WO2017148167A1 - 射频拉远单元合并小区上行容量提升方法和系统 - Google Patents

射频拉远单元合并小区上行容量提升方法和系统 Download PDF

Info

Publication number
WO2017148167A1
WO2017148167A1 PCT/CN2016/103539 CN2016103539W WO2017148167A1 WO 2017148167 A1 WO2017148167 A1 WO 2017148167A1 CN 2016103539 W CN2016103539 W CN 2016103539W WO 2017148167 A1 WO2017148167 A1 WO 2017148167A1
Authority
WO
WIPO (PCT)
Prior art keywords
sector
bbu
rrus
cell
rtwp
Prior art date
Application number
PCT/CN2016/103539
Other languages
English (en)
French (fr)
Inventor
詹建明
李军
刘志斌
刘涛
霍燚
余擎旗
滕伟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017148167A1 publication Critical patent/WO2017148167A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • H04W16/20Network planning tools for indoor coverage or short range network deployment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present disclosure relates to the field of communications technologies, for example, to a method and system for a radio remote unit to merge cell uplink capacity enhancement.
  • the related technology adopts a multi-channel networking scheme of a baseband unit (BBU) + a radio radio unit (RRU), which can quickly and effectively solve problems such as network depth coverage.
  • BBU baseband unit
  • RRU radio radio unit
  • the BBU has a baseband resource sharing function, and the RRU is responsible for transmitting and receiving signals, and realizes communication between the wireless network system and the mobile station.
  • a BBU can support multiple RRUs. Multiple RRUs can form one cell or multiple cells. When the network is deployed, an appropriate number of RRUs can be selected to form a cell.
  • WCDMA Wideband Code Division Multiple Access
  • a network deployment scheme in which multiple radio remote units RRU merge cells are often used, and multiple radio remote unit RRU sectors use the same downlink scrambling code. Scrambling, as shown in Figure 1.
  • the network deployment solution can reduce inter-cell handover or reduce the scrambling resource planning workload, and save the baseband single board configuration, and is applicable to, for example, indoor coverage or highways or railways.
  • the radio network controller controls the uplink capacity of the cell.
  • RNC controls the uplink capacity of the cell mainly by monitoring the Rise over Thermal noise (RoT) or the Received Total Wide Band Power (RTWP).
  • the RTWP measurement amounts of all the sectors in the same logical cell are compared, and the maximum RTWP value is reported to the RNC.
  • the uplink capacity of some sectors is relatively large, other sectors cannot be accessed or the service experience is poor.
  • the disclosure proposes to report the RTWP measurement of the multiple sectors of the same logical cell to the RNC, and the RNC calculates the corresponding RoT for multiple sectors in the same logical cell to implement the uplink resource sector management of the same logical cell. Avoid the phenomenon that when the uplink capacity of some sectors is relatively large, other sectors cannot be accessed or the service experience is poor.
  • the disclosure provides a method for improving the uplink capacity of a cell in a radio remote unit, including:
  • the plurality of radio remote units RRU are connected to the baseband processing unit BBU of the base station, and the plurality of radio remote units RRU form a logical cell;
  • the BBU reports the RTWP value of all sectors in the logical cell to the radio network controller RNC through a non-standard Iub interface;
  • the RNC controls the uplink capacity of each sector according to the RoT and RoT thresholds of each sector.
  • the multiple RRUs report the RTWP values of the respective sectors to the BBUs through the Ir interface, where the sector frequencies of the multiple RRUs are the same, including: each RRU measures the RTWP value of the respective sector;
  • Each RRU reports its own sector RTWP value to the BBU.
  • the Ir interface is an interface between the RRU and the BBU.
  • multiple sectors of the same logical cell are scrambled with the same downlink scrambling code.
  • the method further includes: the low noise value of each sector under the logical cell is initialized and saved in the RNC.
  • the method further includes: the RNC separately calculating a corresponding RoT for multiple sectors in the same logical cell, and implementing uplink resource sector management of the same logical cell.
  • the multiple RRUs are combined according to multiple equal transmit powers or multiple different transmit powers.
  • the present disclosure also includes a radio remote unit merged cell system, including:
  • a plurality of radio remote unit RRUs configured to be connected to the baseband processing unit BBU of the base station, and report the broadband received total power RTWP value of the respective sector to the BBU through the Ir interface, where the sector frequency of the multiple RRUs The same point, the plurality of radio remote units RRU form a logical cell;
  • the BBU is configured to report the RTWP value of all sectors in the logical cell to the radio network controller RNC through a non-standard Iub interface;
  • the RNC is configured to calculate, by using the received RTWP value of each co-frequency point sector under the logical cell and a low noise value of each sector under the logical cell, each of the logical cells
  • the noise increase of the sector, RoT controls the upstream capacity of each sector according to the RoT and RoT thresholds of each sector.
  • the RRU includes:
  • RTWP calculation module set to measure the RTWP value of the respective sector
  • the RTWP value transmission module is configured to report the respective sector wide RTWP value to the BBU.
  • the multiple RRUs are combined according to multiple equal transmit powers or multiple different transmit powers.
  • the present disclosure also provides a non-transitory computer readable storage medium storing computer executable instructions arranged to perform the above method.
  • the present disclosure also discloses an RRU, the RRU comprising:
  • At least one processor At least one processor
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to cause the at least one processor to perform the method described below:
  • the unit RRU forms a logical cell.
  • the present disclosure also discloses a BBU, the BBU comprising:
  • At least one processor At least one processor
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to cause the at least one processor to perform the method described below:
  • the RTWP value of all the sectors in the logical cell is reported to the radio network controller RNC through the non-standard Iub interface.
  • the present disclosure also provides an RNC that includes:
  • At least one processor At least one processor
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to cause the at least one processor to perform the method described below:
  • the disclosure avoids the phenomenon that a plurality of radio remote unit RRUs are combined into one logical cell, and the uplink capacity of the partial sectors is relatively large, causing other sectors to be inaccessible or the service experience is poor, and the multi-radio remote unit RRU merged cell is improved. Upstream capacity.
  • FIG. 1 is a schematic diagram of acquisition of uplink noise increase RoT of a cell in a scenario of a combined cell of multiple radio remote units in the prior art
  • FIG. 2 is a schematic flowchart of a method for improving uplink capacity of a cell in a radio remote unit
  • FIG. 3 is a schematic diagram showing the workflow of the radio remote unit RRU and the baseband processing unit BBU of the present disclosure
  • FIG. 4 is a schematic diagram of a noise increase RoT calculation process of the present disclosure
  • FIG. 5 is a schematic diagram of acquiring uplink uplink noise increase RoT of a cell in a combined cell scenario of a radio remote unit with different transmit powers according to the disclosure
  • FIG. 6 is a schematic structural diagram of an RRU provided by the present disclosure.
  • FIG. 7 is a schematic structural diagram of a BBU provided by the present disclosure.
  • FIG. 8 is a schematic structural diagram of an RNC provided by the present disclosure.
  • a radio remote unit merges a cell uplink capacity boosting method.
  • a plurality of RRUs are connected to a BBU of a base station, the plurality of RRUs forming a logical cell.
  • step 210 multiple RRUs report the RTWP values of the respective sectors to the BBU through the Ir interface, and the sector frequencies of the multiple RRUs are the same.
  • the BBU reports the RTWP value of all the sectors in the logical cell to the radio network controller RNC through the non-standard Iub interface.
  • the non-standard Iub interface is relative to the standard Iub interface.
  • the standard Iub interface defines that the BBU reports the RTWP value of a sector to the RNC (for example, the maximum value of the RTWP values of all sectors in the logical cell).
  • the BBU in the present disclosure reports the RTWP value of all sectors in a logical cell to the RNC, thus using a non-standard Iub interface.
  • the RNC calculates each of the logical cells by using the received RTWP value of each co-frequency point sector under the logical cell and the low noise value of each sector under the logical cell.
  • the noise increase of the sector, RoT controls the upstream capacity of each sector according to the RoT and RoT thresholds of each sector.
  • step 210 includes step 2110 and step 2120.
  • each RRU measures the RTWP value of the respective sector.
  • each RRU reports its own sector RTWP value to the BBU.
  • step 410 includes steps 4110-4130.
  • the RNC receives an RTWP value of each co-frequency point sector of the logical cell and a low noise value of each sector under the logical cell.
  • step 4120 a RoT value for each sector under the logical cell is calculated.
  • step 4130 the RNC controls the uplink capacity of each sector based on the RoT and RoT thresholds for each sector.
  • the present disclosure also includes a radio remote unit merged cell system including a plurality of RRUs, BBUs, and RNCs.
  • a plurality of RRUs are connected to a BBU of a base station, and the plurality of RRUs form a logical cell. Multiple The RRU is set to report the total received power RTWP value of the respective sector to the BBU unit through the Ir interface.
  • the BBU is set to report the RTWP value of all the sectors in the logical cell to the RNC through the non-standard Iub interface.
  • the RNC is configured to calculate, by using the received RTWP value of each co-frequency point sector under the logical cell and a low noise value of each sector under the logical cell, each sector of the logical cell is calculated.
  • the quantity RoT controls the uplink capacity of each sector according to the RoT and RoT thresholds of each sector.
  • Two or more radio remote units RRU are connected to the baseband processing unit BBU of the base station, and the RRUs logically form a logical cell, and multiple RRU sectors are scrambled by the same downlink scrambling code, as shown in FIG.
  • the BBU of the base station is connected to the RNC.
  • the low noise value of each sector under the logical cell is initialized and saved in the RNC.
  • the method for improving the uplink capacity of the RRU merged cell includes:
  • RRUs report the RTWP values of the respective sectors to the BBU through the Ir interface (the interface between the RRU and the BBU);
  • the BBU reports the RTWP value of all sectors in the logical cell to the RNC through a non-standard Iub interface (Iub interface);
  • the RNC calculates the logical cell by receiving the RTWP values (for example, RTWP1, RTWP2, ..., RTWPn) of each intra-frequency point sector under the logical cell and the low noise value of each sector under the logical cell.
  • the RNC controls the upstream capacity of each sector based on the RoT and RoT thresholds of each sector.
  • RRUs Two or more RRUs are connected to the BBUs of the base station. These RRUs are logically a logical cell. Multiple RRU sectors are scrambled with the same downlink scrambling code, and the BBU is connected to the RNC. The low noise value of each sector under the logical cell is initialized and saved in the RNC.
  • FIG. 5 is a heterogeneous network scenario in which an RRU combining different transmit powers is combined to improve an uplink capacity method of an RRU combined cell according to the present disclosure, including a macro radio remote unit and a micro radio remote unit, and the micro radio frequency The remote unit is surrounded by the macro radio remote unit, and the method for improving the uplink capacity of the RRU merged cell includes:
  • RRUs report the RTWP values of the respective sectors to the BBU through the Ir interface (the interface between the RRU and the BBU);
  • the BBU reports the RTWP value of all the sectors in the logical cell to the RNC through the non-standard Iub interface;
  • the RNC calculates the logical cell by receiving the RTWP values (for example, RTWP1, RTWP2, ..., RTWPn) of each intra-frequency point sector under the logical cell and the low noise value of each sector under the logical cell.
  • the RNC controls the upstream capacity of each sector based on the RoT and RoT thresholds of each sector.
  • the technical solution of the disclosure avoids the phenomenon that the uplink capacity of some sectors is relatively large, and the other sectors are inaccessible or the service experience is poor, and the uplink capacity of the RRU merged cell is improved.
  • Embodiments of the present disclosure also provide a non-transitory computer readable storage medium storing computer executable instructions arranged to perform the method of any of the above embodiments.
  • the embodiment of the present disclosure provides a hardware structure diagram of an RRU. Referring to Figure 6, the RRU includes:
  • At least one processor 60 which is exemplified by a processor 60 in FIG. 6; and a memory 61, may further include a communication interface 62 and a bus 63.
  • the processor 60, the communication interface 62, and the memory 61 can complete communication with each other through the bus 63.
  • Communication interface 62 can be used for information transfer.
  • the processor 60 can call the logic instructions in the memory 61 to perform the following methods:
  • the BBUs connected to the base station report the RTWP values of the respective sectors to the BBU through the Ir interface, where the sector frequencies of the multiple RRUs are the same.
  • the plurality of RRUs form a logical cell.
  • logic instructions in the memory 61 described above may be implemented in the form of a software functional unit and sold or used as a stand-alone product, and may be stored in a computer readable storage medium.
  • the memory 61 is used as a computer readable storage medium for storing software programs, computer executable programs, program instructions or modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 60 performs the function application and the data processing by running the software program, the instruction or the module stored in the memory 61, that is, the radio remote unit merged cell uplink capacity lifting method in the embodiment.
  • the memory 61 may include a storage program area and an storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to usage of the terminal device, and the like. Further, the memory 61 may include a high speed random access memory, and may also include a nonvolatile memory.
  • the embodiment of the present disclosure further provides a hardware structure diagram of a BBU.
  • the BBU includes:
  • At least one processor 70 which is exemplified by a processor 70 in FIG. 7; and a memory 71, may further include a communication interface 72 and a bus 73.
  • the processor 70, the communication interface 72, and the memory 71 can complete communication with each other through the bus 73.
  • Communication interface 72 can be used for information transfer.
  • the processor 70 can call the logic instructions in the memory 71 to perform the following methods:
  • the RTWP value of all the sectors in the logical cell is reported to the RNC through the non-standard Iub interface.
  • logic instructions in the memory 71 described above may be implemented in the form of a software functional unit and sold or used as a stand-alone product, and may be stored in a computer readable storage medium.
  • the memory 71 is a computer readable storage medium and can be used to store a software program, a computer executable program, a program instruction or a module corresponding to the method in the embodiment of the present disclosure.
  • the processor 70 performs the function application and the data processing by running the software program, the instruction or the module stored in the memory 71, that is, the radio remote unit merged cell uplink capacity lifting method in the embodiment is implemented.
  • the memory 71 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to usage of the terminal device, and the like. Further, the memory 71 may include a high speed random access memory, and may also include a nonvolatile memory.
  • the embodiment of the present disclosure further provides a hardware structure diagram of an RNC.
  • the RNC includes:
  • At least one processor 80 which is exemplified by a processor 80 in FIG. 8; and a memory 81, may further include a communication interface 82 and a bus 83.
  • the processor 80, the communication interface 82, and the memory 81 can complete communication with each other through the bus 83.
  • Communication interface 82 can be used for information transfer.
  • the processor 80 can call the logic instructions in the memory 81 to execute Do the following:
  • logic instructions in the memory 81 described above may be implemented in the form of a software functional unit and sold or used as a stand-alone product, and may be stored in a computer readable storage medium.
  • the memory 81 is a computer readable storage medium and can be used to store software programs, computer executable programs, program instructions or modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 80 performs the function application and the data processing by running the software program, the instruction or the module stored in the memory 81, that is, the radio remote unit merged cell uplink capacity lifting method in the embodiment.
  • the memory 81 may include a storage program area and an storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to use of the terminal device, and the like. Further, the memory 81 may include a high speed random access memory, and may also include a nonvolatile memory.
  • the technical solution of the present disclosure may be embodied in the form of a software product stored in a storage medium, including one or more instructions for causing a computer device (which may be a personal computer, a server, a network device, etc.) Performing all or part of the steps of the method of the embodiments of the present disclosure.
  • the foregoing storage medium may be a non-transitory storage medium, including: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the method and system for improving the uplink capacity of the radio cell in the remote radio unit avoids the phenomenon that the uplink capacity of some sectors is relatively large and the other sectors cannot be accessed or experience poorly when multiple RRUs are combined into one logical cell.
  • the uplink capacity of multiple RRU merged cells is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种射频拉远单元合并小区上行容量提升方法和系统,所述方法包括:多个射频拉远单元RRU连接到基站的基带处理单元BBU,所述多个RRU形成一个逻辑小区;所述多个RRU通过Ir接口上报各自的扇区的宽带接收总功率RTWP值给所述BBU,所述多个RRU的扇区频点相同;所述BBU通过非标准的Iub接口把所述逻辑小区下的所有扇区的RTWP值上报给无线网络控制器RNC;以及所述RNC通过接收到的所述逻辑小区下的每个同频点扇区的RTWP值以及该逻辑小区下的每个扇区的低噪值,计算出所述逻辑小区下的每个扇区的噪声增量RoT,所述RNC根据每个扇区的RoT以及RoT门限来控制每个扇区的上行容量。

Description

射频拉远单元合并小区上行容量提升方法和系统 技术领域
本公开涉及通信技术领域,例如涉及一种射频拉远单元合并小区上行容量提升的方法和系统。
背景技术
随着移动数据业务的发展,信号覆盖以及网络容量等问题,已经成为移动网络运营商日益关注的课题。
相关技术采用基带单元(Baseband Unit,BBU)+射频拉远单元(Remote Radio Unit,RRU)的多通道组网方案,可以快速、有效的解决网络深度覆盖等问题。BBU具有基带资源共享功能,RRU负责信号的收发功能,实现无线网络系统和移动台之间的通信。
BBU和RRU之间通常采用光纤连接,一个BBU可以支持多个RRU,多个RRU可以组成一个小区或者多个小区,在网络部署时,可以选择合适数量的RRU进行合并组成一个小区。
在宽带码分多址(Wideband Code Division Multiple Access,WCDMA)商用网络中,经常采用多个射频拉远单元RRU合并小区的网络部署方案,多个射频拉远单元RRU扇区采用相同的下行扰码加扰,如图1所示。该网络部署方案可以减少小区间的切换或者减少扰码资源规划工作量,节省基带单板配置,适用于例如室内覆盖或者高速公路或铁路沿线。
当多个射频拉远单元RRU合并为一个逻辑小区后,同一逻辑小区的多个扇区采用相同的下行扰码加扰,无线网络控制器(Radio Network Controller,RNC)对小区的上行容量进行控制。理论上来说,小区上行容量负载=1-(1/RoT),其中RoT=RTWP/小区扇区的低噪值。所以,RNC对小区上行容量的控制主要是监测噪声增量(Rise over Thermal noise,RoT)或接收带宽内的总功率(Received Total Wideband Power,RTWP)。传统方案中,为了简化处理,在基带侧,对同一逻辑小区内的所有扇区的RTWP测量量进行比较,取最大的RTWP值上报给RNC。当部分扇区上行容量比较大时会导致其他扇区无法接入或者业务体验差。
发明内容
本公开提出把同一逻辑小区的多个扇区的RTWP测量分别上报给RNC,RNC侧针对同一逻辑小区内的多个扇区分别计算相应的RoT,实现同一逻辑小区的上行资源分扇区管理,避免出现当部分扇区上行容量比较大导致其他扇区无法接入或者业务体验差的现象。
本公开提供了一种射频拉远单元合并小区上行容量提升方法,包括:
多个射频拉远单元RRU连接到基站的基带处理单元BBU,所述多个射频拉远单元RRU形成一个逻辑小区;
所述多个RRU通过Ir接口上报各自的扇区的宽带接收总功率RTWP值给所述BBU,所述多个RRU的扇区频点相同;
所述BBU通过非标准的Iub接口把所述逻辑小区下的所有扇区的RTWP值上报给无线网络控制器RNC;以及
所述RNC通过接收到的所述逻辑小区下的每个同频点扇区的RTWP值以及该逻辑小区下的每个扇区的低噪值,计算出所述逻辑小区下每个扇区的RoT,所述RNC根据每个扇区的RoT以及RoT门限来控制每个扇区的上行容量。
可选的,所述多个RRU通过Ir接口上报各自扇区的RTWP值给所述BBU,所述多个RRU的扇区频点相同,包括:每个RRU测量各自扇区的RTWP值;以及
每个RRU上报各自扇区RTWP值给所述BBU。
可选的,所述Ir接口为所述RRU与所述BBU之间的接口。
可选的,同一逻辑小区的多个扇区采用相同的下行扰码加扰。
可选的,所述方法还包括:所述逻辑性小区下的每个扇区的低噪值都在RNC中进行了初始化保存。
可选的,所述方法还包括:所述RNC针对同一逻辑小区内的多个扇区分别计算相应的RoT,实现同一逻辑小区的上行资源分扇区管理。
可选的,所述多个RRU按照多个同等发射功率或多个不同等发射功率合并组网。
本公开还包括一种射频拉远单元合并小区系统,包括:
多个射频拉远单元RRU,设置为连接到基站的基带处理单元BBU,以及通过Ir接口上报各自扇区的宽带接收总功率RTWP值给所述BBU,其中,所述多个RRU的扇区频点相同,所述多个射频拉远单元RRU形成一个逻辑小区;
所述BBU,设置为通过非标准的Iub接口把所述逻辑小区下的所有扇区的RTWP值上报给无线网络控制器RNC;以及
所述RNC,设置为通过接收到的所述逻辑小区下的每个同频点扇区的RTWP值以及该逻辑小区下的每个扇区的低噪值,计算出所述逻辑小区下每个扇区的噪声增量RoT,根据每个扇区的RoT以及RoT门限来控制每个扇区的上行容量。
可选的,所述RRU包括:
RTWP计算模块,设置为测量各自扇区的RTWP值;以及
RTWP值传输模块,设置为上报各自扇区宽RTWP值给所述BBU。
可选的,所述多个RRU按照多个同等发射功率或多个不同等发射功率合并组网。
第三方面,本公开还提供了一种非暂态计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述方法。
第四方面,本公开还提拱了一种RRU,该RRU包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器执行下述的方法:
连接到基站的基带处理单元BBU,以及通过Ir接口上报各自扇区的宽带接收总功率RTWP值给所述BBU,其中,所述多个RRU的扇区频点相同,所述多个射频拉远单元RRU形成一个逻辑小区。
第五方面,本公开还提拱了一种BBU,该BBU包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器执行下述的方法:
通过非标准的Iub接口把所述逻辑小区下的所有扇区的RTWP值上报给无线网络控制器RNC。
第六方面,本公开还提拱了一种RNC,该RNC包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器执行下述的方法:
通过接收到的所述逻辑小区下的每个同频点扇区的RTWP值以及该逻辑小区下的每个扇区的低噪值,计算出所述逻辑小区下每个扇区的噪声增量RoT,根据每个扇区的RoT以及RoT门限来控制每个扇区的上行容量。
本公开避免了多个射频拉远单元RRU合并为一逻辑小区情况下部分扇区上行容量比较大导致其他扇区无法接入或者业务体验差的现象,提升了多射频拉远单元RRU合并小区的上行容量。
附图说明
图1为背景技术中多个射频拉远单元合并小区场景下的小区上行噪声增量RoT获取示意图;
图2本公开一种射频拉远单元合并小区上行容量提升方法流程示意图;
图3本公开射频拉远单元RRU与基带处理单元BBU工作流程示意图图;
图4本公开噪声增量RoT计算过程示意图;
图5为本公开多个不同发射功率的射频拉远单元合并小区场景下的小区上行噪声增量RoT获取示意图;
图6是本公开提供的RRU的结构示意图;
图7是本公开提供的BBU的结构示意图;以及
图8是本公开提供的RNC的结构示意图。
具体实施方式
下面结合图2-6对本公开进行详细的介绍。
一种射频拉远单元合并小区上行容量提升方法。
在步骤110中,多个RRU连接到基站的BBU,所述多个RRU形成一个逻辑小区。
在步骤210中,多个RRU通过Ir接口上报各自的扇区的RTWP值给BBU,多个RRU的扇区频点相同。
在步骤310中,BBU通过非标准的Iub接口把逻辑小区下的所有扇区的RTWP值上报给无线网络控制器RNC。其中,非标准的Iub接口是相对于标准的Iub接口而言的,标准的Iub接口定义了BBU将一个扇区的RTWP值上报给RNC(例如逻辑小区内所有扇区的RTWP值中的最大值),而本公开中的BBU将一个逻辑小区内所有扇区的RTWP值上报给RNC,因此使用非标准的Iub接口。
在步骤410中,RNC通过接收到的所述逻辑小区下的每个同频点扇区的RTWP值以及该逻辑小区下的每个扇区的低噪值,计算出所述逻辑小区下每个扇区的噪声增量RoT,根据每个扇区的RoT以及RoT门限来控制每个扇区的上行容量。
可选的,步骤210包括步骤2110和步骤2120。
在步骤2110中,每个RRU测量各自扇区的RTWP值。
在步骤2120中,每个RRU上报各自扇区RTWP值给BBU。
可选的,步骤410包括步骤4110-4130。
在步骤4110中,RNC接收所述逻辑小区的每个同频点扇区的RTWP值及所述逻辑小区下的每个扇区的低噪值。
在步骤4120中,计算所述逻辑小区下的每个扇区的RoT值。
在步骤4130中,RNC根据每个扇区的RoT以及RoT门限来控制每个扇区的上行容量。
本公开还包括一种射频拉远单元合并小区系统,包括多个RRU、BBU以及RNC。多个RRU连接到基站的BBU,所述多个RRU形成一个逻辑小区。多个 RRU设置为通过Ir接口上报各自扇区的宽带接收总功率RTWP值给BBU单元。
BBU设置为通过非标准的Iub接口把所述逻辑小区下的所有扇区的RTWP值上报给RNC。
RNC设置为通过接收到的所述逻辑小区下的每个同频点扇区的RTWP值以及该逻辑小区下的每个扇区的低噪值,计算出所述逻辑小区下每个扇区的量RoT,根据每个扇区的RoT以及RoT门限来控制每个扇区的上行容量。
实施例1
两个或两个以上射频拉远单元RRU连接到基站的基带处理单元BBU,这些RRU在逻辑上形成一个逻辑小区,多个RRU扇区采用相同的下行扰码加扰,如图5所示,基站的BBU与RNC连接。该逻辑性小区下的每个扇区的低噪值在RNC中进行初始化保存。
多个RRU合并小区场景参见图1,本公开提供的提升RRU合并小区的上行容量方法中,多个同等发射功率的RRU合并组网场景,所有RRU位于同一等级。提升RRU合并小区的上行容量方法包括:
n个RRU都通过Ir接口(RRU与BBU之间的接口)上报各自扇区的RTWP值给BBU;
BBU通过非标准的Iub接口(Iub interface)把该逻辑小区下的所有扇区的RTWP值上报给RNC;以及
RNC通过接收到的该逻辑小区下的每个同频点扇区的RTWP值(例如RTWP1,RTWP2,……RTWPn)以及该逻辑小区下的每个扇区的低噪值,计算出该逻辑小区下的每个扇区的RoT,例如RoT1,RoT2,……RoTn,例如RoTi=RTWPi/扇区i的低噪值,i=1,...,n。RNC根据每个扇区的RoT以及RoT门限来控制每个扇区的上行容量。
实施例2
两个或两个以上RRU连接到基站的BBU,这些RRU在逻辑上是一个逻辑小区,多个RRU扇区采用相同的下行扰码加扰,BBU与RNC连接。该逻辑性小区下的每个扇区的低噪值都在RNC中进行了初始化保存。
图5是本公开所述提升RRU合并小区的上行容量方法不同发射功率的RRU合并组成的异构网场景,包括宏射频拉远单元和微射频拉远单元,所述微射频 拉远单元被宏射频拉远单元包围,提升RRU合并小区的上行容量方法包括:
n个RRU都通过Ir接口(RRU与BBU之间的接口)上报各自扇区的RTWP值给BBU;
BBU通过非标准的Iub接口把该逻辑小区下的所有扇区的RTWP值上报给RNC;以及
RNC通过接收到的该逻辑小区下的每个同频点扇区的RTWP值(例如RTWP1,RTWP2,……RTWPn)以及该逻辑小区下的每个扇区的低噪值,计算出该逻辑小区下的每个扇区的RoT,例如RoT1,RoT2,……RoTn,例如RoTi=RTWPi/扇区i低噪值,i=1,...,n。RNC根据每个扇区的RoT以及RoT门限来控制每个扇区的上行容量。
本公开技术方案避免了多个RRU合并为一逻辑小区情况下部分扇区上行容量比较大导致其他扇区无法接入或者业务体验差的现象,提升了RRU合并小区的上行容量。
本公开实施例还提供了一种非暂态计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述任一实施例中的方法。本公开实施例提供了一种RRU的硬件结构示意图。参见图6,该RRU包括:
至少一个处理器(processor)60,图6中以一个处理器60为例;和存储器(memory)61,还可以包括通信接口(Communications Interface)62和总线63。其中,处理器60、通信接口62、存储器61可以通过总线63完成相互间的通信。通信接口62可以用于信息传输。处理器60可以调用存储器61中的逻辑指令,以执行下述方法:
连接到基站的BBU,通过Ir接口上报各自的扇区的RTWP值给所述BBU,其中,多个RRU的扇区频点相同。所述多个RRU形成一个逻辑小区。
此外,上述的存储器61中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器61作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令或模块。处理器60通过运行存储在存储器61中的软件程序、指令或模块,从而执行功能应用以及数据处理,即实现本实施例中的射频拉远单元合并小区上行容量提升方法。
存储器61可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器61可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例还提供了一种BBU的硬件结构示意图。参见图7,该BBU包括:
至少一个处理器(processor)70,图7中以一个处理器70为例;和存储器(memory)71,还可以包括通信接口(Communications Interface)72和总线73。其中,处理器70、通信接口72、存储器71可以通过总线73完成相互间的通信。通信接口72可以用于信息传输。处理器70可以调用存储器71中的逻辑指令,以执行下述方法:
通过非标准的Iub接口把所述逻辑小区下的所有扇区的RTWP值上报给RNC。
此外,上述的存储器71中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器71作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令或模块。处理器70通过运行存储在存储器71中的软件程序、指令或模块,从而执行功能应用以及数据处理,即实现本实施例中的射频拉远单元合并小区上行容量提升方法。
存储器71可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器71可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例还提供了一种RNC的硬件结构示意图。参见图8,该RNC包括:
至少一个处理器(processor)80,图8中以一个处理器80为例;和存储器(memory)81,还可以包括通信接口(Communications Interface)82和总线83。其中,处理器80、通信接口82、存储器81可以通过总线83完成相互间的通信。通信接口82可以用于信息传输。处理器80可以调用存储器81中的逻辑指令,以执 行下述方法:
通过接收到的所述逻辑小区下的每个同频点扇区的RTWP值以及该逻辑小区下的每个扇区的低噪值,计算出所述逻辑小区下每个扇区的RoT,以及根据每个扇区的RoT以及RoT门限来控制每个扇区的上行容量。
此外,上述的存储器81中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器81作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令或模块。处理器80通过运行存储在存储器81中的软件程序、指令或模块,从而执行功能应用以及数据处理,即实现本实施例中的射频拉远单元合并小区上行容量提升方法。
存储器81可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器81可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(Read-only Memory,ROM)、随机存取存储器(Ramdom Access Memory,RAM)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
工业实用性
本公开实施例提供的射频拉远单元合并小区上行容量提升方法及系统,避免了多个RRU合并为一逻辑小区情况下部分扇区上行容量比较大其他扇区无法接入或者体验差的现象,提升了多RRU合并小区的上行容量。

Claims (11)

  1. 一种射频拉远单元合并小区上行容量提升方法,包括:
    多个射频拉远单元RRU连接到基站的基带处理单元BBU,所述多个RRU形成一个逻辑小区;
    所述多个RRU通过Ir接口上报各自扇区的宽带接收总功率RTWP值给所述BBU,所述多个RRU的扇区频点相同;
    所述BBU通过非标准的Iub接口把所述逻辑小区下的所有扇区的RTWP值上报给无线网络控制器RNC;以及
    所述RNC通过接收到的所述逻辑小区下的每个同频点扇区的RTWP值以及该逻辑小区下的每个扇区的低噪值,计算出所述逻辑小区下每个扇区的噪声增量RoT,所述RNC根据每个扇区的RoT以及RoT门限来控制每个扇区的上行容量。
  2. 根据权利要求1所述的上行容量提升方法,其中,所述多个RRU通过Ir接口上报各自扇区的RTWP值给所述BBU,所述多个RRU的扇区频点相同,包括:
    每个RRU测量各自扇区的RTWP值;以及
    每个RRU上报各自扇区RTWP值给所述BBU。
  3. 根据权利要求1所述的上行容量提升方法,其中,所述Ir接口为所述RRU与所述BBU之间的接口。
  4. 根据权利要求1所述的上行容量提升方法,其中:同一逻辑小区的多个扇区采用相同的下行扰码加扰。
  5. 根据权利要求1所述的上行容量提升方法,所述方法还包括,所述逻辑小区下的每个扇区的低噪值在所述RNC中进行初始化保存。
  6. 根据权利要求1所述的上行容量提升方法,所述方法还包括:所述RNC 针对同一逻辑小区内的多个扇区分别计算相应的RoT,实现同一逻辑小区的上行资源分扇区管理。
  7. 根据权利要求1所述的上行容量提升方法,其中,所述多个RRU按照多个同等发射功率或多个不同等发射功率合并组网。
  8. 一种射频拉远单元合并小区系统,包括:
    多个射频拉远单元RRU,设置为连接到基站的基带处理单元BBU,以及通过Ir接口上报各自扇区的宽带接收总功率RTWP值给所述BBU,其中,所述多个RRU的扇区频点相同,所述多个射频拉远单元RRU形成一个逻辑小区;
    所述BBU,设置为通过非标准的Iub接口把所述逻辑小区下的所有扇区的RTWP值上报给无线网络控制器RNC;以及
    所述RNC,设置为通过接收到的所述逻辑小区下的每个同频点扇区的RTWP值以及该逻辑小区下的每个扇区的低噪值,计算出所述逻辑小区下每个扇区的噪声增量RoT,根据每个扇区的RoT以及RoT门限来控制每个扇区的上行容量。
  9. 根据权利要求8所述射频拉远单元合并小区系统,其中,所述RRU包括:
    RTWP计算模块,设置为测量各自扇区的RTWP值;以及
    RTWP值传输模块,设置为上报各自扇区RTWP值给所述BBU。
  10. 根据权利要求8所述射频拉远单元合并小区系统,其中,所述多个RRU按照多个同等发射功率或多个不同等发射功率合并组网。
  11. 一种非暂态计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行权利要求1-5中任一项的方法。
PCT/CN2016/103539 2016-02-29 2016-10-27 射频拉远单元合并小区上行容量提升方法和系统 WO2017148167A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610109379.9 2016-02-29
CN201610109379.9A CN107135512B (zh) 2016-02-29 2016-02-29 一种射频拉远单元合并小区上行容量提升方法和系统

Publications (1)

Publication Number Publication Date
WO2017148167A1 true WO2017148167A1 (zh) 2017-09-08

Family

ID=59721281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103539 WO2017148167A1 (zh) 2016-02-29 2016-10-27 射频拉远单元合并小区上行容量提升方法和系统

Country Status (2)

Country Link
CN (1) CN107135512B (zh)
WO (1) WO2017148167A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114143866A (zh) * 2020-09-04 2022-03-04 成都鼎桥通信技术有限公司 接收机上行链路的防饱和方法、设备及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6947483B2 (ja) * 2017-12-22 2021-10-13 ホアウェイ・テクノロジーズ・カンパニー・リミテッド アンライセンスキャリア処理方法、装置、及びシステム
CN110532079B (zh) * 2019-08-30 2022-11-08 北京中科晶上科技股份有限公司 计算资源的分配方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101212247A (zh) * 2006-12-28 2008-07-02 中兴通讯股份有限公司 集线器、信号合路方法以及rtwp的计算方法
CN101277135A (zh) * 2008-05-07 2008-10-01 中兴通讯股份有限公司 一种多个远端射频单元支持单个小区的方法
CN101959233A (zh) * 2010-09-30 2011-01-26 中兴通讯股份有限公司 扇区调度方法、节点b及无线网络控制器
WO2015049013A1 (en) * 2013-10-04 2015-04-09 Telefonaktiebolaget L M Ericsson (Publ) A method and apparatus for configuring optical network nodes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8218450B2 (en) * 2007-05-24 2012-07-10 Nec Corporation Throughput estimation method and system
CN101521905B (zh) * 2009-04-03 2011-06-22 中兴通讯股份有限公司 分扇区调整底噪的方法与装置
CN103997745B (zh) * 2014-05-30 2017-05-03 北京邮电大学 Lte‑a异构网络中低功率节点自组织方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101212247A (zh) * 2006-12-28 2008-07-02 中兴通讯股份有限公司 集线器、信号合路方法以及rtwp的计算方法
CN101277135A (zh) * 2008-05-07 2008-10-01 中兴通讯股份有限公司 一种多个远端射频单元支持单个小区的方法
CN101959233A (zh) * 2010-09-30 2011-01-26 中兴通讯股份有限公司 扇区调度方法、节点b及无线网络控制器
WO2015049013A1 (en) * 2013-10-04 2015-04-09 Telefonaktiebolaget L M Ericsson (Publ) A method and apparatus for configuring optical network nodes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114143866A (zh) * 2020-09-04 2022-03-04 成都鼎桥通信技术有限公司 接收机上行链路的防饱和方法、设备及存储介质
CN114143866B (zh) * 2020-09-04 2023-08-15 成都鼎桥通信技术有限公司 接收机上行链路的防饱和方法、设备及存储介质

Also Published As

Publication number Publication date
CN107135512B (zh) 2022-05-31
CN107135512A (zh) 2017-09-05

Similar Documents

Publication Publication Date Title
RU2491628C1 (ru) СМЕЩЕНИЕ АССОЦИАЦИИ ДЛЯ ГЕТЕРОГЕННОЙ СЕТИ (HetNet)
US20170238163A1 (en) Method and device for reporting and acquiring ue capability
JP5989904B2 (ja) キャリアアグリゲーション処理方法及び装置
KR20150089893A (ko) 무선 통신 시스템에서 셀 간 부하 분산 및 간섭 완화를 위한 방법 및 장치
WO2016000491A1 (zh) 确定拉远射频单元rru的方法与设备
JP2021533608A (ja) エネルギー節約方法および装置、ならびにコンピュータ可読記憶媒体
WO2017148167A1 (zh) 射频拉远单元合并小区上行容量提升方法和系统
US20170265085A1 (en) Method and apparatus for adjusting air interface capacity density
US20230300927A1 (en) Communication Method, Communications Apparatus, and Storage Medium
US20140003275A1 (en) Radio communication system and communication control method
JP2016541170A (ja) 移動性管理方法、装置及びシステム
EP2875665A1 (en) Performance-based cell aggregation in a mobile network
CN107172635A (zh) 数据传输的方法及系统
Tang et al. Offloading performance of range expansion in picocell networks: A stochastic geometry analysis
WO2021146923A1 (zh) 一种无线参数调整方法和装置
EP2840826B1 (en) Method, device and system for configuring cell range expansion bias
CN107431975A (zh) 用于移动性控制的方法和装置
CN103458458A (zh) 载波测量方法及装置
US9826476B2 (en) Method and apparatus for activating an inactive cell
CN107182059B (zh) 一种精细化分配资源的方法、装置及基带处理单元
Shayea et al. Handover Performance over a Coordinated Contiguous Carrier Aggregation Deployment Scenario in the LTE‐Advanced System
US20160142983A1 (en) Power control method, ue and communication system
US10524210B2 (en) Power adjustment of a radio head of an indoor radio system
US20230028383A1 (en) Beam optimization based on signal measurements in neighboring cells
WO2017113215A1 (zh) 一种小区合并的方法和装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892348

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892348

Country of ref document: EP

Kind code of ref document: A1