WO2017145888A1 - Positive electrode active material particles for non-aqueous electrolyte secondary battery, production method therefor, and non-aqueous electrolyte secondary battery - Google Patents

Positive electrode active material particles for non-aqueous electrolyte secondary battery, production method therefor, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2017145888A1
WO2017145888A1 PCT/JP2017/005446 JP2017005446W WO2017145888A1 WO 2017145888 A1 WO2017145888 A1 WO 2017145888A1 JP 2017005446 W JP2017005446 W JP 2017005446W WO 2017145888 A1 WO2017145888 A1 WO 2017145888A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
material particles
secondary battery
Prior art date
Application number
PCT/JP2017/005446
Other languages
French (fr)
Japanese (ja)
Inventor
貴幸 山村
徹也 鹿島
竜太 正木
一路 古賀
修 佐々木
Original Assignee
Basf戸田バッテリーマテリアルズ合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf戸田バッテリーマテリアルズ合同会社 filed Critical Basf戸田バッテリーマテリアルズ合同会社
Priority to CN201780008852.7A priority Critical patent/CN108604680A/en
Publication of WO2017145888A1 publication Critical patent/WO2017145888A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The positive electrode active material particles of the invention have a stratified rock salt structure, and comprise at least a lithium complex oxide having Li, Ni, Co and Mn as main components, the molar ratio Li/(Ni + Co + Mn) being between 1.09 and 1.15 inclusive. When the positive electrode active substance particles are used in a positive electrode and Li is used as a negative electrode to assemble a non-aqueous electrolyte secondary battery, an initial charging to 4.6 V is carried out under a 60°C environment, and a graph (dQ/dV curve) is constructed, representing the voltage on the horizontal axis, and representing dQ/dV on the vertical axis, which is the value of the derivative, with respect to the voltage, of the initial charging capacity, the height of a peak in a voltage range of between 4.3 V and 4.5 V inclusive is between 100 mAh/g/V and 200 mAh/g/V.

Description

非水電解質二次電池用の正極活物質粒子及びその製造方法、並びに非水電解質二次電池Positive electrode active material particles for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
 本発明は、高い安定性を示す層状岩塩構造を有する非水電解質二次電池用の正極活物質粒子及びその製造方法、並びに非水電解質二次電池に関する。 The present invention relates to positive electrode active material particles for a non-aqueous electrolyte secondary battery having a layered rock salt structure exhibiting high stability, a method for producing the same, and a non-aqueous electrolyte secondary battery.
 近年、AV機器やパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。このような状況下において、充放電電圧が高く、充放電容量も大きいという長所を有するリチウムイオン二次電池が注目されている。 In recent years, electronic devices such as AV devices and personal computers are rapidly becoming portable and cordless, and there is an increasing demand for secondary batteries having a small size, light weight, and high energy density as power sources for driving these devices. Under such circumstances, a lithium ion secondary battery having advantages such as a high charge / discharge voltage and a large charge / discharge capacity has attracted attention.
 従来、4V級の電圧をもつ高エネルギー型のリチウムイオン二次電池に有用な正極活物質としては、スピネル型構造のLiMn、並びに岩塩型構造のLiMnO、LiCoO、LiCo1-XNi、及びLiNiO等が一般的に知られている。なかでもLiCoOは、高電圧と高容量とを有する点で優れているが、コバルト原料の供給量が少ないことによる製造コスト高の問題や廃棄電池の環境安全上の問題を含んでいる。そこで、汎用性に優れたNi、Co及びMnの固溶体である層状岩塩構造を有した三元系正極活物質粒子(基本組成:Li(NiCoMn)O-以下、同じ-)の研究が盛んに行われている。 Conventionally, as a positive electrode active material useful for a high energy type lithium ion secondary battery having a voltage of 4V class, spinel type structure LiMn 2 O 4 , rock salt type structure LiMnO 2 , LiCoO 2 , LiCo 1-X Ni X O 2 , LiNiO 2 and the like are generally known. Among them, LiCoO 2 is excellent in that it has a high voltage and a high capacity, but includes a problem of high manufacturing cost due to a small supply amount of cobalt raw material and a problem of environmental safety of a discarded battery. Therefore, a ternary positive electrode active material particle having a layered rock salt structure that is a solid solution of Ni, Co and Mn having excellent versatility (basic composition: Li (Ni x Co y Mn z ) O 2 -the same is the same) There has been a great deal of research.
 周知の通り、層状岩塩構造である該三元系正極活物質粒子は、Ni化合物、Co化合物、Mn化合物及びLi化合物を所定の割合で混合し、例えば約700℃~1000℃の温度範囲で焼成することによって得ることができる。 As is well known, the ternary positive electrode active material particles having a layered rock salt structure are prepared by mixing a Ni compound, a Co compound, a Mn compound and a Li compound at a predetermined ratio, for example, firing in a temperature range of about 700 ° C. to 1000 ° C. Can be obtained.
 しかし、この材料は、充電時にリチウムが引き抜かれた際に、Ni2+がNi3+となってヤーンテラー歪を生じる。そのため、充放電の繰り返しに伴う結晶構造中のリチウムイオンの脱離・挿入挙動によって結晶格子が伸縮して、結晶構造が不安定になってしまいサイクル特性が悪くなる。また、酸素放出による電解液との反応などが起こり、電池の安全性が低下する問題がある。 However, in this material, when lithium is extracted during charging, Ni 2+ becomes Ni 3+ and a yarn teller distortion occurs. Therefore, the crystal lattice expands and contracts due to lithium ion desorption / insertion behavior in the crystal structure due to repeated charge and discharge, and the crystal structure becomes unstable, resulting in poor cycle characteristics. In addition, there is a problem that the safety of the battery is lowered due to a reaction with the electrolytic solution due to oxygen release.
 三元系正極活物質粒子を用いたリチウムイオン二次電池にあっては、充放電の繰り返しによる充放電容量の劣化を抑制し、且つ電池の安全性を向上できる材料が現在最も要求されている。 In lithium ion secondary batteries using ternary positive electrode active material particles, materials that can suppress deterioration of charge / discharge capacity due to repeated charge / discharge and improve battery safety are currently most demanded. .
 電池が高安全性であることを達成するためには、該三元系正極活物質粒子において高電圧領域における酸素発生量を減らし、尚且つ充填性に優れ、適度な大きさを有すること、更に結晶構造の不安定化の抑制をすることが重要と考えられてきた。その手段としては、三元系正極活物質粒子に用いるLi、Ni、Co、Mn化合物の組成バランス、結晶子サイズ及び粒度分布を制御する方法、焼成温度を制御して粉末を得る方法、異種元素を添加して結晶の結合力を強化する方法、並びに表面処理を行うことで該目標を達成する方法等が行われている。 In order to achieve the high safety of the battery, the ternary positive electrode active material particles reduce the amount of oxygen generated in a high voltage region, have excellent filling properties, and have an appropriate size. It has been considered important to suppress instability of the crystal structure. As the means, a method of controlling the composition balance, crystallite size and particle size distribution of Li, Ni, Co, and Mn compounds used in the ternary positive electrode active material particles, a method of obtaining powder by controlling the firing temperature, a different element A method for strengthening the bonding strength of crystals by adding selenium, a method for achieving the target by surface treatment, and the like are performed.
 これまで、電池の安全性を向上するための正極活物質粒子としては、LiNi0.33Co0.33Mn0.33の高結晶である材料が知られている(特許文献1)。また、充放電サイクルによる格子体積の変化が小さいといった特徴を有する特性安定性の高い材料についても知られている(特許文献2)。さらに、Caを添加することで適度なガス発生をさせることにより電池の安全弁を働かせることを目的としている材料についても知られている(特許文献3)。 So far, as the positive electrode active material particles for improving the safety of the battery, a material which is a high crystal of LiNi 0.33 Co 0.33 Mn 0.33 O 2 is known (Patent Document 1). Further, a material having high characteristic stability having a feature that a change in lattice volume due to a charge / discharge cycle is small is also known (Patent Document 2). Furthermore, a material that is intended to activate a safety valve of a battery by generating an appropriate gas by adding Ca is also known (Patent Document 3).
特開2003-059490号公報JP 2003-059490 A 特許4900888号公報Japanese Patent No. 4900888 特開2014-143108号公報JP 2014-143108 A
 上述の通り、非水電解質二次電池用の正極活物質として高安定性であり、電池の安全性を向上できる材料が現在最も要求されているところであるが、未だ必要十分な要求を満たす材料やその製造方法が得られていない。 As described above, a material that is highly stable as a positive electrode active material for a non-aqueous electrolyte secondary battery and can improve the safety of the battery is currently most demanded. The manufacturing method has not been obtained.
 即ち、前記特許文献1には、高結晶であるLiNi0.33Co0.33Mn0.33の開示があり、その説明はあるものの、実用的に考えれば安定性がまだ不十分であり、十分に電池の安全性を向上することができない。また、前記特許文献2では、充放電サイクルによる格子体積の変化が小さいことで得られる特性安定性を謳っているが、電池の安全性について特に記載されておらず、十分に電池の安全性を向上できるか疑わしい。また、前記特許文献3では、意図的にガス発生をさせることにより電池の安全性を担保する手法をとっているが、正極活物質自体としては安定性に欠け、実用的にまだ不十分である。 That is, Patent Document 1 discloses a highly crystalline LiNi 0.33 Co 0.33 Mn 0.33 O 2 , and although there is an explanation thereof, the stability is still insufficient from a practical point of view. There is no sufficient improvement in battery safety. In Patent Document 2, the characteristic stability obtained by the small change in the lattice volume due to the charge / discharge cycle is emphasized, but the safety of the battery is not particularly described, and the safety of the battery is sufficiently improved. I doubt it can be improved. Moreover, in the said patent document 3, although the method of ensuring the safety | security of a battery by taking out gas intentionally is taken, it lacks stability as positive electrode active material itself, and is still insufficient practically. .
 本発明は、前記の問題に鑑みてなされたものであり、その目的は、安全性が高い非水電解質二次電池用の正極活物質粒子を得ることであり、また、そのような正極活物質粒子を用いて安全性の高い非水電解質二次電池を得ることにある。 The present invention has been made in view of the above problems, and an object of the present invention is to obtain positive active material particles for a non-aqueous electrolyte secondary battery having high safety, and such a positive active material. The object is to obtain a highly safe non-aqueous electrolyte secondary battery using particles.
 前記の目的を達成するために、本発明では、正極活物質粒子を、少なくともLi、Ni、Co及びMnを主成分とし、Li/(Ni+Co+Mn)のモル比率が1.09以上1.15以下であるリチウム複合酸化物により構成した。 In order to achieve the above object, in the present invention, the positive electrode active material particles are mainly composed of at least Li, Ni, Co and Mn, and the molar ratio of Li / (Ni + Co + Mn) is 1.09 or more and 1.15 or less. The lithium composite oxide was used.
 具体的に、本発明に係る非水電解質二次電池用の正極活物質粒子は、層状岩塩構造を有し、少なくともLi、Ni、Co及びMnを主成分とするリチウム複合酸化物からなる正極活物質粒子であって、Li/(Ni+Co+Mn)のモル比率が1.09以上1.15以下であり、該正極活物質粒子を正極に用い、負極としてLiを用いて非水電解質二次電池を組んで、60℃環境下で4.6Vまで16mA/gの電流密度で初期充電を行い、横軸に電圧を示し、縦軸に初期充電容量を電圧で微分した値であるdQ/dVを示したグラフ(dQ/dV曲線)を作成したとき、電圧が4.3V以上4.5V以下の範囲におけるピークの高さが100mAh/g/V以上200mAh/g/V以下であることを特徴とする。 Specifically, the positive electrode active material particles for a non-aqueous electrolyte secondary battery according to the present invention have a layered rock salt structure and are composed of a lithium composite oxide containing at least Li, Ni, Co, and Mn as main components. It is a material particle, and a molar ratio of Li / (Ni + Co + Mn) is 1.09 or more and 1.15 or less, and the positive electrode active material particle is used for a positive electrode and a nonaqueous electrolyte secondary battery is assembled using Li as a negative electrode. Then, initial charge was performed at a current density of 16 mA / g up to 4.6 V in an environment of 60 ° C., the horizontal axis represents voltage, and the vertical axis represents dQ / dV which is a value obtained by differentiating the initial charge capacity with voltage. When a graph (dQ / dV curve) is created, the peak height in the voltage range of 4.3 V to 4.5 V is 100 mAh / g / V to 200 mAh / g / V.
 本発明に係る正極活物質粒子は、上記のような構成を有することにより高い安定性を有することとなり、安全性の高い電池を製造するために用いることができる。 The positive electrode active material particles according to the present invention have high stability by having the above-described configuration, and can be used for manufacturing a highly safe battery.
 一般に、三元系複合酸化物の結晶格子の安定性には、LiMnOのドメインが重要であると考えられており、Li含有量が上記範囲よりも少ないと、LiMnOのドメイン量が小さくなり安定性が低くなる。その一方で、Li複合酸化物中にLiMnOが多く存在すると、4.5V以上といった高電圧まで充電したときに、多量のLiMnOが分解して酸素が発生してしまう。その結果、電池内が酸素ガスで充満し、高電圧による発熱によって電池が爆発するおそれがある。 In general, the stability of the crystal lattice of the ternary complex oxide, domains of Li 2 MnO 3 is believed to be important, when the Li content is less than the above range, the domain of Li 2 MnO 3 The amount becomes smaller and the stability becomes lower. On the other hand, Li when the composite oxide to Li 2 MnO 3 larger amount, when charged to a high voltage such as higher 4.5V, thereby to generate oxygen by decomposition large amount of Li 2 MnO 3. As a result, the inside of the battery may be filled with oxygen gas, and the battery may explode due to heat generated by a high voltage.
 しかし、今般、本発明者らは、上記構成を有するLi複合酸化物を活物質として正極に用い、負極をLiとしたコインセルを組んで、60℃環境下で4.6Vまで0.2Cレート(電流密度16mA/g)で初期充電を行った際に、上記モル比率のLiを含有しながらも、dQ/dV曲線において、正極活物質中にLiMnOが存在していることを意味するピーク値が極めて低く現れるということを見出した。すなわち、本発明に係る正極活物質粒子は、高電圧まで充電した場合であっても、正極活物質からの酸素の発生が抑制される安定性が高い活物質であり、これを用いることにより安全性が高い電池を得ることができる。 However, the present inventors have recently assembled a coin cell in which the Li composite oxide having the above-described structure is used as the active material for the positive electrode and the negative electrode is Li, and the 0.2C rate up to 4.6 V in a 60 ° C. environment ( When the initial charge is performed at a current density of 16 mA / g), Li 2 MnO 3 is present in the positive electrode active material in the dQ / dV curve while containing Li in the above molar ratio. We found that the peak value appears very low. That is, the positive electrode active material particle according to the present invention is an active material having high stability in which generation of oxygen from the positive electrode active material is suppressed even when charged to a high voltage. A battery with high performance can be obtained.
 本発明に係る正極活物質粒子は、X線回折(XRD回折)のリートベルト(Rietvelt)解析により得られる結晶子サイズが400nm以上1000nm以下であり、平均二次粒子径(D50)が3μm以上7μm以下であり、且つ(D90-D10)/D50が0.54~0.60の範囲であることが好ましい。 The positive electrode active material particles according to the present invention have a crystallite size of 400 nm to 1000 nm obtained by Rietveld analysis of X-ray diffraction (XRD diffraction), and an average secondary particle diameter (D50) of 3 μm to 7 μm. And (D90-D10) / D50 is preferably in the range of 0.54 to 0.60.
 このようにすると、粒子自体の安定性を低減させることなく、また、充填性を向上させることができる。 In this way, the filling property can be improved without reducing the stability of the particles themselves.
 本発明に係る非水電解質二次電池用の正極活物質粒子の製造方法は、Ni、Co及びMnを主成分とする複合化合物を前駆体とし、該前駆体にリチウム化合物をLi/(Ni+Co+Mn)のモル比率が1.09以上1.15以下の範囲となるように混合した後に、酸化性雰囲気において950℃以上1050℃以下で焼成して、Li、Ni、Co及びMnを含有する複合酸化物を得ることを特徴とする。 The method for producing positive electrode active material particles for a non-aqueous electrolyte secondary battery according to the present invention uses a composite compound containing Ni, Co, and Mn as main components as a precursor, and a lithium compound Li / (Ni + Co + Mn) as the precursor. A composite oxide containing Li, Ni, Co, and Mn after being mixed so that the molar ratio is in the range of 1.09 to 1.15 and then firing in an oxidizing atmosphere at 950 ° C. to 1050 ° C. It is characterized by obtaining.
 950℃より低い温度で焼成すると、安定性が損なわれる。また1050℃より高い温度で焼成すると粒子が成長しすぎてクラックが発生するなど不安定となってしまう。従って、本発明に係る正極活物質粒子の製造方法によると、上述したような高い安定性を有する正極活物質粒子を得ることができる。 When it is fired at a temperature lower than 950 ° C., the stability is impaired. Moreover, if it is fired at a temperature higher than 1050 ° C., the particles grow too much and cracks are generated, which makes it unstable. Therefore, according to the method for producing positive electrode active material particles according to the present invention, positive electrode active material particles having high stability as described above can be obtained.
 本発明に係る正極活物質粒子の製造方法において、前駆体は、NiとCoとMnとのモル比が1:1:1であり、Niは主に水酸化ニッケルの状態で存在し、Coはオキシ水酸化コバルト又は酸化コバルトの状態で存在し、加えてNiMnスピネルで存在していることが確認できることが好ましい。 In the method for producing positive electrode active material particles according to the present invention, the precursor has a molar ratio of Ni, Co, and Mn of 1: 1: 1, Ni is mainly present in the state of nickel hydroxide, and Co is It is preferable that it can be confirmed that it exists in the state of cobalt oxyhydroxide or cobalt oxide and, in addition, NiMn 2 O 4 spinel.
 このようにすると、Liと前駆体との反応が進みやすくなり、高安定性な正極活物質粒子を得ることができる。 In this way, the reaction between Li and the precursor can proceed easily, and highly stable positive electrode active material particles can be obtained.
 本発明に係る正極活物質粒子の製造方法において、前駆体は、平均二次粒子径D50が3.5μm以上6.5μm以下の範囲で、タップ密度が1.65g/ml以上であることが好ましい。 In the method for producing positive electrode active material particles according to the present invention, the precursor preferably has an average secondary particle diameter D50 in the range of 3.5 μm to 6.5 μm and a tap density of 1.65 g / ml or more. .
 このようにすると、焼成工程においてLiと前駆体との反応が粒子中心部まで十分に促進され、また、十分に密度が高い正極活物質粒子を得ることができる。 In this way, the reaction between Li and the precursor is sufficiently promoted to the center of the particle in the firing step, and positive active material particles having a sufficiently high density can be obtained.
 本発明に係る非水電解質二次電池は、上記の非水電解質二次電池用の正極活物質粒子を使用したことを特徴とする。 The non-aqueous electrolyte secondary battery according to the present invention is characterized by using the positive electrode active material particles for the non-aqueous electrolyte secondary battery described above.
 本発明に係る非水電解質二次電池によると、上記のような正極活物質が用いられるため、上述の通り、安全性を向上することができる。 According to the non-aqueous electrolyte secondary battery according to the present invention, since the positive electrode active material as described above is used, the safety can be improved as described above.
 本発明に係る非水電解質二次電池用正極活物質粒子によると、高安全性を示すため、非水電解質二次電池用の正極活物質として好適である。 The positive electrode active material particles for a non-aqueous electrolyte secondary battery according to the present invention are suitable as a positive electrode active material for a non-aqueous electrolyte secondary battery because of high safety.
横軸に電圧を示し、縦軸に初期充電容量を電圧で微分した値であるdQ/dVを示したグラフ(dQ/dV曲線)である。It is a graph (dQ / dV curve) in which the horizontal axis represents voltage and the vertical axis represents dQ / dV which is a value obtained by differentiating the initial charge capacity by voltage. 実施例に係る正極活物質粒子の前駆体のXRD回折結果を示すグラフである。It is a graph which shows the XRD diffraction result of the precursor of the positive electrode active material particle which concerns on an Example.
 以下、本発明を実施するための形態を説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用方法或いはその用途を制限することを意図するものではない。 Hereinafter, modes for carrying out the present invention will be described. The following description of the preferred embodiments is merely exemplary in nature and is not intended to limit the invention, its method of application, or its application.
 先ず、本発明の一実施形態に係る非水電解質二次電池用の正極活物質粒子について説明する。 First, positive electrode active material particles for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention will be described.
 本実施形態に係る正極活物質粒子は、層状岩塩構造を有し、少なくともLi、Ni、Co及びMnを含有する複合酸化物により構成される。 The positive electrode active material particles according to the present embodiment have a layered rock salt structure and are composed of a composite oxide containing at least Li, Ni, Co, and Mn.
 本実施形態に係る正極活物質粒子のLi含有量の範囲は、Li/(Ni+Co+Mn)で示されるモル比率が1.09~1.15である。Li複合酸化物の結晶格子の安定性には、LiMnOのドメインが重要であると考えられているが、Li含有量が前記範囲よりも少ない場合、該Li複合酸化物内にランダムに存在するLiMnO量が少なくなる。その結果、Li複合酸化物の安定性が低くなるため、正極活物質粒子の特性が悪化することとなる。一方、Li含有量が前記範囲よりも多い場合、形成されるLiMnO量が多くなり過ぎて、高電圧時に酸素放出が多量に発生してしまう。その結果、電池の安全性が低下することとなる。より好ましくは、Li/(Ni+Co+Mn)で示されるモル比率が1.10~1.15である。 In the range of the Li content of the positive electrode active material particles according to the present embodiment, the molar ratio represented by Li / (Ni + Co + Mn) is 1.09 to 1.15. It is considered that the domain of Li 2 MnO 3 is important for the stability of the crystal lattice of the Li composite oxide. However, when the Li content is less than the above range, the Li composite oxide is randomly included in the Li composite oxide. The amount of Li 2 MnO 3 present is reduced. As a result, since the stability of the Li composite oxide is lowered, the characteristics of the positive electrode active material particles are deteriorated. On the other hand, when the Li content is larger than the above range, the amount of Li 2 MnO 3 formed is too large, and a large amount of oxygen is released at a high voltage. As a result, the safety of the battery is lowered. More preferably, the molar ratio represented by Li / (Ni + Co + Mn) is 1.10 to 1.15.
 また、本実施形態に係る正極活物質粒子において、該正極活物質粒子を正極に用い、負極としてLiを用いて非水電解質二次電池を組んで、60℃環境下で4.6Vまで16mA/gの電流密度で初期充電を行い、横軸に電圧を示し、縦軸に初期充電容量を電圧で微分した値であるdQ/dVを示したグラフ(dQ/dV曲線)を作成したとき、電圧が4.3V以上4.5V以下の範囲におけるピークの高さが100mAh/g/V以上200mAh/g/V以下である。 Further, in the positive electrode active material particles according to the present embodiment, the positive electrode active material particles are used as a positive electrode, and a nonaqueous electrolyte secondary battery is assembled using Li as a negative electrode. When an initial charge is performed at a current density of g, a voltage is generated on the horizontal axis, and a graph (dQ / dV curve) indicating dQ / dV, which is a value obtained by differentiating the initial charge capacity with the voltage on the vertical axis, The peak height in the range of 4.3 V to 4.5 V is 100 mAh / g / V to 200 mAh / g / V.
 上記dQ/dV曲線を作成したとき、該グラフの見方はピークが存在する電圧幅において電池容量が発現することを意味する。今回、本発明者らは、種々の実験において前述のコインセルのdQ/dV曲線において、4.3V~4.5Vの間にピークが存在するということは、4.3V~4.5Vの間において正極活物質中の結晶格子にLiMnOが存在していることが示唆されるということを見出した。すなわち、dQ/dV曲線によってLiMnO量を定量することができ得ることを見出した。 When the dQ / dV curve is created, the way of viewing the graph means that the battery capacity appears in the voltage range where the peak exists. In this experiment, the present inventors have found that there is a peak between 4.3V and 4.5V in the dQ / dV curve of the above coin cell in various experiments between 4.3V and 4.5V. It was found that Li 2 MnO 3 was suggested to exist in the crystal lattice in the positive electrode active material. That is, it was found that the amount of Li 2 MnO 3 can be quantified by a dQ / dV curve.
 一般的にLiMnOが該Li複合酸化物中に多く存在すると、負極をLiとした電池としたときに4.5V以上といった高電圧まで充電したときに、LiMnOが分解して酸素が発生してしまう。その結果、電池内が酸素ガスで充満し、高電圧による正極の発熱によって電池が爆発するおそれがある。 In general, when a large amount of Li 2 MnO 3 is present in the Li composite oxide, Li 2 MnO 3 decomposes when charged to a high voltage of 4.5 V or more when the battery is made of Li as the negative electrode. Oxygen is generated. As a result, the inside of the battery is filled with oxygen gas, and the battery may explode due to the heat generation of the positive electrode due to the high voltage.
 本発明で重要なことは、Li/(Ni+Co+Mn)で示されるモル比率を高くしてLiMnOが形成されやすい状況になっているにも関わらず、4.3V~4.5Vの範囲においてdQ/dVのピークを小さくすることができるということである。それは、ランダムに存在する状態で、且つ通常は積層欠陥のあるLiMnOの結晶性が高くなり、その結果不活性化してしまう為であると考えられる。LiMnOの活動を不活性化させることによって、高電圧としたときも酸素発生を抑えることができ、結果として電池としたときに爆発する可能性を最大限抑えることができると考えられる。 What is important in the present invention is that the molar ratio represented by Li / (Ni + Co + Mn) is increased and Li 2 MnO 3 is easily formed, but in the range of 4.3 V to 4.5 V. This means that the dQ / dV peak can be reduced. It is considered that this is because Li 2 MnO 3 having a stacking fault is present in a randomly existing state and crystallinity is increased, resulting in inactivation. By inactivating the activity of Li 2 MnO 3 , it is considered that the generation of oxygen can be suppressed even when a high voltage is applied, and as a result, the possibility of explosion when used as a battery can be minimized.
 また、本発明者らの考えでは、LiMnOは、950℃~1050℃といった高温で焼成を行うことによって該正極活物質を得ることで、この不活性化したLiMnOが本発明による層状化合物の六方晶にランダムに存在していることで層状岩塩化合物のドメインに対するピラー効果をもたらし、高安定性をも示すことができる正極活物質となると考えている。 Further, the idea of the present inventors, Li 2 MnO 3, by obtaining a positive electrode active material by performing firing at high temperature of 950 ° C. ~ 1050 ° C., the present invention is Li 2 MnO 3 was the inactivated It is considered that the layered compound is present in the hexagonal crystal at random so as to provide a pillar effect on the domain of the layered rock salt compound and to be a positive electrode active material capable of exhibiting high stability.
 以上に基づき、本発明者らが検討した結果、本発明に係る正極活物質粒子では、dQ/dV曲線において、4.3V~4.5Vの間に現れるピークの最大値は好ましくは100mAh・g-1・V-1~200mAh・g-1・V-1であり、より好ましくは120mAh・g-1・V-1~190mAh・g-1・V-1であり、更により好ましくは120mAh・g-1・V-1~180mAh・g-1・V-1である。 Based on the above, as a result of studies by the present inventors, the maximum value of the peak appearing between 4.3 V and 4.5 V in the dQ / dV curve is preferably 100 mAh · g in the positive electrode active material particles according to the present invention. a -1 · V -1 ~ 200mAh · g -1 · V -1, more preferably from 120mAh · g -1 · V -1 ~ 190mAh · g -1 · V -1, even more preferably 120 mAh · g −1 · V −1 to 180 mAh · g −1 · V −1 .
 また、本実施形態における正極活物質粒子は、Mg、Al、Ti、V、Fe、Ga、Sr、Y、Zr、Nb、Mo、Ru、In、Sn、Ta、W及びBiなどといった金属元素を、例えばドープやコーティングといった形態で含有していてもよい。正極活物質粒子にこれらの金属元素を含有させることで、電池としたときにサイクル特性やレート特性や安全性を向上させることができる。 Further, the positive electrode active material particles in the present embodiment include metal elements such as Mg, Al, Ti, V, Fe, Ga, Sr, Y, Zr, Nb, Mo, Ru, In, Sn, Ta, W, and Bi. For example, it may be contained in the form of a dope or a coating. By including these metal elements in the positive electrode active material particles, cycle characteristics, rate characteristics, and safety can be improved when a battery is formed.
 また、本実施形態に係る正極活物質粒子では、XRD回折のRietvelt解析により得られた結晶子サイズが400nm~1000nmであることが好ましい。400nmより小さいときは結晶の成長が不十分となり安全性が悪化してしまう。1000nmを超えると一次粒子が大きくなってしまい、クラックなどが入ってしまい不安定になってしまう。より好ましくは、500nm~950nmである。 Further, in the positive electrode active material particles according to the present embodiment, the crystallite size obtained by Rietveld analysis of XRD diffraction is preferably 400 nm to 1000 nm. If it is smaller than 400 nm, the crystal growth is insufficient and the safety is deteriorated. If it exceeds 1000 nm, the primary particles become large, cracks and the like enter and become unstable. More preferably, it is 500 nm to 950 nm.
 また、本実施形態に係る正極活物質粒子では、平均二次粒子径(D50)が3μm~7μmで、且つ(D90-D10)/D50が0.54~0.60の範囲である。なお、(D90-D10)/D50は、粒度分布の広がりの指標であり、粒度分布のばらつきの度合いを示すものである。平均二次粒子径が3μmより小さいとき、凝集粒子として該電極活物質を電池としたときに不安定となる。また、7μmより大きいときは出力特性やサイクル特性が悪くなり安定性を損ねてしまう。また、充填性を向上させるために、粒度分布はブロードにする必要があり、本実施形態に係る正極活物質粒子において、(D90-D10)/D50の範囲は好ましくは0.55~0.58である。 Further, in the positive electrode active material particles according to the present embodiment, the average secondary particle diameter (D50) is 3 μm to 7 μm, and (D90-D10) / D50 is in the range of 0.54 to 0.60. Note that (D90-D10) / D50 is an index of the spread of the particle size distribution and indicates the degree of variation in the particle size distribution. When the average secondary particle diameter is smaller than 3 μm, the battery becomes unstable when the electrode active material is used as a battery as aggregated particles. On the other hand, if it is larger than 7 μm, the output characteristics and the cycle characteristics are deteriorated and the stability is impaired. In order to improve the filling property, the particle size distribution needs to be broad. In the positive electrode active material particles according to the present embodiment, the range of (D90-D10) / D50 is preferably 0.55 to 0.58. It is.
 次に、本発明の一実施形態に係る非水電解質二次電池用の正極活物質粒子の製造方法について述べる。 Next, a method for producing positive electrode active material particles for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention will be described.
 本実施形態に係る非水電解質二次電池用の正極活物質粒子を製造するために、まず、Ni、Co及びMnを主成分とする複合化合物である前駆体と、リチウム化合物とをLi/(Ni+Co+Mn)で示されるモル比率が1.09~1.15の範囲となるように混合する。その後、混合物を酸化性雰囲気において950℃~1050℃で焼成することにより、Li、Ni、Co及びMnを含有するLi複合酸化物を得ることができる。 In order to produce positive electrode active material particles for a non-aqueous electrolyte secondary battery according to this embodiment, first, a precursor, which is a composite compound mainly composed of Ni, Co, and Mn, and a lithium compound are mixed with Li / ( Mixing is performed so that the molar ratio represented by (Ni + Co + Mn) is in the range of 1.09 to 1.15. Thereafter, the mixture is fired at 950 ° C. to 1050 ° C. in an oxidizing atmosphere, whereby a Li composite oxide containing Li, Ni, Co, and Mn can be obtained.
 本発明における少なくともNiとCoとMnとを含有する前駆体となる複合化合物は、湿式反応の共沈等により得ることができ、具体的に、硫酸Ni、硫酸Co、硫酸Mnが1.5mol%になるように溶解した溶液と、苛性ソーダを0.3mol%とした溶液と、アンモニア溶液0.1molを同時に滴下させることで共沈反応させ、オーバーフローさせることにより反応物を得、その後水洗・乾燥して得られた。その残留S分は0.18wt%以下であり、Na分が300ppm以下であり、且つ水分を含む総不純物量は0.35wt%以下となった。不純物量が多いと、Li複合化合物とするときに合成しにくくなったり、電池としたときに安全性を損ねてしまったりする恐れがある。 The composite compound as a precursor containing at least Ni, Co, and Mn in the present invention can be obtained by coprecipitation of a wet reaction or the like. Specifically, Ni sulfate, Co sulfate, and Mn sulfate are 1.5 mol%. The solution was dissolved so as to become 0.3 mol% of caustic soda, and 0.1 mol of ammonia solution was added dropwise at the same time to cause coprecipitation reaction, and the reaction product was obtained by overflowing, and then washed with water and dried. Obtained. The residual S content was 0.18 wt% or less, the Na content was 300 ppm or less, and the total amount of impurities including moisture was 0.35 wt% or less. If the amount of impurities is large, it may be difficult to synthesize when making a Li composite compound, or the safety may be impaired when making a battery.
 また、湿式反応後の乾燥工程において、前駆体はNiMnOが発生しない程度に乾燥させることが好ましい。その結果、合成させるときにLiと十分に反応が進みやすくなり、安定性の高い正極活物質粒子を得ることができる。尚、その際は、Coがオキシ水酸化コバルトであったり酸化コバルトであったりしてもよい。また、NiMnのようなスピネル化合物が存在していてもよい。 In the drying step after the wet reaction, the precursor is preferably dried to such an extent that NiMnO 3 is not generated. As a result, when it synthesize | combines, it becomes easy to fully react with Li and can obtain positive electrode active material particle with high stability. In this case, Co may be cobalt oxyhydroxide or cobalt oxide. A spinel compound such as NiMn 2 O 4 may be present.
 また、湿式反応の過程において他の金属元素も添加することができる。添加した金属元素は水酸化物粒子内に存在しても、水酸化物粒子の外縁に存在してもよい。添加できる金属元素の種類としては、Mg、Al、Ti、V、Fe、Ga、Sr、Y、Zr、Nb、Mo、Ru、In、Sn、Ta、W及びBiなどが挙げられる。 Also, other metal elements can be added in the course of the wet reaction. The added metal element may be present in the hydroxide particles or may be present at the outer edge of the hydroxide particles. Examples of the metal element that can be added include Mg, Al, Ti, V, Fe, Ga, Sr, Y, Zr, Nb, Mo, Ru, In, Sn, Ta, W, and Bi.
 湿式工程により得られた前駆体は、平均二次粒子径(D50)が3.5μm~6.5μmの範囲で、タップ密度が1.65g/cm以上であることが好ましい。平均二次粒子径が上記範囲に入ることで、Li化合物と焼成工程で反応するときに中心部までしっかり反応し、LiMnOの高結晶ドメインをランダムに存在させることができる。また、上記タップ密度であるとLi化合物と反応させたときに十分に密度が高い正極活物質粒子が得られると考えられる。 The precursor obtained by the wet process preferably has an average secondary particle diameter (D50) in the range of 3.5 μm to 6.5 μm and a tap density of 1.65 g / cm 3 or more. When the average secondary particle diameter falls within the above range, when the Li compound reacts with the firing step, it can react firmly to the center, and the high crystalline domains of Li 2 MnO 3 can be present at random. Further, it is considered that positive electrode active material particles having a sufficiently high density can be obtained when the tap density is reacted with a Li compound.
 本発明に用いるリチウム化合物としては特に限定されることなく各種のリチウム塩を用いることができるが、例えば、水酸化リチウム・一水和物、硝酸リチウム、炭酸リチウム、酢酸リチウム、臭化リチウム、塩化リチウム、クエン酸リチウム、フッ化リチウム、ヨウ化リチウム、乳酸リチウム、シュウ酸リチウム、リン酸リチウム、ピルビン酸リチウム、硫酸リチウム、及び酸化リチウムなどが挙げられ、中でも炭酸リチウムが好ましい。 The lithium compound used in the present invention is not particularly limited, and various lithium salts can be used. For example, lithium hydroxide monohydrate, lithium nitrate, lithium carbonate, lithium acetate, lithium bromide, chloride Examples thereof include lithium, lithium citrate, lithium fluoride, lithium iodide, lithium lactate, lithium oxalate, lithium phosphate, lithium pyruvate, lithium sulfate, and lithium oxide. Among these, lithium carbonate is preferable.
 次に、本発明の一実施形態に係る非水電解質二次電池用の正極活物質粒子からなる正極活物質を用いた正極について述べる。 Next, a positive electrode using a positive electrode active material composed of positive electrode active material particles for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention will be described.
 本実施形態に係る正極活物質粒子を含有する正極を用いて製造される二次電池は、前記正極、負極及び電解質から構成される。 The secondary battery manufactured using the positive electrode containing the positive electrode active material particles according to the present embodiment includes the positive electrode, the negative electrode, and an electrolyte.
 本実施形態に係る正極活物質粒子を含有する正極を製造する場合には、定法に従って、正極活物質粒子に導電剤と結着剤とを添加混合する。導電剤としてはアセチレンブラック、カーボンブラック、及び黒鉛等が好ましく、結着剤としてはポリテトラフルオロエチレン、及びポリフッ化ビニリデン等が好ましい。 When manufacturing the positive electrode containing the positive electrode active material particles according to the present embodiment, a conductive agent and a binder are added to and mixed with the positive electrode active material particles according to a conventional method. As the conductive agent, acetylene black, carbon black, graphite, and the like are preferable, and as the binder, polytetrafluoroethylene, polyvinylidene fluoride, and the like are preferable.
 本発明において負極活物質としては、リチウム金属、リチウム/アルミニウム合金、リチウム/スズ合金、グラファイトや黒鉛等を用いることができる。 In the present invention, lithium metal, lithium / aluminum alloy, lithium / tin alloy, graphite, graphite or the like can be used as the negative electrode active material.
 また、電解液の溶媒としては、炭酸エチレン(EC)と炭酸ジエチル(DEC)の組み合わせ以外に、炭酸プロピレン(PC)、炭酸ジメチル(DMC)等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種類を含む有機溶媒を用いることができる。 In addition to the combination of ethylene carbonate (EC) and diethyl carbonate (DEC), the solvent of the electrolytic solution includes at least carbonates such as propylene carbonate (PC) and dimethyl carbonate (DMC), and ethers such as dimethoxyethane. One kind of organic solvent can be used.
 さらに、電解質としては、六フッ化リン酸リチウム(LiPF)以外に、過塩素酸リチウム(LiClO)、四フッ化ホウ酸リチウム(LiBF)等のリチウム塩の少なくとも1種類を上記溶媒に溶解して用いることができる。 Further, as the electrolyte, in addition to lithium hexafluorophosphate (LiPF 6 ), at least one lithium salt such as lithium perchlorate (LiClO) or lithium tetrafluoroborate (LiBF 4 ) is dissolved in the above solvent. Can be used.
 本実施形態に係る正極活物質粒子を含有する正極を用いて製造した非水電解質二次電池は、後述する評価法で過充電試験を行った場合、4.3V~4.5Vのピークの高さが100mAh・g-1・V-1~200mAh・g-1・V-1である。 The nonaqueous electrolyte secondary battery manufactured using the positive electrode containing the positive electrode active material particles according to the present embodiment has a high peak of 4.3 V to 4.5 V when an overcharge test is performed by an evaluation method described later. Is 100 mAh · g −1 · V −1 to 200 mAh · g −1 · V −1 .
 本発明に係る正極活物質粒子を用いたとき、上記ピーク高さに入っていることで、LiMnOの高結晶のドメインが正極活物質の結晶格子中にランダムに存在し、層状岩塩化合物の安定化を図ることができる上に、LiMnOからの酸素放出が大幅に減ることで安全性も担保できる。 When the positive electrode active material particles according to the present invention are used, the high crystal domains of Li 2 MnO 3 are randomly present in the crystal lattice of the positive electrode active material by entering the peak height, and the layered rock salt compound In addition, the oxygen release from Li 2 MnO 3 can be significantly reduced, and safety can be ensured.
 本発明の代表的な実施例は次の通りである。 A typical embodiment of the present invention is as follows.
 正極活物質粒子の組成は、1.0gの試料を25mlの20%塩酸溶液中で加熱溶解させ、冷却後100mlメスフラスコに移し、純水を入れ調整液を作製し、測定にはICAP[Optima8300 (株)パーキンエルマー製]を用いて各元素を定量して決定した。 The composition of the positive electrode active material particles was prepared by dissolving 1.0 g of a sample in 25 ml of a 20% hydrochloric acid solution by heating, transferring to a 100 ml volumetric flask after cooling, preparing pure water by adding pure water, and measuring the ICAP [Optima 8300. Each element was quantified and determined using Perkin Elmer Co., Ltd.].
 正極活物質粒子の前駆体のタップ密度は、試料を40g秤量し、50mlのメスシリンダーに投入し、タップデンサー((株)セイシン企業製)で1200回タッピングした時の体積によって読み取りタップ密度を計算した。 For the tap density of the precursor of the positive electrode active material particles, 40 g of the sample is weighed, put into a 50 ml measuring cylinder, and the tap density is calculated based on the volume when tapped 1200 times with a tap denser (manufactured by Seishin Enterprise Co., Ltd.) did.
 S含有量は、「HORIBA CARBON/SULFUR ANALYZER EMIA-320V(HORIBA Scientific)」を用いて測定した。 S content was measured using “HORIBA CARBON / SULFUR ANALYZER EMIA-320V (HORIBA Scientific)”.
 正極活物質粒子の化合物の相の同定は、X線回折装置[SmartLab (株)リガク製]にて、2θ/θが10°~90°の範囲を、0.02°刻みで1.2°/minステップスキャンで行った。 Identification of the compound phase of the positive electrode active material particles is performed by an X-ray diffractometer [SmartLab Co., Ltd. manufactured by Rigaku] in a range of 2θ / θ of 10 ° to 90 ° and 1.2 ° in increments of 0.02 °. / min step scan.
 平均二次粒子径(D50)や(D90-D10)/D50の値は、レーザー式粒度分布測定装置マイクロトラックHRA[日機装(株)製]を用いて、湿式レーザー法で測定した体積基準の平均粒子径である。 The average secondary particle size (D50) and (D90-D10) / D50 values are the volume-based averages measured by the wet laser method using a laser type particle size distribution analyzer Microtrac HRA [manufactured by Nikkiso Co., Ltd.] The particle size.
 正極活物質粒子の結晶子サイズの算出には、X線回折装置[SmartLab (株)リガク製]にて、スリットは2/3度として、2θ/θが10°~90°の範囲を、0.02°刻みで1.2°/minステップスキャンで行った。その後、テキストデータを用いてRietvelt解析を行うことにより結晶子サイズを算出した。 The crystallite size of the positive electrode active material particles was calculated using an X-ray diffractometer [SmartLab (manufactured by Rigaku Corporation)] with a slit of 2/3 degrees and a range of 2θ / θ of 10 ° to 90 °, 0 Performed at a step of 1.2 ° / min in increments of .02 °. Thereafter, the crystallite size was calculated by performing Rietveld analysis using text data.
 尚、Rietvelt解析では、Rwpが13~20で、S値が1.3以下のときの値を使用した。 In the Rietveld analysis, values when Rwp is 13 to 20 and S value is 1.3 or less were used.
 以下に、本発明に係る正極活物質粒子について、2032型コインセルを用いて電池評価を行った方法及び結果について説明する。 Hereinafter, a method and results of battery evaluation using a 2032 type coin cell for the positive electrode active material particles according to the present invention will be described.
 電池評価に係るコインセルについては、以下のように作製した。まず、後に説明する各実施例及び比較例に係る正極活物質粒子粉末としての複合酸化物を90重量%、導電材としてアセチレンブラックを3重量%、グラファイトを3重量%、バインダーとしてN-メチルピロリドンに溶解したポリフッ化ビニリデン4重量%とを混合した後、Al金属箔に塗布し120℃にて乾燥した。このシートを14mmΦに打ち抜いた後、1.5t/cmで圧着したものを正極に用いた。負極は16mmΦに打ち抜いた厚さが500μmの金属リチウムとし、電解液は1mol/LのLiPFを溶解したECとDMCを体積比1:2で混合した溶液を用いて2032型コインセルを作製した。 About the coin cell concerning battery evaluation, it produced as follows. First, 90% by weight of a composite oxide as a positive electrode active material particle powder according to each of Examples and Comparative Examples described later, 3% by weight of acetylene black as a conductive material, 3% by weight of graphite, and N-methylpyrrolidone as a binder After being mixed with 4% by weight of polyvinylidene fluoride dissolved in, it was applied to an Al metal foil and dried at 120 ° C. This sheet was punched out to 14 mmΦ, and then pressure-bonded at 1.5 t / cm 2 was used as the positive electrode. A 2032 type coin cell was manufactured using a solution in which EC and DMC mixed with 1 mol / L LiPF 6 dissolved in a volume ratio of 1: 2 were used as the negative electrode made of metallic lithium having a thickness of 500 μm punched to 16 mmΦ.
 横軸に電圧を、縦軸に初期充電容量を電圧で微分した値であるdQ/dVを示したグラフ(dQ/dV曲線)は、前記に記載のコインセル組み、60℃の環境下で4.6Vまで0.2Cレート(電流密度16mA/g)の充電密度で初期充電を行い、そのときの電圧を横軸に、初期充電容量を電圧で微分した値であるdQ/dVを縦軸に用いて電圧が4.2V~4.6Vの範囲のグラフを作成した。 A graph (dQ / dV curve) showing the dQ / dV which is a value obtained by differentiating the voltage on the horizontal axis and the initial charge capacity on the vertical axis is 4. Initial charge is performed at a charge density of 0.2 C rate (current density 16 mA / g) up to 6 V, and the voltage at that time is plotted on the horizontal axis and dQ / dV which is a value obtained by differentiating the initial charge capacity by voltage is used on the vertical axis. Thus, a graph with a voltage ranging from 4.2 V to 4.6 V was created.
 次に、各実施例及び比較例に係る正極活物質粒子の製造方法について説明する。 Next, a method for producing positive electrode active material particles according to each example and comparative example will be described.
 実施例1
 硫酸Niと硫酸Coと硫酸Mnとを各元素のモル比でNi:Co:Mn=1:1:1の比になるように秤量し、上述した湿式反応により共沈させた。水洗を行い、乾燥することで(Ni0.33Co0.33Mn0.33)複合酸化物粒子(前駆体)を得た。該前駆体は、平均二次粒子径が4.8μm、残留S量は0.13wt%で残留Na量は187ppm、且つ総不純物量は0.25wt%であり、タップ密度は1.83g/mlであった。
Example 1
Ni sulfate, Co sulfate, and Mn sulfate were weighed so that each element had a molar ratio of Ni: Co: Mn = 1: 1: 1 and coprecipitated by the wet reaction described above. The composite oxide particles (precursor) were obtained by washing with water and drying (Ni 0.33 Co 0.33 Mn 0.33 ). The precursor has an average secondary particle size of 4.8 μm, a residual S content of 0.13 wt%, a residual Na content of 187 ppm, a total impurity content of 0.25 wt%, and a tap density of 1.83 g / ml. Met.
 上記のようにして前駆体を得た後に、該前駆体と炭酸リチウムとをLi/(Ni+Co+Mn)がモル比で1.11の比になるように乳鉢にて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、酸化性雰囲気で980℃、5時間保持することでLi1.11(Ni0.33Co0.33Mn0.33)Oとなる正極活物質粒子を得た。 After obtaining the precursor as described above, the precursor and lithium carbonate are mixed in a mortar for 1 hour so that the molar ratio of Li / (Ni + Co + Mn) is 1.11. Obtained. Positive electrode active material particles in which 50 g of the obtained mixture is put in an alumina crucible and kept at 980 ° C. for 5 hours in an oxidizing atmosphere to become Li 1.11 (Ni 0.33 Co 0.33 Mn 0.33 ) O 2. Got.
 実施例2
 上記実施例1で合成した複合化合物の前駆体を使用し、該前駆体と炭酸リチウムとをLi/(Ni+Co+Mn)がモル比で1.12になるように乳鉢にて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、空気雰囲気で980℃、5時間保持することでLi1.12(Ni0.33Co0.33Mn0.33)Oとなる正極活物質粒子を得た。
Example 2
Using the precursor of the composite compound synthesized in Example 1 above, the precursor and lithium carbonate were mixed for 1 hour in a mortar so that the Li / (Ni + Co + Mn) molar ratio was 1.12. A mixture was obtained. 50 g of the obtained mixture was put in an alumina crucible, and positive electrode active material particles that became Li 1.12 (Ni 0.33 Co 0.33 Mn 0.33 ) O 2 by holding at 980 ° C. for 5 hours in an air atmosphere were obtained. Obtained.
 実施例3
 上記実施例1で合成した複合化合物の前駆体を使用し、該前駆体と炭酸リチウムとをLi/(Ni+Co+Mn)がモル比で1.14になるように乳鉢にて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、空気雰囲気で1000℃、5時間保持することでLi1.14(Ni0.33Co0.33Mn0.33)Oとなる正極活物質粒子を得た。
Example 3
Using the precursor of the composite compound synthesized in Example 1 above, the precursor and lithium carbonate were mixed for 1 hour in a mortar so that the Li / (Ni + Co + Mn) molar ratio was 1.14. A mixture was obtained. 50 g of the obtained mixture was placed in an alumina crucible, and positive electrode active material particles that became Li 1.14 (Ni 0.33 Co 0.33 Mn 0.33 ) O 2 by holding at 1000 ° C. for 5 hours in an air atmosphere were obtained. Obtained.
 実施例4
 上記実施例1で合成した複合化合物の前駆体を使用し、該前駆体と炭酸リチウムとをLi/(Ni+Co+Mn)がモル比で1.12になるように乳鉢にて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、空気雰囲気で990℃、5時間保持することでLi1.12(Ni0.33Co0.33Mn0.33)Oとなる正極活物質粒子を得た。
Example 4
Using the precursor of the composite compound synthesized in Example 1 above, the precursor and lithium carbonate were mixed for 1 hour in a mortar so that the Li / (Ni + Co + Mn) molar ratio was 1.12. A mixture was obtained. 50 g of the obtained mixture was put in an alumina crucible and held at 990 ° C. for 5 hours in an air atmosphere to obtain positive electrode active material particles that became Li 1.12 (Ni 0.33 Co 0.33 Mn 0.33 ) O 2. Obtained.
 実施例5 
 上記実施例1で合成した複合化合物の前駆体を使用し、該前駆体と炭酸リチウムとをLi/(Ni+Co+Mn)がモル比で1.10になるように乳鉢にて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、空気雰囲気で950℃、5時間保持することでLi1.10(Ni0.33Co0.33Mn0.33)Oとなる正極活物質粒子を得た。
Example 5
Using the precursor of the composite compound synthesized in Example 1 above, the precursor and lithium carbonate were mixed for 1 hour in a mortar so that the Li / (Ni + Co + Mn) molar ratio was 1.10. A mixture was obtained. 50 g of the obtained mixture was put in an alumina crucible and held at 950 ° C. for 5 hours in an air atmosphere to obtain positive electrode active material particles that became Li 1.10 (Ni 0.33 Co 0.33 Mn 0.33 ) O 2. Obtained.
 実施例6
 上記実施例1で合成した複合化合物の前駆体を使用し、該前駆体と炭酸リチウムとをLi/(Ni+Co+Mn)がモル比で1.13になるように乳鉢にて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、空気雰囲気で1020℃、5時間保持することでLi1.13(Ni0.33Co0.33Mn0.33)Oとなる正極活物質粒子を得た。
Example 6
Using the precursor of the composite compound synthesized in Example 1 above, the precursor and lithium carbonate were mixed for 1 hour in a mortar so that the Li / (Ni + Co + Mn) molar ratio was 1.13. A mixture was obtained. 50 g of the obtained mixture was put in an alumina crucible and held at 1020 ° C. for 5 hours in an air atmosphere, whereby positive electrode active material particles that became Li 1.13 (Ni 0.33 Co 0.33 Mn 0.33 ) O 2 were obtained. Obtained.
 実施例7
 上記実施例1で合成した複合化合物の前駆体を使用し、該前駆体と炭酸リチウムとをLi/(Ni+Co+Mn)がモル比で1.10になるように乳鉢にて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、空気雰囲気で970℃、5時間保持することでLi1.10(Ni0.33Co0.33Mn0.33)Oとなる正極活物質粒子を得た。
Example 7
Using the precursor of the composite compound synthesized in Example 1 above, the precursor and lithium carbonate were mixed for 1 hour in a mortar so that the Li / (Ni + Co + Mn) molar ratio was 1.10. A mixture was obtained. 50 g of the obtained mixture was put in an alumina crucible and kept at 970 ° C. in an air atmosphere for 5 hours to obtain positive electrode active material particles that became Li 1.10 (Ni 0.33 Co 0.33 Mn 0.33 ) O 2. Obtained.
 実施例8
 上記実施例1で合成した複合化合物の前駆体を使用し、該前駆体と炭酸リチウムとをLi/(Ni+Co+Mn)がモル比で1.12になるように乳鉢にて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、空気雰囲気で950℃、5時間保持することでLi1.12(Ni0.33Co0.33Mn0.33)Oとなる正極活物質粒子を得た。
Example 8
Using the precursor of the composite compound synthesized in Example 1 above, the precursor and lithium carbonate were mixed for 1 hour in a mortar so that the Li / (Ni + Co + Mn) molar ratio was 1.12. A mixture was obtained. 50 g of the obtained mixture was put in an alumina crucible, and positive electrode active material particles that became Li 1.12 (Ni 0.33 Co 0.33 Mn 0.33 ) O 2 by holding at 950 ° C. for 5 hours in an air atmosphere were obtained. Obtained.
 比較例1
 上記実施例1で合成した複合化合物の前駆体を使用し、該前駆体と炭酸リチウムとをLi/(Ni+Co+Mn)がモル比で1.16になるように乳鉢にて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、空気雰囲気で1010℃、5時間保持することでLi1.16(Ni0.33Co0.33Mn0.33)Oとなる正極活物質粒子を得た。
Comparative Example 1
Using the precursor of the composite compound synthesized in Example 1 above, the precursor and lithium carbonate were mixed for 1 hour in a mortar so that the Li / (Ni + Co + Mn) molar ratio was 1.16. A mixture was obtained. 50 g of the obtained mixture was put in an alumina crucible and held at 1010 ° C. in an air atmosphere for 5 hours to obtain positive electrode active material particles that became Li 1.16 (Ni 0.33 Co 0.33 Mn 0.33 ) O 2. Obtained.
 比較例2
 上記実施例1で合成した複合化合物の前駆体を使用し、該前駆体と炭酸リチウムとをLi/(Ni+Co+Mn)がモル比で1.16になるように乳鉢にて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、空気雰囲気で970℃、5時間保持することでLi1.16(Ni0.33Co0.33Mn0.33)Oとなる正極活物質粒子を得た。
Comparative Example 2
Using the precursor of the composite compound synthesized in Example 1 above, the precursor and lithium carbonate were mixed for 1 hour in a mortar so that the Li / (Ni + Co + Mn) molar ratio was 1.16. A mixture was obtained. 50 g of the obtained mixture was put in an alumina crucible and kept at 970 ° C. in an air atmosphere for 5 hours to obtain positive electrode active material particles that became Li 1.16 (Ni 0.33 Co 0.33 Mn 0.33 ) O 2. Obtained.
 比較例3
 上記実施例1で合成した複合化合物の前駆体を使用し、該前駆体と炭酸リチウムとをLi/(Ni+Co+Mn)がモル比で1.18になるように乳鉢にて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、空気雰囲気で980℃、5時間保持することでLi1.18(Ni0.33Co0.33Mn0.33)Oとなる正極活物質粒子を得た。
Comparative Example 3
Using the precursor of the composite compound synthesized in Example 1 above, the precursor and lithium carbonate were mixed for 1 hour in a mortar so that the Li / (Ni + Co + Mn) molar ratio was 1.18. A mixture was obtained. 50 g of the obtained mixture was put in an alumina crucible, and positive electrode active material particles that became Li 1.18 (Ni 0.33 Co 0.33 Mn 0.33 ) O 2 by holding at 980 ° C. in an air atmosphere for 5 hours were obtained. Obtained.
 比較例4
 上記実施例1で合成した複合化合物の前駆体を使用し、該前駆体と炭酸リチウムとをLi/(Ni+Co+Mn)がモル比で1.12になるように乳鉢にて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、空気雰囲気で930℃、5時間保持することでLi1.12(Ni0.33Co0.33Mn0.33)Oとなる正極活物質粒子を得た。
Comparative Example 4
Using the precursor of the composite compound synthesized in Example 1 above, the precursor and lithium carbonate were mixed for 1 hour in a mortar so that the Li / (Ni + Co + Mn) molar ratio was 1.12. A mixture was obtained. 50 g of the obtained mixture was put in an alumina crucible, and positive electrode active material particles that became Li 1.12 (Ni 0.33 Co 0.33 Mn 0.33 ) O 2 by holding in an air atmosphere at 930 ° C. for 5 hours were obtained. Obtained.
 上記のようにして得られた各実施例及び比較例の正極活物質粒子について、上記の方法に従って、結晶子サイズ、平均二次粒子径(D50)及び(D90-D10)/D50を測定し、さらに上記の方法に従って各実施例及び比較例の正極活物質粒子を用いてコインセルを作製し、上記と同様にdQ/dV曲線を作成し、4.3V~4.5Vの範囲のピークの値を決定した。それらの結果を以下の表1に示し、また、図1に実施例1、比較例1及び比較例3のdQ/dV曲線を示す。さらに、図2に実施例1の正極活物質粒子の前駆体に対してXRD回折を行って前駆体化合物の相を同定した結果を示す。 With respect to the positive electrode active material particles of each Example and Comparative Example obtained as described above, the crystallite size, average secondary particle diameter (D50) and (D90-D10) / D50 were measured according to the above-described methods. Further, a coin cell was prepared using the positive electrode active material particles of each Example and Comparative Example according to the above method, a dQ / dV curve was created in the same manner as described above, and a peak value in the range of 4.3 V to 4.5 V was obtained. Were determined. The results are shown in Table 1 below, and the dQ / dV curves of Example 1, Comparative Example 1 and Comparative Example 3 are shown in FIG. Further, FIG. 2 shows the result of identifying the phase of the precursor compound by performing XRD diffraction on the precursor of the positive electrode active material particles of Example 1.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 図1に示すとおり、実施例1の正極活物質粒子を用いたコイン型電池は前述したdQ/dV曲線で、4.3V~4.5Vの範囲でピークが100mAh/g/V以上200mAh/g/V以下の範囲にあり、低い値を示した。これに対して、比較例1及び比較例3では、dQ/dV曲線で、4.3V~4.5Vの範囲でピークが200mAh/g/Vを超えることがわかる。 As shown in FIG. 1, the coin-type battery using the positive electrode active material particles of Example 1 has a peak of 100 mAh / g / V or more and 200 mAh / g in the range of 4.3 V to 4.5 V in the dQ / dV curve described above. It was in the range below / V and showed a low value. On the other hand, in Comparative Example 1 and Comparative Example 3, it can be seen that the peak exceeds 200 mAh / g / V in the range of 4.3 V to 4.5 V in the dQ / dV curve.
 また、表1に示すとおり、実施例1以外においても、Li/(Ni+Co+Mn)のモル比率が1.09以上1.15以下であり、且つ、焼成温度が950℃~1050℃である実施例2~8は、dQ/dV曲線において、4.3V以上4.5V以下の範囲におけるピークの高さが100mAh/g/V以上200mAh/g/V以下である。すなわち、実施例1~8の正極活物質粒子を用いることにより安全性が高い電池を得ることができる。 As shown in Table 1, in addition to Example 1, the molar ratio of Li / (Ni + Co + Mn) is 1.09 or more and 1.15 or less, and the firing temperature is 950 ° C. to 1050 ° C. In the case of ˜8, the peak height in the range of 4.3 V to 4.5 V is 100 mAh / g / V to 200 mAh / g / V in the dQ / dV curve. That is, a battery with high safety can be obtained by using the positive electrode active material particles of Examples 1 to 8.
 また、図2に示すように、実施例1の正極活物質粒子の前駆体内において、異相としてNiは水酸化ニッケルの状態で存在し、Coはオキシ水酸化コバルトの状態で存在し、またNiMnが存在することがわかる。このため、当該前駆体は、Liとの反応が進みやすく、その結果、安定性の高い正極活物質粒子を得ることができる。 In addition, as shown in FIG. 2, in the precursor of the positive electrode active material particles of Example 1, Ni exists as a different phase in the form of nickel hydroxide, Co exists in the form of cobalt oxyhydroxide, and NiMn 2 It can be seen that O 4 exists. For this reason, the said precursor tends to advance reaction with Li, As a result, positive electrode active material particle with high stability can be obtained.
 本発明に係る非水電解質二次電池用の正極活物質粒子は、電池としたときに高安全性にすることができるため、非水電解質二次電池用の正極活物質として好適である。

 
Since the positive electrode active material particles for a non-aqueous electrolyte secondary battery according to the present invention can be made highly safe when used as a battery, they are suitable as a positive electrode active material for a non-aqueous electrolyte secondary battery.

Claims (6)

  1.  層状岩塩構造を有し、少なくともLi、Ni、Co及びMnを主成分とするリチウム複合酸化物からなる正極活物質粒子であって、
     Li/(Ni+Co+Mn)のモル比率が1.09以上1.15以下であり、
     前記正極活物質粒子を正極に用い、負極としてLiを用いて非水電解質二次電池を組んで、60℃環境下で4.6Vまで初期充電を行い、横軸に電圧を示し、縦軸に初期充電容量を電圧で微分した値であるdQ/dVを示したグラフ(dQ/dV曲線)を作成したとき、電圧が4.3V以上4.5V以下の範囲におけるピークの高さが100mAh/g/V以上200mAh/g/V以下であることを特徴とする非水電解質二次電池用の正極活物質粒子。
    Cathode active material particles having a layered rock salt structure and comprising a lithium composite oxide containing at least Li, Ni, Co, and Mn as main components,
    The molar ratio of Li / (Ni + Co + Mn) is 1.09 or more and 1.15 or less,
    The positive electrode active material particles are used as a positive electrode, Li is used as a negative electrode, a nonaqueous electrolyte secondary battery is assembled, an initial charge is performed up to 4.6 V in a 60 ° C. environment, the horizontal axis indicates voltage, and the vertical axis indicates When a graph (dQ / dV curve) showing dQ / dV, which is a value obtained by differentiating the initial charge capacity with voltage, is created, the peak height is 100 mAh / g when the voltage is in the range of 4.3 V to 4.5 V. Positive electrode active material particles for a non-aqueous electrolyte secondary battery, wherein the positive electrode active material particles are / V or more and 200 mAh / g / V or less.
  2.  X線回折のRetvelt解析により得られる結晶子サイズが400nm以上1000nm以下であり、平均二次粒子径(D50)が3μm以上7μm以下であり、且つ(D90-D10)/D50が0.54~0.60の範囲であることを特徴とする請求項1に記載の正極活物質粒子。 The crystallite size obtained by Revelt analysis of X-ray diffraction is 400 nm or more and 1000 nm or less, the average secondary particle diameter (D50) is 3 μm or more and 7 μm or less, and (D90-D10) / D50 is 0.54-0. The positive electrode active material particles according to claim 1, wherein the positive electrode active material particles are in a range of .60.
  3.  Ni、Co及びMnを主成分とする複合化合物を前駆体とし、該前駆体にリチウム化合物をLi/(Ni+Co+Mn)のモル比率が1.09以上1.15以下の範囲となるように混合した後に、酸化性雰囲気において950℃以上1050℃以下で焼成して、Li、Ni、Co及びMnを含有する複合酸化物を得ることを特徴とする請求項1に記載の正極活物質粒子の製造方法。 After a composite compound containing Ni, Co and Mn as main components is used as a precursor, a lithium compound is mixed with the precursor so that the molar ratio of Li / (Ni + Co + Mn) is in the range of 1.09 to 1.15. The method for producing positive electrode active material particles according to claim 1, wherein the composite oxide containing Li, Ni, Co, and Mn is obtained by firing at 950 ° C. or higher and 1050 ° C. or lower in an oxidizing atmosphere.
  4.  前記前駆体は、NiとCoとMnとのモル比が1:1:1であり、Niは水酸化ニッケルの状態で存在し、Coはオキシ水酸化コバルト又は酸化コバルトの状態で存在し、加えてNiMnが存在することを特徴とする請求項3に記載の正極活物質粒子の製造方法。 The precursor has a molar ratio of Ni, Co and Mn of 1: 1: 1, Ni is present in the form of nickel hydroxide, Co is present in the form of cobalt oxyhydroxide or cobalt oxide, The method for producing positive electrode active material particles according to claim 3, wherein NiMn 2 O 4 is present.
  5.  前記前駆体は、平均二次粒子径D50が3.5μm以上6.5μm以下の範囲で、タップ密度が1.65g/ml以上であることを特徴とする請求項4に記載の正極活物質粒子の製造方法。 5. The positive electrode active material particle according to claim 4, wherein the precursor has an average secondary particle diameter D50 in the range of 3.5 μm to 6.5 μm and a tap density of 1.65 g / ml or more. Manufacturing method.
  6.  請求項1又は2に記載の正極活物質粒子を使用した非水電解質二次電池。

     
    A nonaqueous electrolyte secondary battery using the positive electrode active material particles according to claim 1.

PCT/JP2017/005446 2016-02-22 2017-02-15 Positive electrode active material particles for non-aqueous electrolyte secondary battery, production method therefor, and non-aqueous electrolyte secondary battery WO2017145888A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780008852.7A CN108604680A (en) 2016-02-22 2017-02-15 Positive electrode active material for nonaqueous electrolyte secondary battery particle and preparation method thereof and non-aqueous electrolyte secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-031406 2016-02-22
JP2016031406 2016-02-22
JP2016-201260 2016-10-12
JP2016201260A JP6053982B1 (en) 2016-02-22 2016-10-12 Positive electrode active material particles for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
WO2017145888A1 true WO2017145888A1 (en) 2017-08-31

Family

ID=57582092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005446 WO2017145888A1 (en) 2016-02-22 2017-02-15 Positive electrode active material particles for non-aqueous electrolyte secondary battery, production method therefor, and non-aqueous electrolyte secondary battery

Country Status (4)

Country Link
JP (1) JP6053982B1 (en)
CN (1) CN108604680A (en)
TW (1) TW201737543A (en)
WO (1) WO2017145888A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020080255A (en) * 2018-11-13 2020-05-28 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6669920B1 (en) * 2018-09-21 2020-03-18 株式会社田中化学研究所 Positive electrode active material for secondary battery and method for producing the same
US11460506B2 (en) 2019-04-22 2022-10-04 Lg Energy Solution, Ltd. Apparatus and method for determining differential voltage curve of battery and battery pack comprising the apparatus
KR20210150863A (en) * 2020-06-04 2021-12-13 에스케이이노베이션 주식회사 Lithium secondary battery
CN113461058B (en) * 2021-07-15 2022-09-09 宜宾职业技术学院 Cathode material Li with disordered rock salt structure 1.3 Mo 0.3 V 0.4 O 2 Method of synthesis of

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074058A1 (en) * 2009-12-14 2011-06-23 トヨタ自動車株式会社 Positive electrode active material for lithium secondary battery and use thereof
JP2014143108A (en) * 2013-01-24 2014-08-07 Toyota Motor Corp Positive electrode active material and lithium secondary battery including the active material
JP2015220220A (en) * 2014-05-21 2015-12-07 戸田工業株式会社 Positive electrode active material particle powder for nonaqueous electrolyte secondary batteries and production method thereof, and nonaqueous electrolyte secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100548988B1 (en) * 2003-11-26 2006-02-02 학교법인 한양학원 Manufacturing process of cathodes materials of lithium second battery, the reactor used therein and cathodes materials of lithium second battery manufactured thereby
WO2009045766A1 (en) * 2007-09-28 2009-04-09 3M Innovative Properties Company Method of making cathode compositions
CN103326011B (en) * 2013-06-06 2016-06-29 南通瑞翔新材料有限公司 Positive active material for lithium secondary battery and manufacture method thereof
JP6133720B2 (en) * 2013-07-24 2017-05-24 住友金属鉱山株式会社 Non-aqueous electrolyte secondary battery positive electrode active material, method for producing the same, and non-aqueous electrolyte secondary battery
JP6316687B2 (en) * 2014-07-09 2018-04-25 住友化学株式会社 Method for producing lithium-containing composite oxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074058A1 (en) * 2009-12-14 2011-06-23 トヨタ自動車株式会社 Positive electrode active material for lithium secondary battery and use thereof
JP2014143108A (en) * 2013-01-24 2014-08-07 Toyota Motor Corp Positive electrode active material and lithium secondary battery including the active material
JP2015220220A (en) * 2014-05-21 2015-12-07 戸田工業株式会社 Positive electrode active material particle powder for nonaqueous electrolyte secondary batteries and production method thereof, and nonaqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020080255A (en) * 2018-11-13 2020-05-28 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP7228113B2 (en) 2018-11-13 2023-02-24 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP6053982B1 (en) 2016-12-27
JP2017152359A (en) 2017-08-31
TW201737543A (en) 2017-10-16
CN108604680A (en) 2018-09-28

Similar Documents

Publication Publication Date Title
KR101989633B1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND PROCESS FOR PRODUCING SAME, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
US10056612B2 (en) Lithium manganate particles for non-aqueous electrolyte secondary battery, process for producing the same, and nonaqueous electrolyte secondary battery
JP5435278B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same, Non-aqueous electrolyte secondary battery
TWI515168B (en) Production method of lithium manganate particles and nonaqueous electrolyte battery
WO2014061653A1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND METHOD FOR MANUFACTURING SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY CELL
JP6053982B1 (en) Positive electrode active material particles for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5716923B2 (en) Nonaqueous electrolyte secondary battery active material powder and nonaqueous electrolyte secondary battery
JP5737513B2 (en) Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6369126B2 (en) Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2018014322A (en) Positive electrode active material particle powder for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery
US20200411861A1 (en) Positive electrode active material particles for non-aqueous electrolyte secondary batteries and method for producing same, and non-aqueous electrolyte secondary battery
JP2016100174A (en) Positive electrode active material particle powder for nonaqueous electrolyte secondary batteries, manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP2012216548A (en) Active material powder for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP6341095B2 (en) Non-aqueous electrolyte secondary battery lithium manganate particle powder, method for producing the same, and non-aqueous electrolyte secondary battery
JP6142868B2 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6109399B1 (en) Positive electrode active material particles for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2018067524A (en) Method for reducing amount of lithium remaining in positive electrode active material particles
WO2019177017A1 (en) Positive electrode active material particles for non-aqueous electrolyte secondary battery and production method therefor, and non-aqueous electrolyte secondary battery
JP5741970B2 (en) Lithium composite compound particle powder and method for producing the same, non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756328

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756328

Country of ref document: EP

Kind code of ref document: A1