WO2017146232A1 - Lubricating oil composition and method for producing lubricating oil composition - Google Patents

Lubricating oil composition and method for producing lubricating oil composition Download PDF

Info

Publication number
WO2017146232A1
WO2017146232A1 PCT/JP2017/007206 JP2017007206W WO2017146232A1 WO 2017146232 A1 WO2017146232 A1 WO 2017146232A1 JP 2017007206 W JP2017007206 W JP 2017007206W WO 2017146232 A1 WO2017146232 A1 WO 2017146232A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
oil composition
mass
atom
content
Prior art date
Application number
PCT/JP2017/007206
Other languages
French (fr)
Japanese (ja)
Inventor
竜也 楠本
元治 石川
啓司 大木
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to DE112017000967.7T priority Critical patent/DE112017000967T5/en
Priority to CN201780012685.3A priority patent/CN108699473B/en
Priority to US16/079,394 priority patent/US20190024009A1/en
Publication of WO2017146232A1 publication Critical patent/WO2017146232A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/10Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/24Compounds containing phosphorus, arsenic or antimony
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/26Compounds containing silicon or boron, e.g. silica, sand
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/38Heterocyclic nitrogen compounds
    • C10M133/40Six-membered ring containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/12Thio-acids; Thiocyanates; Derivatives thereof
    • C10M135/14Thio-acids; Thiocyanates; Derivatives thereof having a carbon-to-sulfur double bond
    • C10M135/18Thio-acids; Thiocyanates; Derivatives thereof having a carbon-to-sulfur double bond thiocarbamic type, e.g. containing the groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/10Thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/12Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic compound containing atoms of elements not provided for in groups C10M141/02 - C10M141/10
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/085Phosphorus oxides, acids or salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/087Boron oxides, acids or salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/45Ash-less or low ash content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines

Definitions

  • the present invention relates to a lubricating oil composition and a method for producing the lubricating oil composition.
  • Patent Document 1 discloses an engine oil composition in which a predetermined amount of an organic molybdenum compound, a boron-based succinimide, and an alkaline earth metal salt of salicylic acid is blended with a base oil. Patent Document 1 describes that the engine oil composition can stably exhibit the engine friction loss reduction effect over a long period of time.
  • the lubricating oil composition for internal combustion engine oils containing a large amount of metallic detergent can easily increase the coefficient of friction with the engine member, and can cause a decrease in the friction reduction effect.
  • a low ash-differentiated lubricating oil composition for internal combustion engine oil while improving both cleanliness and friction reduction effect.
  • the engine oil composition described in Patent Document 1 is not low-ash differentiated in the first place.
  • examination about the problem of the cleanliness fall accompanying the low ash differentiation of the disclosed engine oil composition is not made
  • the lubricating oil composition used for vehicles and the like is also required to have wear resistance while smoothly lubricating a sliding mechanism including a piston ring and a liner.
  • an antiwear agent such as zinc dithiophosphate (ZnDTP) is used in order to obtain a lubricating oil composition having good wear resistance.
  • ZnDTP zinc dithiophosphate
  • the anti-wear agent improves wear resistance by forming a film on the metal surface by adsorbing the sliding member to the metal surface, reacting with metal atoms on the surface, and forming a polymer on the metal surface. Contribute.
  • ZnDTP zinc dithiophosphate
  • the content of ZnDTP in the lubricating oil composition increases, the friction reducing effect of the lubricating oil composition tends to decrease. Therefore, there is also a demand for a lubricating oil composition that can maintain a good friction reducing effect while improving wear resistance.
  • the present invention has been made in view of the above circumstances, and the lubricating oil composition having improved cleanliness, wear resistance, and friction reduction effect in a well-balanced manner while being low-ash-differentiated, and the lubricating oil composition
  • An object is to provide a manufacturing method.
  • the present inventors In the lubricating oil composition prepared by adjusting the sulfated ash content to a predetermined value or less, the present inventors contain molybdenum dithiophosphate, an organometallic detergent, and a hindered amine antioxidant together with the base oil. The present inventors have found that the above-mentioned problems can be solved by adjusting the content of the components to a predetermined range and further improving the present invention.
  • a method for using a lubricating oil composition wherein the lubricating oil composition according to [1] is used for an internal combustion engine equipped with an exhaust gas aftertreatment device.
  • a method for producing a lubricating oil composition comprising the following step (I).
  • the lubricating oil composition of the present invention is excellent in all of cleanliness, wear resistance, and friction reduction effect while being low-ash differentiated.
  • the “alkali metal atom” means a lithium atom (Li), a sodium atom (Na), a potassium atom (K), a rubidium atom (Rb), a cesium atom (Cs), and a francium atom (Fr). Point to.
  • the “alkaline earth metal atom” refers to a beryllium atom (Be), a magnesium atom (Mg), a calcium atom (Ca), a strontium atom (Sr), and a barium atom (Ba).
  • each atom means a value measured according to the following standard.
  • the lubricating oil composition of the present invention contains a base oil (A), molybdenum dithiophosphate (MoDTP) (B1), an organometallic detergent (C1), and a hindered amine antioxidant (D1). Moreover, the lubricating oil composition of the present invention is a lubricating oil composition having a sulfated ash content of 0.70% by mass or less and having a low ash differentiation. The sulfated ash content can be adjusted to a low level by reducing the content of metal-based compounds such as the organometallic detergent (C1) and ZnDTP in the lubricating oil composition.
  • the lubricating oil composition of the present invention is a low ash-differentiated product with a reduced content of metal compounds such as organometallic detergent (C1) and ZnDTP, it is applied to an engine equipped with an exhaust gas aftertreatment device. Even if it is used, it is possible to prevent problems such as clogging of the filter and a decrease in catalytic activity.
  • organometallic detergent (C1) when the content of the organometallic detergent (C1) is reduced, the base number of the resulting lubricating oil composition is lowered, causing a decrease in cleanliness and causing caulking.
  • the lubricating oil composition of the present invention contains a hindered amine antioxidant (D1) as an antioxidant, the content of the organometallic detergent (C1) is small. However, the cleanliness can be kept good and the occurrence of coking can be suppressed.
  • the lubricating oil composition which can express the outstanding friction reduction effect by reducing content of metal compounds, such as organometallic detergent (C1) and ZnDTP, and making sulfated ash content into 0.70 mass% or less. It can be a thing.
  • the content of the organometallic detergent (C1) and ZnDTP is reduced, the sulfated ash content is adjusted to 0.70% by mass or less, and the molybdenum compound is dithiophosphoric acid.
  • molybdenum (B1) the friction reduction effect can be further improved.
  • the use of molybdenum dithiophosphate (B1) can reduce the wear resistance of the lubricating oil composition even if the content of ZnDTP is reduced. It can be improved effectively.
  • the lubricating oil composition of the present invention is prepared such that the sulfated ash content is 0.70% by mass or less, and the molybdenum dithiophosphate (B1), the organometallic detergent (C1), and the hindered amine antioxidant (D1).
  • B1 molybdenum dithiophosphate
  • C1 organometallic detergent
  • D1 hindered amine antioxidant
  • the sulfated ash content of the lubricating oil composition of one embodiment of the present invention is preferably 0.60% by mass or less, more preferably 0.55, based on the total amount (100% by mass) of the lubricating oil composition. It is not more than mass%, more preferably not more than 0.50 mass%, still more preferably not more than 0.40 mass%, particularly preferably not more than 0.38 mass%.
  • the sulfated ash content of the lubricating oil composition of one embodiment of the present invention is preferably based on the total amount (100% by mass) of the lubricating oil composition, considering the contents of the components (B1) and (C1).
  • sulfated ash means a value measured in accordance with JIS K2272.
  • the lubricating oil composition of the present invention contains molybdenum dithiophosphate (B1) as the molybdenum compound (B), but may further contain molybdenum dithiocarbamate (MoDTC) (B2).
  • the lubricating oil composition of the present invention contains an organometallic detergent (C1) as the detergent (C), but preferably further contains an alkali metal borate (C2), and is an ashless detergent. (C3) may be contained.
  • the lubricating oil composition of the present invention contains a hindered amine antioxidant (D1) as the antioxidant (D), but may further contain an antioxidant (D2) other than the component (D1).
  • the lubricating oil composition of one embodiment of the present invention may further contain zinc dithiophosphate (ZnDTP) (E1) as the antiwear agent (E).
  • ZnDTP zinc dithiophosphate
  • the lubricating oil composition of one embodiment of the present invention does not fall under the above-described components as long as the effects of the present invention are not impaired, a friction modifier, a viscosity index improver, an extreme pressure agent, a metal deactivator, You may contain other additives for lubricating oils, such as a pour point depressant, a rust preventive agent, and an antifoamer.
  • the total amount of component (A), component (B1), component (C1), and component (D1) is the total amount (100% by mass) of the lubricating oil composition.
  • it is 70% by mass or more, more preferably 75% by mass or more, more preferably 80% by mass or more, and usually 100% by mass or less, more preferably 99.9% by mass or less, and still more preferably 99% by mass. 0.0 mass% or less.
  • base oil (A), molybdenum-based compound (B) containing component (B1), detergent (C) containing component (C1), and oxidation containing component (D1) The total blending amount of the antiwear agent (D) and the antiwear agent (E) containing the component (E1) is preferably 73% by mass or more, more preferably based on the total amount (100% by mass) of the lubricating oil composition. Is 77% by mass or more, more preferably 83% by mass or more, and is usually 100% by mass or less, more preferably 99.9% by mass or less, and further preferably 99.0% by mass or less.
  • the base oil (A) contained in the lubricating oil composition of one embodiment of the present invention may be mineral oil, synthetic oil, or a mixed oil of mineral oil and synthetic oil.
  • Mineral oil includes, for example, atmospheric residual oil obtained by atmospheric distillation of crude oil such as paraffinic mineral oil, intermediate mineral oil, and naphthenic mineral oil; distillate obtained by vacuum distillation of these atmospheric residual oils Mineral oil that has been subjected to one or more purification treatments such as solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, etc .; produced by the Fischer-Tropsch method, etc.
  • Examples thereof include mineral oils obtained by isomerizing wax (GTL wax (Gas To Liquids WAX)). These mineral oils may be used alone or in combination of two or more.
  • the mineral oil used in one embodiment of the present invention includes mineral oil and GTL that have been subjected to one or more purification treatments such as solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, and the like.
  • Mineral oil obtained by isomerizing wax is preferable, mineral oil classified into Group 2 or Group 3 of the American Petroleum institute (API) base oil category, and mineral oil obtained by isomerizing GTL wax Are more preferable, and mineral oils classified into Group 3 and mineral oils obtained by isomerizing GTL wax are more preferable.
  • API American Petroleum institute
  • Synthetic oils include, for example, ⁇ -olefin homopolymers or ⁇ -olefin copolymers (eg, ⁇ -olefin copolymers having 8 to 14 carbon atoms such as ethylene- ⁇ -olefin copolymers).
  • Examples include synthetic oils obtained by isomerization. These synthetic oils may be used alone or in combination of two or more.
  • the synthetic oil used in one embodiment of the present invention is preferably one or more synthetic oils selected from poly ⁇ -olefins, various esters, and polyalkylene glycols, and more preferably poly ⁇ -olefins.
  • the kinematic viscosity at 100 ° C. of the base oil (A) is preferably 2.0 to 20.0 mm 2 / s, more preferably 2.0 to 15.0 mm 2 / s, still more preferably 2.0 to 7. It is 0 mm 2 / s, more preferably 2.0 to 5.0 mm 2 / s. If the kinematic viscosity at 100 ° C. of the base oil (A) is 2.0 mm 2 / s or more, it is preferable because the evaporation loss is small. On the other hand, if the kinematic viscosity at 100 ° C. of the base oil (A) is 20.0 mm 2 / s or less, power loss due to viscous resistance can be suppressed, and a fuel efficiency improvement effect can be obtained.
  • the viscosity index of the base oil (A) is preferably 80 or more, more preferably 100 or more, and still more preferably 120 or more, from the viewpoint of suppressing the viscosity change due to temperature change and improving fuel economy.
  • kinematic viscosity at 100 ° C.” and “viscosity index” mean values measured and calculated in accordance with JIS K 2283.
  • base oil (A) is 2 or more types of mixed oil chosen from mineral oil and synthetic oil, it is preferable that the kinematic viscosity and viscosity index of the said mixed oil are the said range.
  • the content of the base oil (A) is preferably 60% by mass or more, more preferably 65% by mass, based on the total amount (100% by mass) of the lubricating oil composition. More preferably, it is 70% by mass or more, more preferably 75% by mass or more, and preferably 99% by mass or less, more preferably 95% by mass or less.
  • the lubricating oil composition of the present invention contains molybdenum dithiophosphate (MoDTP) (B1) as the molybdenum-based compound (B).
  • MoDTP molybdenum dithiophosphate
  • the content of the organometallic detergent (C1) is reduced and the low ash-differentiated lubricating oil composition contains MoDTP, so that other molybdenum compounds such as MoDTC It has been found that the friction reducing effect can be further improved as compared with the case where is used alone. It is presumed that the coating film formed from the low ash-differentiated lubricating oil composition containing MoDTP is more easily formed than the coating film formed using MoDTC.
  • ZnDTP zinc dithiophosphate
  • the content of the component (B1) in terms of molybdenum atom is that of the lubricating oil composition from the viewpoint of making the lubricating oil composition improved in both wear resistance and friction reduction effect.
  • 400 mass ppm or more preferably 500 mass ppm or more, more preferably 600 mass ppm or more, still more preferably 700 mass ppm or more, still more preferably 800 mass ppm or more, particularly preferably based on the total amount (100 mass%).
  • the content of the component (B1) in terms of molybdenum atom is based on the total amount (100% by mass) of the lubricating oil composition.
  • it is 2000 mass ppm or less, More preferably, it is 1800 mass ppm or less, More preferably, it is 1500 mass ppm or less, More preferably, it is 1300 mass ppm or less.
  • the amount of component (B1) may be adjusted so that the content in terms of molybdenum atoms falls within the above range. Is preferably 0.40 to 2.60% by mass, more preferably 0.50 to 2.40% by mass, still more preferably 0.50 to 2.00% by mass, and still more based on the total amount (100% by mass) of The content is preferably 0.50 to 1.80% by mass, particularly preferably 0.55 to 1.60% by mass.
  • molybdenum dithiophosphate (B1) a compound represented by the following general formula (b1-1) and a compound represented by the following general formula (b1-2) are preferable.
  • molybdenum dithiophosphate (B1) may be used alone or in combination of two or more.
  • R 1 to R 4 each independently represent a hydrocarbon group, and may be the same or different from each other.
  • X 1 to X 8 each independently represent an oxygen atom or a sulfur atom, and may be the same as or different from each other. However, at least two of X 1 to X 8 in the formula (b1-1) are sulfur atoms. Note that in one embodiment of the present invention, in the general formula (b1-1), X 1 and X 2 are preferably oxygen atoms, and X 3 to X 8 are preferably sulfur atoms. In the general formula (b1-2), X 1 and X 2 are preferably oxygen atoms, and X 3 and X 4 are preferably sulfur atoms.
  • the molar ratio of sulfur atoms to oxygen atoms in X 1 to X 8 [sulfur atoms / oxygen atoms] is preferable. Is from 1/4 to 4/1, more preferably from 1/3 to 3/1.
  • the molar ratio [sulfur atom / oxygen atom] of sulfur atom and oxygen atom in X 1 to X 4 is preferably 1/3 to 3/1, more preferably 1.5 / 2.5 to 2.5 / 1.5.
  • the number of carbon atoms of the hydrocarbon group that can be selected as R 1 to R 4 is preferably 1 to 20, more preferably 5 to 18, still more preferably 5 to 16, and still more preferably 5 to 12.
  • Specific examples of the hydrocarbon group that can be selected as R 1 to R 4 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group.
  • Alkyl groups such as undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group; octenyl group, nonenyl group, decenyl group, undecenyl group, dodecenyl group, tridecenyl group, tetradecenyl group, An alkenyl group such as a pentadecenyl group; a cycloalkyl group such as a cyclohexyl group, a dimethylcyclohexyl group, an ethylcyclohexyl group, a methylcyclohexylmethyl group, a cyclohexylethyl group, a propylcyclohexyl group, a butylcyclohexyl group, and a
  • the lubricating oil composition of one embodiment of the present invention may contain molybdenum dithiocarbamate (MoDTC) (B2) together with molybdenum dithiophosphate (MoDTP) (B1) as the molybdenum-based compound (B).
  • MoDTC is not used alone, but can be used together with MoDTP to provide a lubricating oil composition with excellent wear resistance and friction reduction effect.
  • the content of the component (B2) in terms of molybdenum atoms is preferably 0 to 1300 ppm by mass, based on the total amount (100% by mass) of the lubricating oil composition. More preferably, it is 0 to 800 ppm by mass, still more preferably 0 to 600 ppm by mass, and still more preferably 0 to 500 ppm by mass.
  • the amount of component (B2) may be adjusted so that the content in terms of molybdenum atoms belongs to the above range. Is preferably 0 to 1.60% by mass, more preferably 0 to 1.00% by mass, still more preferably 0 to 0.80% by mass, and still more preferably 0 to 0. 70% by mass.
  • the content ratio of the component (B2) in terms of molybdenum atoms to the total amount in terms of molybdenum atoms of the component (B1) is preferably 0 to 150 parts by mass, more preferably 0 to 100 parts by mass. More preferably, it is 0 to 80 parts by mass, and still more preferably 0 to 40 parts by mass.
  • molybdenum dithiocarbamate (B2) dinuclear molybdenum dithiocarbamate (B21) containing two molybdenum atoms in one molecule, and trinuclear molybdenum dithiocarbamate (B22) containing three molybdenum atoms in one molecule. Is mentioned.
  • molybdenum dithiocarbamate (B2) may be used alone or in combination of two or more.
  • the content ratio of the component (B21) and the component (B22) [(B21) / (B22) Is a mass ratio, preferably from 0.1 / 1 to 5/1, more preferably from 0.2 / 1 to 4 /, from the viewpoint of obtaining a lubricating oil composition with improved wear resistance and friction reduction effect. 1, more preferably 0.3 / 1 to 3/1, still more preferably 0.4 / 1 to 2/1.
  • the content ratio [(B21) / (B22)] between the component (B21) and the component (B22) is preferably a molybdenum atom conversion ratio, preferably 0.1 / 1 to 5/1, more preferably 0.8.
  • the ratio is 2/1 to 4/1, more preferably 0.3 / 1 to 3/1, and still more preferably 0.4 / 1 to 2/1.
  • the dinuclear molybdenum dithiocarbamate (B21) is preferably a compound represented by the following general formula (b21-1) and a compound represented by the following general formula (b21-2).
  • R 11 to R 14 each independently represent a hydrocarbon group, and may be the same or different.
  • X 11 to X 18 each independently represent an oxygen atom or a sulfur atom, and may be the same as or different from each other.
  • at least two of X 11 to X 18 in the formula (b21-1) are sulfur atoms.
  • X 11 and X 12 in the formula (b21-1) are oxygen atoms and X 13 to X 18 are sulfur atoms.
  • X 11 to X 14 in formula (b21-2) are preferably oxygen atoms.
  • the molar ratio of sulfur atoms to oxygen atoms in X 11 to X 18 [sulfur atoms / oxygen atoms] is preferably Is from 1/4 to 4/1, more preferably from 1/3 to 3/1.
  • the number of carbon atoms of the hydrocarbon group that can be selected as R 11 to R 14 is preferably 7 to 22, more preferably 7 to 18, still more preferably 7 to 14, and still more preferably 8 to 13.
  • Specific examples of the hydrocarbon group that can be selected as R 11 to R 14 in the general formulas (b21-1) and (b21-2) include the general formula (b1-1) or (b1- Examples thereof include the same hydrocarbon groups that can be selected as R 1 to R 4 in 2).
  • the trinuclear molybdenum dithiocarbamate (B22) is preferably a compound represented by the following general formula (b22-1). Mo 3 S k E m L n A p Q z (b22-1)
  • k is an integer of 1 or more
  • m is an integer of 0 or more
  • k + m is an integer of 4 to 10, and preferably an integer of 4 to 7.
  • n is an integer of 1 to 4
  • p is an integer of 0 or more.
  • z is an integer from 0 to 5 and includes non-stoichiometric values.
  • Each E is independently an oxygen atom or a selenium atom, and for example, can replace sulfur in the core described later.
  • L is independently an anionic ligand having an organic group containing a carbon atom, and the total number of carbon atoms of the organic group in each ligand is 14 or more, and each ligand may be the same. , May be different.
  • A is an anion other than L each independently.
  • Q is a compound that donates a neutral electron independently, and is present to satisfy an empty coordination on the trinuclear molybdenum compound.
  • the total number of carbon atoms of the organic group in the anionic ligand represented by L is preferably 14 to 50, more preferably 16 to 30, and still more preferably 18 to 24.
  • L is preferably a monoanionic ligand which is a monovalent anionic ligand, and more specifically, a ligand represented by the following general formulas (i) to (iv) is more preferable.
  • the anionic ligand selected as L is preferably a ligand represented by the following general formula (iv).
  • the anionic ligands selected as L are preferably all the same, and more preferably all ligands represented by the following general formula (iv).
  • X 31 to X 37 and Y are each independently an oxygen atom or a sulfur atom, and may be the same or different.
  • R 31 to R 35 are each independently an organic group, and may be the same as or different from each other.
  • the carbon number of each organic group that can be selected as R 31 , R 32 , and R 33 is preferably 14 to 50, more preferably 16 to 30, and still more preferably 18 to 24.
  • the total number of carbon atoms of the two organic groups that can be selected as R 34 and R 35 in formula (iv) is preferably 14 to 50, more preferably 16 to 30, and still more preferably 18 to 24.
  • the number of carbon atoms of each organic group that can be selected as R 34 and R 35 is preferably 7 to 30, more preferably 7 to 20, and still more preferably 8 to 13. Note that the organic group of R 34 and the organic group of R 35 may be the same or different from each other, but are preferably different from each other. Further, the carbon number of the organic group of R 34 and the carbon number of the organic group of R 35 may be the same or different from each other, but are preferably different from each other.
  • Examples of the organic group selected as R 31 to R 35 include hydrocarbyl groups such as alkyl groups, aryl groups, substituted aryl groups, and ether groups.
  • hydrocarbyl refers to a substituent having a carbon atom that is directly bonded to the remainder of the ligand, and within the scope of this embodiment, the characteristic is mainly hydrocarbyl. Such substituents include the following. 1.
  • Hydrocarbon substituents As hydrocarbon substituents, substituted with aliphatic substituents such as alkyl and alkenyl, alicyclic substituents such as cycloalkyl and cycloalkenyl, aromatic groups, aliphatic groups and alicyclic groups An aromatic nucleus, a cyclic group in which the ring is completed via another location in the ligand (ie any two of the indicated substituents may together form an alicyclic group) Can be mentioned. 2. Substituted hydrocarbon substituents Examples of substituted hydrocarbon substituents include those in which the hydrocarbon substituent is substituted with a non-hydrocarbon group that does not change the properties of the hydrocarbyl.
  • non-hydrocarbon group examples include halogen groups such as chloro and fluoro, amino groups, alkoxy groups, mercapto groups, alkyl mercapto groups, nitro groups, nitroso groups, and sulfoxy groups.
  • the anionic ligand selected as L is preferably derived from an alkylxanthate, carboxylate, dialkyldithiocarbamate, or a mixture thereof, and a dialkyldithiocarbamate Those derived from are more preferred.
  • the anion that can be selected as A may be a monovalent anion or a divalent anion.
  • examples of the anion that can be selected as A include disulfide, hydroxide, alkoxide, amide, thiocyanate, and derivatives thereof.
  • examples of Q include water, amine, alcohol, ether and phosphine. Q may be the same or different, but is preferably the same.
  • k is an integer of 4 to 7 n is 1 or 2
  • L is a monoanionic ligand
  • p is based on an anionic charge in A.
  • the component (B22) is preferably a compound having a core represented by the following formula (IV-A) or (IV-B), for example.
  • Each core has a net electrical charge of +4.
  • These cores are surrounded by anionic ligands and anions other than the anionic ligands present as needed.
  • Formation of the trinuclear molybdenum-sulfur compound requires selection of an appropriate anionic ligand (L) and other anions (A), for example, depending on the number of sulfur and E atoms present in the core. That is, the total anionic charge constituted by the sulfur atom, E atom if present, L and A if present must be -4.
  • the trinuclear molybdenum-sulfur compound may also contain cations other than molybdenum, such as (alkyl) ammonium, amine or sodium, if the anionic charge exceeds -4.
  • a preferred embodiment of the anionic ligand (L) and other anions (A) is a configuration having four monoanionic ligands.
  • Molybdenum-sulfur cores such as the structures represented by (IV-A) and (IV-B) above, bind to one or more polydentate ligands, ie, molybdenum atoms, to form oligomers. Can be interconnected by a ligand having more than one possible functional group.
  • the lubricating oil composition of one embodiment of the present invention contains a molybdenum compound (B3) other than components (B1) and (B2) as a molybdenum compound (B) as long as the effects of the present invention are not impaired. May be.
  • examples of such other molybdenum compounds (B3) include molybdate acid amine salts, molybdenum trioxide and / or molybdenum amine complexes formed by reacting molybdic acid with amine compounds.
  • the content ratio of the component (B3) in terms of molybdenum atoms to the total amount of the component (B1) in terms of molybdenum atoms of 100 parts by mass is usually 0 to 80 parts by mass, preferably 0 to 50 parts by mass, more preferably The amount is 0 to 30 parts by mass, more preferably 0 to 10 parts by mass, and still more preferably 0 to 3 parts by mass.
  • the lubricating oil composition of the present invention contains an organometallic detergent (C1) containing a metal atom selected from alkali metal atoms and alkaline earth metal atoms as the detergent (C).
  • organometallic detergent means a compound containing at least an alkali metal atom and / or an alkaline earth metal atom and a carbon atom and a hydrogen atom, and the compound further includes an oxygen atom and a sulfur atom. And may contain a heteroatom such as a nitrogen atom.
  • the content of the organometallic detergent (C1) in terms of metal atoms is adjusted to 1400 ppm by mass or less, and low ash differentiation of the lubricating oil composition is measured. .
  • the content exceeds 1400 mass ppm not only is it difficult to use the obtained lubricating oil composition in an engine equipped with an exhaust gas aftertreatment device, but the value of the friction coefficient of the lubricating oil composition is large. Thus, the friction reducing effect is inferior.
  • the lubricating oil composition of this invention is reducing content of organometallic detergent (C1) as detergent (C), below-mentioned hindered amine antioxidant is used as antioxidant (D). By containing the agent (D1), good cleanliness is maintained.
  • the content of the component (C1) in terms of metal atoms is 1400 ppm by mass or less based on the total amount (100% by mass) of the lubricating oil composition. From the viewpoint of more expressing the amount, it is preferably 1250 mass ppm or less, more preferably 1100 mass ppm or less, still more preferably 1000 mass ppm or less, still more preferably 800 mass ppm or less, and particularly preferably 600 mass ppm or less. Further, from the viewpoint of providing a lubricating oil composition with improved cleanliness, the content of the component (C1) in terms of metal atoms is preferably 50 based on the total amount (100% by mass) of the lubricating oil composition. The mass ppm or more, more preferably 70 mass ppm or more, still more preferably 100 mass ppm or more, still more preferably 150 mass ppm or more, and particularly preferably 200 mass ppm or more.
  • the amount of the component (C1) may be adjusted so that the content in terms of metal atoms belongs to the above range, but the total amount of the lubricating oil composition On the basis of (100% by mass), it is preferably 0.01 to 2.8% by mass, more preferably 0.05 to 2.5% by mass, and still more preferably 0.10 to 2.1% by mass.
  • the metal atom contained in the organometallic detergent (C1) is preferably a sodium atom, a calcium atom, a magnesium atom, and a barium atom, more preferably a calcium atom and a magnesium atom, from the viewpoint of improving cleanliness, and a calcium atom. Is more preferable.
  • the organometallic detergent (C1) preferably contains a calcium detergent.
  • the content of the calcium detergent in the organometallic detergent (C1) is preferably 70 with respect to the total amount (100 mass%) of the organometallic detergent (C1) contained in the lubricating oil composition. To 100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, and still more preferably 95 to 100% by mass.
  • An organometallic detergent (C1) may be used independently or may use 2 or more types together.
  • the organometallic detergent (C1) used in one embodiment of the present invention is one selected from metal salicylates, metal phenates, and metal sulfonates containing metal atoms selected from alkali metal atoms and alkaline earth metal atoms.
  • the above is preferable, and a mixture of metal sulfonate and one or more selected from metal salicylate and metal phonate is more preferable.
  • the mixture is preferably a mixture of metal sulfonate and metal salicylate.
  • the metal salicylate used in one embodiment of the present invention is preferably a compound represented by the following general formula (c1-1), and the metal phenate is preferably a compound represented by the following general formula (c1-2), As the metal sulfonate, a compound represented by the following general formula (c1-3) is preferable.
  • M is a metal atom selected from an alkali metal atom and an alkaline earth metal atom, preferably a sodium atom, a calcium atom, a magnesium atom, and a barium atom.
  • a calcium atom and a magnesium atom are more preferable, and a calcium atom is still more preferable.
  • M ′ is an alkaline earth metal atom, preferably a calcium atom, a magnesium atom and a barium atom, more preferably a calcium atom and a magnesium atom, and still more preferably a calcium atom.
  • p is the valence of M and is 1 or 2.
  • R is a hydrogen atom or a hydrocarbon group having 1 to 18 carbon atoms.
  • the hydrocarbon group that can be selected as R include alkyl groups having 1 to 18 carbon atoms, alkenyl groups having 1 to 18 carbon atoms, cycloalkyl groups having 3 to 18 ring carbon atoms, and 6 to 18 ring carbon atoms.
  • the organometallic detergent (C1) may be any of neutral salts, basic salts, overbased salts, and mixtures thereof.
  • the neutral salt, the basic salt, and the overbased salt are used.
  • the ratio [neutral salt / (over) basic salt] to one or more selected from salts is preferably 1/99 to 99/1, more preferably 10/99 to 90/10, still more preferably 20 / 80 to 80/20.
  • the neutral number of the neutral salt is preferably 0 to 30 mgKOH / g, more preferably 0 to 25 mgKOH / g, still more preferably 0 to 20 mgKOH / g. g.
  • the organometallic detergent (C1) is a basic salt or an overbased salt
  • the base number of the basic salt or the overbased salt is preferably 100 to 600 mgKOH / g, more preferably 120 to 550 mgKOH. / G, more preferably 160 to 500 mgKOH / g, still more preferably 200 to 450 mgKOH / g.
  • the “base number” is the same as that in JIS K2501, “Petroleum products and lubricants—neutralization number test method”. Means the base number measured by the perchloric acid method according to the above.
  • the lubricating oil composition of one embodiment of the present invention preferably further contains an alkali metal borate (C2) as the detergent (C) from the viewpoint of making the lubricating oil composition with improved cleanliness. .
  • the content of the component (C2) in terms of boron atoms is preferably 50 to 1000 ppm by mass, based on the total amount (100% by mass) of the lubricating oil composition.
  • the amount is preferably 60 to 700 ppm by mass, more preferably 70 to 500 ppm by mass, and still more preferably 80 to 200 ppm by mass.
  • the content ratio of the component (C2) in terms of boron atom to the total amount of 100 parts by mass in terms of metal atoms of the component (C1) is preferably 0 to 100 parts by mass, more preferably 1 to 80 parts by mass, The amount is preferably 3 to 50 parts by mass, and more preferably 5 to 40 parts by mass.
  • the amount of component (C2) may be adjusted so that the content in terms of boron atoms belongs to the above range. Is preferably 0.01 to 2.0% by mass, more preferably 0.03 to 1.5% by mass, and still more preferably 0.05 to 1.0% by mass, based on the total amount (100% by mass).
  • the alkali metal atom contained in the alkali metal borate (C2) is preferably a potassium atom or a sodium atom, and more preferably a potassium atom, from the viewpoint of improving cleanliness.
  • the borate is an electrically positive compound (salt) containing boron and oxygen and optionally hydrated.
  • borates include salts of borate ions (BO 3 3 ⁇ ) and salts of metaborate ions (BO 2 ⁇ ).
  • the borate ions (BO 3 3 ⁇ ) are, for example, triborate ions (B 3 O 5 ⁇ ), tetraborate ions (B 4 O 7 2 ⁇ ), pentaborate ions (B 5 O 8 ⁇ ). ) And the like can form various polymer ions.
  • alkali metal borate (C2) examples include sodium tetraborate, sodium pentaborate, sodium hexaborate, sodium octaborate, sodium diborate, potassium metaborate, potassium triborate, and tetraborate. Examples thereof include potassium, potassium pentaborate, potassium hexaborate, and potassium octaborate.
  • Alkali metal borates represented by the following general formula (c2-1) are preferred.
  • M ′′ represents an alkali metal atom, preferably a potassium atom or a sodium atom, and more preferably a potassium atom.
  • M represents a number of 2.5 to 4.5.
  • the alkali metal borate (C2) used in one embodiment of the present invention may be a hydrate.
  • Examples of hydrates of alkali metal borates include Na 2 B 4 O 7 ⁇ 10H 2 O, NaBO 2 ⁇ 4H 2 O, KB 3 O 5 ⁇ 4H 2 O, and K 2 B 4 O 7 ⁇ 5H 2.
  • O, K 2 B 4 O 7 ⁇ 8H 2 O, KB 5 O 8 ⁇ 4H 2 O and the like, and hydrates of alkali metal borates represented by the following general formula (c2-2) are preferable.
  • the ratio of boron atom to alkali metal atom in the alkali metal borate (C2) [boron atom / alkali metal atom] is preferably 0.1 / 1 or more, more preferably 0.3 / 1 or more, Preferably it is 0.5 / 1 or more, More preferably, it is 0.7 / 1 or more, Preferably it is 5/1 or less, More preferably, it is 4.5 / 1 or less, More preferably, it is 3.25 / 1 or less. More preferably, it is 2.8 / 1 or less.
  • alkali metal borates (C2) used in one embodiment of the present invention may be used alone or in combination of two or more.
  • the alkali metal borate (C2) is potassium triborate (KB 3 O 5 ) and its hydration from the viewpoint of improving cleanliness and solubility in the base oil (A). (KB 3 O 5 ⁇ nH 2 O (n is a number of 0.5 to 2.4)) is preferable.
  • the lubricating oil composition of one embodiment of the present invention may further contain an ashless detergent (C3) as the detergent (C).
  • the amount of component (C3) is preferably 0 to 10.0% by mass, more preferably 0.1 to 8.0% by mass, and still more preferably based on the total amount (100% by mass) of the lubricating oil composition. 0.5 to 6.0% by mass.
  • the ashless detergent (C3) may be used alone or in combination of two or more.
  • alkenyl succinimide (C31) and boron-modified alkenyl succinimide (C32) are preferable.
  • alkenyl succinimide (C31) include alkenyl succinic monoimide represented by the following general formula (c3-1) and alkenyl succinic acid bisimide represented by the following general formula (c3-2).
  • polybutenyl succinimide (C31) includes compounds represented by the following general formula (c3-1) or (c3-2), alcohols, aldehydes, ketones, alkylphenols, cyclic carbonates, epoxy compounds, and organic compounds.
  • a modified polybutenyl succinimide obtained by reacting at least one selected from acids and the like can also be used.
  • the boron-modified alkenyl succinimide include boron-modified alkenyl succinimide represented by the following general formula (c3-1) or (c3-2).
  • R A , R A1 and R A2 each independently represents an alkenyl group having a mass average molecular weight (Mw) of 500 to 3000 (preferably 1000 to 3000). It is.
  • R B , R B1 and R B2 are each independently an alkylene group having 2 to 5 carbon atoms.
  • x1 is an integer of 1 to 10, preferably an integer of 2 to 5, more preferably 3 or 4.
  • x2 is an integer of 0 to 10, preferably an integer of 1 to 4, more preferably 2 or 3.
  • Examples of the alkenyl group that can be selected as R A , R A1, and R A2 include a polybutenyl group, a polyisobutenyl group, and an ethylene-propylene copolymer. Among these, a polybutenyl group or a polyisobutenyl group is preferable.
  • the alkenyl succinimide (C31) can be produced, for example, by reacting an alkenyl succinic anhydride obtained by reaction of polyolefin and maleic anhydride with a polyamine.
  • the polyolefin include a polymer obtained by polymerizing one or more selected from ⁇ -olefins having 2 to 8 carbon atoms, and a copolymer of isobutene and 1-butene is preferable.
  • polyamines examples include single diamines such as ethylenediamine, propylenediamine, butylenediamine, and pentylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, di (methylethylene) triamine, and dibutylene.
  • polyalkylene polyamines such as triamine, tributylenetetramine, and pentapentylenehexamine; piperazine derivatives such as aminoethylpiperazine; and the like.
  • the boron-modified alkenyl succinimide (C32) can be produced, for example, by reacting alkenyl succinic anhydride obtained by the reaction of the above-mentioned polyolefin with maleic anhydride with the above-mentioned polyamine and boron compound.
  • the boron compound include boron oxide, boron halide, boric acid, boric anhydride, boric acid ester, ammonium salt of boric acid, and the like.
  • the ratio of boron atom and nitrogen atom constituting the boron-modified alkenyl succinimide (C32) [B / N] is preferably 0.5 or more from the viewpoint of improving cleanliness.
  • it is 0.6 or more, More preferably, it is 0.8 or more, More preferably, it is 0.9 or more.
  • the content of the alkenyl succinimide-based compound (C31) in terms of nitrogen atom is preferably 10 to 10 on the basis of the total amount (100% by mass) of the lubricating oil composition. It is 3000 mass ppm, more preferably 50 to 2000 mass ppm, still more preferably 100 to 1400 mass ppm, and still more preferably 200 to 1200 mass ppm.
  • the boron-modified alkenyl succinimide (C32) content in terms of boron atoms is preferably 10 to 10% based on the total amount (100% by mass) of the lubricating oil composition. 1000 ppm by mass, more preferably 30 to 700 ppm by mass, still more preferably 50 to 500 ppm by mass, and still more preferably 100 to 400 ppm by mass. Further, the content of the boron-modified alkenyl succinimide (C32) in terms of nitrogen atom is preferably 10 to 1000 ppm by mass, more preferably 30 to 700, based on the total amount (100% by mass) of the lubricating oil composition. The mass ppm is more preferably 50 to 500 ppm by mass, and still more preferably 100 to 400 ppm by mass.
  • the lubricating oil composition of one embodiment of the present invention preferably contains both alkenyl succinimide (C31) and boron-modified alkenyl succinimide (C32).
  • the ratio of the content of boron-modified alkenylsuccinimide (C32) in terms of boron atom to the content in terms of nitrogen atom of alkenyl succinimide (C31) [(C32) / (C31)] is preferably It is 0.5 to 5, more preferably 0.7 to 3, still more preferably 0.8 to 2, and still more preferably 0.9 to 1.5.
  • the lubricating oil composition of the present invention contains a hindered amine antioxidant (D1) as an antioxidant (D) in an amount of 900 ppm by mass or more in terms of nitrogen atom.
  • a hindered amine antioxidant (D1) as an antioxidant (D) in an amount of 900 ppm by mass or more in terms of nitrogen atom.
  • the content of the organometallic detergent (C1) in terms of metal atom is adjusted to 1400 mass ppm or less, but by containing a hindered amine antioxidant (D1). , Improving cleanliness.
  • the hindered amine antioxidant (D1) does not contain a metal atom, the hindered amine antioxidant (D1) contributes to the improvement of the antioxidant performance without increasing the sulfated ash content of the lubricating oil composition, and the oxidative deterioration of the lubricating oil composition accompanying use. Can be suppressed. That is, due to the antioxidant performance of the component (D1), the amount of sludge produced with use can be reduced, and the cleanliness can be kept good. This maintainability of cleanliness is more effective than when the above-mentioned ashless detergent (C3) is used.
  • the content of the component (D1) in terms of nitrogen atom is 900 mass ppm or more based on the total amount (100 mass%) of the lubricating oil composition, preferably 950.
  • Mass ppm or more more preferably 1000 mass ppm or more, more preferably 1100 mass ppm or more, still more preferably 1200 mass ppm or more, and preferably 2000 mass ppm or less, more preferably 1800 mass ppm or less, still more preferably Is 1600 mass ppm or less, more preferably 1500 mass ppm or less.
  • the component (D1) may be prepared so that the content in terms of nitrogen atom falls within the above range.
  • the total amount (100% by mass) preferably 2.10 to 5.00% by mass, more preferably 2.30 to 4.70% by mass, still more preferably 2.50 to 4.50% by mass, and still more.
  • the amount is preferably 2.80 to 4.20% by mass.
  • the hindered amine antioxidant (D1) used in the present invention may be an antioxidant having a structure represented by the following formula (d).
  • a hindered amine antioxidant (D1) may be used independently, or may use 2 or more types together.
  • the hindered amine antioxidant (D1) is preferably a compound represented by the following general formula (d-1) or a compound represented by the following general formula (d-2).
  • a compound represented by the following general formula (d-3) or a compound represented by the following general formula (d-4) is more preferable.
  • R D1 is each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. Preferably there is.
  • R D2 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 6 to 18 ring carbon atoms, an aryl group having 6 to 18 ring carbon atoms, a hydroxyl group , An amino group, or a group represented by —O—CO—R ′ (R ′ is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms).
  • Z represents an alkylene group having 1 to 20 carbon atoms, a cycloalkylene group having 6 to 18 ring carbon atoms, an arylene group having 6 to 18 ring carbon atoms, an oxygen atom, or a sulfur atom. Or a group represented by —O—CO— (CH 2 ) n —CO—O— (n is an integer of 1 to 20).
  • R ′ represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • n is an integer of 1 to 20.
  • the lubricating oil composition of one embodiment of the present invention further comprises an antioxidant (D2) other than the component (D1) as the antioxidant (D) from the viewpoint of a lubricating oil composition with improved oxidation stability. You may contain.
  • the amount of component (D2) is preferably 0 to 8.0% by mass, more preferably 0, based on the total amount (100% by mass) of the lubricating oil composition. .05 to 6.0% by mass, more preferably 0.1 to 4.5% by mass, and still more preferably 0.3 to 3.0% by mass.
  • the content ratio of the component (D2) to the total amount of the component (D1) is 100 parts by mass, preferably 0 to 100 parts by mass, more preferably 1 to 80 parts by mass, still more preferably 5 to 60 parts by mass, More preferably, it is 10 to 50 parts by mass.
  • antioxidant (D2) examples include phenol-based antioxidants, amine-based antioxidants other than the component (D1), sulfur-based antioxidants, phosphorus-based antioxidants, and the like. These antioxidants (D2) may be used alone or in combination of two or more.
  • phenolic antioxidants examples include 2,6-di-tert-butylphenol, 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, Isooctyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, benzenepropanoic acid-3 Monophenolic antioxidants such as 1,5-bis (1,1-dimethyl-ethyl) -4-hydroxy-, C7-C9 side chain alkyl ester; 4,4′-methylenebis (2,6-di-tert- Diphenolic antioxidants such as butylphenol) and 2,2'-methylenebis (4-ethyl-6-tert-butylphenol) ; It includes the like; component (D1) Hindered phenol-based antioxidant other than.
  • amine antioxidants other than the component (D1) include diphenylamine, diphenylamine antioxidants such as alkylated diphenylamine having an alkyl group having 3 to 20 carbon atoms; ⁇ -naphthylamine, phenyl- ⁇ -naphthylamine, carbon And naphthylamine antioxidants such as substituted phenyl- ⁇ -naphthylamines having an alkyl group of 3 to 20;
  • sulfur-based antioxidant include dilauryl-3,3′-thiodipropionate.
  • phosphorus antioxidants include phosphites.
  • the weight ratio is preferably 0.1 / 1 to 1.0 / 1, more preferably 0.2 / 1 to 0.9 / 1, and still more preferably 0. .3 / 1 to 0.8 / 1.
  • the lubricating oil composition of one embodiment of the present invention may further contain zinc dithiophosphate (ZnDTP) (E1) as the antiwear agent (E).
  • ZnDTP zinc dithiophosphate
  • MoDTC molybdenum sulfide film
  • the lubricating oil composition of the present invention when the lubricating oil composition of the present invention further contains ZnDTP, a stronger phosphorus coating derived from ZnDTP and a molybdenum sulfide coating derived from MoDTP can be formed. Moreover, since the lubricating oil composition of the present invention can adjust the content of ZnDTP to be low, the wear resistance and the friction reducing effect can be further improved in a balanced manner. Therefore, even if the lubricating oil composition of one embodiment of the present invention further contains ZnDTP, the wear resistance can be further improved without reducing the friction reduction effect.
  • the content of the component (E1) in terms of zinc atoms is preferably 100 to 700 ppm by mass, based on the total amount (100% by mass) of the lubricating oil composition.
  • the amount is preferably 150 to 650 ppm by mass, more preferably 200 to 600 ppm by mass, and still more preferably 250 to 550 ppm by mass. If the said content is 100 mass ppm or more, it can be set as the lubricating oil composition which improved abrasion resistance more. Moreover, if the said content is 700 mass ppm or less, the fall of the friction reduction effect of the lubricating oil composition obtained can be suppressed.
  • the amount of the component (E1) may be adjusted so that the content in terms of zinc atom belongs to the above range, but the total amount of the lubricating oil composition (100% by mass), preferably 0.01 to 1.00% by mass, more preferably 0.05 to 0.90% by mass, still more preferably 0.1 to 0.85% by mass, and still more preferably 0.2 to 0.80% by mass.
  • the content ratio of the component (E1) in terms of phosphorus atoms to the total amount of 100 parts by mass in terms of phosphorus atoms of the component (B1) is preferably 0 to 300 parts by mass, more preferably 0 to 200 parts by mass. More preferably, it is 0 to 100 parts by mass, and still more preferably 0 to 80 parts by mass.
  • zinc dithiophosphate (E1) a compound represented by the following general formula (e-1) is preferable.
  • zinc dithiophosphate (E1) may be used independently or may use 2 or more types together.
  • R E1 to R E4 each independently represent a hydrocarbon group, and may be the same or different.
  • the number of carbon atoms of the hydrocarbon group that can be selected as R E1 to R E4 is preferably 1 to 20, more preferably 1 to 16, still more preferably 3 to 12, and still more preferably 3 to 10.
  • Specific examples of the hydrocarbon group that can be selected as R E1 to R E4 are the same as the hydrocarbon groups that can be selected as R 1 to R 4 in formula (b1-1) or (b1-2).
  • an alkyl group is preferable, and a primary or secondary alkyl group is more preferable.
  • the lubricating oil composition of one aspect of the present invention is an ashless friction modifier, an antiwear agent, an extreme pressure agent, a viscosity index improver, a metal, which does not fall under the above-described components, as long as the effects of the present invention are not impaired.
  • You may contain other additives for lubricating oils, such as a deactivator, a pour point depressant, a rust inhibitor, and an antifoamer. These lubricant additives may be used alone or in combination of two or more.
  • each content of these additives for lubricating oil can be appropriately adjusted within a range not impairing the effects of the present invention, but is usually 0.001 based on the total amount (100% by mass) of the lubricating oil composition. -15% by mass, preferably 0.005-10% by mass, more preferably 0.01-8% by mass.
  • the total content of these lubricating oil additives is preferably 0 to 25% by mass based on the total amount of the lubricating oil composition (100% by mass). More preferably, it is 0 to 20% by mass, and still more preferably 0 to 15% by mass.
  • additives such as viscosity index improvers and antifoaming agents are dissolved in diluent oil such as mineral oil, synthetic oil, and light oil in consideration of handling properties and solubility in base oil (A). In some cases, it may be blended with other ingredients in the form of a solution.
  • diluent oil such as mineral oil, synthetic oil, and light oil
  • the above-described content of additives such as an antifoaming agent and a viscosity index improver means a content in terms of active ingredients (resin content) excluding diluent oil. .
  • Examples of the ashless friction modifier include, for example, an aliphatic group having at least one alkyl group or alkenyl group having 6 to 30 carbon atoms, particularly a linear alkyl group or straight chain alkenyl group having 6 to 30 carbon atoms in the molecule.
  • Examples include amines, fatty acid esters, fatty acid amides, fatty acids, aliphatic alcohols and aliphatic ethers.
  • Antiwear agents or extreme pressure agents other than the above components include, for example, zinc phosphate, zinc dithiocarbamate, disulfides, sulfurized olefins, sulfurized fats and oils, sulfurized esters, thiocarbonates, thiocarbamates, polysulfides, etc. Sulfur-containing compounds; phosphorous esters, phosphate esters, phosphonate esters, and phosphorus-containing compounds such as amine salts or metal salts thereof; thiophosphite esters, thiophosphate esters, thiophosphonate esters And sulfur and phosphorus containing antiwear agents such as amine salts or metal salts thereof.
  • the viscosity index improver for example, polymethacrylate, dispersed polymethacrylate, olefin copolymer (for example, ethylene-propylene copolymer), dispersed olefin copolymer, styrene copolymer (for example, Styrene-diene copolymer, styrene-isoprene copolymer, etc.).
  • the structure of the viscosity index improver may be a straight chain or a branched chain.
  • the mass average molecular weight (Mw) of these viscosity index improvers is usually 500 to 1,000,000, preferably 5,000 to 800,000, more preferably 10,000 to 600,000. It is set as appropriate according to the type of coalescence.
  • the SSI (Shear Stability Index) of the resin component constituting the viscosity index improver is preferably 1 to 30.
  • the value of SSI indicates the ability to resist decomposition of the resin component constituting the viscosity index improver, and the larger the SSI value, the more unstable the resin component is and the more easily decomposed.
  • the SSI of the resin component constituting the viscosity index improver means a value measured in accordance with ASTM D6278.
  • metal deactivator examples include benzotriazole compounds, tolyltriazole compounds, thiadiazole compounds, imidazole compounds, pyrimidine compounds, and the like.
  • pour point depressant examples include ethylene-vinyl acetate copolymer, condensate of chlorinated paraffin and naphthalene, condensate of chlorinated paraffin and phenol, polymethacrylate, polyalkylstyrene and the like.
  • rust preventive examples include petroleum sulfonate, alkylbenzene sulfonate, dinonyl naphthalene sulfonate, alkenyl succinate, polyhydric alcohol ester and the like.
  • antifoaming agent examples include silicone oil, fluorosilicone oil, and fluoroalkyl ether.
  • the content of molybdenum atoms in the lubricating oil composition of one embodiment of the present invention is preferably 400 to 3000 ppm by mass, more preferably 500 to 2500 ppm by mass, based on the total amount (100% by mass) of the lubricating oil composition. More preferably, it is 700 to 2000 ppm by mass, still more preferably 800 to 1800 ppm by mass, and particularly preferably 900 to 1500 ppm by mass.
  • the content of calcium atoms in the lubricating oil composition of one embodiment of the present invention is preferably 50 to 1400 ppm by mass, more preferably 60 to 1250 ppm by mass, based on the total amount (100% by mass) of the lubricating oil composition. More preferably, it is 70 to 1100 ppm by mass, more preferably 80 to 1000 ppm by mass, still more preferably 90 to 800 ppm by mass, and particularly preferably 100 to 600 ppm by mass.
  • the content of phosphorus atoms in the lubricating oil composition of one embodiment of the present invention is preferably 200 to 1100 ppm by mass, more preferably 300 to 1000 ppm by mass, based on the total amount (100% by mass) of the lubricating oil composition. More preferably, it is 400 to 900 ppm by mass, and still more preferably 500 to 850 ppm by mass.
  • the kinematic viscosity at 100 ° C. of the lubricating oil composition of one embodiment of the present invention is preferably 3 to 20 mm 2 / s, more preferably 3 to 10 mm 2 / s, and still more preferably 5 to 8 mm 2 / s.
  • the viscosity index of the lubricating oil composition of one embodiment of the present invention is preferably 100 or more, more preferably 120 or more, and still more preferably 130 or more.
  • the lubricating oil composition of one embodiment of the present invention can be preferably used as a lubricating oil for internal combustion engines such as automobiles such as two-wheeled vehicles and four-wheeled vehicles, gasoline engines such as generators and ships, diesel engines, and gas engines. Further, since it has a low sulfate ash content, it is particularly suitable as a lubricating oil composition for an internal combustion engine equipped with an exhaust gas aftertreatment device (particularly, a particulate filter or an exhaust gas purification device). That is, this invention can also provide the usage method of a lubricating oil composition which uses the said lubricating oil composition for the internal combustion engine provided with the exhaust gas after-treatment apparatus.
  • a direct injection gasoline engine that is, a downsizing engine
  • a supercharger such as a supercharger or a turbocharger
  • a diesel engine is preferable.
  • the lubricating oil composition of one aspect of the present invention is preferably used to fill these internal combustion engines, particularly diesel engines equipped with an exhaust gas aftertreatment device, and lubricate each component related to these internal combustion engines. Used.
  • the present invention also provides a method for producing a lubricating oil composition having a sulfated ash content of 0.70% by mass or less. That is, the manufacturing method of the lubricating oil composition of this invention has the following process (I).
  • the components (A), (B1), (C1), and (D1) to be blended are the same as the components contained in the lubricating oil composition of the present invention described above, and are suitable.
  • the types of various components and the content of each component are also as described above. Moreover, in this process, you may mix
  • the properties of the lubricating oil composition obtained through the step (I) are the same as the lubricating oil composition of the present invention described above.
  • each physical property value of each component used by the Example and the comparative example and the obtained lubricating oil composition was measured based on the method below.
  • Examples 1 to 13 and Comparative Examples 1 to 6 The following base oils and various additives were added in the blending amounts shown in Tables 1 to 3 and mixed well to prepare lubricating oil compositions. Details of the base oil and various additives used in Examples and Comparative Examples are shown below.
  • component (B1) corresponds to component (B1).
  • Potassium borate hydrate Oronite Japan Co., Ltd., product name “OLOA 9750”, a compound in which M ′′ in the general formula (c2-2) is a potassium atom.
  • Hindered amine antioxidant (1) manufactured by BASF, product name “XPDL-590”, 2,2,6,6-tetramethylpiperidin-4-yl dodecanoate (in the general formula (d-3))
  • R D1 is a hydrogen atom
  • R ′ is an undecyl group
  • nitrogen atom content 4.13 mass%, corresponding to component (D1).
  • -Phenolic antioxidant (1) benzenepropanoic acid-, 3,5-bis (1,1-dimethyl-ethyl) -4-hydroxy-, C7-C9 side chain alkyl ester, applicable to component (D2).
  • Other additives a mixture of metal deactivator, pour point depressant, and antifoam agent.
  • NOx blowing test 100 g of each lubricating oil composition prepared in Examples and Comparative Examples was heated to 140 ° C.
  • air having a flow rate of 100 ml / min and NO gas (NO concentration: 8000 volume ppm) obtained by diluting nitrogen monoxide (NO) with a flow rate of 100 ml / min are mixed.
  • the mixed gas was continuously introduced for 72 hours to obtain NOx deteriorated oils, respectively.
  • (2) Measurement of base number of NOx deteriorated oil Using the NOx deteriorated oil obtained in (1) above, the base number after the test (hydrochloric acid method) was measured by the hydrochloric acid method in accordance with JIS K2501.
  • Hot tube test of NOx deteriorated oil A test oil was prepared by adding 1% by mass of 1-ethyl-4-nitro-benzene to the NOx deteriorated oil obtained in (1) above. Then, a glass tube with an inner diameter of 2 mm is set vertically on the heater block, and the adjusted test oil is fed at a rate of 0.3 ml / hour and air at a rate of 10 ml / minute from the lower part of the glass tube. was kept at 240 ° C., and a hot tube test for 16 hours was conducted.
  • deposits (deposits) adhering to the inside of the glass tube are in 0.5 point increments ranging from 0 (black) to 10 (colorless: no deposit deposited). It was evaluated with a rating of. It can be said that the higher the number is, the smaller the deposit volume is, and the more excellent the cleanability of the lubricating oil composition. In the present example, the case of 5.0 or more was considered acceptable, but preferably 6.0 or more. In addition, it was also observed whether deposits (deposits) were attached to the upper part of the glass tube after the hot tube test was performed for 16 hours.
  • test plate material: FC250, shape: length 58mm x width 20mm x thickness 4mm
  • test cylinder pin material: SUJ-2, shape
  • the friction coefficient was measured at an amplitude of 8 mm, a frequency of 20 Hz, an oil temperature of 80 ° C., and a load of 80 N. It can be said that the smaller the value of the friction coefficient is, the better the lubricating oil composition is in the friction reducing effect.
  • the lubricating oil compositions prepared in Examples 1 to 13 were less ash-differentiated than the lubricating oil compositions prepared in Comparative Examples 1 to 6, but cleanliness, abrasion resistance, In addition, the friction reduction effect was excellent in a balanced manner.

Abstract

Provided is a lubricating oil composition which has a sulfated ash content of 0.70% by mass or less and includes: a base oil (A); 400 ppm by mass or more of a molybdenum dithiophosphate (B1) in terms of molybdenum atoms; 1400 ppm by mass or less of an organic metal based detergent (C1) in terms of metal atoms, the metal based detergent (C1) including metal atoms selected from alkali metal atoms and alkali earth metal atoms; and 900 ppm by mass or more of a hindered amine antioxidant (D1) in terms of nitrogen atoms. The lubricating oil composition has low ash content while having a good balance of improved cleanliness, wear resistance, and friction reducing effects.

Description

潤滑油組成物、及び当該潤滑油組成物の製造方法Lubricating oil composition and method for producing the lubricating oil composition
 本発明は、潤滑油組成物、及び当該潤滑油組成物の製造方法に関する。 The present invention relates to a lubricating oil composition and a method for producing the lubricating oil composition.
 近年、地球規模での環境規制はますます厳しくなり、自動車を取り巻く状況も、燃費規制、排出ガス規制等の側面から厳しくなる一方である。特に、自動車等の車両の燃費性能向上は大きな課題であり、その課題を解決するための一つの手段として、車両に使用される内燃機油用潤滑油組成物には、更なる低摩擦特性が要求されている。 In recent years, environmental regulations on a global scale have become stricter, and the situation surrounding automobiles is becoming stricter from the aspects of fuel efficiency regulations and exhaust gas regulations. In particular, improvement in fuel efficiency of vehicles such as automobiles is a major issue, and as one means for solving the problem, the lubricating oil composition for internal combustion oils used in vehicles requires further low friction characteristics. Has been.
 摩擦係数を低減させた潤滑油組成物とするために、有機モリブデン化合物等の摩擦調整剤が一般的に使用されている。
 例えば、特許文献1には、基油に、有機モリブデン化合物、ホウ素系コハク酸イミド、及びサリチル酸のアルカリ土類金属塩を所定量配合してなるエンジン油組成物が開示されている。
 特許文献1には、当該エンジン油組成物は、エンジンの摩擦損失低減効果が長期にわたって安定的に発現できる旨の記載がある。
In order to obtain a lubricating oil composition having a reduced friction coefficient, a friction modifier such as an organic molybdenum compound is generally used.
For example, Patent Document 1 discloses an engine oil composition in which a predetermined amount of an organic molybdenum compound, a boron-based succinimide, and an alkaline earth metal salt of salicylic acid is blended with a base oil.
Patent Document 1 describes that the engine oil composition can stably exhibit the engine friction loss reduction effect over a long period of time.
特開平5-163497号公報JP-A-5-163497
 ところで、大気汚染抑制の観点から、ディーゼルエンジン排出ガス中の窒素酸化物(NOx)や粒子状排出物質(パティキュレート)の低減が求められており、その対策として三元触媒、酸化触媒、ディーゼルパティキュレートフィルター等を用いた排ガス後処理装置の開発が進められている。
 また、近年、燃費性能を向上させるため、ターボチャージャー等の過給機を搭載した直噴ガソリンエンジンの開発が進められている。ガソリンエンジンの直噴化により、ディーゼルエンジンと同様に、排出ガス中に含まれる粒子状物質(PM)等のスーツが発生する。そのため、ガソリンエンジンにおいても、ガソリンパティキュレートフィルターのような排ガス後処理装置を装着する必要がある。
 しかしながら、このような排ガス後処理装置を装着したエンジンに対して、金属系清浄剤を含む内燃機関用潤滑油組成物を用いた場合、金属系清浄剤等に由来する金属分が、排ガス後処理装置中のフィルター内部に堆積し、フィルターの閉塞や触媒活性の低下を引き起こす恐れがある。
 当該問題を回避するために、潤滑油組成物の低灰分化が必要となるが、金属系清浄剤の含有量の低減は、塩基価の低下を引き起こし、清浄性の低下に繋がり易く、コーキング(潤滑油組成物が炭化、変質して炭化物を生成する現象)が生じる要因ともなる。
By the way, from the viewpoint of air pollution control, there is a demand for reduction of nitrogen oxides (NOx) and particulate emissions (particulates) in diesel engine exhaust gas. As countermeasures, three-way catalysts, oxidation catalysts, diesel particulates are required. Development of an exhaust gas aftertreatment device using a curate filter or the like is underway.
In recent years, direct-injection gasoline engines equipped with turbochargers and other superchargers have been developed to improve fuel efficiency. By direct injection of a gasoline engine, a suit such as particulate matter (PM) contained in exhaust gas is generated in the same manner as a diesel engine. Therefore, it is necessary to install an exhaust gas aftertreatment device such as a gasoline particulate filter even in a gasoline engine.
However, when an internal combustion engine lubricating oil composition containing a metallic detergent is used for an engine equipped with such an exhaust gas aftertreatment device, the metal component derived from the metallic detergent etc. is There is a risk of depositing inside the filter in the apparatus and causing clogging of the filter and a decrease in catalytic activity.
In order to avoid the problem, low ash differentiation of the lubricating oil composition is required. However, the reduction in the content of the metal detergent causes a decrease in the base number, which easily leads to a decrease in cleanliness. This also causes a phenomenon that the lubricating oil composition is carbonized and denatured to generate carbides).
 また、本発明者らの検討によれば、金属系清浄剤を多く含む内燃機油用潤滑油組成物は、エンジン部材との摩擦係数が上昇し易く、摩擦低減効果の低下の要因となり得ることが分かった。
 そのため、清浄性及び摩擦低減効果を共に良好にしつつも、低灰分化された内燃機油用潤滑油組成物が求められている。
 なお、特許文献1に記載のエンジン油組成物は、そもそも低灰分化されたものではない。また、特許文献1では、開示されたエンジン油組成物の低灰分化に伴う清浄性の低下の問題についての検討はなされていない。
Further, according to the study by the present inventors, the lubricating oil composition for internal combustion engine oils containing a large amount of metallic detergent can easily increase the coefficient of friction with the engine member, and can cause a decrease in the friction reduction effect. I understood.
Therefore, there is a demand for a low ash-differentiated lubricating oil composition for internal combustion engine oil while improving both cleanliness and friction reduction effect.
Note that the engine oil composition described in Patent Document 1 is not low-ash differentiated in the first place. Moreover, in patent document 1, examination about the problem of the cleanliness fall accompanying the low ash differentiation of the disclosed engine oil composition is not made | formed.
 さらに、車両等に使用される潤滑油組成物には、ピストンリング及びライナーを備えた摺動機構を円滑に潤滑させつつ、耐摩耗性も求められる。
 一般的に、耐摩耗性が良好な潤滑油組成物を得るために、ジチオリン酸亜鉛(ZnDTP)等の耐摩耗剤が使用される。耐摩耗剤は、摺動部材の金属表面への吸着、表面の金属原子との反応、及び金属表面でのポリマーの生成等によって、金属表面に被膜を形成することで、耐摩耗性の向上に寄与する。
 しかしながら、潤滑油組成物中のZnDTPの含有量が増加すると、当該潤滑油組成物の摩擦低減効果が低下する傾向にある。
 そのため、耐摩耗性を向上させつつも、良好な摩擦低減効果を保持し得る潤滑油組成物も求められている。
Furthermore, the lubricating oil composition used for vehicles and the like is also required to have wear resistance while smoothly lubricating a sliding mechanism including a piston ring and a liner.
Generally, an antiwear agent such as zinc dithiophosphate (ZnDTP) is used in order to obtain a lubricating oil composition having good wear resistance. The anti-wear agent improves wear resistance by forming a film on the metal surface by adsorbing the sliding member to the metal surface, reacting with metal atoms on the surface, and forming a polymer on the metal surface. Contribute.
However, when the content of ZnDTP in the lubricating oil composition increases, the friction reducing effect of the lubricating oil composition tends to decrease.
Therefore, there is also a demand for a lubricating oil composition that can maintain a good friction reducing effect while improving wear resistance.
 本発明は、上記事情に鑑みてなされたもので、低灰分化されつつも、清浄性、耐摩耗性、及び摩擦低減効果をバランス良く向上させた潤滑油組成物、及び当該潤滑油組成物の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and the lubricating oil composition having improved cleanliness, wear resistance, and friction reduction effect in a well-balanced manner while being low-ash-differentiated, and the lubricating oil composition An object is to provide a manufacturing method.
 本発明者らは、硫酸灰分を所定値以下に調製した潤滑油組成物において、基油と共に、ジチオリン酸モリブデン、有機金属系清浄剤、及びヒンダードアミン系酸化防止剤を含有し、さらにこの3種の成分の含有量を所定の範囲に調製し、さらにすることで、上記課題を解決し得ることを見出し、本発明を完成させた。 In the lubricating oil composition prepared by adjusting the sulfated ash content to a predetermined value or less, the present inventors contain molybdenum dithiophosphate, an organometallic detergent, and a hindered amine antioxidant together with the base oil. The present inventors have found that the above-mentioned problems can be solved by adjusting the content of the components to a predetermined range and further improving the present invention.
 すなわち本発明は、下記[1]~[3]を提供する。
[1]基油(A)と、
 ジチオリン酸モリブデン(B1)を、モリブデン原子換算で、400質量ppm以上と、
 アルカリ金属原子及びアルカリ土類金属原子から選ばれる金属原子を含む有機金属系清浄剤(C1)を、当該金属原子換算で、1400質量ppm以下と、
 ヒンダードアミン系酸化防止剤(D1)を、窒素原子換算で、900質量ppm以上と、
を含有し、
 硫酸灰分が0.70質量%以下である、潤滑油組成物。
[2]上記[1]に記載の潤滑油組成物を、排ガス後処理装置を備えた内燃機関に用いる、潤滑油組成物の使用方法。
[3]下記工程(I)を有する、潤滑油組成物の製造方法。
工程(I):基油(A)と、
 ジチオリン酸モリブデン(B1)を、モリブデン原子換算で、400質量ppm以上と、
 アルカリ金属原子及びアルカリ土類金属原子から選ばれる金属原子を含む有機金属系清浄剤(C1)を、当該金属原子換算で、1400質量ppm以下と、
 ヒンダードアミン系酸化防止剤(D1)を、窒素原子換算で、900質量ppm以上と、
を配合し、硫酸灰分が0.70質量%以下となる潤滑油組成物を得る工程。
That is, the present invention provides the following [1] to [3].
[1] base oil (A);
Molybdenum dithiophosphate (B1), in terms of molybdenum atom, 400 mass ppm or more,
An organometallic detergent (C1) containing a metal atom selected from an alkali metal atom and an alkaline earth metal atom is 1400 mass ppm or less in terms of the metal atom,
The hindered amine-based antioxidant (D1) is 900 mass ppm or more in terms of nitrogen atom,
Containing
A lubricating oil composition having a sulfated ash content of 0.70 mass% or less.
[2] A method for using a lubricating oil composition, wherein the lubricating oil composition according to [1] is used for an internal combustion engine equipped with an exhaust gas aftertreatment device.
[3] A method for producing a lubricating oil composition, comprising the following step (I).
Step (I): base oil (A),
Molybdenum dithiophosphate (B1), in terms of molybdenum atom, 400 mass ppm or more,
An organometallic detergent (C1) containing a metal atom selected from an alkali metal atom and an alkaline earth metal atom is 1400 mass ppm or less in terms of the metal atom,
The hindered amine-based antioxidant (D1) is 900 mass ppm or more in terms of nitrogen atom,
To obtain a lubricating oil composition having a sulfated ash content of 0.70% by mass or less.
 本発明の潤滑油組成物は、低灰分化されつつも、清浄性、耐摩耗性、及び摩擦低減効果のいずれも優れる。 The lubricating oil composition of the present invention is excellent in all of cleanliness, wear resistance, and friction reduction effect while being low-ash differentiated.
 本明細書において、「アルカリ金属原子」とは、リチウム原子(Li)、ナトリウム原子(Na)、カリウム原子(K)、ルビジウム原子(Rb)、セシウム原子(Cs)、及びフランシウム原子(Fr)を指す。
 また、「アルカリ土類金属原子」とは、ベリリウム原子(Be)、マグネシウム原子(Mg)、カルシウム原子(Ca)、ストロンチウム原子(Sr)、及びバリウム原子(Ba)を指す。
In this specification, the “alkali metal atom” means a lithium atom (Li), a sodium atom (Na), a potassium atom (K), a rubidium atom (Rb), a cesium atom (Cs), and a francium atom (Fr). Point to.
The “alkaline earth metal atom” refers to a beryllium atom (Be), a magnesium atom (Mg), a calcium atom (Ca), a strontium atom (Sr), and a barium atom (Ba).
 本明細書において、各原子の含有量は、以下の規格に準拠して測定された値を意味する。
・モリブデン原子(Mo)、カルシウム原子(Ca)、ホウ素原子(B)、カリウム原子(K)、亜鉛原子(Zn)、及びリン原子(P):JPI-5S-38-92に準拠して測定した。
・硫黄原子(S):JIS K2541-6に準拠して測定した。
・窒素原子(N):JIS K2609に準拠して測定した。
In the present specification, the content of each atom means a value measured according to the following standard.
Molybdenum atom (Mo), calcium atom (Ca), boron atom (B), potassium atom (K), zinc atom (Zn), and phosphorus atom (P): measured in accordance with JPI-5S-38-92 did.
Sulfur atom (S): Measured according to JIS K2541-6.
Nitrogen atom (N): Measured according to JIS K2609.
〔潤滑油組成物〕
 本発明の潤滑油組成物は、基油(A)と、ジチオリン酸モリブデン(MoDTP)(B1)と、有機金属系清浄剤(C1)と、ヒンダードアミン系酸化防止剤(D1)とを含有する。
 また、本発明の潤滑油組成物は、硫酸灰分が0.70質量%以下に調製されており、低灰分化された潤滑油組成物である。硫酸灰分は、潤滑油組成物中の有機金属系清浄剤(C1)やZnDTP等の金属系化合物の含有量を少なくすることで、低く調整することができる。
[Lubricating oil composition]
The lubricating oil composition of the present invention contains a base oil (A), molybdenum dithiophosphate (MoDTP) (B1), an organometallic detergent (C1), and a hindered amine antioxidant (D1).
Moreover, the lubricating oil composition of the present invention is a lubricating oil composition having a sulfated ash content of 0.70% by mass or less and having a low ash differentiation. The sulfated ash content can be adjusted to a low level by reducing the content of metal-based compounds such as the organometallic detergent (C1) and ZnDTP in the lubricating oil composition.
 本発明の潤滑油組成物は、有機金属系清浄剤(C1)やZnDTP等の金属系化合物の含有量を低減し、低灰分化されたものであるため、排ガス後処理装置を装着したエンジンに使用したとしても、フィルターの閉塞や触媒活性の低下といった弊害を防止することができる。
 通常の場合、有機金属系清浄剤(C1)の含有量を減らすと、得られる潤滑油組成物の塩基価が低下し、清浄性の低下が引き起こされ、コーキングが生じる要因ともなる。
 これに対して、本発明の潤滑油組成物は、酸化防止剤として、ヒンダードアミン系酸化防止剤(D1)を含有しているため、有機金属系清浄剤(C1)の含有量が少量であっても、清浄性を良好に保つことができ、コーキングの発生も抑制することができる。
Since the lubricating oil composition of the present invention is a low ash-differentiated product with a reduced content of metal compounds such as organometallic detergent (C1) and ZnDTP, it is applied to an engine equipped with an exhaust gas aftertreatment device. Even if it is used, it is possible to prevent problems such as clogging of the filter and a decrease in catalytic activity.
Usually, when the content of the organometallic detergent (C1) is reduced, the base number of the resulting lubricating oil composition is lowered, causing a decrease in cleanliness and causing caulking.
On the other hand, since the lubricating oil composition of the present invention contains a hindered amine antioxidant (D1) as an antioxidant, the content of the organometallic detergent (C1) is small. However, the cleanliness can be kept good and the occurrence of coking can be suppressed.
 また、有機金属系清浄剤(C1)やZnDTP等の金属系化合物の含有量を低減し、硫酸灰分を0.70質量%以下とすることで、優れた摩擦低減効果を発現し得る潤滑油組成物とすることができる。
 ただし、本発明の潤滑油組成物においては、有機金属系清浄剤(C1)やZnDTPの含有量を低減し、硫酸灰分を0.70質量%以下に調製すると共に、モリブデン系化合物として、ジチオリン酸モリブデン(B1)を含有することで、摩擦低減効果の更なる向上を可能としている。
 また、上記成分を含み、金属系化合物が低減された潤滑油組成物において、ジチオリン酸モリブデン(B1)を用いることで、ZnDTPの含有量を低減させても、潤滑油組成物の耐摩耗性の効果的に向上にさせることができる。
Moreover, the lubricating oil composition which can express the outstanding friction reduction effect by reducing content of metal compounds, such as organometallic detergent (C1) and ZnDTP, and making sulfated ash content into 0.70 mass% or less. It can be a thing.
However, in the lubricating oil composition of the present invention, the content of the organometallic detergent (C1) and ZnDTP is reduced, the sulfated ash content is adjusted to 0.70% by mass or less, and the molybdenum compound is dithiophosphoric acid. By containing molybdenum (B1), the friction reduction effect can be further improved.
In addition, in the lubricating oil composition containing the above components and having a reduced metal compound, the use of molybdenum dithiophosphate (B1) can reduce the wear resistance of the lubricating oil composition even if the content of ZnDTP is reduced. It can be improved effectively.
 つまり、本発明の潤滑油組成物は、硫酸灰分が0.70質量%以下に調製すると共に、ジチオリン酸モリブデン(B1)、有機金属系清浄剤(C1)、及びヒンダードアミン系酸化防止剤(D1)を所定の含有量で併用することで、当該潤滑油組成物の清浄性、耐摩耗性、及び摩擦低減効果をバランス良く向上したものとなり得る。 That is, the lubricating oil composition of the present invention is prepared such that the sulfated ash content is 0.70% by mass or less, and the molybdenum dithiophosphate (B1), the organometallic detergent (C1), and the hindered amine antioxidant (D1). In combination with a predetermined content, the cleanliness, wear resistance, and friction reduction effect of the lubricating oil composition can be improved in a well-balanced manner.
 本発明の一態様の潤滑油組成物の硫酸灰分としては、上記観点から、当該潤滑油組成物の全量(100質量%)基準で、好ましくは0.60質量%以下、より好ましくは0.55質量%以下、更に好ましくは0.50質量%以下、より更に好ましくは0.40質量%以下、特に好ましくは0.38質量%以下である。
 また、本発明の一態様の潤滑油組成物の硫酸灰分としては、成分(B1)及び(C1)の含有量を考慮すると、当該潤滑油組成物の全量(100質量%)基準で、好ましくは0.06質量%以上、より好ましくは0.10質量%以上、更に好ましくは0.15質量%以上、より更に好ましくは0.20質量%以上、特に好ましくは0.22質量%以上である。
 なお、本明細書において、硫酸灰分は、JIS K2272に準拠して測定した値を意味する。
From the above viewpoint, the sulfated ash content of the lubricating oil composition of one embodiment of the present invention is preferably 0.60% by mass or less, more preferably 0.55, based on the total amount (100% by mass) of the lubricating oil composition. It is not more than mass%, more preferably not more than 0.50 mass%, still more preferably not more than 0.40 mass%, particularly preferably not more than 0.38 mass%.
In addition, the sulfated ash content of the lubricating oil composition of one embodiment of the present invention is preferably based on the total amount (100% by mass) of the lubricating oil composition, considering the contents of the components (B1) and (C1). It is 0.06 mass% or more, More preferably, it is 0.10 mass% or more, More preferably, it is 0.15 mass% or more, More preferably, it is 0.20 mass% or more, Most preferably, it is 0.22 mass% or more.
In the present specification, sulfated ash means a value measured in accordance with JIS K2272.
 本発明の潤滑油組成物は、モリブデン系化合物(B)として、ジチオリン酸モリブデン(B1)を含有するが、さらにジチオカルバミン酸モリブデン(MoDTC)(B2)を含有してもよい。
 本発明の潤滑油組成物は、清浄剤(C)として、有機金属系清浄剤(C1)を含有するが、さらにアルカリ金属ホウ酸塩(C2)を含有することが好ましく、無灰系清浄剤(C3)を含有してもよい。
 本発明の潤滑油組成物は、酸化防止剤(D)として、ヒンダードアミン系酸化防止剤(D1)を含有するが、さらに成分(D1)以外の酸化防止剤(D2)を含有してもよい。
The lubricating oil composition of the present invention contains molybdenum dithiophosphate (B1) as the molybdenum compound (B), but may further contain molybdenum dithiocarbamate (MoDTC) (B2).
The lubricating oil composition of the present invention contains an organometallic detergent (C1) as the detergent (C), but preferably further contains an alkali metal borate (C2), and is an ashless detergent. (C3) may be contained.
The lubricating oil composition of the present invention contains a hindered amine antioxidant (D1) as the antioxidant (D), but may further contain an antioxidant (D2) other than the component (D1).
 本発明の一態様の潤滑油組成物は、耐摩耗剤(E)として、さらにジチオリン酸亜鉛(ZnDTP)(E1)を含有してもよい。
 また、本発明の一態様の潤滑油組成物は、本発明の効果を損なわない範囲において、上記成分には該当しない、摩擦調整剤、粘度指数向上剤、極圧剤、金属不活性化剤、流動点降下剤、防錆剤、及び消泡剤等の他の潤滑油用添加剤を含有してもよい。
The lubricating oil composition of one embodiment of the present invention may further contain zinc dithiophosphate (ZnDTP) (E1) as the antiwear agent (E).
In addition, the lubricating oil composition of one embodiment of the present invention does not fall under the above-described components as long as the effects of the present invention are not impaired, a friction modifier, a viscosity index improver, an extreme pressure agent, a metal deactivator, You may contain other additives for lubricating oils, such as a pour point depressant, a rust preventive agent, and an antifoamer.
 本発明の一態様の潤滑油組成物において、成分(A)、成分(B1)、成分(C1)、及び成分(D1)の合計配合量は、当該潤滑油組成物の全量(100質量%)基準で、好ましくは70質量%以上、より好ましくは75質量%以上、より好ましくは80質量%以上であり、また、通常100質量%以下、より好ましくは99.9質量%以下、更に好ましくは99.0質量%以下である。 In the lubricating oil composition of one embodiment of the present invention, the total amount of component (A), component (B1), component (C1), and component (D1) is the total amount (100% by mass) of the lubricating oil composition. Preferably, it is 70% by mass or more, more preferably 75% by mass or more, more preferably 80% by mass or more, and usually 100% by mass or less, more preferably 99.9% by mass or less, and still more preferably 99% by mass. 0.0 mass% or less.
 本発明の一態様の潤滑油組成物において、基油(A)、成分(B1)を含むモリブデン系化合物(B)、成分(C1)を含む清浄剤(C)、成分(D1)を含む酸化防止剤(D)、及び、成分(E1)を含む耐摩耗剤(E)の合計配合量は、当該潤滑油組成物の全量(100質量%)基準で、好ましくは73質量%以上、より好ましくは77質量%以上、より好ましくは83質量%以上であり、また、通常100質量%以下、より好ましくは99.9質量%以下、更に好ましくは99.0質量%以下である。 In the lubricating oil composition of one embodiment of the present invention, base oil (A), molybdenum-based compound (B) containing component (B1), detergent (C) containing component (C1), and oxidation containing component (D1) The total blending amount of the antiwear agent (D) and the antiwear agent (E) containing the component (E1) is preferably 73% by mass or more, more preferably based on the total amount (100% by mass) of the lubricating oil composition. Is 77% by mass or more, more preferably 83% by mass or more, and is usually 100% by mass or less, more preferably 99.9% by mass or less, and further preferably 99.0% by mass or less.
 以下、本発明の一態様の潤滑油組成物に含まれる各成分について説明する。 Hereinafter, each component contained in the lubricating oil composition of one embodiment of the present invention will be described.
<基油(A)>
 本発明の一態様の潤滑油組成物に含まれる基油(A)としては、鉱油であってもよく、合成油であってもよく、鉱油と合成油との混合油を用いてもよい。
<Base oil (A)>
The base oil (A) contained in the lubricating oil composition of one embodiment of the present invention may be mineral oil, synthetic oil, or a mixed oil of mineral oil and synthetic oil.
 鉱油としては、例えば、パラフィン系鉱油、中間基系鉱油、ナフテン系鉱油等の原油を常圧蒸留して得られる常圧残油;これらの常圧残油を減圧蒸留して得られる留出油;当該留出油を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製等の精製処理を1つ以上施した鉱油;フィッシャー・トロプシュ法等により製造されるワックス(GTLワックス(Gas To Liquids WAX))を異性化することで得られる鉱油等が挙げられる。
 これらの鉱油は、単独で用いてもよく、又は2種以上を併用してもよい。
 これらの中でも、本発明の一態様で用いる鉱油としては、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製等の精製処理を1つ以上施した鉱油及びGTLワックスを異性化することで得られる鉱油が好ましく、米国石油協会(API:American Petroleum institute)基油カテゴリーのグループ2又はグループ3に分類される鉱油、及びGTLワックスを異性化することで得られる鉱油がより好ましく、当該グループ3に分類される鉱油、及びGTLワックスを異性化することで得られる鉱油が更に好ましい。
Mineral oil includes, for example, atmospheric residual oil obtained by atmospheric distillation of crude oil such as paraffinic mineral oil, intermediate mineral oil, and naphthenic mineral oil; distillate obtained by vacuum distillation of these atmospheric residual oils Mineral oil that has been subjected to one or more purification treatments such as solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, etc .; produced by the Fischer-Tropsch method, etc. Examples thereof include mineral oils obtained by isomerizing wax (GTL wax (Gas To Liquids WAX)).
These mineral oils may be used alone or in combination of two or more.
Among these, the mineral oil used in one embodiment of the present invention includes mineral oil and GTL that have been subjected to one or more purification treatments such as solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, and the like. Mineral oil obtained by isomerizing wax is preferable, mineral oil classified into Group 2 or Group 3 of the American Petroleum institute (API) base oil category, and mineral oil obtained by isomerizing GTL wax Are more preferable, and mineral oils classified into Group 3 and mineral oils obtained by isomerizing GTL wax are more preferable.
 合成油としては、例えば、α-オレフィン単独重合体、又はα-オレフィン共重合体(例えば、エチレン-α-オレフィン共重合体等の炭素数8~14のα-オレフィン共重合体)等のポリα-オレフィン;イソパラフィン;ポリオールエステル、二塩基酸エステル等の各種エステル;ポリフェニルエーテル等の各種エーテル;ポリアルキレングリコール;アルキルベンゼン;アルキルナフタレン;フィッシャー・トロプシュ法等により製造されるワックス(GTLワックス)を異性化することで得られる合成油等が挙げられる。
 これらの合成油は、単独で用いてもよく、又は2種以上を併用してもよい。
 これらの中でも、本発明の一態様で用いる合成油としては、ポリα-オレフィン、各種エステル、及びポリアルキレングリコールから選ばれる1種以上の合成油が好ましく、ポリα-オレフィンがより好ましい。
Synthetic oils include, for example, α-olefin homopolymers or α-olefin copolymers (eg, α-olefin copolymers having 8 to 14 carbon atoms such as ethylene-α-olefin copolymers). α-olefins; isoparaffins; various esters such as polyol esters and dibasic acid esters; various ethers such as polyphenyl ethers; polyalkylene glycols; alkylbenzenes; alkyl naphthalenes; waxes produced by the Fischer-Tropsch process (GTL waxes) Examples include synthetic oils obtained by isomerization.
These synthetic oils may be used alone or in combination of two or more.
Among these, the synthetic oil used in one embodiment of the present invention is preferably one or more synthetic oils selected from poly α-olefins, various esters, and polyalkylene glycols, and more preferably poly α-olefins.
 基油(A)の100℃における動粘度としては、好ましくは2.0~20.0mm/s、より好ましくは2.0~15.0mm/s、更に好ましくは2.0~7.0mm/s、より更に好ましくは2.0~5.0mm/sである。
 基油(A)の100℃における動粘度が2.0mm/s以上であれば、蒸発損失が少ないため好ましい。一方、基油(A)の100℃における動粘度が20.0mm/s以下であれば、粘性抵抗による動力損失を抑えることができ、燃費改善効果が得られるため好ましい。
The kinematic viscosity at 100 ° C. of the base oil (A) is preferably 2.0 to 20.0 mm 2 / s, more preferably 2.0 to 15.0 mm 2 / s, still more preferably 2.0 to 7. It is 0 mm 2 / s, more preferably 2.0 to 5.0 mm 2 / s.
If the kinematic viscosity at 100 ° C. of the base oil (A) is 2.0 mm 2 / s or more, it is preferable because the evaporation loss is small. On the other hand, if the kinematic viscosity at 100 ° C. of the base oil (A) is 20.0 mm 2 / s or less, power loss due to viscous resistance can be suppressed, and a fuel efficiency improvement effect can be obtained.
 基油(A)の粘度指数としては、温度変化による粘度変化を抑えると共に、省燃費性の向上の観点から、好ましくは80以上、より好ましくは100以上、更に好ましくは120以上である。 The viscosity index of the base oil (A) is preferably 80 or more, more preferably 100 or more, and still more preferably 120 or more, from the viewpoint of suppressing the viscosity change due to temperature change and improving fuel economy.
 なお、本明細書において、「100℃における動粘度」及び「粘度指数」は、JIS K 2283に準拠して測定及び算出された値を意味する。
 また、基油(A)が、鉱油及び合成油から選ばれる2種以上の混合油である場合、当該混合油の動粘度及び粘度指数が上記範囲であることが好ましい。
In the present specification, “kinematic viscosity at 100 ° C.” and “viscosity index” mean values measured and calculated in accordance with JIS K 2283.
Moreover, when base oil (A) is 2 or more types of mixed oil chosen from mineral oil and synthetic oil, it is preferable that the kinematic viscosity and viscosity index of the said mixed oil are the said range.
 本発明の一態様の潤滑油組成物において、基油(A)の含有量は、当該潤滑油組成物の全量(100質量%)基準で、好ましくは60質量%以上、より好ましくは65質量%以上、更に好ましくは70質量%以上、より更に好ましくは75質量%以上であり、また、好ましくは99質量%以下、より好ましくは95質量%以下である。 In the lubricating oil composition of one embodiment of the present invention, the content of the base oil (A) is preferably 60% by mass or more, more preferably 65% by mass, based on the total amount (100% by mass) of the lubricating oil composition. More preferably, it is 70% by mass or more, more preferably 75% by mass or more, and preferably 99% by mass or less, more preferably 95% by mass or less.
<ジチオリン酸モリブデン(B1)>
 本発明の潤滑油組成物は、モリブデン系化合物(B)として、ジチオリン酸モリブデン(MoDTP)(B1)を含有する。
 本発明者らの検討によれば、有機金属系清浄剤(C1)の含有量を低減し、低灰分化した潤滑油組成物において、MoDTPを含有することで、MoDTC等の他のモリブデン系化合物を単独で用いた場合に比べて、摩擦低減効果をより向上させ得ることが分かった。
 それは、MoDTPを含む低灰分化した潤滑油組成物から形成される被膜は、MoDTCを用いて形成される被膜に比べて、強固のものが形成され易いと推測される。
<Molybdenum dithiophosphate (B1)>
The lubricating oil composition of the present invention contains molybdenum dithiophosphate (MoDTP) (B1) as the molybdenum-based compound (B).
According to the study by the present inventors, the content of the organometallic detergent (C1) is reduced and the low ash-differentiated lubricating oil composition contains MoDTP, so that other molybdenum compounds such as MoDTC It has been found that the friction reducing effect can be further improved as compared with the case where is used alone.
It is presumed that the coating film formed from the low ash-differentiated lubricating oil composition containing MoDTP is more easily formed than the coating film formed using MoDTC.
 また、一般的に耐摩耗性を向上させるために、耐摩耗剤であるジチオリン酸亜鉛(ZnDTP)が用いられる場合が多い。
 ところが、本発明者らの検討によれば、低灰分化した潤滑油組成物において、ZnDTP等の耐摩耗剤を用いず、MoDTPのみを単独で用いた場合の耐摩耗性の向上効果は、ZnDTPのみを用いた場合に比べても、大きいことが分かった。
 また、上述のとおり、潤滑油組成物中のZnDTPの含有量が増加すると、当該潤滑油組成物の摩擦低減効果が低下する傾向にある。
 仮に、摩擦低減効果の低下を抑えるために、ZnDTPと共に、摩擦調整剤であるMoDTCを併用すると、エンジン部材の金属表面で競争吸着が生じ、両成分による被膜形成が不十分となり、結果として、耐摩耗性又は摩擦低減効果が低下してしまう場合がある。
 それに対して、MoDTPを用いることで、ZnDTP等を用いずに単独で配合した場合でも、また、ZnDTPと併用した場合であっても、耐摩耗性及び摩擦低減効果をバランス良く向上させることができる。
In general, in order to improve the wear resistance, zinc dithiophosphate (ZnDTP), which is an antiwear agent, is often used.
However, according to the study by the present inventors, in the low ash-differentiated lubricating oil composition, when using only MoDTP alone without using an antiwear agent such as ZnDTP, the effect of improving the wear resistance is ZnDTP. It was found to be larger than the case of using only.
Further, as described above, when the content of ZnDTP in the lubricating oil composition increases, the friction reducing effect of the lubricating oil composition tends to decrease.
If the friction modifier, MoDTC, is used in combination with ZnDTP in order to suppress the reduction in the friction reduction effect, competitive adsorption occurs on the metal surface of the engine member, resulting in insufficient film formation by both components. The wearability or friction reduction effect may be reduced.
On the other hand, by using MoDTP, it is possible to improve the wear resistance and the friction reduction effect in a well-balanced manner even when blended alone without using ZnDTP or when combined with ZnDTP. .
 本発明の潤滑油組成物において、成分(B1)のモリブデン原子換算での含有量は、耐摩耗性及び摩擦低減効果を共に向上させた潤滑油組成物とする観点から、当該潤滑油組成物の全量(100質量%)基準で、400質量ppm以上であり、好ましくは500質量ppm以上、より好ましくは600質量ppm以上、更に好ましくは700質量ppm以上、より更に好ましくは800質量ppm以上、特に好ましくは900質量ppm以上である。
 また、得られる潤滑油組成物の硫酸灰分を上述の範囲に調製する観点から、成分(B1)のモリブデン原子換算での含有量は、当該潤滑油組成物の全量(100質量%)基準で、好ましくは2000質量ppm以下、より好ましくは1800質量ppm以下、更に好ましくは1500質量ppm以下、より更に好ましくは1300質量ppm以下である。
In the lubricating oil composition of the present invention, the content of the component (B1) in terms of molybdenum atom is that of the lubricating oil composition from the viewpoint of making the lubricating oil composition improved in both wear resistance and friction reduction effect. 400 mass ppm or more, preferably 500 mass ppm or more, more preferably 600 mass ppm or more, still more preferably 700 mass ppm or more, still more preferably 800 mass ppm or more, particularly preferably based on the total amount (100 mass%). Is 900 ppm by mass or more.
Further, from the viewpoint of adjusting the sulfated ash content of the obtained lubricating oil composition to the above range, the content of the component (B1) in terms of molybdenum atom is based on the total amount (100% by mass) of the lubricating oil composition. Preferably it is 2000 mass ppm or less, More preferably, it is 1800 mass ppm or less, More preferably, it is 1500 mass ppm or less, More preferably, it is 1300 mass ppm or less.
 なお、本発明の一態様の潤滑油組成物において、成分(B1)の配合量としては、モリブデン原子換算での含有量が上記範囲に属するように調製されればよいが、当該潤滑油組成物の全量(100質量%)基準で、好ましくは0.40~2.60質量%、より好ましくは0.50~2.40質量%、更に好ましくは0.50~2.00質量%、より更に好ましくは0.50~1.80質量%、特に好ましくは0.55~1.60質量%である。 In the lubricating oil composition of one embodiment of the present invention, the amount of component (B1) may be adjusted so that the content in terms of molybdenum atoms falls within the above range. Is preferably 0.40 to 2.60% by mass, more preferably 0.50 to 2.40% by mass, still more preferably 0.50 to 2.00% by mass, and still more based on the total amount (100% by mass) of The content is preferably 0.50 to 1.80% by mass, particularly preferably 0.55 to 1.60% by mass.
 ジチオリン酸モリブデン(B1)としては、下記一般式(b1-1)で表される化合物、及び、下記一般式(b1-2)で表される化合物が好ましい。
 なお、本発明において、ジチオリン酸モリブデン(B1)は、単独で用いてもよく、又は2種以上を併用してもよい。
As the molybdenum dithiophosphate (B1), a compound represented by the following general formula (b1-1) and a compound represented by the following general formula (b1-2) are preferable.
In the present invention, molybdenum dithiophosphate (B1) may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記一般式(b1-1)及び(b1-2)中、R~Rは、それぞれ独立に、炭化水素基を示し、互いに同一であってもよく、異なっていてもよい。
 X~Xは、それぞれ独立に、酸素原子又は硫黄原子を示し、互いに同一であってもよく、異なっていてもよい。ただし、式(b1-1)中のX~Xの少なくとも二つは硫黄原子である。
 
 なお、本発明の一態様においては、上記一般式(b1-1)中、X及びXが酸素原子であり、X~Xが硫黄原子であることが好ましい。
 また、上記一般式(b1-2)中、X及びXが酸素原子であり、X及びXが硫黄原子であることが好ましい。
In the general formulas (b1-1) and (b1-2), R 1 to R 4 each independently represent a hydrocarbon group, and may be the same or different from each other.
X 1 to X 8 each independently represent an oxygen atom or a sulfur atom, and may be the same as or different from each other. However, at least two of X 1 to X 8 in the formula (b1-1) are sulfur atoms.

Note that in one embodiment of the present invention, in the general formula (b1-1), X 1 and X 2 are preferably oxygen atoms, and X 3 to X 8 are preferably sulfur atoms.
In the general formula (b1-2), X 1 and X 2 are preferably oxygen atoms, and X 3 and X 4 are preferably sulfur atoms.
 上記一般式(b1-1)において、基油(A)に対する溶解性を向上させる観点から、X~X中の硫黄原子と酸素原子とのモル比〔硫黄原子/酸素原子〕が、好ましくは1/4~4/1、より好ましくは1/3~3/1である。 In the general formula (b1-1), from the viewpoint of improving the solubility in the base oil (A), the molar ratio of sulfur atoms to oxygen atoms in X 1 to X 8 [sulfur atoms / oxygen atoms] is preferable. Is from 1/4 to 4/1, more preferably from 1/3 to 3/1.
 また、上記一般式(b1-2)において、上記と同様の観点から、X~X中の硫黄原子と酸素原子とのモル比〔硫黄原子/酸素原子〕が、好ましくは1/3~3/1、より好ましくは1.5/2.5~2.5/1.5である。 In the general formula (b1-2), from the same viewpoint as described above, the molar ratio [sulfur atom / oxygen atom] of sulfur atom and oxygen atom in X 1 to X 4 is preferably 1/3 to 3/1, more preferably 1.5 / 2.5 to 2.5 / 1.5.
 R~Rとして選択し得る炭化水素基の炭素数は、好ましくは1~20、より好ましくは5~18、更に好ましくは5~16、より更に好ましくは5~12である。
 R~Rとして選択し得る具体的な当該炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基等のアルキル基;オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基等のアルケニル基;シクロヘキシル基、ジメチルシクロヘキシル基、エチルシクロヘキシル基、メチルシクロヘキシルメチル基、シクロヘキシルエチル基、プロピルシクロヘキシル基、ブチルシクロヘキシル基、ヘプチルシクロヘキシル基等のシクロアルキル基;フェニル基、ナフチル基、アントラセニル基、ビフェニル基、ターフェニル基等のアリール基;トリル基、ジメチルフェニル基、ブチルフェニル基、ノニルフェニル基、メチルベンジル基、ジメチルナフチル基等のアルキルアリール基;フェニルメチル基、フェニルエチル基、ジフェニルメチル基等のアリールアルキル基等が挙げられる。
The number of carbon atoms of the hydrocarbon group that can be selected as R 1 to R 4 is preferably 1 to 20, more preferably 5 to 18, still more preferably 5 to 16, and still more preferably 5 to 12.
Specific examples of the hydrocarbon group that can be selected as R 1 to R 4 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group. Alkyl groups such as undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group; octenyl group, nonenyl group, decenyl group, undecenyl group, dodecenyl group, tridecenyl group, tetradecenyl group, An alkenyl group such as a pentadecenyl group; a cycloalkyl group such as a cyclohexyl group, a dimethylcyclohexyl group, an ethylcyclohexyl group, a methylcyclohexylmethyl group, a cyclohexylethyl group, a propylcyclohexyl group, a butylcyclohexyl group, and a heptylcyclohexyl group; Aryl groups such as phenyl, naphthyl, anthracenyl, biphenyl, and terphenyl; alkylaryl groups such as tolyl, dimethylphenyl, butylphenyl, nonylphenyl, methylbenzyl, and dimethylnaphthyl; phenylmethyl And arylalkyl groups such as a phenylethyl group and a diphenylmethyl group.
<ジチオカルバミン酸モリブデン(B2)>
 ただし、本発明の一態様の潤滑油組成物は、モリブデン系化合物(B)として、ジチオリン酸モリブデン(MoDTP)(B1)と共に、ジチオカルバミン酸モリブデン(MoDTC)(B2)を含有してもよい。
 MoDTCは、単独で用いるのではなく、MoDTPと共に併用することで、耐摩耗性及び摩擦低減効果に優れた潤滑油組成物とすることができる。
<Molybdenum dithiocarbamate (B2)>
However, the lubricating oil composition of one embodiment of the present invention may contain molybdenum dithiocarbamate (MoDTC) (B2) together with molybdenum dithiophosphate (MoDTP) (B1) as the molybdenum-based compound (B).
MoDTC is not used alone, but can be used together with MoDTP to provide a lubricating oil composition with excellent wear resistance and friction reduction effect.
 本発明の一態様の潤滑油組成物において、成分(B2)のモリブデン原子換算での含有量としては、当該潤滑油組成物の全量(100質量%)基準で、好ましくは0~1300質量ppm、より好ましくは0~800質量ppm、更に好ましくは0~600質量ppm、より更に好ましくは0~500質量ppmである。 In the lubricating oil composition of one embodiment of the present invention, the content of the component (B2) in terms of molybdenum atoms is preferably 0 to 1300 ppm by mass, based on the total amount (100% by mass) of the lubricating oil composition. More preferably, it is 0 to 800 ppm by mass, still more preferably 0 to 600 ppm by mass, and still more preferably 0 to 500 ppm by mass.
 なお、本発明の一態様の潤滑油組成物において、成分(B2)の配合量としては、モリブデン原子換算での含有量が上記範囲に属するように調製されればよいが、当該潤滑油組成物の全量(100質量%)基準で、好ましくは0~1.60質量%、より好ましくは0~1.00質量%、更に好ましくは0~0.80質量%、より更に好ましくは0~0.70質量%である。 In the lubricating oil composition of one embodiment of the present invention, the amount of component (B2) may be adjusted so that the content in terms of molybdenum atoms belongs to the above range. Is preferably 0 to 1.60% by mass, more preferably 0 to 1.00% by mass, still more preferably 0 to 0.80% by mass, and still more preferably 0 to 0. 70% by mass.
 また、成分(B1)のモリブデン原子換算での全量100質量部に対する、成分(B2)のモリブデン原子換算での含有量比としては、好ましくは0~150質量部、より好ましくは0~100質量部、更に好ましくは0~80質量部、より更に好ましくは0~40質量部である。 The content ratio of the component (B2) in terms of molybdenum atoms to the total amount in terms of molybdenum atoms of the component (B1) is preferably 0 to 150 parts by mass, more preferably 0 to 100 parts by mass. More preferably, it is 0 to 80 parts by mass, and still more preferably 0 to 40 parts by mass.
 ジチオカルバミン酸モリブデン(B2)としては、一分子中に2つのモリブデン原子を含む二核のジチオカルバミン酸モリブデン(B21)、及び、一分子中に3つのモリブデン原子を含む三核のジチオカルバミン酸モリブデン(B22)が挙げられる。
 なお、本発明において、ジチオカルバミン酸モリブデン(B2)は、単独で用いてもよく、又は2種以上を併用してもよい。
As molybdenum dithiocarbamate (B2), dinuclear molybdenum dithiocarbamate (B21) containing two molybdenum atoms in one molecule, and trinuclear molybdenum dithiocarbamate (B22) containing three molybdenum atoms in one molecule. Is mentioned.
In the present invention, molybdenum dithiocarbamate (B2) may be used alone or in combination of two or more.
 本発明の一態様の潤滑油組成物において、成分(B21)と成分(B22)とを共に含有する場合、成分(B21)と成分(B22)との含有量比〔(B21)/(B22)〕は、耐摩耗性及び摩擦低減効果を向上させた潤滑油組成物とする観点から、質量比で、好ましくは0.1/1~5/1、より好ましくは0.2/1~4/1、更に好ましくは0.3/1~3/1、より更に好ましくは0.4/1~2/1である。
 なお、成分(B21)と成分(B22)との含有量比〔(B21)/(B22)〕は、モリブデン原子換算比で、好ましくは0.1/1~5/1、より好ましくは0.2/1~4/1、更に好ましくは0.3/1~3/1、より更に好ましくは0.4/1~2/1である。
In the lubricating oil composition of one embodiment of the present invention, when both the component (B21) and the component (B22) are contained, the content ratio of the component (B21) and the component (B22) [(B21) / (B22) Is a mass ratio, preferably from 0.1 / 1 to 5/1, more preferably from 0.2 / 1 to 4 /, from the viewpoint of obtaining a lubricating oil composition with improved wear resistance and friction reduction effect. 1, more preferably 0.3 / 1 to 3/1, still more preferably 0.4 / 1 to 2/1.
The content ratio [(B21) / (B22)] between the component (B21) and the component (B22) is preferably a molybdenum atom conversion ratio, preferably 0.1 / 1 to 5/1, more preferably 0.8. The ratio is 2/1 to 4/1, more preferably 0.3 / 1 to 3/1, and still more preferably 0.4 / 1 to 2/1.
 二核のジチオカルバミン酸モリブデン(B21)としては、下記一般式(b21-1)で表される化合物、及び、下記一般式(b21-2)で表される化合物であることが好ましい。 The dinuclear molybdenum dithiocarbamate (B21) is preferably a compound represented by the following general formula (b21-1) and a compound represented by the following general formula (b21-2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記一般式(b21-1)及び(b21-2)中、R11~R14は、それぞれ独立に、炭化水素基を示し、互いに同一であってもよく、異なっていてもよい。
 X11~X18は、それぞれ独立に、酸素原子又は硫黄原子を示し、互いに同一であってもよく、異なっていてもよい。ただし、式(b21-1)中のX11~X18の少なくとも二つは硫黄原子である。
 なお、本発明の一態様においては、式(b21-1)中のX11及びX12が酸素原子であり、X13~X18が硫黄原子であることが好ましい。
 また、式(b21-2)中のX11~X14が酸素原子であることが好ましい。
In the general formulas (b21-1) and (b21-2), R 11 to R 14 each independently represent a hydrocarbon group, and may be the same or different.
X 11 to X 18 each independently represent an oxygen atom or a sulfur atom, and may be the same as or different from each other. However, at least two of X 11 to X 18 in the formula (b21-1) are sulfur atoms.
Note that in one embodiment of the present invention, it is preferable that X 11 and X 12 in the formula (b21-1) are oxygen atoms and X 13 to X 18 are sulfur atoms.
In addition, X 11 to X 14 in formula (b21-2) are preferably oxygen atoms.
 上記一般式(b21-1)において、基油(A)に対する溶解性を向上させる観点から、X11~X18中の硫黄原子と酸素原子とのモル比〔硫黄原子/酸素原子〕が、好ましくは1/4~4/1、より好ましくは1/3~3/1である。 In the general formula (b21-1), from the viewpoint of improving the solubility in the base oil (A), the molar ratio of sulfur atoms to oxygen atoms in X 11 to X 18 [sulfur atoms / oxygen atoms] is preferably Is from 1/4 to 4/1, more preferably from 1/3 to 3/1.
 R11~R14として選択し得る炭化水素基の炭素数は、好ましくは7~22、より好ましくは7~18、更に好ましくは7~14、より更に好ましくは8~13である。
 なお、上記一般式(b21-1)及び(b21-2)中のR11~R14として選択し得る具体的な当該炭化水素基としては、上述の一般式(b1-1)又は(b1-2)中のR~Rとして選択し得る炭化水素基と同じものが挙げられる。
The number of carbon atoms of the hydrocarbon group that can be selected as R 11 to R 14 is preferably 7 to 22, more preferably 7 to 18, still more preferably 7 to 14, and still more preferably 8 to 13.
Specific examples of the hydrocarbon group that can be selected as R 11 to R 14 in the general formulas (b21-1) and (b21-2) include the general formula (b1-1) or (b1- Examples thereof include the same hydrocarbon groups that can be selected as R 1 to R 4 in 2).
 三核のジチオカルバミン酸モリブデン(B22)としては、下記一般式(b22-1)で表される化合物であることが好ましい。
         Mo   (b22-1)
The trinuclear molybdenum dithiocarbamate (B22) is preferably a compound represented by the following general formula (b22-1).
Mo 3 S k E m L n A p Q z (b22-1)
 前記一般式(b22-1)中、kは1以上の整数、mは0以上の整数であり、k+mは4~10の整数であり、4~7の整数であることが好ましい。nは1~4の整数、pは0以上の整数である。zは0~5の整数であって、非化学量論の値を含む。
 Eは、それぞれ独立に、酸素原子又はセレン原子であり、例えば、後述するコアにおいて硫黄を置換し得るものである。
 Lは、それぞれ独立に、炭素原子を含有する有機基を有するアニオン性リガンドであり、各リガンドにおける該有機基の炭素原子の合計が14個以上であり、各リガンドは同一であってもよいし、異なっていてもよい。
 Aは、それぞれ独立に、L以外のアニオンである。
 Qは、それぞれ独立に、中性電子を供与する化合物であり、三核モリブデン化合物上における空の配位を満たすために存在する。
In the general formula (b22-1), k is an integer of 1 or more, m is an integer of 0 or more, k + m is an integer of 4 to 10, and preferably an integer of 4 to 7. n is an integer of 1 to 4, and p is an integer of 0 or more. z is an integer from 0 to 5 and includes non-stoichiometric values.
Each E is independently an oxygen atom or a selenium atom, and for example, can replace sulfur in the core described later.
L is independently an anionic ligand having an organic group containing a carbon atom, and the total number of carbon atoms of the organic group in each ligand is 14 or more, and each ligand may be the same. , May be different.
A is an anion other than L each independently.
Q is a compound that donates a neutral electron independently, and is present to satisfy an empty coordination on the trinuclear molybdenum compound.
 Lで表されるアニオン性リガンドにおける有機基の炭素原子の合計としては、好ましくは14~50個、より好ましくは16~30個、更に好ましくは18~24個である。
 Lとしては、1価のアニオン性リガンドであるモノアニオン性リガンドであることが好ましく、具体的には、下記一般式(i)~(iv)で表されるリガンドであることがより好ましい。
 なお、前記一般式(b22-1)中、Lとして選択されるアニオン性リガンドとしては、下記一般式(iv)で表されるリガンドであることが好ましい。
 また、前記一般式(b22-1)において、Lとして選択されるアニオン性リガンドは、すべて同一であることが好ましく、すべて下記一般式(iv)で表されるリガンドであることがより好ましい。
The total number of carbon atoms of the organic group in the anionic ligand represented by L is preferably 14 to 50, more preferably 16 to 30, and still more preferably 18 to 24.
L is preferably a monoanionic ligand which is a monovalent anionic ligand, and more specifically, a ligand represented by the following general formulas (i) to (iv) is more preferable.
In the general formula (b22-1), the anionic ligand selected as L is preferably a ligand represented by the following general formula (iv).
In the general formula (b22-1), the anionic ligands selected as L are preferably all the same, and more preferably all ligands represented by the following general formula (iv).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 前記一般式(i)~(iv)中、X31~X37、及びYは、それぞれ独立に、酸素原子又は硫黄原子であり、互いに同一であってもよく、異なっていてもよい。
 前記一般式(i)~(iv)中、R31~R35は、それぞれ独立に、有機基であり、互いに同一であってもよく、異なっていてもよい。
In the general formulas (i) to (iv), X 31 to X 37 and Y are each independently an oxygen atom or a sulfur atom, and may be the same or different.
In the general formulas (i) to (iv), R 31 to R 35 are each independently an organic group, and may be the same as or different from each other.
 なお、R31、R32、及びR33として選択し得るそれぞれの有機基の炭素数は、好ましくは14~50、より好ましくは16~30、更に好ましくは18~24である。 The carbon number of each organic group that can be selected as R 31 , R 32 , and R 33 is preferably 14 to 50, more preferably 16 to 30, and still more preferably 18 to 24.
 式(iv)中のR34及びR35として選択し得る2つの有機基の合計炭素数としては、好ましくは14~50、より好ましくは16~30、更に好ましくは18~24である。
 R34及びR35として選択し得るそれぞれの有機基の炭素数は、好ましくは7~30、より好ましくは7~20、更に好ましくは8~13である。
 なお、R34の有機基と、R35の有機基とは、互いに同一であってもよく、異なっていてもよいが、互いに異なることが好ましい。また、R34の有機基の炭素数と、R35の有機基の炭素数とは、互いに同一であってもよく、異なっていてもよいが、互いに異なることが好ましい。
The total number of carbon atoms of the two organic groups that can be selected as R 34 and R 35 in formula (iv) is preferably 14 to 50, more preferably 16 to 30, and still more preferably 18 to 24.
The number of carbon atoms of each organic group that can be selected as R 34 and R 35 is preferably 7 to 30, more preferably 7 to 20, and still more preferably 8 to 13.
Note that the organic group of R 34 and the organic group of R 35 may be the same or different from each other, but are preferably different from each other. Further, the carbon number of the organic group of R 34 and the carbon number of the organic group of R 35 may be the same or different from each other, but are preferably different from each other.
 R31~R35として選択される有機基としては、アルキル基、アリール基、置換アリール基及びエーテル基等のヒドロカルビル基が挙げられる。
 なお、「ヒドロカルビル」なる用語は、リガンドの残部に直接結合する炭素原子を有する置換基を示し、本実施形態の範囲内において、その特性が主にヒドロカルビルである。かかる置換基は、以下のものが挙げられる。
1.炭化水素置換基
 炭化水素置換基としては、アルキル、アルケニル等の脂肪族の置換基、シクロアルキル、シクロアルケニル等の脂環式の置換基、芳香族基、脂肪族基及び脂環式基に置換された芳香核、環がリガンド中のもう一つの箇所を介して完結している環式基(即ち、任意の2つの示された置換基がともに脂環式基を形成してもよい)が挙げられる。
2.置換された炭化水素置換基
 置換された炭化水素置換基としては、上記炭化水素置換基をヒドロカルビルの特性を変化させない非炭化水素基で置換したものが挙げられる。非炭化水素基としては、例えば、特にクロロ、フルオロ等のハロゲン基、アミノ基、アルコキシ基、メルカプト基、アルキルメルカプト基、ニトロ基、ニトロソ基、スルホキシ基等が挙げられる。
Examples of the organic group selected as R 31 to R 35 include hydrocarbyl groups such as alkyl groups, aryl groups, substituted aryl groups, and ether groups.
The term “hydrocarbyl” refers to a substituent having a carbon atom that is directly bonded to the remainder of the ligand, and within the scope of this embodiment, the characteristic is mainly hydrocarbyl. Such substituents include the following.
1. Hydrocarbon substituents As hydrocarbon substituents, substituted with aliphatic substituents such as alkyl and alkenyl, alicyclic substituents such as cycloalkyl and cycloalkenyl, aromatic groups, aliphatic groups and alicyclic groups An aromatic nucleus, a cyclic group in which the ring is completed via another location in the ligand (ie any two of the indicated substituents may together form an alicyclic group) Can be mentioned.
2. Substituted hydrocarbon substituents Examples of substituted hydrocarbon substituents include those in which the hydrocarbon substituent is substituted with a non-hydrocarbon group that does not change the properties of the hydrocarbyl. Examples of the non-hydrocarbon group include halogen groups such as chloro and fluoro, amino groups, alkoxy groups, mercapto groups, alkyl mercapto groups, nitro groups, nitroso groups, and sulfoxy groups.
 前記一般式(b22-1)中、Lとして選択されるアニオン性リガンドとしては、アルキルキサントゲン酸塩、カルボン酸塩、ジアルキルジチオカルバミン酸塩、及びこれらの混合物に由来のものが好ましく、ジアルキルジチオカルバミン酸塩に由来のものがより好ましい。 In the general formula (b22-1), the anionic ligand selected as L is preferably derived from an alkylxanthate, carboxylate, dialkyldithiocarbamate, or a mixture thereof, and a dialkyldithiocarbamate Those derived from are more preferred.
 前記一般式(b22-1)中、Aとして選択し得るアニオンは、1価のアニオンであってもよく、2価のアニオンであってもよい。Aとして選択し得るアニオンとしては、例えば、ジスルフィド、ヒドロキシド、アルコキシド、アミド及びチオシアネート又はそれらの誘導体等が挙げられる。 In the general formula (b22-1), the anion that can be selected as A may be a monovalent anion or a divalent anion. Examples of the anion that can be selected as A include disulfide, hydroxide, alkoxide, amide, thiocyanate, and derivatives thereof.
 前記一般式(b22-1)中、Qとしては、水、アミン、アルコール、エーテル及びホスフィン等が挙げられる。Qは、同一であってもよく、異なっていてもよいが、同一であることが好ましい。 In the general formula (b22-1), examples of Q include water, amine, alcohol, ether and phosphine. Q may be the same or different, but is preferably the same.
 成分(B22)としては、前記一般式(b22-1)中、kが4~7の整数、nが1又は2、Lがモノアニオン性リガンドであり、pがAにおけるアニオン電荷をベースとする化合物に電気的中性を付与する整数であり、且つ、m及びzのそれぞれが0である化合物が好ましく、kが4~7の整数であり、Lがモノアニオン性リガンドであり、nが4であり、且つ、p、m及びzのそれぞれが0である化合物がより好ましい。 As component (B22), in general formula (b22-1), k is an integer of 4 to 7, n is 1 or 2, L is a monoanionic ligand, and p is based on an anionic charge in A. A compound that imparts electrical neutrality to the compound, and a compound in which each of m and z is 0 is preferable, k is an integer of 4 to 7, L is a monoanionic ligand, and n is 4 And a compound in which each of p, m, and z is 0 is more preferable.
 また、成分(B22)としては、例えば、下記式(IV-A)又は(IV-B)で表されるコアを有する化合物であることが好ましい。各コアは、+4の実効電荷(net electrical charge)を有する。これらのコアは、アニオン性リガンド、及び必要に応じて存在するアニオン性リガンド以外のアニオンによって囲まれている。 The component (B22) is preferably a compound having a core represented by the following formula (IV-A) or (IV-B), for example. Each core has a net electrical charge of +4. These cores are surrounded by anionic ligands and anions other than the anionic ligands present as needed.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 三核モリブデン-硫黄化合物の形成には、例えば、コア中に存在する硫黄及びE原子数に依存して、適切なアニオン性リガンド(L)及び他のアニオン(A)を選択することが必要であること、、即ち、硫黄原子、存在するならE原子、L及び存在するならAにより構成される全アニオン電荷が-4でなければならない。
 三核モリブデン-硫黄化合物は、また、アニオン電荷が-4を超える場合、モリブデン以外のカチオン、例えば、(アルキル)アンモニウム、アミン又はナトリウムを含んでいてもよい。アニオン性リガンド(L)及び他のアニオン(A)の好ましい実施形態は、4個のモノアニオン性のリガンドを有する構成である。
 モリブデン-硫黄コア、例えば、上記(IV-A)及び(IV-B)で表される構造体は、1又は2以上の多座リガンド、即ち、モリブデン原子に結合して、オリゴマーを形成することが可能な官能基を1つより多く有するリガンドにより相互接続(interconnect)させることができる。
Formation of the trinuclear molybdenum-sulfur compound requires selection of an appropriate anionic ligand (L) and other anions (A), for example, depending on the number of sulfur and E atoms present in the core. That is, the total anionic charge constituted by the sulfur atom, E atom if present, L and A if present must be -4.
The trinuclear molybdenum-sulfur compound may also contain cations other than molybdenum, such as (alkyl) ammonium, amine or sodium, if the anionic charge exceeds -4. A preferred embodiment of the anionic ligand (L) and other anions (A) is a configuration having four monoanionic ligands.
Molybdenum-sulfur cores, such as the structures represented by (IV-A) and (IV-B) above, bind to one or more polydentate ligands, ie, molybdenum atoms, to form oligomers. Can be interconnected by a ligand having more than one possible functional group.
<他のモリブデン系化合物(B3)>
 本発明の一態様の潤滑油組成物は、モリブデン系化合物(B)として、本発明の効果を損なわない範囲で、成分(B1)及び(B2)以外の他のモリブデン系化合物(B3)を含有してもよい。
 このような他のモリブデン系化合物(B3)としては、例えば、モリブテン酸のアミン塩、三酸化モリブデン及び/又はモリブデン酸とアミン化合物とを反応させてなるモリブデンアミン錯体等が挙げられる。
<Other molybdenum compounds (B3)>
The lubricating oil composition of one embodiment of the present invention contains a molybdenum compound (B3) other than components (B1) and (B2) as a molybdenum compound (B) as long as the effects of the present invention are not impaired. May be.
Examples of such other molybdenum compounds (B3) include molybdate acid amine salts, molybdenum trioxide and / or molybdenum amine complexes formed by reacting molybdic acid with amine compounds.
 成分(B1)のモリブデン原子換算での全量100質量部に対する、成分(B3)のモリブデン原子換算での含有量比としては、通常0~80質量部、好ましくは0~50質量部、より好ましくは0~30質量部、更に好ましくは0~10質量部、より更に好ましくは0~3質量部である。 The content ratio of the component (B3) in terms of molybdenum atoms to the total amount of the component (B1) in terms of molybdenum atoms of 100 parts by mass is usually 0 to 80 parts by mass, preferably 0 to 50 parts by mass, more preferably The amount is 0 to 30 parts by mass, more preferably 0 to 10 parts by mass, and still more preferably 0 to 3 parts by mass.
<有機金属系清浄剤(C1)>
 本発明の潤滑油組成物は、清浄剤(C)として、アルカリ金属原子及びアルカリ土類金属原子から選ばれる金属原子を含む有機金属系清浄剤(C1)を含む。
 ここでいう、「有機金属系清浄剤」とは、少なくともアルカリ金属原子及び/又はアルカリ土類金属原子と共に、炭素原子及び水素原子を含む化合物を意味し、当該化合物は、さらに酸素原子、硫黄原子、及び窒素原子等のヘテロ原子を含有してもよい。
<Organic metal detergent (C1)>
The lubricating oil composition of the present invention contains an organometallic detergent (C1) containing a metal atom selected from alkali metal atoms and alkaline earth metal atoms as the detergent (C).
As used herein, “organometallic detergent” means a compound containing at least an alkali metal atom and / or an alkaline earth metal atom and a carbon atom and a hydrogen atom, and the compound further includes an oxygen atom and a sulfur atom. And may contain a heteroatom such as a nitrogen atom.
 本発明の潤滑油組成物は、有機金属系清浄剤(C1)の金属原子換算での含有量が1400質量ppm以下に調製されており、当該潤滑油組成物の低灰分化が計られている。
 当該含有量が1400質量ppmを超えると、得られる潤滑油組成物を、排ガス後処理装置を装着したエンジンに使用することは難しくなるだけでなく、当該潤滑油組成物の摩擦係数の値が大きくなり、摩擦低減効果が劣る。
 なお、本発明の潤滑油組成物は、清浄剤(C)として、有機金属系清浄剤(C1)の含有量を低減させているが、酸化防止剤(D)として、後述のヒンダードアミン系酸化防止剤(D1)を含有することで、良好な清浄性を保持している。
In the lubricating oil composition of the present invention, the content of the organometallic detergent (C1) in terms of metal atoms is adjusted to 1400 ppm by mass or less, and low ash differentiation of the lubricating oil composition is measured. .
When the content exceeds 1400 mass ppm, not only is it difficult to use the obtained lubricating oil composition in an engine equipped with an exhaust gas aftertreatment device, but the value of the friction coefficient of the lubricating oil composition is large. Thus, the friction reducing effect is inferior.
In addition, although the lubricating oil composition of this invention is reducing content of organometallic detergent (C1) as detergent (C), below-mentioned hindered amine antioxidant is used as antioxidant (D). By containing the agent (D1), good cleanliness is maintained.
 本発明の潤滑油組成物において、成分(C1)の金属原子換算での含有量としては、当該潤滑油組成物の全量(100質量%)基準で、1400質量ppm以下であるが、摩擦低減効果をより発現させる観点から、好ましくは1250質量ppm以下、より好ましくは1100質量ppm以下、更に好ましくは1000質量ppm以下、より更に好ましくは800質量ppm以下、特に好ましくは600質量ppm以下である。
 また、清浄性を向上させた潤滑油組成物とする観点から、成分(C1)の金属原子換算での含有量としては、当該潤滑油組成物の全量(100質量%)基準で、好ましくは50質量ppm以上、より好ましくは70質量ppm以上、更に好ましくは100質量ppm以上、より更に好ましくは150質量ppm以上、特に好ましくは200質量ppm以上である。
In the lubricating oil composition of the present invention, the content of the component (C1) in terms of metal atoms is 1400 ppm by mass or less based on the total amount (100% by mass) of the lubricating oil composition. From the viewpoint of more expressing the amount, it is preferably 1250 mass ppm or less, more preferably 1100 mass ppm or less, still more preferably 1000 mass ppm or less, still more preferably 800 mass ppm or less, and particularly preferably 600 mass ppm or less.
Further, from the viewpoint of providing a lubricating oil composition with improved cleanliness, the content of the component (C1) in terms of metal atoms is preferably 50 based on the total amount (100% by mass) of the lubricating oil composition. The mass ppm or more, more preferably 70 mass ppm or more, still more preferably 100 mass ppm or more, still more preferably 150 mass ppm or more, and particularly preferably 200 mass ppm or more.
 本発明の一態様の潤滑油組成物において、成分(C1)の配合量としては、金属原子換算での含有量が上記範囲に属するように調製されればよいが、当該潤滑油組成物の全量(100質量%)基準で、好ましくは0.01~2.8質量%、より好ましくは0.05~2.5質量%、更に好ましくは0.10~2.1質量%である。 In the lubricating oil composition of one embodiment of the present invention, the amount of the component (C1) may be adjusted so that the content in terms of metal atoms belongs to the above range, but the total amount of the lubricating oil composition On the basis of (100% by mass), it is preferably 0.01 to 2.8% by mass, more preferably 0.05 to 2.5% by mass, and still more preferably 0.10 to 2.1% by mass.
 有機金属系清浄剤(C1)に含まれる金属原子としては、清浄性の向上の観点から、ナトリウム原子、カルシウム原子、マグネシウム原子、及びバリウム原子が好ましく、カルシウム原子及びマグネシウム原子がより好ましく、カルシウム原子が更に好ましい。 The metal atom contained in the organometallic detergent (C1) is preferably a sodium atom, a calcium atom, a magnesium atom, and a barium atom, more preferably a calcium atom and a magnesium atom, from the viewpoint of improving cleanliness, and a calcium atom. Is more preferable.
 つまり、有機金属系清浄剤(C1)としては、カルシウム系清浄剤を含むことが好ましい。
 有機金属系清浄剤(C1)中のカルシウム系清浄剤の含有量としては、潤滑油組成物中に含まれる有機金属系清浄剤(C1)の全量(100質量%)に対して、好ましくは70~100質量%、より好ましくは80~100質量%、更に好ましくは90~100質量%、より更に好ましくは95~100質量%である。
In other words, the organometallic detergent (C1) preferably contains a calcium detergent.
The content of the calcium detergent in the organometallic detergent (C1) is preferably 70 with respect to the total amount (100 mass%) of the organometallic detergent (C1) contained in the lubricating oil composition. To 100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, and still more preferably 95 to 100% by mass.
 有機金属系清浄剤(C1)は、単独で用いてもよく、又は2種以上を併用してもよい。
 本発明の一態様で用いる有機金属系清浄剤(C1)としては、アルカリ金属原子及びアルカリ土類金属原子から選ばれる金属原子を含有する、金属サリシレート、金属フェネート、及び金属スルホネートから選ばれる1種以上であることが好ましく、金属スルホネートと、金属サリシレート及び金属フォネートから選ばれる1種以上との混合物であることがより好ましい。当該混合物としては、金属スルホネートと金属サリシレートとの混合物が好ましい。
An organometallic detergent (C1) may be used independently or may use 2 or more types together.
The organometallic detergent (C1) used in one embodiment of the present invention is one selected from metal salicylates, metal phenates, and metal sulfonates containing metal atoms selected from alkali metal atoms and alkaline earth metal atoms. The above is preferable, and a mixture of metal sulfonate and one or more selected from metal salicylate and metal phonate is more preferable. The mixture is preferably a mixture of metal sulfonate and metal salicylate.
 本発明の一態様で用いる、金属サリシレートとしては、下記一般式(c1-1)で表される化合物が好ましく、金属フェネートとしては、下記一般式(c1-2)で表される化合物が好ましく、金属スルホネートとしては、下記一般式(c1-3)で表される化合物が好ましい。 The metal salicylate used in one embodiment of the present invention is preferably a compound represented by the following general formula (c1-1), and the metal phenate is preferably a compound represented by the following general formula (c1-2), As the metal sulfonate, a compound represented by the following general formula (c1-3) is preferable.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記一般式(c1-1)~(c1-3)中、Mは、アルカリ金属原子及びアルカリ土類金属原子から選ばれる金属原子であり、ナトリウム原子、カルシウム原子、マグネシウム原子、及びバリウム原子が好ましく、カルシウム原子及びマグネシウム原子がより好ましく、カルシウム原子が更に好ましい。
 また、M’は、アルカリ土類金属原子であり、カルシウム原子、マグネシウム原子、及びバリウム原子が好ましく、カルシウム原子及びマグネシウム原子がより好ましく、カルシウム原子が更に好ましい。
 pはMの価数であり、1又は2である。
 qは、0以上の整数であり、好ましくは0~3の整数、より好ましくは1又は2である。
 Rは、水素原子又は炭素数1~18の炭化水素基である。
 Rとして選択し得る炭化水素基としては、例えば、炭素数1~18のアルキル基、炭素数1~18のアルケニル基、環形成炭素数3~18のシクロアルキル基、環形成炭素数6~18のアリール基、炭素数7~18のアルキルアリール基、炭素数7~18のアリールアルキル基等が挙げられる。
In the general formulas (c1-1) to (c1-3), M is a metal atom selected from an alkali metal atom and an alkaline earth metal atom, preferably a sodium atom, a calcium atom, a magnesium atom, and a barium atom. , A calcium atom and a magnesium atom are more preferable, and a calcium atom is still more preferable.
M ′ is an alkaline earth metal atom, preferably a calcium atom, a magnesium atom and a barium atom, more preferably a calcium atom and a magnesium atom, and still more preferably a calcium atom.
p is the valence of M and is 1 or 2.
q is an integer of 0 or more, preferably an integer of 0 to 3, more preferably 1 or 2.
R is a hydrogen atom or a hydrocarbon group having 1 to 18 carbon atoms.
Examples of the hydrocarbon group that can be selected as R include alkyl groups having 1 to 18 carbon atoms, alkenyl groups having 1 to 18 carbon atoms, cycloalkyl groups having 3 to 18 ring carbon atoms, and 6 to 18 ring carbon atoms. Aryl groups having 7 to 18 carbon atoms, arylalkyl groups having 7 to 18 carbon atoms, and the like.
 有機金属系清浄剤(C1)は、中性塩、塩基性塩、過塩基性塩及びこれらの混合物のいずれであってもよい。
 なお、有機金属系清浄剤(C1)として、中性塩と、塩基性塩及び過塩基性塩から選ばれる1種以上との混合物を用いる場合、中性塩と、塩基性塩及び過塩基性塩から選ばれる1種以上との比〔中性塩/(過)塩基性塩〕としては、好ましくは1/99~99/1、より好ましくは10/99~90/10、更に好ましくは20/80~80/20である。
The organometallic detergent (C1) may be any of neutral salts, basic salts, overbased salts, and mixtures thereof.
In addition, when using a mixture of a neutral salt and one or more selected from a basic salt and an overbased salt as the organometallic detergent (C1), the neutral salt, the basic salt, and the overbased salt are used. The ratio [neutral salt / (over) basic salt] to one or more selected from salts is preferably 1/99 to 99/1, more preferably 10/99 to 90/10, still more preferably 20 / 80 to 80/20.
 有機金属系清浄剤(C1)が中性塩である場合、当該中性塩の塩基価としては、好ましくは0~30mgKOH/g、より好ましくは0~25mgKOH/g、更に好ましくは0~20mgKOH/gである。
 有機金属系清浄剤(C1)が塩基性塩又は過塩基性塩である場合、当該塩基性塩又は過塩基性塩の塩基価としては、好ましくは100~600mgKOH/g、より好ましくは120~550mgKOH/g、更に好ましくは160~500mgKOH/g、より更に好ましくは200~450mgKOH/gである。
 なお、本明細書において、「塩基価」とは、JIS K2501「石油製品および潤滑油-中和価試験方法」の7.に準拠して測定される過塩素酸法による塩基価を意味する。
When the organometallic detergent (C1) is a neutral salt, the neutral number of the neutral salt is preferably 0 to 30 mgKOH / g, more preferably 0 to 25 mgKOH / g, still more preferably 0 to 20 mgKOH / g. g.
When the organometallic detergent (C1) is a basic salt or an overbased salt, the base number of the basic salt or the overbased salt is preferably 100 to 600 mgKOH / g, more preferably 120 to 550 mgKOH. / G, more preferably 160 to 500 mgKOH / g, still more preferably 200 to 450 mgKOH / g.
In this specification, the “base number” is the same as that in JIS K2501, “Petroleum products and lubricants—neutralization number test method”. Means the base number measured by the perchloric acid method according to the above.
<アルカリ金属ホウ酸塩(C2)>
 本発明の一態様の潤滑油組成物は、より清浄性を向上させた潤滑油組成物とする観点から、清浄剤(C)として、さらにアルカリ金属ホウ酸塩(C2)を含有することが好ましい。
<Alkali metal borate (C2)>
The lubricating oil composition of one embodiment of the present invention preferably further contains an alkali metal borate (C2) as the detergent (C) from the viewpoint of making the lubricating oil composition with improved cleanliness. .
 本発明の一態様の潤滑油組成物において、成分(C2)のホウ素原子換算での含有量は、当該潤滑油組成物の全量(100質量%)基準で、好ましくは50~1000質量ppm、より好ましくは60~700質量ppm、更に好ましくは70~500質量ppm、より更に好ましくは80~200質量ppmである。 In the lubricating oil composition of one embodiment of the present invention, the content of the component (C2) in terms of boron atoms is preferably 50 to 1000 ppm by mass, based on the total amount (100% by mass) of the lubricating oil composition. The amount is preferably 60 to 700 ppm by mass, more preferably 70 to 500 ppm by mass, and still more preferably 80 to 200 ppm by mass.
 成分(C1)の金属原子換算での全量100質量部に対する、成分(C2)のホウ素原子換算での含有量比としては、好ましくは0~100質量部、より好ましくは1~80質量部、更に好ましくは3~50質量部、より更に好ましくは5~40質量部である。 The content ratio of the component (C2) in terms of boron atom to the total amount of 100 parts by mass in terms of metal atoms of the component (C1) is preferably 0 to 100 parts by mass, more preferably 1 to 80 parts by mass, The amount is preferably 3 to 50 parts by mass, and more preferably 5 to 40 parts by mass.
 なお、本発明の一態様の潤滑油組成物において、成分(C2)の配合量としては、ホウ素原子換算での含有量が上記範囲に属するように調製されればよいが、当該潤滑油組成物の全量(100質量%)基準で、好ましくは0.01~2.0質量%、より好ましくは0.03~1.5質量%、更に好ましくは0.05~1.0質量%である。 In the lubricating oil composition of one embodiment of the present invention, the amount of component (C2) may be adjusted so that the content in terms of boron atoms belongs to the above range. Is preferably 0.01 to 2.0% by mass, more preferably 0.03 to 1.5% by mass, and still more preferably 0.05 to 1.0% by mass, based on the total amount (100% by mass).
 アルカリ金属ホウ酸塩(C2)に含まれるアルカリ金属原子としては、清浄性の向上の観点から、カリウム原子又はナトリウム原子が好ましく、カリウム原子がより好ましい。
 なお、ホウ酸塩は、ホウ素と酸素とを含み、且つ任意で水和された電気的に陽性な化合物(塩)である。ホウ酸塩の例として、ホウ酸イオン(BO 3-)の塩やメタホウ酸イオン(BO )の塩等が挙げられる。なお、ホウ酸イオン(BO 3-)は、例えば、三ホウ酸イオン(B )、四ホウ酸イオン(B 2-)、五ホウ酸イオン(B )等の様々な多量体イオン(polymer ion)を形成し得る。
The alkali metal atom contained in the alkali metal borate (C2) is preferably a potassium atom or a sodium atom, and more preferably a potassium atom, from the viewpoint of improving cleanliness.
The borate is an electrically positive compound (salt) containing boron and oxygen and optionally hydrated. Examples of borates include salts of borate ions (BO 3 3− ) and salts of metaborate ions (BO 2 ). The borate ions (BO 3 3− ) are, for example, triborate ions (B 3 O 5 ), tetraborate ions (B 4 O 7 2− ), pentaborate ions (B 5 O 8 −). ) And the like can form various polymer ions.
 アルカリ金属ホウ酸塩(C2)としては、例えば、四ホウ酸ナトリウム、五ホウ酸ナトリウム、六ホウ酸ナトリウム、八ホウ酸ナトリウム、二ホウ酸ナトリウム、メタホウ酸カリウム、三ホウ酸カリウム、四ホウ酸カリウム、五ホウ酸カリウム、六ホウ酸カリウム、八ホウ酸カリウム等が挙げられ、下記一般式(c2-1)で表されるアルカリ金属ホウ酸塩が好ましい。
   一般式(c2-1): M”O1/2・mBO3/2
 上記一般式(c2-1)中、M”はアルカリ金属原子を示し、カリウム原子又はナトリウム原子が好ましく、カリウム原子がより好ましい。mは2.5~4.5の数を示す。
Examples of the alkali metal borate (C2) include sodium tetraborate, sodium pentaborate, sodium hexaborate, sodium octaborate, sodium diborate, potassium metaborate, potassium triborate, and tetraborate. Examples thereof include potassium, potassium pentaborate, potassium hexaborate, and potassium octaborate. Alkali metal borates represented by the following general formula (c2-1) are preferred.
Formula (c2-1): M ″ O 1/2 · mBO 3/2
In the general formula (c2-1), M ″ represents an alkali metal atom, preferably a potassium atom or a sodium atom, and more preferably a potassium atom. M represents a number of 2.5 to 4.5.
 また、本発明の一態様で用いるアルカリ金属ホウ酸塩(C2)は、水和物であってもよい。
 アルカリ金属ホウ酸塩の水和物としては、例えば、Na・10HO、NaBO・4HO、KB・4HO、K・5HO、K・8HO、KB・4HO等が挙げられ、下記一般式(c2-2)で表されるアルカリ金属ホウ酸塩の水和物が好ましい。
   一般式(c2-2): M”O1/2・mBO3/2・nH
 上記一般式(c2-2)中、M”、mは前記一般式(c2-1)と同じであり、nは0.5~2.4の数を示す。
Further, the alkali metal borate (C2) used in one embodiment of the present invention may be a hydrate.
Examples of hydrates of alkali metal borates include Na 2 B 4 O 7 · 10H 2 O, NaBO 2 · 4H 2 O, KB 3 O 5 · 4H 2 O, and K 2 B 4 O 7 · 5H 2. O, K 2 B 4 O 7 · 8H 2 O, KB 5 O 8 · 4H 2 O and the like, and hydrates of alkali metal borates represented by the following general formula (c2-2) are preferable.
Formula (c2-2): M ″ O 1/2 · mBO 3/2 · nH 2 O
In the general formula (c2-2), M ″ and m are the same as in the general formula (c2-1), and n represents a number of 0.5 to 2.4.
 アルカリ金属ホウ酸塩(C2)中のホウ素原子とアルカリ金属原子との比〔ホウ素原子/アルカリ金属原子〕としては、好ましくは0.1/1以上、より好ましくは0.3/1以上、更に好ましくは0.5/1以上、より更に好ましくは0.7/1以上であり、また、好ましくは5/1以下、より好ましくは4.5/1以下、更に好ましくは3.25/1以下、より更に好ましくは2.8/1以下である。 The ratio of boron atom to alkali metal atom in the alkali metal borate (C2) [boron atom / alkali metal atom] is preferably 0.1 / 1 or more, more preferably 0.3 / 1 or more, Preferably it is 0.5 / 1 or more, More preferably, it is 0.7 / 1 or more, Preferably it is 5/1 or less, More preferably, it is 4.5 / 1 or less, More preferably, it is 3.25 / 1 or less. More preferably, it is 2.8 / 1 or less.
 本発明の一態様で用いるこれらのアルカリ金属ホウ酸塩(C2)は、単独で用いてもよく、又は2種以上を併用してもよい。
 これらの中でも、アルカリ金属ホウ酸塩(C2)としては、清浄性の向上の観点、及び基油(A)への溶解性の観点から、三ホウ酸カリウム(KB)及びその水和物(KB・nHO(nは0.5~2.4の数))が好ましい。
These alkali metal borates (C2) used in one embodiment of the present invention may be used alone or in combination of two or more.
Among these, the alkali metal borate (C2) is potassium triborate (KB 3 O 5 ) and its hydration from the viewpoint of improving cleanliness and solubility in the base oil (A). (KB 3 O 5 · nH 2 O (n is a number of 0.5 to 2.4)) is preferable.
<無灰系清浄剤(C3)>
 本発明の一態様の潤滑油組成物は、清浄剤(C)として、さらに無灰系清浄剤(C3)を含有してもよい。
 成分(C3)の配合量としては、潤滑油組成物の全量(100質量%)基準で、好ましくは0~10.0質量%、より好ましくは0.1~8.0質量%、更に好ましくは0.5~6.0質量%である。
 なお、本発明において、無灰系清浄剤(C3)は、単独で用いてもよく、又は2種以上を併用してもよい。
<Ashless detergent (C3)>
The lubricating oil composition of one embodiment of the present invention may further contain an ashless detergent (C3) as the detergent (C).
The amount of component (C3) is preferably 0 to 10.0% by mass, more preferably 0.1 to 8.0% by mass, and still more preferably based on the total amount (100% by mass) of the lubricating oil composition. 0.5 to 6.0% by mass.
In the present invention, the ashless detergent (C3) may be used alone or in combination of two or more.
 無灰系清浄剤(C3)としては、アルケニルコハク酸イミド(C31)及びホウ素変性アルケニルコハク酸イミド(C32)が好ましい。
 アルケニルコハク酸イミド(C31)としては、下記一般式(c3-1)で表されるアルケニルコハク酸モノイミド、もしくは下記一般式(c3-2)で表されるアルケニルコハク酸ビスイミドが挙げられる。
 さらに、ポリブテニルコハク酸イミド(C31)としては、下記一般式(c3-1)又は(c3-2)で示される化合物と、アルコール、アルデヒド、ケトン、アルキルフェノール、環状カーボネート、エポキシ化合物、及び有機酸等から選ばれる1種以上とを反応させた変性ポリブテニルコハク酸イミドを用いることもできる。
 また、ホウ素変性アルケニルコハク酸イミドとしては、下記一般式(c3-1)又は(c3-2)で表されるアルケニルコハク酸イミドのホウ素変性体が挙げられる。
As the ashless detergent (C3), alkenyl succinimide (C31) and boron-modified alkenyl succinimide (C32) are preferable.
Examples of the alkenyl succinimide (C31) include alkenyl succinic monoimide represented by the following general formula (c3-1) and alkenyl succinic acid bisimide represented by the following general formula (c3-2).
Further, polybutenyl succinimide (C31) includes compounds represented by the following general formula (c3-1) or (c3-2), alcohols, aldehydes, ketones, alkylphenols, cyclic carbonates, epoxy compounds, and organic compounds. A modified polybutenyl succinimide obtained by reacting at least one selected from acids and the like can also be used.
Examples of the boron-modified alkenyl succinimide include boron-modified alkenyl succinimide represented by the following general formula (c3-1) or (c3-2).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記一般式(c3-1)、(c3-2)中、R、RA1及びRA2は、それぞれ独立に、質量平均分子量(Mw)が500~3000(好ましくは1000~3000)のアルケニル基である。
 R、RB1及びRB2は、それぞれ独立に、炭素数2~5のアルキレン基である。
 x1は1~10の整数であり、好ましくは2~5の整数、より好ましくは3又は4である。
 x2は0~10の整数であり、好ましくは1~4の整数、より好ましくは2又は3である。
In the general formulas (c3-1) and (c3-2), R A , R A1 and R A2 each independently represents an alkenyl group having a mass average molecular weight (Mw) of 500 to 3000 (preferably 1000 to 3000). It is.
R B , R B1 and R B2 are each independently an alkylene group having 2 to 5 carbon atoms.
x1 is an integer of 1 to 10, preferably an integer of 2 to 5, more preferably 3 or 4.
x2 is an integer of 0 to 10, preferably an integer of 1 to 4, more preferably 2 or 3.
 R、RA1及びRA2として選択し得るアルケニル基としては、例えば、ポリブテニル基、ポリイソブテニル基、エチレン-プロピレン共重合体等が挙げられ、これらの中でも、ポリブテニル基又はポリイソブテニル基が好ましい。 Examples of the alkenyl group that can be selected as R A , R A1, and R A2 include a polybutenyl group, a polyisobutenyl group, and an ethylene-propylene copolymer. Among these, a polybutenyl group or a polyisobutenyl group is preferable.
 アルケニルコハク酸イミド(C31)は、例えば、ポリオレフィンと無水マレイン酸との反応で得られるアルケニルコハク酸無水物を、ポリアミンと反応させることで製造することができる。
 上記ポリオレフィンは、例えば、炭素数2~8のα-オレフィンから選ばれる1種又は2種以上を重合して得られる重合体が挙げられるが、イソブテンと1-ブテンとの共重合体が好ましい。
 また、上記ポリアミンとしては、例えば、エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ペンチレンジアミン等の単一ジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ジ(メチルエチレン)トリアミン、ジブチレントリアミン、トリブチレンテトラミン、及びペンタペンチレンヘキサミン等のポリアルキレンポリアミン;アミノエチルピペラジン等のピペラジン誘導体;等が挙げられる。
The alkenyl succinimide (C31) can be produced, for example, by reacting an alkenyl succinic anhydride obtained by reaction of polyolefin and maleic anhydride with a polyamine.
Examples of the polyolefin include a polymer obtained by polymerizing one or more selected from α-olefins having 2 to 8 carbon atoms, and a copolymer of isobutene and 1-butene is preferable.
Examples of the polyamine include single diamines such as ethylenediamine, propylenediamine, butylenediamine, and pentylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, di (methylethylene) triamine, and dibutylene. And polyalkylene polyamines such as triamine, tributylenetetramine, and pentapentylenehexamine; piperazine derivatives such as aminoethylpiperazine; and the like.
 ホウ素変性アルケニルコハク酸イミド(C32)は、例えば、上述のポリオレフィンと無水マレイン酸との反応で得られるアルケニルコハク酸無水物を、上述のポリアミン及びホウ素化合物と反応させることで製造することができる。
 上記ホウ素化合物としては、例えば、酸化ホウ素、ハロゲン化ホウ素、ホウ酸、ホウ酸無水物、ホウ酸エステル、ホウ酸のアンモニウム塩等が挙げられる。
The boron-modified alkenyl succinimide (C32) can be produced, for example, by reacting alkenyl succinic anhydride obtained by the reaction of the above-mentioned polyolefin with maleic anhydride with the above-mentioned polyamine and boron compound.
Examples of the boron compound include boron oxide, boron halide, boric acid, boric anhydride, boric acid ester, ammonium salt of boric acid, and the like.
 本発明の一態様において、ホウ素変性アルケニルコハク酸イミド(C32)を構成するホウ素原子と窒素原子の比率〔B/N〕としては、清浄性を向上させる観点から、好ましくは0.5以上、より好ましくは0.6以上、更に好ましくは0.8以上、より更に好ましくは0.9以上である。 In one embodiment of the present invention, the ratio of boron atom and nitrogen atom constituting the boron-modified alkenyl succinimide (C32) [B / N] is preferably 0.5 or more from the viewpoint of improving cleanliness. Preferably it is 0.6 or more, More preferably, it is 0.8 or more, More preferably, it is 0.9 or more.
 本発明の一態様の潤滑油組成物において、アルケニルコハク酸イミド系化合物(C31)の窒素原子換算での含有量は、当該潤滑油組成物の全量(100質量%)基準で、好ましくは10~3000質量ppm、より好ましくは50~2000質量ppm、更に好ましくは100~1400質量ppm、より更に好ましくは200~1200質量ppmである。 In the lubricating oil composition of one embodiment of the present invention, the content of the alkenyl succinimide-based compound (C31) in terms of nitrogen atom is preferably 10 to 10 on the basis of the total amount (100% by mass) of the lubricating oil composition. It is 3000 mass ppm, more preferably 50 to 2000 mass ppm, still more preferably 100 to 1400 mass ppm, and still more preferably 200 to 1200 mass ppm.
 本発明の一態様の潤滑油組成物において、ホウ素変性アルケニルコハク酸イミド(C32)のホウ素原子換算での含有量は、当該潤滑油組成物の全量(100質量%)基準で、好ましくは10~1000質量ppm、より好ましくは30~700質量ppm、更に好ましくは50~500質量ppm、より更に好ましくは100~400質量ppmである。
 また、ホウ素変性アルケニルコハク酸イミド(C32)の窒素原子換算での含有量は、当該潤滑油組成物の全量(100質量%)基準で、好ましくは10~1000質量ppm、より好ましくは30~700質量ppm、更に好ましくは50~500質量ppm、より更に好ましくは100~400質量ppmである。
In the lubricating oil composition of one embodiment of the present invention, the boron-modified alkenyl succinimide (C32) content in terms of boron atoms is preferably 10 to 10% based on the total amount (100% by mass) of the lubricating oil composition. 1000 ppm by mass, more preferably 30 to 700 ppm by mass, still more preferably 50 to 500 ppm by mass, and still more preferably 100 to 400 ppm by mass.
Further, the content of the boron-modified alkenyl succinimide (C32) in terms of nitrogen atom is preferably 10 to 1000 ppm by mass, more preferably 30 to 700, based on the total amount (100% by mass) of the lubricating oil composition. The mass ppm is more preferably 50 to 500 ppm by mass, and still more preferably 100 to 400 ppm by mass.
 なお、本発明の一態様の潤滑油組成物において、アルケニルコハク酸イミド(C31)とホウ素変性アルケニルコハク酸イミド(C32)とを共に含むことが好ましい。
 アルケニルコハク酸イミド(C31)の窒素原子換算での含有量に対する、ホウ素変性アルケニルコハク酸イミド(C32)のホウ素原子換算での含有量の比率〔(C32)/(C31)〕としては、好ましくは0.5~5、より好ましくは0.7~3、更に好ましくは0.8~2、より更に好ましくは0.9~1.5である。
Note that the lubricating oil composition of one embodiment of the present invention preferably contains both alkenyl succinimide (C31) and boron-modified alkenyl succinimide (C32).
The ratio of the content of boron-modified alkenylsuccinimide (C32) in terms of boron atom to the content in terms of nitrogen atom of alkenyl succinimide (C31) [(C32) / (C31)] is preferably It is 0.5 to 5, more preferably 0.7 to 3, still more preferably 0.8 to 2, and still more preferably 0.9 to 1.5.
<ヒンダードアミン系酸化防止剤(D1)>
 本発明の潤滑油組成物は、酸化防止剤(D)として、ヒンダードアミン系酸化防止剤(D1)を、窒素原子換算で、900質量ppm以上含有する。
 本発明の潤滑油組成物は、有機金属系清浄剤(C1)の金属原子換算での含有量が1400質量ppm以下に調整されているが、ヒンダードアミン系酸化防止剤(D1)を含有することで、清浄性を向上させている。
 ヒンダードアミン系酸化防止剤(D1)は、金属原子を含まないため、潤滑油組成物の硫酸灰分を上昇させずに、酸化防止性能の向上に寄与し、使用に伴う潤滑油組成物の酸化劣化を抑制し得る。つまり、成分(D1)が有する酸化防止性能に起因して、使用に伴うスラッジの生成量を低減することができ、清浄性を良好に保つことができる。この清浄性の維持性は、上述の無灰系清浄剤(C3)を用いた場合に比べて、効果的である。
<Hindered amine antioxidant (D1)>
The lubricating oil composition of the present invention contains a hindered amine antioxidant (D1) as an antioxidant (D) in an amount of 900 ppm by mass or more in terms of nitrogen atom.
In the lubricating oil composition of the present invention, the content of the organometallic detergent (C1) in terms of metal atom is adjusted to 1400 mass ppm or less, but by containing a hindered amine antioxidant (D1). , Improving cleanliness.
Since the hindered amine antioxidant (D1) does not contain a metal atom, the hindered amine antioxidant (D1) contributes to the improvement of the antioxidant performance without increasing the sulfated ash content of the lubricating oil composition, and the oxidative deterioration of the lubricating oil composition accompanying use. Can be suppressed. That is, due to the antioxidant performance of the component (D1), the amount of sludge produced with use can be reduced, and the cleanliness can be kept good. This maintainability of cleanliness is more effective than when the above-mentioned ashless detergent (C3) is used.
 本発明の潤滑油組成物において、成分(D1)の窒素原子換算での含有量としては、当該潤滑油組成物の全量(100質量%)基準で、900質量ppm以上であるが、好ましくは950質量ppm以上、より好ましくは1000質量ppm以上、更に好ましくは1100質量ppm以上、より更に好ましくは1200質量ppm以上であり、また、好ましくは2000質量ppm以下、より好ましくは1800質量ppm以下、更に好ましくは1600質量ppm以下、より更に好ましくは1500質量ppm以下である。 In the lubricating oil composition of the present invention, the content of the component (D1) in terms of nitrogen atom is 900 mass ppm or more based on the total amount (100 mass%) of the lubricating oil composition, preferably 950. Mass ppm or more, more preferably 1000 mass ppm or more, more preferably 1100 mass ppm or more, still more preferably 1200 mass ppm or more, and preferably 2000 mass ppm or less, more preferably 1800 mass ppm or less, still more preferably Is 1600 mass ppm or less, more preferably 1500 mass ppm or less.
 なお、本発明の一態様の潤滑油組成物において、成分(D1)の配合量としては、窒素原子換算での含有量が上記範囲に属するように調製されればよいが、当該潤滑油組成物の全量(100質量%)基準で、好ましくは2.10~5.00質量%、より好ましくは2.30~4.70質量%、更に好ましくは2.50~4.50質量%、より更に好ましくは2.80~4.20質量%である。 In the lubricating oil composition of one embodiment of the present invention, the component (D1) may be prepared so that the content in terms of nitrogen atom falls within the above range. On the basis of the total amount (100% by mass), preferably 2.10 to 5.00% by mass, more preferably 2.30 to 4.70% by mass, still more preferably 2.50 to 4.50% by mass, and still more. The amount is preferably 2.80 to 4.20% by mass.
 本発明で用いるヒンダードアミン系酸化防止剤(D1)としては、下記式(d)で表される構造を含む酸化防止剤であればよい。
 なお、ヒンダードアミン系酸化防止剤(D1)は、単独で用いてもよく、又は2種以上を併用してもよい。
The hindered amine antioxidant (D1) used in the present invention may be an antioxidant having a structure represented by the following formula (d).
In addition, a hindered amine antioxidant (D1) may be used independently, or may use 2 or more types together.
Figure JPOXMLDOC01-appb-C000007

(上記式(d)中、*1、*2は、他の原子との結合位置を示す。)
Figure JPOXMLDOC01-appb-C000007

(In the above formula (d), * 1 and * 2 indicate bonding positions with other atoms.)
 より具体的には、ヒンダードアミン系酸化防止剤(D1)としては、下記一般式(d-1)で表される化合物、又は下記一般式(d-2)で表される化合物であることが好ましく、下記一般式(d-3)で表される化合物、又は下記一般式(d-4)で表される化合物であることがより好ましい。 More specifically, the hindered amine antioxidant (D1) is preferably a compound represented by the following general formula (d-1) or a compound represented by the following general formula (d-2). A compound represented by the following general formula (d-3) or a compound represented by the following general formula (d-4) is more preferable.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記一般式(d-1)~(d-4)中、RD1は、それぞれ独立に、水素原子又は炭素数1~10のアルキル基であり、水素原子又は炭素数1~3のアルキル基であることが好ましい。
 上記一般式(d-1)中、RD2は、水素原子、炭素数1~20のアルキル基、環形成炭素数6~18のシクロアルキル基、環形成炭素数6~18のアリール基、水酸基、アミノ基、又は-O-CO-R’で表される基(R’は、水素原子又は炭素数1~20のアルキル基)である。
 上記一般式(d-2)中、Zは、炭素数1~20のアルキレン基、環形成炭素数6~18のシクロアルキレン基、環形成炭素数6~18のアリーレン基、酸素原子、硫黄原子、又は-O-CO-(CH-CO-O-で表される基(nは1~20の整数)である。
 上記一般式(d-3)中、R’は、水素原子又は炭素数1~20のアルキル基である。
 上記一般式(d-4)中、nは、1~20の整数である。
In the general formulas (d-1) to (d-4), R D1 is each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. Preferably there is.
In the general formula (d-1), R D2 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 6 to 18 ring carbon atoms, an aryl group having 6 to 18 ring carbon atoms, a hydroxyl group , An amino group, or a group represented by —O—CO—R ′ (R ′ is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms).
In the general formula (d-2), Z represents an alkylene group having 1 to 20 carbon atoms, a cycloalkylene group having 6 to 18 ring carbon atoms, an arylene group having 6 to 18 ring carbon atoms, an oxygen atom, or a sulfur atom. Or a group represented by —O—CO— (CH 2 ) n —CO—O— (n is an integer of 1 to 20).
In general formula (d-3), R ′ represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
In the general formula (d-4), n is an integer of 1 to 20.
<成分(D1)以外の酸化防止剤(D2)>
 本発明の一態様の潤滑油組成物は、酸化安定性を向上させた潤滑油組成物とする観点から、酸化防止剤(D)として、さらに成分(D1)以外の酸化防止剤(D2)を含有してもよい。
 本発明の一態様の潤滑油組成物において、成分(D2)の配合量は、当該潤滑油組成物の全量(100質量%)基準で、好ましくは0~8.0質量%、より好ましくは0.05~6.0質量%、更に好ましくは0.1~4.5質量%、より更に好ましくは0.3~3.0質量%である。
<Antioxidant (D2) other than component (D1)>
The lubricating oil composition of one embodiment of the present invention further comprises an antioxidant (D2) other than the component (D1) as the antioxidant (D) from the viewpoint of a lubricating oil composition with improved oxidation stability. You may contain.
In the lubricating oil composition of one embodiment of the present invention, the amount of component (D2) is preferably 0 to 8.0% by mass, more preferably 0, based on the total amount (100% by mass) of the lubricating oil composition. .05 to 6.0% by mass, more preferably 0.1 to 4.5% by mass, and still more preferably 0.3 to 3.0% by mass.
 また、成分(D1)の全量100質量部に対する、成分(D2)の含有量比としては、好ましくは0~100質量部、より好ましくは1~80質量部、更に好ましくは5~60質量部、より更に好ましくは10~50質量部である。 The content ratio of the component (D2) to the total amount of the component (D1) is 100 parts by mass, preferably 0 to 100 parts by mass, more preferably 1 to 80 parts by mass, still more preferably 5 to 60 parts by mass, More preferably, it is 10 to 50 parts by mass.
 酸化防止剤(D2)としては、例えば、フェノール系酸化防止剤、成分(D1)以外のアミン系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤等が挙げられる。
 これらの酸化防止剤(D2)は、単独で用いてもよく、又は2種以上を併用してもよい。
Examples of the antioxidant (D2) include phenol-based antioxidants, amine-based antioxidants other than the component (D1), sulfur-based antioxidants, phosphorus-based antioxidants, and the like.
These antioxidants (D2) may be used alone or in combination of two or more.
 フェノール系酸化防止剤としては、例えば、2,6-ジ-tert-ブチルフェノール、2,6-ジ-tert-ブチル-4-メチルフェノール、2,6-ジ-tert-ブチル-4-エチルフェノール、イソオクチル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、ベンゼンプロパン酸-,3,5-ビス(1,1-ジメチル-エチル)-4-ヒドロキシ-,C7-C9側鎖アルキルエステル等のモノフェノール系酸化防止剤;4,4’-メチレンビス(2,6-ジ-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)等のジフェノール系酸化防止剤;成分(D1)以外のヒンダードフェノール系酸化防止剤;等を挙げられる。
 成分(D1)以外のアミン系酸化防止剤としては、例えば、ジフェニルアミン、炭素数3~20のアルキル基を有するアルキル化ジフェニルアミン等のジフェニルアミン系酸化防止剤;α-ナフチルアミン、フェニル-α-ナフチルアミン、炭素数3~20のアルキル基を有する置換フェニル-α-ナフチルアミン等のナフチルアミン系酸化防止剤;等が挙げられる。
 硫黄系酸化防止剤としては、例えば、ジラウリル-3,3’-チオジプロピオネイト等が挙げられる。
 リン系酸化防止剤としては、例えば、ホスファイト等が挙げられる。
Examples of phenolic antioxidants include 2,6-di-tert-butylphenol, 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, Isooctyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, benzenepropanoic acid-3 Monophenolic antioxidants such as 1,5-bis (1,1-dimethyl-ethyl) -4-hydroxy-, C7-C9 side chain alkyl ester; 4,4′-methylenebis (2,6-di-tert- Diphenolic antioxidants such as butylphenol) and 2,2'-methylenebis (4-ethyl-6-tert-butylphenol) ; It includes the like; component (D1) Hindered phenol-based antioxidant other than.
Examples of amine antioxidants other than the component (D1) include diphenylamine, diphenylamine antioxidants such as alkylated diphenylamine having an alkyl group having 3 to 20 carbon atoms; α-naphthylamine, phenyl-α-naphthylamine, carbon And naphthylamine antioxidants such as substituted phenyl-α-naphthylamines having an alkyl group of 3 to 20;
Examples of the sulfur-based antioxidant include dilauryl-3,3′-thiodipropionate.
Examples of phosphorus antioxidants include phosphites.
 これらの中でも、成分(D2)としては、酸化安定性を向上させた潤滑油組成物とする観点から、フェノール系酸化防止剤(D21)及び成分(D1)以外のアミン系酸化防止剤(D22)から選ばれる1種以上を含有することが好ましく、フェノール系酸化防止剤(D21)及び成分(D1)以外のアミン系酸化防止剤(D22)を共に含有することがより好ましい。 Among these, as the component (D2), from the viewpoint of obtaining a lubricating oil composition with improved oxidation stability, an amine-based antioxidant (D22) other than the phenol-based antioxidant (D21) and the component (D1). It is preferable to contain 1 or more types chosen from these, and it is more preferable to contain amine antioxidant (D22) other than a phenolic antioxidant (D21) and a component (D1).
 成分(D2)が、成分(D21)及び成分(D22)を共に含有する場合、成分(D21)と成分(D22)との含有量比〔(D21)/(D22)〕としては、酸化安定性を向上させた潤滑油組成物とする観点から、質量比で、好ましくは0.1/1~1.0/1、より好ましくは0.2/1~0.9/1、更に好ましくは0.3/1~0.8/1である。 When the component (D2) contains both the component (D21) and the component (D22), the content ratio [(D21) / (D22)] of the component (D21) and the component (D22) From the viewpoint of providing a lubricating oil composition with improved viscosity, the weight ratio is preferably 0.1 / 1 to 1.0 / 1, more preferably 0.2 / 1 to 0.9 / 1, and still more preferably 0. .3 / 1 to 0.8 / 1.
<ジチオリン酸亜鉛(E1)>
 本発明の一態様の潤滑油組成物は、耐摩耗剤(E)として、さらにジチオリン酸亜鉛(ZnDTP)(E1)を含有してもよい。
 上述のとおり、ZnDTPとMoDTCとを併用すると、エンジン部材の金属表面上にリンの被膜が形成され、さらに当該リンの被膜上に硫化モリブデンの被膜を形成することで耐摩耗性及び耐摩擦低減効果が得られるものの、今後さらに高い次元で要求される省燃費性を実現するには不十分である。
 一方、本発明の潤滑油組成物は、さらにZnDTPを含有した場合に、より強固なZnDTPに由来のリンの被膜と、MoDTPに由来の硫化モリブデンの被膜を形成させることができる。また、本発明の潤滑油組成物は、ZnDTPの含有量を低く調整可能であるため、さらに耐摩耗性及び摩擦低減効果をバランスよく、更に向上させることができる。
 そのため、本発明の一態様の潤滑油組成物は、さらにZnDTPを含有したとしても、摩擦低減効果を低下させずに、より耐摩耗性を向上させることができる。
<Zinc dithiophosphate (E1)>
The lubricating oil composition of one embodiment of the present invention may further contain zinc dithiophosphate (ZnDTP) (E1) as the antiwear agent (E).
As described above, when ZnDTP and MoDTC are used in combination, a phosphorus film is formed on the metal surface of the engine member, and a molybdenum sulfide film is further formed on the phosphorus film, thereby reducing wear resistance and friction resistance. However, it is insufficient to achieve the fuel efficiency required in a higher dimension in the future.
On the other hand, when the lubricating oil composition of the present invention further contains ZnDTP, a stronger phosphorus coating derived from ZnDTP and a molybdenum sulfide coating derived from MoDTP can be formed. Moreover, since the lubricating oil composition of the present invention can adjust the content of ZnDTP to be low, the wear resistance and the friction reducing effect can be further improved in a balanced manner.
Therefore, even if the lubricating oil composition of one embodiment of the present invention further contains ZnDTP, the wear resistance can be further improved without reducing the friction reduction effect.
 本発明の一態様の潤滑油組成物において、成分(E1)の亜鉛原子換算での含有量は、当該潤滑油組成物の全量(100質量%)基準で、好ましくは100~700質量ppm、より好ましくは150~650質量ppm、更に好ましくは200~600質量ppm、より更に好ましくは250~550質量ppmである。
 当該含有量が100質量ppm以上であれば、より耐摩耗性を向上させた潤滑油組成物とすることができる。また、当該含有量が700質量ppm以下であれば、得られる潤滑油組成物の摩擦低減効果の低下を抑制することができる。
In the lubricating oil composition of one embodiment of the present invention, the content of the component (E1) in terms of zinc atoms is preferably 100 to 700 ppm by mass, based on the total amount (100% by mass) of the lubricating oil composition. The amount is preferably 150 to 650 ppm by mass, more preferably 200 to 600 ppm by mass, and still more preferably 250 to 550 ppm by mass.
If the said content is 100 mass ppm or more, it can be set as the lubricating oil composition which improved abrasion resistance more. Moreover, if the said content is 700 mass ppm or less, the fall of the friction reduction effect of the lubricating oil composition obtained can be suppressed.
 本発明の一態様の潤滑油組成物において、成分(E1)の配合量としては、亜鉛原子換算での含有量が上記範囲に属するように調製されればよいが、当該潤滑油組成物の全量(100質量%)基準で、好ましくは0.01~1.00質量%、より好ましくは0.05~0.90質量%、更に好ましくは0.1~0.85質量%、より更に好ましくは0.2~0.80質量%である。 In the lubricating oil composition of one embodiment of the present invention, the amount of the component (E1) may be adjusted so that the content in terms of zinc atom belongs to the above range, but the total amount of the lubricating oil composition (100% by mass), preferably 0.01 to 1.00% by mass, more preferably 0.05 to 0.90% by mass, still more preferably 0.1 to 0.85% by mass, and still more preferably 0.2 to 0.80% by mass.
 また、成分(B1)のリン原子換算での全量100質量部に対する、成分(E1)のリン原子換算での含有量比としては、好ましくは0~300質量部、より好ましくは0~200質量部、更に好ましくは0~100質量部、より更に好ましくは0~80質量部である。 Further, the content ratio of the component (E1) in terms of phosphorus atoms to the total amount of 100 parts by mass in terms of phosphorus atoms of the component (B1) is preferably 0 to 300 parts by mass, more preferably 0 to 200 parts by mass. More preferably, it is 0 to 100 parts by mass, and still more preferably 0 to 80 parts by mass.
 ジチオリン酸亜鉛(E1)としては、下記一般式(e-1)で表される化合物が好ましい。
 なお、ジチオリン酸亜鉛(E1)は、単独で用いてもよく、又は2種以上を併用してもよい。
As the zinc dithiophosphate (E1), a compound represented by the following general formula (e-1) is preferable.
In addition, zinc dithiophosphate (E1) may be used independently or may use 2 or more types together.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記式(e-1)中、RE1~RE4は、それぞれ独立に、炭化水素基を示し、互いに同一であってもよく、異なっていてもよい。
 RE1~RE4として選択し得る炭化水素基の炭素数は、好ましくは1~20、より好ましくは1~16、更に好ましくは3~12、より更に好ましくは3~10である。
 RE1~RE4として選択し得る具体的な当該炭化水素基としては、前記一般式(b1-1)又は(b1-2)中のR~Rとして選択し得る炭化水素基と同じものが挙げられるが、アルキル基が好ましく、第1級又は第2級のアルキル基がより好ましい。
In the above formula (e-1), R E1 to R E4 each independently represent a hydrocarbon group, and may be the same or different.
The number of carbon atoms of the hydrocarbon group that can be selected as R E1 to R E4 is preferably 1 to 20, more preferably 1 to 16, still more preferably 3 to 12, and still more preferably 3 to 10.
Specific examples of the hydrocarbon group that can be selected as R E1 to R E4 are the same as the hydrocarbon groups that can be selected as R 1 to R 4 in formula (b1-1) or (b1-2). However, an alkyl group is preferable, and a primary or secondary alkyl group is more preferable.
<他の潤滑油用添加剤>
 本発明の一態様の潤滑油組成物は、本発明の効果を損なわない範囲において、上記成分には該当しない、無灰系摩擦調整剤、耐摩耗剤、極圧剤、粘度指数向上剤、金属不活性化剤、流動点降下剤、防錆剤、及び消泡剤等の他の潤滑油用添加剤を含有してもよい。
 これらの潤滑油用添加剤は、それぞれ、単独で用いてもよく、又は2種以上を併用してもよい。
<Other lubricant additives>
The lubricating oil composition of one aspect of the present invention is an ashless friction modifier, an antiwear agent, an extreme pressure agent, a viscosity index improver, a metal, which does not fall under the above-described components, as long as the effects of the present invention are not impaired. You may contain other additives for lubricating oils, such as a deactivator, a pour point depressant, a rust inhibitor, and an antifoamer.
These lubricant additives may be used alone or in combination of two or more.
 これらの潤滑油用添加剤の各含有量は、本発明の効果を損なわない範囲内で、適宜調整することができるが、潤滑油組成物の全量(100質量%)基準で、通常0.001~15質量%、好ましくは0.005~10質量%、より好ましくは0.01~8質量%である。
 なお、本発明の一態様の潤滑油組成物において、これらの潤滑油用添加剤の合計含有量は、当該潤滑油組成物の全量(100質量%)基準で、好ましくは0~25質量%、より好ましくは0~20質量%、更に好ましくは0~15質量%である。
Each content of these additives for lubricating oil can be appropriately adjusted within a range not impairing the effects of the present invention, but is usually 0.001 based on the total amount (100% by mass) of the lubricating oil composition. -15% by mass, preferably 0.005-10% by mass, more preferably 0.01-8% by mass.
In the lubricating oil composition of one embodiment of the present invention, the total content of these lubricating oil additives is preferably 0 to 25% by mass based on the total amount of the lubricating oil composition (100% by mass). More preferably, it is 0 to 20% by mass, and still more preferably 0 to 15% by mass.
 なお、本明細書において、粘度指数向上剤や消泡剤等の添加剤は、ハンドリング性や基油(A)への溶解性を考慮し、鉱油、合成油、軽質油等の希釈油に溶解した溶液の形態で、他の成分と配合される場合がある。このような場合、本明細書においては、消泡剤や粘度指数向上剤等の添加剤の上述の含有量は、希釈油を除いた有効成分換算(樹脂分換算)での含有量を意味する。 In this specification, additives such as viscosity index improvers and antifoaming agents are dissolved in diluent oil such as mineral oil, synthetic oil, and light oil in consideration of handling properties and solubility in base oil (A). In some cases, it may be blended with other ingredients in the form of a solution. In such a case, in the present specification, the above-described content of additives such as an antifoaming agent and a viscosity index improver means a content in terms of active ingredients (resin content) excluding diluent oil. .
 無灰系摩擦調整剤としては、例えば、炭素数6~30のアルキル基又はアルケニル基、特に炭素数6~30の直鎖アルキル基又は直鎖アルケニル基を分子中に少なくとも1個有する、脂肪族アミン、脂肪酸エステル、脂肪酸アミド、脂肪酸、脂肪族アルコール、脂肪族エーテル等が挙げられる。 Examples of the ashless friction modifier include, for example, an aliphatic group having at least one alkyl group or alkenyl group having 6 to 30 carbon atoms, particularly a linear alkyl group or straight chain alkenyl group having 6 to 30 carbon atoms in the molecule. Examples include amines, fatty acid esters, fatty acid amides, fatty acids, aliphatic alcohols and aliphatic ethers.
 上記成分以外の耐摩耗剤又は極圧剤としては、例えば、リン酸亜鉛、ジチオカルバミン酸亜鉛、ジスルフィド類、硫化オレフィン類、硫化油脂類、硫化エステル類、チオカーボネート類、チオカーバメート類、ポリサルファイド類等の硫黄含有化合物;亜リン酸エステル類、リン酸エステル類、ホスホン酸エステル類、及びこれらのアミン塩又は金属塩等のリン含有化合物;チオ亜リン酸エステル類、チオリン酸エステル類、チオホスホン酸エステル類、及びこれらのアミン塩又は金属塩等の硫黄及びリン含有耐摩耗剤が挙げられる。 Antiwear agents or extreme pressure agents other than the above components include, for example, zinc phosphate, zinc dithiocarbamate, disulfides, sulfurized olefins, sulfurized fats and oils, sulfurized esters, thiocarbonates, thiocarbamates, polysulfides, etc. Sulfur-containing compounds; phosphorous esters, phosphate esters, phosphonate esters, and phosphorus-containing compounds such as amine salts or metal salts thereof; thiophosphite esters, thiophosphate esters, thiophosphonate esters And sulfur and phosphorus containing antiwear agents such as amine salts or metal salts thereof.
 粘度指数向上剤としては、例えば、ポリメタクリレート、分散型ポリメタクリレート、オレフィン系共重合体(例えば、エチレン-プロピレン共重合体等)、分散型オレフィン系共重合体、スチレン系共重合体(例えば、スチレン-ジエン共重合体、スチレン-イソプレン共重合体等)等が挙げられる。
 なお、粘度指数向上剤の構造としては、直鎖であってもよく、分岐鎖を有するものであってもよい。また、本発明で用いる粘度指数向上剤としては、高分子量の側鎖が出ている三叉分岐点を主鎖に数多くもつ構造を有する櫛形ポリマーや、分岐高分子の一種で1点で3本以上の鎖状高分子が結合している構造を有する星形ポリマー等といった特定の構造を有するポリマーであってもよい。
As the viscosity index improver, for example, polymethacrylate, dispersed polymethacrylate, olefin copolymer (for example, ethylene-propylene copolymer), dispersed olefin copolymer, styrene copolymer (for example, Styrene-diene copolymer, styrene-isoprene copolymer, etc.).
The structure of the viscosity index improver may be a straight chain or a branched chain. Further, as the viscosity index improver used in the present invention, a comb polymer having a structure having a number of trident branching points with a high molecular weight side chain in the main chain, or a kind of branched polymer, 3 or more at one point. It may be a polymer having a specific structure such as a star polymer having a structure in which a chain polymer is bonded.
 これらの粘度指数向上剤の質量平均分子量(Mw)としては、通常500~1,000,000、好ましくは5,000~800,000、より好ましくは10,000~600,000であるが、重合体の種類に応じて適宜設定される。 The mass average molecular weight (Mw) of these viscosity index improvers is usually 500 to 1,000,000, preferably 5,000 to 800,000, more preferably 10,000 to 600,000. It is set as appropriate according to the type of coalescence.
 また、粘度指数向上剤を構成する樹脂分のSSI(せん断安定性指数、Shear Stability Index)としては、好ましくは1~30である。
 SSIの値は、粘度指数向上剤を構成する樹脂分の分解に抵抗する能力を示し、SSIの値が大きいほど、当該樹脂分は、せん断に対して不安定でより分解されやすい。
 なお、本明細書において、粘度指数向上剤を構成する樹脂分のSSIは、ASTM D6278に準拠して測定された値を意味する。
The SSI (Shear Stability Index) of the resin component constituting the viscosity index improver is preferably 1 to 30.
The value of SSI indicates the ability to resist decomposition of the resin component constituting the viscosity index improver, and the larger the SSI value, the more unstable the resin component is and the more easily decomposed.
In the present specification, the SSI of the resin component constituting the viscosity index improver means a value measured in accordance with ASTM D6278.
 金属不活性化剤としては、例えば、ベンゾトリアゾール系化合物、トリルトリアゾール系化合物、チアジアゾール系化合物、イミダゾール系化合物、ピリミジン系化合物等が挙げられる。 Examples of the metal deactivator include benzotriazole compounds, tolyltriazole compounds, thiadiazole compounds, imidazole compounds, pyrimidine compounds, and the like.
 流動点降下剤としては、例えば、エチレン-酢酸ビニル共重合体、塩素化パラフィンとナフタレンとの縮合物、塩素化パラフィンとフェノールとの縮合物、ポリメタクリレート、ポリアルキルスチレン等が挙げられる。 Examples of the pour point depressant include ethylene-vinyl acetate copolymer, condensate of chlorinated paraffin and naphthalene, condensate of chlorinated paraffin and phenol, polymethacrylate, polyalkylstyrene and the like.
 防錆剤としては、例えば、石油スルフォネート、アルキルベンゼンスルフォネート、ジノニルナフタレンスルフォネート、アルケニルコハク酸エステル、多価アルコールエステル等が挙げられる。 Examples of the rust preventive include petroleum sulfonate, alkylbenzene sulfonate, dinonyl naphthalene sulfonate, alkenyl succinate, polyhydric alcohol ester and the like.
 消泡剤としては、例えば、シリコーン油、フルオロシリコーン油、フルオロアルキルエーテル等が挙げられる。 Examples of the antifoaming agent include silicone oil, fluorosilicone oil, and fluoroalkyl ether.
〔潤滑油組成物の各種性状〕
 本発明の一態様の潤滑油組成物中のモリブデン原子の含有量は、当該潤滑油組成物の全量(100質量%)基準で、好ましくは400~3000質量ppm、より好ましくは500~2500質量ppm、更に好ましくは700~2000質量ppm、より更に好ましくは800~1800質量ppm、特に好ましくは900~1500質量ppmである。
[Various properties of lubricating oil composition]
The content of molybdenum atoms in the lubricating oil composition of one embodiment of the present invention is preferably 400 to 3000 ppm by mass, more preferably 500 to 2500 ppm by mass, based on the total amount (100% by mass) of the lubricating oil composition. More preferably, it is 700 to 2000 ppm by mass, still more preferably 800 to 1800 ppm by mass, and particularly preferably 900 to 1500 ppm by mass.
 本発明の一態様の潤滑油組成物中のカルシウム原子の含有量は、当該潤滑油組成物の全量(100質量%)基準で、好ましくは50~1400質量ppm、より好ましくは60~1250質量ppm、更に好ましくは70~1100質量ppm、更に好ましくは80~1000質量ppm、より更に好ましくは90~800質量ppm、特に好ましくは100~600質量ppmである。 The content of calcium atoms in the lubricating oil composition of one embodiment of the present invention is preferably 50 to 1400 ppm by mass, more preferably 60 to 1250 ppm by mass, based on the total amount (100% by mass) of the lubricating oil composition. More preferably, it is 70 to 1100 ppm by mass, more preferably 80 to 1000 ppm by mass, still more preferably 90 to 800 ppm by mass, and particularly preferably 100 to 600 ppm by mass.
 本発明の一態様の潤滑油組成物中のリン原子の含有量は、当該潤滑油組成物の全量(100質量%)基準で、好ましくは200~1100質量ppm、より好ましくは300~1000質量ppm、更に好ましくは400~900質量ppm、より更に好ましくは500~850質量ppmである。 The content of phosphorus atoms in the lubricating oil composition of one embodiment of the present invention is preferably 200 to 1100 ppm by mass, more preferably 300 to 1000 ppm by mass, based on the total amount (100% by mass) of the lubricating oil composition. More preferably, it is 400 to 900 ppm by mass, and still more preferably 500 to 850 ppm by mass.
 本発明の一態様の潤滑油組成物の100℃における動粘度は、好ましくは3~20mm/s、より好ましくは3~10mm/s、更に好ましくは5~8mm/sである。 The kinematic viscosity at 100 ° C. of the lubricating oil composition of one embodiment of the present invention is preferably 3 to 20 mm 2 / s, more preferably 3 to 10 mm 2 / s, and still more preferably 5 to 8 mm 2 / s.
 本発明の一態様の潤滑油組成物の粘度指数は、好ましくは100以上、より好ましくは120以上、更に好ましくは130以上である。 The viscosity index of the lubricating oil composition of one embodiment of the present invention is preferably 100 or more, more preferably 120 or more, and still more preferably 130 or more.
〔潤滑油組成物の用途〕
 本発明の一態様の潤滑油組成物は、二輪車、四輪車等の自動車、発電機、船舶等のガソリンエンジン、ディーゼルエンジン、ガスエンジン等の内燃機関用潤滑油として好ましく使用することができる。また、低硫酸灰分であるため、特に、排出ガス後処理装置(特に、パティキュレートフィルター又は排出ガス浄化装置)を備えた内燃機関用潤滑油組成物として好適である。
 つまり、本発明は、当該潤滑油組成物を、排ガス後処理装置を備えた内燃機関に用いる、潤滑油組成物の使用方法も提供し得る。
 なお、本発明の潤滑油組成物を用いた内燃機関としては、例えば、スーパーチャージャー、ターボチャージャー等の過給機を搭載した直噴ガソリンエンジン(すなわち、ダウンサイジングエンジン)や、ディーゼルエンジンが好ましい。
[Use of lubricating oil composition]
The lubricating oil composition of one embodiment of the present invention can be preferably used as a lubricating oil for internal combustion engines such as automobiles such as two-wheeled vehicles and four-wheeled vehicles, gasoline engines such as generators and ships, diesel engines, and gas engines. Further, since it has a low sulfate ash content, it is particularly suitable as a lubricating oil composition for an internal combustion engine equipped with an exhaust gas aftertreatment device (particularly, a particulate filter or an exhaust gas purification device).
That is, this invention can also provide the usage method of a lubricating oil composition which uses the said lubricating oil composition for the internal combustion engine provided with the exhaust gas after-treatment apparatus.
As the internal combustion engine using the lubricating oil composition of the present invention, for example, a direct injection gasoline engine (that is, a downsizing engine) equipped with a supercharger such as a supercharger or a turbocharger, or a diesel engine is preferable.
 また、将来の排出ガス規制にも十分に対応することができる内燃機関用潤滑油組成物としても有用である。
 そして、本発明の一態様の潤滑油組成物は、これらの内燃機関、特に、排出ガス後処理装置を備えたディーゼルエンジンに充填して、これら内燃機関に係る各部品を潤滑するために好適に用いられる。
It is also useful as a lubricating oil composition for internal combustion engines that can sufficiently meet future exhaust gas regulations.
The lubricating oil composition of one aspect of the present invention is preferably used to fill these internal combustion engines, particularly diesel engines equipped with an exhaust gas aftertreatment device, and lubricate each component related to these internal combustion engines. Used.
〔潤滑油組成物の製造方法〕
 本発明は、硫酸灰分が0.70質量%以下である潤滑油組成物を製造する方法も提供する。
 つまり、本発明の潤滑油組成物の製造方法は、下記工程(I)を有する。
工程(I):基油(A)と、
 ジチオリン酸モリブデン(B1)を、モリブデン原子換算で、400質量ppm以上と、
 アルカリ金属原子及びアルカリ土類金属原子から選ばれる金属原子を含む有機金属系清浄剤(C1)を、当該金属原子換算で、1400質量ppm以下と、
 ヒンダードアミン系酸化防止剤(D1)を、窒素原子換算で、900質量ppm以上と、
を配合し、硫酸灰分が0.70質量%以下となる潤滑油組成物を得る工程。
[Method for producing lubricating oil composition]
The present invention also provides a method for producing a lubricating oil composition having a sulfated ash content of 0.70% by mass or less.
That is, the manufacturing method of the lubricating oil composition of this invention has the following process (I).
Step (I): base oil (A),
Molybdenum dithiophosphate (B1), in terms of molybdenum atom, 400 mass ppm or more,
An organometallic detergent (C1) containing a metal atom selected from an alkali metal atom and an alkaline earth metal atom is 1400 mass ppm or less in terms of the metal atom,
The hindered amine-based antioxidant (D1) is 900 mass ppm or more in terms of nitrogen atom,
To obtain a lubricating oil composition having a sulfated ash content of 0.70% by mass or less.
 上記工程(I)において、配合する成分(A)、(B1)、(C1)、及び(D1)は、上述の本発明の潤滑油組成物に含まれる各成分と同様のものであり、好適な成分の種類、各成分の含有量も上述のとおりである。
 また、本工程において、これらの成分以外にも、上述の成分を配合してもよい。
In the step (I), the components (A), (B1), (C1), and (D1) to be blended are the same as the components contained in the lubricating oil composition of the present invention described above, and are suitable. The types of various components and the content of each component are also as described above.
Moreover, in this process, you may mix | blend the above-mentioned component besides these components.
 なお、工程(I)で配合する各成分は、希釈油等を加えて溶液(分散体)の形態とした上で、配合してもよい。
 各成分を配合した後、公知の方法により、撹拌して均一に分散させることが好ましい。
In addition, you may mix | blend each component mix | blended by process (I), after adding dilution oil etc. and making it the form of a solution (dispersion).
After blending each component, it is preferable to stir and disperse uniformly by a known method.
 工程(I)を経て得られる潤滑油組成物の性状(硫酸灰分や各種原子の含有量、動粘度、粘度指数等)は、上述の本発明の潤滑油組成物と同じである。 The properties of the lubricating oil composition obtained through the step (I) (sulfur ash content, content of various atoms, kinematic viscosity, viscosity index, etc.) are the same as the lubricating oil composition of the present invention described above.
 次に、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。なお、実施例及び比較例で用いた各成分及び得られた潤滑油組成物の各種物性値は、下記に方法に準拠して測定した。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In addition, each physical property value of each component used by the Example and the comparative example and the obtained lubricating oil composition was measured based on the method below.
<40℃及び100℃における動粘度>
 JIS K 2283に準拠して測定した。
<粘度指数>
 JIS K 2283に準拠して算出した。
<芳香族分(%C)、パラフィン分(%C)>
 ASTM D-3238環分析(n-d-M法)により測定した。
<NOACK値>
 JPI-5S-41-2004に準拠して測定した。
<Kinematic viscosity at 40 ° C. and 100 ° C.>
The measurement was performed according to JIS K 2283.
<Viscosity index>
Calculation was performed according to JIS K 2283.
<Aromatic content (% C A ), paraffin content (% C P )>
Measured by ASTM D-3238 ring analysis (ndM method).
<NOACK value>
Measured according to JPI-5S-41-2004.
<硫黄原子の含有量>
 JIS K2541-6に準拠して測定した。
<モリブデン原子、カルシウム原子、ホウ素原子、カリウム原子、亜鉛原子、及びリン原子の含有量>
 JPI-5S-38-92に準拠して測定した。
<窒素原子の含有量>
 JIS K2609に準拠して測定した。
<硫酸灰分>
 JIS K2272に準拠して測定した。
<Sulfur atom content>
The measurement was made according to JIS K2541-6.
<Contents of molybdenum atom, calcium atom, boron atom, potassium atom, zinc atom, and phosphorus atom>
Measured according to JPI-5S-38-92.
<Nitrogen atom content>
The measurement was performed according to JIS K2609.
<Sulfated ash>
The measurement was performed according to JIS K2272.
<塩基価(過塩素酸法、塩酸法)>
 JIS K2501に準拠して測定した。
<SSI(せん断安定性指数)>
 ASTM D6278に準拠して測定した。
<質量平均分子量(Mw)、数平均分子量(Mn)>
 ゲル浸透クロマトグラフ装置(アジレント社製、「1260型HPLC」)を用いて、下記の条件下で測定し、標準ポリスチレン換算にて測定した値を用いた。
(測定条件)
・カラム:「Shodex LF404」を2本、順次連結したもの。
・カラム温度:35℃
・展開溶媒:クロロホルム
・流速:0.3mL/min
<Base number (perchloric acid method, hydrochloric acid method)>
The measurement was performed according to JIS K2501.
<SSI (Shear Stability Index)>
Measured according to ASTM D6278.
<Mass average molecular weight (Mw), number average molecular weight (Mn)>
Using a gel permeation chromatograph device (manufactured by Agilent, “1260 HPLC”), the measurement was performed under the following conditions, and values measured in terms of standard polystyrene were used.
(Measurement condition)
Column: Two “Shodex LF404” connected in sequence.
-Column temperature: 35 ° C
・ Developing solvent: Chloroform ・ Flow rate: 0.3 mL / min
実施例1~13、比較例1~6
 以下に示す基油及び各種添加剤を、表1~3に示す配合量にて添加して、十分に混合して、潤滑油組成物をそれぞれ調製した。
 以下に、実施例及び比較例で用いた基油及び各種添加剤の詳細を示す。
Examples 1 to 13 and Comparative Examples 1 to 6
The following base oils and various additives were added in the blending amounts shown in Tables 1 to 3 and mixed well to prepare lubricating oil compositions.
Details of the base oil and various additives used in Examples and Comparative Examples are shown below.
<基油>
・「水素化精製鉱油(1)」:40℃動粘度=18.5mm/s、100℃動粘度=4.15mm/s、粘度指数=133、API基油カテゴリーのグループ3に分類される鉱油。%C=0.1以下、%C=89.5、硫黄原子の含有量=5質量ppm未満、NOACK値=13.8質量%、成分(A)に該当。
<Base oil>
・ “Hydrorefined mineral oil (1)”: 40 ° C. kinematic viscosity = 18.5 mm 2 / s, 100 ° C. kinematic viscosity = 4.15 mm 2 / s, viscosity index = 133, classified into group 3 of API base oil category Mineral oil. % C A = 0.1 or less,% C P = 89.5, sulfur atom content = less than 5 ppm by mass, NOACK value = 13.8% by mass, applicable to component (A).
<モリブデン系化合物>
・「MoDTP(1)」:アデカサクラルーブ310G(株式会社ADEKA製)、モリブデン原子の含有量=8.5質量%、リン原子の含有量=5.5質量%、硫黄原子の含有量=13.0質量%。前記一般式(b1-1)中、X及びXが酸素原子、X~Xが硫黄原子、R~Rが、それぞれ独立に炭化水素基である、二核ジアルキルジチオリン酸モリブデン。成分(B1)に該当。
・「MoDTC(1)」:アデカサクラルーブ515(株式会社ADEKA製)、モリブデン原子の含有量=10.0質量%、硫黄原子の含有量=11.5質量%。前記一般式(b21-2)中、X11~X14が酸素原子、R11~R14が、それぞれ独立に、炭素数が8又は13の炭化水素基である二核ジアルキルジチオカルバミン酸モリブデン。成分(B21)に該当。
・「MoDTC(2)」:Infineum C9455B(Infineum社製)、モリブデン原子の含有量=5.5質量%、硫黄原子の含有量=9.9質量%。前記一般式(b22-1)で表される三核ジチオカルバミン酸モリブデン。成分(B22)に該当。
<Molybdenum compound>
“MoDTP (1)”: Adeka Sakura Lube 310G (manufactured by ADEKA Corporation), molybdenum atom content = 8.5 mass%, phosphorus atom content = 5.5 mass%, sulfur atom content = 13 0.0 mass%. In the general formula (b1-1), a dinuclear molybdenum dialkyldithiophosphate in which X 1 and X 2 are oxygen atoms, X 3 to X 8 are sulfur atoms, and R 1 to R 4 are each independently a hydrocarbon group . Corresponds to component (B1).
"MoDTC (1)": Adeka Sakura Lube 515 (manufactured by ADEKA Corporation), molybdenum atom content = 10.0% by mass, sulfur atom content = 11.5% by mass. Binuclear dialkyldithiocarbamate molybdenum in which in the general formula (b21-2), X 11 to X 14 are each an oxygen atom, and R 11 to R 14 are each independently a hydrocarbon group having 8 or 13 carbon atoms. Corresponds to component (B21).
“MoDTC (2)”: Infineum C9455B (manufactured by Infineum), molybdenum atom content = 5.5 mass%, sulfur atom content = 9.9 mass%. A trinuclear molybdenum dithiocarbamate represented by the general formula (b22-1). Corresponds to component (B22).
<清浄剤>
・有機金属系清浄剤(1):過塩基性カルシウムサリシレート、塩基価(過塩素酸法)=225mgKOH/g、カルシウム原子の含有量=7.8質量%、硫黄原子の含有量=0.15質量%、成分(C1)に該当。
・有機金属系清浄剤(2):中性カルシウムスルホネート、塩基価(過塩素酸法)=17mgKOH/g、カルシウム原子の含有量=2.15質量%、硫黄原子の含有量=3.44質量%、成分(C1)に該当。
・ホウ酸カリウム水和物:オロナイト・ジャパン株式会社、製品名「OLOA9750」、前記一般式(c2-2)中のM”がカリウム原子である化合物。塩基価(過塩素酸法)=125mgKOH/g、ホウ素原子の含有量=6.8質量%、窒素原子の含有量=0.22質量%、成分(C2)に該当。
・無灰系清浄剤(1):数平均分子量2300のポリブテニル基を有するポリブテニルコハク酸ビスイミド(前記一般式(c3-2)で表される化合物)。窒素原子の含有量=0.99質量%、成分(C3)に該当。
・無灰系清浄剤(2):数平均分子量1000のポリブテニル基を有するポリブテニルコハク酸モノイミドホウ素化物(前記一般式(c3-1)で表される化合物のホウ素変性体)。ホウ素原子の含有量=1.30質量%、窒素原子の含有量=1.23質量%、成分(C3)に該当。
<Cleaning agent>
Organometallic detergent (1): overbased calcium salicylate, base number (perchloric acid method) = 225 mgKOH / g, calcium atom content = 7.8 mass%, sulfur atom content = 0.15 Mass%, corresponds to component (C1).
Organometallic detergent (2): neutral calcium sulfonate, base number (perchloric acid method) = 17 mg KOH / g, calcium atom content = 2.15 mass%, sulfur atom content = 3.44 mass %, Corresponds to component (C1).
Potassium borate hydrate: Oronite Japan Co., Ltd., product name “OLOA 9750”, a compound in which M ″ in the general formula (c2-2) is a potassium atom. Base number (perchloric acid method) = 125 mgKOH / g, boron atom content = 6.8% by mass, nitrogen atom content = 0.22% by mass, applicable to component (C2).
Ashless detergent (1): polybutenyl succinic acid bisimide having a polybutenyl group having a number average molecular weight of 2300 (compound represented by the general formula (c3-2)). Content of nitrogen atom = 0.99% by mass, corresponding to component (C3).
Ashless detergent (2): polybutenyl succinic monoimide borate having a polybutenyl group having a number average molecular weight of 1000 (boron-modified compound of the compound represented by the general formula (c3-1)). Content of boron atom = 1.30% by mass, content of nitrogen atom = 1.23% by mass, corresponding to component (C3).
<酸化防止剤>
・ヒンダードアミン系酸化防止剤(1):BASF社製、製品名「XPDL-590」、ドデカン酸2,2,6,6-テトラメチルピぺリジン-4-イル(前記一般式(d-3)中のRD1が水素原子、R’がウンデシル基である化合物)、窒素原子の含有量=4.13質量%、成分(D1)に該当。
・フェノール系酸化防止剤(1):ベンゼンプロパン酸-,3,5-ビス(1,1-ジメチル-エチル)-4-ヒドロキシ-,C7-C9側鎖アルキルエステル、成分(D2)に該当。
・アミン系酸化防止剤(1):ビス(4-ノニルフェニル)アミン、窒素原子の含有量=3.5質量%、成分(D2)に該当。
<Antioxidant>
Hindered amine antioxidant (1): manufactured by BASF, product name “XPDL-590”, 2,2,6,6-tetramethylpiperidin-4-yl dodecanoate (in the general formula (d-3)) R D1 is a hydrogen atom, R ′ is an undecyl group), nitrogen atom content = 4.13 mass%, corresponding to component (D1).
-Phenolic antioxidant (1): benzenepropanoic acid-, 3,5-bis (1,1-dimethyl-ethyl) -4-hydroxy-, C7-C9 side chain alkyl ester, applicable to component (D2).
Amine-based antioxidant (1): bis (4-nonylphenyl) amine, nitrogen atom content = 3.5 mass%, applicable to component (D2).
<耐摩耗剤>
・ZnDTP(1):ジアルキルジチオリン酸亜鉛(前記一般式(e-1)中のRE1~RE4が、第2級プロピル基である化合物と、第2級ヘキシル基である化合物との混合物)、亜鉛原子の含有量=7.85質量%、リン原子の含有量=7.2質量%、硫黄原子の含有量=14.4質量%、成分(E1)に該当。
<摩擦調整剤>
・無灰系摩擦調整剤:オレイルジエタノールアミン。
<粘度指数向上剤>
・PMA:ポリアルキル(メタ)アクリレート、質量平均分子量38万、SSI=20。
<他の添加剤>
・他の添加剤:金属不活性化剤、流動点降下剤、及び消泡剤の混合物。
<Antiwear agent>
ZnDTP (1): zinc dialkyldithiophosphate (a mixture of a compound in which R E1 to R E4 in the general formula (e-1) are secondary propyl groups and a compound that is a secondary hexyl group) , Zinc atom content = 7.85 mass%, phosphorus atom content = 7.2 mass%, sulfur atom content = 14.4 mass%, corresponding to component (E1).
<Friction modifier>
Ashless friction modifier: oleyl diethanolamine.
<Viscosity index improver>
PMA: polyalkyl (meth) acrylate, mass average molecular weight 380,000, SSI = 20.
<Other additives>
Other additives: a mixture of metal deactivator, pour point depressant, and antifoam agent.
 実施例及び比較例で調製した潤滑油組成物について、カルシウム原子(Ca)含有量、リン原子(P)含有量、モリブデン原子(Mo)含有量、塩基価(塩酸法)、及び硫酸灰分について、上記方法に準拠して測定した。その上で、各潤滑油組成物を用いて、以下の試験を行った。これらの結果を表1~3に示す。 About the lubricating oil compositions prepared in Examples and Comparative Examples, calcium atom (Ca) content, phosphorus atom (P) content, molybdenum atom (Mo) content, base number (hydrochloric acid method), and sulfated ash, Measurement was performed according to the above method. Then, the following tests were conducted using each lubricating oil composition. These results are shown in Tables 1 to 3.
<NOx吹込み試験>
(1)NOx吹込み試験
 実施例及び比較例で調製した各潤滑油組成物100gを、140℃まで加熱した。そして、当該潤滑油組成物中に、流量100ml/minの空気と、流量100ml/minの一酸化窒素(NO)を窒素で希釈したNOガス(NO濃度:8000体積ppm)とを混合してなる混合ガスを72時間継続して導入し、NOx劣化油をそれぞれ得た。
(2)NOx劣化油の塩基価の測定
 上記(1)で得たNOx劣化油を用いて、JIS K2501に準拠して、塩酸法にて、試験後の塩基価(塩酸法)を測定した。その上で、試験前後での塩基価の減少量も算出した。
(3)NOx劣化油のホットチューブ試験
 上記(1)で得たNOx劣化油に、1-エチル-4-ニトロ-ベンゼンを1質量%添加した試験油を調製した。
 そして、内径2mmのガラス管を垂直にヒーターブロックにセットし、調整した試験油を0.3ml/時間、及び、空気を10ml/分の割合で、それぞれガラス管の下部より送り込み、ヒーター部の温度を240℃に保ちながら、16時間のホットチューブ試験を行った。
 ホットチューブ試験を16時間行った後、ガラス管の内部に付着したデポジット(堆積物)の付着状況を0点(黒色)~10点(無色:デポジットの堆積無し)の範囲で0.5点刻みの評点で評価した。当該評点は、数字が大きい程、デポジットの体積が少なく、清浄性に優れた潤滑油組成物であるといえる。本実施例においては、5.0以上の場合を合格としたが、好ましくは6.0以上である。
 また、ホットチューブ試験を16時間行った後のガラス管の上部にデポジット(堆積物)が付着しているか否かも観察した。
<NOx injection test>
(1) NOx blowing test 100 g of each lubricating oil composition prepared in Examples and Comparative Examples was heated to 140 ° C. In the lubricating oil composition, air having a flow rate of 100 ml / min and NO gas (NO concentration: 8000 volume ppm) obtained by diluting nitrogen monoxide (NO) with a flow rate of 100 ml / min are mixed. The mixed gas was continuously introduced for 72 hours to obtain NOx deteriorated oils, respectively.
(2) Measurement of base number of NOx deteriorated oil Using the NOx deteriorated oil obtained in (1) above, the base number after the test (hydrochloric acid method) was measured by the hydrochloric acid method in accordance with JIS K2501. In addition, the amount of decrease in base number before and after the test was also calculated.
(3) Hot tube test of NOx deteriorated oil A test oil was prepared by adding 1% by mass of 1-ethyl-4-nitro-benzene to the NOx deteriorated oil obtained in (1) above.
Then, a glass tube with an inner diameter of 2 mm is set vertically on the heater block, and the adjusted test oil is fed at a rate of 0.3 ml / hour and air at a rate of 10 ml / minute from the lower part of the glass tube. Was kept at 240 ° C., and a hot tube test for 16 hours was conducted.
After performing the hot tube test for 16 hours, deposits (deposits) adhering to the inside of the glass tube are in 0.5 point increments ranging from 0 (black) to 10 (colorless: no deposit deposited). It was evaluated with a rating of. It can be said that the higher the number is, the smaller the deposit volume is, and the more excellent the cleanability of the lubricating oil composition. In the present example, the case of 5.0 or more was considered acceptable, but preferably 6.0 or more.
In addition, it was also observed whether deposits (deposits) were attached to the upper part of the glass tube after the hot tube test was performed for 16 hours.
<ファレックス摩耗試験>
 ファレックス試験機を用い、ピン/ブロックとして、AISIC1137/SAE3135を使用した。ファレックス試験機に、ピン/ブロックをセットし、試験容器内に、評価対象の潤滑油組成物60gを導入し、回転数600rpm、油温80℃、荷重1340Nに設定して、ブロック摩耗量(mg)及びピン摩耗量(mg)を測定した。表1~3中の「ファレックス摩耗試験 摩耗量」として記載の数値は、ブロック摩耗量及びピン摩耗量の合計摩耗量の値である。
<Farex abrasion test>
Using a Falex tester, AISI 1137 / SAE3135 was used as a pin / block. A pin / block is set on a Falex testing machine, 60 g of the lubricating oil composition to be evaluated is introduced into the test container, the rotational speed is 600 rpm, the oil temperature is 80 ° C., and the load is 1340 N. mg) and pin wear (mg) were measured. The numerical values described as “Farex wear test wear amount” in Tables 1 to 3 are values of the total wear amount of the block wear amount and the pin wear amount.
<TE77往復動摩擦試験>
 「高速往復動摩擦試験機TE77」(Phoenix Tribology社製)を使用し、試験プレート(材質:FC250、形状:長さ58mm×幅20mm×厚さ4mm)及び試験シリンダーピン(材質:SUJ-2、形状:直径6mm×長さ14mm)を用いた。
 試験前に、測定対象の潤滑油組成物の油温を80℃とした上で、振幅8mm、周波数20Hz、荷重10N~200Nで60分間の慣らし運転を行った。
 そして、振幅8mm、周波数20Hz、油温80℃、荷重80Nで、摩擦係数を測定した。
 当該摩擦係数の値が小さい程、摩擦低減効果に優れた潤滑油組成物であるといえる。
<TE77 reciprocating friction test>
Using "High Speed Reciprocating Friction Tester TE77" (manufactured by Phoenix Tribology), test plate (material: FC250, shape: length 58mm x width 20mm x thickness 4mm) and test cylinder pin (material: SUJ-2, shape) : Diameter 6 mm x length 14 mm).
Before the test, the oil temperature of the lubricating oil composition to be measured was set to 80 ° C., and a break-in operation was performed for 60 minutes at an amplitude of 8 mm, a frequency of 20 Hz, and a load of 10 N to 200 N.
The friction coefficient was measured at an amplitude of 8 mm, a frequency of 20 Hz, an oil temperature of 80 ° C., and a load of 80 N.
It can be said that the smaller the value of the friction coefficient is, the better the lubricating oil composition is in the friction reducing effect.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表1~3より、実施例1~13で調製した潤滑油組成物は、比較例1~6で調製した潤滑油組成物に比べて、低灰分化されつつも、清浄性、耐摩耗性、及び摩擦低減効果にバランス良く優れた結果となった。
 
From Tables 1 to 3, the lubricating oil compositions prepared in Examples 1 to 13 were less ash-differentiated than the lubricating oil compositions prepared in Comparative Examples 1 to 6, but cleanliness, abrasion resistance, In addition, the friction reduction effect was excellent in a balanced manner.

Claims (15)

  1.  基油(A)と、
     ジチオリン酸モリブデン(B1)を、モリブデン原子換算で、400質量ppm以上と、
     アルカリ金属原子及びアルカリ土類金属原子から選ばれる金属原子を含む有機金属系清浄剤(C1)を、当該金属原子換算で、1400質量ppm以下と、
     ヒンダードアミン系酸化防止剤(D1)を、窒素原子換算で、900質量ppm以上と、
    を含有し、
     硫酸灰分が0.70質量%以下である、潤滑油組成物。
    Base oil (A),
    Molybdenum dithiophosphate (B1), in terms of molybdenum atom, 400 mass ppm or more,
    An organometallic detergent (C1) containing a metal atom selected from an alkali metal atom and an alkaline earth metal atom is 1400 mass ppm or less in terms of the metal atom,
    The hindered amine-based antioxidant (D1) is 900 mass ppm or more in terms of nitrogen atom,
    Containing
    A lubricating oil composition having a sulfated ash content of 0.70 mass% or less.
  2.  ジチオカルバミン酸モリブデン(B2)のモリブデン原子換算での含有量が、前記潤滑油組成物の全量基準で、600質量ppm以下である、請求項1に記載の潤滑油組成物。 The lubricating oil composition according to claim 1, wherein the content of molybdenum dithiocarbamate (B2) in terms of molybdenum atoms is 600 mass ppm or less based on the total amount of the lubricating oil composition.
  3.  さらにジチオリン酸亜鉛(E1)を含有する、請求項1又は2に記載の潤滑油組成物。 The lubricating oil composition according to claim 1 or 2, further comprising zinc dithiophosphate (E1).
  4.  成分(E1)の亜鉛原子換算での含有量が、前記潤滑油組成物の全量基準で、100~700質量ppmである、請求項3に記載の潤滑油組成物。 The lubricating oil composition according to claim 3, wherein the content of the component (E1) in terms of zinc atoms is 100 to 700 ppm by mass based on the total amount of the lubricating oil composition.
  5.  さらにアルカリ金属ホウ酸塩(C2)を含有する、請求項1~4のいずれか一項に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 4, further comprising an alkali metal borate (C2).
  6.  リン原子の含有量が、前記潤滑油組成物の全量基準で、200~1100質量ppmである、請求項1~5のいずれか一項に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 5, wherein a phosphorus atom content is 200 to 1100 mass ppm based on the total amount of the lubricating oil composition.
  7.  成分(B1)のモリブデン原子換算での含有量が、前記潤滑油組成物の全量基準で、400~2000質量ppmである、請求項1~6のいずれか一項に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 6, wherein the content of the component (B1) in terms of molybdenum atoms is 400 to 2000 ppm by mass based on the total amount of the lubricating oil composition.
  8.  成分(C1)が、カルシウム系清浄剤を含む、請求項1~7のいずれか一項に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 7, wherein the component (C1) contains a calcium-based detergent.
  9.  成分(C1)の金属原子換算での含有量が、前記潤滑油組成物の全量基準で、100~1100質量ppmである、請求項1~8のいずれか一項に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 8, wherein the content of the component (C1) in terms of metal atoms is 100 to 1100 mass ppm based on the total amount of the lubricating oil composition.
  10.  成分(D1)の窒素原子換算での含有量が、前記潤滑油組成物の全量基準で、900~2000質量ppmである、請求項1~9のいずれか一項に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 9, wherein the content of the component (D1) in terms of nitrogen atoms is 900 to 2000 ppm by mass based on the total amount of the lubricating oil composition.
  11.  硫酸灰分の含有量が、前記潤滑油組成物の全量基準で、0.06~0.50質量%である、請求項1~10のいずれか一項に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 10, wherein the content of sulfated ash is 0.06 to 0.50 mass% based on the total amount of the lubricating oil composition.
  12.  成分(A)の含有量が、前記潤滑油組成物の全量基準で、60質量%以上である、請求項1~11のいずれか一項に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 11, wherein the content of the component (A) is 60% by mass or more based on the total amount of the lubricating oil composition.
  13.  成分(A)、成分(B1)、成分(C1)及び成分(D1)の合計配合量が、前記潤滑油組成物の全量基準で、70質量%以上である、請求項1~12のいずれか一項に記載の潤滑油組成物。 The total blending amount of the component (A), the component (B1), the component (C1) and the component (D1) is 70% by mass or more based on the total amount of the lubricating oil composition. The lubricating oil composition according to one item.
  14.  請求項1~13のいずれか一項に記載の潤滑油組成物を、排ガス後処理装置を備えた内燃機関に用いる、潤滑油組成物の使用方法。 A method for using a lubricating oil composition, wherein the lubricating oil composition according to any one of claims 1 to 13 is used in an internal combustion engine equipped with an exhaust gas aftertreatment device.
  15.  下記工程(I)を有する、潤滑油組成物の製造方法。
    工程(I):基油(A)と、
     ジチオリン酸モリブデン(B1)を、モリブデン原子換算で、400質量ppm以上と、
     アルカリ金属原子及びアルカリ土類金属原子から選ばれる金属原子を含む有機金属系清浄剤(C1)を、当該金属原子換算で、1400質量ppm以下と、
     ヒンダードアミン系酸化防止剤(D1)を、窒素原子換算で、900質量ppm以上と、
    を配合し、硫酸灰分が0.70質量%以下となる潤滑油組成物を得る工程。
    The manufacturing method of a lubricating oil composition which has the following process (I).
    Step (I): base oil (A),
    Molybdenum dithiophosphate (B1), in terms of molybdenum atom, 400 mass ppm or more,
    An organometallic detergent (C1) containing a metal atom selected from an alkali metal atom and an alkaline earth metal atom is 1400 mass ppm or less in terms of the metal atom,
    The hindered amine-based antioxidant (D1) is 900 mass ppm or more in terms of nitrogen atom,
    To obtain a lubricating oil composition having a sulfated ash content of 0.70% by mass or less.
PCT/JP2017/007206 2016-02-24 2017-02-24 Lubricating oil composition and method for producing lubricating oil composition WO2017146232A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112017000967.7T DE112017000967T5 (en) 2016-02-24 2017-02-24 Lubricating oil composition and process for producing a lubricant oil composition
CN201780012685.3A CN108699473B (en) 2016-02-24 2017-02-24 Lubricating oil composition and method for producing same
US16/079,394 US20190024009A1 (en) 2016-02-24 2017-02-24 Lubricating oil composition and method for producing lubricating oil composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016032954A JP6711512B2 (en) 2016-02-24 2016-02-24 Lubricating oil composition and method for producing the lubricating oil composition
JP2016-032954 2016-02-24

Publications (1)

Publication Number Publication Date
WO2017146232A1 true WO2017146232A1 (en) 2017-08-31

Family

ID=59686271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007206 WO2017146232A1 (en) 2016-02-24 2017-02-24 Lubricating oil composition and method for producing lubricating oil composition

Country Status (5)

Country Link
US (1) US20190024009A1 (en)
JP (1) JP6711512B2 (en)
CN (1) CN108699473B (en)
DE (1) DE112017000967T5 (en)
WO (1) WO2017146232A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143365A1 (en) * 2017-02-01 2018-08-09 エクソンモービル リサーチ アンド エンジニアリング カンパニー Lubricant composition
CN112823199A (en) * 2018-10-22 2021-05-18 出光兴产株式会社 Lubricating oil composition and method for producing same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019048909A (en) * 2017-09-07 2019-03-28 Jxtgエネルギー株式会社 Lubricant composition for diesel engine, and method for improving base number holding performance or method for improving long-drain performance
US10704009B2 (en) * 2018-01-19 2020-07-07 Chevron Oronite Company Llc Ultra low ash lubricating oil compositions
EP3546549B1 (en) * 2018-03-27 2022-11-09 Infineum International Limited Lubricating oil composition
JP6744047B2 (en) 2018-03-30 2020-08-19 出光興産株式会社 Lubricating oil composition and method of using lubricating oil composition
JP7178878B2 (en) * 2018-11-09 2022-11-28 出光興産株式会社 Lubricating oil composition for internal combustion engine, method for producing the same, and method for suppressing preignition
EP3950905B1 (en) 2019-03-29 2024-01-17 Idemitsu Kosan Co.,Ltd. Lubricating oil composition
CN114846125B (en) * 2019-12-27 2024-01-16 出光兴产株式会社 Lubricating oil composition
US20230122943A1 (en) * 2020-03-16 2023-04-20 Idemitsu Kosan Co.,Ltd. Lubricant oil composition, internal combustion engine, and method for using lubricant oil composition
CN114075469B (en) * 2020-08-17 2023-04-07 北京奥力助兴石化科技有限公司 Anti-leakage lubricant for speed reducer and preparation method thereof
WO2022209942A1 (en) * 2021-03-31 2022-10-06 出光興産株式会社 Lubricant composition
JP7113162B1 (en) * 2021-03-31 2022-08-04 出光興産株式会社 lubricating oil composition
JP2023053749A (en) * 2021-10-01 2023-04-13 Eneos株式会社 Lubricating oil composition for internal combustion engine

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354987A (en) * 2000-06-14 2001-12-25 Asahi Denka Kogyo Kk Lubricant composition
JP2004051758A (en) * 2002-07-19 2004-02-19 Asahi Denka Kogyo Kk Lubricating oil composition based on mineral oil having high sulfur content
WO2008047550A1 (en) * 2006-10-17 2008-04-24 Idemitsu Kosan Co., Ltd. Lubricating oil composition
WO2008109523A1 (en) * 2007-03-06 2008-09-12 R.T. Vanderbilt Company, Inc. Lubricant antioxidant compositions containing a metal compound and a hindered amine
WO2011077810A1 (en) * 2009-12-24 2011-06-30 Jx日鉱日石エネルギー株式会社 Cylinder lubricant oil composition for crosshead-type diesel engine
WO2014017182A1 (en) * 2012-07-27 2014-01-30 Jx日鉱日石エネルギー株式会社 Lubricant oil composition, and method for lubricating sliding material while preventing elution of copper and lead
JP2014125630A (en) * 2012-12-27 2014-07-07 Jx Nippon Oil & Energy Corp System lubricating oil composition for crosshead diesel engines
JP2015196695A (en) * 2014-03-31 2015-11-09 出光興産株式会社 Gas engine lubricant composition
JP2016216653A (en) * 2015-05-22 2016-12-22 Jxエネルギー株式会社 Lubricant composition and system using the same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2287754A1 (en) 1974-10-08 1976-05-07 Commissariat Energie Atomique DIELECTRIC MATERIAL WITH MONOMOLECULAR LAYERS AND CAPACITORS USING THIS MATERIAL
US4101659A (en) * 1977-08-29 1978-07-18 Mcneil Laboratories, Incorporated Benzhydryl guanidines
CA2058823A1 (en) * 1991-01-08 1992-07-09 Rolf Schumacher Lubricant compositions
JP3927724B2 (en) * 1999-04-01 2007-06-13 東燃ゼネラル石油株式会社 Lubricating oil composition for internal combustion engines
US6723685B2 (en) * 2002-04-05 2004-04-20 Infineum International Ltd. Lubricating oil composition
EP2371934B1 (en) * 2010-03-31 2017-03-15 Infineum International Limited Lubricating oil composition
EP2457984B1 (en) * 2010-11-30 2017-03-08 Infineum International Limited A lubricating oil composition
CN102690711B (en) * 2011-03-24 2013-12-25 中国石油化工股份有限公司 Lubricant composition for gasoline engine
DE102012213916A1 (en) * 2011-11-08 2013-05-08 Robert Bosch Gmbh Electronic module for a control unit
US9969950B2 (en) * 2012-07-17 2018-05-15 Infineum International Limited Lubricating oil compositions containing sterically hindered amines as ashless TBN sourcces
US9145530B2 (en) * 2012-12-10 2015-09-29 Infineum International Limited Lubricating oil compositions containing sterically hindered amines as ashless TBN sources
JP6040767B2 (en) * 2012-12-28 2016-12-07 富士通株式会社 Distribution system, distribution method, and program
US9850446B2 (en) * 2013-05-20 2017-12-26 Idemitsu Kosan Co., Ltd. Lubricant composition
CA2921209A1 (en) * 2013-08-16 2015-02-19 Jx Nippon Oil & Energy Corporation Lubricant oil composition for internal combustion engine
CN104342266B (en) * 2014-09-29 2016-07-06 陕西通用石油化工有限公司 Bus gas engine special lube

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354987A (en) * 2000-06-14 2001-12-25 Asahi Denka Kogyo Kk Lubricant composition
JP2004051758A (en) * 2002-07-19 2004-02-19 Asahi Denka Kogyo Kk Lubricating oil composition based on mineral oil having high sulfur content
WO2008047550A1 (en) * 2006-10-17 2008-04-24 Idemitsu Kosan Co., Ltd. Lubricating oil composition
WO2008109523A1 (en) * 2007-03-06 2008-09-12 R.T. Vanderbilt Company, Inc. Lubricant antioxidant compositions containing a metal compound and a hindered amine
WO2011077810A1 (en) * 2009-12-24 2011-06-30 Jx日鉱日石エネルギー株式会社 Cylinder lubricant oil composition for crosshead-type diesel engine
WO2014017182A1 (en) * 2012-07-27 2014-01-30 Jx日鉱日石エネルギー株式会社 Lubricant oil composition, and method for lubricating sliding material while preventing elution of copper and lead
JP2014125630A (en) * 2012-12-27 2014-07-07 Jx Nippon Oil & Energy Corp System lubricating oil composition for crosshead diesel engines
JP2015196695A (en) * 2014-03-31 2015-11-09 出光興産株式会社 Gas engine lubricant composition
JP2016216653A (en) * 2015-05-22 2016-12-22 Jxエネルギー株式会社 Lubricant composition and system using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143365A1 (en) * 2017-02-01 2018-08-09 エクソンモービル リサーチ アンド エンジニアリング カンパニー Lubricant composition
EP3578624A4 (en) * 2017-02-01 2020-01-22 ExxonMobil Research and Engineering Company Lubricant composition
CN112823199A (en) * 2018-10-22 2021-05-18 出光兴产株式会社 Lubricating oil composition and method for producing same
US11401481B2 (en) 2018-10-22 2022-08-02 Idemitsu Kosan Co., Ltd. Lubricant composition and method for producing same
CN112823199B (en) * 2018-10-22 2022-10-04 出光兴产株式会社 Lubricating oil composition and method for producing same

Also Published As

Publication number Publication date
JP6711512B2 (en) 2020-06-17
US20190024009A1 (en) 2019-01-24
CN108699473A (en) 2018-10-23
DE112017000967T5 (en) 2018-12-13
JP2017149830A (en) 2017-08-31
CN108699473B (en) 2022-07-08

Similar Documents

Publication Publication Date Title
JP6711512B2 (en) Lubricating oil composition and method for producing the lubricating oil composition
JP6277236B2 (en) Lubricating oil composition
US11034908B2 (en) Lubricant composition
WO2015114920A1 (en) Lubricating oil composition
CN103911202B (en) Friction modifiers for lubricant oil composite
WO2016159258A1 (en) Gasoline engine lubricant oil composition and manufacturing method therefor
WO2008029756A1 (en) Lubricant composition for internal combustion engine
JP6863557B2 (en) Lubricating oil composition and its manufacturing method
JP7444782B2 (en) Lubricating oil composition and method for producing the same
WO2017099140A1 (en) Lubricant composition
JP2018021107A (en) Lubricating oil composition
WO2018021559A1 (en) Lubricant composition
WO2013141077A1 (en) Lubricating oil composition for engine made of aluminum alloy and lubrication method
JP2018168344A (en) Lubricating oil composition for internal combustion engine
JP7457695B2 (en) lubricating oil composition
JP7113162B1 (en) lubricating oil composition
JP5134270B2 (en) Lubricating oil composition for internal combustion engines
WO2020095989A1 (en) Lubricant oil composition for internal combustion engines and method for producing same, and method for preventing pre-ignition
JP2019147864A (en) Lubricant composition
JP2019206644A (en) Lubricant composition and method for producing the same
WO2022209942A1 (en) Lubricant composition
JP6247822B2 (en) Lubricating oil composition for aluminum alloy engine and lubricating method
JP6247821B2 (en) Lubricating oil composition for aluminum alloy engine and lubricating method
JP6247820B2 (en) Lubricating oil composition for aluminum alloy engine and lubricating method
WO2022209487A1 (en) Lubricating oil composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756666

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756666

Country of ref document: EP

Kind code of ref document: A1