WO2017148929A1 - Modernisation à faible vapeur/carbone d'une installation comprenant une section de reformage à la vapeur et une section de déplacement eau-gaz - Google Patents

Modernisation à faible vapeur/carbone d'une installation comprenant une section de reformage à la vapeur et une section de déplacement eau-gaz Download PDF

Info

Publication number
WO2017148929A1
WO2017148929A1 PCT/EP2017/054618 EP2017054618W WO2017148929A1 WO 2017148929 A1 WO2017148929 A1 WO 2017148929A1 EP 2017054618 W EP2017054618 W EP 2017054618W WO 2017148929 A1 WO2017148929 A1 WO 2017148929A1
Authority
WO
WIPO (PCT)
Prior art keywords
original
plant
based catalyst
section
shift
Prior art date
Application number
PCT/EP2017/054618
Other languages
English (en)
Inventor
Thomas Rostrup-Nielsen
Niels Christian Schjødt
Christian Henrik SPETH
Annette E. KRØLL
Original Assignee
Haldor Topsøe A/S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haldor Topsøe A/S filed Critical Haldor Topsøe A/S
Priority to EA201891937A priority Critical patent/EA201891937A1/ru
Priority to CN201780013775.4A priority patent/CN108698821B/zh
Priority to CA3014490A priority patent/CA3014490A1/fr
Priority to BR112018015373A priority patent/BR112018015373A2/pt
Priority to EP17707565.2A priority patent/EP3423399A1/fr
Priority to KR1020187026967A priority patent/KR20180116332A/ko
Priority to US16/071,313 priority patent/US11498835B2/en
Publication of WO2017148929A1 publication Critical patent/WO2017148929A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/025Preparation or purification of gas mixtures for ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00018Construction aspects
    • B01J2219/00024Revamping, retrofitting or modernisation of existing plants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • C01B2203/0288Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step containing two CO-shift steps
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • C01B2203/0294Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step containing three or more CO-shift steps
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/068Ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/141At least two reforming, decomposition or partial oxidation steps in parallel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • C01B2203/143Three or more reforming, decomposition or partial oxidation steps in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • a reforming section wherein a feed is reformed in at least one reforming step to a reformed stream comprising CH4, CO, CO2 , H2 and H2O
  • HTS high temperature shift
  • the HTS step is carried out at a reduced steam/dry-gas (S/DG) ratio compared to an original S/DG in the original HTS step with the original Fe-based catalyst.
  • S/DG reduced steam/dry-gas
  • the present method may be especially beneficial when applied on an existing hb plant, NH3 plant or in a plant producing synthesis gas for H2 or NH3 production.
  • the feed may be natural gas (e.g. comprising mainly CH4 including possibly small amounts of higher hydrocarbons, nitrogen, CO2 and other traces), naphtha, rich gases, LPG etc. or combi- nations hereof.
  • natural gas e.g. comprising mainly CH4 including possibly small amounts of higher hydrocarbons, nitrogen, CO2 and other traces
  • naphtha e.g., naphtha, rich gases, LPG etc.
  • combi- nations hereof e.g. comprising mainly CH4 including possibly small amounts of higher hydrocarbons, nitrogen, CO2 and other traces
  • the standard original catalyst is a Fe-based catalyst comprising oxides of Fe, Cr (0 - 20 %wt wt) and/or Cu (0 - 10 %wt/wt).
  • the above mentioned Fe-based catalysts are typically containing iron oxide as the main component; i.e. the iron oxide content on a weight basis exceeds 50%. This is valid both for the catalyst in its oxidized and reduced (activated) form.
  • the non-Fe-based catalysts may either be completely free of iron (other than trace levels) or may contain limited amounts of Fe (up to 10% iron oxide on a weight basis).
  • Fe-based catalysts suffer from an inherent weakness, namely their propensity to form iron carbides or even elemental iron under conditions of low S/DG ratios. This is exem- plified by the following reaction:
  • iron carbide will catalyze Fischer-Tropsch by-product formation
  • the Fischer-Tropsch reactions consume hydrogen, whereby the efficiency of the shift section is reduced.
  • the standard use of iron based HT shift catalyst requires a steam/carbon (S/C) ratio of around 2.6 or above to avoid iron carbide formation.
  • S/C steam/carbon
  • the applicant has shown that using a non-Fe-based catalyst such as a promoted zinc- aluminum oxide based catalyst, for example the Tops0e SK-501 FlexTM HT shift catalyst, which enables operation of the reforming section and HT shift section at a S/C ratio down to 0.3 is a highly advantageous substitute for the standard original Fe based catalyst.
  • the new non-Fe-based HTS catalyst is not limited by S/C and/or S/DG re- quirements which results in high operational flexibility and a benefit of capacity revamping with a non-Fe-based catalyst e.g.
  • the non-Fe-based catalyst is a zinc-aluminum oxide based catalyst which in its active form comprises a mixture of zinc aluminum spinel and zinc oxide in combination with an alkali metal selected from the group consisting of Na, K, Rb, Cs and mixtures thereof, and optionally in combination with Cu.
  • the catalyst may have a Zn/AI molar ratio in the range 0.5 to 1.0, a content of alkali metal in the range 0.4 to 8.0 wt % and a copper content in the range 0-10% based on the weight of oxidized catalyst.
  • the shift section may comprise one or more HT shift steps together with one or more medium temperature (MT) shift steps and/or one or more low temperature (LT) shift steps.
  • the temperature in the HT shift step may e.g. be in the range 300 - 600°C, such as 360-470°C.
  • the high temperature shift inlet temperature may be 300 - 400°C, such as 350 - 380°C.
  • the HTS step may be carried out at a reduced S/DG ratio of 0.1 -0.9 such as 0.2-0.5 or 0.25 - 0.45 or 0.3 - 0.44.
  • the requirement of a minimum S/DG ratio in the HTS reactor represents a significant impediment for many producers wanting to remain competitive in the current market. Removing or minimizing the S/DG limitation according to the present invention allows producers to achieve better profitability through increased production capacity, which is essential in today's economy of rising costs and rapid market fluctuations.
  • the S/DG ratio is defined as the ratio of steam and the dry process gas on molar basis inlet the HTS reactor.
  • the S/C ratio is defined as the ratio of all steam added to the reforming section upstream the HT shift section and the hydrocarbons in the feedgas to the reforming sec- tion on molar basis.
  • the S/DG ratio is reduced with 5 - 25%, such as 10 - 20%, e.g. with 12 - 17% with respect to the original S/DG ratio.
  • Original S/DG, original HTS step, original Fe-based catalyst, original steam addition refers to the S/DG, HTS step, catalyst, steam addition prior to revamp. I.e. Original is used for terms pre-revamp.
  • the feed flow is increased with at least 2% preferably as at least 5%.
  • the feed flow is increased 2 - 25%, such as 4 - 20%.
  • the steam addition up-stream the HTS step is reduced compared to the original steam addition by 0.1 - 50%, such as 0.5% - 15%, such as 1 - 10%.
  • the firing profile in the primary reformer may be kept constant to maintain design conditions for the primary reformer and/or other parts of the reforming section.
  • the pressure drop dP is generally increased compared to the original dP when the capacity of the plant is increased.
  • the increased pressure drop dP which may be induced by the present method (due to increased plant load when increasing the capacity up to e.g.
  • the reforming section may comprise a primary reformer possibly in combination with a pre-reformer and/or additional reformer types in parallel and/or series.
  • the shift section may further comprise one or more Medium and/or Low temperature shift steps.
  • the reforming section is optionally revamped to include one or more reformer types, adiabatic, gas/ flue gas convective, gas/gas convective, radiant, autothermal. Furthermore, the present revamp of an existing process and plant may be combined with one or more additional revamps up- and/or downstream the reforming section.
  • a higher pressure drop through the front-end can be compensated in several ways.
  • the compressors are normally designed with 1 kg/cm 2 margin which allows some compensation simply using the pre revamp-compressor capacity.
  • a low pressure drop catalyst for example in combination with substituting support balls in the HTS with a catalyst support grid additional pressure drop can be saved
  • a non-Fe-based catalyst as described herein such as the special composition of SK-501 FlexTM offers new benefits to ammonia and syngas producers.
  • producers With the possibility to operate the plant at S/C and corresponding S/DG ratios previously unattainable with commercial Fe-based catalysts, producers can achieve unprecedented improvements in capacity increase. For example, a decrease in S/C from 2.8 to 2.5 (enabled by the present change of catalyst to a non-Fe based cat) can result in up to 3-5% more ammonia production.
  • the extra production translates into approximately 1 1 MM USD per year in extra revenue, assuming a price of 350 USD / MT.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

La présente invention concerne un procédé de modernisation pour augmenter la capacité frontale d'une installation comprenant - une section de reformage, dans laquelle une alimentation est reformée en au moins une étape de reformage en - un flux reformé comprenant CH4, CO, CO2, H2 et H2O, - une section de déplacement, dans laquelle le flux reformé est déplacé dans une réaction de déplacement dans au moins une étape de déplacement à haute température, ledit procédé comprenant les étapes consistant à : - dans l'étape de déplacement à haute température, échanger un catalyseur d'origine à base de fer par un catalyseur non à base de fer - augmenter le débit d'alimentation vers la section de reformage et - l'étape HTS (déplacement à haute température) étant effectuée à un rapport vapeur/gaz sec (S/DG) réduit par rapport à un S/DG d'origine dans l'étape HTS d'origine avec le catalyseur à base de Fe d'origine.
PCT/EP2017/054618 2016-02-29 2017-02-28 Modernisation à faible vapeur/carbone d'une installation comprenant une section de reformage à la vapeur et une section de déplacement eau-gaz WO2017148929A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EA201891937A EA201891937A1 (ru) 2016-02-29 2017-02-28 Модернизация установки, включающей секцию парового риформинга и секцию конверсии водяного газа, для обеспечения низкого соотношения пар/углерод
CN201780013775.4A CN108698821B (zh) 2016-02-29 2017-02-28 包含蒸汽重整工段和水煤气变换工段的设备的低蒸汽/碳改造
CA3014490A CA3014490A1 (fr) 2016-02-29 2017-02-28 Modernisation a faible vapeur/carbone d'une installation comprenant une section de reformage a la vapeur et une section de deplacement eau-gaz
BR112018015373A BR112018015373A2 (pt) 2016-02-29 2017-02-28 renovação de baixo vapor/carbono de uma planta que compreende uma seção de reforma de vapor e uma seção de deslocamento de água-gás
EP17707565.2A EP3423399A1 (fr) 2016-02-29 2017-02-28 Modernisation à faible vapeur/carbone d'une installation comprenant une section de reformage à la vapeur et une section de déplacement eau-gaz
KR1020187026967A KR20180116332A (ko) 2016-02-29 2017-02-28 스팀 개질 구역 및 수성 가스 이동 구역을 포함하는 플랜트의 저 스팀/탄소 개조
US16/071,313 US11498835B2 (en) 2016-02-29 2017-02-28 Low steam/carbon revamp of a plant comprising a steam reforming section and a water-gas shift section

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DKPA201600127 2016-02-29
DKPA201600127 2016-02-29

Publications (1)

Publication Number Publication Date
WO2017148929A1 true WO2017148929A1 (fr) 2017-09-08

Family

ID=59742663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/054618 WO2017148929A1 (fr) 2016-02-29 2017-02-28 Modernisation à faible vapeur/carbone d'une installation comprenant une section de reformage à la vapeur et une section de déplacement eau-gaz

Country Status (10)

Country Link
US (1) US11498835B2 (fr)
EP (1) EP3423399A1 (fr)
KR (1) KR20180116332A (fr)
CN (1) CN108698821B (fr)
AR (1) AR107702A1 (fr)
BR (1) BR112018015373A2 (fr)
CA (1) CA3014490A1 (fr)
EA (1) EA201891937A1 (fr)
TW (1) TWI812588B (fr)
WO (1) WO2017148929A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3419934B1 (fr) 2016-02-25 2021-01-13 Johnson Matthey Public Limited Company Procédé de modernisation d'une usine de production d'ammoniac
WO2022112310A1 (fr) 2020-11-24 2022-06-02 Topsoe A/S Catalyseur amélioré de conversion du gaz à l'eau

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230078887A (ko) 2021-11-26 2023-06-05 김뢰호 2차 가공에 의한 단열재 조성물을 이용한 발포 폴리스타이렌 및 그 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2141118A1 (fr) * 2008-07-03 2010-01-06 Haldor Topsoe A/S Catalyseur de conversion à la vapeur d'eau dépourvu de chrome
WO2010000387A1 (fr) * 2008-07-03 2010-01-07 Haldor Topsøe A/S Procédé pour faire fonctionner un réacteur à variation de température élevée (hts)
EP2404869A1 (fr) * 2010-07-06 2012-01-11 Ammonia Casale S.A. Procédé de production d'un gaz ammoniac de synthèse
EP2886513A1 (fr) * 2013-12-20 2015-06-24 Casale Sa Procédé de production d'un gaz ammoniac de synthèse

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101652176B (zh) 2007-04-10 2012-07-04 出光兴产株式会社 催化剂前体物质及使用该催化剂前体物质的催化剂
EP2801550A1 (fr) * 2013-05-10 2014-11-12 Ammonia Casale S.A. Procédé de production d'un gaz de synthèse d'ammoniac avec décalage de température élevé et faible rapport vapeur-carbone

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2141118A1 (fr) * 2008-07-03 2010-01-06 Haldor Topsoe A/S Catalyseur de conversion à la vapeur d'eau dépourvu de chrome
WO2010000387A1 (fr) * 2008-07-03 2010-01-07 Haldor Topsøe A/S Procédé pour faire fonctionner un réacteur à variation de température élevée (hts)
EP2404869A1 (fr) * 2010-07-06 2012-01-11 Ammonia Casale S.A. Procédé de production d'un gaz ammoniac de synthèse
EP2886513A1 (fr) * 2013-12-20 2015-06-24 Casale Sa Procédé de production d'un gaz ammoniac de synthèse

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3419934B1 (fr) 2016-02-25 2021-01-13 Johnson Matthey Public Limited Company Procédé de modernisation d'une usine de production d'ammoniac
WO2022112310A1 (fr) 2020-11-24 2022-06-02 Topsoe A/S Catalyseur amélioré de conversion du gaz à l'eau

Also Published As

Publication number Publication date
EA201891937A1 (ru) 2019-03-29
TW201808808A (zh) 2018-03-16
CA3014490A1 (fr) 2017-09-08
BR112018015373A2 (pt) 2018-12-18
US20210206634A1 (en) 2021-07-08
CN108698821B (zh) 2022-10-25
TWI812588B (zh) 2023-08-21
US11498835B2 (en) 2022-11-15
AR107702A1 (es) 2018-05-23
EP3423399A1 (fr) 2019-01-09
CN108698821A (zh) 2018-10-23
KR20180116332A (ko) 2018-10-24

Similar Documents

Publication Publication Date Title
EP3411327B1 (fr) Procédé de production d'ammoniac à base de reformage autothermique
AU2018231419B2 (en) Urea process with controlled excess of CO2 and/or NH3
CN108368037B (zh) 生产甲醛稳定的脲的整合方法
RU2524720C2 (ru) Комплексная установка для переработки газа
US11498835B2 (en) Low steam/carbon revamp of a plant comprising a steam reforming section and a water-gas shift section
EA036440B1 (ru) Способ получения стабилизированной формальдегидом мочевины
EP2994415A1 (fr) Procédé de production d'un gaz de synthèse à base d'ammoniac avec une conversion à température élevée et un rapport vapeur/carbone faible
CN111247091A (zh) 用于生产合成气的方法和系统
WO2021073834A1 (fr) Processus et installation d'hydrogène à reformage autothermique
EP2212959B1 (fr) Production réduite d'ammoniac dans un catalyseur au nickel de reformeur
RU2782258C2 (ru) Способ получения метанола и аммиака
WO2024100267A2 (fr) Procédé de régulation de la température de sortie d'un reformeur à échange de chaleur dans la production de gaz de synthèse pour les industries chimiques et du carburant

Legal Events

Date Code Title Description
REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018015373

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 3014490

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187026967

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201891937

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 2017707565

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017707565

Country of ref document: EP

Effective date: 20181001

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17707565

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018015373

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180727