JPH0782573A - Method and apparatus for treating petroleum - Google Patents

Method and apparatus for treating petroleum

Info

Publication number
JPH0782573A
JPH0782573A JP6019671A JP1967194A JPH0782573A JP H0782573 A JPH0782573 A JP H0782573A JP 6019671 A JP6019671 A JP 6019671A JP 1967194 A JP1967194 A JP 1967194A JP H0782573 A JPH0782573 A JP H0782573A
Authority
JP
Japan
Prior art keywords
oil
gas
hydrotreating
light
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6019671A
Other languages
Japanese (ja)
Inventor
Sadao Kondo
貞夫 近藤
Natsuo Tashiro
夏夫 田代
Akinori Ogawa
晃範 小川
Fujio Tsuchiya
富士雄 土屋
Makoto Inomata
誠 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP6019671A priority Critical patent/JPH0782573A/en
Priority to EP94401673A priority patent/EP0635555A3/en
Priority to CN94115788A priority patent/CN1104238A/en
Priority to KR1019940017885A priority patent/KR950003423A/en
Publication of JPH0782573A publication Critical patent/JPH0782573A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/14Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural parallel stages only
    • C10G65/16Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural parallel stages only including only refining steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/08Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of reforming naphtha

Abstract

PURPOSE:To treat petroleum at a low cost with a simple apparatus by distilling a crude oil under the normal pressure to separate it into a residual oil and a distillate oil and hydrogenating the distillate oil collectively with one hydrogenation apparatus. CONSTITUTION:A crude oil pretreated, e.g. dewatered and desalted, is fed to a rough-distillation apparatus 11, distilled under the normal pressure, and thus separated into a light oil, a distillate oil comprising fractions more volatile than the light oil, and a residue (a normal-pressure residual oil). The distillate oil is collectively fed to a hydrogenation apparatus 12 and where brought into contact with hydrogen in the presence of a catalyst to be subjected to hydrogenation such as desulfurization. The resulting refined oil is fractionated into a refined light oil, a refined kerosene, a refined heavy naphtha, a refined light naphtha, a refined LP gas, and an off-gas (a light gas). Thus, the construction of a petroleum refinery system is greatly simplified and the construction cost and equipment space are greatly reduced in comparison with the conventional method wherein a crude oil is distilled and separated into various fractions and then each fraction is hydrogenated separately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は原油から軽油、灯油、重
質ナフサ、軽質ナフサ、LPガス、軽質ガスの各留分を
分離するとともにこれらを水素化精製処理する処理方法
と装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a treatment method and apparatus for separating light oil, kerosene, heavy naphtha, light naphtha, LP gas, and light gas fractions from crude oil and hydrotreating them.

【0002】[0002]

【従来の技術】図8は従来の一般的な製油工程を説明す
るための図である。原油は脱水、脱塩などの前処理を行
い、常圧蒸留装置1に供給する。そして常圧蒸留装置1
において、原油を常圧蒸留し、軽質ガス、LPガス、軽
質ナフサ、重質ナフサ、灯油、軽油及び残油のそれぞれ
の留分に分離する。最も沸点の低い軽質ガス(オフガ
ス)は、分離後、別の処理装置から精製したガスと合流
してアミン処理装置2で酸ガスを分離し、燃料ガスとす
る。またその酸ガスは硫黄回収装置3に送り硫黄を回収
する。分離されたLPガスは、LPガス処理装置4で不
純物を除去した後、製品LPガスとする。軽質ナフサ留
分は、軽質ナフサ処理装置5にてスイートニング処理な
どの簡単な処理を行いガソリンに調合する。重質ナフサ
留分は、水素化処理装置6に送り、触媒存在下で水素化
処理した後、接触改質装置7に送り、異性化や芳香族化
してガソリンとする。灯油留分は、灯油処理装置8に送
り精製して灯油とする。軽油留分は、軽油水素化処理装
置9に送り、触媒存在下で水素化処理し、不純物を除去
した後、軽油とする。ここで生成した粗ナフサは常圧蒸
留装置1に返送する。蒸留装置1底部に残った残油は、
蒸留装置1から取り出し、重油の調合材料としたり、減
圧蒸留装置に送って減圧蒸留し、軽質油製造原料となる
減圧留出油を分離する。このように従来法では、原油処
理量の大小にかかわらず画一的に原油を蒸留塔で各留分
に分けてそれぞれを個別に水素化処理している。
2. Description of the Related Art FIG. 8 is a diagram for explaining a conventional general oil making process. The crude oil is subjected to pretreatments such as dehydration and desalting and then supplied to the atmospheric distillation apparatus 1. And atmospheric distillation unit 1
In, the crude oil is distilled under atmospheric pressure to separate into light gas, LP gas, light naphtha, heavy naphtha, kerosene, light oil and residual oil fractions. After separation, the light gas (off-gas) having the lowest boiling point is combined with a gas purified from another processing device to separate the acid gas in the amine processing device 2 to be used as a fuel gas. The acid gas is sent to the sulfur recovery device 3 to recover sulfur. The separated LP gas is used as a product LP gas after impurities are removed by the LP gas processing device 4. The light naphtha fraction is subjected to simple treatment such as sweetening treatment in the light naphtha treatment device 5 to be blended with gasoline. The heavy naphtha fraction is sent to the hydrotreating device 6, hydrotreated in the presence of a catalyst, and then sent to the catalytic reforming device 7, where it is isomerized or aromatized to give gasoline. The kerosene fraction is sent to the kerosene processing device 8 to be refined into kerosene. The light oil fraction is sent to a light oil hydrotreating apparatus 9, where it is hydrotreated in the presence of a catalyst to remove impurities, and then made into light oil. The crude naphtha produced here is returned to the atmospheric distillation apparatus 1. The residual oil remaining at the bottom of the distillation apparatus 1 is
It is taken out from the distillation apparatus 1 and used as a blending material for heavy oil, or sent to a vacuum distillation apparatus and distilled under reduced pressure to separate a vacuum distillation oil which is a raw material for producing light oil. As described above, in the conventional method, regardless of the amount of crude oil treated, the crude oil is uniformly divided into each fraction in the distillation column, and each is individually hydrotreated.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
石油の処理方法にあっては、原油を蒸留塔で各留分に分
けてそれぞれを個別に水素化処理するために、煩雑な設
備が否応なしに必要となり装置構成が複雑化し、建設コ
ストも高くなるという問題があった。特に原油処理量が
小さい場合には、装置構成がよりコンパクトで低コスト
の処理方法の開発が望まれていた。
However, in the conventional petroleum processing method, since the crude oil is divided into each fraction in the distillation column and each of them is individually hydrotreated, complicated equipment is unavoidable. However, there is a problem in that the device structure becomes complicated and the construction cost becomes high. In particular, when the amount of crude oil processed is small, it has been desired to develop a processing method with a more compact device configuration and low cost.

【0004】本発明は上記事情に鑑みてなされたもの
で、石油処理システムの装置構成が簡略化され、建設コ
ストや設置スペースを削減でき、原油処理量が少ない場
合であっても装置構成のよりコンパクト化等が期待され
る新しい石油処理方法及び装置の提供を目的としてい
る。
The present invention has been made in view of the above circumstances, and the construction of the equipment of a petroleum processing system is simplified, the construction cost and the installation space can be reduced, and the construction of the equipment can be improved even when the amount of crude oil processed is small. It is an object of the present invention to provide a new petroleum processing method and device, which are expected to be compact.

【0005】[0005]

【課題を解決するための手段】本発明の石油の処理方法
は、原油を常圧蒸留して残油と留出油に分離し、留出油
を一括して同一の水素化処理装置で水素化処理すること
を特徴としている。水素化処理した精製油は蒸留し、軽
油、灯油、重質ナフサ、軽質ナフサ、LPガス、軽質ガ
スの各留分に分離して良い。好ましくは、分離した重質
ナフサを接触改質装置に供給して、ガソリンに転化する
とともに、同時に副生する軽質ガス中から純度75%以
上の水素を回収し、その水素を前記水素化処理装置に供
給する。また、常圧残油を減圧蒸留装置に供給して減圧
蒸留し、分離される減圧軽油を、常圧蒸留での留出油と
一括して同一の水素化処理装置で水素化処理しても良
い。 この石油の処理方法において用いる水素化処理装
置としては、気液下向並流型反応器、気液向流型反応
器、気液上向並流型反応器のうちから選択して用いるこ
とが望ましい。更に好ましくは、反応器の中間部で気液
分離を行う中間気液分離手段を備えた気液下向並流型反
応器と気液上向並流型反応器である。さらに、この石油
の処理方法において、水素化処理した精製油の一部を水
素化処理装置の入口に返送しても良い。水素化処理の条
件は、圧力は20〜80kg/cm2G、好ましくは3
0〜70kg/cm2G、温度は300〜400℃、好
ましくは320〜380℃、H2/油比は50〜200
Nl/l、好ましくは70〜150Nl/l、LHSV
は0.1〜5、好ましくは1〜4の範囲で選択して行う
ことが望ましい。
A method for treating petroleum according to the present invention is a method in which crude oil is distilled under atmospheric pressure to separate a residual oil and a distillate oil, and the distillate oil is collectively treated with hydrogen in the same hydrotreating apparatus. The feature is that it is processed. The hydrogenated refined oil may be distilled and separated into light oil, kerosene, heavy naphtha, light naphtha, LP gas, and light gas fractions. Preferably, the separated heavy naphtha is supplied to the catalytic reformer to be converted into gasoline, and at the same time, hydrogen having a purity of 75% or more is recovered from the light gas produced as a by-product, and the hydrogen is treated by the hydrotreating apparatus. Supply to. Further, the atmospheric residual oil is supplied to a vacuum distillation apparatus for vacuum distillation, and the vacuum gas oil separated is subjected to hydrotreating together with the distillate in atmospheric distillation in the same hydrotreating apparatus. good. As the hydrotreating apparatus used in this petroleum processing method, it is possible to select from a gas-liquid downward cocurrent reactor, a gas-liquid countercurrent reactor, and a gas-liquid upward cocurrent reactor. desirable. More preferred are a gas-liquid downward co-current type reactor and a gas-liquid upward co-current type reactor equipped with an intermediate gas-liquid separation means for performing gas-liquid separation in the middle part of the reactor. Furthermore, in this petroleum treatment method, a part of the hydrotreated refined oil may be returned to the inlet of the hydrotreating apparatus. The conditions for the hydrotreatment are that the pressure is 20 to 80 kg / cm 2 G, preferably 3
0 to 70 kg / cm 2 G, temperature is 300 to 400 ° C., preferably 320 to 380 ° C., H 2 / oil ratio is 50 to 200.
Nl / l, preferably 70-150 Nl / l, LHSV
Is preferably selected in the range of 0.1 to 5, preferably 1 to 4.

【0006】本発明の石油の処理装置は、原油を常圧蒸
留して残油と留出油に分離する常圧蒸留装置と、該常圧
蒸留装置で分離された留出油を一括して水素化処理する
水素化処理装置とを備えている。本発明の石油の処理装
置は、水素化処理装置で処理された精製油を軽油、灯
油、重質ナフサ、軽質ナフサ、LPガス、軽質ガスの各
留分に分離する分留器を付設した構成として良い。ま
た、分離した各留分のうち重質ナフサをガソリンに転化
する接触改質装置と、該接触改質装置で副生した純度7
5%以上の水素を水素化処理装置に供給する副生水素供
給ラインとを備えた構成としても良く、さらに、残油を
減圧蒸留して該残油中から減圧軽油を採取する減圧蒸留
装置と、該減圧蒸留装置で採取した減圧軽油を常圧蒸留
装置からの留出油と混合して水素化処理装置に供給する
減圧軽油供給ラインを備えた構成としても良い。本発明
の石油の処理装置において、水素化処理装置は、気液下
向並流型反応器、気液向流型反応器、気液上向並流型反
応器のうちの1つであることが望ましい。これらのう
ち、気液下向並流型反応器と気液上向並流型反応器は、
反応器の中間部で気液分離を行う中間気液分離手段を備
えたものが好ましい。さらに、該石油の処理装置におい
て、水素化処理装置で処理した精製油の一部を水素化処
理装置の入口に返送する精製油返送手段を備えた構成と
しても良い。
[0006] The petroleum processing apparatus of the present invention comprises an atmospheric distillation apparatus for distilling crude oil under atmospheric pressure to separate it into a residual oil and a distillate oil, and a distillate oil separated by the atmospheric distillation apparatus. And a hydrotreating device for hydrotreating. The petroleum treatment apparatus of the present invention is provided with a distiller for separating refined oil treated by the hydrotreating apparatus into light oil, kerosene, heavy naphtha, light naphtha, LP gas, and light gas fractions. As good as. Further, in each of the separated fractions, a catalytic reformer for converting heavy naphtha into gasoline and a purity of 7 by-produced in the catalytic reformer are used.
A by-product hydrogen supply line for supplying 5% or more hydrogen to the hydrotreating apparatus may be provided, and a vacuum distillation apparatus for distilling the residual oil under reduced pressure to collect vacuum gas oil from the residual oil. Alternatively, the vacuum gas oil collected by the vacuum distillation apparatus may be mixed with the distillate oil from the atmospheric distillation apparatus to supply a vacuum gas oil supply line to the hydrotreating apparatus. In the petroleum treatment apparatus of the present invention, the hydrotreating apparatus is one of a gas-liquid downward cocurrent reactor, a gas-liquid countercurrent reactor, and a gas-liquid upward cocurrent reactor. Is desirable. Among these, the gas-liquid downward co-current reactor and the gas-liquid upward co-current reactor are
Those equipped with an intermediate gas-liquid separation means for performing gas-liquid separation in the middle part of the reactor are preferable. Further, the petroleum processing apparatus may be configured to include refined oil returning means for returning a part of the refined oil processed by the hydrotreating apparatus to the inlet of the hydrotreating apparatus.

【0007】[0007]

【作用】本発明では、原油を常圧蒸留して残油と留出油
に分離し、留出油を一括して同一の水素化処理装置で水
素化処理することにより、原油を蒸留して細かく分留し
た後、各留分毎に水素化処理する場合と比べ、製油所の
装置構成が簡略化され、建設コストや設置スペースを削
減できる。また、原油処理量が少ない場合であっても装
置構成のよりコンパクト化が可能になる。本発明におい
ては、原油を常圧蒸留して残油と留出油とに分離する。
この留出油としては、常圧残油を除いた全ての部分(軽
油、灯油、ナフサ、LPガス、軽質ガス)を一つの留出
油の形態で得ても良いし、複数個の留出油に分割した形
態で得ることもできる。例えば常圧蒸留に際し、軽油留
分とそれよりも低沸点の留分とを別個の留出油として得
ることができる。又、水素化処理を必要としない留分
と、水素化処理を必要とする留分を含む留出油とを別々
に得るようにしても良い。例えば水素化処理を必要とし
ない留分としての軽質ガスを常圧蒸留の際に分離除去
し、軽質ガスの含まれない留出油を得て、これを水素化
処理装置に導入するようにしても良い。また常圧蒸留の
際に軽質ガスを含む留出油を得た場合には、水素化処理
装置に導入する前に軽質ガスを分離除去して軽質ガスを
含まない留出油とすることもできる。留出油を複数に分
割して得る場合には、その数が少ない方が蒸留装置構成
が簡略化され好ましい。本発明においては、前記の留出
油、即ち一つの留出油の形態で得たもの或いは複数に分
割した形態で得たもの等のうち、水素化処理を必要とす
る留分を含む留出油は同一の水素化処理装置に導入し
て、一括して水素化処理を行う。これに際して、常圧蒸
留の際に得られる水素化処理を必要としない留分も水素
化処理装置に導入することもできる。水素化処理の条件
は、圧力は20〜80kg/cm2G、好ましくは30
〜70kg/cm2G、温度は300〜400℃、好ま
しくは320〜380℃、H2/油比は50〜200N
l/l、好ましくは70〜150Nl/l、LHSVは
0.1〜5、好ましくは1〜4の範囲で選択して行うこ
とが望ましい。水素源としては、水素含有ガスならば良
く、純度60%以上のものが好ましい。水素化処理用の
触媒としては、水素化処理に使用できるものであればよ
く、例えばCo−Mo系、Ni−Mo系などが通常用い
られる。
In the present invention, crude oil is distilled under atmospheric pressure to separate it into a residual oil and a distillate oil, and the distillate oil is collectively hydrotreated in the same hydrotreating apparatus to distill the crude oil. Compared with the case where hydrofraction is performed for each fraction after fine fractionation, the device configuration of the refinery is simplified and the construction cost and installation space can be reduced. Further, even when the amount of crude oil processed is small, the apparatus configuration can be made more compact. In the present invention, crude oil is distilled under atmospheric pressure to separate a residual oil and a distillate oil.
As this distillate oil, all parts (light oil, kerosene, naphtha, LP gas, light gas) excluding atmospheric residual oil may be obtained in the form of one distillate oil, or a plurality of distillate oils may be obtained. It can also be obtained in divided form in oil. For example, during atmospheric distillation, a gas oil fraction and a fraction having a boiling point lower than that can be obtained as separate distillate oils. Further, a distillate that does not require hydrotreating and a distillate containing a distillate that requires hydrotreating may be separately obtained. For example, light gas as a fraction that does not require hydrotreatment is separated and removed during atmospheric distillation to obtain distillate oil that does not contain light gas, and to introduce this into the hydrotreatment device. Is also good. Further, when distillate oil containing light gas is obtained during atmospheric distillation, it is possible to separate and remove light gas before introducing it into the hydrotreating device to obtain distillate oil containing no light gas. . When distillate oil is obtained by dividing it into a plurality of distillate oils, it is preferable that the number of distillate oils is smaller because the distillation apparatus configuration is simplified. In the present invention, among the above distillates, that is, those obtained in the form of one distillate or those obtained in the form of being divided into a plurality of distillates, a distillate containing a fraction requiring hydrotreatment. The oil is introduced into the same hydrotreating device, and is hydrotreated collectively. At this time, a fraction obtained in the atmospheric distillation that does not require hydrotreating can also be introduced into the hydrotreating apparatus. The conditions for the hydrotreatment are that the pressure is 20 to 80 kg / cm 2 G, preferably 30.
˜70 kg / cm 2 G, temperature 300 to 400 ° C., preferably 320 to 380 ° C., H 2 / oil ratio 50 to 200 N
1 / l, preferably 70 to 150 Nl / l, and LHSV is preferably selected in the range of 0.1 to 5, preferably 1 to 4. Any hydrogen-containing gas may be used as the hydrogen source, and those having a purity of 60% or more are preferable. As the catalyst for hydrotreating, any catalyst that can be used for hydrotreating may be used, and for example, Co—Mo type, Ni—Mo type and the like are usually used.

【0008】[0008]

【実施例】以下、図面を参照して本発明を詳しく説明す
る。図1は本発明の石油の処理方法の一例を説明するた
めの図である。この石油処理方法では、まず脱水・脱塩
などの前処理を行った原油を粗蒸留装置11に送り、こ
こで原油を常圧蒸留し、軽油とそれよりも低沸点の留分
(灯油、ナフサ、LPガス、軽質ガス)からなる留出油
と、残分(常圧残油)とに分離する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings. FIG. 1 is a diagram for explaining an example of the petroleum processing method of the present invention. In this petroleum treatment method, crude oil that has been subjected to pretreatments such as dehydration and desalting is first sent to a crude distillation device 11, where crude oil is distilled under atmospheric pressure, and light oil and distillates having a boiling point lower than that (kerosene, naphtha, etc. , LP gas, light gas) and the residue (atmospheric pressure residual oil) are separated.

【0009】粗蒸留装置11で分離された留出油は、一
括して水素化処理装置12に送り、ここで触媒の存在
下、水素と接触させて、留出油の脱硫などの水素化処理
を行うとともに、水素化処理した精製油を分留して、精
製軽油、精製灯油、精製重質ナフサ、精製軽質ナフサ、
精製LPガス及びオフガス(軽質ガス)の各留分に分離
する。この水素化処理装置12としては、気液下向並流
型反応器、気液向流型反応器、気液上向並流型反応器、
さらに中間気液分離型を組み込んだ反応器などのうちか
ら選択して用いることが望ましい。水素化処理に使用さ
れる水素(H2)は、精製重質ナフサの接触改質処理を
行う接触改質装置7から副生する水素を使用することが
できる。この場合の副生する水素の純度は、75%以上
が好ましく、さらに80%以上とすることがより望まし
い。なお、軽油の全量を水素化処理する必要がない場合
には、粗蒸留装置11から分離された軽油留分の一部だ
けを水素化処理装置12に送って水素化処理し、水素化
処理後に得られる精製軽油と水素化処理しない軽油留分
と混合すれば良い。
The distillate oil separated in the crude distillation unit 11 is sent to the hydrotreating unit 12 in a lump, and is brought into contact with hydrogen in the presence of a catalyst to perform hydrotreating such as desulfurization of the distillate oil. At the same time, the hydrogenated refined oil is fractionally distilled to produce refined gas oil, refined kerosene, refined heavy naphtha, refined light naphtha,
Separate into purified LP gas and offgas (light gas) fractions. As the hydrotreating device 12, a gas-liquid downward cocurrent reactor, a gas-liquid countercurrent reactor, a gas-liquid upward cocurrent reactor,
Furthermore, it is desirable to select and use from reactors and the like incorporating an intermediate gas-liquid separation type. As hydrogen (H 2 ) used in the hydrotreating process, hydrogen produced as a by-product from the catalytic reforming device 7 that performs the catalytic reforming process of the purified heavy naphtha can be used. In this case, the purity of hydrogen by-produced is preferably 75% or more, and more preferably 80% or more. In addition, when it is not necessary to hydrotreate the entire amount of gas oil, only a part of the gas oil fraction separated from the crude distillation apparatus 11 is sent to the hydroprocessing apparatus 12 for hydroprocessing, and after hydroprocessing, The refined gas oil obtained may be mixed with a gas oil fraction which is not hydrotreated.

【0010】図2は、上記水素化処理装置の第1の例と
して、気液下向並流型反応器を示すものである。この装
置は、水素化触媒20が充填された反応器21と、気液分離
器25と、分留器23とを主要な構成要素として備えてい
る。この装置を用いて留出油の水素化処理及び分留を行
うには、反応器20の上部側から留出油、例えば軽油とそ
れよりも低沸点の留分からなるものと水素とを供給し、
これら気液を下向きに流しつつ、一定の温度と圧力で留
出油を水素化して精製する。そして反応器21の底部から
精製油と気相とを取り出して気液分離器25に送り、ここ
で精製油と気相(未反応水素や生成ガスなど)とを分離
し、分離した精製油を分留器23に送るとともに、分離し
た気相部は必要により硫化水素等の生成ガスを分離除去
した後、反応器21内に返送して循環使用することができ
る。分留器23に送られた精製油は、ここで常圧蒸留し
て、軽油、灯油、ナフサ、LPガス及びオフガス(軽質
ガス)などの各留分に分離する。なお、必要に応じて分
離した軽油を再度反応器21に返送して水素化処理しても
良い。
FIG. 2 shows a gas-liquid downward co-current reactor as a first example of the hydrotreating apparatus. This apparatus includes a reactor 21 filled with a hydrogenation catalyst 20, a gas-liquid separator 25, and a fractionator 23 as main components. In order to carry out hydrotreating and fractional distillation of distillate oil using this device, distillate oil, for example, gas oil and a fraction having a boiling point lower than that, and hydrogen are supplied from the upper side of the reactor 20. ,
While distilling these gas and liquid downwards, the distillate oil is hydrogenated and purified at a constant temperature and pressure. Then, the refined oil and the gas phase are taken out from the bottom of the reactor 21 and sent to the gas-liquid separator 25, where the refined oil and the gas phase (unreacted hydrogen, generated gas, etc.) are separated, and the separated refined oil is separated. While being sent to the fractionator 23, the separated gas phase part can be separated and removed from the produced gas such as hydrogen sulfide if necessary, and then returned to the reactor 21 for recycling. The refined oil sent to the fractionator 23 is subjected to atmospheric distillation here to separate into light oil, kerosene, naphtha, LP gas and off gas (light gas). If necessary, the separated light oil may be returned to the reactor 21 again for hydrotreatment.

【0011】図3は、水素化処理装置の第2の例とし
て、気液上向並流型に中間気液分離手段を組込んだ反応
器を示すものである。この装置は、先の図2の水素化処
理装置と同じく、水素化触媒20を多段に配した反応器21
と、中間気液分離器22、気液分離器25と、図示しない分
留器を備えて構成されている。この装置を用いて留出油
を水素化処理するには、反応器21の底部から留出油と水
素とを供給し、これらを上向きに流しつつ、一定の温度
と圧力で留出油を水素化して精製する。そして下段の触
媒層から出る精製油を中間気液分離器22に送り、ここで
ガス相と液相とに分離し、ガス相はさらに上段の触媒相
を通り、反応器上部より取出され冷却後気液分離器25に
送られ、オフガスと精製油に分離される。中間気液分離
器22を出る液相と気液分離器25からの精製油は別々に或
いは合流して分留器に送られ、軽油、灯油、ナフサ、L
Pガス及びオフガスなどの各留分に分離される。
FIG. 3 shows, as a second example of the hydrotreating apparatus, a reactor incorporating an intermediate gas-liquid separating means in a gas-liquid upward co-current type. This apparatus is similar to the hydrotreating apparatus shown in FIG. 2 and has a reactor 21 in which hydrogenation catalysts 20 are arranged in multiple stages.
And an intermediate gas-liquid separator 22, a gas-liquid separator 25, and a fractionator (not shown). To hydrotreat distillate oil using this apparatus, distillate oil and hydrogen are supplied from the bottom of the reactor 21, and the distillate oil is hydrogenated at a constant temperature and pressure while flowing these upwards. And purify. Then, the refined oil discharged from the lower catalyst layer is sent to the intermediate gas-liquid separator 22, where it is separated into a gas phase and a liquid phase, and the gas phase further passes through the upper catalyst phase and is taken out from the upper part of the reactor and cooled. It is sent to the gas-liquid separator 25 and separated into off gas and refined oil. The liquid phase exiting the intermediate gas-liquid separator 22 and the refined oil from the gas-liquid separator 25 are sent to the fractionator separately or in combination and are sent to light oil, kerosene, naphtha, L
It is separated into each fraction such as P gas and off gas.

【0012】図4は、水素化処理装置の第3の例とし
て、気液下向並流型に中間気液分離手段を組込んだ反応
器を示すものである。この装置は、先の図2に示した水
素化処理装置と同じく、水素化触媒20を多段に配した反
応器21と、中間気液分離器22、気液分離器25と、図示し
ない分留器とを備えて構成されている。この装置を用い
て留出油を水素化処理するには、反応器21の上部から留
出油と水素とを供給し、これらを下向きに流しつつ、一
定の温度と圧力で留出油を水素化して精製する。そして
上段触媒層の底部から気液の混合物を取り出して中間気
液分離器22に送り、ここでガス相と液相とに分離し、中
間気液分離器22を出るガス相は冷却後気液分離器25に送
られ、精製油とオフガスに分離される。中間気液分離器
22で分離した液相を下段触媒層へ流下させて再度水素化
処理を行う。反応器21底部から取り出した精製油と気液
分離器25から取り出した精製油は別々に或いは合流して
分留器に送られ、軽油、灯油、ナフサ、LPガスなどの
各留分に分離される。
FIG. 4 shows, as a third example of the hydrotreating apparatus, a reactor incorporating an intermediate gas-liquid separating means in a gas-liquid downward co-current type. This apparatus is similar to the hydrotreating apparatus shown in FIG. 2 and has a reactor 21 in which hydrogenation catalysts 20 are arranged in multiple stages, an intermediate gas-liquid separator 22, a gas-liquid separator 25, and a fractional distillation not shown. And a container. To hydrotreat distillate oil using this apparatus, distillate oil and hydrogen are supplied from the upper part of the reactor 21, and the distillate oil is hydrogenated at a constant temperature and pressure while flowing these downwards. And purify. Then, the gas-liquid mixture is taken out from the bottom of the upper catalyst layer and sent to the intermediate gas-liquid separator 22, where it is separated into a gas phase and a liquid phase, and the gas phase exiting the intermediate gas-liquid separator 22 is a gas-liquid after cooling. It is sent to the separator 25 and separated into refined oil and off-gas. Intermediate gas-liquid separator
The liquid phase separated in 22 is made to flow down to the lower catalyst layer, and hydrogenation treatment is performed again. The refined oil taken out from the bottom of the reactor 21 and the refined oil taken out from the gas-liquid separator 25 are separately or combined and sent to a fractionator to be separated into each fraction such as light oil, kerosene, naphtha, and LP gas. It

【0013】図5は、水素化処理装置の第4の例である
気液向流型反応器を例示するものである。この装置は、
水素化触媒20を多段に配した反応器21と、冷却器24と、
気液分離器25と、硫化水素除去装置26と、循環コンプレ
ッサ27と、図示しない分留器とを備えて構成されてい
る。この装置を用いて原料留出油を水素化処理するに
は、上段の触媒層と下段の触媒層との中間部分に留出油
を供給するとともに反応器21底部から水素を供給する。
留出油は上記中間部分において、ガス化した低沸点成分
よりなる気相と高沸点成分よりなる液相とに分離し、液
相は下段触媒層を流下しつつ、水素と向流接触して水素
化処理され、また気相は水素と混合して上段触媒層内を
上向きに流れる間に水素化処理されて反応器上部から取
り出される。この気相中には、留出油中の低沸点成分、
未反応水素及び生成ガスなどが含まれており、それらは
冷却器24に送って冷却し、低沸点成分を液化した後、気
液分離器25で液相(低沸点成分)と気相とに分離する。
気液分離器25から取り出された液相と反応器21底部から
取り出された精製油は別々に又は合流して分留器23に送
られ、軽油、灯油、ナフサ、LPガス及びオフガス(軽
質ガス)などの各留分に分離される。気液分離器25で分
離した気相はPSA(Pressure swing adsorption)装
置などを備えた硫化水素除去装置26に送って気相中の硫
化水素を除去した後、循環コンプレッサ27で昇圧し、水
素のリサイクルガスとして反応器21に返送、循環させ
る。この装置では、留出油を気相(低沸点成分)と液相
(高沸点成分)とに分離し、分解し難い硫黄化合物を多
く含む高沸点留分を流下させつつ水素と向流で接触させ
て強力に水素化し、一方で水素化が容易な低沸点成分と
水素を混合して上向きに流して水素化するので、沸点が
異なり硫黄分の分解性も異なる複数の成分を含んだ留出
油を、極めて効率良く水素化することができる。
FIG. 5 illustrates a gas-liquid countercurrent type reactor which is a fourth example of the hydrotreating apparatus. This device
A reactor 21 in which the hydrogenation catalyst 20 is arranged in multiple stages, a cooler 24,
A gas-liquid separator 25, a hydrogen sulfide removing device 26, a circulation compressor 27, and a fractionator (not shown) are provided. To hydrotreate the raw material distillate oil using this apparatus, the distillate oil is supplied to the intermediate portion between the upper catalyst layer and the lower catalyst layer, and hydrogen is supplied from the bottom of the reactor 21.
The distillate oil is separated into a gas phase consisting of a gasified low-boiling point component and a liquid phase consisting of a high-boiling point component in the above intermediate part, and the liquid phase is flowing down through the lower catalyst layer and in countercurrent contact with hydrogen. It is hydrotreated, and while the gas phase is mixed with hydrogen and flows upward in the upper catalyst layer, it is hydrotreated and taken out from the upper part of the reactor. In this gas phase, low boiling point components in the distillate,
It contains unreacted hydrogen and generated gas, which are sent to a cooler 24 to be cooled to liquefy low-boiling components and then separated into a liquid phase (low-boiling components) and a gas phase in a gas-liquid separator 25. To separate.
The liquid phase taken out from the gas-liquid separator 25 and the refined oil taken out from the bottom of the reactor 21 are separately or combined and sent to the fractionator 23, where light oil, kerosene, naphtha, LP gas and off gas (light gas ) Etc. are separated into each fraction. The gas phase separated by the gas-liquid separator 25 is sent to a hydrogen sulfide removal device 26 equipped with a PSA (Pressure swing adsorption) device or the like to remove hydrogen sulfide in the gas phase, and then the pressure is increased by a circulation compressor 27 to remove hydrogen. The recycled gas is returned to the reactor 21 and circulated. In this equipment, distillate oil is separated into a gas phase (low boiling point component) and a liquid phase (high boiling point component), and the high boiling point fraction containing a large amount of sulfur compounds that are difficult to decompose is flowed down while contacting with hydrogen in countercurrent. To hydrogenate strongly, while hydrogen is mixed with a low boiling point component that is easy to hydrogenate and flows upward to hydrogenate, so a distillate that contains multiple components with different boiling points and different sulfur decomposability The oil can be hydrogenated very efficiently.

【0014】図6は比較的軽い留分について、一層の精
製を行う場合に好適な水素化処理装置として、気液下向
並流型に中間気液分離手段を組込んだ反応器を例示する
ものであって、この装置では留出油と水素を上部から供
給し、上段触媒層で1回目の処理を行ったのち、触媒層
底部から出る流体を中間気液分離器22に導き、気相と液
相に分離する。この液相は精製油とする。一方、気相部
は反応器21の下段触媒層に再度供給して、一層の水素化
処理を行う。下段触媒層を出る流体は冷却した後、気液
分離器25に導いてガス相と液相に分離する。ガス相は燃
料又は水素回収に供し、液相は精製油となる。中間気液
分離器22から取出される精製油と気液分離器25から取り
出される精製油は別々に又は合流して分留器に送られ
る。
FIG. 6 exemplifies a reactor in which an intermediate gas-liquid separation means is incorporated in a gas-liquid downward co-current type as a hydrotreating apparatus suitable for further refining a relatively light fraction. In this device, distillate oil and hydrogen are supplied from the upper part, and after performing the first treatment in the upper catalyst layer, the fluid flowing out from the bottom part of the catalyst layer is guided to the intermediate gas-liquid separator 22, and the gas phase is separated. And liquid phase. This liquid phase is a refined oil. On the other hand, the gas phase part is supplied again to the lower catalyst layer of the reactor 21 to perform further hydrogenation treatment. The fluid leaving the lower catalyst layer is cooled and then introduced into a gas-liquid separator 25 to be separated into a gas phase and a liquid phase. The gas phase is used for fuel or hydrogen recovery, and the liquid phase is refined oil. The refined oil taken out from the intermediate gas-liquid separator 22 and the refined oil taken out from the gas-liquid separator 25 are separately or combined and sent to a fractionator.

【0015】図7は、比較的軽い留分の精製を一層効果
あるものにする水素化処理装置として、気液下向並流型
反応器を例示するものであり、この装置では留出油を複
数の触媒層20をもつ反応器21の上流側に設けた気液分離
器25Aにおいてガス相と液相に分離し、ガス相を反応器
上部から供給し、液相を触媒層中間部へ供給するもので
ある。反応器底部より出る気液精製油は第1の気液分離
器25Bに導き、ここでガス相と液相に分離し、分離した
ガス相の一部を図中破線の矢印で示すように反応器上部
に返送し、他の一部のガスは冷却した後に第2の気液分
離器25Cへ導く。第1の気液分離器25Bを出る液相は冷却
した後、第2の気液分離器25Cからの液相と合流して又
は別々に分留器に送られる。また、単に反応器21を出る
流体を冷却した後、気液分離器でオフガスと精製油に分
離することもできる。
FIG. 7 exemplifies a gas-liquid downward cocurrent flow reactor as a hydrotreating device which makes purification of a relatively light fraction more effective. In this device, distillate oil is used. A gas-liquid separator 25A provided upstream of a reactor 21 having a plurality of catalyst layers 20 separates a gas phase and a liquid phase, supplies the gas phase from the upper portion of the reactor, and supplies the liquid phase to an intermediate portion of the catalyst layer. To do. The gas-liquid refined oil that emerges from the bottom of the reactor is led to the first gas-liquid separator 25B, where it is separated into a gas phase and a liquid phase, and a part of the separated gas phase is reacted as shown by the broken line arrow in the figure. After returning to the upper part of the vessel and cooling some other gas, it is led to the second gas-liquid separator 25C. The liquid phase exiting the first gas-liquid separator 25B is cooled and then sent to the fractionator either confluent with the liquid phase from the second gas-liquid separator 25C or separately. It is also possible to simply cool the fluid leaving the reactor 21 and then separate it into off gas and refined oil with a gas-liquid separator.

【0016】上述したような水素化処理並びに分留処理
によって、図1に示すように、水素化処理装置12から、
精製軽油、精製重質ナフサ、精製軽質ナフサ、精製LP
ガス及びオフガスの各留分が得られる。オフガスは、ア
ミン処理装置2で酸ガスを分離し、燃料ガスとする一
方、酸ガスを硫黄回収装置3に送り硫黄を回収する。精
製LPガスは、そのまま製品LPガスとして使用する。
精製軽質ナフサは、そのままガソリンに調合することが
できる他、必要に応じ改質処理やスイートニング処理を
行っても良い。精製重質ナフサは、接触改質装置7に送
り、そこで異性化や芳香族化した後、ガソリンに調合す
る。この接触改質装置7で副生する水素は、水素化処理
装置12に送り水素化用水素として利用し、また副生する
LPガス分は水素化処理装置12に返送し、あるいは水素
化処理装置12から得られる精製LPガスに混合すること
もできる。また、精製灯油は、そのまま製品灯油とする
ことができる。精製軽油は、そのまま製品軽油とするこ
とができる。
As shown in FIG. 1, from the hydrotreating apparatus 12 through the hydrotreating and fractionating treatments as described above,
Refined light oil, refined heavy naphtha, refined light naphtha, refined LP
Gas and off-gas fractions are obtained. The off-gas separates the acid gas in the amine processing device 2 to be used as a fuel gas, while sending the acid gas to the sulfur recovery device 3 to recover sulfur. The purified LP gas is used as a product LP gas as it is.
The refined light naphtha can be directly blended with gasoline, and may be subjected to reforming treatment or sweetening treatment as necessary. The refined heavy naphtha is sent to the catalytic reforming device 7, where it is isomerized or aromatized and then blended into gasoline. The hydrogen by-produced in the catalytic reforming device 7 is sent to the hydrotreating device 12 to be used as hydrogen for hydrogenation, and the LP gas component by-produced is returned to the hydrotreating device 12 or the hydrotreating device 12. It can also be mixed with the purified LP gas obtained from 12. Further, the refined kerosene can be directly used as a product kerosene. The refined gas oil can be directly used as the product gas oil.

【0017】なお、粗蒸留装置11の底部に残った残分
(残油)は、粗蒸留装置11から取り出し、そのまま重油
の調合材料としたり、減圧蒸留装置に送って減圧蒸留
し、減圧留出油を分離する。ここで得られる減圧留出油
は、少なくともその一部を粗蒸留装置11からの留出油と
混合して水素化処理装置12で水素化処理しても良い。
The residue (residual oil) remaining at the bottom of the crude distillation apparatus 11 is taken out from the crude distillation apparatus 11 and used as a heavy oil blending material as it is, or sent to a vacuum distillation apparatus for vacuum distillation and vacuum distillation. Separate the oil. At least a part of the vacuum distillate oil obtained here may be mixed with the distillate oil from the crude distillation apparatus 11 and hydrotreated in the hydrotreating apparatus 12.

【0018】上述した石油の処理方法は、原油を常圧蒸
留して残油と留出油に分離し、留出油を一括して同一の
水素化処理装置で水素化処理することにより、原油を蒸
留して細かく分留しその後各留分毎に水素化処理する場
合と比べ、製油所の装置構成が簡略化され、建設コスト
や、設置スペースを削減できる。また、原油処理量が少
ない場合であっても装置構成のよりコンパクト化が可能
となる。
In the above-mentioned petroleum treatment method, crude oil is subjected to atmospheric distillation to separate it into a residual oil and a distillate oil, and the distillate oil is collectively hydrotreated in the same hydrotreating apparatus. Compared with the case of distilling and finely fractionating and then hydrotreating each fraction, the equipment configuration of the refinery is simplified, and the construction cost and installation space can be reduced. Further, even when the amount of crude oil processed is small, the apparatus configuration can be made more compact.

【0019】(実験例) ・比較例:従来法による石油処理 図8に示す処理システムに基づいて、原油を常圧蒸留装
置によって各留分に蒸留分離した後、それぞれの留分毎
に水素化処理装置に供給して水素化精製した。各留分の
性状は次の通りである。 原油の性状:アラビアンライト及びヘビー(50vol/
50vol)、比重0.8618、硫黄濃度1.818wt%。 各留分の蒸留性状、収量:表1。
(Experimental example) -Comparative example: Petroleum treatment by conventional method Based on the treatment system shown in FIG. 8, crude oil was distilled and separated into each fraction by an atmospheric distillation apparatus, and then hydrogenated for each fraction. It was supplied to a processing apparatus and hydrorefined. The properties of each fraction are as follows. Properties of crude oil: Arabian light and heavy (50vol /
50vol), specific gravity 0.8618, sulfur concentration 1.818wt%. Distillation properties of each fraction, yield: Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】分離した各留分の水素化反応試験の主な反
応条件は以下の通りとした。 触媒:市販(触媒化成工業製)のCo・Mo系触媒 反応器:内径8mm×長さ6000mm 充填触媒量:96cc 反応器形式:下向並流式 水素純度:70% 各留分の水素化精製反応条件及び反応成績を表2に示
す。
The main reaction conditions for the hydrogenation reaction test of each separated fraction were as follows. Catalyst: Commercially available (Catalyst Kasei Co., Ltd.) Co / Mo-based catalyst Reactor: Inner diameter 8 mm x length 6000 mm Filled catalyst amount: 96 cc Reactor type: Downward cocurrent hydrogen purity: 70% Hydrogen purification of each fraction Table 2 shows the reaction conditions and reaction results.

【0022】[0022]

【表2】 [Table 2]

【0023】・実施例1:軽質ナフサ〜軽油の連続留分
の一括水素化処理 先の比較例に示される軽質ナフサから軽油までの連続留
分(真沸点がC5〜360℃)を原料として、比較例1と同
じ反応器1個を用い、上記連続留分を同じ反応器で一括
に水素化処理した。反応条件は次の通りとした。 圧力:40kg/cm2G 温度:330℃ H2/油比:100Nm3/キロリットル LHSV:3.1 1/hr 上記条件で連続留分を一括に水素化処理し、処理後の精
製油を分留器に移して常圧蒸留し、軽質ナフサ、重質ナ
フサ、灯油及び軽油の各留分に蒸留分離し、これら各留
分の残留硫黄濃度を測定した。各留分の残留硫黄濃度
は、 軽質ナフサ:0.1wtppm 重質ナフサ:0.3wtppm 灯油: 0.001wt% 軽油: 0.20wt% であり、各留分を個別に水素化処理した比較例のものと
遜色なかった。この結果からして、本発明によれば、石
油精製の装置構成を大幅に簡略化し、従来と同程度の水
素化処理効果が得られることが実証された。
Example 1: Batch hydrogenation treatment of continuous fraction of light naphtha to light oil Using the continuous fraction from light naphtha to light oil (true boiling point C5 to 360 ° C.) shown in the preceding comparative example as a raw material, The same reactor as in Comparative Example 1 was used, and the continuous fraction was hydrotreated in the same reactor at once. The reaction conditions were as follows. Pressure: 40 kg / cm 2 G Temperature: 330 ° C. H 2 / Oil ratio: 100 Nm 3 / kiloliter LHSV: 3.1 1 / hr Under the above conditions, the continuous distillates are collectively hydrotreated, and the refined oil after the treatment is treated. The mixture was transferred to a fractionator and subjected to atmospheric distillation to distill and separate into light naphtha, heavy naphtha, kerosene and light oil fractions, and the residual sulfur concentration of each of these fractions was measured. The residual sulfur concentration of each fraction was light naphtha: 0.1 wtppm, heavy naphtha: 0.3 wtppm, kerosene: 0.001 wt%, and light oil: 0.20 wt%. It was as good as that. From these results, it was demonstrated that according to the present invention, the configuration of the petroleum refining apparatus can be greatly simplified, and the same hydrotreatment effect as the conventional one can be obtained.

【0024】・実施例2:軽質ナフサ〜軽油の連続留分
の一括水素化処理 LHSVを1.2 1/hrとし、充填触媒量を250ccと
した以外は実施例1と同じ条件にして軽質ナフサ〜軽油
の連続留分の一括水素化処理を行った。各留分の残留硫
黄濃度は、 軽質ナフサ:0.1wtppm以下 重質ナフサ:0.1wtppm以下 灯油: 0.0003wt% 軽油: 0.05wt% であり、好成績であった。
Example 2: Batch hydrotreatment of continuous fraction of light naphtha to light oil Light naphtha under the same conditions as in Example 1 except that LHSV was set to 1.2 1 / hr and the amount of charged catalyst was set to 250 cc. ~ A batch distillate of light oil was subjected to a batch hydrotreatment. The residual sulfur concentration of each fraction was light naphtha: 0.1 wtppm or less, heavy naphtha: 0.1 wtppm or less, kerosene: 0.0003 wt%, light oil: 0.05 wt%, which was a good result.

【0025】・実施例3:気液向流型反応器による一括
水素化処理 反応器として図5に示した気液向流型反応器を用い、実
施例1と同じ原料油(軽質ナフサから軽油までの連続留
分)を処理した。反応器内の触媒層を上下の2段に分
け、上段触媒層と下段触媒層の中間に原料油(連続留
分)を供給し、反応器底部側から水素を供給して原料油
を一括に水素化処理した。反応条件は次の通りとした。 上段触媒量:40cc 下段触媒量:60cc 圧力:40kg/cm2G 温度:330℃ H2/油比:100Nm3/キロリットル LHSV:3.1 1/hr 水素化処理後の精製油を分留器に移して常圧蒸留し、軽
質ナフサ、重質ナフサ、灯油及び軽油の各留分に蒸留分
離して、これら各留分の残留硫黄濃度を測定した。各留
分の残留硫黄濃度は、 軽質ナフサ:0.1wtppm以下 重質ナフサ:0.1wtppm以下 灯油: 0.001wt% 軽油: 0.15wt% であった。
Example 3: Collective hydrogenation treatment by gas-liquid countercurrent reactor Using the gas-liquid countercurrent reactor shown in FIG. 5 as a reactor, the same feedstock as in Example 1 (light naphtha to light oil) was used. Continuous distillates up to) were processed. The catalyst layer in the reactor is divided into upper and lower layers, and the feed oil (continuous fraction) is supplied between the upper catalyst layer and the lower catalyst layer, and hydrogen is supplied from the bottom of the reactor to collectively feed oil. It was hydrotreated. The reaction conditions were as follows. Upper catalyst amount: 40 cc Lower catalyst amount: 60 cc Pressure: 40 kg / cm 2 G Temperature: 330 ° C. H 2 / oil ratio: 100 Nm 3 / kiloliter LHSV: 3.1 1 / hr Purified oil after hydrogenation is fractionated The mixture was transferred to a vessel and subjected to atmospheric distillation to distill and separate into light naphtha, heavy naphtha, kerosene and light oil fractions, and the residual sulfur concentration of each of these fractions was measured. The residual sulfur concentration of each fraction was light naphtha: 0.1 wtppm or less, heavy naphtha: 0.1 wtppm or less, kerosene: 0.001 wt%, light oil: 0.15 wt%.

【0026】・実施例4:LPガス〜軽油の一括脱硫処
理 LPガスが追加された以外は実施例1と同じ条件で処理
を行った。但しH2/油比、LHSVの算出ベースのフ
ィード量は軽質ナフサ〜軽油(LPガスは除く)であ
る。各留分の残留硫黄濃度は、 軽質ナフサ:0.1wtppm以下 重質ナフサ:0.4wtppm以下 灯油: 0.001wt% 軽油: 0.22wt% であった。
Example 4: Batch desulfurization treatment of LP gas to light oil The treatment was carried out under the same conditions as in Example 1 except that LP gas was added. However H 2 / oil ratio, the feed amount of calculation based LHSV is light naphtha-gas oil (LP gas is excluded). The residual sulfur concentration of each fraction was light naphtha: 0.1 wtppm or less, heavy naphtha: 0.4 wtppm or less, kerosene: 0.001 wt%, light oil: 0.22 wt%.

【0027】[0027]

【発明の効果】本発明は上記の構成としたことにより、
次のような効果を奏する。本発明では、原油を常圧蒸留
して残油と留出油に分離し、留出油を一括して同一の水
素化処理装置で水素化処理することにより、原油を蒸留
して細かく分留した後、各留分毎に水素化処理する場合
と比べ、石油精製システムの装置構成が大幅に簡素化で
き、建設コスト、設置スペースを削減することができ
る。また、各留分毎に水素化処理を行う従来法において
は、触媒交換など各水素化処理装置のメインテナンスは
別々に行わざるを得ず、そのための配管等、各種設備を
多数必要としたが、本発明においては、留出油を一括し
て同一の水素化処理装置で水素化処理するため、メイン
テナンスも一括してできるようになり、メインテナンス
のための付帯設備は非常に簡素化され、またメインテナ
ンスの回数も削減されるので、効率的な石油精製プラン
トの操業が可能となる。また本発明の石油の処理装置と
して、原油を常圧蒸留して残油と留出油に分離する常圧
蒸留装置と、該常圧蒸留装置で分離された留出油を一括
して水素化処理する水素化処理装置との他に、水素化処
理装置で処理された精製油を軽油、灯油、重質ナフサ、
軽質ナフサ、LPガス、軽質ガスの各留分に分離する分
留器と、分離した各留分のうち重質ナフサをガソリンに
転化する接触改質装置と、該接触改質装置で副生した純
度75%以上の水素を水素化処理装置に供給する副生水
素供給ラインとを備えた構成とすることによって、上記
各留分の精製油とガソリンが製造でき、副生水素を水素
化処理装置で利用することが可能となるので、水素化処
理装置で使用する水素ガスのコストを削減することがで
きる。さらに、残油を減圧蒸留して該残油中から減圧軽
油を採取する減圧蒸留装置と、該減圧蒸留装置で採取し
た減圧軽油を常圧蒸留装置からの留出油と混合して水素
化処理装置に供給する減圧軽油供給ラインを備えた構成
とすることによって、留出油の割合が増加し、原油の利
用効率を高めることができる。また、水素化処理装置と
して、気液向流型反応器を用いた場合には、この反応器
の上下の触媒相の中間部に留出油を供給し、留出油を気
相(低沸点留分)と液相(高沸点留分)とに分離し、分
解し難い硫黄化合物を多く含む高沸点留分を流下させつ
つ水素と向流で接触させて強力に水素化し、一方で水素
化が容易な低沸点成分と水素を混合して上向きに流して
水素化するので、沸点が異なり硫黄分の分解性も異なる
複数の成分を含んだ留出油を、極めて効率良く水素化す
ることができる。また、水素化処理装置として、反応器
の中間部で気液分離を行う中間気液分離手段を備えた気
液下向並流型反応器または気液上向並流型反応器を用い
た場合には、これら反応器の中間部で留出油を取り出し
て気液を分離し、分離された気相と液相のいずれか一方
を取り出し、他方を再び反応器に供給して処理すること
が可能となる。このため沸点が異なり硫黄分の分解性も
異なる複数の成分を含んだ留出油を極めて効率良く水素
化することができるとともに各留分に要求される製品仕
様に柔軟に対応することができる。さらに、該石油の処
理装置において、水素化処理装置で処理した精製油の一
部を水素化処理装置の入口に返送する精製油返送手段を
備えた構成とし、所望の留分について再度水素化処理が
可能な構成とすることによって、特定の留分について一
層の精製処理が必要となる場合にも、その目的を容易に
達成することができる。
According to the present invention having the above-mentioned constitution,
It has the following effects. In the present invention, crude oil is subjected to atmospheric distillation to separate it into a residual oil and a distillate oil, and the distillate oil is collectively hydrotreated in the same hydrotreating apparatus to distill the crude oil and finely fractionate it. After that, as compared with the case where hydrotreating is performed for each fraction, the device configuration of the oil refining system can be greatly simplified, and construction cost and installation space can be reduced. Further, in the conventional method of performing hydrotreating for each fraction, maintenance of each hydrotreating device such as catalyst exchange has to be performed separately, and a lot of various equipment such as piping for that has been required, In the present invention, since the distillate oil is collectively hydrotreated by the same hydrotreating apparatus, the maintenance can be performed at one time, and the auxiliary equipment for the maintenance can be greatly simplified, and the maintenance can be performed easily. Since the number of times is reduced, it is possible to operate the oil refining plant efficiently. Further, as a petroleum treatment apparatus of the present invention, an atmospheric distillation apparatus for distilling crude oil under atmospheric pressure to separate a residual oil and a distillate oil, and a distillate oil separated by the atmospheric distillation apparatus are collectively hydrogenated. In addition to hydrotreating equipment for processing, refined oil treated by hydrotreating equipment is used as diesel oil, kerosene, heavy naphtha,
A fractionator for separating light naphtha, LP gas, and light gas into respective fractions, a catalytic reformer for converting heavy naphtha into gasoline from the separated fractions, and a by-product of the catalytic reformer. By providing a by-product hydrogen supply line for supplying hydrogen having a purity of 75% or more to the hydrotreating device, refined oil and gasoline of each of the above fractions can be produced, and the by-product hydrogen is hydrotreating device. Therefore, the cost of hydrogen gas used in the hydrotreating apparatus can be reduced. Further, a vacuum distillation apparatus for distilling the residual oil under reduced pressure to collect vacuum gas oil from the residual oil, and a vacuum gas oil collected by the vacuum distillation apparatus are mixed with distillate oil from the atmospheric distillation apparatus for hydrotreatment. By adopting the configuration provided with the reduced pressure gas oil supply line for supplying to the apparatus, the ratio of distillate oil can be increased and the utilization efficiency of crude oil can be improved. When a gas-liquid countercurrent reactor is used as the hydrotreating device, distillate oil is supplied to the middle part of the upper and lower catalyst phases of this reactor, and the distillate oil is put into the gas phase (low boiling point). (Distillate) and liquid phase (high-boiling fraction) are separated, and the high-boiling fraction containing a large amount of sulfur compounds that are difficult to decompose is flowed down and brought into contact with hydrogen in countercurrent to strongly hydrogenate, while hydrogenating It is possible to hydrogenate distillate oil containing multiple components with different boiling points and different decomposability of sulfur content very efficiently because hydrogen is mixed with low boiling point components and hydrogen is flown upward. it can. When a gas-liquid downward co-current type reactor or a gas-liquid upward co-current type reactor equipped with an intermediate gas-liquid separation means for performing gas-liquid separation in the middle part of the reactor is used as the hydrotreating device In this case, distillate oil may be taken out in the middle part of these reactors to separate gas-liquid, one of the separated gas phase and liquid phase may be taken out, and the other may be supplied to the reactor again for processing. It will be possible. For this reason, the distillate oil containing a plurality of components having different boiling points and different sulfur decomposability can be hydrogenated extremely efficiently and can flexibly meet the product specifications required for each fraction. Further, in the petroleum processing apparatus, a refined oil returning means for returning a part of the refined oil processed by the hydrotreating apparatus to the inlet of the hydroprocessing apparatus is provided, and the desired fraction is hydrotreated again. With such a constitution, even when a further purification treatment is required for a specific fraction, the object can be easily achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の石油の処理方法の一例を説明するため
の工程図である。
FIG. 1 is a process chart for explaining an example of a petroleum treatment method of the present invention.

【図2】本発明方法において好適な水素化処理装置の第
1の例を示す構成図である。
FIG. 2 is a configuration diagram showing a first example of a hydrotreating apparatus suitable for the method of the present invention.

【図3】本発明方法において好適な水素化処理装置の第
2の例を示す構成図である。
FIG. 3 is a configuration diagram showing a second example of a hydrotreating apparatus suitable for the method of the present invention.

【図4】本発明方法において好適な水素化処理装置の第
3の例を示す構成図である。
FIG. 4 is a configuration diagram showing a third example of a suitable hydrotreating apparatus in the method of the present invention.

【図5】本発明方法において好適な水素化処理装置の第
4の例を示す構成図である。
FIG. 5 is a configuration diagram showing a fourth example of a suitable hydrotreating apparatus in the method of the present invention.

【図6】本発明方法において好適な水素化処理装置の第
5の例を示す構成図である。
FIG. 6 is a configuration diagram showing a fifth example of a suitable hydrotreating apparatus in the method of the present invention.

【図7】本発明方法において好適な水素化処理装置の第
6の例を示す構成図である。
FIG. 7 is a configuration diagram showing a sixth example of a suitable hydrotreating apparatus in the method of the present invention.

【図8】従来の石油処理方法を説明するための工程図で
ある。
FIG. 8 is a process chart for explaining a conventional petroleum treatment method.

【符号の説明】[Explanation of symbols]

11……粗蒸留装置(常圧蒸留装置)、12……水素化
処理装置、20……水素化触媒、21……反応器、22
……中間気液分離器、23……分留器、24……冷却
器、25……気液分離器、26……硫化水素除去装置、
27……循環コンプレッサ。
11 ... Coarse distillation apparatus (normal pressure distillation apparatus), 12 ... Hydrogenation apparatus, 20 ... Hydrogenation catalyst, 21 ... Reactor, 22
...... Intermediate gas-liquid separator, 23 …… Distiller, 24 …… Cooler, 25 …… Gas liquid separator, 26 …… Hydrogen sulfide removal device,
27 ... Circulation compressor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土屋 富士雄 神奈川県横浜市南区別所1−14−1 日揮 株式会社横浜事業所内 (72)発明者 猪俣 誠 神奈川県横浜市南区別所1−14−1 日揮 株式会社横浜事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Fujio Tsuchiya 1-1-14, Minami Sanrokusho, Yokohama-shi, Kanagawa JGC Corporation Yokohama Business Office (72) Inventor Makoto Inomata 1-14, Minami-sanroku, Yokohama 1 JGC Corporation Yokohama Office

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 原油を常圧蒸留して残油と留出油に分離
し、留出油を一括して同一の水素化処理装置で水素化処
理することを特徴とする石油の処理方法。
1. A method for treating petroleum, wherein crude oil is distilled under atmospheric pressure to separate into residual oil and distillate oil, and the distillate oil is collectively hydrotreated in the same hydrotreating apparatus.
【請求項2】 水素化処理した精製油を蒸留し、軽油、
灯油、重質ナフサ、軽質ナフサ、LPガス、軽質ガスの
各留分に分離することを特徴とする請求項1の石油の処
理方法。
2. A hydrotreated refined oil is distilled to obtain light oil,
The petroleum treatment method according to claim 1, wherein the kerosene, the heavy naphtha, the light naphtha, the LP gas, and the light gas are separated into respective fractions.
【請求項3】 分離した重質ナフサを接触改質装置に供
給して、ガソリンに転化するとともに、同時に副生する
軽質ガス中から純度75%以上の水素を回収し、その水
素を前記水素化処理装置に供給することを特徴とする請
求項2の石油の処理方法。
3. The separated heavy naphtha is supplied to a catalytic reformer to be converted into gasoline, and at the same time, hydrogen having a purity of 75% or more is recovered from light gas produced as a by-product, and the hydrogen is subjected to the hydrogenation. The oil processing method according to claim 2, wherein the oil is supplied to a processing device.
【請求項4】 常圧残油を減圧蒸留装置に供給して減圧
蒸留し、分離される減圧軽油を、常圧蒸留での留出油と
一括して同一の水素化処理装置で水素化処理することを
特徴とする請求項1の石油の処理方法。
4. The atmospheric residual oil is supplied to a vacuum distillation apparatus for vacuum distillation, and the vacuum gas oil separated is hydrotreated together with the distillate obtained in atmospheric distillation in the same hydrotreating apparatus. The method for treating petroleum according to claim 1, wherein
【請求項5】 水素化処理装置として、気液下向並流型
反応器、気液向流型反応器、気液上向並流型反応器のう
ちから選択して用いることを特徴とする請求項1から4
のうちいずれか1項の石油の処理方法。
5. The hydrotreating device is selected from a gas-liquid downward parallel flow type reactor, a gas-liquid countercurrent type reactor, and a gas-liquid upward parallel flow type reactor, and is used. Claims 1 to 4
The method for treating petroleum according to any one of the above.
【請求項6】 気液下向並流型反応器と気液上向並流型
反応器が、これら反応器の中間部で気液分離を行う中間
気液分離手段を備えている請求項5の石油の処理方法。
6. The gas-liquid downward parallel flow type reactor and the gas-liquid upward parallel flow type reactor are provided with an intermediate gas-liquid separation means for performing gas-liquid separation in an intermediate portion of these reactors. Oil processing methods.
【請求項7】 水素化処理した精製油の一部を水素化処
理装置の入口に返送することを特徴とする請求項1から
6のうちいずれか1項の石油の処理方法。
7. The petroleum treatment method according to claim 1, wherein a part of the hydrotreated refined oil is returned to the inlet of the hydrotreatment device.
【請求項8】 水素化処理の条件を、圧力20〜80k
g/cm2G、温度300〜400℃、H2/油比50〜
200Nl/l、LHSV0.1〜5の範囲としたこと
を特徴とする請求項1から7のうちいずれか1項の石油
の処理方法。
8. A hydrotreating condition is that the pressure is 20 to 80 k.
g / cm 2 G, temperature 300 to 400 ° C., H 2 / oil ratio 50 to
The method for treating petroleum according to any one of claims 1 to 7, wherein the range is 200 Nl / l and LHSV 0.1-5.
【請求項9】 水素化処理の条件を、圧力30〜70k
g/cm2G、温度320〜380℃、H2/油比70〜
150Nl/l、LHSV1〜4の範囲としたことを特
徴とする請求項1から7のうちいずれか1項の石油の処
理方法。
9. The hydrotreating condition is that the pressure is 30 to 70 k.
g / cm 2 G, temperature 320 to 380 ° C., H 2 / oil ratio 70 to
The method for treating petroleum according to any one of claims 1 to 7, wherein the range is 150 Nl / l and LHSV1 to 4.
【請求項10】 原油を常圧蒸留して残油と留出油に分
離する常圧蒸留装置と、該常圧蒸留装置で分離された留
出油を一括して水素化処理する水素化処理装置とを備え
た石油の処理装置。
10. An atmospheric distillation apparatus for distilling crude oil under atmospheric pressure to separate it into a residual oil and a distillate oil, and a hydrotreatment for collectively hydrotreating the distillate oil separated by the atmospheric distillation apparatus. And a petroleum processing device.
【請求項11】 水素化処理装置で処理された精製油を
軽油、灯油、重質ナフサ、軽質ナフサ、LPガス、軽質
ガスの各留分に分離する分留器を設けたことを特徴とす
る請求項10の石油の処理装置。
11. A fractionator for separating refined oil treated by the hydrotreating apparatus into light oil, kerosene, heavy naphtha, light naphtha, LP gas, and light gas fractions. The petroleum treatment device according to claim 10.
【請求項12】 分離した各留分のうち重質ナフサをガ
ソリンに転化する接触改質装置と、該接触改質装置で副
生した純度75%以上の水素を水素化処理装置に供給す
る副生水素供給ラインとを設けたことを特徴とする請求
項11の石油の処理装置。
12. A catalytic reformer for converting heavy naphtha of each of the separated fractions into gasoline, and a by-product for supplying hydrogen having a purity of 75% or more produced by the catalytic reformer to a hydrotreating apparatus. The petroleum processing apparatus according to claim 11, further comprising a raw hydrogen supply line.
【請求項13】 残油を減圧蒸留して該残油中から減圧
軽油を採取する減圧蒸留装置と、該減圧蒸留装置で採取
した減圧軽油を常圧蒸留装置からの留出油と混合して水
素化処理装置に供給する減圧軽油供給ラインとを設けた
ことを特徴とする請求項10記載の石油の処理装置。
13. A vacuum distillation apparatus for distilling the residual oil under reduced pressure to collect vacuum gas oil from the residual oil, and a vacuum gas oil collected by the vacuum distillation apparatus mixed with distillate oil from the atmospheric distillation apparatus. 11. The petroleum treatment apparatus according to claim 10, further comprising a reduced pressure gas oil supply line for supplying the hydrotreating apparatus.
【請求項14】 水素化処理装置が、気液下向並流型反
応器、気液向流型反応器、気液上向並流型反応器のうち
の1つであることを特徴とする請求項10から13のう
ちいずれか1項の石油の処理装置。
14. The hydrotreating device is one of a gas-liquid downward co-current reactor, a gas-liquid counter-current reactor, and a gas-liquid upward co-current reactor. The petroleum treatment apparatus according to any one of claims 10 to 13.
【請求項15】 気液下向並流型反応器と気液上向並流
型反応器が、これら反応器の中間部で気液分離を行う中
間気液分離手段を備えたことを特徴とする請求項14の
石油の処理装置。
15. A gas-liquid downward co-current type reactor and a gas-liquid upward co-current type reactor are equipped with an intermediate gas-liquid separation means for performing gas-liquid separation in an intermediate portion of these reactors. 15. The petroleum processing apparatus according to claim 14.
【請求項16】 水素化処理装置で処理した精製油の一
部を水素化処理装置の入口に返送する精製油返送手段を
備えたことを特徴とすることを特徴とする請求項10か
ら15のうちいずれか1項の石油の処理装置。
16. The refined oil returning means for returning a part of the refined oil processed by the hydrotreating apparatus to the inlet of the hydrotreating apparatus is provided. Any one of the petroleum processing equipment.
JP6019671A 1993-07-23 1994-02-16 Method and apparatus for treating petroleum Withdrawn JPH0782573A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6019671A JPH0782573A (en) 1993-07-23 1994-02-16 Method and apparatus for treating petroleum
EP94401673A EP0635555A3 (en) 1993-07-23 1994-07-20 Refining method and its configuration.
CN94115788A CN1104238A (en) 1993-07-23 1994-07-22 Refining method and its configuration
KR1019940017885A KR950003423A (en) 1993-07-23 1994-07-23 Purification method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18308593 1993-07-23
JP5-183085 1993-07-23
JP6019671A JPH0782573A (en) 1993-07-23 1994-02-16 Method and apparatus for treating petroleum

Publications (1)

Publication Number Publication Date
JPH0782573A true JPH0782573A (en) 1995-03-28

Family

ID=26356518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6019671A Withdrawn JPH0782573A (en) 1993-07-23 1994-02-16 Method and apparatus for treating petroleum

Country Status (4)

Country Link
EP (1) EP0635555A3 (en)
JP (1) JPH0782573A (en)
KR (1) KR950003423A (en)
CN (1) CN1104238A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000039561A1 (en) * 1998-12-28 2000-07-06 Sk Corporation Automatic analysis method of crude petroleum oils using spectroscopy
US6454934B2 (en) 1997-09-11 2002-09-24 Jgc Corporation Petroleum processing method
WO2003078549A1 (en) * 2002-03-15 2003-09-25 Jgc Corporation Method of refining petroleum and refining appratus
JP2006518794A (en) * 2003-01-31 2006-08-17 シェブロン ユー.エス.エー. インコーポレイテッド High purity olefinic naphtha for ethylene and propylene production
JP2006241352A (en) * 2005-03-04 2006-09-14 Idemitsu Kosan Co Ltd Method for producing gasoline base material
WO2009019954A1 (en) * 2007-08-07 2009-02-12 Idemitsu Kosan Co., Ltd. Process for production of reformed crude oil

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7232515B1 (en) 1997-07-15 2007-06-19 Exxonmobil Research And Engineering Company Hydrofining process using bulk group VIII/Group VIB catalysts
US7288182B1 (en) 1997-07-15 2007-10-30 Exxonmobil Research And Engineering Company Hydroprocessing using bulk Group VIII/Group VIB catalysts
US6929738B1 (en) 1997-07-15 2005-08-16 Exxonmobil Research And Engineering Company Two stage process for hydrodesulfurizing distillates using bulk multimetallic catalyst
US7229548B2 (en) 1997-07-15 2007-06-12 Exxonmobil Research And Engineering Company Process for upgrading naphtha
US7513989B1 (en) 1997-07-15 2009-04-07 Exxonmobil Research And Engineering Company Hydrocracking process using bulk group VIII/Group VIB catalysts
US6162350A (en) * 1997-07-15 2000-12-19 Exxon Research And Engineering Company Hydroprocessing using bulk Group VIII/Group VIB catalysts (HEN-9901)
ID30551A (en) 1999-05-13 2001-12-20 Shell Int Research HYDROCARBON CONVERSION PROCESS
US6890962B1 (en) 2003-11-25 2005-05-10 Chevron U.S.A. Inc. Gas-to-liquid CO2 reduction by use of H2 as a fuel
US8932451B2 (en) 2011-08-31 2015-01-13 Exxonmobil Research And Engineering Company Integrated crude refining with reduced coke formation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3050458A (en) * 1957-12-13 1962-08-21 Shell Oil Co Petroleum refining process
NL278028A (en) * 1961-05-05
US3268438A (en) * 1965-04-29 1966-08-23 Chevron Res Hydrodenitrification of oil with countercurrent hydrogen
US3801495A (en) * 1972-05-19 1974-04-02 Chevron Res Integrated process combining catalytic cracking with hydrotreating
WO1992008772A1 (en) * 1989-05-10 1992-05-29 Davy Mckee (London) Limited Hydrodesulphurisation process

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6454934B2 (en) 1997-09-11 2002-09-24 Jgc Corporation Petroleum processing method
WO2000039561A1 (en) * 1998-12-28 2000-07-06 Sk Corporation Automatic analysis method of crude petroleum oils using spectroscopy
US6490029B1 (en) * 1998-12-28 2002-12-03 S.K. Corporation Automatic analysis method of crude petroleum oils using spectroscopy
WO2003078549A1 (en) * 2002-03-15 2003-09-25 Jgc Corporation Method of refining petroleum and refining appratus
US7361266B2 (en) 2002-03-15 2008-04-22 Jgc Corporation Method of refining petroleum and refining apparatus
JP2006518794A (en) * 2003-01-31 2006-08-17 シェブロン ユー.エス.エー. インコーポレイテッド High purity olefinic naphtha for ethylene and propylene production
JP2006241352A (en) * 2005-03-04 2006-09-14 Idemitsu Kosan Co Ltd Method for producing gasoline base material
JP4608341B2 (en) * 2005-03-04 2011-01-12 出光興産株式会社 Method for producing gasoline base material
WO2009019954A1 (en) * 2007-08-07 2009-02-12 Idemitsu Kosan Co., Ltd. Process for production of reformed crude oil

Also Published As

Publication number Publication date
CN1104238A (en) 1995-06-28
EP0635555A3 (en) 1995-08-09
EP0635555A2 (en) 1995-01-25
KR950003423A (en) 1995-02-16

Similar Documents

Publication Publication Date Title
JP2697749B2 (en) Process for producing a high-grade lubricating base oil feedstock from unconverted oil in a fuel oil hydrocracking process operated in a recycling manner
KR100831590B1 (en) Crude oil desulfurization
JP5528681B2 (en) Method for producing high-grade lubricating base oil feedstock from unconverted oil
US6726832B1 (en) Multiple stage catalyst bed hydrocracking with interstage feeds
US6454932B1 (en) Multiple stage ebullating bed hydrocracking with interstage stripping and separating
US6179995B1 (en) Residuum hydrotreating/hydrocracking with common hydrogen supply
US6454934B2 (en) Petroleum processing method
JPH0782573A (en) Method and apparatus for treating petroleum
JPS6327393B2 (en)
KR20170099989A (en) Method and device for reducing heavy polycyclic aromatic compounds in hydrocracking units
JP6273202B2 (en) Hydrocracking with interstage steam stripping
JPS5922756B2 (en) Method for hydrocracking petroleum hydrocarbons contaminated with nitrogen compounds
CN116209735A (en) Method for producing renewable fuels
JP2004511623A (en) Two-stage hydrogenation and stripping of diesel fuel oil in a single reactor
EP0550079B1 (en) Process for upgrading a hydrocarbonaceous feedstock
JP5345298B2 (en) Method for refining hydrocarbon oil
JP3488281B2 (en) Petroleum processing method
JP5191865B2 (en) Manufacturing method of atmospheric distillation fraction
CN111748373A (en) High-yield device and method for low-carbon olefins and aromatic hydrocarbons
JPH0734073A (en) Hydrogenation of petroleum and hydrogenation apparatus
JP5483861B2 (en) Production method of purified fraction
JP2010111770A (en) Method for producing purified hydrocarbon oil, and purified hydrocarbon oil
KR20170098911A (en) Method and device for reducing heavy polycyclic aromatic compounds in hydrocracking units
JP2010111771A (en) Method for producing purified hydrocarbon oil, and purified hydrocarbon oil
KR20220168993A (en) Hydrocracking process

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010508