WO2017148397A1 - 一种兼有融冰功能的机车再生电能回馈系统及控制方法 - Google Patents

一种兼有融冰功能的机车再生电能回馈系统及控制方法 Download PDF

Info

Publication number
WO2017148397A1
WO2017148397A1 PCT/CN2017/075368 CN2017075368W WO2017148397A1 WO 2017148397 A1 WO2017148397 A1 WO 2017148397A1 CN 2017075368 W CN2017075368 W CN 2017075368W WO 2017148397 A1 WO2017148397 A1 WO 2017148397A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric energy
energy feedback
regenerative electric
switch
feedback device
Prior art date
Application number
PCT/CN2017/075368
Other languages
English (en)
French (fr)
Inventor
杨浩
王宇
谢晔源
刘洪德
李长伟
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Priority to CA3015421A priority Critical patent/CA3015421C/en
Priority to EP17759248.2A priority patent/EP3406476B1/en
Priority to RU2018132820A priority patent/RU2686605C1/ru
Priority to JP2018544212A priority patent/JP6571294B2/ja
Priority to KR1020187024836A priority patent/KR101975159B1/ko
Priority to US16/080,276 priority patent/US10279686B2/en
Publication of WO2017148397A1 publication Critical patent/WO2017148397A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M1/00Power supply lines for contact with collector on vehicle
    • B60M1/12Trolley lines; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/06Arrangements for consuming regenerative power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G7/00Overhead installations of electric lines or cables
    • H02G7/16Devices for removing snow or ice from lines or cables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. DC/AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/30Railway vehicles
    • B60Y2200/31Locomotives

Definitions

  • the invention relates to a locomotive regenerative electric energy feedback system and a control method thereof, which have the function of melting ice, and belongs to the field of high-power electric power technology applied to rail transit.
  • the locomotive regenerative electric energy feedback system is used for the absorption and feedback of regenerative electric energy on rail transit, and the regenerative electric energy is fed back to the power grid.
  • the principle of the regenerative electric energy feedback device can be briefly described as follows: When the vehicle enters the braking condition, the kinetic energy of the locomotive is converted into electric energy, and when the electric energy is input to the direct current grid, the voltage of the direct current grid is increased.
  • the control system of the regenerative electric energy feedback device detects the DC grid voltage in real time. When the DC grid voltage rises to a certain preset value, the inverter starts to start, the inverter starts to work, and the excess electric energy is fed back to the AC grid.
  • ice coating is a kind of freezing phenomenon caused by specific meteorological conditions. If ice is formed on a large area of overhead wires, it will cause the tower to fall down, the wire to be covered with ice, or break, which will directly affect the normal and safe operation of overhead lines. For electrified railways, due to the contact net icing, the pantograph can not be properly taken, or even cause damage or breakage of the pantograph, which seriously affects the safe and punctual operation of the train. At present, there are additional ice melting equipments that need to be added to the ice melting scheme, which will increase the additional investment, increase the space occupied by the equipment, and increase the complexity of the system.
  • the invention can realize the ice melting function by utilizing the locomotive regenerative electric energy feedback system without additional investment.
  • the present invention proposes a scheme of using the locomotive electric energy feedback system and melting ice, which can pull the locomotive regenerative electric energy feedback system installed therein without adding additional investment.
  • the utility model relates to a locomotive regenerative electric energy feedback system with ice melting function, comprising two regenerative electric energy feedback devices, wherein the DC side positive pole of the regenerative electric energy feedback device is connected with the positive bus bar of the subway traction net, and the positive bus bar passes the first switching switch and the second switching switch.
  • the DC-side negative pole of the regenerative power feedback device Connected to the uplink contact network and the downlink contact network respectively, the DC-side negative pole of the regenerative power feedback device is connected to the downlink contact network or the uplink contact network through the third switch, and the DC-side negative pole is connected to the negative bus of the subway traction network through the fourth switch.
  • the regenerative electric energy feedback device comprises a rectifier composed of a power semiconductor device, and has the function of flowing two-way active power, so as to control the active power flowing from the AC power grid to the DC traction bus of the subway traction network, and also can control the active power from the DC traction bus of the subway traction network. Flow to the AC grid.
  • the third switch and the fourth switch are not allowed to be closed at the same time.
  • the invention also includes a control method for the locomotive regenerative electric energy feedback system.
  • the control method is as follows:
  • Step 1 Separate the third switch
  • Step 2 Close the fourth switch:
  • Step 3 When the locomotive brakes, the rectifier starts, and the active power is controlled to flow from the DC bus of the subway traction network to the AC grid.
  • control method is as follows:
  • Step 1 Separate the first switch and the fourth switch
  • Step 2 Close the second switch and the third switch
  • Step 3 The rectifier of one of the regenerative electric energy feedback devices is started to control the DC voltage stability.
  • Step 4 The rectifier of another regenerative electric energy feedback device is started, and the current flowing through the contact net is controlled by adjusting the DC voltage;
  • Step 1 Separate the second switch and the fourth switch
  • Step 2 Close the first switch and the third switch
  • Step 3 The rectifier of one of the regenerative electric energy feedback devices is started, and the DC voltage of the traction net is controlled to be stable.
  • Step 4 The rectifier of the other regenerative electric energy feedback device is started, and the current flowing through the contact net is controlled by adjusting the DC voltage.
  • the invention utilizes the locomotive electric energy feedback system in the traction station to realize the melting ice function through switch switching and the adjustment of the control method, without adding additional equipment, usually the locomotive regenerative electric energy feedback system is put into operation during the daytime subway running time period, and is in contact at night. No vehicle running on the Internet, the locomotive power feedback system can be switched to the ice melting state, the contact network current is controlled, the ice melting function is realized, and the equipment utilization rate is higher.
  • the DC bus voltage of the two regenerative electric energy feedback devices of the solution of the invention can be adjusted within a certain range. During the ice melting process, the current can be controlled without setting a short circuit point, and the working process is safe and reliable. The solution does not need to increase the matching resistance to regulate the current, and the generated heat is completely used for the line melting ice, and the equipment works efficiently.
  • the solution of the invention can realize the full-line melting of the contact network line between the two stations, and the ice-covered surface is larger than the single-station melting method.
  • FIG. 2 is a topological view of a regenerative electric energy feedback device
  • Figure 5 is an equivalent schematic diagram of the solution of the present invention in a state of melting ice.
  • the embodiment includes two regenerative electric energy feedback devices 1 , which comprise two sets of regenerative electric energy feedback devices and switches connected to the devices.
  • the two sets of systems have the same configuration, and the schematic diagrams of the two sets of regenerative electric energy feedback devices are as follows.
  • figure 1 Shown. The two adjacent stations are connected by a contact net.
  • the positive pole side of each set of regenerative electric energy feedback device is connected with the positive bus bar of the subway traction network, and the positive bus bar is connected to the uplink contact network and the downlink contact net through the first switch 4 and the second switch 5, respectively.
  • the DC side negative pole of the regenerative electric energy feedback device is connected to the downlink contact network through the third changeover switch 2, and the DC side negative pole is connected to the negative conductor bus of the subway traction net through the fourth changeover switch 3.
  • the regenerative electric energy feedback device 1 comprises a rectifier composed of a power semiconductor device, and has the function of flowing two-way active power, so as to control the active power flowing from the AC power grid to the DC traction bus of the subway traction network, and also can control the active power from the DC traction bus of the subway traction network. Flow to the AC grid.
  • the topology of the rectifier is as shown in FIG. 2.
  • a three-phase bridge rectifier circuit composed of IGBTs can realize bidirectional flow of power.
  • the third switch 2 and the fourth switch 3 are interlocked, and are not allowed to be closed at the same time.
  • control method is as follows:
  • Step 1 Separate the third switch
  • Step 2 Close the fourth switch:
  • Step 3 When the locomotive brakes, the three-phase bridge rectifier starts, and the control active power flows from the DC bus of the subway traction network to the AC grid.
  • the current loop diagram is shown in Figure 4.
  • control method is as follows:
  • the third switch of this embodiment is connected to the downlink contact network, and the steps are as follows:
  • Step 1 Separate the second switch and the fourth switch
  • Step 2 Close the first switch and the third switch
  • Step 3 The rectifier of one of the regenerative electric energy feedback devices is started, and the DC voltage of the traction net is controlled to be stable.
  • Step 4 The rectifier of the other regenerative electric energy feedback device is started, and the current flowing through the contact net is controlled by adjusting the DC voltage.
  • the current loop diagram is shown in Figure 3.
  • the equivalent schematic diagram of the melting ice state is shown in Fig. 5:
  • the specific method for controlling the melting current is illustrated by the figure.
  • the capacitance of the regenerative electric energy feedback device 1 is in a discharging state, and the capacitance is maintained at 1800V.
  • the regenerative electric energy feedback device 1 needs to obtain the power of the P1 from the AC power grid, and the capacitance of the regenerative electric energy feedback device 2 is in a charging state, and the capacitor voltage is required to be stabilized.
  • the excess power P2 needs to be sent back to the grid, and the energy difference of P1-P2 is consumed on the resistance of the contact net, and the melting ice is realized by the heat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)

Abstract

一种兼有融冰功能的机车再生电能回馈系统,包括两台再生电能回馈设备(1),再生电能回馈设备(1)的直流侧正极与地铁牵引网正极母线连接,正极母线通过第一切换开关(4)、第二切换开关(5)分别与上行接触网、下行接触网连接,再生电能回馈设备(1)的直流侧负极通过第三切换开关(2)与下行接触网或上行接触网连接,直流侧负极通过第四切换开关(3)与地铁牵引网负极母线连接。还公开了所述系统对应的控制方法。该系统和方法通过开关切换、调整再生电能回馈设备的控制方法,实现对两个牵引站之间接触网线路的融冰功能,利用原有再生电能回馈设备,无需增加额外设备,可靠性高。

Description

一种兼有融冰功能的机车再生电能回馈系统及控制方法 技术领域
本发明涉及一种兼有融冰功能的机车再生电能回馈系统及控制方法,属于应用于轨道交通的大功率电力电子技术领域。
背景技术
机车再生电能回馈系统用于轨道交通上再生电能的吸收和回馈的场合,将再生电能回馈至电网。
再生电能回馈设备的原理可简述如下:当车辆进入制动工况,机车的动能转换为电能,向直流电网输入电能时,会引起直流电网电压升高。再生电能回馈设备的控制系统实时检测直流电网电压,当直流电网电压上升达到某一预设值时,逆变器开始启动,逆变器开始工作,将多余的电能回馈给交流电网。
冬季由于气温、空气湿度和风速的共同作用,存在着由液态水形成冰的覆冰现象。因此,覆冰是一种特定气象条件下产生的冰冻现象,如果在架空导线上大面积形成覆冰,会导致杆塔倾倒、导线覆冰舞动或断裂,将直接影响架空线路的正常安全运行。对电气化铁路而言,由于接触网覆冰,会导致受电弓无法正常取流,甚至导致受电弓的损害或断裂,严重影响列车的安全准点运行。目前已有融冰方案均需要增加额外的融冰设备,会增加额外的投资,增加设备占地空间,也增加了系统的复杂性。
本发明可利用机车再生电能回馈系统实现融冰功能,不额外增加投资。
发明内容
为了解决电气化铁路接触网融冰的问题,本发明提出了一种采用机车电能回馈系统兼融冰的方案,可以牵引所内装设的机车再生电能回馈系统,而不增加额外的投资。
具体的方案如下:
一种兼有融冰功能的机车再生电能回馈系统,包括两台再生电能回馈设备,再生电能回馈设备的直流侧正极与地铁牵引网正极母线连接,正极母线通过第一切换开关、第二切换开关分别与上行接触网、下行接触网连接,再生电能回馈设备的直流侧负极通过第三切换开关与下行接触网或上行接触网连接,直流侧负极通过第四切换开关与地铁牵引网负极母线连接。
所述再生电能回馈设备包括由功率半导体器件构成的整流器,具备流过双向有功功率的功能,即可控制有功功率从交流电网流向地铁牵引网直流母线,也可控制有功功率从地铁牵引网直流母线流向交流电网。
所述第三切换开关与第四切换开关不允许同时闭合。
本发明还包括一种所述机车再生电能回馈系统的控制方法,当所述再生电能回馈设备运行于能量回馈状态时,所述控制方法如下:
步骤1:分开第三切换开关
步骤2:闭合第四切换开关:
步骤3:当机车刹车时,所述整流器启动,控制有功功率从地铁牵引网直流母线流向交流电网。
当所述再生电能回馈设备运行于融冰状态时,所述控制方法如下:
如果第三切换开关与上行接触网连接,步骤如下:
步骤1:分开第一切换开关、第四切换开关
步骤2:闭合第二切换开关、第三切换开关
步骤3:其中一台再生电能回馈设备的整流器启动,控制直流电压稳定
步骤4:另一台再生电能回馈设备的整流器启动,通过调节直流电压控制流过接触网的电流稳定;
如果第三切换开关与下行接触网连接,步骤如下:
步骤1:分开第二切换开关、第四切换开关
步骤2:闭合第一切换开关、第三切换开关
步骤3:其中一台再生电能回馈设备的整流器启动,控制牵引网直流电压稳定
步骤4:另一台再生电能回馈设备的整流器启动,通过调节直流电压控制流过接触网的电流稳定。
本发明的有益效果:
1、本发明利用牵引所内的机车电能回馈系统通过开关切换以及控制方法的调整可实现融冰功能,无需增加额外的设备,通常机车再生电能回馈系统在白天地铁运行时间段投入运行,夜间在接触网上无车辆运行,可将机车电能回馈系统切换到融冰状态,控制接触网电流,实现融冰功能,设备利用率更高。
2、本发明方案的两台再生电能回馈设备的直流母线电压均可在一定范围内调节,在融冰过程中,电流可控,无需设置短路点,工作过程安全可靠。该方案不需要增加匹配电阻来调节电流,产生的热量完全用于线路融冰,设备工作效率高。
3、本发明方案可实现两站之间接触网线路的全线融冰,与单站融冰方式相比,这种方式融冰覆盖面更大。
附图说明
图1为本发明的整体系统组成原理图,
图中标号名称:1、再生电能回馈设备;2、第三切换开关;3、第四切换开关;4、第一切换开关;5、第二切换开关;
图2为再生电能回馈设备的拓扑图;
图3为本发明方案工作在融冰状态下直流侧的电流回路图;
图4为本发明方案工作在再生电能回馈状态下的电流回路图;
图5为本发明方案在融冰状态下等效原理图。
具体实施方式
下面结合附图对本发明作进一步说明。
如图1所示,本实施例包括两台再生电能回馈设备1,共包括两套再生电能回馈设备以及与设备连接的开关,两套系统配置相同,包含两套再生电能回馈设备的原理图如图1 所示。相邻两站之间通过接触网连接。每套再生电能回馈设备的直流侧正极与地铁牵引网正极母线连接,正极母线通过第一切换开关4、第二切换开关5分别与上行接触网、下行接触网连接。
在本实施例中再生电能回馈设备的直流侧负极通过第三切换开关2与下行接触网连接,直流侧负极通过第四切换开关3与地铁牵引网负极母线连接。
其中再生电能回馈设备1包括由功率半导体器件构成的整流器,具备流过双向有功功率的功能,即可控制有功功率从交流电网流向地铁牵引网直流母线,也可控制有功功率从地铁牵引网直流母线流向交流电网。整流器的拓扑结构如图2所示,在本实施例中为由IGBT构成的三相桥式整流电路,可实现功率的双向流动。
其中第三切换开关2与第四切换开关3设置互锁,不允许同时闭合。
本实施例的控制方法如下:
当所述再生电能回馈设备运行于能量回馈状态时,控制方法如下:
步骤1:分开第三切换开关
步骤2:闭合第四切换开关:
步骤3:当机车刹车时,三相桥整流器启动,控制有功功率从地铁牵引网直流母线流向交流电网。电流回路图如图4所示。
当所述再生电能回馈设备运行于融冰状态时,控制方法如下:
本实施例的第三切换开关与下行接触网连接,步骤如下:
步骤1:分开第二切换开关、第四切换开关
步骤2:闭合第一切换开关、第三切换开关
步骤3:其中一台再生电能回馈设备的整流器启动,控制牵引网直流电压稳定
步骤4:另一台再生电能回馈设备的整流器启动,通过调节直流电压控制流过接触网的电流稳定。电流回路图如图3所示。
融冰状态下等效原理图如图5所示:以该图说明控制融冰电流的具体方法,图中再生电能回馈设备1调节直流电压为Udc1=1800V,假设接触网的电阻RL1=RL2=0.2Ω,总的接触网电阻为0.4Ω,如果需要的融冰电流的控制目标为800A,在接触网电阻上的压降为320V,此时只要控制再生电能回馈设备2的直流电压即可实现,Udc2=1800V–320V=1480V。此时再生电能回馈设备1的电容处于放电状态,电容维持1800V恒定,需要通过再生电能回馈设备1向交流电网获取P1的功率,再生电能回馈设备2的电容处于充电的状态,要维持电容电压稳定,需要将过剩的功率P2送回电网,P1-P2的能量差,即消耗在接触网的电阻上,通过热量的方式实现了融冰。
以上实施例仅用于说明本发明的技术方案而非对其限制,参照上述实施例进行的各种形式修改或变更均在本发明的保护范围之内。

Claims (5)

  1. 一种兼有融冰功能的机车再生电能回馈系统,包括两台再生电能回馈设备,再生电能回馈设备的直流侧正极与地铁牵引网正极母线连接,正极母线通过第一切换开关、第二切换开关分别与上行接触网、下行接触网连接,其特征在于:所述再生电能回馈设备的直流侧负极通过第三切换开关与下行接触网或上行接触网连接,直流侧负极通过第四切换开关与地铁牵引网负极母线连接。
  2. 如权利要求1所述的一种兼有融冰功能的机车再生电能回馈系统,其特征在于:所述再生电能回馈设备包括由功率半导体器件构成的整流器,具备流过双向有功功率的功能,即可控制有功功率从交流电网流向地铁牵引网直流母线,也可控制有功功率从地铁牵引网直流母线流向交流电网。
  3. 如权利要求1所述的一种兼有融冰功能的机车再生电能回馈系统,其特征在于:所述第三切换开关与第四切换开关不允许同时闭合。
  4. 一种基于权利要求1所述兼有融冰功能的机车再生电能回馈系统的控制方法,其特征在于:当再生电能回馈设备运行于能量回馈状态时,所述控制方法包括如下步骤:
    步骤1:分开第三切换开关;
    步骤2:闭合第四切换开关;
    步骤3:当机车刹车时,所述再生电能回馈设备启动,控制有功功率从地铁牵引网直流母线流向交流电网。
  5. 如权利要求1所述的一种兼有融冰功能的机车再生电能回馈系统的控制方法,其特征在于:当再生电能回馈设备运行于融冰状态时,所述控制方法具体如下:
    一、当第三切换开关与上行接触网连接时:
    步骤101:分开第一切换开关、第四切换开关;
    步骤102:闭合第二切换开关、第三切换开关;
    步骤103:其中一台再生电能回馈设备的整流器启动,控制直流电压稳定;
    步骤104:另一台再生电能回馈设备的整流器启动,控制流过接触网的电流稳定;
    二、当第三切换开关与下行接触网连接时:
    步骤201:分开第二切换开关、第四切换开关;
    步骤202:闭合第一切换开关、第三切换开关;
    步骤203:其中一台再生电能回馈设备的整流器启动,控制牵引网直流电压稳定;
    步骤204:另一台再生电能回馈设备的整流器启动,控制流过接触网的电流稳定。
PCT/CN2017/075368 2016-03-03 2017-03-01 一种兼有融冰功能的机车再生电能回馈系统及控制方法 WO2017148397A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3015421A CA3015421C (en) 2016-03-03 2017-03-01 Locomotive regenerative electric energy feedback system with ice melting function and control method
EP17759248.2A EP3406476B1 (en) 2016-03-03 2017-03-01 Locomotive regenerative electric energy feedback system with ice melting function and control method
RU2018132820A RU2686605C1 (ru) 2016-03-03 2017-03-01 Локомотивная регенеративная система электропитания с обратной связью и функцией антиобледенения и способ управления
JP2018544212A JP6571294B2 (ja) 2016-03-03 2017-03-01 融氷機能を兼備する機関車回生電力フィードバックシステムおよび制御方法
KR1020187024836A KR101975159B1 (ko) 2016-03-03 2017-03-01 얼음 융해 기능을 구비한 기관차 재생 전기 에너지 피드백 시스템 및 제어 방법
US16/080,276 US10279686B2 (en) 2016-03-03 2017-03-01 Locomotive regenerative electric energy feedback system with ice melting function and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610121099.X 2016-03-03
CN201610121099.XA CN105730248B (zh) 2016-03-03 2016-03-03 一种兼有融冰功能的机车再生电能回馈系统及控制方法

Publications (1)

Publication Number Publication Date
WO2017148397A1 true WO2017148397A1 (zh) 2017-09-08

Family

ID=56249122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075368 WO2017148397A1 (zh) 2016-03-03 2017-03-01 一种兼有融冰功能的机车再生电能回馈系统及控制方法

Country Status (8)

Country Link
US (1) US10279686B2 (zh)
EP (1) EP3406476B1 (zh)
JP (1) JP6571294B2 (zh)
KR (1) KR101975159B1 (zh)
CN (1) CN105730248B (zh)
CA (1) CA3015421C (zh)
RU (1) RU2686605C1 (zh)
WO (1) WO2017148397A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105730248B (zh) * 2016-03-03 2017-10-13 南京南瑞继保电气有限公司 一种兼有融冰功能的机车再生电能回馈系统及控制方法
EP3693207A1 (en) * 2019-02-11 2020-08-12 Lef Holding S.r.l. Heating system for overhead lines of electrified railway lines
CN110481388B (zh) * 2019-07-17 2022-11-22 中车永济电机有限公司 大功率永磁直驱机车牵引系统自动过分相控制方法
CN111525656B (zh) * 2020-06-03 2022-03-18 桑顿新能源科技(长沙)有限公司 电池电能回馈系统以及车辆
CN112054465B (zh) * 2020-07-22 2022-01-21 广东顺德电力设计院有限公司 一种opgw融冰系统
CN112260198B (zh) * 2020-09-28 2024-09-27 北京交通大学 一种多功能的轨道交通直流在线融冰系统及方法
CN113131536B (zh) * 2021-04-21 2022-07-08 重庆中车长客轨道车辆有限公司 用于双流制测试线的联锁控制系统
CN113131537B (zh) * 2021-04-21 2022-07-08 重庆中车长客轨道车辆有限公司 双流制测试线用联锁控制方法
US11654781B2 (en) 2021-05-24 2023-05-23 Mark Ogram Locomotive assist
CN113370849B (zh) * 2021-07-30 2022-12-02 清华大学 兼具融冰与能馈功能的牵引供电系统
CN114336584A (zh) * 2021-12-23 2022-04-12 核工业理化工程研究院 一种用于地铁再生能量吸收利用的控制系统及其控制方法
CN114530814B (zh) * 2022-04-15 2022-09-30 西南交通大学 一种电气化铁路接触网直流融冰系统及其控制方法
CN114825237B (zh) * 2022-05-17 2024-01-16 深圳量云能源网络科技有限公司 基于轨道交通系统的接触网防冰及融冰控制方法及系统
CN115296246B (zh) * 2022-08-26 2024-05-28 中国南方电网有限责任公司超高压输电公司检修试验中心 高压直流不停电地线融冰电路、设备及操作方法
CN115642552B (zh) * 2022-10-10 2024-04-30 中铁第一勘察设计院集团有限公司 一种城市轨道交通接触网直流在线防融冰系统
PL443981A1 (pl) * 2023-03-02 2024-09-09 Pkp Energetyka Spółka Akcyjna Układ energoelektroniczny z prostownikiem sterowanym

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19757079A1 (de) * 1996-12-23 1998-06-25 Rostislaw Teteruk Eissensorsystem
CN101640400A (zh) * 2009-07-23 2010-02-03 中铁第一勘察设计院集团有限公司 一种电气化铁路接触网的融冰方法及其融冰系统
CN102832582A (zh) * 2012-09-12 2012-12-19 西南交通大学 一种交流电气化铁路接触网在线防冰与融冰控制系统
CN105034854A (zh) * 2015-07-13 2015-11-11 中电博瑞技术(北京)有限公司 牵引供电系统及轨道的融冰装置
CN105730248A (zh) * 2016-03-03 2016-07-06 南京南瑞继保电气有限公司 一种兼有融冰功能的机车再生电能回馈系统及控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1227530A1 (ru) * 1984-01-13 1986-04-30 Kryukov Leonid P Устройство подогрева контактной подвески
JPH0491659A (ja) * 1990-08-06 1992-03-25 Tokyo Electric Power Co Inc:The 電力変換装置
DE10337937B4 (de) * 2003-08-18 2006-03-09 Siemens Ag Verfahren und Anordnung zum Verhindern oder Beseitigen einer Vereisung am Fahrdraht einer Eisenbahnstrecke
CN1929287A (zh) * 2005-09-07 2007-03-14 上海神源电气有限公司 能将电能回馈给电网的装置
CN201113916Y (zh) * 2007-10-25 2008-09-10 北京剑能电气有限公司 多台变频器共用制动单元节能装置
FR2958887B1 (fr) * 2010-04-19 2015-07-03 Alstom Transport Sa Procede de degivrage d'une ligne d'alimentation de vehicules ferroviaires
WO2012034124A2 (en) * 2010-09-10 2012-03-15 The Trustees Of Dartmouth College System and method for deicing of power line cables
CN201980097U (zh) * 2011-02-18 2011-09-21 株洲变流技术国家工程研究中心有限公司 用于铁路牵引网的功率调节-融冰装置
JP5264949B2 (ja) * 2011-03-08 2013-08-14 本田技研工業株式会社 電動車両
CN202593308U (zh) * 2012-04-19 2012-12-12 南车株洲电力机车有限公司 一种用于双电能机车的蓄电池控制电路
CN104201719B (zh) * 2014-09-09 2017-03-29 南京南瑞继保电气有限公司 一种机车再生电能回馈设备及控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19757079A1 (de) * 1996-12-23 1998-06-25 Rostislaw Teteruk Eissensorsystem
CN101640400A (zh) * 2009-07-23 2010-02-03 中铁第一勘察设计院集团有限公司 一种电气化铁路接触网的融冰方法及其融冰系统
CN102832582A (zh) * 2012-09-12 2012-12-19 西南交通大学 一种交流电气化铁路接触网在线防冰与融冰控制系统
CN105034854A (zh) * 2015-07-13 2015-11-11 中电博瑞技术(北京)有限公司 牵引供电系统及轨道的融冰装置
CN105730248A (zh) * 2016-03-03 2016-07-06 南京南瑞继保电气有限公司 一种兼有融冰功能的机车再生电能回馈系统及控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3406476A4 *

Also Published As

Publication number Publication date
CN105730248A (zh) 2016-07-06
CA3015421A1 (en) 2017-09-08
EP3406476A4 (en) 2019-10-02
JP2019509209A (ja) 2019-04-04
US20190070964A1 (en) 2019-03-07
CN105730248B (zh) 2017-10-13
JP6571294B2 (ja) 2019-09-04
CA3015421C (en) 2019-05-14
KR20180100707A (ko) 2018-09-11
EP3406476A1 (en) 2018-11-28
US10279686B2 (en) 2019-05-07
KR101975159B1 (ko) 2019-05-03
RU2686605C1 (ru) 2019-04-29
EP3406476B1 (en) 2021-10-20

Similar Documents

Publication Publication Date Title
WO2017148397A1 (zh) 一种兼有融冰功能的机车再生电能回馈系统及控制方法
CN103950394B (zh) 一种兼具融冰功能的交直流混合牵引供电系统
CN112260198B (zh) 一种多功能的轨道交通直流在线融冰系统及方法
CN109823187B (zh) 一种电制动能量回馈系统
CN107215246B (zh) 接触网智能融冰系统
WO2019061894A1 (zh) 一种短编组电动车组重联过分相控制方法及系统
CN102195260B (zh) 一种电气化铁道接触网工频在线防冰融冰方法
CN102642481B (zh) 用于铁路牵引网的电能调节-融冰装置及方法
CN102638019B (zh) 一种高速电气化铁路接触网直流融冰方法
CN105034854B (zh) 融冰装置
BRPI0502862B1 (pt) Sistema de alimentação de uma rede de tração e subestação de alimentação elétrica
CN112260199B (zh) 轨道交通交流在线融冰系统及方法
CN109204006A (zh) 一种应用于交流电气化铁路再生能利用系统
CN102616152A (zh) 一种铁路牵引供电接触网在线防冰系统及方法
CN213879227U (zh) 一种多功能的轨道交通直流在线融冰系统
CN201980097U (zh) 用于铁路牵引网的功率调节-融冰装置
CN104201719B (zh) 一种机车再生电能回馈设备及控制方法
CN103247991B (zh) 一种电气化铁道接触网利用相间短路实现防冰融冰方法
CN213879226U (zh) 轨道交通交流在线融冰系统
KR20160020623A (ko) 전차선 해빙 시스템 및 이를 이용한 해빙 방법
CN202084892U (zh) 电气化铁道接触网工频在线防冰融冰装置
CN110091760A (zh) 一种柔性地面过分相电流控制方法及装置
CN204774710U (zh) 牵引供电系统及轨道的融冰装置
CN115642552B (zh) 一种城市轨道交通接触网直流在线防融冰系统
KR20210057261A (ko) 고무차륜 경전철 해빙 시스템

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018544212

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017759248

Country of ref document: EP

Ref document number: 3015421

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20187024836

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187024836

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2017759248

Country of ref document: EP

Effective date: 20180822

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759248

Country of ref document: EP

Kind code of ref document: A1