WO2017145768A1 - Particle detection device - Google Patents

Particle detection device Download PDF

Info

Publication number
WO2017145768A1
WO2017145768A1 PCT/JP2017/004662 JP2017004662W WO2017145768A1 WO 2017145768 A1 WO2017145768 A1 WO 2017145768A1 JP 2017004662 W JP2017004662 W JP 2017004662W WO 2017145768 A1 WO2017145768 A1 WO 2017145768A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
housing
particle
holder
flow cell
Prior art date
Application number
PCT/JP2017/004662
Other languages
French (fr)
Japanese (ja)
Inventor
雅 古谷
太輔 小原
新吾 増本
Original Assignee
アズビル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アズビル株式会社 filed Critical アズビル株式会社
Publication of WO2017145768A1 publication Critical patent/WO2017145768A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes

Definitions

  • the present invention relates to a detection technique and relates to a particle detection apparatus.
  • a flow cell for flowing a fluid as a sample is used.
  • the flow cell is transparent, and when light is applied to the fluid flowing inside the flow cell, particles contained in the fluid emit fluorescence or scattered light is generated. Fluorescence and scattered light are collected and detected by a lens disposed next to the flow cell (see, for example, Patent Document 1).
  • the number and types of particles contained in the fluid can be specified from the number of detections of fluorescence and scattered light, the detection intensity, the detection wavelength, and the like. For example, it is possible to determine whether the particle is a biological particle, whether the particle is a resin, whether the particle is a bubble, or the like.
  • an object of the present invention is to provide a particle detection device that can be easily adjusted.
  • a housing provided with an opening and storing at least a part of the optical system, (b) a flow cell disposed in the optical system inside the housing, and (c) A flow path that passes through the housing through the opening and is connected to the flow cell; and (d) a fixing device that fixes the flow path to the housing, the fixing device being capable of adjusting the fixing position of the flow path with respect to the housing.
  • a particle detection device is provided.
  • the fixing device may include a flow path holder that holds the flow path and a shim set that is sandwiched between the flow path holder and the casing.
  • the fixing device may include a flow path holder that holds the flow path, and a set of shims that are sandwiched between a flange provided in the flow path and the flow path holder. .
  • the set of shims may include shims having different thicknesses, or may have shims having the same thickness.
  • the flow path holder may be pressed against the housing from a plurality of angles via at least one shim included in the shim set.
  • the flow path holder may include a surface that is pressed perpendicularly to the outer surface of the housing from a plurality of angles via at least one shim included in the shim set.
  • the flow path holder may be bent, and a plurality of regions of the flow path holder may be pressed against the housing via at least one shim included in the shim set.
  • the housing is provided with a female screw
  • the fixing device further includes a male screw that presses the flow path holder against the housing, and the shaft of the male screw is inserted into the flow path holder.
  • a hole may be provided.
  • the through hole provided in the flow path holder may have two opposing sides that are longer than the diameter of the male screw shaft.
  • the particle detection apparatus may further include a flow cell holder that holds the flow cell and connects the flow cell and the flow path.
  • the housing may be separable.
  • the flow cell, the flow path, and the flow path holder may be connected and can be pulled out from the opening of the housing. Further, the flow cell, the flow path, and the flow cell holder may be connected and can be pulled out from the opening of the housing.
  • FIG. 1 is a partial cross-sectional view of a particle detection device according to a first embodiment of the present invention. It is a partial assembly perspective view of the particle
  • the particle detection device As shown in FIG. 1, the particle detection device according to the first exemplary embodiment of the present invention is provided with an opening 101, a housing 2 that stores at least a part of the optical system, and an interior of the housing 2.
  • a flow cell 1 disposed in the optical system, a flow path 3A, 3B that passes through the housing 2 through the opening 101 and is connected to the flow cell 1, and a fixing device 104 that fixes the flow paths 3A, 3B to the housing 2.
  • the fixing device 104 which can adjust the fixing position of flow path 3A, 3B with respect to the housing
  • the casing 2 stores a concave mirror such as a parabolic mirror as at least a part of the optical system.
  • the housing 2 and the parabolic mirror may be integrated.
  • the housing 2 may store other optical systems arranged in the vicinity of the flow cell 1.
  • a block 5 shown in FIG. 1 is fixed to the side surface of the housing 2 with a male screw such as a bolt, and the block 5 forms a convex portion on the side surface of the housing 2.
  • the flow cell 1 is made of a transparent material such as quartz glass.
  • the flow cell 1 is provided with a through hole through which a fluid such as a liquid flows.
  • the through hole passes through the center of the flow cell 1, for example.
  • FIG. 1 which shows the assembly process of a particle
  • the flow cell 1 may have a spherical shape or a rectangular parallelepiped shape.
  • the center of the flow cell 1 coincides with the focal point of the parabolic mirror inside the housing 2 in consideration of the refractive index of the flow cell 1.
  • a metal thin film that reflects light may be provided on the outer surface of the flow cell 1 opposite to the side facing the parabolic mirror.
  • the flow cell 1 is irradiated with inspection light focused at the through-hole of the flow cell 1.
  • the center of the flow cell 1 coincides with the focus of the inspection light in consideration of the refractive index of the flow cell 1.
  • scattered light is generated in the particles irradiated with the inspection light.
  • the fluorescent particles pass through the flow cell 1, the fluorescent particles irradiated with the inspection light emit fluorescence including autofluorescence. Scattered light and fluorescence are collected by a parabolic mirror inside the housing 2 and detected by the photodetector 23.
  • the photodetector 23 is arranged at the second focal point of the parabolic mirror.
  • the upstream flow path 3A and the downstream flow path 3B shown in FIG. 1 are openings 101 provided on the upper surface and the lower surface of the casing 2 so as to penetrate the mirror surface of the parabolic mirror inside the casing 2, respectively. And is connected to the flow cell 1 through gaskets 10A and 10B.
  • the flow paths 3A and 3B are, for example, metal nozzles.
  • the fluid to be inspected for containing particles is supplied to the flow cell 1 via the upstream flow path 3A, and the fluid that has passed through the flow cell 1 is discharged via the downstream flow path 3B.
  • a flange 103A provided with a through hole for a male screw such as a bolt is provided in the flow path 3A.
  • the flow path 3B is provided with a flange 103B provided with a through hole for a male screw such as a bolt.
  • the outer diameters of the flow paths 3 ⁇ / b> A and 3 ⁇ / b> B are each smaller than the diameter of the opening 101 provided in the housing 2. Therefore, the flow paths 3A and 3B are predetermined in a plane (a plane including the X direction and the Z direction) perpendicular to the extending direction (Y direction) of the flow paths 3A and 3B before being fixed to the housing 2. It is possible to move within the range.
  • the fixing device 104 includes a flow path holder 4 that holds the flow paths 3 ⁇ / b> A and 3 ⁇ / b> B, and a set of shims 6, 7, and 8 sandwiched between the flow path holder 4 and the housing 2.
  • the flow path holder 4 is bent so as to be fitted with the housing 2.
  • the flow path holder 4 includes a top surface of the housing 2, a side surface of the housing 2, a side surface of the block 5 fixed to the side surface of the housing 2, and a portion parallel to the bottom surface of the housing 2. The surface which becomes. Therefore, the flow path holder 4 is fitted to the upper surface of the housing 2, the side surface of the housing 2, the side surface of the block 5 fixed to the side surface of the housing 2, and the lower surface of the housing 2.
  • the upstream flow path 3A is fixed to a portion of the flow path holder 4 parallel to the upper surface of the housing 2 by a male screw 13A such as a bolt via the flange 103A of the flow path 3A.
  • the downstream flow path 3B is fixed to a portion of the flow path holder 4 parallel to the lower surface of the housing 2 by a male screw 13B such as a bolt via the flange 103B of the flow path 3B.
  • the shim 7 is sandwiched between the flow path holder 4 and the upper surface of the housing 2.
  • grain detection apparatus which concerns on 1st Embodiment is provided with the set of the several shim 7 from which an upper surface is congruent and different in thickness.
  • grain detection apparatus which concerns on 1st Embodiment may be provided with the set of several shim 7 with the same upper surface and the same thickness.
  • the position of the flow cell 1 in the extending direction (Y direction) of the through hole of the flow cell 1 may be adjusted by the number of shims 7 sandwiched between the flow path holder 4 and the upper surface of the housing 2.
  • the shim 6 is sandwiched between the flow path holder 4 and the side surface of the housing 2.
  • the side surface of the housing 2 is perpendicular to the upper surface and the lower surface of the housing 2.
  • grain detection apparatus which concerns on 1st Embodiment is provided with the set of several shim 6 from which an upper surface is congruent and different in thickness.
  • the flow cell 1 has a through-hole extending direction (Y direction). It is possible to adjust the position of the flow cell 1 connected to the flow path 3A held by the flow path holder 4 in the long vertical direction (X direction) of the parabolic mirror.
  • grain detection apparatus which concerns on 1st Embodiment may be provided with the set of several shim 6 with the same upper surface and the same thickness.
  • the shim 8 is sandwiched between the flow path holder 4 and the side surface of the block 5 fixed to the side surface of the housing 2.
  • the side surface of the block 5 is perpendicular to the side surface of the housing 2.
  • grain detection apparatus which concerns on 1st Embodiment is provided with the set of the several shim 8 from which an upper surface is congruent and different in thickness.
  • the flow cell 1 extends in the through-hole direction (Y direction). It is possible to adjust the position of the flow cell 1 connected to the flow path 3A held by the flow path holder 4 in the vertical direction and in the short axis direction (Z direction) of the parabolic mirror.
  • grain detection apparatus which concerns on 1st Embodiment may be provided with the set of the several shim 8 with the same upper surface and the same thickness.
  • the position of the flow cell 1 in the direction (Z direction) perpendicular to the extending direction (Y direction) of the through hole of the flow cell 1 is determined by the number of shims 8 sandwiched between the flow path holder 4 and the side surface of the block 5. You may adjust.
  • the housing 2 is provided with a female screw. After the position of the flow cell 1 is appropriately adjusted with respect to the optical system including the parabolic mirror, the flow path holder 4 is fixed to the housing 2 with male screws 14A, 14B, and 14C such as bolts. Thereby, the flow path holder 4 is pressed perpendicularly to the outer surface of the housing 2 from a plurality of angles via the shims 6, 7, 8.
  • the flow path holder 4 is provided with through holes into which shafts of male screws 14A, 14B, 14C such as bolts are inserted.
  • the through hole provided in the flow path holder 4 is, for example, larger than the cross-sectional area of the shaft of the male screws 14A, 14B, and 14C so that the position of the flow path holder 4 with respect to the housing 2 can be adjusted. It is smaller than the cross-sectional area of the heads of 14B and 14C.
  • the through hole provided in the flow path holder 4 may include two opposing sides that are longer than the diameters of the shafts of the male screws 14A, 14B, and 14C.
  • the housing 2 including a part of the optical system such as a parabolic mirror can be divided from the housing 22 including the other part of the optical system such as the photodetector 23. May be.
  • casing 22 can be joined by each opening part. Since the housing 2 and the housing 22 can be divided, maintenance such as cleaning of the inside of the housing 2 and the housing 22 and replacement of the flow cell 1 can be performed.
  • the position of the flow cell 1 may deviate from the optical system after the particle detector is assembled or after maintenance.
  • the position of the flow cell 1 is the focus of the inspection light and deviates from the position of the focus of the parabolic mirror, the intensity of the inspection light applied to the particles is reduced, and the scattered light and fluorescence generated in the particles are reduced. The intensity also decreases, and the amount of scattered light and fluorescence collected by a condensing optical system including a parabolic mirror and the like also decreases.
  • the position of the flow cell 1 with respect to the optical system can be adjusted by adjusting the thickness of each of the shims 6, 7, and 8.
  • the positional displacement between the optical systems caused by the dimensional tolerance of the joint portion between the housing 1 and the housing 22 or the positional displacement of the flow cell 1 with respect to the housing 2 is large.
  • the shims 6, 7, and 8 are prepared in advance, with thicknesses adjusted according to individual differences in the dimensions of each part consisting of the housing 2, the fixing device 104, the housing 22, and the like. Also good. By using the shim set prepared in this way, it is possible to perform the position adjustment work when exchanging the flow cell 1 and the housing 2 in a short time.
  • the method of adjusting the position of the flow cell 1 in a X direction, a Y direction, and a Z direction by the shims 6, 7, and 8 was shown, it adjusts with a shim.
  • the direction of the position of the flow cell 1 to be performed may be less than or greater than three directions.
  • the position of the flow cell 1 in the oblique direction may be adjusted in addition to the orthogonal three-axis direction.
  • FIG. 1 shows an example in which shims 6, 7, and 8 are sandwiched between the flow path holder 4 and the housing 2, but each of the flanges 103A and 103B of the flow paths 3A and 3B and the flow path holder A shim may be sandwiched between the four.
  • the particle detection device As shown in FIGS. 3, 4, and 5, the particle detection device according to the second embodiment is provided with an opening 101, a housing 2 that stores at least a part of the optical system, and a housing
  • the flow cell 1 disposed in the optical system inside the body 2, the flow path 3 ⁇ / b> A, 3 ⁇ / b> B passing through the housing 2 through the opening 101 and connected to the flow cell 1, and the flow cell 1 are held.
  • the substantially rectangular parallelepiped flow cell holder 33 is provided with a recess for fitting with the flow cell 1.
  • the flow cell 1 in which the gaskets 10 ⁇ / b> A and 10 ⁇ / b> B are inserted at both ends of the through hole is disposed in a recess of the flow cell holder 33.
  • the flow cell holder 33 is provided with through holes into which the flow paths 3A and 3B are inserted.
  • the upstream flow path 3 ⁇ / b> A is inserted into the through hole on the upstream side of the flow cell holder 33 via the flow path holder 24 and connected to the flow cell 1.
  • the downstream flow path 3 ⁇ / b> B is inserted into the downstream through hole of the flow cell holder 33 and connected to the flow cell 1.
  • a flange 103A provided with a through hole for a male screw such as a bolt is provided.
  • the flow path holder 24 provided in the fixing device 204 is provided with a through hole into which the flow path 3A is inserted.
  • a shim 27 is disposed between the flange 103 ⁇ / b> A of the flow path 3 ⁇ / b> A and the flow path holder 24.
  • grain detection apparatus which concerns on 2nd Embodiment is provided with the set of the several shim 27 from which an upper surface is congruent and different in thickness.
  • the flow cell 1 is held by the flow path holder 24 and connected to the flow path 3A by selecting at least one shim 27 from a set of a plurality of shims 27 having different thicknesses and sandwiching it between the flange 103A and the flow path holder 24. It is possible to adjust the position of the flow cell 1 in the extending direction (Y direction) of the through holes.
  • grain detection apparatus which concerns on 2nd Embodiment may be provided with the set of several shim 27 with the same upper surface and the same thickness.
  • the position of the flow cell 1 in the extending direction (Y direction) of the through hole of the flow cell 1 may be adjusted by the number of shims 27 sandwiched between the flange 103A and the flow path holder 24.
  • the upstream flow path 3A is fixed to the flow path holder 24 by a male screw 43A such as a bolt via a flange 103A.
  • the through hole provided in the flange 103A is, for example, larger than the cross-sectional area of the shaft of the male screw 43A and smaller than the cross-sectional area of the head of the male screw 43A so that the position of the flow path 3A with respect to the flow path holder 24 can be adjusted.
  • the through hole provided in the flow path holder 24 may have two opposing sides that are longer than the diameter of the shaft of the male screw 43A.
  • a plane perpendicular to the extending direction (Y direction) of the through hole of the flow cell 1 (a plane including the X direction and the Z direction) ) Can adjust the position of the flow cell 1.
  • the flow path holder 24 is fixed to the housing 2 by a male screw 37A such as a bolt.
  • the arrangement of the flow path holder 24 with respect to the housing 2 may be determined by a positioning pin.
  • the opening provided in the housing 2 is larger than the flow cell holder 33 and smaller than the flow path holder 24. Therefore, the flow path 3A, the flow path holder 24, the flow cell holder 33, the flow cell 1, and the flow path 3B can be pulled out from the housing 2 while being connected. Therefore, in the particle detection apparatus according to the second embodiment, for example, when the flow cell 1 is replaced, the casing 2 that stores the parabolic mirror is separated from the casing that includes other parts of the optical system. Instead, the flow cell 1 can be pulled out of the housing 2.
  • the particle detection device may use only the fluorescence emitted by the particles as the detection target, or may use only the scattered light generated by the particles as the detection target.
  • the present invention includes various embodiments and the like not described herein.
  • the present invention can be used at the production site of purified water for pharmaceuticals, purified water for food, purified water for beverages, purified water for manufacturing semiconductor devices, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Provided is a particle detection device comprising: a housing 2 that is provided with an opening 101 and that accommodates at least a part of an optical system; a flow cell 1 disposed in the optical system; flow paths 3A, 3B which pass through the housing 2 via the opening 101 and that are connected to the flow cell 1; and a fixing tool 104 for fixing a flow path 3 to the housing 2, and for adjusting the fixing position of the flow path 3 with respect to the housing 2.

Description

粒子検出装置Particle detector
 本発明は検出技術に関し、粒子検出装置に関する。 The present invention relates to a detection technique and relates to a particle detection apparatus.
 フローサイトメータ、及び微生物検出装置等を含む粒子検出装置においては、サンプルである流体を流すためのフローセルが用いられる。フローセルは透明であり、フローセル内部を流れる流体に光を照射すると、流体中に含まれる粒子が蛍光を発したり、散乱光が生じたりする。蛍光や散乱光は、フローセルの隣に配置されたレンズで集光されて検出される(例えば、特許文献1参照。)。蛍光や散乱光の検出回数、検出強度、及び検出波長等から、流体中に含まれていた粒子の数や種類を特定することが可能である。例えば、粒子が生物粒子であるか否か、粒子が樹脂であるか否か、あるいは粒子が気泡であるか否か等を判別することが可能である。 In a particle detection apparatus including a flow cytometer and a microorganism detection apparatus, a flow cell for flowing a fluid as a sample is used. The flow cell is transparent, and when light is applied to the fluid flowing inside the flow cell, particles contained in the fluid emit fluorescence or scattered light is generated. Fluorescence and scattered light are collected and detected by a lens disposed next to the flow cell (see, for example, Patent Document 1). The number and types of particles contained in the fluid can be specified from the number of detections of fluorescence and scattered light, the detection intensity, the detection wavelength, and the like. For example, it is possible to determine whether the particle is a biological particle, whether the particle is a resin, whether the particle is a bubble, or the like.
特許第3684747号公報Japanese Patent No. 3684747
 粒子検出装置の光学系は精密であり、粒子検出装置の調整は容易ではない。そこで、本発明は、調整が容易な粒子検出装置を提供可能することを目的の一つとする。 ¡The optical system of the particle detector is precise, and it is not easy to adjust the particle detector. Therefore, an object of the present invention is to provide a particle detection device that can be easily adjusted.
 本発明の態様によれば、(a)開口が設けられており、光学系の少なくとも一部を格納する筐体と、(b)筐体内部の光学系に配置されるフローセルと、(c)開口を介して筐体を貫通し、フローセルに接続される流路と、(d)流路を筐体に固定する固定器具であって、筐体に対する流路の固定位置を調整可能な固定器具と、を備える、粒子検出装置が提供される。 According to an aspect of the present invention, (a) a housing provided with an opening and storing at least a part of the optical system, (b) a flow cell disposed in the optical system inside the housing, and (c) A flow path that passes through the housing through the opening and is connected to the flow cell; and (d) a fixing device that fixes the flow path to the housing, the fixing device being capable of adjusting the fixing position of the flow path with respect to the housing. A particle detection device is provided.
 上記の粒子検出装置において、固定器具が、流路を保持する流路ホルダと、流路ホルダと筐体の間に挟まれるシムのセットと、を備えていてもよい。あるいは、上記の粒子検出装置において、固定器具が、流路を保持する流路ホルダと、流路に設けられたフランジと流路ホルダの間に挟まれるシムのセットと、を備えていてもよい。 In the above particle detection apparatus, the fixing device may include a flow path holder that holds the flow path and a shim set that is sandwiched between the flow path holder and the casing. Alternatively, in the above particle detection apparatus, the fixing device may include a flow path holder that holds the flow path, and a set of shims that are sandwiched between a flange provided in the flow path and the flow path holder. .
 上記の粒子検出装置において、シムのセットが、異なる厚みのシムを備えていてもよいし、同じ厚みのシムを備えていてもよい。 In the above particle detection apparatus, the set of shims may include shims having different thicknesses, or may have shims having the same thickness.
 上記の粒子検出装置において、流路ホルダが、シムのセットが備える少なくとも一つのシムを介して、複数の角度から、筐体に押し当てられてもよい。また、流路ホルダが、シムのセットが備える少なくとも一つのシムを介して、複数の角度から、筐体の外面に垂直に押し当てられる面を備えていてもよい。さらに、流路ホルダが屈曲しており、流路ホルダの複数の領域が、シムのセットが備える少なくとも一つのシムを介して、筐体に押し当てられてもよい。 In the particle detection apparatus, the flow path holder may be pressed against the housing from a plurality of angles via at least one shim included in the shim set. The flow path holder may include a surface that is pressed perpendicularly to the outer surface of the housing from a plurality of angles via at least one shim included in the shim set. Furthermore, the flow path holder may be bent, and a plurality of regions of the flow path holder may be pressed against the housing via at least one shim included in the shim set.
 上記の粒子検出装置において、筐体に雌ネジが設けられており、固定器具が、流路ホルダを筐体に押し当てる雄ネジをさらに備え、流路ホルダに雄ネジの軸が挿入される通し孔が設けられていてもよい。流路ホルダに設けられた通し孔が、雄ネジの軸の直径より長い、対向する二辺を備えていてもよい。 In the above particle detection device, the housing is provided with a female screw, the fixing device further includes a male screw that presses the flow path holder against the housing, and the shaft of the male screw is inserted into the flow path holder. A hole may be provided. The through hole provided in the flow path holder may have two opposing sides that are longer than the diameter of the male screw shaft.
 上記の粒子検出装置が、フローセルを保持し、フローセルと流路を接続するフローセルホルダをさらに備えていてもよい。 The particle detection apparatus may further include a flow cell holder that holds the flow cell and connects the flow cell and the flow path.
 上記の粒子検出装置において、筐体が分割可能であってもよい。 In the above particle detector, the housing may be separable.
 上記の粒子検出装置において、フローセルと流路が接続されたまま筐体の開口から引き抜き可能であってもよい。また、フローセルと流路と流路ホルダが接続されたまま筐体の開口から引き抜き可能であってもよい。さらに、フローセルと流路とフローセルホルダが接続されたまま筐体の開口から引き抜き可能であってもよい。 In the above particle detection apparatus, it may be possible to pull out from the opening of the housing while the flow cell and the flow path are connected. Further, the flow cell, the flow path, and the flow path holder may be connected and can be pulled out from the opening of the housing. Further, the flow cell, the flow path, and the flow cell holder may be connected and can be pulled out from the opening of the housing.
 本発明によれば、調整が容易な粒子検出装置を提供可能である。 According to the present invention, it is possible to provide a particle detection device that can be easily adjusted.
本発明の第1の実施の形態に係る粒子検出装置の一部の組み立て斜視図である。It is a partial assembly perspective view of the particle | grain detection apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る粒子検出装置の一部の断面図である。1 is a partial cross-sectional view of a particle detection device according to a first embodiment of the present invention. 本発明の第2の実施の形態に係る粒子検出装置の一部の組み立て斜視図である。It is a partial assembly perspective view of the particle | grain detection apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る粒子検出装置の一部を示す側面図である。It is a side view which shows a part of particle | grain detection apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る粒子検出装置の一部を示す斜視図である。It is a perspective view which shows a part of particle | grain detection apparatus which concerns on the 2nd Embodiment of this invention.
 以下に本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。但し、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 Embodiments of the present invention will be described below. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic. Therefore, specific dimensions and the like should be determined in light of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
 (第1の実施の形態)
 本発明の第1の実施の形態に係る粒子検出装置は、図1に示すように、開口101が設けられており、光学系の少なくとも一部を格納する筐体2と、筐体2内部の光学系に配置されるフローセル1と、開口101を介して筐体2を貫通し、フローセル1に接続される流路3A、3Bと、流路3A、3Bを筐体2に固定する固定器具104であって、筐体2に対する流路3A、3Bの固定位置を調整可能な固定器具104と、を備える。
(First embodiment)
As shown in FIG. 1, the particle detection device according to the first exemplary embodiment of the present invention is provided with an opening 101, a housing 2 that stores at least a part of the optical system, and an interior of the housing 2. A flow cell 1 disposed in the optical system, a flow path 3A, 3B that passes through the housing 2 through the opening 101 and is connected to the flow cell 1, and a fixing device 104 that fixes the flow paths 3A, 3B to the housing 2. And the fixing device 104 which can adjust the fixing position of flow path 3A, 3B with respect to the housing | casing 2 is provided.
 図1及び図2に示す例においては、筐体2には、光学系の少なくとも一部として放物面鏡等の凹面鏡が格納されている。筐体2と放物面鏡は一体であってもよい。筐体2には、フローセル1の近傍に配置されるその他の光学系が格納されていてもよい。筐体2の側面には、図1に示すブロック5がボルト等の雄ネジで固定されており、ブロック5は、筐体2の側面の凸部をなしている。 1 and 2, the casing 2 stores a concave mirror such as a parabolic mirror as at least a part of the optical system. The housing 2 and the parabolic mirror may be integrated. The housing 2 may store other optical systems arranged in the vicinity of the flow cell 1. A block 5 shown in FIG. 1 is fixed to the side surface of the housing 2 with a male screw such as a bolt, and the block 5 forms a convex portion on the side surface of the housing 2.
 フローセル1は、石英ガラス等の透明な材料からなる。フローセル1には、内部を液体等の流体が流れる貫通孔が設けられている。貫通孔は、例えば、フローセル1の中心を通る。なお、粒子検出装置の組み立て工程を示す図1においては、フローセル1が放物面鏡の開口付近に位置しているが、組み立て後は、図2(a)に示すように、フローセル1は、流路3A、3Bと同一直線上に位置する。フローセル1は、球状であってもよいし、直方体状であってもよい。フローセル1が球状である場合、フローセル1の屈折率を考慮した上で、フローセル1の中心と、筐体2内部の放物面鏡の焦点と、が一致することが好ましい。フローセル1の放物面鏡と対向する側と反対側の外表面に、光を反射する金属薄膜を設けてもよい。 The flow cell 1 is made of a transparent material such as quartz glass. The flow cell 1 is provided with a through hole through which a fluid such as a liquid flows. The through hole passes through the center of the flow cell 1, for example. In addition, in FIG. 1 which shows the assembly process of a particle | grain detection apparatus, although the flow cell 1 is located in the opening vicinity of a parabolic mirror, as shown in FIG. It is located on the same straight line as the flow paths 3A and 3B. The flow cell 1 may have a spherical shape or a rectangular parallelepiped shape. When the flow cell 1 is spherical, it is preferable that the center of the flow cell 1 coincides with the focal point of the parabolic mirror inside the housing 2 in consideration of the refractive index of the flow cell 1. A metal thin film that reflects light may be provided on the outer surface of the flow cell 1 opposite to the side facing the parabolic mirror.
 フローセル1には、フローセル1の貫通孔で焦点を結ぶ検査光が照射される。フローセル1が球状である場合、フローセル1の屈折率を考慮した上で、フローセル1の中心と、検査光の焦点と、が一致することが好ましい。フローセル1を粒子が通過すると、検査光を照射された粒子において散乱光が生じるまた、フローセル1を蛍光性粒子が通過すると、検査光を照射された蛍光性粒子が自家蛍光を含む蛍光を発する。散乱光及び蛍光は、筐体2内部の放物面鏡で集光され、光検出器23で検出される。光検出器23は、例えば、放物面鏡の第2の焦点に配置される。 The flow cell 1 is irradiated with inspection light focused at the through-hole of the flow cell 1. When the flow cell 1 is spherical, it is preferable that the center of the flow cell 1 coincides with the focus of the inspection light in consideration of the refractive index of the flow cell 1. When particles pass through the flow cell 1, scattered light is generated in the particles irradiated with the inspection light. When the fluorescent particles pass through the flow cell 1, the fluorescent particles irradiated with the inspection light emit fluorescence including autofluorescence. Scattered light and fluorescence are collected by a parabolic mirror inside the housing 2 and detected by the photodetector 23. For example, the photodetector 23 is arranged at the second focal point of the parabolic mirror.
 図1に示す上流側の流路3A及び下流側の流路3Bは、それぞれ、筐体2内部の放物面鏡の鏡面を貫通するよう、筐体2の上面と下面に設けられた開口101に垂直に挿入され、ガスケット10A、10Bを介してフローセル1に接続される。流路3A、3Bは、例えば金属製のノズルである。粒子が含まれるか否か検査される流体は、上流側の流路3Aを介してフローセル1に供給され、フローセル1を通過した流体は、下流側の流路3Bを介して排出される。 The upstream flow path 3A and the downstream flow path 3B shown in FIG. 1 are openings 101 provided on the upper surface and the lower surface of the casing 2 so as to penetrate the mirror surface of the parabolic mirror inside the casing 2, respectively. And is connected to the flow cell 1 through gaskets 10A and 10B. The flow paths 3A and 3B are, for example, metal nozzles. The fluid to be inspected for containing particles is supplied to the flow cell 1 via the upstream flow path 3A, and the fluid that has passed through the flow cell 1 is discharged via the downstream flow path 3B.
 流路3Aには、ボルト等の雄ネジの通し孔が設けられたフランジ103Aが設けられている。また、流路3Bには、ボルト等の雄ネジの通し孔が設けられたフランジ103Bが設けられている。流路3A及び3Bの外径は、それぞれ、筐体2に設けられた開口101の口径より小さい。そのため、流路3A、3Bは、筐体2に固定される前は、流路3A、3Bの延伸方向(Y方向)に対して垂直な面(X方向及びZ方向を含む面)内において所定の範囲内で移動可能である。 In the flow path 3A, a flange 103A provided with a through hole for a male screw such as a bolt is provided. The flow path 3B is provided with a flange 103B provided with a through hole for a male screw such as a bolt. The outer diameters of the flow paths 3 </ b> A and 3 </ b> B are each smaller than the diameter of the opening 101 provided in the housing 2. Therefore, the flow paths 3A and 3B are predetermined in a plane (a plane including the X direction and the Z direction) perpendicular to the extending direction (Y direction) of the flow paths 3A and 3B before being fixed to the housing 2. It is possible to move within the range.
 固定器具104は、流路3A、3Bを保持する流路ホルダ4と、流路ホルダ4と筐体2の間に挟まれるシム6、7、8のセットと、を備える。流路ホルダ4は、例えば、筐体2と勘合するよう、屈曲している。図1に示す例においては、流路ホルダ4は、筐体2の上面、筐体2の側面、筐体2の側面に固定されたブロック5の側面、及び筐体2の下面と平行な部分となる面を備える。そのため、流路ホルダ4は、筐体2の上面、筐体2の側面、筐体2の側面に固定されたブロック5の側面、及び筐体2の下面と勘合する。 The fixing device 104 includes a flow path holder 4 that holds the flow paths 3 </ b> A and 3 </ b> B, and a set of shims 6, 7, and 8 sandwiched between the flow path holder 4 and the housing 2. For example, the flow path holder 4 is bent so as to be fitted with the housing 2. In the example illustrated in FIG. 1, the flow path holder 4 includes a top surface of the housing 2, a side surface of the housing 2, a side surface of the block 5 fixed to the side surface of the housing 2, and a portion parallel to the bottom surface of the housing 2. The surface which becomes. Therefore, the flow path holder 4 is fitted to the upper surface of the housing 2, the side surface of the housing 2, the side surface of the block 5 fixed to the side surface of the housing 2, and the lower surface of the housing 2.
 上流側の流路3Aは、流路3Aのフランジ103Aを介して、ボルト等の雄ネジ13Aによって、流路ホルダ4の筐体2の上面と平行な部分に固定される。下流側の流路3Bは、流路3Bのフランジ103Bを介して、ボルト等の雄ネジ13Bによって、流路ホルダ4の筐体2の下面と平行な部分に固定される。 The upstream flow path 3A is fixed to a portion of the flow path holder 4 parallel to the upper surface of the housing 2 by a male screw 13A such as a bolt via the flange 103A of the flow path 3A. The downstream flow path 3B is fixed to a portion of the flow path holder 4 parallel to the lower surface of the housing 2 by a male screw 13B such as a bolt via the flange 103B of the flow path 3B.
 シム7は、流路ホルダ4と筐体2の上面の間に挟まれる。ここで、第1の実施の形態に係る粒子検出装置は、上面が合同であり、厚みの異なる複数のシム7のセットを備える。厚みの異なる複数のシム7のセットから少なくとも一つのシム7を選んで、流路ホルダ4と筐体2の上面の間に挟むことにより、フローセル1の貫通孔の延伸方向(Y方向)において、流路ホルダ4に保持された流路3Aに接続されたフローセル1の位置を調整することが可能である。 The shim 7 is sandwiched between the flow path holder 4 and the upper surface of the housing 2. Here, the particle | grain detection apparatus which concerns on 1st Embodiment is provided with the set of the several shim 7 from which an upper surface is congruent and different in thickness. By selecting at least one shim 7 from a set of a plurality of shims 7 having different thicknesses and sandwiching them between the flow path holder 4 and the upper surface of the housing 2, in the extending direction (Y direction) of the through hole of the flow cell 1, It is possible to adjust the position of the flow cell 1 connected to the flow path 3 </ b> A held by the flow path holder 4.
 なお、第1の実施の形態に係る粒子検出装置は、上面が合同であり、同じ厚みの複数のシム7のセットを備えていてもよい。この場合、流路ホルダ4と筐体2の上面の間に挟むシム7の枚数によって、フローセル1の貫通孔の延伸方向(Y方向)におけるフローセル1の位置を調整してもよい。 In addition, the particle | grain detection apparatus which concerns on 1st Embodiment may be provided with the set of several shim 7 with the same upper surface and the same thickness. In this case, the position of the flow cell 1 in the extending direction (Y direction) of the through hole of the flow cell 1 may be adjusted by the number of shims 7 sandwiched between the flow path holder 4 and the upper surface of the housing 2.
 シム6は、流路ホルダ4と筐体2の側面の間に挟まれる。筐体2の側面は、筐体2の上面及び下面に対して垂直である。ここで、第1の実施の形態に係る粒子検出装置は、上面が合同であり、厚みの異なる複数のシム6のセットを備える。厚みの異なる複数のシム6のセットから少なくとも一つのシム6を選んで、流路ホルダ4と筐体2の側面の間に挟むことにより、フローセル1の貫通孔の延伸方向(Y方向)に対して垂直な方向であって、放物面鏡の長軸方向(X方向)において、流路ホルダ4に保持された流路3Aに接続されたフローセル1の位置を調整することが可能である。 The shim 6 is sandwiched between the flow path holder 4 and the side surface of the housing 2. The side surface of the housing 2 is perpendicular to the upper surface and the lower surface of the housing 2. Here, the particle | grain detection apparatus which concerns on 1st Embodiment is provided with the set of several shim 6 from which an upper surface is congruent and different in thickness. By selecting at least one shim 6 from a set of a plurality of shims 6 having different thicknesses and sandwiching the shim 6 between the flow path holder 4 and the side surface of the housing 2, the flow cell 1 has a through-hole extending direction (Y direction). It is possible to adjust the position of the flow cell 1 connected to the flow path 3A held by the flow path holder 4 in the long vertical direction (X direction) of the parabolic mirror.
 なお、第1の実施の形態に係る粒子検出装置は、上面が合同であり、同じ厚みの複数のシム6のセットを備えていてもよい。この場合、流路ホルダ4と筐体2の側面の間に挟むシム6の枚数によって、フローセル1の貫通孔の延伸方向(Y方向)に対して垂直な方向(X方向)におけるフローセル1の位置を調整してもよい。 In addition, the particle | grain detection apparatus which concerns on 1st Embodiment may be provided with the set of several shim 6 with the same upper surface and the same thickness. In this case, the position of the flow cell 1 in the direction (X direction) perpendicular to the extending direction (Y direction) of the through hole of the flow cell 1 depending on the number of shims 6 sandwiched between the flow path holder 4 and the side surface of the housing 2. May be adjusted.
 シム8は、流路ホルダ4と、筐体2の側面に固定されたブロック5の側面と、の間に挟まれる。ブロック5の側面は、筐体2の側面に対して垂直である。ここで、第1の実施の形態に係る粒子検出装置は、上面が合同であり、厚みの異なる複数のシム8のセットを備える。厚みの異なる複数のシム8のセットから少なくとも一つのシム8を選んで、流路ホルダ4とブロック5の側面の間に挟むことにより、フローセル1の貫通孔の延伸方向(Y方向)に対して垂直な方向であって、放物面鏡の短軸方向(Z方向)において、流路ホルダ4に保持された流路3Aに接続されたおけるフローセル1の位置を調整することが可能である。 The shim 8 is sandwiched between the flow path holder 4 and the side surface of the block 5 fixed to the side surface of the housing 2. The side surface of the block 5 is perpendicular to the side surface of the housing 2. Here, the particle | grain detection apparatus which concerns on 1st Embodiment is provided with the set of the several shim 8 from which an upper surface is congruent and different in thickness. By selecting at least one shim 8 from a set of a plurality of shims 8 having different thicknesses and sandwiching them between the flow path holder 4 and the side surface of the block 5, the flow cell 1 extends in the through-hole direction (Y direction). It is possible to adjust the position of the flow cell 1 connected to the flow path 3A held by the flow path holder 4 in the vertical direction and in the short axis direction (Z direction) of the parabolic mirror.
 なお、第1の実施の形態に係る粒子検出装置は、上面が合同であり、同じ厚みの複数のシム8のセットを備えていてもよい。この場合、流路ホルダ4とブロック5の側面の間に挟むシム8の枚数によって、フローセル1の貫通孔の延伸方向(Y方向)に対して垂直な方向(Z方向)におけるフローセル1の位置を調整してもよい。 In addition, the particle | grain detection apparatus which concerns on 1st Embodiment may be provided with the set of the several shim 8 with the same upper surface and the same thickness. In this case, the position of the flow cell 1 in the direction (Z direction) perpendicular to the extending direction (Y direction) of the through hole of the flow cell 1 is determined by the number of shims 8 sandwiched between the flow path holder 4 and the side surface of the block 5. You may adjust.
 筐体2には雌ネジが設けられている。放物面鏡を含む光学系に対してフローセル1の位置が適切に調整された後、流路ホルダ4は、ボルト等の雄ネジ14A、14B、14Cで、筐体2に固定される。これにより、流路ホルダ4は、シム6、7、8を介して、複数の角度から、筐体2の外面に対して垂直に押し当てられる。 The housing 2 is provided with a female screw. After the position of the flow cell 1 is appropriately adjusted with respect to the optical system including the parabolic mirror, the flow path holder 4 is fixed to the housing 2 with male screws 14A, 14B, and 14C such as bolts. Thereby, the flow path holder 4 is pressed perpendicularly to the outer surface of the housing 2 from a plurality of angles via the shims 6, 7, 8.
 流路ホルダ4には、ボルト等の雄ネジ14A、14B、14Cの軸が挿入される通し孔が設けられている。流路ホルダ4に設けられた通し孔は、筐体2に対する流路ホルダ4の位置が調整可能なように、例えば、雄ネジ14A、14B、14Cの軸の断面積より大きく、雄ネジ14A、14B、14Cの頭の断面積より小さい。また例えば、流路ホルダ4に設けられた通し孔は、雄ネジ14A、14B、14Cの軸の直径より長い、対向する二辺を備えていてもよい。 The flow path holder 4 is provided with through holes into which shafts of male screws 14A, 14B, 14C such as bolts are inserted. The through hole provided in the flow path holder 4 is, for example, larger than the cross-sectional area of the shaft of the male screws 14A, 14B, and 14C so that the position of the flow path holder 4 with respect to the housing 2 can be adjusted. It is smaller than the cross-sectional area of the heads of 14B and 14C. Further, for example, the through hole provided in the flow path holder 4 may include two opposing sides that are longer than the diameters of the shafts of the male screws 14A, 14B, and 14C.
 図2(b)に示すように、放物面鏡等の光学系の一部を含む筐体2は、光検出器23等の光学系のその他の部分を含む筐体22から分割可能であってもよい。筐体2と筐体22は、それぞれの開口部で接合可能である。筐体2と筐体22が分割可能であることにより、筐体2と筐体22のそれぞれの内部の清掃や、フローセル1の交換等のメンテナンスが可能となる。 As shown in FIG. 2B, the housing 2 including a part of the optical system such as a parabolic mirror can be divided from the housing 22 including the other part of the optical system such as the photodetector 23. May be. The housing | casing 2 and the housing | casing 22 can be joined by each opening part. Since the housing 2 and the housing 22 can be divided, maintenance such as cleaning of the inside of the housing 2 and the housing 22 and replacement of the flow cell 1 can be performed.
 また、粒子検出装置を組み立て後、あるいはメンテナンス後、フローセル1の位置が光学系に対してずれる場合がある。例えば、フローセル1の位置が検査光の焦点であり、かつ、放物面鏡の焦点である位置からずれると、粒子に照射される検査光の強度が低下し、粒子で生じる散乱光や蛍光の強度も低下し、かつ、放物面鏡等を含む集光光学系で集光される散乱光や蛍光の量も低下する。しかし、第1の実施の形態に係る粒子検出装置においては、シム6、7、8のそれぞれの厚さを調整することにより、光学系に対するフローセル1の位置を調整することが可能である。 Also, the position of the flow cell 1 may deviate from the optical system after the particle detector is assembled or after maintenance. For example, when the position of the flow cell 1 is the focus of the inspection light and deviates from the position of the focus of the parabolic mirror, the intensity of the inspection light applied to the particles is reduced, and the scattered light and fluorescence generated in the particles are reduced. The intensity also decreases, and the amount of scattered light and fluorescence collected by a condensing optical system including a parabolic mirror and the like also decreases. However, in the particle detection apparatus according to the first embodiment, the position of the flow cell 1 with respect to the optical system can be adjusted by adjusting the thickness of each of the shims 6, 7, and 8.
 さらに、フローセル1や筺体2を交換可能な部品として使用する場合、筐体1と筐体22の接合部の寸法公差によって生じる光学系どうしの位置ずれや、筺体2に対するフローセル1の位置ずれの大きさなどを予め評価、数値化し、筺体2、固定器具104、及び筐体22等からなる各部品の寸法の個体差に合わせて厚さを調整したシム6、7、8を事前に準備してもよい。このように準備されたシムのセットを使用することで、フローセル1や筐体2を交換する際の位置調整作業を短時間で行うことが可能となる。 Further, when the flow cell 1 or the housing 2 is used as a replaceable part, the positional displacement between the optical systems caused by the dimensional tolerance of the joint portion between the housing 1 and the housing 22 or the positional displacement of the flow cell 1 with respect to the housing 2 is large. The shims 6, 7, and 8 are prepared in advance, with thicknesses adjusted according to individual differences in the dimensions of each part consisting of the housing 2, the fixing device 104, the housing 22, and the like. Also good. By using the shim set prepared in this way, it is possible to perform the position adjustment work when exchanging the flow cell 1 and the housing 2 in a short time.
 なお、第1の実施の形態に係る粒子検出装置においては、シム6、7、8によって、X方向、Y方向、及びZ方向におけるフローセル1の位置を調整する方法を示したが、シムによって調整されるフローセル1の位置の方向は、3方向より少なくてもよいし、多くてもよい。例えば、直行する三軸方向以外に、斜め方向におけるフローセル1の位置を調整してもよい。 In addition, in the particle | grain detection apparatus which concerns on 1st Embodiment, although the method of adjusting the position of the flow cell 1 in a X direction, a Y direction, and a Z direction by the shims 6, 7, and 8 was shown, it adjusts with a shim. The direction of the position of the flow cell 1 to be performed may be less than or greater than three directions. For example, the position of the flow cell 1 in the oblique direction may be adjusted in addition to the orthogonal three-axis direction.
 また、図1においては、流路ホルダ4と筐体2の間にシム6、7、8が挟まれる例を示したが、流路3A、3Bのフランジ103A、103Bのそれぞれと、流路ホルダ4の間に、シムを挟んでもよい。 1 shows an example in which shims 6, 7, and 8 are sandwiched between the flow path holder 4 and the housing 2, but each of the flanges 103A and 103B of the flow paths 3A and 3B and the flow path holder A shim may be sandwiched between the four.
 (第2の実施の形態)
 第2の実施の形態に係る粒子検出装置は、図3、図4、及び図5に示すように、開口101が設けられており、光学系の少なくとも一部を格納する筐体2と、筐体2内部の光学系に配置されるフローセル1と、開口101を介して筐体2を貫通し、フローセル1に接続される流路3A、3Bと、フローセル1を保持し、フローセル1と流路3A、3Bを接続するフローセルホルダ33と、流路3A、3Bを筐体2に固定する固定器具204であって、筐体2に対する流路3A、3Bの固定位置を調整可能な固定器具204と、を備える。
(Second Embodiment)
As shown in FIGS. 3, 4, and 5, the particle detection device according to the second embodiment is provided with an opening 101, a housing 2 that stores at least a part of the optical system, and a housing The flow cell 1 disposed in the optical system inside the body 2, the flow path 3 </ b> A, 3 </ b> B passing through the housing 2 through the opening 101 and connected to the flow cell 1, and the flow cell 1 are held. A flow cell holder 33 for connecting 3A and 3B, and a fixing device 204 for fixing the flow paths 3A and 3B to the housing 2, and a fixing device 204 capable of adjusting a fixing position of the flow paths 3A and 3B with respect to the housing 2. .
 略直方体のフローセルホルダ33には、フローセル1と勘合する窪みが設けられている。貫通孔の両端にガスケット10A、10Bを挿入されたフローセル1は、フローセルホルダ33の窪みに配置される。フローセルホルダ33には、流路3A、3Bが挿入される貫通孔が設けられている。上流側の流路3Aは、流路ホルダ24を介して、フローセルホルダ33の上流側の貫通孔に挿入され、フローセル1に接続される。下流側の流路3Bは、フローセルホルダ33の下流側の貫通孔に挿入され、フローセル1に接続される。 The substantially rectangular parallelepiped flow cell holder 33 is provided with a recess for fitting with the flow cell 1. The flow cell 1 in which the gaskets 10 </ b> A and 10 </ b> B are inserted at both ends of the through hole is disposed in a recess of the flow cell holder 33. The flow cell holder 33 is provided with through holes into which the flow paths 3A and 3B are inserted. The upstream flow path 3 </ b> A is inserted into the through hole on the upstream side of the flow cell holder 33 via the flow path holder 24 and connected to the flow cell 1. The downstream flow path 3 </ b> B is inserted into the downstream through hole of the flow cell holder 33 and connected to the flow cell 1.
 流路3Aには、ボルト等の雄ネジの通し孔が設けられたフランジ103Aが設けられている。また、固定器具204が備える流路ホルダ24には、流路3Aが挿入される貫通孔が設けられている。流路3Aのフランジ103Aと流路ホルダ24の間には、シム27が配置される。ここで、第2の実施の形態に係る粒子検出装置は、上面が合同であり、厚みの異なる複数のシム27のセットを備える。厚みの異なる複数のシム27のセットから少なくとも一つのシム27を選んで、フランジ103Aと流路ホルダ24の間に挟むことにより、流路ホルダ24に保持され、流路3Aに接続されたフローセル1の貫通孔の延伸方向(Y方向)におけるフローセル1の位置を調整することが可能である。 In the flow path 3A, a flange 103A provided with a through hole for a male screw such as a bolt is provided. The flow path holder 24 provided in the fixing device 204 is provided with a through hole into which the flow path 3A is inserted. A shim 27 is disposed between the flange 103 </ b> A of the flow path 3 </ b> A and the flow path holder 24. Here, the particle | grain detection apparatus which concerns on 2nd Embodiment is provided with the set of the several shim 27 from which an upper surface is congruent and different in thickness. The flow cell 1 is held by the flow path holder 24 and connected to the flow path 3A by selecting at least one shim 27 from a set of a plurality of shims 27 having different thicknesses and sandwiching it between the flange 103A and the flow path holder 24. It is possible to adjust the position of the flow cell 1 in the extending direction (Y direction) of the through holes.
 なお、第2の実施の形態に係る粒子検出装置は、上面が合同であり、同じ厚みの複数のシム27のセットを備えていてもよい。この場合、フランジ103Aと流路ホルダ24の間に挟むシム27の枚数によって、フローセル1の貫通孔の延伸方向(Y方向)におけるフローセル1の位置を調整してもよい。 In addition, the particle | grain detection apparatus which concerns on 2nd Embodiment may be provided with the set of several shim 27 with the same upper surface and the same thickness. In this case, the position of the flow cell 1 in the extending direction (Y direction) of the through hole of the flow cell 1 may be adjusted by the number of shims 27 sandwiched between the flange 103A and the flow path holder 24.
 上流側の流路3Aは、フランジ103Aを介して、ボルト等の雄ネジ43Aによって、流路ホルダ24に固定される。フランジ103Aに設けられた通し孔は、流路ホルダ24に対する流路3Aの位置が調整可能なように、例えば、雄ネジ43Aの軸の断面積より大きく、雄ネジ43Aの頭の断面積より小さい。流路ホルダ24に設けられた通し孔は、雄ネジ43Aの軸の直径より長い、対向する二辺を備えていてもよい。 The upstream flow path 3A is fixed to the flow path holder 24 by a male screw 43A such as a bolt via a flange 103A. The through hole provided in the flange 103A is, for example, larger than the cross-sectional area of the shaft of the male screw 43A and smaller than the cross-sectional area of the head of the male screw 43A so that the position of the flow path 3A with respect to the flow path holder 24 can be adjusted. . The through hole provided in the flow path holder 24 may have two opposing sides that are longer than the diameter of the shaft of the male screw 43A.
 マイクロメータ等を用いて流路ホルダ24に対する流路3Aの固定位置を調整することにより、フローセル1の貫通孔の延伸方向(Y方向)に対して垂直な面(X方向及びZ方向を含む面)内におけるフローセル1の位置を調整することができる。流路ホルダ24は、ボルト等の雄ネジ37Aによって、筐体2に固定される。筐体2に対する流路ホルダ24の配置は、位置決めピンによって決定されてもよい。 By adjusting the fixed position of the flow path 3A with respect to the flow path holder 24 using a micrometer or the like, a plane perpendicular to the extending direction (Y direction) of the through hole of the flow cell 1 (a plane including the X direction and the Z direction) ) Can adjust the position of the flow cell 1. The flow path holder 24 is fixed to the housing 2 by a male screw 37A such as a bolt. The arrangement of the flow path holder 24 with respect to the housing 2 may be determined by a positioning pin.
 筐体2の設けられた開口は、フローセルホルダ33より大きく、流路ホルダ24より小さい。そのため、流路3A、流路ホルダ24、フローセルホルダ33、フローセル1、及び流路3Bは、接続されたまま、筐体2から引き抜くことが可能である。したがって、第2の実施の形態に係る粒子検出装置において、例えばフローセル1を交換する場合に、放物面鏡を格納する筐体2を、光学系の他の部分を含む筐体から分離することなく、フローセル1を筐体2から引き抜くことが可能である。 The opening provided in the housing 2 is larger than the flow cell holder 33 and smaller than the flow path holder 24. Therefore, the flow path 3A, the flow path holder 24, the flow cell holder 33, the flow cell 1, and the flow path 3B can be pulled out from the housing 2 while being connected. Therefore, in the particle detection apparatus according to the second embodiment, for example, when the flow cell 1 is replaced, the casing 2 that stores the parabolic mirror is separated from the casing that includes other parts of the optical system. Instead, the flow cell 1 can be pulled out of the housing 2.
 (その他の実施の形態)
 上記のように本発明を実施の形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかになるはずである。例えば、粒子検出装置は、粒子が発する蛍光のみを検出対象としてもよいし、粒子で生じた散乱光のみを検出対象としてもよい。このように、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。
(Other embodiments)
Although the present invention has been described by the embodiments as described above, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques should be apparent to those skilled in the art. For example, the particle detection device may use only the fluorescence emitted by the particles as the detection target, or may use only the scattered light generated by the particles as the detection target. Thus, it should be understood that the present invention includes various embodiments and the like not described herein.
 以下に限定されないが、本発明は、医薬用精製水、食品用精製水、飲料用精製水、及び半導体装置製造用精製水の製造現場等で利用可能である。 Although not limited to the following, the present invention can be used at the production site of purified water for pharmaceuticals, purified water for food, purified water for beverages, purified water for manufacturing semiconductor devices, and the like.
1     フローセル
2、22       筐体
3A、3B     流路
4、24       流路ホルダ
5     ブロック
6、7、8、27      シム
10A、10B ガスケット
13A、13B、14A、37A、43A       雄ネジ
23   光検出器
33   フローセルホルダ
101 開口
103A、103B    フランジ
104、204 固定器具
1 Flow cell 2, 22 Housing 3A, 3B Flow path 4, 24 Flow path holder 5 Block 6, 7, 8, 27 Shim 10A, 10B Gasket 13A, 13B, 14A, 37A, 43A Male screw 23 Photo detector 33 Flow cell holder 101 Openings 103A, 103B Flange 104, 204 Fixing device

Claims (15)

  1.  開口が設けられており、光学系の少なくとも一部を格納する筐体と、
     前記筐体内部の光学系に配置されるフローセルと、
     前記開口を介して前記筐体を貫通し、前記フローセルに接続される流路と、
     前記流路を前記筐体に固定する固定器具であって、前記筐体に対する前記流路の固定位置を調整可能な固定器具と、
     を備える、粒子検出装置。
    A housing provided with an opening and storing at least a part of the optical system;
    A flow cell disposed in an optical system inside the housing;
    A flow path that penetrates the housing through the opening and is connected to the flow cell;
    A fixing device for fixing the flow path to the housing, wherein the fixing device is capable of adjusting a fixing position of the flow channel with respect to the housing;
    A particle detector.
  2.  前記固定器具が、
     前記流路を保持する流路ホルダと、
     前記流路ホルダと前記筐体の間に挟まれるシムのセットと、
     を備える、請求項1に記載の粒子検出装置。
    The fixture is
    A flow path holder for holding the flow path;
    A set of shims sandwiched between the flow path holder and the housing;
    The particle | grain detection apparatus of Claim 1 provided with these.
  3.  前記固定器具が、
     前記流路を保持する流路ホルダと、
     前記流路に設けられたフランジと前記流路ホルダの間に挟まれるシムのセットと、
     を備える、請求項1に記載の粒子検出装置。
    The fixture is
    A flow path holder for holding the flow path;
    A set of shims sandwiched between a flange provided in the flow path and the flow path holder;
    The particle | grain detection apparatus of Claim 1 provided with these.
  4.  前記シムのセットが、異なる厚みのシムを備える、請求項2又は3に記載の粒子検出装置。 The particle detection apparatus according to claim 2 or 3, wherein the set of shims includes shims having different thicknesses.
  5.  前記シムのセットが、同じ厚みのシムを備える、請求項2又は3に記載の粒子検出装置。 The particle detection device according to claim 2 or 3, wherein the set of shims includes shims having the same thickness.
  6.  前記流路ホルダが、前記シムのセットが備える少なくとも一つのシムを介して、複数の角度から、前記筐体に押し当てられる、請求項2から5のいずれか1項に記載の粒子検出装置。 The particle detection device according to any one of claims 2 to 5, wherein the flow path holder is pressed against the housing from a plurality of angles via at least one shim included in the shim set.
  7.  前記流路ホルダが、前記シムのセットが備える少なくとも一つのシムを介して、複数の角度から、前記筐体の外面に垂直に押し当てられる面を備える、請求項2から5のいずれか1項に記載の粒子検出装置。 The said flow path holder is provided with the surface pressed perpendicularly | vertically to the outer surface of the said housing | casing from several angles through the at least 1 shim with which the said set of shims is provided. The particle | grain detection apparatus as described in.
  8.  前記流路ホルダが屈曲しており、前記流路ホルダの複数の領域が、前記シムのセットが備える少なくとも一つのシムを介して、前記筐体に押し当てられる、請求項2から6のいずれか1項に記載の粒子検出装置。 The flow path holder is bent, and a plurality of regions of the flow path holder are pressed against the housing via at least one shim included in the shim set. 2. The particle detector according to item 1.
  9.  前記筐体に雌ネジが設けられており、
     前記固定器具が、前記流路ホルダを前記筐体に押し当てる雄ネジを更に備え、
     前記流路ホルダに前記雄ネジの軸が挿入される通し孔が設けられている、
     請求項2から8のいずれか1項に記載の粒子検出装置。
    The housing is provided with a female screw,
    The fixing device further includes a male screw that presses the flow path holder against the housing,
    A through hole into which the shaft of the male screw is inserted in the flow path holder is provided.
    The particle | grain detection apparatus of any one of Claim 2 to 8.
  10.  前記流路ホルダに設けられた通し孔が、前記雄ネジの軸の直径より長い、対向する二辺を備える、請求項9に記載の粒子検出装置。 The particle detection device according to claim 9, wherein a through hole provided in the flow path holder includes two opposite sides longer than a diameter of the male screw shaft.
  11.  前記フローセルを保持し、前記フローセルと前記流路を接続するフローセルホルダを更に備える、請求項1から10のいずれか1項に記載の粒子検出装置。 The particle detection apparatus according to any one of claims 1 to 10, further comprising a flow cell holder that holds the flow cell and connects the flow cell and the flow path.
  12.  前記筐体が分割可能である、請求項1から11のいずれか1項に記載の粒子検出装置。 The particle detector according to any one of claims 1 to 11, wherein the casing is separable.
  13.  前記フローセルと前記流路が接続されたまま前記筐体の開口から引き抜き可能である、請求項1から12のいずれか1項に記載の粒子検出装置。 The particle detection device according to any one of claims 1 to 12, wherein the particle detection device can be pulled out from an opening of the housing while the flow cell and the flow path are connected.
  14.  前記フローセルと前記流路と前記流路ホルダが接続されたまま前記筐体の開口から引き抜き可能である、請求項2から10のいずれか1項に記載の粒子検出装置。 The particle detection device according to any one of claims 2 to 10, wherein the particle can be pulled out from an opening of the housing while the flow cell, the flow path, and the flow path holder are connected.
  15.  前記フローセルと前記流路と前記フローセルホルダが接続されたまま前記筐体の開口から引き抜き可能である、請求項11に記載の粒子検出装置。 The particle detection device according to claim 11, wherein the particle detection device can be pulled out from the opening of the housing while the flow cell, the flow path, and the flow cell holder are connected.
PCT/JP2017/004662 2016-02-26 2017-02-09 Particle detection device WO2017145768A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-035866 2016-02-26
JP2016035866A JP2017151037A (en) 2016-02-26 2016-02-26 Particle detection device

Publications (1)

Publication Number Publication Date
WO2017145768A1 true WO2017145768A1 (en) 2017-08-31

Family

ID=59686553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004662 WO2017145768A1 (en) 2016-02-26 2017-02-09 Particle detection device

Country Status (2)

Country Link
JP (1) JP2017151037A (en)
WO (1) WO2017145768A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6992699B2 (en) * 2018-07-31 2022-01-13 株式会社島津製作所 Light scattering detector

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274242A (en) * 1985-05-30 1986-12-04 Hitachi Electronics Eng Co Ltd Fine particle detector
JPH02213750A (en) * 1989-02-14 1990-08-24 Japan Spectroscopic Co Flow cell device
JPH0572112A (en) * 1991-09-11 1993-03-23 Hitachi Electron Eng Co Ltd Positioning of fine particle detector nozzle
JPH0572111A (en) * 1991-09-11 1993-03-23 Hitachi Electron Eng Co Ltd Fixation of fine particle detector nozzle
JPH0949981A (en) * 1995-08-04 1997-02-18 Asahi Optical Co Ltd Beam synthesizing device for laser light source
JPH11269790A (en) * 1998-03-20 1999-10-05 Yokogawa Electric Corp Fiber orientation meter
JP2001305048A (en) * 2000-04-20 2001-10-31 Riken Keiki Co Ltd Absorption type gas detector and its manufacturing method
JP3684747B2 (en) * 1997-02-28 2005-08-17 株式会社島津製作所 Fluorescence detector
JP2008020619A (en) * 2006-07-12 2008-01-31 Hitachi Cable Ltd Lens module, optical device and lens mounting method
JP2011145232A (en) * 2010-01-16 2011-07-28 Canon Inc Measuring apparatus and exposure device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274242A (en) * 1985-05-30 1986-12-04 Hitachi Electronics Eng Co Ltd Fine particle detector
JPH02213750A (en) * 1989-02-14 1990-08-24 Japan Spectroscopic Co Flow cell device
JPH0572112A (en) * 1991-09-11 1993-03-23 Hitachi Electron Eng Co Ltd Positioning of fine particle detector nozzle
JPH0572111A (en) * 1991-09-11 1993-03-23 Hitachi Electron Eng Co Ltd Fixation of fine particle detector nozzle
JPH0949981A (en) * 1995-08-04 1997-02-18 Asahi Optical Co Ltd Beam synthesizing device for laser light source
JP3684747B2 (en) * 1997-02-28 2005-08-17 株式会社島津製作所 Fluorescence detector
JPH11269790A (en) * 1998-03-20 1999-10-05 Yokogawa Electric Corp Fiber orientation meter
JP2001305048A (en) * 2000-04-20 2001-10-31 Riken Keiki Co Ltd Absorption type gas detector and its manufacturing method
JP2008020619A (en) * 2006-07-12 2008-01-31 Hitachi Cable Ltd Lens module, optical device and lens mounting method
JP2011145232A (en) * 2010-01-16 2011-07-28 Canon Inc Measuring apparatus and exposure device

Also Published As

Publication number Publication date
JP2017151037A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
US7492522B2 (en) Optical detector for a particle sorting system
US10215995B2 (en) Large area, low f-number optical system
KR20140016923A (en) Microbial detection apparatus and method
JP2007093598A (en) Optical flow cell usable at high-temperature and high-pressure environment
US6573992B1 (en) Plano convex fluid carrier for scattering correction
JP2005274575A (en) Optical flow cell for tribology system
US20140085898A1 (en) Focal plane shifting system
CN102998234A (en) Micro liquid grain counter chip
US20180120222A1 (en) Planar reflective ring
JP2009156861A (en) Illumination optical device
US20030086087A1 (en) Flow through light scattering device
US10473578B2 (en) Systems, methods, and apparatuses for optical systems in flow cytometers
WO2017145768A1 (en) Particle detection device
US11204310B2 (en) Optical flow cytometer for epi fluorescence measurement
US9726593B2 (en) Systems, methods, and apparatuses for optical systems in flow cytometers
JP6438319B2 (en) Particle detector
US9835545B2 (en) Flow cell and method of manufacturing flow cell
WO2017199615A1 (en) Particle detection device and method for inspecting particle detection device
US20190187045A1 (en) Flow cell
US20080278726A1 (en) Device Having an Optical Part for Analyzing Micro Particles
CN202994617U (en) Chip of micro liquid particle counter
WO2020090581A1 (en) Flow path plate, analysis device, and analysis method
Cooper et al. Photography of two-phase gas/liquid flow
JP6722040B2 (en) Particle detecting device and method for inspecting particle detecting device
JP2005345710A (en) Fluid optical device, optical tweezer comprising the same and micro fluid device having the same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756209

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756209

Country of ref document: EP

Kind code of ref document: A1