WO2017145738A1 - 染色体数定量方法 - Google Patents

染色体数定量方法 Download PDF

Info

Publication number
WO2017145738A1
WO2017145738A1 PCT/JP2017/004390 JP2017004390W WO2017145738A1 WO 2017145738 A1 WO2017145738 A1 WO 2017145738A1 JP 2017004390 W JP2017004390 W JP 2017004390W WO 2017145738 A1 WO2017145738 A1 WO 2017145738A1
Authority
WO
WIPO (PCT)
Prior art keywords
primer
base sequence
target locus
chromosome
candidate
Prior art date
Application number
PCT/JP2017/004390
Other languages
English (en)
French (fr)
Inventor
尭之 辻本
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018501126A priority Critical patent/JPWO2017145738A1/ja
Priority to EP17756179.2A priority patent/EP3421608B1/en
Publication of WO2017145738A1 publication Critical patent/WO2017145738A1/ja
Priority to US16/106,274 priority patent/US20180355433A1/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • G16B30/10Sequence alignment; Homology search
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays

Definitions

  • the present invention relates to a chromosome number quantification method.
  • the gene sequence analysis such as DNA (Deoxyribonucleic acid) base sequence analysis can now be easily performed by the next-generation sequencer that has been developed in recent years.
  • the total base length of the genome is generally enormous, and on the other hand, the sequencer's read capability is limited. Therefore, it is possible to amplify only the specific gene region that is necessary and to read only the base sequence. It is normal.
  • a PCR Polymerase Chain Reaction
  • a method of selectively amplifying a plurality of gene regions by simultaneously supplying a plurality of types of primers to a certain PCR reaction system is called multiplex PCR.
  • Patent Document 1 describes a method for reducing the generation of non-target amplification products generated by multiplex PCR, amplifying a large number (thousand to several tens of thousands) of genes simultaneously, and performing chromosome quantification and the like. More specifically, when designing the primers, the “undesignability score” between the primers is designed to be less than the threshold value, and the “undesignability score” It describes that the design is such that the likelihood is equal to or less than a threshold value. However, a method for specifically calculating the “undesignability score” is not described, and it is considered that generation of primer dimers cannot be avoided.
  • Patent Document 2 discloses a primer design method for multiplex PCR that can efficiently amplify a plurality of amplification sites (targets).
  • an object of the present invention is to provide a method for determining the number of chromosomes of a chromosome of interest that can accurately determine the number of chromosomes from a small amount of DNA such as a single cell or a small number of cells.
  • the present inventor has conducted multiplex PCR for simultaneously amplifying a plurality of loci on a chromosome using genomic DNA extracted from a single cell or a small number of cells as a template as a result of intensive studies to solve the above problems.
  • the number of loci on the chromosome of interest is 80 or more per chromosome, and a primer set design method used in multiplex PCR is used to evaluate primer dimer formation.
  • the primer candidate base sequence under the condition that the partial sequence to be compared includes the 3 ′ end of the primer base sequence, pairwise local alignment is performed to obtain a local alignment score, and the obtained local alignment score is Based on the first stage selection based on the primer For a base sequence having a predetermined sequence length including the 3 ′ end of the candidate base sequence, perform global alignment in a pairwise manner to obtain a global alignment score, and perform the second stage selection based on the obtained global alignment score. It is known that the primer set design method that employs the selected primers in both the first and second stages can accurately quantify the number of chromosomes from a small amount of DNA such as a single cell or a small number of cells. To complete the present invention.
  • the present invention includes the following [1] to [9].
  • a method for quantifying the number of chromosomes of a chromosome of interest comprising a step of performing multiplex PCR using a genomic DNA extracted from a single or a small number of cells as a template and simultaneously amplifying a plurality of loci on the chromosome, The number of loci on the chromosome of interest is 80 or more per chromosome, and
  • the plurality of primer sets used in the multiplex PCR are: A target locus selection step of selecting a target locus for designing a primer set to be subjected to the multiplex PCR from the plurality of loci; A candidate primer that creates at least one base sequence of a candidate primer for amplifying the target locus for each of the forward primer and the reverse primer based on the base sequence of the region near the target locus on the chromosome Base sequence creation process; Regarding the base sequence of the candidate primer for amplifying the target locus, local alignment is performed pairwise under the
  • both the local alignment process and the first stage selection process may be performed before or after both the global alignment process and the second stage selection process, or the global alignment process and the second stage selection process
  • the method for determining the number of chromosomes according to any one of [1] to [6], wherein one or more loci are selected in the target locus selection step.
  • the primer set used in the multiplex PCR is: A first target locus selection step of selecting a first target locus for designing a primer set to be subjected to the multiplex PCR from the plurality of loci;
  • the base sequence of candidate primers for amplifying the first target locus is at least one for each of the forward primer and the reverse primer based on the base sequence in the vicinity of the first target locus on the chromosome.
  • Creating a first primer candidate base sequence Regarding the base sequence of the candidate primer for amplifying the first target locus, under the condition that the partial sequence to be compared includes the 3 ′ end of the base sequence of the candidate primer for amplifying the first target locus
  • the base sequence having a preset sequence length including the 3 ′ end of the base sequence of the candidate primer for amplifying the first target locus is subjected to pairwise global alignment to obtain a global alignment score.
  • a first second-stage selection step for performing a second-stage selection of a base sequence of candidate primers for amplifying the first target locus based on the global alignment score obtained in the first global alignment step.
  • the base sequence of the candidate primer selected in both the first first stage selection step and the first second stage selection step is adopted as the base sequence of the primer for amplifying the first target locus.
  • a first primer adopting step A second target locus selection step of selecting a second target locus for designing a primer set to be subjected to the multiplex PCR, which is different from the already selected target locus, from the plurality of loci; Based on the base sequence of the region near the second target locus on the chromosome, at least 1 for each of the forward primer and the reverse primer, based on the base sequence of the candidate primer for amplifying the second target locus A second primer candidate base sequence creation step to create each one; Regarding the base sequence of the candidate primer for amplifying the second target locus and the base sequence of the primer already employed, the partial sequence to be compared is the base sequence of the candidate primer for amplifying the second target locus and the above A second local alignment step in which a local alignment score is obtained by performing a pairwise local alignment under the condition that the 3 ′ end of the base sequence of the primer already employed is included; A second first-stage selection step for performing first-stage selection of base sequences of candidate primers for amplifying the second target locus
  • a second global alignment process for determining a global alignment score;
  • a second second-stage selection step for performing a second-stage selection of a candidate primer base sequence for amplifying the second target locus based on the global alignment score obtained in the second global alignment step.
  • both the first local alignment process and the first first stage selection process are performed before or after both the first global alignment process and the first second stage selection process. Or in parallel with both the first global alignment step and the first second stage selection step, and Both the second local alignment step and the second first stage selection step are performed before or after both the second global alignment step and the second second stage selection step, or the above Performed in parallel with both the second global alignment process and the second second stage selection process,
  • a primer set for subjecting each step from the second target locus selection step to the second primer adoption step to multiplex PCR for all of the plurality of loci
  • the method for determining the number of chromosomes according to any one of the above [1] to [5], which is designed by a method for designing a primer set for polymerase chain reaction, which is repeated until is adopted.
  • the chromosome number quantification method according to any one of [1] to [8] above, wherein the template is not an a
  • the present invention it is possible to provide a method for quantifying the number of chromosomes of a chromosome of interest capable of accurately quantifying the number of chromosomes to be quantified from a small amount of DNA such as a single cell or a small number of cells. .
  • the method for quantifying the number of chromosomes of the present invention since it does not involve whole genome amplification (WGA), it is possible to eliminate the bias caused by the conventional WGA.
  • FIG. 1 is a block diagram showing a method for designing a primer set in the present invention.
  • FIG. 2 is a diagram showing a local alignment and a local alignment score of a base sequence of SEQ ID NO: 1 and a base sequence of SEQ ID NO: 2, as well as a global alignment and a global alignment score.
  • FIG. 3 is a diagram showing a local alignment and a local alignment score of a base sequence of SEQ ID NO: 21 and a base sequence of SEQ ID NO: 22, as well as a global alignment and a global alignment score.
  • FIG. 4 is a diagram showing a local alignment and a local alignment score of a base sequence of SEQ ID NO: 41 and a base sequence of SEQ ID NO: 42, and a global alignment and a global alignment score.
  • FIG. 1 is a block diagram showing a method for designing a primer set in the present invention.
  • FIG. 2 is a diagram showing a local alignment and a local alignment score of a base sequence of SEQ ID NO: 1 and
  • FIG. 5 is a diagram showing a local alignment and a local alignment score of a base sequence of SEQ ID NO: 61 and a base sequence of SEQ ID NO: 62, and a global alignment and a global alignment score.
  • FIG. 6 is a diagram showing a local alignment and a local alignment score of a base sequence of SEQ ID NO: 81 and a base sequence of SEQ ID NO: 82, and a global alignment and a global alignment score.
  • FIG. 7 is a graph showing the relationship between the number of locuses (total) and the coefficient of variation, derived from the results of the examples and comparative examples. Plots and approximate curves representing data obtained from Examples and Comparative Examples are shown.
  • a range represented by using “to” means a range including both ends before and after “to” in the range.
  • the step of performing multiplex PCR includes the step of performing multiplex PCR that simultaneously amplifies a plurality of loci on a chromosome in which the locus to be amplified exists, using genomic DNA extracted from a single or a small number of cells as a template. .
  • Genomic DNA extracted from single or small number of cells will be described below.
  • a “single cell” refers to a single cell, and a “small number of cells” refers to a number of cells less than 10.
  • Genomic DNA refers to DNA extracted from cells. Although it may be concentrated or diluted, the whole genome amplification product obtained by amplifying the genomic DNA by whole genome amplification and the specific region amplification product obtained by amplifying a specific region of the genomic DNA are not included in the genomic DNA.
  • Genomic DNA extracted from a single cell can be prepared, for example, by isolating a single cell from a population of cells and extracting the genomic DNA from the isolated single cell.
  • a method for isolating a single cell from a population of cells is not particularly limited, and a conventionally known method can be used.
  • a method for isolating a single cell from a maternal blood sample Is described.
  • the methods described below can be used with appropriate modifications.
  • the maternal blood sample is not particularly limited as long as it is a blood sample collected from the maternal body (pregnant woman), but maternal peripheral blood is preferable.
  • Maternal peripheral blood includes maternal eosinophils, neutrophils, basophils, mononuclear cells and lymphocytes such as lymphocytes and mature erythrocytes without nuclei, as well as maternal nucleated red blood cells and Fetal nucleated red blood cells are included. Fetal nucleated red blood cells are said to be present in maternal blood from about 6 weeks after pregnancy. Therefore, in the present invention, it is preferable to examine peripheral blood of pregnant women about 6 weeks after pregnancy.
  • Fetal nucleated red blood cells The single cell is not particularly limited as long as it is derived from a fetus, but fetal nucleated red blood cells are preferred. Fetal nucleated red blood cells are red blood cell precursors that pass through the placenta and are present in the mother's blood. When the mother is pregnant, fetal red blood cells can be nucleated. Since the erythrocytes have chromosomes, fetal chromosomes and fetal genes can be obtained by means of low invasiveness. Fetal nucleated red blood cells are said to be present at a rate of about 1 in 106 cells in maternal blood, and the probability of existence in peripheral blood of pregnant women is very small.
  • the density of maternal blood cells including fetal nucleated red blood cells.
  • the expected density of fetal nucleated red blood cells is about 1.065 to 1.095 g / mL.
  • the density of maternal blood cells is about 1.070 to 1.120 g / mL for erythrocytes, about 1.090 to 1.110 g / mL for eosinophils, and 1.075 to 1 for neutrophils.
  • basophils are about 1.070 to 1.080 g / mL
  • lymphocytes are about 1.060 to 1.080 g / mL
  • mononuclear cells are about 1.060 to 1 About .070 g / mL.
  • the first medium and the second medium are colloidal silicate particle dispersions having a diameter of 15 to 30 nm coated with polyvinylpyrrolidone.
  • Percoll Percoll, manufactured by GE Healthcare Biosciences
  • Ficoll Pack Ficoll-Paque, manufactured by GE Healthcare Biosciences
  • a neutral hydrophilic polymer rich in side chains made from sucrose and / or Alternatively, a medium such as Histopack (Histopaque, manufactured by Sigma Aldrich), which is a solution of polysucrose and sodium diatrizoate, can be used.
  • Percoll and / or histopacks are preferably used.
  • a product having a density of 1.130 g / cm 3 (specific gravity 1.130) is commercially available, and a medium having a target density (specific gravity) can be prepared by dilution.
  • a medium having a target density (specific gravity) can be prepared. By using percoll and histopack, it is possible to prepare the first medium and the second medium.
  • the density of the medium to be stacked is set in order to separate fetal nucleated red blood cells having a density of about 1.065 to 1.095 g / mL from other blood cell components in the mother body. Since the central density of fetal nucleated red blood cells is about 1.080 g / mL, two different density media (first medium and second medium) sandwiching the central density are prepared and adjacent to each other. When layered, it is possible to collect a fraction having a desired fetal nucleated red blood cell at its interface.
  • the density of the first medium is set to 1.080 g / mL or more and 1.100 g / mL or less
  • the density of the second medium is set to 1.060 g / mL or more and 1.080 g / mL or less.
  • the density of the first medium is set to 1.080 g / mL or more and 1.090 g / mL or less
  • the density of the second medium is set to 1.065 g / mL or more and 1.080 g / mL or less.
  • the density of the first medium is set to 1.085 g / mL and the density of the second medium is set to 1.075 g / mL, respectively.
  • Mononuclear cells are preferably separated from the desired fraction to be collected.
  • the first medium and the second medium may be the same type of medium or different types of media, but are preferably the same type of medium.
  • Examples of single cell isolation methods include a method of separating cells one by one from a transparent substrate using a micromanipulator, immunostaining, and sorting by FACS (fluorescence activated cell sorting).
  • a substrate blood cell specimen
  • a transparent medium is preferably used, and a slide glass is more preferably used.
  • fetal nucleated red blood cell candidates can be selected using the ratio of the area of the nuclear region to the cytoplasmic area, the circularity of the nucleus and / or the area of the nuclear region, etc. It is. In particular, it is preferable to select, as a fetal nucleated red blood cell candidate, a cell that satisfies the condition of the ratio of the area of the nuclear region to the area of the cytoplasm or the circularity of the nucleus.
  • N / C the ratio of the area of the nucleus region to the area of the cytoplasm satisfies the following formula (1). 0.25 ⁇ N / C ⁇ 1.0 (1)
  • N is the area of the nucleus region of the cell that performs image analysis
  • C is the area of the cytoplasm of the cell that performs image analysis.
  • N is the cytoplasm area of the cell to be image-analyzed
  • L is the length of the major axis of the cell nucleus to be image-analyzed, that is, circumscribing the complex-shaped cell nucleus It is the length of the major axis of the ellipse.
  • a system for selecting fetal nucleated red blood cell candidates using cell morphology information is equipped with an optical microscope, a digital camera, a slide glass stage, an optical transport system, an image processing PC, a control PC, and a display.
  • the optical transport system includes an objective lens and a CCD camera.
  • the image processing PC includes a processing system that performs data analysis and data storage.
  • the control PC includes a control system that controls the position control of the slide glass stage and the entire process.
  • hemoglobin The protein present in red blood cells in the blood of all vertebrates, including humans, is hemoglobin.
  • Nucleated erythrocytes are different from leukocytes, which are one type of nucleated cells in blood, in the presence or absence of hemoglobin.
  • Hemoglobin is oxidized hemoglobin that displays a bright red color when combined with oxygen, and reduced hemoglobin that exhibits a dark red color when not combined with oxygen.Hemoglobins with different oxygen binding levels flow in arteries and veins. ing. Since hemoglobin has absorption at 380 nm to 650 nm, it is possible to detect hemoglobin with information of at least one monochromatic light resulting from the difference in absorbance in this wavelength region.
  • Monochromatic light is preferably used for confirming the presence of hemoglobin, and monochromatic light having a wavelength of 400 nm to 500 nm or a monochromatic light having a wavelength range of 525 nm to 580 nm, which has a large absorption of hemoglobin, can be selected. Since the absorption coefficient in these wavelength regions shows a high value due to the presence of hemoglobin, the ratio with the absorption coefficient of the cytoplasm of leukocytes is 1 or more.
  • a cell having a nearly circular cell nucleus and having hemoglobin can be identified as a candidate for a nucleated red blood cell.
  • the nucleated red blood cells derived from fetuses and the nucleated red blood cells derived from adults have a spectrum caused by different oxygen-binding ability because fetal hemoglobin is hemoglobin F (HbF) and adult hemoglobin is hemoglobin A (HbA). It is possible to select fetal nucleated red blood cells using the difference in characteristics.
  • microspectrophotometer When measuring the absorption coefficient of cytoplasm, a microspectrophotometer can be used.
  • the microspectrophotometer is a photometer that uses the same optical principle as a normal spectrophotometer and uses an optical system of a microscope, and a commercially available apparatus can be used.
  • the origin of isolated nucleated erythrocytes by DNA analysis such as polymorphism analysis by SNP and / or STR (Short Tandem Repeat: short tandem repeat) and confirmation of the presence of Y chromosome, etc. Can be determined.
  • Genomic DNA extraction from a single cell can be performed by a conventionally known method. It is preferable to use a commercially available DNA extraction kit. Examples of a commercially available DNA extraction kit that can be used when extracting genomic DNA from a single cell include Single Cell WGA Kit (manufactured by New England Biolabs). When a commercially available DNA extraction kit is used, DNA extraction may be performed according to the protocol attached to the kit, but the protocol may be modified as appropriate.
  • Genomic DNA extracted from a small number of cells can be obtained, for example, by isolating a small number of cells from a population of cells and extracting genomic DNA from a small number of separated cells, or by extracting a single cell from a population of cells. Isolated, mixed isolated single cells, extracted genomic DNA from a small number of mixed cells, or isolated single cells from a population of cells, isolated single cells Can be prepared by extracting genomic DNA from and mixing the extracted genomic DNA, or a combination of two or more of these.
  • Multiplex PCR is PCR that simultaneously amplifies a plurality of loci on a chromosome using a plurality of primer sets.
  • Multiplex PCR involves multiple thermal cycles including thermal denaturation, annealing and extension. If desired, it may further include initial heat denaturation and / or final extension and the like.
  • the conditions for heat denaturation are not particularly limited as long as the temperature and time allow the double strand of the genomic DNA to be dissociated into a single strand.
  • suitable conditions for heat denaturation include setting the temperature to 90 ° C. to 95 ° C., preferably 94 ⁇ 2 ° C., and setting the time to 10 seconds to 60 seconds, preferably 30 seconds ⁇ 5 seconds. .
  • the temperature and time of heat denaturation may be appropriately changed according to the amount of genomic DNA of the template.
  • the annealing conditions are not particularly limited as long as the temperature and time allow the primer to bind to the genomic DNA that has been dissociated into a single strand.
  • suitable conditions for annealing include setting the temperature to 50 ° C. to 65 ° C., preferably 60 ⁇ 2 ° C., and setting the time to 10 seconds to 90 seconds, preferably 60 ⁇ 10 seconds.
  • the Tm is derived from the melting temperature.), And may be appropriately changed according to the sequence bias.
  • the extension conditions are not particularly limited as long as the temperature and time allow the polynucleotide strand to be extended from the 3 ′ end of the primer by DNA polymerase.
  • suitable conditions for elongation include setting the temperature to 72 ⁇ 2 ° C. and setting the time to 10 to 60 seconds, preferably 30 ⁇ 5 seconds.
  • the extension temperature and time may be appropriately changed according to the type of DNA polymerase and / or the size of the PCR amplification product.
  • an initial heat denaturation Prior to starting the first cycle of the thermal cycle, an initial heat denaturation may be performed.
  • the initial heat denaturation conditions may be the same as the heat denaturation conditions or different conditions.
  • the temperature is preferably set to the same temperature as the heat denaturation, and the time is preferably set to a longer time than the heat denaturation.
  • Final elongation may be performed after the last cycle of the thermal cycle is completed.
  • the conditions for final extension may be the same as the conditions for extension, or may be different conditions. In the case of different conditions, it is preferable that the temperature is set to the same temperature as the extension and the time is set to a longer time than the extension. By performing the final extension, the polynucleotide chain can be more reliably extended.
  • the number of cycles is not particularly limited as long as it is plural, but is preferably 20 to 40 cycles, and more preferably 35 ⁇ 5 cycles.
  • the number of cycles may be appropriately changed according to the amount of genomic DNA used as a template for multiplex PCR, the number of primer sets used for multiplex PCR, and / or the amount of reaction solution for multiplex PCR.
  • the PCR amplification product theoretically doubles every cycle, but in fact, it reaches a plateau in a certain cycle, so that no further amplification product can be expected, and a non-specific amplification product. May increase, and it is not desirable to generally increase the number of cycles.
  • the primer set used in the multiplex PCR can be designed according to the “primer set design method” described later. Since this primer set is designed so as not to form primer dimers, the increase in non-specific amplification products can be suppressed, and the sensitivity of multiplex PCR itself can be improved.
  • the number of primer sets is set according to the number of loci to be amplified. There may be two or more primer sets that amplify the same locus, or two or more primer sets may be amplified with one primer set. In general, it is preferable that the locus and the primer set have a one-to-one correspondence.
  • Chromosomes include one or more selected from the group consisting of human chromosomes 1 to 22 and chromosomes X and Y. Chromosomes are not particularly limited as long as they include chromosomes that are the subject of quantification of the number of chromosomes (in the present invention, in particular, they may be referred to as “chromosomes of interest”).
  • the chromosome may include a chromosome that provides a reference value for chromosome quantification and / or a chromosome that is only interested in the presence or absence of locus in addition to the chromosome that is the target of chromosome number quantification.
  • the chromosome of interest particularly preferably comprises at least one selected from the group consisting of chromosome 13, chromosome 18 and chromosome 21. This is because these chromosomes are more likely to cause trisomy or monosomy than other autosomes.
  • Examples of the chromosome that provides a reference value for chromosome quantification include an autosome other than a chromosome that easily causes trisomy or monosomy, and / or an X chromosome.
  • the X chromosome is one of the preferred ones because it exists regardless of gender.
  • Examples of chromosomes that are only interested in the presence or absence of locus include the Y chromosome. This is because the presence of the Y chromosome strongly suggests males among male and female genders.
  • the plurality of loci are loci to be amplified by multiplex PCR among loci on the chromosome.
  • the chromosome may include a chromosome that gives a reference value for chromosome quantification and / or a chromosome that is only interested in the presence or absence of locus in addition to the chromosome that is the target of chromosome number quantification (the chromosome of interest).
  • a plurality of loci are not limited to those existing on the chromosome for which the number of chromosomes is to be quantified. It may also include a locus that exists on a chromosome that is only of interest to the chromosome.
  • the locus may be present in either the gene region or the non-gene region.
  • the gene region includes a gene encoding a protein, a coding region where a ribosomal RNA (Ribonucleic acid) gene and a transfer RNA gene are present, an intron that divides the gene, a transcriptional regulatory region, a 5′-leader sequence, and a 3 ′ -Includes non-coding areas where trailer sequences etc. exist.
  • Non-gene regions include non-repetitive sequences such as pseudogenes, spacers, response elements and origins of replication, and repetitive sequences such as tandem repeats and distributed repeats.
  • Locus is, for example, SNP (Single Nucleotide Polymorphism: Single Nucleotide Polymorphism), SNV (Single Nucleotide Variant: Single Nucleotide Variation), STRP (Short Tandem Repeat Polymorphism), Mutation, and Insertion and / or Alternatively, it may be a locus such as deletion (indel).
  • SNP Single Nucleotide Polymorphism: Single Nucleotide Polymorphism
  • SNV Single Nucleotide Variant: Single Nucleotide Variation
  • STRP Short Tandem Repeat Polymorphism
  • Mutation and Insertion and / or Alternatively, it may be a locus such as deletion (indel).
  • the number of loci on the chromosome to be quantified is not particularly limited as long as it is 80 or more per chromosome of interest, preferably 80 or more and 1000 or less, more preferably 100 or more and 1000 or less, More preferably, it is 100 or more and 500 or less, More preferably, it is 100 or more and 200 or less.
  • the number of locus per chromosome is preferably 150 or more and 200 or less.
  • the number of chromosomes can be quantified by a conventionally known method. For example, it is preferably performed by a method described later using a next-generation sequencer.
  • next-generation sequencer it is particularly desirable to use MiSeq (manufactured by Illumina).
  • each multiplex PCR amplification product has a sample identification sequence (index sequence) composed of 6 to 8 bases and a MiSeq flow cell. It is necessary to add P5 and P7 sequences for hybridization to the oligonucleotide sequence. By adding these sequences, a maximum of 96 types of multiplex PCR amplification products can be measured at one time.
  • an adapter ligation method or a PCR method can be used as the method for adding the index sequence, the P5 sequence and the P7 sequence to both ends of the multiplex PCR amplification product.
  • BWA Borrows-Wheeler Aligner: Li, H., 1 other name, “Fast and accurate short read alignment with” is used as a method of quantifying the number of chromosomes by analyzing sequence data obtained with MiSeq. “Burrows-Wheeler transform”, Bioinformatics, 2009, 25, 14, p.1754-1760; Li, H., 1 other, “Fast and accurate long-read alignment with Burrows-Wheeler transform”, Bioinformatics, 2010, Vol. 26, No. 5, p. 589-595) is preferably mapped to a known human genome sequence.
  • SAMtools Li, Heng, et al., "The Sequence Alignment / Map Format and SAMtools", Bioinformatics, 2009, Vol. 25, No. 16, p. 2078-2079; SAM is derived from "Sequence Alignment / Map") and / or BEDtools (Quinlan , A. R., Quantification of the number of chromosomes can be performed by using one other person, “BEDTools: a flexible suite of utilities for comparing genomic features”, Bioinformatics, 2010, Vol. 26, No. 6, p. 841-842) preferable.
  • the amplification amount (coverage, sequence) of an amplification product having a sequence of a region of 140 bp to 180 bp determined in advance can be determined with a sequencer.
  • the sequencer determines the amplification amount (number of sequence reads) of an amplification product having a sequence of 140 bp or more and 180 bp or less of a cell identified as a nucleated red blood cell derived from a mother. If the fetus is in a normal state, the amount of amplification of the amplification product derived from the fetus (number of sequence reads) and the amount of amplification of the amplification product derived from the mother (number of sequence reads) are approximately 1: 1. is expected. If the fetus has a disease that is trisomy derived from an amplified chromosome, the ratio is expected to be 1: 1.5 (or 2: 3).
  • the amount of PCR amplified product derived from a fetus (number of sequence reads) relative to the amount of PCR amplified product derived from a mother when a normal fetus is pregnant (number of sequence reads) collected from a plurality of pregnant mothers in advance. Find multiple ratios and find their distribution. Further, a plurality of ratios of the amount of amplification products derived from the fetus (number of sequence reads) to the amount of amplification products derived from the mother when the trisomy fetus becomes pregnant (number of sequence reads) are obtained, and the distribution thereof is determined. A cut-off value can also be set in a region where the two distributions do not overlap.
  • the pre-determined cut-off value is compared with the result of determining the ratio of amplification products. If the ratio is less than or equal to the cut-off value, the fetus is normal, and if the ratio is greater than or equal to the cut-off value, trisomy It is also possible to interpret the test result as follows.
  • the first aspect of the method for designing a primer set in the present invention comprises the following steps.
  • A a target locus selection step of selecting a target locus for designing a primer set to be subjected to multiplex PCR from a plurality of loci;
  • B Create at least one base sequence of a candidate primer for amplifying the target locus for each of the forward primer and the reverse primer based on the base sequence in the vicinity of the target locus on the chromosome , Primer candidate base sequence creation step;
  • C Regarding the nucleotide sequence of the candidate primer for amplifying the target locus, pairwise, under the condition that the partial sequence to be compared includes the 3 ′ end of the nucleotide sequence of the candidate primer for amplifying the target locus.
  • both the (c) local alignment process and the (d) first stage selection process are performed before or after the (e) global alignment process and the (f) second stage selection process.
  • it is performed in parallel with both the (e) global alignment process and the (f) second stage selection process.
  • Target locus selection step This is shown as "(nth) target locus selection step" in the block diagram of FIG.
  • the target locus selection step is a step of selecting a locus (target locus) for designing a primer set to be used for the multiplex PCR from the plurality of loci. Assuming that the number of loci to be amplified by multiplex PCR is N (where N is an integer satisfying N ⁇ 2), the number of selectable target loci is n (n is 1 ⁇ n ⁇ ). N is an integer satisfying N). When two or more locuses are selected, a sequential primer set may be designed for each locus, a primer set may be designed in parallel, or a primer set may be designed simultaneously.
  • (B) Primer candidate base sequence creation step This is shown as "(nth) primer candidate base sequence creation step" in the block diagram of FIG.
  • the base sequence of the candidate primer for amplifying the target locus is determined based on the base sequence of the region near the target locus on the chromosome at least for each of the forward primer and the reverse primer. This is a process of creating one by one.
  • the base sequence of a candidate primer is created based on the base sequence of the neighboring region, it may have a portion on the 5 ′ end side that is not complementary to the base sequence of the neighboring region. Such a non-complementary part on the 5 ′ end side of the primer may be used to add a specific base sequence to the amplified product by multiplex PCR.
  • the vicinity region of the target locus refers to a portion excluding the target locus from the region including the target locus on the chromosome.
  • the length of the neighboring region is not particularly limited, but is preferably not more than a length that can be extended by PCR, and more preferably not more than the upper limit of the length of the DNA fragment desired to be amplified. In particular, it is preferable that the length is easy for concentration selection and / or sequence reading. You may change suitably according to the kind etc. of the enzyme (DNA polymerase) used in PCR.
  • the specific length of the neighboring region is preferably about 20 to 500 bases, more preferably about 20 to 300 bases, still more preferably about 20 to 200 bases, and still more preferably about 50 to 200 bases.
  • the complementary portion of the primer refers to a portion where the primer hybridizes with the single-stranded DNA of the template during annealing.
  • the base sequence of the complementary portion of the primer is created based on the base sequence in the vicinity of the target locus.
  • the primer may have a non-complementary portion linked to the 5 ′ end of the complementary portion.
  • the non-complementary portion is a portion that is not intended to hybridize with the single-stranded DNA of the template DNA.
  • Examples of the base sequence of the non-complementary portion of the primer include a tail sequence used for performing PCR (second PCR) using an amplification product by multiplex PCR as a template and adding a sequence sequence to the amplification product.
  • the length (number of nucleotides) of the complementary portion of the primer is not particularly limited, but is preferably 10 mer to 30 mer, more preferably 15 mer to 30 mer, and further preferably 15 mer to 25 mer. When the length of the complementary portion of the primer is within this range, it is easy to design a primer excellent in specificity and amplification efficiency.
  • the GC content is not particularly limited, but is preferably 40 mol% to 60 mol%, more preferably 45 mol% to 55 mol%. When the GC content is within this range, problems of specificity and a decrease in amplification efficiency due to higher order structures are unlikely to occur.
  • the Tm value is not particularly limited, but is preferably in the range of 50 ° C. to 65 ° C., more preferably in the range of 55 ° C. to 65 ° C.
  • the Tm value is calculated using OLIGO Primer Analysis Software (Molecular Biology Insights) or Primer3 (http://www-genome.wi.mit.edu/ftp/distribut/software/etc.). be able to. Moreover, it can also obtain
  • Tm value (° C.) 2 (nA + nT) +4 (nC + nG)
  • the method for calculating the Tm value is not limited to these, and the Tm value can be calculated by various conventionally known methods.
  • the primer candidate base sequence has no base bias as a whole. For example, it may be desirable to avoid partially GC rich sequences and partially AT rich sequences. It is also desirable to avoid T and / or C continuity (polypyrimidine) and A and / or G continuation (polypurine).
  • the 3 'terminal base sequence avoids a GC-rich sequence or an AT-rich sequence.
  • the 3 'terminal base is preferably G or C, but is not limited thereto.
  • a specificity check step is a step of evaluating the specificity of the primer candidate base sequence based on the sequence complementarity of each primer candidate base sequence created in the above (b) primer candidate base sequence creation step to the genomic DNA. It is.
  • the specificity check is performed by performing local alignment between the base sequence of the genomic DNA and the base sequence of the candidate primer. If the local alignment score is less than a preset value, the base sequence of the candidate primer is complementary to the genomic DNA. It can be evaluated that the specificity is low and the specificity is high.
  • it is desirable that the local alignment is also performed on a complementary strand of genomic DNA. This is because the primer is single-stranded DNA, whereas the genomic DNA is double-stranded.
  • a complementary base sequence may be used instead of the primer candidate base sequence. Complementarity can be considered homology to complementary strands.
  • a homology search may be performed on the genomic DNA base sequence database using the candidate primer base sequences as query sequences.
  • a homology search tool for example, BLAST (Basic Local Alignment Search Tool: Blast) (Altschul, S. A., four others, “Basic Local Alignment Search Tool”, Journal of Molecular Biology, 1990, October, 215, pp. 403-410) and FASTA (Pearson, W. R., 1 other, “Improved tools for biological sequence comparison”, Bulletin of the National Academy of Sciences, National Academy of Sciences, 1988, 4 Month, Vol. 85, p.2444-2448).
  • BLAST Basic Local Alignment Search Tool: Blast
  • FASTA Pearson, W. R., 1 other, “Improved tools for biological sequence comparison”, Bulletin of the National Academy of Sciences, National Academy of Sciences, 1988, 4 Month, Vol. 85, p.2444-2448.
  • Scores given to each of complementary bases (matches), non-complementary bases (mismatches), and gaps (insertions and / or deletions (indels)) (sometimes referred to herein as “scoring systems”) , And the threshold of the local alignment score are not particularly limited, and can be set as appropriate depending on the length of the base sequence of the candidate primer and / or the PCR conditions.
  • the score for the gap may be referred to as a gap penalty.
  • the target locus is determined when PCR is performed using the primer of the base sequence. Exclude it because it cannot be amplified and artifacts may be amplified.
  • (C) Local alignment step This is shown as "(nth) local alignment step" in the block diagram of FIG.
  • the partial sequence to be compared includes the 3 ′ end of the base sequence of the candidate primer for amplifying the target locus.
  • This is a step of performing local alignment in a pairwise manner to obtain a local alignment score.
  • the combination of base sequence pairs for performing local alignment may be a combination selected by allowing duplication or a combination selected without allowing duplication, but a primer dimer between primers of the same base sequence. If the formability has not yet been evaluated, a combination selected to allow duplication is preferred.
  • the (f) primer candidate selected in the second stage selection process You may perform a process and the (d) 1st step selection process mentioned later.
  • the local alignment is an alignment performed on a partial sequence, and a portion having high complementarity can be locally examined.
  • the local alignment is usually performed under the condition that “the partial sequence to be compared includes the 3 ′ end of the base sequence” unlike the local alignment performed on the base sequence.
  • the partial sequences to be compared include the 3 ′ ends of both base sequences.
  • the condition that “the partial sequence to be compared includes the 3 ′ end of the base sequence”, that is, “the partial sequence to be compared starts from the 3 ′ end of one sequence and 3 ′ of the other sequence”.
  • the local alignment may insert a gap.
  • Gap means base insertion and / or deletion (indel).
  • a case where bases are complementary between base sequence pairs is regarded as a match (match), and a case where they are not complementary is regarded as a mismatch (mismatch).
  • the local alignment is performed so that a score is given to each of the match, mismatch, and indel, and the total score (local alignment score) is maximized.
  • the score given to each of the match, mismatch and indel may be set as appropriate. For example, as shown in Table 1 below, a score given to each of a match, mismatch, and indel may be set. In Table 1, “-” represents a gap (insertion and / or deletion (indel)).
  • dot matrix shown in Table 3 from the base sequences of SEQ ID NOS: 1 and 2. Specifically, the base sequence of SEQ ID NO: 1 is arranged from left to right in the 5 ′ to 3 ′ direction, the base sequence of SEQ ID NO: 2 is arranged from the bottom to the top, in the direction of 5 ′ to 3 ′, and bases Is entered in a grid that is complementary to obtain a dot matrix shown in Table 3.
  • the alignment can be obtained not only by the dot matrix method exemplified here but also by the dynamic programming method, the word method, or other various methods.
  • the first stage selection step is a step of performing the first step selection of the base sequences of candidate primers for amplifying the target locus based on the local alignment score obtained in the above (c) local alignment step.
  • a threshold value (first threshold value) of the local alignment score is set in advance. If the local alignment score is less than the first threshold, it is determined that these two base sequence pairs have low primer dimer formation, and the subsequent steps are performed. On the other hand, if the local alignment score is equal to or higher than the first threshold, it is determined that the pair of these two base sequences has high primer dimer formation, and the subsequent steps are not performed for the pair.
  • the first threshold is not particularly limited and can be set as appropriate.
  • the first threshold value may be set according to PCR conditions such as the amount of genomic DNA used as a template for the polymerase chain reaction.
  • the local alignment score is “ ⁇ 8”, which is less than the first threshold value “3”. Therefore, it is determined that the pair of base sequences of SEQ ID NOs: 1 and 2 has low primer dimer formation. be able to.
  • this process is performed with respect to all the pairs which calculated the score in said (c) local alignment process.
  • (E) Global alignment step This is shown as "(nth) global alignment step" in the block diagram of FIG.
  • the global alignment step is a step of obtaining a global alignment score by performing global alignment in a pair-wise manner with respect to a base sequence having a preset sequence length including the 3 ′ end of the base sequence of a candidate primer for amplifying the target locus. is there.
  • the combination of base sequence pairs for performing global alignment may be a combination selected by allowing duplication or a combination selected without allowing duplication, but primer dimers between primers of the same base sequence If the formability has not yet been evaluated, a combination selected to allow duplication is preferred.
  • the global alignment is an alignment performed on the “entire sequence”, and the complementarity of the entire sequence can be examined.
  • the “entire sequence” is the entire base sequence having a preset sequence length including the 3 ′ end of the base sequence of the candidate primer.
  • a gap may be inserted in the global alignment. Gap means base insertion and / or deletion (indel).
  • indel base insertion and / or deletion
  • a case where the bases are complementary between the base sequence pairs is regarded as a match (match), and a case where the bases are not complementary is regarded as a mismatch (mismatch).
  • the global alignment is performed so that a score is given to each of the match, mismatch, and indel, and the total score (global alignment score) is maximized.
  • the score given to each of the match, mismatch and indel may be set as appropriate. For example, as shown in Table 1 above, scores to be given to matches, mismatches, and indels may be set. In Table 1, “-” represents a gap (insertion and / or deletion (indel)).
  • the base sequences of SEQ ID NOS: 1 and 2 shown in Table 5 below correspond to 3 bases at the 3 ′ end (capital part. “Base sequence having a predetermined sequence length including the 3 ′ end”). ) For global alignment.
  • the score given to each of the match, mismatch and gap is as shown in Table 1.
  • alignment can be obtained by a dot matrix method, a dynamic programming method, a word method, or other various methods.
  • (F) Second Stage Selection Step This is shown as “(nth) second stage selection step” in the block diagram of FIG.
  • the second stage selection step is a step of performing the second step selection of the base sequences of candidate primers for amplifying the target locus based on the global alignment score obtained in the (e) global alignment step.
  • a global alignment score threshold (second threshold) is set in advance. If the global alignment score is less than the second threshold, it is determined that these two base sequence pairs have low primer dimer formation, and the subsequent steps are performed. On the other hand, if the global alignment score is equal to or higher than the second threshold value, it is determined that the pair of these two base sequences has high primer dimer formation, and the subsequent steps are not performed for the pair.
  • the second threshold value is not particularly limited and can be set as appropriate. For example, the second threshold value may be set according to PCR conditions such as the amount of genomic DNA used as a template for the polymerase chain reaction.
  • the base sequence of the preset base number including the 3 ′ end of the base sequence of each primer is pair-wise globally aligned.
  • the global alignment score obtained in this manner can be made less than the second threshold value.
  • the global alignment score is “ ⁇ 3”, which is less than the second threshold value “3”. be able to.
  • this process is performed with respect to all the pairs for which scores were calculated in the above (e) global alignment process.
  • Both the (c) local alignment process and the (d) first stage selection process are performed before or after the (e) global alignment process and (f) the second stage selection process, or (E) You may implement in parallel with both processes of a global alignment process and said (f) 2nd step selection process.
  • the combination of (e) the global alignment process and (f) the second stage selection process is performed first, and (f) the second stage selection process is passed.
  • a width array length check step may be performed.
  • the width sequence length check step is performed on the pair of candidate primer sequences that are determined to have low primer dimer formation in the above (d) first step selection step and (f) second step selection step.
  • it is a step of calculating the distance between the ends of the base sequences of candidate primers on the chromosomal DNA and determining whether or not the distance is within a preset range. If the distance between the end portions of the base sequence is within a preset range, it can be determined that there is a high possibility that the pair of base sequences of the candidate primer can appropriately amplify the target locus.
  • the distance between the ends of the primer candidate base sequences is not particularly limited, and can be set as appropriate depending on the PCR conditions such as the type of the enzyme (DNA polymerase). For example, within the range of 100 to 200 bases (pair), within the range of 120 to 180 bases (pair), within the range of 140 to 180 bases (pair), within the range of 140 to 160 bases (pair), 160 to 180 bases It can be set in various ranges such as within the (pair) range.
  • the primer adopting step is a primer for amplifying the target locus from the base sequence of the candidate primer sequence selected in both (d) the first stage selection step and (f) the second stage selection step.
  • This is a process employed as a base sequence. That is, in this step, for each primer candidate base sequence, the local alignment score obtained by performing pair-wise local alignment under the condition that the partial sequence to be compared includes the 3 ′ end of the base sequence is the first. And a global alignment score obtained by performing global alignment on a pairwise basis for a base sequence having a preset number of bases including the 3 ′ end of each primer candidate base sequence is less than the second threshold value.
  • a base sequence of a candidate primer is adopted as a base sequence of a primer for amplifying the target locus.
  • the local alignment score is “ ⁇ 8”, which is less than the first threshold “3”.
  • the global alignment score is “ ⁇ 3”, which is less than the second threshold value “3”. Therefore, the base sequence of the candidate primer shown in SEQ ID NO: 1 and the base sequence of the candidate primer shown in SEQ ID NO: 2 can be adopted as the base sequence of the primer for amplifying the target locus.
  • the 2nd aspect of the design method of a primer set in this invention comprises the following processes.
  • (B n ) The base sequences of candidate primers for amplifying the n-th target locus are determined based on the base sequence of the region in the vicinity of the n-th target locus on the chromosome.
  • N-th candidate primer base sequence creating step for creating at least one for each;
  • C n Regarding the base sequence of the candidate primer for amplifying the n-th target locus, the partial sequence to be compared includes the 3 ′ end of the base sequence of the candidate primer for amplifying the n-th target locus N-th local alignment step of performing a local alignment pairwise to obtain a local alignment score under conditions;
  • D n n-th stage selection of base sequences of candidate primers for amplifying the n-th target locus based on the local alignment score obtained in the n-th local alignment step; n-stage selection process;
  • E n A global alignment score is obtained by performing pair-wise global alignment on a base sequence having a preset sequence length including the 3 ′ end of the base sequence of a candidate primer for amplifying the n-th target locus.
  • the nth global alignment step; (F n ) Based on the global alignment score obtained in the n-th global alignment step, the second stage selection of the base sequence of candidate primers for amplifying the n-th target locus is performed.
  • 2-step selection process; a and (g n) base sequence of primer candidates were selected in either of the n-step selection step and the second step selection process of the n of the first n, the target locus of the first n N-th primer adoption step adopted as a base sequence of a primer for amplification.
  • n is an integer satisfying n ⁇ 1
  • both of the (c n ) th n-th local alignment step and the (d n ) n-th first-stage selection step are the (e n ) th step. before or after both the n global alignment step and the (f n ) n-th second stage selection step, or the (e n ) th global alignment step and the (f n ) n- th step. It is performed in parallel with both steps of the two-stage selection process.
  • N is an integer satisfying N ⁇ 2
  • n is replaced with n + 1
  • a primer set is adopted for all of the plural loci. Repeat until.
  • Each step when n is replaced with n + 1 is shown below.
  • the base sequences of candidate primers for amplifying the ( n + 1 ) th target locus are determined based on the nucleotide sequences in the vicinity of the ( n + 1 ) th target locus on the chromosome.
  • N + 1-th primer candidate base sequence creating step for creating at least one by one;
  • C n + 1 Regarding the base sequence of the candidate primer for amplifying the n + 1 target locus and the base sequence of the primer already employed, the partial sequence to be compared is a candidate primer for amplifying the n + 1 target locus N + 1-th local alignment step of performing local alignment in a pair-wise manner to obtain a local alignment score under the condition that the base sequence and the 3 ′ end of the base sequence of the primer already adopted are included;
  • D n + 1 Based on the local alignment score obtained in the ( n + 1 ) -th local alignment step, the n + 1-th selection is performed for the base sequence of candidate primers for amplifying the ( n + 1 ) -th target locus.
  • (E n + 1 ) Pairwise global alignment of a base sequence having a preset sequence length including the base sequence of a candidate primer for amplifying the n + 1 target locus and the 3 ′ end of the base sequence of the primer already employed To obtain a global alignment score, the (n + 1) th global alignment step; (F n + 1 ) Based on the global alignment score obtained in the ( n + 1 ) -th global alignment step, the n + 1-th selection of the base sequence of candidate primers for amplifying the ( n + 1 ) -th target locus is performed.
  • the nucleotide sequences of candidate primers selected in both the ( n + 1 ) th first stage selection step and the ( n + 1 ) th n + 1 stage selection step are the primer sequences for amplifying the n + 1 target locus.
  • both the (c n + 1 ) th n + 1 local alignment step and the (d n + 1 ) th n + 1 first stage selection step are the (e n + 1 ) th n + 1 global alignment step and the above (f n + 1 ) Before or after both of the ( n + 1 ) th and ( n + 1 ) th stage selection processes, or in parallel with both the (e n + 1 ) th n + 1 global alignment process and the (f n + 1 ) th ( n + 1 ) th n + 1 stage selection process. Done.
  • (A n ) nth target locus selection step This is shown as the “nth target locus selection step” in the block diagram of FIG. Except for selecting the n-th target locus, it is the same as the “(a) target locus selection step” of the first aspect described above. However, if n ⁇ 2, a locus different from the target locus selected up to the (n-1) th target locus selection step is selected. When n ⁇ 2, the selection of the nth target locus can be performed simultaneously with or after the selection of the (n ⁇ 1) th target locus.
  • (B n ) n-th primer candidate base sequence creation step This is shown as the “n-th primer candidate base sequence creation step” in the block diagram of FIG. “(B) Primer candidate base sequence creation step” in the first aspect of the primer set design method of the present invention, except that a candidate primer base sequence for amplifying the n th target locus is created. It is the same.
  • (C n ) nth local alignment step This is shown as “nth local alignment step” in the block diagram of FIG.
  • the method for designing a primer set of the present invention except that local alignment is performed on the nucleotide sequence of a candidate primer for amplifying the n-th target locus generated in the (b n ) n-th primer candidate nucleotide sequence generating step.
  • This is the same as “(c) Local alignment step” in the first aspect.
  • the base sequence of the candidate primer for amplifying the n th target locus prepared in the (b n ) n th primer candidate base sequence creating step and the base of the primer already adopted Perform local alignment on the sequence.
  • the primer base sequences already adopted are all the base sequences of the primers used for amplifying each target locus from the first target locus to the (n-1) th target locus.
  • the nucleotide sequence (the same applies hereinafter).
  • (D n ) nth first stage selection step This is shown as “nth first stage selection step” in the block diagram of FIG. Said (c n) on the basis of the local alignment score was calculated in the local alignment step of the n, the (b n) candidate primers for amplifying target locus of the n created in candidate primer nucleotide sequence creation step of the n Is the same as “(d) first stage selection step” in the first embodiment of the primer set design method of the present invention, except that the selection is performed on the base sequence of. However, in the case of n ⁇ 2, the base sequence of the candidate primer for amplifying the n th target locus prepared in the (b n ) n th primer candidate base sequence creating step and the base of the primer already adopted Select for the sequence.
  • (E n ) nth global alignment step This is shown as “nth global alignment step” in the block diagram of FIG.
  • the method for designing a primer set of the present invention except that global alignment is performed on the nucleotide sequences of candidate primers for amplifying the n-th target locus created in the (b n ) n-th candidate primer nucleotide sequence creating step.
  • This is the same as “(e) Global alignment step” in the first aspect.
  • n ⁇ 2 the base sequence of the candidate primer for amplifying the n th target locus prepared in the (b n ) n th primer candidate base sequence creating step and the base of the primer already adopted Perform global alignment on sequences.
  • (F n ) n-th second-stage selection process This is shown as “n-th second-stage selection process” in the block diagram of FIG.
  • the (e n) based on the global alignment score found in the global alignment step of the n, the (b n) candidate primers for amplifying target locus of the n created in candidate primer nucleotide sequence creation step of the n Except for the point that selection is performed on the base sequence of the above, it is the same as “(f) second stage selection step” of the first aspect of the primer set design method of the present invention.
  • n ⁇ 2 the base sequence of the candidate primer for amplifying the n th target locus created in the (b n ) n th primer candidate base sequence creation step and the base sequence of the primer already adopted Select for the target.
  • both the above (c n ) n th local alignment step and the above (d n ) n th first stage selection step are (e n) may be carried out before or after the two steps of the global alignment process and the (f n) second-step selection process of the n of the n, the (e n) global alignment step of the n And (f n ) may be performed in parallel with both steps of the n-th second stage selection step.
  • both the (e n ) th global alignment step and the (f n ) n second stage selection step are performed first, and the (f n ) th step is performed. It is preferable to perform both the (c n ) th n-th local alignment process and the (d n ) n-th first stage selection process for the combination that has passed through the n second-stage selection process.
  • the effect of reducing the amount of calculation increases, and the overall processing speed can be increased.
  • Amplification sequence length check process This is the same as the “amplification sequence length check step” in the first aspect of the primer set design method of the present invention. This step is an optional step and may or may not be performed.
  • (G n ) n-th primer adoption step This is shown as “n-th primer adoption step” in the block diagram of FIG. This is the same as “(g) Primer adoption step” in the first aspect of the primer set design method of the present invention.
  • This glass substrate was immersed in the May-Günwald staining solution for 3 minutes, immersed in a phosphate buffer solution and washed, and then diluted with a phosphate buffer solution to a concentration of 3% for 10 minutes. Thereafter, it was washed with pure water and dried to produce a plurality of stained glass substrates.
  • nucleated red blood cells by cell morphology information
  • an electric XY stage an optical microscope measurement system including an objective lens and a CCD camera, an XY stage controller, and a Z direction controller
  • a control unit including an equipped control unit, an image input unit, an image processing unit, and an XY position recording unit was prepared.
  • blood cells applied on a glass slide substrate are placed on an XY stage, focused on the glass slide, scanned, and an image obtained from an optical microscope is captured.
  • a nucleated red blood cell was searched.
  • the image analysis cells satisfying the following two conditions were detected, and the XY position was recorded.
  • N is the area of the nucleus region of the cell for image analysis
  • C is the cytoplasm area of the cell for image analysis
  • L is the length of the major axis of the cell nucleus for image analysis. That's it.
  • the length of the major axis of the cell nucleus was defined as the length of the ellipse major axis circumscribing the complex-shaped cell nucleus. From the nucleated red blood cells present on the slide glass substrate, those satisfying the above formulas (1) and (2) were selected and used as nucleated red blood cell candidates for the next step.
  • Spectral information was analyzed for the nucleated red blood cell candidates identified in the step of identifying the nucleated red blood cells based on the cell morphology information using a microspectroscope. Nucleated erythrocyte candidates on the slide glass substrate were identified, and one of the cells was irradiated with monochromatic light near 415 nm, and the absorption coefficient of the cell was measured. Next, for the leukocytes in which the shape of the nucleus in the vicinity of the cell does not satisfy the above formula (2), three cells are selected from the cells closest to the candidate for the nucleated red blood cell. The absorption coefficient was calculated, and the average absorption coefficient was calculated.
  • the absorption coefficient was measured for the remaining cells of the nucleated red blood cell candidate on the slide glass substrate, and the average value of the absorption coefficient was calculated for three leukocytes in the vicinity of each cell. From these results, as a result of extracting cells in which the ratio of the absorption coefficient of the nucleated red blood cell candidate to the average absorption coefficient of leukocytes was 1 or more, 8 cells clearly having 1 or more were detected.
  • Chromosomes of interest are chromosomes 13, 18 and 21.
  • the number of loci amplified by multiplex PCR is 181, the number of loci on chromosome 13, 178, the number of loci on chromosome 21, 188, the number of loci on chromosome X, 51, And the number of locus on the Y chromosome was set to 49, and the total number of locus was set to 647.
  • the selected locus is shown in Tables 8-12.
  • Primer sets used in multiplex PCR were designed, selected and adopted according to the above-described primer set design method of the present invention.
  • the primer name, base sequence and sequence number are respectively Tables 13 to 17 show.
  • the size of the amplification product was set to 140 bp to 180 bp
  • the Tm value was set to 60 ° C. to 70 ° C.
  • the length of the complementary portion of the primer was set to 20 mer.
  • the primer set was selected by calculating the score using the scoring system shown in Table 1, and setting the threshold values of the local alignment score and the global alignment score to “+3”.
  • FIG. 2 shows the alignment score and the global alignment and global alignment score for the 3 ′ terminal 3 bases of the primer.
  • the base sequence of SEQ ID NO: 1 and the base sequence of SEQ ID NO: 2 had a local alignment score of “ ⁇ 8” and a global alignment of “ ⁇ 3”, both of which were less than the set threshold. .
  • FIG. 3 shows the alignment score and the global alignment and global alignment score for the 3 ′ terminal 3 bases of the primer.
  • the base sequence of SEQ ID NO: 21 and the base sequence of SEQ ID NO: 22 had a local alignment score of “ ⁇ 7” and a global alignment of “ ⁇ 3”, both of which were less than the set threshold value. .
  • FIG. 4 shows the alignment score and the global alignment and global alignment score for the 3 ′ terminal 3 bases of the primer.
  • the base sequence of SEQ ID NO: 41 and the base sequence of SEQ ID NO: 42 had a local alignment score of “ ⁇ 3” and a global alignment of “ ⁇ 3”, both of which were less than the set threshold value. .
  • FIG. 5 shows the alignment score and the global alignment and global alignment score for the 3 ′ terminal 3 bases of the primer.
  • the base sequence of SEQ ID NO: 61 and the base sequence of SEQ ID NO: 62 had a local alignment score of “ ⁇ 4” and a global alignment of “ ⁇ 3”, both of which were less than the set threshold value. .
  • FIG. 6 shows the alignment score and the global alignment and global alignment score for the 3 ′ terminal 3 bases of the primer.
  • the base sequence of SEQ ID NO: 81 and the base sequence of SEQ ID NO: 82 had a local alignment score of “ ⁇ 4” and a global alignment of “ ⁇ 3”, both of which were less than the set threshold. .
  • Genomic DNA (0.5 ng / ⁇ L) 2 ⁇ L prepared from a large number of cells (including cells having Y chromosome), primer mix 2 ⁇ L, multiplex PCR mix 2 (manufactured by Takara Bio Inc.) 12.5 ⁇ L, multiplex PCR mix 1 (Takara Bio Inc.) 0.125 ⁇ L and an appropriate amount of water were mixed to prepare a reaction solution having a final volume of 25 ⁇ L.
  • the primer mix is a mixture of each primer of the primer set so that the final concentration is 50 nM.
  • the multiplex PCR mix 1 and the multiplex PCR mix 2 are multiplex PCR assay kits (manufactured by Takara Bio Inc.). ). Using the prepared reaction solution, initial thermal denaturation at 94 ° C. for 60 seconds was performed, and thermal cycles of thermal denaturation at 94 ° C. for 30 seconds, annealing at 60 ° C. for 90 seconds, and extension reaction at 72 ° C. for 30 seconds were repeated 30 cycles. Plex PCR was performed. A part of the reaction solution subjected to single plex PCR was subjected to agarose gel electrophoresis to confirm the presence or absence of amplification.
  • ⁇ Multiplex PCR> (Amplification of target locus) Extracted genomic DNA (0.5 ng / ⁇ L) 2 ⁇ L, primer mix 2 ⁇ L, multiplex PCR mix 2 (manufactured by Takara Bio Inc.) 12.5 ⁇ L, multiplex PCR mix 1 (manufactured by Takara Bio Inc.) 0.125 ⁇ L, and appropriate amount of water Were mixed to prepare a reaction solution having a final volume of 25 ⁇ L.
  • the primer mix includes a primer set for amplifying 181 loci on chromosome 13; a primer set for amplifying 178 loci on chromosome 18; and 188 on chromosome 21.
  • a primer set for amplifying each of the loci of each, a primer set for amplifying each of 51 loci on the X chromosome, and a primer set for amplifying each of 49 loci on the Y chromosome The mixture is mixed so that the final concentration is 50 nM.
  • the multiplex PCR mix 1 and the multiplex PCR mix 2 are reagents contained in a multiplex PCR assay kit (manufactured by Takara Bio Inc.). Using the prepared reaction solution, initial thermal denaturation at 94 ° C. for 60 seconds was performed, and thermal cycles of thermal denaturation at 94 ° C. for 30 seconds, annealing at 60 ° C. for 90 seconds, and extension reaction at 72 ° C. for 30 seconds were repeated 35 cycles. Plex PCR was performed.
  • the PCR amplification product obtained by multiplex PCR was purified using a spin column (QIAquick PCR Purification Kit, Qiagen).
  • the PCR amplification product may be purified using magnetic beads (for example, AMPure, manufactured by Beckman Coulter, Inc.).
  • D705-R (SEQ ID NO: 106) and D706-R (SEQ ID NO: 107) are mixed with 1.25 ⁇ M each, PCR amplification product by multiplex PCR, multiplex PCR mix 1, multiplex PCR mix 2 and water.
  • a reaction solution was prepared. Using the prepared reaction solution, initial thermal denaturation at 94 ° C. for 3 minutes, thermal denaturation at 94 ° C. for 30 seconds, annealing at 50 ° C. for 60 seconds and extension reaction at 72 ° C. for 30 seconds for 5 cycles, and thermal denaturation at 94 ° C. Eleven thermal cycles of 45 seconds, annealing 55 ° C. 60 seconds, and extension reaction 72 ° C. 30 seconds were performed.
  • the multiplex PCR mix 1 and the multiplex PCR mix 2 are reagents contained in a multiplex PCR assay kit (manufactured by Takara Bio Inc.).
  • the PCR amplification product by multiplex PCR was purified using a DNA purification reagent kit AMPure XP (manufactured by Beckman Coulter), and the concentration was measured using an Agilent 2100 bioanalyzer (manufactured by Agilent Technologies).
  • KAPA library quantification kit manufactured by Nippon Genetics
  • the coverage (sequence depth) of the target locus of chromosomes 13, 18, and 21 of nucleated erythrocytes identified as fetal origin is determined.
  • Amplification products were sequenced and measured.
  • the amount of amplification product (number of sequence reads) of the target locus of chromosome 21 of nucleated cells identified as being derived from the mother was measured by sequencing the amplification product using MiSeq.
  • Coverage (sequence depth) was calculated for each locus, and variation in coverage was evaluated by a coefficient of variation (CV). As a result, the variation coefficient was about 6.5%, and the variation in coverage was small.
  • chromosomes of interest are chromosomes 13, 18 and 21, but the number of locus on chromosome 13 is 75, the number of locus on chromosome 18 is 77, the locus on chromosome 21 The number was set to 76, the number of loci on the X chromosome was set to 34, and the number of loci on the Y chromosome was set to 20, and the total number of loci was set to 282.
  • the other conditions were the same as in Example 1, and the coverage was calculated for each locus, and the variation in coverage was evaluated using the coefficient of variation. As a result, the coefficient of variation was about 28.2%, and the variation in coverage was large.
  • chromosomes of interest are chromosomes 13, 18, and 21, but the number of locus on chromosome 13 is 20, the number of locus on chromosome 18 is 20, and the number of locus on chromosome 21. 20, the number of loci on the X chromosome was set to 20, and the number of loci on the Y chromosome was set to 20, and the total number of loci was set to 100.
  • the other conditions were the same as in Example 1, and the coverage was calculated for each locus, and the variation in coverage was evaluated using the coefficient of variation. As a result, the coefficient of variation was about 52.9%, and the variation in coverage was large.
  • chromosomes of interest are chromosomes 13, 18, and 21, but the number of locus on chromosome 13 is 9, the number of locus on chromosome 18 is 9, and the locus on chromosome 21 is The number was set to 8 and the number of loci on the X chromosome was set to 9, and the total number of loci was set to 35.
  • the other conditions were the same as in Example 1, and the coverage was calculated for each locus, and the variation in coverage was evaluated using the coefficient of variation. As a result, the coefficient of variation was about 143.1%, and the variation in coverage was large.
  • FIG. 7 shows a graph created with the number of locuses (total) on the horizontal axis and the variation coefficient of coverage on the vertical axis.
  • the plot corresponds to Example 1 and Comparative Examples 1 to 4, and the curve is an approximate curve obtained from the plot.

Abstract

単一または少数の細胞から抽出されたゲノムDNAを鋳型として、染色体上の複数のローカスを同時に増幅するマルチプレックスPCRを行う工程を含む、関心ある染色体の染色体数定量方法であって、関心ある染色体上のローカスの数が染色体あたり80以上であり、かつ、マルチプレックスPCRにおいて使用される複数のプライマーセットは、ローカルアラインメントスコアに基づく第1段階選抜工程と、グローバルアラインメントスコアに基づく第2段階選抜工程と、を有するポリメラーゼ連鎖反応に供するプライマーセットの設計方法によって設計される、染色体数定量方法が提供される。

Description

染色体数定量方法
 本発明は、染色体数定量方法に関する。
 近年発達してきた次世代シーケンサ等により、DNA(Deoxyribonucleic acid;デオキシリボ核酸)塩基配列解析等の遺伝子解析が手軽に行えるようになった。しかし、ゲノムの総塩基長は一般に膨大であり、一方でシーケンサのリード能力には制約があることから、必要な特定の遺伝子領域のみを増幅し、その塩基配列に限定してリードを行うことが通常である。必要な特定の遺伝子領域のみを効率的かつ精度よく増幅する技術として、PCR(Polymerase Chain Reaction;ポリメラーゼ連鎖反応)法が普及している。特に、ある1つのPCR反応系に複数種類のプライマーを同時に供給することで、複数の遺伝子領域を選択的に増幅する手法をマルチプレックスPCRと称する。
 ところが、単一細胞のような少量DNAに対する直接的なPCRは困難であるため、WGA(Whole Genome Amplification;全ゲノム増幅)を用いてゲノム全領域を増幅後に、マルチプレックスPCRおよび/またはハイブリダイゼーションによって関心領域をエンリッチメントしている。しかしながら、WGAは増幅バイアスが大きいため、染色体数定量を精度よく行うことが困難になってしまう。
 特許文献1には、マルチプレックスPCRで発生する非標的増幅産物の生成を軽減し、多数(千~数万)の遺伝子を同時に増幅し、染色体定量などを行う方法が記載されている。より詳細には、プライマーを設計する際に、プライマー間の「アンデザイアラビリティスコア」が閾値未満となるように設計し、「アンデザイアラビリティスコア」はプライマーダイマー(プライマーの二量体)の形成の尤度が閾値以下となるように設計することが記載されている。しかしながら、「アンデザイアラビリティスコア」を具体的に計算する方法は記載されておらず、プライマーダイマーの生成を避けることはできていないと考えられる。
 また、特許文献2には、複数の増幅部位(ターゲット)を効率よく増幅できるマルチプレックスPCR用のプライマー設計方法が開示されている。
国際公開第2014/018080号 国際公開第2008/004691号
 マルチプレックスPCR自体の感度を向上させ、少量DNAの増幅を精度よく行うためには、増幅ローカス数を増加させ、取得するデータ量を増大させることが考えられる。しかし、一般に、マルチプレックスPCRに供するプライマーセット数の増大は、プライマーダイマーの形成および非関心領域からの増幅産物等の非特異的増幅産物の増大の要因となる。そのため、一般的なマルチプレックスPCRでは、単純に増幅ローカス数を多くしても、単一細胞または少数細胞などの少量DNAから染色体数を精度よく定量することができなかった。
 本発明は、上記事情に鑑みて、単一細胞または少数細胞などの少量DNAから染色体数を精度よく定量することができる、関心ある染色体の染色体数定量方法を提供することを課題とする。
 本発明者は、上記課題を解決すべく鋭意検討を重ねた結果、単一または少数の細胞から抽出されたゲノムDNAを鋳型として、染色体上の複数のローカスを同時に増幅するマルチプレックスPCRを行う工程を含む、関心ある染色体の染色体数定量方法において、関心ある染色体上のローカスの数が染色体あたり80以上であり、かつ、マルチプレックスPCRにおいて使用するプライマーセットの設計方法が、プライマーダイマー形成性の評価を、プライマー候補の塩基配列について、比較する部分配列がプライマーの塩基配列の3’末端を含むという条件の下で、ペアワイズにローカルアラインメントを行って、ローカルアラインメントスコアを求め、求めたローカルアラインメントスコアに基づいて第1段階の選抜を行い、プライマー候補の塩基配列の3’末端を含む予め設定した配列長の塩基配列について、ペアワイズにグローバルアラインメントを行って、グローバルアラインメントスコアを求め、求めたグローバルアラインメントスコアに基づいて第2段階の選抜を行い、第1段階および第2段階のいずれにおいても選抜されたプライマーを採用するプライマーセットの設計方法であると、単一細胞または少数細胞などの少量DNAから染色体数を精度よく定量することができることを知得し、本発明を完成させた。
 すなわち、本発明は、以下に掲げる[1]~[9]である。
 [1] 単一または少数の細胞から抽出されたゲノムDNAを鋳型として、染色体上の複数のローカスを同時に増幅するマルチプレックスPCRを行う工程を含む、関心ある染色体の染色体数定量方法であって、
 上記関心ある染色体上のローカスの数が染色体あたり80以上であり、かつ、
 上記マルチプレックスPCRにおいて使用される複数のプライマーセットは、
 上記複数のローカスから上記マルチプレックスPCRに供するプライマーセットを設計する標的ローカスを選択する、標的ローカス選択工程と、
 上記標的ローカスを増幅するためのプライマー候補の塩基配列を、染色体上における上記標的ローカスの近傍領域の塩基配列に基づいて、フォワード側プライマーおよびリバース側プライマーのそれぞれについて少なくとも1つずつ作成する、プライマー候補塩基配列作成工程と、
 上記標的ローカスを増幅するためのプライマー候補の塩基配列について、比較する部分配列が上記標的ローカスを増幅するためのプライマー候補の塩基配列の3’末端を含むという条件の下に、ペアワイズにローカルアラインメントを行って、ローカルアラインメントスコアを求める、ローカルアラインメント工程と、
 上記ローカルアラインメント工程において求めたローカルアラインメントスコアに基づいて、上記標的ローカスを増幅するためのプライマー候補の塩基配列の第1段階の選抜を行う、第1段階選抜工程と、
 上記標的ローカスを増幅するためのプライマー候補の塩基配列の3’末端を含む、予め設定した配列長の塩基配列について、ペアワイズにグローバルアラインメントを行って、グローバルアラインメントスコアを求める、グローバルアラインメント工程と、
 上記グローバルアラインメント工程において求めたグローバルアラインメントスコアに基づいて、上記標的ローカスを増幅するためのプライマー候補の塩基配列の第2段階の選抜を行う、第2段階選抜工程と、
 上記第1段階選抜工程および上記第2段階選抜工程のいずれにおいても選抜されたプライマー候補の塩基配列の塩基配列を、上記標的ローカスを増幅するためのプライマーの塩基配列として採用する、プライマー採用工程と、
を備え、
 ここで、上記ローカルアラインメント工程および上記第1段階選抜工程の両工程は、上記グローバルアラインメント工程および上記第2段階選抜工程の両工程よりも前もしくは後に、または上記グローバルアラインメント工程および上記第2段階選抜工程の両工程と並行して行われる、ポリメラーゼ連鎖反応に供するプライマーセットの設計方法によって設計される、染色体数定量方法。
 [2] 上記関心ある染色体上のローカスの数が染色体あたり80以上1000以下である、上記[1]に記載の染色体数定量方法。
 [3] 上記関心ある染色体上のローカスの数が染色体あたり100以上1000以下である、上記[1]または[2]に記載の染色体数定量方法。
 [4] 上記関心ある染色体上のローカスの数が染色体あたり100以上500以下である、上記[1]~[3]のいずれか1つに記載の染色体数定量方法。
 [5] 上記関心ある染色体が、13番染色体、18番染色体および21番染色体からなる群から選択される少なくとも1つを含む、上記[1]~[4]のいずれか1つに記載の染色体数定量方法。
 [6] 上記複数のローカスのすべてに対してマルチプレックスPCRに供するプライマーセットが採用されるまで、上記標的ローカス選択工程から上記プライマー採用工程までを繰り返す、上記[1]~[5]のいずれか1つに記載の染色体数定量方法。
 [7] 上記標的ローカス選択工程において1または2以上のローカスを選択する、上記[1]~[6]のいずれか1つに記載の染色体数定量方法。
 [8] 上記マルチプレックスPCRにおいて使用するプライマーセットは、
 上記複数のローカスから上記マルチプレックスPCRに供するプライマーセットを設計する第1の標的ローカスを選択する、第1の標的ローカス選択工程と、
 上記第1の標的ローカスを増幅するためのプライマー候補の塩基配列を、染色体上における上記第1の標的ローカスの近傍領域の塩基配列に基づいて、フォワード側プライマーおよびリバース側プライマーのそれぞれについて少なくとも1つずつ作成する、第1のプライマー候補塩基配列作成工程と、
 上記第1の標的ローカスを増幅するためのプライマー候補の塩基配列について、比較する部分配列が上記第1の標的ローカスを増幅するためのプライマー候補の塩基配列の3’末端を含むという条件の下に、ペアワイズにローカルアラインメントを行って、ローカルアラインメントスコアを求める、第1のローカルアラインメント工程と、
 上記第1のローカルアラインメント工程において求めたローカルアラインメントスコアに基づいて、上記第1の標的ローカスを増幅するためのプライマー候補の塩基配列の第1段階の選抜を行う、第1の第1段階選抜工程と、
 上記第1の標的ローカスを増幅するためのプライマー候補の塩基配列の3’末端を含む、予め設定した配列長の塩基配列について、ペアワイズにグローバルアラインメントを行って、グローバルアラインメントスコアを求める、第1のグローバルアラインメント工程と、
 上記第1のグローバルアラインメント工程において求めたグローバルアラインメントスコアに基づいて、上記第1の標的ローカスを増幅するためのプライマー候補の塩基配列の第2段階の選抜を行う、第1の第2段階選抜工程と、
 上記第1の第1段階選抜工程および上記第1の第2段階選抜工程のいずれにおいても選抜されたプライマー候補の塩基配列を、上記第1の標的ローカスを増幅するためのプライマーの塩基配列として採用する、第1のプライマー採用工程と、
 上記複数のローカスから、既に選択された標的ローカスとは異なる、上記マルチプレックスPCRに供するプライマーセットを設計する第2の標的ローカスを選択する、第2の標的ローカス選択工程と、
 上記第2の標的ローカスを増幅するためのプライマー候補の塩基配列を、染色体上における上記第2の標的ローカスの近傍領域の塩基配列に基づいて、フォワード側プライマーおよびリバース側プライマーのそれぞれについて、少なくとも1つずつ作成する、第2のプライマー候補塩基配列作成工程と、
 上記第2の標的ローカスを増幅するためのプライマー候補の塩基配列および既に採用されたプライマーの塩基配列について、比較する部分配列が上記第2の標的ローカスを増幅するためのプライマー候補の塩基配列および上記既に採用されたプライマーの塩基配列の3’末端を含むという条件の下に、ペアワイズにローカルアラインメントを行って、ローカルアラインメントスコアを求める、第2のローカルアラインメント工程と、
 上記第2のローカルアラインメント工程において求めたローカルアラインメントスコアに基づいて、上記第2の標的ローカスを増幅するためのプライマー候補の塩基配列の第1段階の選抜を行う、第2の第1段階選抜工程と、
 上記第2の標的ローカスを増幅するためのプライマー候補の塩基配列および既に採用されたプライマーの塩基配列の3’末端を含む、予め設定した配列長の塩基配列について、ペアワイズにグローバルアラインメントを行って、グローバルアラインメントスコアを求める、第2のグローバルアラインメント工程と、
 上記第2のグローバルアラインメント工程において求めたグローバルアラインメントスコアに基づいて、上記第2の標的ローカスを増幅するためのプライマー候補の塩基配列の第2段階の選抜を行う、第2の第2段階選抜工程と、
 上記第2の第1段階選抜工程および上記第2の第2段階選抜工程のいずれにおいても選抜されたプライマー候補の塩基配列を、上記第2の標的ローカスを増幅するためのプライマーの塩基配列として採用する、第2のプライマー採用工程と、
を備え、
 ここで、上記第1のローカルアラインメント工程および上記第1の第1段階選抜工程の両工程は、上記第1のグローバルアラインメント工程および上記第1の第2段階選抜工程の両工程よりも前もしくは後に、または上記第1のグローバルアラインメント工程および上記第1の第2段階選抜工程の両工程と並行して行われ、かつ、
 上記第2のローカルアラインメント工程および上記第2の第1段階選抜工程の両工程は、上記第2のグローバルアラインメント工程および上記第2の第2段階選抜工程の両工程よりも前もしくは後に、または上記第2のグローバルアラインメント工程および上記第2の第2段階選抜工程の両工程と並行して行われ、
 上記複数のローカスの数が3以上である場合は、上記第2の標的ローカス選択工程から上記第2のプライマー採用工程までの各工程を、上記複数のローカスのすべてについてマルチプレックスPCRに供するプライマーセットが採用されるまで繰り返す、ポリメラーゼ連鎖反応に供するプライマーセットの設計方法によって設計される、上記[1]~[5]のいずれか1つに記載の染色体数定量方法。
[9] 上記鋳型はゲノムDNAの全ゲノム増幅による増幅産物ではない、上記[1]~[8]のいずれか1つに記載の染色体数定量方法。
 本発明によれば、単一細胞または少数細胞などの少量DNAから、染色体数定量の対象である染色体数を精度よく定量することができる、関心ある染色体の染色体数定量方法を提供することができる。
 また、本発明の染色体数定量方法によれば、全ゲノム増幅(WGA)を介することが無いので、従来のWGAを介することによるバイアスを排除することができる。
図1は、本発明におけるプライマーセットの設計方法を表すブロックダイアグラムである。 図2は、配列番号1の塩基配列と配列番号2の塩基配列のローカルアラインメントおよびローカルアラインメントスコア、ならびにグローバルアラインメントおよびグローバルアラインメントスコアを示す図である。 図3は、配列番号21の塩基配列と配列番号22の塩基配列のローカルアラインメントおよびローカルアラインメントスコア、ならびにグローバルアラインメントおよびグローバルアラインメントスコアを示す図である。 図4は、配列番号41の塩基配列と配列番号42の塩基配列のローカルアラインメントおよびローカルアラインメントスコア、ならびにグローバルアラインメントおよびグローバルアラインメントスコアを示す図である。 図5は、配列番号61の塩基配列と配列番号62の塩基配列のローカルアラインメントおよびローカルアラインメントスコア、ならびにグローバルアラインメントおよびグローバルアラインメントスコアを示す図である。 図6は、配列番号81の塩基配列と配列番号82の塩基配列のローカルアラインメントおよびローカルアラインメントスコア、ならびにグローバルアラインメントおよびグローバルアラインメントスコアを示す図である。 図7は、実施例および比較例の結果から導かれた、ローカス数(合計)と変動係数の関係を示すグラフである。実施例および比較例から得られたデータを表すプロットおよび近似曲線を示した。
 以下では、本発明の関心ある染色体の染色体数定量方法について、詳細に説明する。
 なお、本明細書において「~」を用いて表される範囲は、その範囲に「~」の前後に記載された両端を含む範囲を意味する。
[マルチプレックスPCRを行う工程]
 マルチプレックスPCRを行う工程は、単一または少数の細胞から抽出されたゲノムDNAを鋳型として、増幅しようとするローカスが存在する染色体上の複数のローカスを同時に増幅するマルチプレックスPCRを行う工程を含む。
〈単一または少数の細胞から抽出されたゲノムDNA〉
 単一細胞または少数細胞から抽出したゲノムDNAについて、以下に説明する。
 「単一の細胞」とは、1個の細胞をいい、「少数の細胞」とは、10個未満の個数の細胞をいう。
 ゲノムDNAは、細胞から抽出したDNAをいう。濃縮または希釈されていてもかまわないが、ゲノムDNAを全ゲノム増幅によって増幅した全ゲノム増幅産物、およびゲノムDNAの特定の領域を増幅した特定領域増幅産物は、ゲノムDNAに含まない。
《単一細胞から抽出したゲノムDNA》
 単一細胞から抽出したゲノムDNAは、例えば、細胞の集団の中から単一の細胞を単離し、単離した単一の細胞からゲノムDNAを抽出することにより調製することができる。
 細胞の集団の中から単一の細胞を単離する方法は特に限定されるものではなく、従来公知の方法を用いることもできるが、一例として、母体血試料から単一細胞を単離する方法について述べる。母体血試料以外の試料に対しても、後述する方法を適宜改変して使用することができる。
(母体血試料)
 母体血試料は、母体(妊婦)から採取した血液試料であれば特に限定されないが、母体の末梢血が好ましい。母体の末梢血には、母体由来の好酸球、好中球、好塩基球、単核球およびリンパ球等の白血球、ならびに核のない成熟した赤血球に加えて、母体由来の有核赤血球および胎児由来の有核赤血球が含まれる。胎児由来の有核赤血球は、妊娠後6週程度から母体血中に存在するといわれている。そのため、本発明では、妊娠後6週程度以降の妊婦の末梢血を検査することが好ましい。
(胎児有核赤血球)
 単一細胞は、胎児由来のものであれば特に限定されないが、胎児由来の有核赤血球が好ましい。胎児由来の有核赤血球は、胎盤を通過して、母親の血液中に存在する赤血球前駆体である。母親が妊娠中は、胎児の赤血球は有核であり得る。この赤血球には染色体が存在するため、侵襲性が低い手段で、胎児由来の染色体および胎児遺伝子の入手が可能となる。この胎児由来の有核赤血球は、母体血中の細胞の106個に1個程度の割合で存在しているといわれており、妊婦の抹消血中の存在確率は非常に小さい。
(胎児有核赤血球の濃縮)
 単一細胞を単離する際の好ましい実施態様として、密度勾配遠心分離を用いて、胎児由来の有核赤血球を濃縮することが可能である。
 国際公開第2012/023298号に、胎児由来の有核赤血球を含めた母体の血球の密度が記載されている。その記載によると、想定される胎児由来の有核赤血球の密度は、1.065~1.095g/mL程度である。一方、母体の血球の密度は、赤血球が1.070~1.120g/mL程度であり、好酸球は1.090~1.110g/mL程度であり、好中球は1.075~1.100g/mL程度であり、好塩基球は1.070~1.080g/mL程度であり、リンパ球は1.060~1.080g/mL程度であり、単核球は1.060~1.070g/mL程度である。
 密度勾配遠心分離を用いて、胎児由来の有核赤血球を濃縮する場合、第一の媒体および第二の媒体としては、ポリビニルピロリドンでコートされた直径15~30nmのケイ酸コロイド粒子分散液であるパーコール(Percoll,GEヘルスケアバイオサイエンス社製)、ショ糖から作られた側鎖に富んだ中性の親水性ポリマーであるフィコールパック(Ficoll-Paque,GEヘルスケアバイオサイエンス社製)、および/またはポリスクロースとジアトリゾ酸ナトリウムによる溶液であるヒストパック(Histopaque,シグマアルドリッチ社製)等の媒体を使用することができる。
 パーコールおよび/またはヒストパックを使用することが好ましい。パーコールは、密度1.130g/cm(比重1.130)の製品が市販されており、希釈することによって、目的とする密度(比重)の媒体を調製することができる。また、ヒストパックは、密度1.077g/cm(比重1.077)の媒体および密度1.119g/cm(比重1.119)の媒体が市販されており、これらを混合することによって、目的とする密度(比重)の媒体を調製することができる。パーコールおよびヒストパックを使用することによって、第一の媒体および第二の媒体を調製することが可能である。
 密度が1.065~1.095g/mL程度である、胎児由来の有核赤血球を、母体中の他の血球成分と分離するために、積層する媒体の密度が設定される。胎児由来の有核赤血球の中心密度は、1.080g/mL程度であるため、この中心密度を挟む2つの異なる密度の媒体(第一の媒体および第二の媒体)を作成し、隣接して重層すると、その界面に所望の胎児由来の有核赤血球を有する画分を集めることが可能となる。好ましくは、第一の媒体の密度を1.080g/mL以上、1.100g/mL以下に設定し、第二の媒体の密度を1.060g/mL以上、1.080g/mL以下に設定する。より好ましくは、第一の媒体の密度を1.080g/mL以上、1.090g/mL以下に設定し、第二の媒体の密度を1.065g/mL以上、1.080g/mL以下に設定する。具体的な一実施態様としては、第一の媒体の密度を1.085g/mLに、および第二の媒体の密度を1.075g/mLに、それぞれ設定して、血漿成分、好酸球および単核球を、回収する所望の画分から分離することが好ましい。また、このように設定することによって、赤血球、好中球およびリンパ球の一部も分離することが可能となる。本発明では、第一の媒体および第二の媒体は、同じ種類の媒体であってよいし、異なる種類の媒体であってもよいが、好ましくは同じ種類の媒体である。
(有核赤血球候補の選別および単離)
 単一細胞の単離方法の例としては、マイクロマニュピュレーターにより透明基板上から1個ずつ細胞を剥離して取得する方法、免疫染色およびFACS(fluorescence activated cell sorting)によるソーティングなどがある。
 以下では、マイクロマニュピュレーターにより透明基板上から単一細胞を剥離して取得する方法について詳細に説明する。
 母体の血液から有核赤血球候補を取得するために、血液を基板上に塗布して乾燥させ、血球細胞を塗抹した基板(血球細胞標本)を作製することが可能である。この基板としては、透明媒体を用いることが好ましく、スライドガラスを用いることがより好ましい。
 血球細胞標本から得られる血球細胞の形態情報に基づいて、胎児由来の有核赤血球候補を選別することが可能である。好ましい実施態様としては、細胞の、細胞質の面積に対する核領域の面積の割合、核の円形度合いおよび/または核領域の面積等を利用して、胎児由来の有核赤血球候補を選別することが可能である。特に、細胞質の面積に対する核領域の面積の割合または核の円形度合いが条件を満足する細胞を、胎児由来の有核赤血球候補として選別することが好ましい。
 本発明では、細胞質の面積に対する核領域の面積の割合「N/C」が下記式(1)を満足する細胞を選別することが好ましい。
 0.25<N/C<1.0     ・・・(1)
 ただし、式(1)中、「N」は画像解析を行う細胞の核領域の面積であり、「C」は画像解析を行う細胞の細胞質の面積である。
 また、本発明では、核の長径の長さの平方に対する核領域の面積の割合「N/L」が下記式(2)を満足する細胞を選別することが好ましい。
 0.65<N/L<0.785  ・・・(2)
 ただし、式(2)中、「N」は画像解析を行う細胞の細胞質の面積であり、「L」は画像解析する細胞の核の長径の長さ、すなわち、複雑な形をした細胞核に外接する楕円の長径の長さである。
 細胞の形態情報を用いて胎児由来の有核赤血球候補を選別するシステムは、光学顕微鏡、デジタルカメラ、スライドガラス用のステージ、光学搬送系、画像処理PC、制御PC、およびディスプレイを装備している。光学搬送系は、対物レンズおよびCCDカメラを備える。画像処理PCは、データ解析およびデータ記憶を行う処理系を備える。制御PCは、スライドガラス用のステージの位置制御および全体の処理を制御する制御系を備える。
 人を含むすべての脊椎動物の血液中にある赤血球に存在する蛋白質がヘモグロビンである。有核赤血球は、血液中の有核細胞の1種である白血球とはヘモグロビンの有無が異なる。ヘモグロビンは、酸素と結合した場合、鮮明な赤色を呈する酸化ヘモグロビン、酸素と結合していない場合、暗赤色を呈する還元ヘモグロビンであり、動脈中および静脈中には、酸素結合量が異なるヘモグロビンが流れている。ヘモグロビンは、380nm~650nmに吸収を持つため、この波長領域の吸光度の違いに起因する少なくとも1つの単色光の情報でヘモグロビンを検出することが可能である。ヘモグロビンの存在を確認するには単色光を用いることが好ましく、ヘモグロビンの吸収が大きい400nm~500nmの波長領域の単波長の光、または525nm~580nmの波長領域の単色光を選択することができる。これらの波長領域の吸収係数は、ヘモグロビンが存在することで高い値を示すため、白血球の細胞質の吸収係数との比は1以上となる。
 実施態様として、円形に近い細胞核が存在する細胞で、しかもヘモグロビンを有する細胞を、有核赤血球の候補として識別することが可能である。さらに、胎児由来の有核赤血球および成人由来の有核赤血球は、胎児のヘモグロビンがヘモグロビンF(HbF)であり、成人のヘモグロビンがヘモグロビンA(HbA)であることから、異なる酸素結合能力により生じる分光特性の差異を利用して、胎児由来の有核赤血球を選別することが可能である。
 細胞質の吸収係数を測定する場合には、顕微分光光度計を用いることができる。顕微分光光度計は、通常の分光光度計と同じ原理を、顕微鏡の光学系を利用する光度計であり、市販の装置を使用することが可能である。
 細胞の形態情報および/または吸光度のみによっては、単離した有核赤血球が胎児由来であるか、または母体(妊婦)由来であるかの確定をすることができない場合がある。しかし、本発明においては、SNPおよび/またはSTR(Short Tandem Repeat:短鎖縦列反復配列)等による多型解析、ならびにY染色体の存在の確認など、DNA解析によって、単離した有核赤血球の由来を判別することができる。
(ゲノムDNAの抽出)
 単一細胞からのゲノムDNA抽出は、従来公知の方法によって行うことができる。市販のDNA抽出キットを使用することが好ましい。単一細胞からのゲノムDNA抽出を行う際に使用することができる市販のDNA抽出キットとしては、例えば、Single Cell WGA Kit(New England Biolabs社製)などが挙げられる。市販のDNA抽出キットを使用する場合には、キット付属のプロトコールに従ってDNA抽出を行えばよいが、プロトコールを適宜改変して用いてもよい。
《少数細胞から抽出したゲノムDNA》
 少数細胞から抽出したゲノムDNAは、例えば、細胞の集団の中から少数の細胞を分離し、分離した少数の細胞からゲノムDNAを抽出することによって、もしくは細胞の集団の中から単一の細胞を単離し、単離した単一の細胞を混合し、混合した少数の細胞からゲノムDNAを抽出することによって、もしくは細胞の集団の中から単一の細胞を単離し、単離した単一の細胞からゲノムDNAを抽出し、抽出したゲノムDNAを混合することによって、またはこれらのうち2つ以上の組合せによって、調製することができる。
〈マルチプレックスPCR〉
 マルチプレックスPCRは、複数のプライマーセットを使用して、染色体上の複数のローカスを同時に増幅するPCRである。
《サーマルサイクル》
 マルチプレックスPCRは、熱変性、アニーリングおよび伸長を含む複数のサーマルサイクルを含む。所望により、さらに、初期熱変性および/または最終伸長などを含んでもよい。
(熱変性)
 熱変性の条件は、ゲノムDNAの2本鎖を解離させて1本鎖にすることができる温度および時間であれば特に限定されない。
 熱変性の好適な条件の例として、温度を90℃~95℃、好ましくは94±2℃に設定し、時間を10秒~60秒、好ましくは30秒±5秒に設定することが挙げられる。
 熱変性の温度および時間は、鋳型のゲノムDNA量などに応じて、適宜変更してもよい。
(アニーリング)
 アニーリングの条件は、解離して1本鎖となったゲノムDNAにプライマーが結合することができる温度および時間であれば特に限定されない。
 アニーリングの好適な条件の例として、温度を50℃~65℃、好ましくは60±2℃に設定し、時間を10秒~90秒、好ましくは60±10秒に設定することが挙げられる。
 アニーリングの温度および時間は、プライマーのGC含量(全核酸塩基中のグアニン(Guanine,略号=G)およびシトシン(Cytosine,略号=C)の合計モル百分率をいう。)、Tm値(二本鎖DNAの50%が解離して一本鎖DNAになる温度である。Tmはmelting temperatureに由来する。)、および配列の偏りなどに応じて、適宜変更してもよい。
(伸長)
 伸長の条件は、DNAポリメラーゼによってプライマーの3’末端からのポリヌクレオチド鎖の伸長をすることができる温度および時間であれば特に限定されない。
 伸長の好適な条件の例として、温度を72±2℃に設定し、時間を10秒~60秒、好ましくは30±5秒に設定することが挙げられる。
 伸長の温度および時間は、DNAポリメラーゼの種類および/またはPCR増幅産物のサイズなどに応じて、適宜変更してもよい。
(初期熱変性)
 サーマルサイクルの最初のサイクルを開始する前に、初期熱変性を行ってもよい。
 初期熱変性の条件は、熱変性の条件と同じ条件であってもよいし、異なる条件であってもよい。異なる条件とする場合、温度は熱変性と同じ温度に設定し、時間を熱変性よりも長い時間に設定することが好ましい。
 初期熱変性を行うことによって、サーマルサイクルの1サイクル目においてゲノムDNAの2本鎖の解離をより確実なものとすることができる。
(最終伸長)
 サーマルサイクルの最後のサイクルを終了した後に、最終伸長を行ってもよい。
 最終伸長の条件は、伸長の条件と同じ条件であってもよいし、異なる条件であってもよい。異なる条件とする場合、温度は伸長と同じ温度に設定し、時間を伸長よりも長い時間に設定することが好ましい。
 最終伸長を行うことによって、ポリヌクレオチド鎖の伸長をより確実なものとすることができる。
(サイクル数)
 サイクル数は複数であれば特に限定されないが、好ましくは20サイクル~40サイクル、より好ましくは35±5サイクルである。
 サイクル数は、マルチプレックスPCRの鋳型となるゲノムDNAの量、マルチプレックスPCRに供するプライマーセットの数、および/またはマルチプレックスPCRの反応溶液の量などに応じて、適宜変更してもよい。
 PCRによる増幅産物は、理論的には1サイクルごとに2倍に増加するが、実際には、あるサイクルでプラトーに達してしまい、それ以上の増幅産物を望めないばかりか、非特異的増幅産物が増加する可能性もあり、一概にサイクル数を増加させることが望ましいとはいえない。
(プライマーセット)
 マルチプレックスPCRにおいて使用するプライマーセットは、後述する「プライマーセットの設計方法」に従って設計したものを使用することができる。このプライマーセットはプライマーダイマーを形成しないように設計されているため、非特異的増幅産物の増大を抑制することができ、マルチプレックスPCR自体の感度を向上させることができる。
 プライマーセットの数は、増幅しようとするローカスの数に対応して設定される。同一のローカスを増幅するプライマーセットが2組以上あってもよいし、2つ以上のローカスを1組のプライマーセットで増幅してもよい。通常、ローカスとプライマーセットが1対1で対応することが好ましい。
《染色体上の複数のローカス》
(染色体)
 染色体はヒトの1番染色体から22番染色体までの常染色体、ならびにX染色体およびY染色体の性染色体からなる群から選択される1つ以上を含む。
 染色体は、染色体数定量の対象である染色体(本発明において、特に、「関心ある染色体」という場合がある。)を含めば特に限定されない。
 染色体は、染色体数定量の対象である染色体の他に、染色体定量のための基準値を与える染色体、および/またはローカスの有無にのみ興味がある染色体などを含んでもよい。すなわち、マルチプレックスPCRによって増幅しようとするローカスが存在する染色体であっても、染色体定量のための基準値を与える染色体、および/またはローカスの有無にのみ興味がある染色体などは、染色体数定量の対象である染色体(関心ある染色体)から除外する。
 関心ある染色体は、特に好ましくは、13番染色体、18番染色体および21番染色体からなる群から選択される少なくとも1つを含む。これらの染色体は他の常染色体に比べてトリソミーまたはモノソミーを生じやすいからである。
 染色体定量のための基準値を与える染色体としては、たとえば、トリソミーもしくはモノソミーを生じやすい染色体以外の常染色体、および/またはX染色体が挙げられる。なかでも、X染色体は男女の性別に依らず存在することから、好ましいものの一つである。
 ローカスの有無にのみ興味がある染色体としては、たとえば、Y染色体が挙げられる。Y染色体の存在は男女の性別のうち男性を強く示唆するものだからである。胎児の染色体数を定量する場合には、母親(母体)由来の細胞と胎児由来の細胞とを判別するため、Y染色体を含むことが好ましい。Y染色体の存在は、細胞の母親(母体)由来の否定を示唆するからである。
(複数のローカス)
 複数のローカスは、染色体上のローカスのうち、マルチプレックスPCRによって増幅しようとするローカスである。
 上述したとおり、染色体は染色体数定量の対象である染色体(関心ある染色体)に加えて、染色体定量のための基準値を与える染色体、および/またはローカスの有無にのみ興味がある染色体なども含んでもよいことから、複数のローカスもまた、染色体数定量の対象である染色体上に存在するものに限定されず、染色体定量のための基準値を与える染色体上に存在するローカス、および/またはローカスの有無にのみ興味がある染色体上に存在するローカスなどを含んでもよい。
 ローカスは、遺伝子領域および非遺伝子領域のいずれに存在するものであってもよい。
 遺伝子領域は、タンパク質をコードする遺伝子、リボソームRNA(Ribonucleic acid:リボ核酸)遺伝子およびトランスファーRNA遺伝子等が存在するコード領域、ならびに遺伝子を分断するイントロン、転写調節領域、5’-リーダー配列および3’-トレーラー配列等が存在する非コード領域を含む。
 非遺伝子領域は、偽遺伝子、スペーサー、応答エレメントおよび複製開始点などの非繰返し配列、ならびに縦列型反復配列および分散型反復配列などの繰返し配列を含む。
 ローカスは、例えば、SNP(Single Nucleotide Polymorphism:一塩基多型)、SNV(Single Nucleotide Variant:一塩基変異)、STRP(Short Tandem Repeat Polymorphism:縦列型反復配列多型)、ミューテーション、ならびに挿入および/または欠失(インデル)などの座位であってもよい。
(ローカスの数)
 染色体数定量の対象である染色体(関心ある染色体)上のローカスの数は、関心ある染色体あたり、80以上であれば特に限定されないが、好ましくは80以上1000以下、より好ましくは100以上1000以下、さらに好ましくは100以上500以下、いっそう好ましくは100以上200以下である。特に、染色体あたりのローカスの数を150以上200以下とすることが好ましい。
 関心ある染色体上あたりのローカスの数がこの範囲内であると、カバレッジの変動係数が十分に小さくなり、染色体数定量の精度を向上することができる。
[染色体数の定量工程]
 本発明においては、染色体数の定量は、従来公知の方法によって行うことができるが、例えば、次世代シーケンサを用いて、後述する方法で行うことが好ましい。
 次世代シークエンサーとしては、特に、MiSeq(イルミナ社製)を用いることが望ましい。複数のマルチプレックスPCR増幅産物を次世代シークエンサー「MiSeq」を用いてシークエンシングする場合、それぞれのマルチプレックスPCR増幅産物に6~8塩基で構成されるサンプル識別配列(インデックス配列)ならびにMiSeqフローセル上のオリゴヌクレオチド配列にハイブリダイゼーションさせるためのP5配列およびP7配列を付加する必要がある。これらの配列の付加により、最大96種類のマルチプレックスPCR増幅産物を1回で測定することが可能である。
 インデックス配列、P5配列およびP7配列をマルチプレックスPCR増幅産物の両末端へ付加する方法としては、アダプターライゲーション法またはPCR法などを用いることが可能である。
 MiSeqで得られたシーケンスデータを解析して染色体数を定量する方法としては、BWA(Burrows-Wheeler Aligner;バーロウズ-ホィーラー・アライナー:Li, H.、外1名、「Fast and accurate short read alignment with Burrows-Wheeler transform」、Bioinformatics、2009年、第25巻、第14号、p.1754-1760.;Li, H.、外1名、「Fast and accurate long-read alignment with Burrows-Wheeler transform」、Bioinformatics、2010年、第26巻、第5号、p.589-595)を用いて既知のヒトゲノム配列へマッピングすることが好ましく、遺伝子異常を解析する手段としては、SAMtools(Li, Heng、外、「The Sequence Alignment/Map format and SAMtools」、Bioinformatics、2009年、第25巻、第16号、p.2078-2079;SAMは“Sequence Alignment/Map”に由来する。)、および/またはBEDtools(Quinlan, A. R.、外1名、「BEDTools: a flexible suite of utilities for comparing genomic features」、Bioinformatics、2010年、第26巻、第6号、p.841-842)を用いることで染色体数の定量を実施することが好ましい。
 例えば、胎児有核赤血球の細胞が同定され、標的ローカスをPCR増幅して得たDNA断片に対して、あらかじめ決定された140bp以上180bp以下の領域の配列を有する増幅産物の増幅量(カバレッジ、シーケンスデプスまたは配列リード数)をシークエンサーで求めることができる。
 基準(参照)として、母親由来の有核赤血球の細胞と同定された細胞の、あらかじめ決定された140bp以上180bp以下の領域の配列を有する増幅産物の増幅量(配列リード数)をシークエンサーで求める。胎児が正常な状態であれば、胎児由来の増幅産物の増幅量(配列リード数)と、母親由来の増幅産物の増幅量(配列リード数)とは、ほぼ、1:1の量比となると予想される。胎児が増幅した染色体由来のトリソミーである疾患を有する場合には、その比は、1:1.5(または2:3)となることが予想される。
 本発明においては、あらかじめ、複数の妊娠母体から採取した、正常な胎児を妊娠した場合の母親由来のPCR増幅産物の量(配列リード数)に対する胎児由来のPCR増幅産物の量(配列リード数)の比を複数求め、その分布を求める。また、トリソミーの胎児を妊娠した場合の母親由来の増幅産物の量(配列リード数)に対する胎児由来の増幅産物の量(配列リード数)の比を複数求め、その分布を求める。この2つの分布が重ならない領域にカットオフ値を設定することもできる。この、あらかじめ決定したカットオフ値と、増幅産物の比を求めた結果とを比較して、その比がカットオフ値以下であれば、胎児は正常であり、カットオフ値以上であれば、トリソミーである、と検査結果を解釈することも可能である。
[プライマーセットの設計方法]
 本発明の特徴的な点の一つであるプライマーセットの設計方法について、以下に詳細に説明する。
 本発明における、プライマーセットの設計方法の第1の態様は、以下の工程を備える。
(a)複数のローカスからマルチプレックスPCRに供するプライマーセットを設計する標的ローカスを選択する、標的ローカス選択工程;
(b)上記標的ローカスを増幅するためのプライマー候補の塩基配列を、染色体上における上記標的ローカスの近傍領域の塩基配列に基づいて、フォワード側プライマーおよびリバース側プライマーのそれぞれについて少なくとも1つずつ作成する、プライマー候補塩基配列作成工程;
(c)上記標的ローカスを増幅するためのプライマー候補の塩基配列について、比較する部分配列が上記標的ローカスを増幅するためのプライマー候補の塩基配列の3’末端を含むという条件の下に、ペアワイズにローカルアラインメントを行って、ローカルアラインメントスコアを求める、ローカルアラインメント工程;
(d)上記ローカルアラインメント工程において求めたローカルアラインメントスコアに基づいて、上記標的ローカスを増幅するためのプライマー候補の塩基配列の第1段階の選抜を行う、第1段階選抜工程;
(e)上記標的ローカスを増幅するためのプライマー候補の塩基配列の3’末端を含む、予め設定した配列長の塩基配列について、ペアワイズにグローバルアラインメントを行って、グローバルアラインメントスコアを求める、グローバルアラインメント工程;
(f)上記グローバルアラインメント工程において求めたグローバルアラインメントスコアに基づいて、上記標的ローカスを増幅するためのプライマー候補の塩基配列の第2段階の選抜を行う、第2段階選抜工程;ならびに
(g)上記第1段階選抜工程および上記第2段階選抜工程のいずれにおいても選抜されたプライマー候補の塩基配列の塩基配列を、上記標的ローカスを増幅するためのプライマーの塩基配列として採用する、プライマー採用工程。
 ただし、上記(c)ローカルアラインメント工程および上記(d)第1段階選抜工程の両工程は、上記(e)グローバルアラインメント工程および上記(f)第2段階選抜工程の両工程よりも前もしくは後に、または上記(e)グローバルアラインメント工程および上記(f)第2段階選抜工程の両工程と並行して行われる。
 本発明におけるプライマーセットの設計方法の第1の態様の各工程について詳細に説明する。
(a)標的ローカス選択工程
 図1のブロックダイアグラムに「(第nの)標的ローカス選択工程」として示す。
 標的ローカス選択工程は、上記複数のローカスから上記マルチプレックスPCRに供するプライマーセットを設計するローカス(標的ローカス)を選択する工程である。
 マルチプレックスPCRによって増幅しようとする複数のローカスの数をN個(ただし、NはN≧2を満たす整数である。)として、選択しうる標的ローカスの数はn個(nは1≦n≦Nを満たす整数である。)である。
 2個以上のローカスを選択した場合は、それぞれのローカスについて、逐次プライマーセットを設計してもよいし、並行してプライマーセットを設計してもよいし、同時にプライマーセットを設計してもよい。
(b)プライマー候補塩基配列作成工程
 図1のブロックダイアグラムに「(第nの)プライマー候補塩基配列作成工程」として示す。
 プライマー候補塩基配列作成工程は、上記標的ローカスを増幅するためのプライマー候補の塩基配列を、染色体上における上記標的ローカスの近傍領域の塩基配列に基づいて、フォワード側プライマーおよびリバース側プライマーのそれぞれについて少なくとも1つずつ作成する工程である。
 なお、プライマー候補の塩基配列は、上記近傍領域の塩基配列に基づいて作成されるが、上記近傍領域の塩基配列に相補的でない部分を5’末端側に有していてもよい。このような、プライマーの5’末端側の相補的でない部分は、マルチプレックスPCRによる増幅産物に特定の塩基配列を付加するために用いられる場合がある。
 標的ローカスの近傍領域は、染色体上の標的ローカスを含む領域のうち標的ローカスを除いた部分をいう。
 近傍領域の長さは特に限定されないが、PCRによって伸張可能な長さ以下であることが好ましく、増幅を所望するDNAフラグメント長の上限以下であることがより好ましい。特に、濃縮選択および/またはシーケンスリードがかかりやすい長さであることが好ましい。PCRにおいて用いる酵素(DNAポリメラーゼ)の種類等によって、適宜変更してもよい。具体的な近傍領域の長さは、好ましくは20~500塩基程度、より好ましくは20~300塩基程度、さらに好ましくは20~200塩基程度、いっそう好ましくは50~200塩基程度である。
 また、プライマー候補の塩基配列を作成する際には、プライマーの相補部分の長さ、プライマーの全長、GC含量(全核酸塩基中のグアニン(Guanine,略号=G)およびシトシン(Cytosine,略号=C)の合計モル百分率をいう。)、Tm値(二本鎖DNAの50%が解離して一本鎖DNAになる温度である。Tmはmelting temperatureに由来する。)、および配列の偏りなど、一般的なプライマーの設計方法において留意する点は同じである。
 なお、プライマーの相補部分とは、アニーリングの際にプライマーが鋳型の一本鎖DNAとハイブリダイズする部分をいう。プライマーの相補部分の塩基配列は標的ローカスの近傍領域の塩基配列に基づいて作成される。本発明において、プライマーは相補部分の5’末端に非相補部分が連結されていてもよい。非相補部分は、鋳型DNAの一本鎖DNAとハイブリダイズすることを意図していない部分である。プライマーの非相補部分の塩基配列としては、マルチプレックスPCRによる増幅産物を鋳型としてPCR(セカンドPCR)を行い、シークエンス用の配列を増幅産物に付加するために用いられるテール配列などがある。
 プライマーの相補部分の長さ(ヌクレオチド数)は、特に限定されないが、好ましくは10mer~30mer、より好ましくは15mer~30mer、さらに好ましくは15mer~25merである。プライマーの相補部分の長さがこの範囲内であると、特異性および増幅効率に優れるプライマーを設計しやすい。
 GC含量は、特に限定されないが、好ましくは40モル%~60モル%、より好ましくは45モル%~55モル%である。GC含量がこの範囲内であると、高次構造に起因する特異性および増幅効率の低下の問題が生じにくい。
 Tm値は、特に限定されないが、好ましくは50℃~65℃の範囲内、より好ましくは55℃~65℃の範囲内である。
 Tm値は、OLIGO Primer Analysis Software(Molecular Biology Insights社製)、または、Primer3(http://www-genome.wi.mit.edu/ftp/distribution/software/)等のソフトウエアを用いて計算することができる。
 また、プライマーの塩基配列中のA、T、GおよびCの数(それぞれ、nA、nT、nGおよびnCとする)から、下記式によって計算により求めることもできる。
 Tm値(℃)=2(nA+nT)+4(nC+nG)
 Tm値の算出方法はこれらに限定されず、従来公知の種々の方法によってTm値を算出することができる。
 プライマー候補の塩基配列は、全体的に塩基の偏りがない配列にすることが好ましい。例えば、部分的にGCリッチな配列および部分的にATリッチな配列を避けることが望ましい。
 また、Tおよび/またはCの連続(ポリピリミジン)、ならびにAおよび/またはGの連続(ポリプリン)も避けることが望ましい。
 さらに、3’末端塩基配列が、GCリッチな配列またはATリッチな配列を避けることが好ましい。3’末端塩基はGまたはCが好ましいが、これらに限定はされない。
(特異性チェック工程)
 所望により、特異性チェック工程を実施してもよい。
 特異性チェック工程は、上記(b)プライマー候補塩基配列作成工程において作成した各プライマー候補の塩基配列のそれぞれのゲノムDNAに対する配列相補性に基づいて、プライマー候補の塩基配列の特異性を評価する工程である。
 特異性のチェックは、ゲノムDNAの塩基配列とプライマー候補の塩基配列とのローカルアラインメントを行い、ローカルアラインメントスコアが予め設定した値未満である場合には、そのプライマー候補の塩基配列はゲノムDNAに対する相補性が低く、特異性が高いと評価することができる。ここで、ローカルアラインメントは、ゲノムDNAの相補鎖についても行うことが望ましい。プライマーが1本鎖DNAであるのに対して、ゲノムDNAは2本鎖だからである。また、プライマー候補の塩基配列の代わりに、これと相補的な塩基配列を用いてもよい。相補性は相補鎖に対する相同性と考えることができる。
 また、プライマー候補の塩基配列をクエリー配列として、ゲノムDNA塩基配列データベースに対して相同性検索をしてもよい。相同性検索ツールとしては、例えば、BLAST(Basic Local Alignment Search Tool:ブラスト)(Altschul, S. A.、外4名、“Basic Local Alignment Search Tool”、Journal of Molecular Biology、1990年、10月、第215巻、p.403-410)およびFASTA(ファストエー)(Pearson, W. R.、外1名、“Improved tools for biological sequence comparison”、米国科学アカデミー紀要、米国科学アカデミー、1988年、4月、第85巻、p.2444-2448)等が挙げられる。相同性検索を行った結果として、ローカルアラインメントを得ることができる。
 相補塩基(マッチ)、非相補塩基(ミスマッチ)およびギャップ(挿入および/または欠失(インデル))のそれぞれに対して付与するスコア(本明細書において「スコアリング・システム」という場合がある。)、およびローカルアラインメントスコアの閾値は、いずれも、特に限定されず、プライマー候補の塩基配列の長さ、および/またはPCR条件等によって、適宜設定することができる。相同性検索ツールを使用する場合には、その相同性検索ツールの既定値を使ってもよい。
 例えば、スコアリング・システムとして、相補塩基(マッチ)=+1、非相補塩基(ミスマッチ)=-1、ギャップ(挿入および/または欠失(インデル))=-3を採用し、閾値を+15に設定することが考えられる。なお、ギャップに対するスコアをギャップペナルティという場合がある。
 プライマー候補の塩基配列がゲノムDNA上の想定外の位置の塩基配列と相補性を有し、特異性が低い場合には、その塩基配列のプライマーを用いてPCRを行った際に、標的ローカスを増幅できず、アーティファクトを増幅する場合があるため、除外する。
(c)ローカルアラインメント工程
 図1のブロックダイアグラムに「(第nの)ローカルアラインメント工程」として示す。
 ローカルアラインメント工程は、上記標的ローカスを増幅するためのプライマー候補の塩基配列について、比較する部分配列が上記標的ローカスを増幅するためのプライマー候補の塩基配列の3’末端を含むという条件の下に、ペアワイズにローカルアラインメントを行って、ローカルアラインメントスコアを求める工程である。
 ローカルアラインメントを行う塩基配列のペアの組合せは、重複を許して選択した組合せであってもよいし、重複を許さず選択した組合せであってもよいが、同一塩基配列のプライマー間でのプライマーダイマー形成性をまだ評価していない場合には、重複を許して選択した組合せが好ましい。
 組合せの総数は、上記(b)プライマー候補塩基配列作成工程において作成した塩基配列の数をm個として、重複を許して選択した場合は、「m+1=(m+1)!/2(m-1)!」通りであり、重複を許さず選択した場合は、「=m(m-1)/2」通りである。
 なお、後述する(e)グローバルアラインメント工程および(f)第2段階選抜工程の両工程を先に行った場合には、(f)第2段階選抜工程で選抜されたプライマー候補に対して、本工程および後述する(d)第1段階選抜工程を行ってもよい。
 ローカルアラインメントは、部分配列に対して行うアラインメントであり、相補性の高い部分を局所的に調べることができる。
 ただし、本発明においては、通常、塩基配列に対して行われているローカルアラインメントとは異なり、「比較する部分配列が塩基配列の3’末端を含む」という条件の下で、ローカルアラインメントを行うこととして、比較する部分配列が両方の塩基配列の3’末端を含むようにした。さらに、本発明においては、「比較する部分配列が、塩基配列の3’末端を含む」という条件、すなわち、「比較する部分配列が、一方の配列の3’末端から始まり他方の配列の3’末端で終わるアラインメントのみを考慮する」という条件、の下でローカルアラインメントを行うこととして、比較する部分配列が両方の塩基配列の3’末端を含むようにする態様が好ましい。
 なお、ローカルアラインメントは、ギャップを挿入してもよい。ギャップは塩基の挿入および/または欠失(インデル)を意味する。
 また、ローカルアラインメントは、塩基配列ペア間で塩基が相補的である場合を一致(マッチ)とし、相補的でない場合を不一致(ミスマッチ)とする。
 ローカルアラインメントは、マッチ、ミスマッチおよびインデルのそれぞれにスコアを与え、合計スコア(ローカルアラインメントスコア)が最大となるように行う。マッチ、ミスマッチおよびインデルのそれぞれに与えるスコアは適宜設定すればよい。例えば、下記表1のようにマッチ、ミスマッチおよびインデルのそれぞれに与えるスコアを設定してもよい。なお、表1中「-」はギャップ(挿入および/または欠失(インデル))を表す。
Figure JPOXMLDOC01-appb-T000001
 例えば、以下の表2に示す配列番号1および2の塩基配列について、ローカルアラインメントを行うことを考える。ここで、マッチ、ミスマッチおよびギャップのそれぞれに与えるスコアは、表1に示すとおりとする。
Figure JPOXMLDOC01-appb-T000002
 配列番号1および2の塩基配列から、表3に示すドット行列(ドットマトリクス)を作成する。具体的には、配列番号1の塩基配列を左から右へ、5’から3’の向きで並べ、配列番号2の塩基配列を下から上へ、5’から3’の向きで並べ、塩基が相補的であるグリッドに「・」を記入して、表3に示すドットマトリクスを得る。
Figure JPOXMLDOC01-appb-T000003
 表3に示すドットマトリクスから、以下の表4に示す、部分配列のアラインメント(ペアワイズアラインメント)を得る(表3の太線部分を参照)。
Figure JPOXMLDOC01-appb-T000004
 表4より、マッチ(+1)×7、ミスマッチ(-1)×12、およびギャップ(-3)×1であるから、このローカルラインメントについて、ローカルアラインメントスコアは「-8」である。
 なお、アラインメント(ペアワイズアラインメント)は、ここに例示したドットマトリクス法のみならず、動的計画法、ワード法、またはその他種々の方法により得ることができる。
(d)第1段階選抜工程
 図1のブロックダイアグラムに「(第nの)第1段階選抜工程」として示す。
 第1段階選抜工程は、上記(c)ローカルアラインメント工程において求めたローカルアラインメントスコアに基づいて、上記標的ローカスを増幅するためのプライマー候補の塩基配列の第1段階の選抜を行う工程である。
 ローカルアラインメントスコアの閾値(第1の閾値)を予め設定しておく。
 ローカルアラインメントスコアが第1の閾値未満であれば、これらの2つの塩基配列のペアはプライマーダイマー形成性が低いと判断し、以降の工程を行う。一方、ローカルアラインメントスコアが第1の閾値以上であれば、これらの2つの塩基配列のペアはプライマーダイマー形成性が高いと判断し、そのペアについては以降の工程を行わない。
 第1の閾値は、特に限定されず、適宜設定することができる。例えば、ポリメラーゼ連鎖反応の鋳型となるゲノムDNAの量などのPCR条件によって、第1の閾値を設定してもよい。
 ここで、上記(c)ローカルアラインメント工程に示した例において、第1の閾値を「3」に設定した場合を考える。
 上の例では、ローカルアラインメントスコアは「-8」であり、第1の閾値である「3」未満であったから、配列番号1および2の塩基配列のペアはプライマーダイマー形成性が低いと判断することができる。
 なお、本工程は、上記(c)ローカルアラインメント工程においてスコアを算出したすべてのペアに対して行う。
(e)グローバルアラインメント工程
 図1のブロックダイアグラムに「(第nの)グローバルアラインメント工程」として示す。
 グローバルアラインメント工程は、上記標的ローカスを増幅するためのプライマー候補の塩基配列の3’末端を含む、予め設定した配列長の塩基配列について、ペアワイズにグローバルアラインメントを行って、グローバルアラインメントスコアを求める工程である。
 グローバルアラインメントを行う塩基配列のペアの組合せは、重複を許して選択した組合せであってもよいし、重複を許さず選択した組合せであってもよいが、同一塩基配列のプライマー間でのプライマーダイマー形成性をまだ評価していない場合には、重複を許して選択した組合せが好ましい。
 組合せの総数は、上記(b)プライマー候補塩基配列作成工程において作成した塩基配列の数をm個として、重複を許して選択した場合は、「m+1=(m+1)!/2(m-1)!」通りであり、重複を許さず選択した場合は、「=m(m-1)/2」通りである。
 なお、上述した(c)ローカルアラインメント工程および(d)第1段階選抜工程の両工程を先に行った場合には、(d)第1段階選抜工程で選抜されたプライマー候補に対して、本工程および後述する(f)第2段階選抜工程を行ってもよい。
 グローバルアラインメントは、「配列全体」に対して行うアラインメントであり、配列全体の相補性を調べることができる。
 ただし、ここで、「配列全体」は、プライマー候補の塩基配列の3’末端を含む、予め設定した配列長の塩基配列の全体である。
 なお、グローバルアラインメントは、ギャップを挿入してもよい。ギャップは塩基の挿入および/または欠失(インデル)を意味する。
 また、グローバルアラインメントは、塩基配列ペア間で塩基が相補的である場合を一致(マッチ)とし、相補的でない場合を不一致(ミスマッチ)とする。
 グローバルアラインメントは、マッチ、ミスマッチおよびインデルのそれぞれにスコアを与え、合計スコア(グローバルアラインメントスコア)が最大となるように行う。マッチ、ミスマッチおよびインデルのそれぞれに与えるスコアは適宜設定すればよい。例えば、上記表1のようにマッチ、ミスマッチおよびインデルのそれぞれに与えるスコアを設定してもよい。なお、表1中「-」はギャップ(挿入および/または欠失(インデル))を表す。
 例えば、以下の表5に示す配列番号1および2の塩基配列について、それぞれの3’末端の3塩基(大文字部分。「3’末端を含む、予め設定した配列長の塩基配列」に該当する。)についてグローバルアラインメントを行うことを考える。ここで、マッチ、ミスマッチおよびギャップのそれぞれに与えるスコアは、表1に示すとおりとする。
Figure JPOXMLDOC01-appb-T000005
 スコアが最大となるように、配列番号1の塩基配列の3’末端の3塩基(大文字箇所)および配列番号2の3’末端の3塩基(大文字箇所)の塩基配列についてグローバルアラインメントを行い、以下の表6に示すアラインメント(ペアワイズアラインメント)を得る。
Figure JPOXMLDOC01-appb-T000006
 表6より、マッチ(+1)×0、ミスマッチ(-1)×3、およびギャップ(-3)×0であるから、このグローバルアラインメントについて、グローバルアラインメントスコアは「-3」である。
 なお、アラインメント(ペアワイズアラインメント)は、ドットマトリクス法、動的計画法、ワード法、またはその他種々の方法により得ることができる。
(f)第2段階選抜工程
 図1のブロックダイアグラムに「(第nの)第2段階選抜工程」として示す。
 第2段階選抜工程は、上記(e)グローバルアラインメント工程において求めたグローバルアラインメントスコアに基づいて、上記標的ローカスを増幅するためのプライマー候補の塩基配列の第2段階の選抜を行う工程である。
 グローバルアラインメントスコアの閾値(第2の閾値)を予め設定しておく。
 グローバルアラインメントスコアが第2の閾値未満であれば、これらの2つの塩基配列のペアはプライマーダイマー形成性が低いと判断し、以降の工程を行う。一方、グローバルアラインメントスコアが第2の閾値以上であれば、これらの2つの塩基配列のペアはプライマーダイマー形成性が高いと判断し、そのペアについては以降の工程を行わない。
 第2の閾値は、特に限定されず、適宜設定することができる。例えば、ポリメラーゼ連鎖反応の鋳型となるゲノムDNAの量などのPCR条件によって、第2の閾値を設定してもよい。
 なお、プライマーの3’末端から数塩基の塩基配列を同一塩基配列とすることによって、それぞれのプライマーの塩基配列の3’末端を含む予め設定した塩基数の塩基配列について、ペアワイズにグローバルアラインメントを行って求めたグローバルアラインメントスコアを第2の閾値未満とすることができる。
 ここで、上記(e)グローバルアラインメント工程に示した例において、第2の閾値を「3」に設定した場合を考える。
 上の例では、グローバルアラインメントスコアは「-3」であり、第2の閾値である「3」未満であったから、配列番号1および2の塩基配列のペアはプライマーダイマー形成性が低いと判断することができる。
 なお、本工程は、上記(e)グローバルアラインメント工程においてスコアを算出したすべてのペアに対して行う。
 上記(c)ローカルアラインメント工程および上記(d)第1段階選抜工程の両工程は、上記(e)グローバルアラインメント工程および上記(f)第2段階選抜工程の両工程よりも前もしくは後に、または上記(e)グローバルアラインメント工程および上記(f)第2段階選抜工程の両工程と並行して実施してもよい。
 また、計算量を低減させるため、上記(e)グローバルアラインメント工程および上記(f)第2段階選抜工程の両工程を先に実施して、上記(f)第2段階選抜工程を通過した組合せに対して、上記(c)ローカルアラインメント工程および上記(d)第1段階選抜工程の両工程を実施することが好ましい。特に、標的ローカスの数が増加するほど、プライマー候補の塩基配列数が増加するほど、計算量を低減させる効果が大きく、全体の処理の高速化を図ることができる。
 これは、上記(e)グローバルアラインメント工程では「予め設定した配列長」という短い長さの塩基配列についてグローバルアラインメントを行うので、3’末端を含むという条件下で塩基配列全体から相補性が高い部分配列を見つけるローカルアラインメントスコアよりも計算量が少なく、高速に処理できるからである。なお、通常知られているアルゴリズムでは、同じ長さの配列に対するアラインメントであれば、ローカルアラインメントよりもグローバルアラインメントの方が高速であることが知られている。
(増幅配列長チェック工程)
 所望により、幅配列長チェック工程を実施してもよい。
 幅配列長チェック工程は、上記(d)第1段階選抜工程および上記(f)第2段階選抜工程においてプライマーダイマー形成性が低いと判断されたプライマー候補の塩基配列のペアに対して、ゲノムDNAまたは染色体DNA上でのプライマー候補の塩基配列の端部間の距離を計算し、その距離が予め設定した範囲内であるか否かを判断する工程である。
 塩基配列の端部間の距離が予め設定した範囲内であれば、そのプライマー候補の塩基配列のペアは、標的ローカスを適切に増幅できる可能性が高いと判断することができる。プライマー候補の塩基配列の端部間の距離は、特に限定されず、酵素(DNAポリメラーゼ)の種類等のPCR条件によって、適宜設定することができる。例えば、100~200塩基(対)の範囲内、120~180塩基(対)の範囲内、140~180塩基(対)の範囲内、140~160塩基(対)の範囲内、160~180塩基(対)の範囲内など、様々な範囲に設定することができる。
(g)プライマー採用工程
 図1のブロックダイアグラムに「(第nの)プライマー採用工程」として示す。
 プライマー採用工程は、上記(d)第1段階選抜工程および上記(f)第2段階選抜工程のいずれにおいても選抜されたプライマー候補の塩基配列の塩基配列を、上記標的ローカスを増幅するためのプライマーの塩基配列として採用する工程である。
 すなわち、本工程では、それぞれのプライマー候補の塩基配列について、比較する部分配列がその塩基配列の3’末端を含むという条件の下に、ペアワイズでローカルアラインメントを行って求めたローカルアラインメントスコアが第1の閾値未満であり、かつ、それぞれのプライマー候補の塩基配列の3’末端を含む予め設定した塩基数の塩基配列について、ペアワイズでグローバルアラインメントを行って求めたグローバルアラインメントスコアが第2の閾値未満であるプライマー候補の塩基配列を、標的ローカスを増幅するためのプライマーの塩基配列として採用する。
 例えば、表7に示す配列番号1および2の塩基配列について、標的ローカスを増幅するためのプライマーの塩基配列として採用することを考える。
Figure JPOXMLDOC01-appb-T000007
 既に記載したように、ローカルアラインメントスコアは「-8」であり、第1の閾値である「3」未満である。そして、グローバルアラインメントスコアは「-3」であり、第2の閾値である「3」未満である。
 したがって、配列番号1で示されるプライマー候補の塩基配列および配列番号2で示されるプライマー候補の塩基配列を、標的ローカスを増幅するためのプライマーの塩基配列として採用することができる。
 本発明における、プライマーセットの設計方法の第2の態様は、以下の工程を備える。
(a)複数のローカスからマルチプレックスPCRに供するプライマーセットを設計する第nの標的ローカスを選択する、第nの標的ローカス選択工程;
(b)上記第nの標的ローカスを増幅するためのプライマー候補の塩基配列を、染色体上における上記第nの標的ローカスの近傍領域の塩基配列に基づいて、フォワード側プライマーおよびリバース側プライマーのそれぞれについて少なくとも1つずつ作成する、第nのプライマー候補塩基配列作成工程;
(c)上記第nの標的ローカスを増幅するためのプライマー候補の塩基配列について、比較する部分配列が上記第nの標的ローカスを増幅するためのプライマー候補の塩基配列の3’末端を含むという条件の下に、ペアワイズにローカルアラインメントを行って、ローカルアラインメントスコアを求める、第nのローカルアラインメント工程;
(d)上記第nのローカルアラインメント工程において求めたローカルアラインメントスコアに基づいて、上記第nの標的ローカスを増幅するためのプライマー候補の塩基配列の第n段階の選抜を行う、第nの第n段階選抜工程;
(e)上記第nの標的ローカスを増幅するためのプライマー候補の塩基配列の3’末端を含む、予め設定した配列長の塩基配列について、ペアワイズにグローバルアラインメントを行って、グローバルアラインメントスコアを求める、第nのグローバルアラインメント工程;
(f)上記第nのグローバルアラインメント工程において求めたグローバルアラインメントスコアに基づいて、上記第nの標的ローカスを増幅するためのプライマー候補の塩基配列の第2段階の選抜を行う、第nの第2段階選抜工程;ならびに
(g)上記第nの第n段階選抜工程および上記第nの第2段階選抜工程のいずれにおいても選抜されたプライマー候補の塩基配列を、上記第nの標的ローカスを増幅するためのプライマーの塩基配列として採用する、第nのプライマー採用工程。
 ここで、nはn≧1を満たす整数であり、上記(c)第nのローカルアラインメント工程および上記(d)第nの第1段階選抜工程の両工程は、上記(e)第nのグローバルアラインメント工程および上記(f)第nの第2段階選抜工程の両工程よりも前もしくは後に、または上記(e)第nのグローバルアラインメント工程および上記(f)第nの第2段階選抜工程の両工程と並行して行われる。
 また、複数のローカスの数N(NはN≧2を満たす整数である。)がnよりも大きい場合は、上記nをn+1と置換して、複数のローカスのすべてについてプライマーセットが採用されるまで繰り返す。
nをn+1と置換した場合の各工程を以下に示す。
(an+1)複数のローカスから、既に選択された標的ローカスとは異なる、マルチプレックスPCRに供するプライマーセットを設計する第n+1の標的ローカスを選択する、第n+1の標的ローカス選択工程;
(bn+1)上記第n+1の標的ローカスを増幅するためのプライマー候補の塩基配列を、染色体上における上記第n+1の標的ローカスの近傍領域の塩基配列に基づいて、フォワード側プライマーおよびリバース側プライマーのそれぞれについて、少なくとも1つずつ作成する、第n+1のプライマー候補塩基配列作成工程;
(cn+1)上記第n+1の標的ローカスを増幅するためのプライマー候補の塩基配列および既に採用されたプライマーの塩基配列について、比較する部分配列が上記第n+1の標的ローカスを増幅するためのプライマー候補の塩基配列および上記既に採用されたプライマーの塩基配列の3’末端を含むという条件の下に、ペアワイズにローカルアラインメントを行って、ローカルアラインメントスコアを求める、第n+1のローカルアラインメント工程;
(dn+1)上記第n+1のローカルアラインメント工程において求めたローカルアラインメントスコアに基づいて、上記第n+1の標的ローカスを増幅するためのプライマー候補の塩基配列の第1段階の選抜を行う、第n+1の第1段階選抜工程;
(en+1)上記第n+1の標的ローカスを増幅するためのプライマー候補の塩基配列および既に採用されたプライマーの塩基配列の3’末端を含む、予め設定した配列長の塩基配列について、ペアワイズにグローバルアラインメントを行って、グローバルアラインメントスコアを求める、第n+1のグローバルアラインメント工程;
(fn+1)上記第n+1のグローバルアラインメント工程において求めたグローバルアラインメントスコアに基づいて、上記第n+1の標的ローカスを増幅するためのプライマー候補の塩基配列の第n+1段階の選抜を行う、第n+1の第n+1段階選抜工程;
(gn+1)上記第n+1の第1段階選抜工程および上記第n+1の第n+1段階選抜工程のいずれにおいても選抜されたプライマー候補の塩基配列を、上記第n+1の標的ローカスを増幅するためのプライマーの塩基配列として採用する、第n+1のプライマー採用工程。
 ここで、上記(cn+1)第n+1のローカルアラインメント工程および上記(dn+1)第n+1の第1段階選抜工程の両工程は、上記(en+1)第n+1のグローバルアラインメント工程および上記(fn+1)第n+1の第n+1段階選抜工程の両工程よりも前もしくは後に、または上記(en+1)第n+1のグローバルアラインメント工程および上記(fn+1)第n+1の第n+1段階選抜工程の両工程と並行して行われる。
 本発明におけるプライマーセットの設計方法の第2の態様の各工程について詳細に説明する。
(a)第nの標的ローカス選択工程
 図1のブロックダイアグラムに「第nの標的ローカス選択工程」として示す。
 第nの標的ローカスを選択する点を除いて、前述した第1の態様の「(a)標的ローカス選択工程」と同様である。
 ただし、n≧2である場合は、第n-1の標的ローカス選択工程までに選択された標的ローカスとは異なるローカスを選択する。
 なお、n≧2である場合、第nの標的ローカスの選択は、第(n-1)の標的ローカスの選択と同時に、またはその後に、することができる。
(b)第nのプライマー候補塩基配列作成工程
 図1のブロックダイアグラムに「第nのプライマー候補塩基配列作成工程」として示す。
 上記第nの標的ローカスを増幅するためのプライマー候補の塩基配列を作成する点を除いて、本発明のプライマーセットの設計方法の第1の態様の「(b)プライマー候補塩基配列作成工程」と同様である。
(特異性チェック工程)
 本発明のプライマーセットの設計方法の第1の態様の「特異性チェック工程」と同様である。本工程は任意の工程であり、実施してもよいし、実施しなくてもよい。
(c)第nのローカルアラインメント工程
 図1のブロックダイアグラムに「第nのローカルアラインメント工程」として示す。
 上記(b)第nのプライマー候補塩基配列作成工程において作成した第nの標的ローカスを増幅するためのプライマー候補の塩基配列についてローカルアラインメントを行う点を除いて、本発明のプライマーセットの設計方法の第1の態様の「(c)ローカルアラインメント工程」と同様である。
 ただし、n≧2である場合は、上記(b)第nのプライマー候補塩基配列作成工程において作成した第nの標的ローカスを増幅するためのプライマー候補の塩基配列および既に採用されたプライマーの塩基配列についてローカルアラインメントを行う。ここで、既に採用されたプライマーの塩基配列とは、第1の標的ローカスから第(n-1)の標的ローカスまでのそれぞれの標的ローカスを増幅するためのプライマーの塩基配列として採用されたすべての塩基配列である(以下同じ)。
(d)第nの第1段階選抜工程
 図1のブロックダイアグラムに「第nの第1段階選抜工程」として示す。
 上記(c)第nのローカルアラインメント工程において求めたローカルアラインメントスコアに基づいて、上記(b)第nのプライマー候補塩基配列作成工程において作成した第nの標的ローカスを増幅するためのプライマー候補の塩基配列を対象に選抜を行う点を除いて、本発明のプライマーセットの設計方法の第1の態様の「(d)第1段階選抜工程」と同様である。
 ただし、n≧2である場合は、上記(b)第nのプライマー候補塩基配列作成工程において作成した第nの標的ローカスを増幅するためのプライマー候補の塩基配列および既に採用されたプライマーの塩基配列を対象に選抜を行う。
(e)第nのグローバルアラインメント工程
 図1のブロックダイアグラムに「第nのグローバルアラインメント工程」として示す。
 上記(b)第nのプライマー候補塩基配列作成工程において作成した第nの標的ローカスを増幅するためのプライマー候補の塩基配列についてグローバルアラインメントを行う点を除いて、本発明のプライマーセットの設計方法の第1の態様の「(e)グローバルアラインメント工程」と同様である。
 ただし、n≧2である場合は、上記(b)第nのプライマー候補塩基配列作成工程において作成した第nの標的ローカスを増幅するためのプライマー候補の塩基配列および既に採用されたプライマーの塩基配列についてグローバルアラインメントを行う。
(f)第nの第2段階選抜工程
 図1のブロックダイアグラムに「第nの第2段階選抜工程」として示す。
 上記(e)第nのグローバルアラインメント工程において求めたグローバルアラインメントスコアに基づいて、上記(b)第nのプライマー候補塩基配列作成工程において作成した第nの標的ローカスを増幅するためのプライマー候補の塩基配列を対象に選抜を行う点を除いて、本発明のプライマーセットの設計方法の第1の態様の「(f)第2段階選抜工程」と同様である。
 ただし、n≧2である場合、上記(b)第nのプライマー候補塩基配列作成工程において作成した第nの標的ローカスを増幅するためのプライマー候補の塩基配列および既に採用されたプライマーの塩基配列を対象に選抜を行う。
 なお、本発明のプライマーセットの設計方法の第1の態様と同様に、上記(c)第nのローカルアラインメント工程および上記(d)第nの第1段階選抜工程の両工程は、上記(e)第nのグローバルアラインメント工程および上記(f)第nの第2段階選抜工程の両工程よりも前または後に実施してもよいし、上記(e)第nのグローバルアラインメント工程および(f)第nの第2段階選抜工程の両工程と並行して実施してもよい。
 また、計算量を低減させるため、上記(e)第nのグローバルアラインメント工程および上記(f)第nの第2段階選抜工程の両工程を先に実施して、上記(f)第nの第2段階選抜工程を通過した組合せに対して、上記(c)第nのローカルアラインメント工程および上記(d)第nの第1段階選抜工程の両工程を実施することが好ましい。特に、標的ローカスの数が増加するほど、プライマー候補の塩基配列数が増加するほど、計算量を低減させる効果が大きく、全体の処理の高速化を図ることができる。
(増幅配列長チェック工程)
 本発明のプライマーセットの設計方法の第1の態様の「増幅配列長チェック工程」と同様である。本工程は任意の工程であり、実施してもよいし、実施しなくてもよい。
(g)第nのプライマー採用工程
 図1のブロックダイアグラムに「第nのプライマー採用工程」として示す。
 本発明のプライマーセットの設計方法の第1の態様の「(g)プライマー採用工程」と同様である。
 以下に、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[単一細胞の単離およびゲノムDNA抽出]
〈単一細胞の単離〉
(末梢血液試料取得)
 7mL採血管に抗凝固剤として、EDTA(ethylenediaminetetraacetic acid:エチレンジアミン四酢酸)のナトリウム塩を10.5mg添加した後、妊婦のボランティアから、インフォームドコンセントを行った後にボランティア血として末梢血7mLを採血管内に得た。その後、生理食塩水を用いて、血液を希釈した。
(有核赤血球の濃縮)
 パーコール液(GEヘルスケアバイオサイエンス社製)を使用して、密度1.070(g/cm)の液および密度1.095(g/cm)の液を調製し、遠沈管に、遠沈管の底部に密度1.095の液2mLを添加し、冷蔵庫で4℃に30分冷却した。
 その後、冷蔵庫から遠沈管を取り出し、密度1.095(g/cm)の液の上に、界面が乱れないようにゆっくり、密度1.070(g/cm)の液2mLを重層した。
 その後、密度1.070(g/cm)の媒体の上に、上記で採血した血液の希釈液11mLをゆっくり、遠沈管に添加した。
 その後、遠心分離を2000rpmで20分間行った。
 遠沈管を取り出し、密度1.070(g/cm)と密度1.095(g/cm)の液の間に沈積した画分を、ピペットを用いて採取した。
 このように採取した血液の画分を、片手でスライドガラス基板1を保持し、その1端に1滴採取した血液の画分を点着した。もう一方の手で別のスライドガラス基板2を持ち、1端をスライドガラス基板1に30°の角度で接触させ、スライドガラス基板2の接触した面を血液の画分に触れることで、毛管現象により2枚のガラスに囲まれた空間に血液が広がった。
 次に、角度を保ったまま、スライドガラス基板2をスライドガラス基板1の血液を置いた領域と反対の領域の方向に滑らせて、スライドガラス基板1上に血液を均一に塗布した。塗布終了後、送風により、1時間以上、十分に乾燥させた。このガラス基板をメイ・ギュルンワルド染色液に3分浸漬し、リン酸緩衝液に浸漬して洗浄後、リン酸緩衝液で希釈して濃度3%としたギムザ染色液に10分浸漬した。
 その後、純水で洗浄し、乾燥させて、染色済みのガラス基板を複数枚作製した。
(細胞の形態情報による有核赤血球の識別)
 スライドガラス基板上に塗布した細胞から、有核赤血球候補を選別するため、電動XYステージと、対物レンズ、CCDカメラを備えた光学顕微鏡の測定系と、XYステージ制御部、Z方向制御部とを備えた制御部と、画像入力部と画像処理部、およびXY位置記録部とを備えた制御ユニット部を準備した。上述したとおり準備した、スライドガラス基板上に塗布した血液細胞をXYステージに乗せて、スライドガラス上に焦点を合わせてスキャンし、光学顕微鏡より得られた画像を取り込み、画像解析により目的の細胞である有核赤血球を探索した。
 画像解析は、以下の2つの条件を満たす細胞を検出し、XY位置を記録した。
 0.25<N/C<1.0      ・・・(1)
 0.65<N/L<0.785    ・・・(2)
 ここで、「N」は画像解析を行う細胞の核領域の面積であり、「C」は画像解析を行う細胞の細胞質の面積であり、「L」は画像解析する細胞の核の長径の長さである。なお、細胞の核の長径の長さは、複雑な形をした細胞核に外接する楕円形の長径の長さと定義した。
 スライドガラス基板上に存在する有核赤血球から、上記式(1)および(2)を満たすものを選択し、次の工程の有核赤血球候補とした。
(胎児有核赤血球の選別)
 細胞の形態情報により有核赤血球を識別する工程で識別した有核赤血球の候補について、顕微分光装置を用いて、分光情報の解析を行った。
 スライドガラス基板上の有核赤血球候補を特定し、そのうちの1つの細胞に対して、415nm近傍の単色光を照射し、その細胞の吸収係数を測定した。
 次に、その細胞の近傍にある核の形状が上記(2)式を満たさない白血球について、有核赤血球の候補に最も近い細胞から3個選択し、同様にして一つ一つの白血球に対して、吸収係数を計算し、平均の吸収係数を計算した。
 スライドガラス基板上の有核赤血球候補の残りの細胞に対しても上記と同様に、吸収係数を測定し、それぞれの細胞の近傍の白血球3個に対して、吸収係数の平均値を算出した。これらの結果から、白血球の平均の吸収係数に対する有核赤血球候補の吸収係数の比が1以上となる細胞を抽出した結果、明らかに1以上である細胞が8個検出された。
(細胞の回収)
 上述したとおり決定された8個の細胞を、マイクロマニュピュレーターを使用して回収した。
〈ゲノムDNA抽出〉
 採取した単一細胞に対して、Single Cell WGA kit(New England Biolabs社製)を用いて細胞溶解を行った。すなわち、キット付属の説明書「Sample Preparation Methods」および「Pre-Amplification Protocol」の記載に従って、各単一細胞を5μLの Cell extraction buffer に混合した後、4.8μLの Extraction Enzyme Dilution Buffer および0.2μLの Cell Extraction Enzyme を混合して総液量を10μLとし、75℃で10分間インキュベートした後、さらに95℃で4分間のインキュベートを行った。
 これにより、ゲノムDNAを調製した。
[実施例1]
〈マルチプレックスPCRによって増幅するローカスの選択〉
 関心ある染色体は13番染色体、18番染色体および21番染色体である。マルチプレックスPCRによって増幅するローカスの数は、13番染色体上のローカス数を181、18番染色体上のローカス数を178、21番染色体上のローカス数を188、X染色体上のローカス数を51、およびY染色体上のローカス数を49と設定し、ローカス数の合計を647とした。選択したローカスを表8~表12に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
〈プライマーセットの設計〉
 マルチプレックスPCRにおいて使用するプライマーセットを、上述した本発明のプライマーセットの設計方法に従って設計し、選抜し、採用した。
 13番染色体、18番染色体、21番染色体、X染色体およびY染色体上の各標的ローカスをPCR増幅するためのプライマーセットとして採用したもののうち、それぞれ20組について、プライマー名、塩基配列および配列番号を表13~表17に示す。
 プライマーセットを設計する際には、増幅産物のサイズを140bp~180bp、Tm値を60℃~70℃、およびプライマーの相補部分の長さを20merに設定した。
 なお、プライマーセットの選抜は、表1に示すスコアリング・システムによりスコアを計算し、ローカルアラインメントスコアおよびグローバルアラインメントスコアの閾値を、いずれも「+3」として、選抜を行った。
Figure JPOXMLDOC01-appb-T000013
 また、配列番号1の塩基配列からなるプライマーおよび配列番号2の塩基配列からなるプライマーの、本発明のプライマーセットの設計方法に従った、3’末端を含む条件の下に行ったローカルアラインメントおよびローカルアラインメントスコア、ならびにプライマーの3’末端3塩基に対するグローバルアラインメントおよびグローバルアラインメントスコアを図2に示す。
 図2に示すとおり、配列番号1の塩基配列と配列番号2の塩基配列は、ローカルラインメントスコアが「-8」、グローバルアラインメントが「-3」であり、いずれも設定した閾値未満であった。
Figure JPOXMLDOC01-appb-T000014
 また、配列番号21の塩基配列からなるプライマーおよび配列番号22の塩基配列からなるプライマーの、本発明のプライマーセットの設計方法に従った、3’末端を含む条件の下に行ったローカルアラインメントおよびローカルアラインメントスコア、ならびにプライマーの3’末端3塩基に対するグローバルアラインメントおよびグローバルアラインメントスコアを図3に示す。
 図3に示すとおり、配列番号21の塩基配列と配列番号22の塩基配列は、ローカルラインメントスコアが「-7」、グローバルアラインメントが「-3」であり、いずれも設定した閾値未満であった。
Figure JPOXMLDOC01-appb-T000015
 また、配列番号41の塩基配列からなるプライマーおよび配列番号42の塩基配列からなるプライマーの、本発明のプライマーセットの設計方法に従った、3’末端を含む条件の下に行ったローカルアラインメントおよびローカルアラインメントスコア、ならびにプライマーの3’末端3塩基に対するグローバルアラインメントおよびグローバルアラインメントスコアを図4に示す。
 図4に示すとおり、配列番号41の塩基配列と配列番号42の塩基配列は、ローカルラインメントスコアが「-3」、グローバルアラインメントが「-3」であり、いずれも設定した閾値未満であった。
Figure JPOXMLDOC01-appb-T000016
 また、配列番号61の塩基配列からなるプライマーおよび配列番号62の塩基配列からなるプライマーの、本発明のプライマーセットの設計方法に従った、3’末端を含む条件の下に行ったローカルアラインメントおよびローカルアラインメントスコア、ならびにプライマーの3’末端3塩基に対するグローバルアラインメントおよびグローバルアラインメントスコアを図5に示す。
 図5に示すとおり、配列番号61の塩基配列と配列番号62の塩基配列は、ローカルラインメントスコアが「-4」、グローバルアラインメントが「-3」であり、いずれも設定した閾値未満であった。
Figure JPOXMLDOC01-appb-T000017
 また、配列番号81の塩基配列からなるプライマーおよび配列番号82の塩基配列からなるプライマーの、本発明のプライマーセットの設計方法に従った、3’末端を含む条件の下に行ったローカルアラインメントおよびローカルアラインメントスコア、ならびにプライマーの3’末端3塩基に対するグローバルアラインメントおよびグローバルアラインメントスコアを図6に示す。
 図6に示すとおり、配列番号81の塩基配列と配列番号82の塩基配列は、ローカルラインメントスコアが「-4」、グローバルアラインメントが「-3」であり、いずれも設定した閾値未満であった。
〈シングルプレックスPCR〉
 以下の手順によりシングルプレックスPCRを行い、採用したプライマーセットが標的ローカスを増幅できることを確認した。
 多数の細胞(Y染色体を持つ細胞を含む)から調製したゲノムDNA(0.5ng/μL) 2μL、プライマーミックス 2μL、マルチプレックスPCRミックス2(タカラバイオ社製) 12.5μL、マルチプレックスPCRミックス1(タカラバイオ社製) 0.125μL、および水 適量を混合して、最終液量 25μLの反応溶液を調製した。
 なお、上記プライマーミックスはプライマーセットの各プライマーを終濃度が50nMとなるように混合したものであり、上記マルチプレックスPCRミックス1および上記マルチプレックスPCRミックス2はマルチプレックスPCRアッセイキット(タカラバイオ社製)に含まれる試薬である。
 調製した反応溶液を用いて、初期熱変性94℃ 60秒を行った後、熱変性94℃ 30秒、アニーリング60℃ 90秒、および伸長反応72℃ 30秒のサーマルサイクルを30サイクル繰り返して、シングルプレックスPCRを行った。
 シングルプレックスPCRを行った反応溶液の一部をアガロースゲル電気泳動にかけ、増幅の有無を確認した。
〈マルチプレックスPCR〉
(標的ローカスの増幅)
 抽出したゲノムDNA(0.5ng/μL) 2μL、プライマーミックス 2μL、マルチプレックスPCRミックス2(タカラバイオ社製) 12.5μL、マルチプレックスPCRミックス1(タカラバイオ社製) 0.125μL、および水 適量を混合して、最終液量 25μLの反応溶液を調製した。
 なお、上記プライマーミックスは、13番染色体上の181箇所のローカスをそれぞれ増幅するためのプライマーセット、18番染色体上の178箇所のローカスをそれぞれ増幅するためのプライマーセット、21番染色体上の188箇所のローカスをそれぞれ増幅するためのプライマーセット、X染色体上の51箇所のローカスをそれぞれ増幅するためのプライマーセット、およびY染色体上の49箇所のローカスをそれぞれ増幅するためのプライマーセットを、各プライマーの終濃度が50nMとなるように混合したものである。また、上記マルチプレックスPCRミックス1および上記マルチプレックスPCRミックス2はマルチプレックスPCRアッセイキット(タカラバイオ社製)に含まれる試薬である。
 調製した反応溶液を用いて、初期熱変性94℃ 60秒を行った後、熱変性94℃ 30秒、アニーリング60℃ 90秒、および伸長反応72℃ 30秒のサーマルサイクルを35サイクル繰り返して、マルチプレックスPCRを行った。
〈DNAシーケンシング〉
(PCR増幅産物の精製)
 マルチプレックスPCRにより得られたPCR増幅産物を、スピンカラム(QIAquick PCR Purification Kit,キアゲン社製)を用いて精製した。また、PCR増幅産物は、磁気ビーズ(例えば、AMPure,ベックマンコールター社製)を用いて精製してもよい。
(インデックス配列およびフローセル結合用配列の付加)
 次に、MiSeq(イルミナ社製)を用いてシーケンス反応を行うため、サンプル識別用のインデックス配列およびフローセル結合用P5、P7配列をPCR増幅産物の両末端に付加した。プライマーとしては、表18に示すD501-F(配列番号101)、D701-R(配列番号102)、D702-R(配列番号103)、D703-R(配列番号104)、D704-R(配列番号105)、D705-R(配列番号106)およびD706-R(配列番号107)を各1.25μM、マルチプレックスPCRによるPCR増幅産物、マルチプレックスPCRミックス1、マルチプレックスPCRミックス2および水と混合して反応溶液を調製した。
 調製した反応溶液を用いて、初期熱変性94℃ 3分の後、熱変性94℃ 30秒、アニーリング50℃ 60秒および伸長反応72℃ 30秒のサーマルサイクルを5サイクル、さらに、熱変性94℃ 45秒、アニーリング 55℃ 60秒および伸長反応72℃ 30秒のサーマルサイクルを11サイクル行った。なお、上記マルチプレックスPCRミックス1および上記マルチプレックスPCRミックス2はマルチプレックスPCRアッセイキット(タカラバイオ社製)に含まれる試薬である。
Figure JPOXMLDOC01-appb-T000018
 マルチプレックスPCRによるPCR増幅産物を、DNA精製試薬キットAMPure XP(ベックマンコールター社製)を用いて精製し、Agilent 2100 バイオアナライザ(アジレント・テクノロジー社製)を用いて濃度を測定した。
 より正確な増幅産物の定量として、KAPAライブラリー定量キット(日本ジェネティクス社製)を用いて定量を行った。
(配列リード数(カバレッジ、シーケンスデプス)の測定)
 胎児由来と同定された有核赤血球の13番番染色体、18番染色体、および21番染色体の標的ローカスごとのカバレッジ(シーケンスデプス)を、次世代シーケンサMiSeq(登録商標;イルミナ社製)を用いて増幅産物のシークエンシングを行って、測定した。別途、母親由来と同定された有核細胞の21番染色体の標的ローカスの増幅産物の量(配列リード数)を、MiSeqを用いて増幅産物のシークエンシングを行って、測定した。
 ローカスごとにカバレッジ(シーケンスデプス)を算出し、カバレッジのばらつきを変動係数(coefficient of variation;CV)によって評価したところ、変動係数は約6.5%であり、カバレッジのばらつきが小さかった。
[比較例1]
 関心ある染色体が13番染色体、18番染色体および21番染色体である点は相違しないが、13番染色体上のローカス数を75、18番染色体上のローカスの数を77、21番染色体上のローカス数を76、X染色体上のローカス数を34、およびY染色体上のローカス数を20と設定し、ローカス数の合計を282とした。
 その他の条件は実施例1と同様にして、ローカスごとにカバレッジを算出し、カバレッジのばらつきを変動係数によって評価した。その結果、変動係数は約28.2%であり、カバレッジのばらつきが大きかった。
[比較例2]
 関心ある染色体が13番染色体、18番染色体および21番染色体である点は相違しないが、13番染色体上のローカス数を52、18番染色体上のローカス数を49、21番染色体上のローカス数を46、X染色体上のローカス数を34およびY染色体上のローカス数を20と設定し、ローカス数の合計を201とした。
 その他の条件は実施例1と同様にして、ローカスごとにカバレッジを算出し、カバレッジのばらつきを変動係数によって評価した。その結果、変動係数は約32.7%であり、カバレッジのばらつきが大きかった。
[比較例3]
 関心ある染色体が13番染色体、18番染色体および21番染色体である点は相違しないが、13番染色体上のローカス数を20、18番染色体上のローカス数を20、21番染色体上のローカス数を20、X染色体上のローカス数を20、およびY染色体上のローカス数を20と設定し、ローカス数の合計を100とした。
 その他の条件は実施例1と同様にして、ローカスごとにカバレッジを算出し、カバレッジのばらつきを変動係数によって評価した。その結果、変動係数は約52.9%であり、カバレッジのばらつきが大きかった。
[比較例4]
 関心ある染色体が13番染色体、18番染色体および21番染色体である点は相違しないが、13番染色体上のローカス数を9、18番染色体上のローカスの数を9、21番染色体上のローカス数を8、およびX染色体上のローカス数を9と設定し、ローカス数の合計を35とした。
 その他の条件は実施例1と同様にして、ローカスごとにカバレッジを算出し、カバレッジのばらつきを変動係数によって評価した。その結果、変動係数は約143.1%であり、カバレッジのばらつきが大きかった。
 図7に、ローカス数(合計)を横軸に、カバレッジの変動係数を縦軸にとって作成したグラフを示す。プロットは実施例1および比較例1~4に対応し、曲線はプロットから求めた近似曲線である。
 関心ある染色体上のローカス数を80以上とすることで、カバレッジの変動係数が十分に小さくなり、ローカスごとのカバレッジのばらつきを小さくして、単一細胞または少数細胞などの少量DNAから染色体数を精度よく定量することができると考えられる。

Claims (8)

  1.  単一または少数の細胞から抽出されたゲノムDNAを鋳型として、染色体上の複数のローカスを同時に増幅するマルチプレックスPCRを行う工程を含む、関心ある染色体の染色体数定量方法であって、
     前記関心ある染色体上のローカスの数が染色体あたり80以上であり、かつ、
     前記マルチプレックスPCRにおいて使用される複数のプライマーセットは、
     前記複数のローカスから前記マルチプレックスPCRに供するプライマーセットを設計する標的ローカスを選択する、標的ローカス選択工程と、
     前記標的ローカスを増幅するためのプライマー候補の塩基配列を、染色体上における前記標的ローカスの近傍領域の塩基配列に基づいて、フォワード側プライマーおよびリバース側プライマーのそれぞれについて少なくとも1つずつ作成する、プライマー候補塩基配列作成工程と、
     前記標的ローカスを増幅するためのプライマー候補の塩基配列について、比較する部分配列が前記標的ローカスを増幅するためのプライマー候補の塩基配列の3’末端を含むという条件の下に、ペアワイズにローカルアラインメントを行って、ローカルアラインメントスコアを求める、ローカルアラインメント工程と、
     前記ローカルアラインメント工程において求めたローカルアラインメントスコアに基づいて、前記標的ローカスを増幅するためのプライマー候補の塩基配列の第1段階の選抜を行う、第1段階選抜工程と、
     前記標的ローカスを増幅するためのプライマー候補の塩基配列の3’末端を含む、予め設定した配列長の塩基配列について、ペアワイズにグローバルアラインメントを行って、グローバルアラインメントスコアを求める、グローバルアラインメント工程と、
     前記グローバルアラインメント工程において求めたグローバルアラインメントスコアに基づいて、前記標的ローカスを増幅するためのプライマー候補の塩基配列の第2段階の選抜を行う、第2段階選抜工程と、
     前記第1段階選抜工程および前記第2段階選抜工程のいずれにおいても選抜されたプライマー候補の塩基配列の塩基配列を、前記標的ローカスを増幅するためのプライマーの塩基配列として採用する、プライマー採用工程と、
    を備え、
     ここで、前記ローカルアラインメント工程および前記第1段階選抜工程の両工程は、前記グローバルアラインメント工程および前記第2段階選抜工程の両工程よりも前もしくは後に、または前記グローバルアラインメント工程および前記第2段階選抜工程の両工程と並行して行われる、ポリメラーゼ連鎖反応に供するプライマーセットの設計方法によって設計される、染色体数定量方法。
  2.  前記関心ある染色体上のローカスの数が染色体あたり80以上1000以下である、請求項1に記載の染色体数定量方法。
  3.  前記関心ある染色体上のローカスの数が染色体あたり100以上1000以下である、請求項1または2に記載の染色体数定量方法。
  4.  前記関心ある染色体上のローカスの数が染色体あたり100以上500以下である、請求項1~3のいずれか1項に記載の染色体数定量方法。
  5.  前記関心ある染色体が、13番染色体、18番染色体および21番染色体からなる群から選択される少なくとも1つを含む、請求項1~4のいずれか1項に記載の染色体数定量方法。
  6.  前記複数のローカスのすべてに対してマルチプレックスPCRに供するプライマーセットが採用されるまで、前記標的ローカス選択工程から前記プライマー採用工程までを繰り返す、請求項1~5のいずれか1項に記載の染色体数定量方法。
  7.  前記標的ローカス選択工程において1または2以上のローカスを選択する、請求項1~6のいずれか1項に記載の染色体数定量方法。
  8.  前記マルチプレックスPCRにおいて使用するプライマーセットは、
     前記複数のローカスから前記マルチプレックスPCRに供するプライマーセットを設計する第1の標的ローカスを選択する、第1の標的ローカス選択工程と、
     前記第1の標的ローカスを増幅するためのプライマー候補の塩基配列を、染色体上における前記第1の標的ローカスの近傍領域の塩基配列に基づいて、フォワード側プライマーおよびリバース側プライマーのそれぞれについて少なくとも1つずつ作成する、第1のプライマー候補塩基配列作成工程と、
     前記第1の標的ローカスを増幅するためのプライマー候補の塩基配列について、比較する部分配列が前記第1の標的ローカスを増幅するためのプライマー候補の塩基配列の3’末端を含むという条件の下に、ペアワイズにローカルアラインメントを行って、ローカルアラインメントスコアを求める、第1のローカルアラインメント工程と、
     前記第1のローカルアラインメント工程において求めたローカルアラインメントスコアに基づいて、前記第1の標的ローカスを増幅するためのプライマー候補の塩基配列の第1段階の選抜を行う、第1の第1段階選抜工程と、
     前記第1の標的ローカスを増幅するためのプライマー候補の塩基配列の3’末端を含む、予め設定した配列長の塩基配列について、ペアワイズにグローバルアラインメントを行って、グローバルアラインメントスコアを求める、第1のグローバルアラインメント工程と、
     前記第1のグローバルアラインメント工程において求めたグローバルアラインメントスコアに基づいて、前記第1の標的ローカスを増幅するためのプライマー候補の塩基配列の第2段階の選抜を行う、第1の第2段階選抜工程と、
     前記第1の第1段階選抜工程および前記第1の第2段階選抜工程のいずれにおいても選抜されたプライマー候補の塩基配列を、前記第1の標的ローカスを増幅するためのプライマーの塩基配列として採用する、第1のプライマー採用工程と、
     前記複数のローカスから、既に選択された標的ローカスとは異なる、前記マルチプレックスPCRに供するプライマーセットを設計する第2の標的ローカスを選択する、第2の標的ローカス選択工程と、
     前記第2の標的ローカスを増幅するためのプライマー候補の塩基配列を、染色体上における前記第2の標的ローカスの近傍領域の塩基配列に基づいて、フォワード側プライマーおよびリバース側プライマーのそれぞれについて、少なくとも1つずつ作成する、第2のプライマー候補塩基配列作成工程と、
     前記第2の標的ローカスを増幅するためのプライマー候補の塩基配列および既に採用されたプライマーの塩基配列について、比較する部分配列が前記第2の標的ローカスを増幅するためのプライマー候補の塩基配列および前記既に採用されたプライマーの塩基配列の3’末端を含むという条件の下に、ペアワイズにローカルアラインメントを行って、ローカルアラインメントスコアを求める、第2のローカルアラインメント工程と、
     前記第2のローカルアラインメント工程において求めたローカルアラインメントスコアに基づいて、前記第2の標的ローカスを増幅するためのプライマー候補の塩基配列の第1段階の選抜を行う、第2の第1段階選抜工程と、
     前記第2の標的ローカスを増幅するためのプライマー候補の塩基配列および既に採用されたプライマーの塩基配列の3’末端を含む、予め設定した配列長の塩基配列について、ペアワイズにグローバルアラインメントを行って、グローバルアラインメントスコアを求める、第2のグローバルアラインメント工程と、
     前記第2のグローバルアラインメント工程において求めたグローバルアラインメントスコアに基づいて、前記第2の標的ローカスを増幅するためのプライマー候補の塩基配列の第2段階の選抜を行う、第2の第2段階選抜工程と、
     前記第2の第1段階選抜工程および前記第2の第2段階選抜工程のいずれにおいても選抜されたプライマー候補の塩基配列を、前記第2の標的ローカスを増幅するためのプライマーの塩基配列として採用する、第2のプライマー採用工程と、
    を備え、
     ここで、前記第1のローカルアラインメント工程および前記第1の第1段階選抜工程の両工程は、前記第1のグローバルアラインメント工程および前記第1の第2段階選抜工程の両工程よりも前もしくは後に、または前記第1のグローバルアラインメント工程および前記第1の第2段階選抜工程の両工程と並行して行われ、かつ、
     前記第2のローカルアラインメント工程および前記第2の第1段階選抜工程の両工程は、前記第2のグローバルアラインメント工程および前記第2の第2段階選抜工程の両工程よりも前もしくは後に、または前記第2のグローバルアラインメント工程および前記第2の第2段階選抜工程の両工程と並行して行われ、
     前記複数のローカスの数が3以上である場合は、前記第2の標的ローカス選択工程から前記第2のプライマー採用工程までの各工程を、前記複数のローカスのすべてについてマルチプレックスPCRに供するプライマーセットが採用されるまで繰り返す、ポリメラーゼ連鎖反応に供するプライマーセットの設計方法によって設計される、請求項1~5のいずれか1項に記載の染色体数定量方法。
     
PCT/JP2017/004390 2016-02-24 2017-02-07 染色体数定量方法 WO2017145738A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018501126A JPWO2017145738A1 (ja) 2016-02-24 2017-02-07 染色体数定量方法
EP17756179.2A EP3421608B1 (en) 2016-02-24 2017-02-07 Chromosome number quantification method
US16/106,274 US20180355433A1 (en) 2016-02-24 2018-08-21 Chromosome number determination method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016033284 2016-02-24
JP2016-033284 2016-02-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/106,274 Continuation US20180355433A1 (en) 2016-02-24 2018-08-21 Chromosome number determination method

Publications (1)

Publication Number Publication Date
WO2017145738A1 true WO2017145738A1 (ja) 2017-08-31

Family

ID=59686527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004390 WO2017145738A1 (ja) 2016-02-24 2017-02-07 染色体数定量方法

Country Status (4)

Country Link
US (1) US20180355433A1 (ja)
EP (1) EP3421608B1 (ja)
JP (1) JPWO2017145738A1 (ja)
WO (1) WO2017145738A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3279339A4 (en) * 2015-03-31 2018-03-14 FUJIFILM Corporation Method for determining gene state of fetus
WO2018066317A1 (ja) * 2016-10-05 2018-04-12 富士フイルム株式会社 必要なローカス数を決定する方法および必要なSNPs座位数を決定する方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004691A1 (fr) * 2006-07-04 2008-01-10 Shimadzu Corporation appareil pour concevoir des amorces d'amplification d'acides nucléiques, programme pour concevoir des amorces et appareil de serveur pour concevoir des amorces

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120270739A1 (en) * 2010-01-19 2012-10-25 Verinata Health, Inc. Method for sample analysis of aneuploidies in maternal samples
WO2013052557A2 (en) * 2011-10-03 2013-04-11 Natera, Inc. Methods for preimplantation genetic diagnosis by sequencing
US20130123120A1 (en) * 2010-05-18 2013-05-16 Natera, Inc. Highly Multiplex PCR Methods and Compositions
EP3521424A4 (en) * 2016-09-29 2019-10-23 FUJIFILM Corporation PROCESS FOR DESIGNING PRIMERS FOR MULTIPLEX PCR
JPWO2018061693A1 (ja) * 2016-09-29 2019-07-04 富士フイルム株式会社 マルチプレックスpcrに供するプライマーの設計方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004691A1 (fr) * 2006-07-04 2008-01-10 Shimadzu Corporation appareil pour concevoir des amorces d'amplification d'acides nucléiques, programme pour concevoir des amorces et appareil de serveur pour concevoir des amorces

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3421608A4 *
ZIMMERMANN, B. ET AL.: "P-448 One day turn around 24-chromosome preimplantation genetic diagnosis by targeted sequencing enabled by multiplex PCR and fast benchtop sequencers", HUM. REPROD., vol. 27, no. 2, 2012, XP009508402 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3279339A4 (en) * 2015-03-31 2018-03-14 FUJIFILM Corporation Method for determining gene state of fetus
US11306358B2 (en) 2015-03-31 2022-04-19 Fujifilm Corporation Method for determining genetic condition of fetus
WO2018066317A1 (ja) * 2016-10-05 2018-04-12 富士フイルム株式会社 必要なローカス数を決定する方法および必要なSNPs座位数を決定する方法

Also Published As

Publication number Publication date
JPWO2017145738A1 (ja) 2018-08-30
US20180355433A1 (en) 2018-12-13
EP3421608A1 (en) 2019-01-02
EP3421608B1 (en) 2022-03-09
EP3421608A4 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
US10774380B2 (en) Methods for multiplex PCR amplification of target loci in a nucleic acid sample
US11746376B2 (en) Methods for amplification of cell-free DNA using ligated adaptors and universal and inner target-specific primers for multiplexed nested PCR
US11326208B2 (en) Methods for nested PCR amplification of cell-free DNA
JP6830094B2 (ja) 染色体異常を検出するための核酸及び方法
CN102703595B (zh) 一种碱基选择性可控延伸的str序列高通量检测方法及其检测试剂
RU2753883C2 (ru) Набор зондов для анализа образцов днк и способы их использования
US11306358B2 (en) Method for determining genetic condition of fetus
WO2017145739A1 (ja) 染色体数定量方法
US20190264258A1 (en) Method for obtaining base sequence information of single cell derived from vertebrate
WO2017145738A1 (ja) 染色体数定量方法
US20170152555A1 (en) Method for detecting presence or absence of heteroploidy of fetal chromosome
WO2016052405A1 (ja) 胎児の染色体異数性の非侵襲的判別方法および判別システム
WO2018061638A1 (ja) 100pg以下のヒトゲノムDNAからその由来を判別する方法、個人を識別する方法、および造血幹細胞の生着の程度を解析する方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018501126

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017756179

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017756179

Country of ref document: EP

Effective date: 20180924

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756179

Country of ref document: EP

Kind code of ref document: A1