass% is preferable on an apparatus operation. For the same reason, crude oil containing 10 mass ppm or more of vanadium and nickel and 0.1 mass% or more of sulfur is preferably used.
The crude oil is preferably pretreated if necessary. For example, when the salt concentration is high, it is preferable to perform a desalting treatment so that sodium chloride is 10 mass ppm or less. Moreover, when there is much solid content, it is preferable to pass a filter about 10 micrometers.

原油からナフサ留分を分離する方法としては、一般的なプレフラッシュドラムまたはプレフラッシュカラムを使用する方法が挙げられる。運転温度は150〜300℃、圧力は2〜10kg/cm2Gの範囲で分離することが好ましい。
ナフサ留分の沸点は、初留点は原油により決定され、終点は125〜174℃の範囲が好ましい。終点が125℃未満の場合は、後段の抜頭原油水素化処理工程において水素分圧が低下するため反応速度の低下を招き易い。また、終点が174℃を越えると、改質原油中の灯油留分の硫黄分が増加して製品規格外となる場合がある。
Examples of the method for separating the naphtha fraction from the crude oil include a method using a general preflash drum or a preflash column. It is preferable that the operating temperature is 150 to 300 ° C. and the pressure is 2 to 10 kg / cm 2 G.
The boiling point of the naphtha fraction is determined by crude oil at the initial boiling point, and the end point is preferably in the range of 125 to 174 ° C. When the end point is lower than 125 ° C., the hydrogen partial pressure is lowered in the subsequent staged crude oil hydrotreating process, and thus the reaction rate is likely to be lowered. Moreover, if the end point exceeds 174 ° C., the sulfur content of the kerosene fraction in the reformed crude oil may increase and become out of product specifications.

〔抜頭原油水素化処理工程〕
抜頭原油水素化処理工程は、抜頭原油を水素化処理し、品質を改善する工程である。
上記水素化処理としては、例えば、水素化脱金属処理、水素化分解処理、水素化脱硫処理、水素化脱窒素処理、水素化脱アロマ処理等が挙げられる。
[Headed crude oil hydrogenation process]
The extracted crude oil hydrotreating process is a process of improving the quality by hydrotreating the extracted crude oil.
Examples of the hydrogenation treatment include hydrodemetallation treatment, hydrocracking treatment, hydrodesulfurization treatment, hydrodenitrogenation treatment, hydrodearomatization treatment, and the like.

上記水素化脱金属処理は、抜頭原油を加圧昇温後に、一塔〜複数塔の反応塔で行われる。水素化脱金属処理に使用される触媒は、アルミナ、シリカ、シリカ−アルミナ又はセピオライト等の多孔性無機酸化物、酸化担体、天然鉱物等に、周期律表第5、6、8、9及び10族に属する金属の中から選ばれた少なくとも一種を、触媒全量に基づき、酸化物として3〜30質量%程度担持してなる平均細孔径100μm以上の触媒が用いられる。なお、商業的に入手可能な重油直接脱硫装置用の水素化脱金属触媒等その他の水素化脱金属触媒であってもよい。水素化脱金属触媒の必要量は、処理期間中の抜頭原油中に含まれる累積金属量の10〜80容量%とするのが好適である。   The hydrodemetallation treatment is carried out in a single-column to multiple-column reaction tower after the heated crude oil is pressurized and heated. Catalysts used for the hydrodemetallation treatment include porous inorganic oxides such as alumina, silica, silica-alumina or sepiolite, oxidation carriers, natural minerals, etc., periodic tables 5, 6, 8, 9 and 10 A catalyst having an average pore diameter of 100 μm or more formed by supporting about 3 to 30% by mass of an oxide based on at least one selected from metals belonging to the group based on the total amount of the catalyst. Other hydrodemetallation catalysts such as commercially available hydrodemetallation catalysts for heavy oil direct desulfurization equipment may also be used. The required amount of the hydrodemetallation catalyst is preferably 10 to 80% by volume of the cumulative amount of metal contained in the extracted crude oil during the treatment period.

水素化脱金属処理の処理条件としては、反応温度300〜450℃、水素分圧30〜200kg/cm2G、水素/油比200〜2000Nm3/kl、LHSV(液時空間速度)0.1〜10h-1、さらに反応温度350〜410℃、水素分圧100〜180kg/cm2G、水素/油比400〜800Nm3/kl、LHSV0.3〜5h-1が望ましい。反応温度、水素分圧、水素/油比は望ましい範囲を下回ると反応効率が低下し、範囲を上回ると経済性が低下するためである。また、LHSVは逆に望ましい範囲を上回ると反応効率が低下し、範囲を下回ると経済性が低下する。 The treatment conditions for the hydrodemetallation treatment are as follows: reaction temperature 300 to 450 ° C., hydrogen partial pressure 30 to 200 kg / cm 2 G, hydrogen / oil ratio 200 to 2000 Nm 3 / kl, LHSV (liquid hourly space velocity) 0.1 ~10h -1, further reaction temperature three hundred fifty to four hundred and ten ° C., a hydrogen partial pressure 100~180kg / cm 2 G, hydrogen / oil ratio 400~800Nm 3 /kl,LHSV0.3~5h -1 desirable. This is because if the reaction temperature, hydrogen partial pressure, and hydrogen / oil ratio are less than the desired ranges, the reaction efficiency decreases, and if they exceed the ranges, the economic efficiency decreases. On the other hand, if LHSV exceeds the desired range, the reaction efficiency decreases, and if it falls below the range, the economic efficiency decreases.

上記水素化分解処理は、通常水素化脱金属処理等の水素化処理の後に行われる。したがって反応温度制御の必要がある場合には、熱交換器、水素ガスクエンチや油クエンチにより反応温度を制御することが好ましい。水素化分解処理は、一塔〜複数塔の反応塔で行われる。水素化分解処理に使用される触媒としては特に限定されるものではないが、特開平2―289419号公報に開示されている技術によって造られた鉄含有アルミノシリケート10〜90質量%と無機酸化物90〜10質量%からなる担体に周期律表第6、8、9及び10族に属する金属のうち選ばれた少なくとも一種を担持したものも使用することが出来る。この水蒸気処理したスチーミングゼオライトを鉄塩水溶液で処理して得られる鉄含有アルミノシリケートを使用すると、343℃以上の留分から343℃以下の留分への分解率を高める点で非常に効果的である。また、特開昭60−49131号公報、特開昭61−24433号公報、特開平3−21484号公報等に開示されている技術によって造られたものを使用することが出来る。すなわち、鉄含有アルミノシリケート20〜80質量%と無機酸化物80〜20質量%からなる担体に、周期律表第6、8、9及び10族に属する金属のうち選ばれた少なくとも一種を担持したものであって、周期律表第6族に属する金属としてはタングステン、モリブデンが好ましく、周期律表第7〜10族の金属はそれぞれ一種用いてもよく、それぞれ複数種の金属を組合わせても良いが、特に水素化活性が高く、かつ劣化が少ない点からNi−Mo,Co−Mo,Ni−W,Ni−Co−Moの組合せが好適である。   The hydrocracking treatment is usually performed after a hydrogenation treatment such as a hydrodemetallation treatment. Therefore, when it is necessary to control the reaction temperature, it is preferable to control the reaction temperature by a heat exchanger, hydrogen gas quenching or oil quenching. The hydrocracking treatment is performed in a single tower to a plurality of towers. The catalyst used for the hydrocracking treatment is not particularly limited, but 10 to 90% by mass of an iron-containing aluminosilicate and an inorganic oxide produced by the technique disclosed in Japanese Patent Laid-Open No. 2-289419. It is also possible to use a carrier comprising 90 to 10% by mass with at least one selected from metals belonging to Groups 6, 8, 9 and 10 of the periodic table. Using an iron-containing aluminosilicate obtained by treating this steamed steaming zeolite with an iron salt aqueous solution is very effective in increasing the decomposition rate from a fraction of 343 ° C or higher to a fraction of 343 ° C or lower. is there. Further, those produced by the techniques disclosed in JP-A-60-49131, JP-A-61-24433, JP-A-3-21484 and the like can be used. That is, at least one selected from metals belonging to Groups 6, 8, 9 and 10 of the periodic table was supported on a support composed of 20 to 80% by mass of an iron-containing aluminosilicate and 80 to 20% by mass of an inorganic oxide. As the metal belonging to Group 6 of the periodic table, tungsten and molybdenum are preferable, and metals of Groups 7 to 10 of the periodic table may be used singly, or a plurality of metals may be combined. Although it is good, the combination of Ni—Mo, Co—Mo, Ni—W, and Ni—Co—Mo is particularly preferable because of its high hydrogenation activity and little deterioration.

水素化分解処理の処理条件としては、反応温度370〜450℃、水素分圧30〜200kg/cm2G、水素/油比200〜2000Nm3/kl、LHSV(液時空間速度)0.1〜10h-1、さらに反応温度380〜410℃、水素分圧100〜180kg/cm2G、水素/油比400〜800Nm3/kl、LHSV0.3〜5h-1が望ましい。反応温度、水素分圧、水素/油比は望ましい範囲を下回ると反応効率が低下し、範囲を上回ると経済性が低下するためである。また、LHSVは逆に望ましい範囲を上回ると反応効率が低下し、範囲を下回ると経済性が低下する。 The hydrocracking treatment conditions include a reaction temperature of 370 to 450 ° C., a hydrogen partial pressure of 30 to 200 kg / cm 2 G, a hydrogen / oil ratio of 200 to 2000 Nm 3 / kl, an LHSV (liquid hourly space velocity) of 0.1 10 h −1 , a reaction temperature of 380 to 410 ° C., a hydrogen partial pressure of 100 to 180 kg / cm 2 G, a hydrogen / oil ratio of 400 to 800 Nm 3 / kl, and an LHSV of 0.3 to 5 h −1 are desirable. This is because if the reaction temperature, hydrogen partial pressure, and hydrogen / oil ratio are less than the desired ranges, the reaction efficiency decreases, and if they exceed the ranges, the economic efficiency decreases. On the other hand, if LHSV exceeds the desired range, the reaction efficiency decreases, and if it falls below the range, the economic efficiency decreases.

上記水素化脱硫処理は、通常水素化脱金属処理等の水素化処理の後に行われる。したがって反応温度制御の必要がある場合には、熱交換器、水素ガスクエンチや油クエンチにより反応温度を制御することが好ましい。水素化脱硫処理は、一塔〜複数塔の反応塔で行われる。水素化脱硫処理に使用される触媒としては、通常の重油直接脱硫装置用の水素化脱硫触媒でよい。即ち、アルミナ、シリカ、ゼオライトあるいはこれらも混合物の担体等に周期律表第5、6、8、9及び10族に属する金属の中から選ばれた少なくとも一種を、触媒全量に基づき、酸化物として3〜30質量%程度担持したものでよい。平均細孔径80Å以上の触媒などであるが、特開平7−305077号公報、特開平5−98270号公報に開示される様なアルミナーリン担体、アルミナーアルカリ土類金属担体化合物、アルミナーチタニア担体、アルミナージルコニア担体、アルミナーボリア担体等から選ばれる担体に周期律表第5、6、8、9及び10族に属する金属の中から選ばれた少なくとも一種を担持してなる触媒であれば、灯軽油留分の改質効果が高いために好適である。   The hydrodesulfurization treatment is usually performed after a hydrogenation treatment such as a hydrodemetallation treatment. Therefore, when it is necessary to control the reaction temperature, it is preferable to control the reaction temperature by a heat exchanger, hydrogen gas quenching or oil quenching. The hydrodesulfurization treatment is performed in a single tower to a plurality of towers. The catalyst used in the hydrodesulfurization treatment may be a hydrodesulfurization catalyst for a normal heavy oil direct desulfurization apparatus. That is, at least one selected from the metals belonging to Groups 5, 6, 8, 9 and 10 of the periodic table is used as an oxide based on the total amount of the catalyst. What carried about 3-30 mass% may be sufficient. A catalyst having an average pore diameter of 80 mm or more, such as an alumina-phosphorus carrier, an alumina-alkaline earth metal carrier compound, and alumina-titania as disclosed in JP-A-7-305077 and JP-A-5-98270. A catalyst comprising at least one selected from metals belonging to Groups 5, 6, 8, 9 and 10 of the periodic table on a support selected from a support, an alumina-zirconia support, an alumina-boria support, and the like. For example, it is suitable because the reforming effect of the kerosene oil fraction is high.

水素化脱硫処理における処理条件としては、反応温度300〜450℃、水素分圧30〜200kg/cm2G、水素/油比200〜2000Nm3/kl、LHSV(液時空間速度)0.1〜10h-1、さらに反応温度320〜420℃、水素分圧100〜180kg/cm2G、水素/油比400〜800Nm3/kl、LHSV0.2〜2h-1が望ましい。反応温度、水素分圧、水素/油比は望ましい範囲を下回ると反応効率が低下し、範囲を上回ると経済性が低下するためである。また、LHSVは逆に望ましい範囲を上回ると反応効率が低下し、範囲を下回ると経済性が低下する。 The treatment conditions in the hydrodesulfurization treatment are as follows: reaction temperature 300 to 450 ° C., hydrogen partial pressure 30 to 200 kg / cm 2 G, hydrogen / oil ratio 200 to 2000 Nm 3 / kl, LHSV (liquid hourly space velocity) 0.1 10 h −1 , a reaction temperature of 320 to 420 ° C., a hydrogen partial pressure of 100 to 180 kg / cm 2 G, a hydrogen / oil ratio of 400 to 800 Nm 3 / kl, and an LHSV of 0.2 to 2 h −1 are desirable. This is because if the reaction temperature, hydrogen partial pressure, and hydrogen / oil ratio are less than the desired ranges, the reaction efficiency decreases, and if they exceed the ranges, the economic efficiency decreases. On the other hand, if LHSV exceeds the desired range, the reaction efficiency decreases, and if it falls below the range, the economic efficiency decreases.

上記水素化脱アロマ処理は、気液分離処理で得られた気相流体に対して行われることが好ましく、水素化脱アロマ処理により抜頭原油を蒸留して得られる灯油留分や軽油留分の芳香族含有量を低下させることができる。   The hydrodearomatic treatment is preferably performed on the gas phase fluid obtained by the gas-liquid separation treatment, and the kerosene fraction or light oil fraction obtained by distilling the crude oil extracted by hydrodearomatic treatment. Aromatic content can be reduced.

上記気液分離処理は、水素化脱金属処理等の水素化処理後の抜頭原油を熱交換器により所望の分離温度まで温度を制御したのち行われる。通常、気液分離処理は重油直接脱硫装置と同様の構造の高圧高温気液分離槽を用いれば良いが、後段の水素化脱アロマ処理における反応効率を維持するためには、高圧高温気液分離槽で分離される気相流体に重質油が混入しないような措置、例えば気液分離槽の塔径を十分大きくとる、あるいは、気液分離槽内部に十分な量のミストセパレーターを配置する等を講ずる方が良い。高圧高温気液分離槽は一塔〜複数塔からなる。   The gas-liquid separation treatment is performed after controlling the temperature of the extracted crude oil after the hydrogenation treatment such as hydrodemetallation treatment to a desired separation temperature using a heat exchanger. Normally, the gas-liquid separation process may be performed using a high-pressure and high-temperature gas-liquid separation tank with the same structure as the heavy oil direct desulfurization unit. However, in order to maintain the reaction efficiency in the subsequent hydrodearomatic process, the high-pressure and high-temperature gas-liquid separation tank Measures to prevent heavy oil from being mixed into the gas phase fluid separated in the tank, such as taking a sufficiently large tower diameter of the gas-liquid separation tank, or arranging a sufficient amount of mist separator inside the gas-liquid separation tank, etc. It is better to take The high-pressure and high-temperature gas-liquid separation tank is composed of one tower to a plurality of towers.

気液分離処理は、その前段の水素化処理より、0〜50kg/cm2低い圧力範囲で、かつ0〜100℃低い温度範囲で実施することが望ましい。気液分離処理における分離条件として、分離圧力を水素化処理工程出口の圧力に対し50kg/cm2Gより低下させると、水素分圧の低下により後段の水素化脱アロマ処理での反応効率が低下するばかりか、後段の水素化脱アロマ処理に供される気相流体に重質油が混入しやすくなる。この場合の基準としては、気相流体中に混入する400℃以上の留分の割合を、気相流体全量に対して3質量%以下に維持することが好適である。また、分離圧力を水素化処理工程出口の圧力以上にするためには昇圧のための設備例えばコンプレッサーが必要となるため装置建設費が増大する。分離温度を水素化処理工程出口の温度に対し100℃より大きく低下させると、気液分離前の流体中の灯軽油留分のうち、気相流体として分離される灯軽油留分の割合が少なくなり、後段の水素化脱アロマ処理に供する灯軽油留分が少なくなり効率的に灯軽油留分の水素化脱アロマ処理ができない。また、分離温度を水素化処理工程出口の温度より高くするには加熱のための設備例えば加熱炉が必要となるため装置建設費が増大する。 The gas-liquid separation treatment is desirably performed in a pressure range lower by 0 to 50 kg / cm 2 and in a temperature range lower by 0 to 100 ° C. than the previous hydrogenation treatment. As a separation condition in the gas-liquid separation process, if the separation pressure is reduced below 50 kg / cm 2 G with respect to the pressure at the hydrotreating process outlet, the reaction efficiency in the subsequent hydrodearomatic treatment is lowered due to the decrease in the hydrogen partial pressure. In addition, heavy oil is likely to be mixed into the gas phase fluid subjected to the subsequent hydrodearomatic treatment. As a reference in this case, it is preferable to maintain the proportion of the fraction of 400 ° C. or higher mixed in the gas phase fluid at 3% by mass or less with respect to the total amount of the gas phase fluid. Further, in order to make the separation pressure equal to or higher than the pressure at the outlet of the hydrotreating process, equipment for increasing the pressure, for example, a compressor is required, so that the construction cost of the apparatus increases. When the separation temperature is lowered by more than 100 ° C with respect to the temperature of the hydrotreating process outlet, the proportion of kerosene oil fraction separated as a gas phase fluid is small in the kerosene fraction in the fluid before gas-liquid separation. Therefore, the kerosene fraction used for the subsequent hydrodearomatic treatment is reduced, and the hydrodearomatic treatment of the kerosene fraction cannot be performed efficiently. Also, in order to make the separation temperature higher than the temperature at the hydrotreating process outlet, heating equipment such as a heating furnace is required, so that the construction cost of the apparatus increases.

水素化脱アロマ処理は一塔から複数塔の反応塔で行われ、通常は気液分離処理からの気相流体に対して加熱や昇温の処理なしに行われる。気相流体の反応温度制御の必要がある場合には熱交換器等により流体温度を変更する。水素ガスやリサイクル油により反応温度制御が可能であれば、そのまま水素化脱アロマ処理される。水素化脱アロマ処理における反応塔型式は、通常の固定床を用いればよい。水素化脱アロマ処理に使用される触媒としては、通常の中間留分用の水素化触媒でよい。即ち、アルミナ、シリカ、ゼオライトあるいはこれらの混合物の担体等に周期律表第5、6、8、9及び10族に属する金属の中から選ばれた少なくとも一種を、触媒全量に基づき、酸化物として3〜30質量%程度担持している平均細孔径80Å以上の触媒などであるが、特開平7−305077号公報、特開平5−98270号公報に開示される様なアルミナーリン担体、アルミナーアルカリ土類金属担体化合物、アルミナーチタニア担体、アルミナージルコニア担体、アルミナーボリア担体等から選ばれる担体に周期律表第5、6、8、9及び10族に属する金属の中から選ばれた少なくとも一種を担持してなる触媒であれば、灯軽油留分の水素化脱アロマ処理効果が高いために好適である。   The hydrodearomatic treatment is performed in one to a plurality of reaction towers, and is usually performed without heating or raising the temperature of the gas phase fluid from the gas-liquid separation treatment. When it is necessary to control the reaction temperature of the gas phase fluid, the fluid temperature is changed by a heat exchanger or the like. If the reaction temperature can be controlled with hydrogen gas or recycled oil, the hydrodearomatic treatment is performed as it is. A normal fixed bed may be used as a reaction tower type in the hydrodearomatic treatment. The catalyst used in the hydrodearomatic treatment may be a normal middle distillate hydrogenation catalyst. That is, as an oxide based on the total amount of the catalyst, at least one selected from metals belonging to Groups 5, 6, 8, 9 and 10 of the periodic table is used as a support of alumina, silica, zeolite or a mixture thereof. A catalyst having an average pore diameter of 80 mm or more supported on the order of 3 to 30% by mass, such as an alumina-phosphorus carrier and an alumina as disclosed in JP-A-7-305077 and JP-A-5-98270. The support selected from alkaline earth metal support compounds, alumina-titania support, alumina-zirconia support, alumina-boria support, etc., was selected from the metals belonging to Groups 5, 6, 8, 9 and 10 of the periodic table A catalyst supporting at least one kind is preferable because the hydrodearomatic treatment effect of the kerosene oil fraction is high.

水素化脱アロマ処理における処理条件としては、通常前記の気液分離工程に引き続き加熱や昇温の設備なしに反応行なわせるため、前記の気液分離工程での分離温度と分離圧力とほぼ同等である。即ち、反応温度300〜400℃、反応圧力100〜180kg/cm2Gの範囲が望ましい。前段の水素化処理工程出口の温度と圧力を水素化脱アロマ処理に有効に活用するためには、反応温度は水素化処理工程出口の温度に対し−100〜0℃とし、反応圧力は水素化処理工程出口の圧力に対し−50〜0kg/cm2の範囲が好適である。また、水素分圧は70〜150kg/cm2G、水素/油比は500〜2000Nm3/kl、LHSV(液時空間速度)は0.5〜10h-1が望ましい。反応温度、水素分圧、水素/油比は望ましい範囲を下回ると反応効率が低下し、範囲を上回ると経済性が低下するためである。また、LHSVは逆に望ましい範囲を上回ると反応効率が低下し、範囲を下回ると経済性が低下する。 The treatment conditions in the hydrodearomatic treatment are usually the same as the separation temperature and the separation pressure in the gas-liquid separation step because the reaction is performed without heating or heating equipment following the gas-liquid separation step. is there. That is, a reaction temperature of 300 to 400 ° C. and a reaction pressure of 100 to 180 kg / cm 2 G are desirable. In order to effectively use the temperature and pressure at the hydrotreatment process outlet in the previous stage for hydrodearomatic treatment, the reaction temperature is -100 to 0 ° C with respect to the temperature at the hydrotreatment process exit, and the reaction pressure is hydrogenation A range of −50 to 0 kg / cm 2 is suitable for the pressure at the treatment process outlet. The hydrogen partial pressure is preferably 70 to 150 kg / cm 2 G, the hydrogen / oil ratio is 500 to 2000 Nm 3 / kl, and the LHSV (liquid hourly space velocity) is preferably 0.5 to 10 h −1 . This is because if the reaction temperature, hydrogen partial pressure, and hydrogen / oil ratio are less than the desired ranges, the reaction efficiency decreases, and if they exceed the ranges, the economic efficiency decreases. On the other hand, if LHSV exceeds the desired range, the reaction efficiency decreases, and if it falls below the range, the economic efficiency decreases.

上記水素化脱アロマ処理された流体を、上記気液分離工程で得られた液相流体と混合することで、改質抜頭原油が得られる。後述するように、本発明の改質原油は当該改質抜頭原油又は当該改質抜頭原油にスイートニングナフサ若しくはガソリン基材を混合したものである。地域によっては、石油製品を製造するよりも上記のような改質原油を製造することが必要な場合があり、本発明の改質原油の製造方法が好ましく適用される。例えば、産油国の原油出荷設備近傍に立地して、原油出荷設備は整っているが、石油製品出荷設備が無いような場所に設備を設けるような場合はこれにあたる。このような場合には、改質原油、または硫化水素を取り除いた改質原油(改質原油を、脱硫装置に付随する硫化水素を取り除く設備、例えば、硫化水素ストリッパー等に導入して得られる。)を製造することにより、既存の原油出荷設備がそのまま使えるほか、大型原油タンカーを使い、大量かつ安価に輸送出来るという効果が得られる。   The fluid subjected to the hydrodearomatic treatment is mixed with the liquid phase fluid obtained in the gas-liquid separation step to obtain a modified and extracted crude oil. As will be described later, the modified crude oil of the present invention is the modified truncated crude oil or a mixture of sweetened naphtha or gasoline base material with the modified truncated crude oil. Depending on the region, it may be necessary to produce the above-described modified crude oil rather than producing a petroleum product, and the method for producing the modified crude oil of the present invention is preferably applied. For example, it is located near the crude oil shipping facility in the oil-producing country and the crude oil shipping facility is in place, but this is the case when the facility is installed in a place where there is no petroleum product shipping facility. In such a case, it is obtained by introducing reformed crude oil or reformed crude oil from which hydrogen sulfide has been removed (the reformed crude oil is introduced into equipment for removing hydrogen sulfide associated with the desulfurization apparatus, such as a hydrogen sulfide stripper). ), The existing crude oil shipping equipment can be used as it is, and a large crude oil tanker can be used for transportation in large quantities and at low cost.

〔ナフサ留分利用工程〕
ナフサ留分利用工程は、ナフサ留分を改質原油の製造に利用し、効率よく改質原油を製造するための工程である。
本発明のナフサ留分利用工程には、以下の3つの態様がある。すなわち、
(態様1)ナフサ留分を、抜頭原油水素化処理工程においてクエンチ油として使用する。
(態様2)ナフサ留分から水素を製造し、該水素を抜頭原油水素化処理工程等の水素化処理に使用する。
(態様3)ナフサ留分に精製処理を行い、該処理後のナフサ留分を抜頭原油水素化処理工程後の改質抜頭原油と混合する。
以下、それぞれの態様ごとに詳細に説明する。
[Naphtha fraction use process]
The naphtha fraction utilization process is a process for efficiently producing the reformed crude oil by using the naphtha fraction for the production of the reformed crude oil.
The naphtha fraction use process of the present invention has the following three aspects. That is,
(Aspect 1) A naphtha fraction is used as a quench oil in a precipitating crude oil hydrotreating process.
(Aspect 2) Hydrogen is produced from a naphtha fraction, and the hydrogen is used for hydrotreating such as a crude oil hydrotreating step.
(Aspect 3) The naphtha fraction is subjected to a refining treatment, and the naphtha fraction after the treatment is mixed with the modified truncated crude oil after the extracted crude oil hydrotreating process.
Hereinafter, each aspect will be described in detail.

態様1のナフサ留分利用工程を、図1を基に説明する。
原油11はナフサ留分分離工程1において、ナフサ留分12と抜頭原油13に分離され、抜頭原油13はさらに抜頭原油水素化処理工程2を経て改質抜頭原油15が製造される。ナフサ留分分離工程1および抜頭原油水素化処理工程2に関しては、前述のとおりである。
ナフサ留分12の一部又は全ては、抜頭原油水素化処理工程2でクエンチ油として使用される。ナフサ留分は、水素化処理を行う反応塔に導入されると、その大部分が蒸発して、蒸発潜熱を奪うために、良好なクエンチ剤として機能し、プロセス効率が改善される。
The naphtha fraction utilization process of aspect 1 is demonstrated based on FIG.
The crude oil 11 is separated into the naphtha fraction 12 and the withdrawn crude oil 13 in the naphtha fraction separating process 1, and the modified crude oil 15 is produced from the withdrawn crude oil 13 through the withdrawn crude oil hydrotreating process 2. The naphtha fraction separation process 1 and the extracted crude oil hydrogenation process 2 are as described above.
Part or all of the naphtha fraction 12 is used as a quench oil in the extracted crude oil hydrotreating step 2. When the naphtha fraction is introduced into a reaction tower for hydrotreating, most of the naphtha fraction evaporates and takes away the latent heat of vaporization, so that it functions as a good quenching agent and the process efficiency is improved.

クエンチ剤として使用するナフサ留分の量は、目的に合わせて適宜決定することがきる。したがって、クエンチ剤として使用した残りのナフサ留分は、改質抜頭原油に混ぜてもよいし、ガソリン製造の原料や、石油化学工業の原料として利用してもよい。   The amount of the naphtha fraction used as the quenching agent can be appropriately determined according to the purpose. Therefore, the remaining naphtha fraction used as the quenching agent may be mixed with the reformed crude oil, or may be used as a raw material for gasoline production or a raw material for the petrochemical industry.

態様2のナフサ留分利用工程を、図2を基に説明する。
原油11はナフサ留分分離工程1において、ナフサ留分12と抜頭原油13に分離され、抜頭原油13はさらに抜頭原油水素化処理工程2を経て改質抜頭原油15が製造される。ナフサ留分分離工程1および抜頭原油水素化処理工程2に関しては、前述のとおりである。
ナフサ留分12の一部又は全ては、水素製造工程5を経て水素14が製造される。この際目的に応じて、水素製造工程5の前に水素化脱硫工程4を経ても良い。製造された水素14は水素化脱硫工程4や抜頭原油水素化処理工程2において使用される。また一部の水素を取り出し、他の用途に用いても良い。
The naphtha fraction utilization process of aspect 2 is demonstrated based on FIG.
The crude oil 11 is separated into the naphtha fraction 12 and the withdrawn crude oil 13 in the naphtha fraction separating process 1, and the modified crude oil 15 is produced from the withdrawn crude oil 13 through the withdrawn crude oil hydrotreating process 2. The naphtha fraction separation process 1 and the extracted crude oil hydrogenation process 2 are as described above.
A part or all of the naphtha fraction 12 is subjected to a hydrogen production process 5 to produce hydrogen 14. At this time, depending on the purpose, the hydrodesulfurization step 4 may be performed before the hydrogen production step 5. The produced hydrogen 14 is used in the hydrodesulfurization process 4 and the extracted crude oil hydrotreating process 2. A part of hydrogen may be taken out and used for other purposes.

上記水素製造工程5においては、ナフサ留分はスチームと共に、スチームリフォーミング法による水素製造装置に供給される。また上記水素化脱硫工程4により、硫黄分を0.5ppm以下にすることが好ましい。比較的マイルドな条件で脱硫処理を行うことが好ましく、反応圧力7〜30kg/cmG、水素油比30〜80Nm3/kl、LHSV6〜10毎時が好ましい。 In the hydrogen production step 5, the naphtha fraction is supplied together with steam to a hydrogen production apparatus using a steam reforming method. Moreover, it is preferable to make a sulfur content into 0.5 ppm or less by the said hydrodesulfurization process 4. FIG. It is preferable to perform the desulfurization treatment under relatively mild conditions, and a reaction pressure of 7 to 30 kg / cmG, a hydrogen oil ratio of 30 to 80 Nm 3 / kl, and LHSV of 6 to 10 hours are preferable.

原油の精製処理においては水素化反応が使用されることが多く、水素原料として天然ガスや、油田随伴ガスが使用されることが多い。しかしながら、これらの水素原料を利用できない場合もあり、このような場合にはナフサ留分分離工程で得られたナフサ留分を水素原料として利用することで、効率よく改質原油を製造することができる。   In the refining process of crude oil, a hydrogenation reaction is often used, and natural gas and oil field associated gas are often used as a hydrogen raw material. However, in some cases, these hydrogen raw materials cannot be used. In such a case, it is possible to efficiently produce reformed crude oil by using the naphtha fraction obtained in the naphtha fraction separation step as a hydrogen raw material. it can.

態様3のナフサ留分利用工程を、図3(態様3a)および図4(態様3b)を基に説明する。
原油11はナフサ留分分離工程1において、ナフサ留分12と抜頭原油13に分離され、抜頭原油13はさらに抜頭原油水素化処理工程2を経て改質抜頭原油15が製造される。ナフサ留分分離工程1および抜頭原油水素化処理工程2に関しては、前述のとおりである。
The naphtha fraction utilization process of aspect 3 is demonstrated based on FIG. 3 (aspect 3a) and FIG. 4 (aspect 3b).
The crude oil 11 is separated into the naphtha fraction 12 and the withdrawn crude oil 13 in the naphtha fraction separating process 1, and the modified crude oil 15 is produced from the withdrawn crude oil 13 through the withdrawn crude oil hydrotreating process 2. The naphtha fraction separation process 1 and the extracted crude oil hydrogenation process 2 are as described above.

図3において、ナフサ留分12の一部又は全量は、スイートニング工程6を経て、スイートニングナフサ17が製造される。当該スイートニングナフサ17の一部または全量は改質抜頭原油15に混入され、改質原油16が製造される。
ナフサ留分分離工程1で分離されたナフサ留分12を改質抜頭原油と混合して改質原油を製造する際、ナフサ留分12に含まれる硫化水素やメルカプタンが、安全上の問題あるいは腐食の原因となるため、スイートニング工程6により硫化水素やメルカプタンの含有量を低下させる。具体的な方法としては、Merox法やMericat法と呼ばれる、苛性ソーダ水溶液と触媒からなる液体とナフサ留分をマイルドな条件で接触させる方法や、常温で硫化水素やメルカプタンを活性白土に吸着させる方法が挙げられ、コストや効率等を考慮のうえ適宜選択することができる。スイートニング工程6により、スイートニングナフサ17中の硫化水素やメルカプタンの含有量が10ppm以下になることが好ましく、5ppm以下がより好ましい。
In FIG. 3, a part or all of the naphtha fraction 12 is subjected to a sweetening process 6 to produce a sweetening naphtha 17. A part or all of the sweetening naphtha 17 is mixed in the modified crude oil 15 to produce the modified crude oil 16.
When the naphtha fraction 12 separated in the naphtha fraction separation step 1 is mixed with reformed crude oil to produce reformed crude oil, hydrogen sulfide and mercaptans contained in the naphtha fraction 12 may cause safety problems or corrosion. Therefore, the content of hydrogen sulfide or mercaptan is reduced by the sweetening process 6. As specific methods, there are a method called Merox method and Mericat method, a method of contacting a liquid consisting of an aqueous caustic soda solution and a catalyst with a naphtha fraction under mild conditions, and a method of adsorbing hydrogen sulfide or mercaptan to activated clay at room temperature. Can be selected as appropriate in consideration of cost and efficiency. In the sweetening step 6, the content of hydrogen sulfide or mercaptan in the sweetening naphtha 17 is preferably 10 ppm or less, and more preferably 5 ppm or less.

上記のように、スイートニングナフサ17を改質抜頭原油15に混合して改質原油16を製造することで、該改質原油を蒸留するだけで、オクタン価の高いガソリン基材や付加価値の高い軽質油留分を効率よく得ることができる。   As described above, the sweetened naphtha 17 is mixed with the reformed crude oil 15 to produce the reformed crude oil 16. By simply distilling the reformed crude oil, a gasoline base having a high octane number and a high added value are obtained. A light oil fraction can be obtained efficiently.

図4において、ナフサ留分12の一部又は全量は、水素化脱硫工程4、接触改質工程7を経て、ガソリン基材18が製造される。当該ガソリン基材18の一部又は全量は改質抜頭原油15に混入され、改質原油16が製造される。
上記水素化脱硫工程4により、ナフサ留分12に含まれる硫黄分を0.5ppm以下にすることが好ましい。比較的マイルドな条件で脱硫処理を行うことが好ましく、反応圧力7〜30kg/cmG、水素油比30〜80Nm3/kl、LHSV6〜10毎時が好ましい。
ナフサ留分12は、水素化脱硫工程4に続く接触改質工程7により、接触改質されてオクタン価が向上する。接触改質工程は、低圧、多段の反応塔に高温で供給されることが好ましい。
In FIG. 4, the gasoline base material 18 is manufactured through a hydrodesulfurization process 4 and a catalytic reforming process 7 for a part or all of the naphtha fraction 12. Part or all of the gasoline base material 18 is mixed into the modified extracted crude oil 15 to produce the modified crude oil 16.
In the hydrodesulfurization step 4, the sulfur content in the naphtha fraction 12 is preferably 0.5 ppm or less. It is preferable to perform the desulfurization treatment under relatively mild conditions, and a reaction pressure of 7 to 30 kg / cmG, a hydrogen oil ratio of 30 to 80 Nm 3 / kl, and LHSV of 6 to 10 hours are preferable.
The naphtha fraction 12 is catalytically reformed by the catalytic reforming process 7 subsequent to the hydrodesulfurization process 4 to improve the octane number. The catalytic reforming step is preferably supplied to a low-pressure, multistage reaction tower at a high temperature.

上記のように、ガソリン基材18を改質抜頭原油15に混合して改質原油16を製造することで、該改質原油を蒸留するだけで、オクタン価の高いガソリン基材を得ることができる。更に、接触改質工程7で副生する水素14は、水素化脱硫工程4や抜頭原油水素化改質工程2において使用される。また一部の水素を取り出し、他の用途に用いても良い。   As described above, by mixing the gasoline base 18 with the modified crude oil 15 to produce the reformed crude 16, a gasoline base having a high octane number can be obtained simply by distilling the reformed crude. . Furthermore, the hydrogen 14 produced as a by-product in the catalytic reforming process 7 is used in the hydrodesulfurization process 4 and the extracted crude oil hydrogenation reforming process 2. A part of hydrogen may be taken out and used for other purposes.

本発明によれば、劣質な原油においても効率よく品質を改善することができる、改質原油の製造方法が提供される。当該改質原油の製造方法は、ナフサ留分分離工程、抜頭原油水素化処理工程およびナフサ留分利用工程を含むものであり、改質原油の製造における効率化が図れるとともに、ナフサ留分を新たな用途において使用することができ、石油製品の需給バランスの調整が容易になる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of reformed crude oil which can improve quality efficiently also in poor quality crude oil is provided. The method for producing reformed crude oil includes a naphtha fraction separation process, a crude oil hydrotreating process, and a naphtha fraction utilization process, which improves efficiency in the production of reformed crude oil and introduces a new naphtha fraction. It can be used in various applications, and it becomes easy to adjust the supply and demand balance of petroleum products.

本発明の改質原油の製造法の一例(態様1)の工程概略図である。It is process schematic of an example (embodiment 1) of the manufacturing method of the modified crude oil of this invention. 本発明の改質原油の製造法の一例(態様2)の工程概略図である。It is process schematic of an example (embodiment 2) of the manufacturing method of the modified crude oil of this invention. 本発明の改質原油の製造法の一例(態様3a)の工程概略図である。It is process schematic of an example (aspect 3a) of the manufacturing method of the reformed crude oil of this invention. 本発明の改質原油の製造法の一例(態様3b)の工程概略図である。It is process schematic of an example (aspect 3b) of the manufacturing method of the modified crude oil of this invention.

符号の説明Explanation of symbols

1:ナフサ留分分離工程
2:抜頭原油水素化処理工程
3:クエンチ処理
4:水素化脱硫工程
5:水素製造工程
6:スイートニング工程
7:接触改質工程
11:原油
12:ナフサ留分
13:抜頭原油
14:水素
15:改質抜頭原油
16:改質原油
17:スイートニングナフサ
18:ガソリン基材
1: naphtha fraction separation process 2: extracted crude oil hydrogenation process 3: quench process 4: hydrodesulfurization process 5: hydrogen production process 6: sweetening process 7: catalytic reforming process 11: crude oil 12: naphtha fraction 13 : Extracted crude oil 14: Hydrogen 15: Reformed extracted crude oil 16: Reformed crude oil 17: Sweetening naphtha 18: Gasoline base material

Claims (6)

原油からナフサ留分を分離し抜頭原油を得る工程(ナフサ留分分離工程)、該抜頭原油を水素化処理する工程(抜頭原油水素化処理工程)および該ナフサ留分を改質原油の製造に利用する工程(ナフサ留分利用工程)を含む、改質原油の製造方法であって、
ナフサ留分利用工程が、ナフサ留分分離工程で得られたナフサ留分の一部又は全てを、抜頭原油水素化処理工程でクエンチ油として使用するものであることを特徴とする、改質原油の製造方法。
Separating naphtha fraction from crude oil to obtain truncated crude oil (naphtha fraction separation process), hydrotreating the truncated crude oil (trapped crude oil hydrotreating process), and producing the modified crude oil from the naphtha fraction A method for producing reformed crude oil, including a process to use (naphtha fraction use process),
A modified crude oil characterized in that the naphtha fraction utilization step uses part or all of the naphtha fraction obtained in the naphtha fraction separation step as a quench oil in the extracted crude oil hydrotreating step. Manufacturing method.
原油からナフサ留分を分離し抜頭原油を得る工程(ナフサ留分分離工程)、該抜頭原油を水素化処理する工程(抜頭原油水素化処理工程)および該ナフサ留分を改質原油の製造に利用する工程(ナフサ留分利用工程)を含む、改質原油の製造方法であって、
ナフサ留分利用工程が、ナフサ留分分離工程で得られたナフサ留分の一部又は全てを原料として水素を製造し、該水素を抜頭原油水素化処理工程で使用するものであることを特徴とする、改質原油の製造方法。
Separating naphtha fraction from crude oil to obtain truncated crude oil (naphtha fraction separation process), hydrotreating the truncated crude oil (trapped crude oil hydrotreating process), and producing the modified crude oil from the naphtha fraction A method for producing reformed crude oil, including a process to use (naphtha fraction use process),
The naphtha fraction utilization process is to produce hydrogen using a part or all of the naphtha fraction obtained in the naphtha fraction separation process as a raw material, and to use the hydrogen in the crude oil hydrotreating process. A method for producing reformed crude oil.
ナフサ留分利用工程が、ナフサ留分分離工程で得られたナフサ留分に対して水素化脱硫処理をした後、当該処理後のナフサ留分を原料として水素を製造し、該水素の一部を抜頭原油水素化処理工程で使用し、残りの水素の少なくとも一部を、前記ナフサ留分に対する水素化脱硫処理に用いるものであることを特徴とする、請求項2に記載の改質原油の製造方法。   After the naphtha fraction utilization step performs hydrodesulfurization treatment on the naphtha fraction obtained in the naphtha fraction separation step, hydrogen is produced using the naphtha fraction after the treatment as a raw material, and a part of the hydrogen The modified crude oil according to claim 2, wherein at least part of the remaining hydrogen is used for hydrodesulfurization treatment of the naphtha fraction. Production method. 原油からナフサ留分を分離し抜頭原油を得る工程(ナフサ留分分離工程)、該抜頭原油を水素化処理する工程(抜頭原油水素化処理工程)および該ナフサ留分を改質原油の製造に利用する工程(ナフサ留分利用工程)を含む、改質原油の製造方法であって、
ナフサ留分利用工程が、ナフサ留分分離工程で得られたナフサ留分をスイートニング処理して得られるスイートニングナフサの少なくとも一部を、抜頭原油水素化処理工程を経た改質抜頭原油に混合するものであることを特徴とする、改質原油の製造方法。
Separating naphtha fraction from crude oil to obtain truncated crude oil (naphtha fraction separation process), hydrotreating the truncated crude oil (trapped crude oil hydrotreating process), and producing the modified crude oil from the naphtha fraction A method for producing reformed crude oil, including a process to use (naphtha fraction use process),
The naphtha fraction use process mixes at least part of the sweetened naphtha obtained by sweetening the naphtha fraction obtained in the naphtha fraction separation process with the modified extracted crude oil that has undergone the extracted crude oil hydrotreating process. A method for producing reformed crude oil, characterized in that:
原油からナフサ留分を分離し抜頭原油を得る工程(ナフサ留分分離工程)、該抜頭原油を水素化処理する工程(抜頭原油水素化処理工程)および該ナフサ留分を改質原油の製造に利用する工程(ナフサ留分利用工程)を含む、改質原油の製造方法であって、
ナフサ留分利用工程が、ナフサ留分分離工程で得られたナフサ留分を水素化脱硫処理した後、接触改質処理して得られるガソリン基材の少なくとも一部を、抜頭原油水素化処理工程を経た改質抜頭原油に混合するものであることを特徴とする、改質原油の製造方法。
Separating naphtha fraction from crude oil to obtain truncated crude oil (naphtha fraction separation process), hydrotreating the truncated crude oil (trapped crude oil hydrotreating process), and producing the modified crude oil from the naphtha fraction A method for producing reformed crude oil, including a process to use (naphtha fraction use process),
The naphtha fraction use process is a crude oil hydrotreating process for at least part of the gasoline base material obtained by hydrodesulfurizing the naphtha fraction obtained in the naphtha fraction separation process and then catalytic reforming. A method for producing a reformed crude oil characterized by being mixed with a modified extracted crude oil that has undergone the process.
抜頭原油水素化処理工程が、水素化脱金属工程、水素化分解工程、及び水素化脱硫工程の少なくとも一工程を含む、請求項1〜5のいずれかに記載の、改質原油の製造方法。   The method for producing a reformed crude oil according to any one of claims 1 to 5, wherein the extracted crude oil hydrotreating process includes at least one of a hydrodemetallation process, a hydrocracking process, and a hydrodesulfurization process.
JP2007205701A 2007-08-07 2007-08-07 Method for producing reformed crude oil Pending JP2009040844A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007205701A JP2009040844A (en) 2007-08-07 2007-08-07 Method for producing reformed crude oil
PCT/JP2008/062503 WO2009019954A1 (en) 2007-08-07 2008-07-10 Process for production of reformed crude oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007205701A JP2009040844A (en) 2007-08-07 2007-08-07 Method for producing reformed crude oil

Publications (1)

Publication Number Publication Date
JP2009040844A true JP2009040844A (en) 2009-02-26

Family

ID=40341191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007205701A Pending JP2009040844A (en) 2007-08-07 2007-08-07 Method for producing reformed crude oil

Country Status (2)

Country Link
JP (1) JP2009040844A (en)
WO (1) WO2009019954A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118750A1 (en) * 2010-03-26 2011-09-29 千代田化工建設株式会社 Method for producing aromatic hydrocarbons, and aromatic hydrocarbon production plant

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8932451B2 (en) 2011-08-31 2015-01-13 Exxonmobil Research And Engineering Company Integrated crude refining with reduced coke formation
CN103011325A (en) * 2012-12-12 2013-04-03 华东理工大学 Treating method and device for oil removal of electro-desalting cut water of inferior crude oil and decrement of dirty oil

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2988500A (en) * 1959-03-13 1961-06-13 Universal Oil Prod Co Treatment of hydrocarbon distillates
US3649523A (en) * 1969-04-10 1972-03-14 Standard Oil Co Hydrocracking process and catalyst
US4006076A (en) * 1973-04-27 1977-02-01 Chevron Research Company Process for the production of low-sulfur-content hydrocarbon mixtures
JPH0782573A (en) * 1993-07-23 1995-03-28 Jgc Corp Method and apparatus for treating petroleum
JP4226154B2 (en) * 1998-08-25 2009-02-18 出光興産株式会社 Method for hydrotreating crude oil and reformed crude oil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118750A1 (en) * 2010-03-26 2011-09-29 千代田化工建設株式会社 Method for producing aromatic hydrocarbons, and aromatic hydrocarbon production plant
JP2011202083A (en) * 2010-03-26 2011-10-13 Chiyoda Kako Kensetsu Kk Manufacturing method of aromatic hydrocarbon and manufacturing plant of aromatic hydrocarbon
US9656232B2 (en) 2010-03-26 2017-05-23 Chiyoda Corporation Method for producing aromatic hydrocarbons and aromatic hydrocarbon production plant

Also Published As

Publication number Publication date
WO2009019954A1 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
US10221366B2 (en) Residue hydrocracking
JP4958792B2 (en) Selective hydrodesulfurization and mercaptan cracking processes, including interstage separation
KR101829113B1 (en) Integration of residue hydrocracking and solvent deasphalting
CA2902258C (en) Integration of residue hydrocracking and hydrotreating
RU2663896C2 (en) Residue hydrocracking processing
Bose Design parameters for a hydro desulfurization (HDS) unit for petroleum naphtha at 3500 barrels per day
NO20024718L (en) Process for step by step hydrogen treatment for naphtha desulfurization
MXPA99007690A (en) Crude hydrogenation treating process and reformed crude by said process.
JP4226154B2 (en) Method for hydrotreating crude oil and reformed crude oil
Robinson Hydroconversion processes and technology for clean fuel and chemical production
JP2009040844A (en) Method for producing reformed crude oil
JPWO2009013971A1 (en) Hydrorefining method of hydrocarbon oil
JP2009096828A (en) Processing method of crude oil
US20210363439A1 (en) Methods of whole crude and whole crude wide cut hydrotreating low hetroatom content petroleum
US11208600B2 (en) Mixed phase two-stage hydrotreating processes for enhanced desulfurization of distillates
US6447673B1 (en) Hydrofining process
JP2000198990A (en) Hydrogenation process for gas oil fraction
JPH04356590A (en) Refining of crude oil shale oil
JPH05431B2 (en)