WO2017145690A1 - Ladder-type polysilsesquioxane having phosphonic acid group and phosphonate group in side chains thereof, ladder-type polysilsesquioxane laminate, method for producing ladder-type polysilsesquioxane, and method for producing ladder-type polysilsesquioxane laminate - Google Patents

Ladder-type polysilsesquioxane having phosphonic acid group and phosphonate group in side chains thereof, ladder-type polysilsesquioxane laminate, method for producing ladder-type polysilsesquioxane, and method for producing ladder-type polysilsesquioxane laminate Download PDF

Info

Publication number
WO2017145690A1
WO2017145690A1 PCT/JP2017/003756 JP2017003756W WO2017145690A1 WO 2017145690 A1 WO2017145690 A1 WO 2017145690A1 JP 2017003756 W JP2017003756 W JP 2017003756W WO 2017145690 A1 WO2017145690 A1 WO 2017145690A1
Authority
WO
WIPO (PCT)
Prior art keywords
ladder
type polysilsesquioxane
formula
laminate
type
Prior art date
Application number
PCT/JP2017/003756
Other languages
French (fr)
Japanese (ja)
Inventor
芳郎 金子
Original Assignee
国立大学法人 鹿児島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 鹿児島大学 filed Critical 国立大学法人 鹿児島大学
Priority to JP2018501100A priority Critical patent/JP6842777B2/en
Publication of WO2017145690A1 publication Critical patent/WO2017145690A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/30Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen phosphorus-containing groups

Definitions

  • the present invention relates to a ladder-type polysilsesquioxane having a phosphonic acid group and a phosphonate group in the side chain, a ladder-type polysilsesquioxane laminate, a method for producing a ladder-type polysilsesquioxane, and a ladder-type polysil
  • the present invention relates to a method for producing a sesquioxane laminate.
  • Silsesquioxane is a compound having a structure of (RSiO 1.5 ) n in which one organic substituent (R) and an average of 1.5 oxygen atoms (O) are bonded to a silicon atom (Si). It is a generic name. Silsesquioxane has been attracting attention in recent years mainly in the field of organic-inorganic hybrid materials because it is excellent in heat resistance and durability and has excellent compatibility with organic materials due to the presence of organic substituents.
  • Ladder-type polysilsesquioxane has a one-dimensionally extending polymer main chain, and ladder-type polysilsesquioxane containing a proton-conductive substituent (for example, sulfo group or phosphonic acid group) in the side chain is It is expected to have excellent thermal stability and good proton conductivity. For this reason, utilization of such a ladder-type polysilsesquioxane as a solid electrolyte in a polymer electrolyte fuel cell is being studied. Regarding the application of ladder-type polysilsesquioxane to solid electrolytes, for example, Patent Documents 1 and 2 disclose proton conductive membranes.
  • the proton conductive membranes of Patent Documents 1 and 2 are obtained by combining various silsesquioxanes including ladder types with organic polymer materials having carbon having a sulfonic acid group as a main skeleton.
  • the portion responsible for proton conduction in this proton conducting film is mainly an organic polymer material.
  • Some silsesquioxanes containing sulfonic acid groups have also been used, but the structure is unclear.
  • the present invention has been made in view of the above circumstances, and has a ladder-type polysilsesquioxane, a ladder-type polysilsesquioxane laminate, and a ladder having a phosphonic acid group and a phosphonate group that are more excellent in heat resistance in the side chain. It aims at providing the manufacturing method of a type polysilsesquioxane, and the manufacturing method of a ladder type polysilsesquioxane laminated body.
  • the ladder-type polysilsesquioxane according to the first aspect of the present invention is: Represented by Formula 1 or Formula 2, (In Formula 1 and Formula 2, R 1 represents an alkylene group having 1 to 6 carbon atoms, n represents a positive real number, and in Formula 2, X represents an alkali metal cation, an alkaline earth metal cation, an ammonium cation, Or represents an imidazolium cation.) It is characterized by that.
  • the main chain may have a twisted rod structure.
  • a plurality of ladder-type polysilsesquioxanes represented by Formula 2 and having a rod structure in which the main chain is twisted are laminated on hexagonal,
  • X is an alkali metal cation, alkaline earth metal cation, ammonium cation, or imidazolium cation
  • R 1 is an alkylene group having 1 to 6 carbon atoms
  • n is a positive real number.
  • the method for producing a ladder-type polysilsesquioxane according to the third aspect of the present invention is as follows.
  • the compound represented by Formula 3 is hydrolyzed and condensed to obtain a ladder-type polysilsesquioxane represented by Formula 1.
  • R 1 represents an alkylene group having 1 to 6 carbon atoms
  • R 2 represents an alkyl group having 1 to 4 carbon atoms.
  • R 1 represents an alkylene group having 1 to 6 carbon atoms
  • n represents a positive real number.
  • the method for producing a ladder-type polysilsesquioxane laminate according to the fourth aspect of the present invention includes: The ladder-type polysilsesquioxane obtained by the method for producing a ladder-type polysilsesquioxane according to the third aspect of the present invention is treated with a base, Obtaining a laminate in which a plurality of ladder-type polysilsesquioxanes represented by formula 2 and having a rod structure in which the main chain is twisted is laminated on hexagonal, (In Formula 2, X is an alkali metal cation, alkaline earth metal cation, ammonium cation, or imidazolium cation, R 1 is an alkylene group having 1 to 6 carbon atoms, and n is a positive real number.) It is characterized by that.
  • the ladder-type polysilsesquioxane according to the present embodiment is represented by Formula 1 or Formula 2.
  • R 1 represents an alkylene group having 1 to 6 carbon atoms
  • n represents a positive real number.
  • X represents an alkali cation, an alkaline earth metal cation, an ammonium cation, or an imidazolium cation.
  • a phosphonic acid group or a phosphonate group is bonded as a side chain to Si of the polymer main chain. That is, one phosphonic acid group or phosphonate group is bonded to one Si of the polymer main chain. Due to the repulsion of charges between the side chains, the ladder-type polysilsesquioxane represented by Formula 1 and Formula 2 has a one-dimensional extension of the polymer main chain and a twist of the main chain as shown in FIG. It has a rod structure.
  • the side chain phosphonic acid groups form a continuous proton transfer path and exhibit high proton conductivity.
  • the ladder-type polysilsesquioxane according to the present embodiment is derived from the excellent heat resistance and durability derived from the Si—O—Si bond of the main chain, and the rigid main chain of the double chain structure. With a high glass transition point. Therefore, the ladder type polysilsesquioxane can be suitably used as a solid electrolyte of a polymer electrolyte fuel cell at a high temperature exceeding 100 ° C. (for example, 150 ° C. to 200 ° C.).
  • the ladder-type polysilsesquioxane according to the present embodiment also has flame retardancy derived from a phosphonic acid group or a phosphonate group. For this reason, the ladder type polysilsesquioxane according to the present embodiment can be suitably used as a flame retardant material. And ladder type polysilsesquioxane is excellent in compatibility with an aqueous solvent or a highly polar organic solvent, and is soluble. For example, a solution in which a ladder type polysilsesquioxane is dissolved in a solvent can be coated on various materials to form a film, and can also be used as a flame retardant coating material.
  • the ladder-type polysilsesquioxane represented by the above formula 1 is obtained by hydrolysis and polycondensation of the compound represented by the formula 3.
  • R 1 is an alkylene group having 1 to 6 carbon atoms.
  • the alkylene group is longer than this, regular steric coordination becomes difficult, and the formation of a ladder structure may be hindered. Furthermore, the heat resistance and durability of the resulting ladder-type polysilsesquioxane may be lowered.
  • R 2 is an alkyl group having 1 to 4 carbon atoms. If the alkyl chain is long, hydrolysis described later may be difficult to occur.
  • Hydrolysis and polycondensation of the compound represented by Formula 3 can be performed by mixing the compound represented by Formula 3 with a strong acidic aqueous solution such as concentrated hydrochloric acid and stirring under reflux.
  • a strong acidic aqueous solution such as concentrated hydrochloric acid and stirring under reflux.
  • the temperature may be about 100 ° C. and the reaction time may be about 12 hours.
  • Concentrated hydrochloric acid is preferably added in excess (for example, 120 times in molar ratio) with respect to the compound represented by Formula 3. This is because when there is little concentrated hydrochloric acid, hydroxylation of the alkoxy group bonded to phosphorus is difficult to proceed.
  • the ladder-type polysilsesquioxane represented by Formula 1 is obtained by heating in an open system (about 50 to 60 ° C.) and evaporating and removing the solvent.
  • the ladder type polysilsesquioxane represented by Formula 1 by neutralizing the ladder-type polysilsesquioxane represented by Formula 1 with a base, as shown in the following synthesis examples, the hydroxyl group H is substituted with various cations, and the phosphonic acid group A ladder-type polysilsesquioxane represented by the formula 2 that becomes a phosphonate group is obtained. And the ladder type polysilsesquioxane represented by Formula 2 constructs a hexagonal laminate in which polymer main chains are regularly arranged as shown in FIG.
  • a ladder-type polysilsesquioxane represented by formula 1 is treated with KOH, and a synthesis example of a ladder-type polysilsesquioxane represented by formula 2 is shown.
  • the obtained product was dissolved in heavy water, and a 1 H NMR spectrum was measured.
  • IR spectrum and 29 Si NMR spectrum of the product were measured.
  • the 1 H NMR spectrum, IR spectrum, and 29 Si NMR spectrum are shown in FIGS. 3, 4, and 5, respectively.
  • PSGA-PO (OH) 2 was subjected to TGA (Thermogravimetric Analysis) measurement in an oxygen atmosphere and a nitrogen atmosphere. The results are shown in FIGS.
  • PSQ-PO (OH) 2 is thermally stable up to about 200 ° C., and can be used even under temperature conditions exceeding 100 ° C. when used as a solid electrolyte.
  • PSQ-PO (OK) 2 a ladder-type polysilsesquioxane having a phosphonate group represented by Formula 5 in the side chain, in which —OH of the phosphonic acid group was converted to —OK, was obtained.
  • the synthesized PSQ-PO (OK) 2 was subjected to XRD measurement.
  • the measurement results are shown in FIG.
  • a diffraction peak having a ratio of d value of 1: 1 / ⁇ 3: 1/2: 1 / ⁇ 7: 1/3 from the low angle side was observed.
  • This is a typical hexagonal phase diffraction pattern, which shows that a rod-shaped PSQ-PO (OK) 2 has a regularly laminated structure.
  • the diameter of the rod-shaped PSQ-PO (OK) 2 calculated from the XRD pattern was 2 nm or less, and the T 3 peak was mainly observed from the 29 Si NMR spectrum of FIG. It is considered that a network structure composed of Si—O—Si bonds is formed in the space. That is, it was suggested that the synthesized PSQ-PO (OK) 2 has a ladder-like structure in which 8-membered rings composed of Si—O—Si bonds are connected in a one-dimensional direction.
  • PSQ-PO (OK) 2 having a ladder-like structure forms a twisted structure (rod structure) that is considered to be the conformation in which the distance between the side chains is farthest due to the repulsion of the charges between the side chain anions, It is thought that a hexagonal laminate is constructed.
  • FIG. 1 a TEM (Transmission Electron Microscope) photograph of PSQ-PO (OK) 2 is shown in FIG. It can be seen from the TEM photograph that PSQ-PO (OK) 2 is a hexagonal laminate.
  • the ladder type polysilsesquioxane according to the present invention is expected to be used for fuel cell electrolytes and the like because the phosphonic acid groups in the side chain form a continuous proton transfer path and show high proton conductivity.
  • the flame retardancy derived from the phosphonic acid group or phosphonate group is expected to be used as a flame retardant material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)

Abstract

A ladder-type polysilsesquioxane is represented by formula 1 or formula 2. In formula 1 and formula 2, R1 represents an alkylene group having 1 to 6 carbon atoms, and n represents a positive real number. In formula 2, X represents an alkali metal cation, an alkali earth metal cation, an ammonium cation or an imidazolium cation.

Description

ホスホン酸基およびホスホネート基を側鎖に有するラダー型ポリシルセスキオキサン、ラダー型ポリシルセスキオキサン積層体、ラダー型ポリシルセスキオキサンの製造方法、及び、ラダー型ポリシルセスキオキサン積層体の製造方法Ladder type polysilsesquioxane having phosphonic acid group and phosphonate group in side chain, ladder type polysilsesquioxane laminate, method for producing ladder type polysilsesquioxane, and ladder type polysilsesquioxane laminate Body manufacturing method
 本発明は、ホスホン酸基およびホスホネート基を側鎖に有するラダー型ポリシルセスキオキサン、ラダー型ポリシルセスキオキサン積層体、ラダー型ポリシルセスキオキサンの製造方法、及び、ラダー型ポリシルセスキオキサン積層体の製造方法に関する。 The present invention relates to a ladder-type polysilsesquioxane having a phosphonic acid group and a phosphonate group in the side chain, a ladder-type polysilsesquioxane laminate, a method for producing a ladder-type polysilsesquioxane, and a ladder-type polysil The present invention relates to a method for producing a sesquioxane laminate.
 シルセスキオキサンは、ケイ素原子(Si)に対して1つの有機置換基(R)と平均1.5個の酸素原子(O)が結合した(RSiO1.5の構造を持つ化合物の総称である。シルセスキオキサンは耐熱性、耐久性に優れるとともに、有機置換基の存在により有機材料との相溶性に優れることから、有機-無機ハイブリッド材料の分野を中心に近年注目されている。 Silsesquioxane is a compound having a structure of (RSiO 1.5 ) n in which one organic substituent (R) and an average of 1.5 oxygen atoms (O) are bonded to a silicon atom (Si). It is a generic name. Silsesquioxane has been attracting attention in recent years mainly in the field of organic-inorganic hybrid materials because it is excellent in heat resistance and durability and has excellent compatibility with organic materials due to the presence of organic substituents.
 ラダー型ポリシルセスキオキサンは、一次元的にポリマー主鎖が延びており、側鎖にプロトン伝導性を示す置換基(例えばスルホ基やホスホン酸基)を含むラダー型ポリシルセスキオキサンは、熱安定性に優れ、かつ良好なプロトン伝導性を示すことが期待されている。このため、このようなラダー型ポリシルセスキオキサンは、固体高分子形燃料電池の固体電解質としての利用が検討されている。ラダー型ポリシルセスキオキサンの固体電解質への応用に関し、例えば、特許文献1、2などにプロトン伝導性膜が開示されている。 Ladder-type polysilsesquioxane has a one-dimensionally extending polymer main chain, and ladder-type polysilsesquioxane containing a proton-conductive substituent (for example, sulfo group or phosphonic acid group) in the side chain is It is expected to have excellent thermal stability and good proton conductivity. For this reason, utilization of such a ladder-type polysilsesquioxane as a solid electrolyte in a polymer electrolyte fuel cell is being studied. Regarding the application of ladder-type polysilsesquioxane to solid electrolytes, for example, Patent Documents 1 and 2 disclose proton conductive membranes.
特開2005-339961号公報JP 2005-339961 A 特開2006-73357号公報JP 2006-73357 A
 特許文献1、2のプロトン伝導性膜は、スルホン酸基を有する炭素を主骨格とする有機高分子材料にラダー型も含む種々のシルセスキオキサンが複合化されたものである。このプロトン伝導製膜のプロトン伝導を担う部分は、主に有機高分子材料である。一部、スルホン酸基を含むシルセスキオキサンも用いられているが、その構造については不明瞭である。 The proton conductive membranes of Patent Documents 1 and 2 are obtained by combining various silsesquioxanes including ladder types with organic polymer materials having carbon having a sulfonic acid group as a main skeleton. The portion responsible for proton conduction in this proton conducting film is mainly an organic polymer material. Some silsesquioxanes containing sulfonic acid groups have also been used, but the structure is unclear.
 本発明は、上記実情に鑑みてなされたものであり、より耐熱性に優れるホスホン酸基およびホスホネート基を側鎖に有するラダー型ポリシルセスキオキサン、ラダー型ポリシルセスキオキサン積層体、ラダー型ポリシルセスキオキサンの製造方法、及び、ラダー型ポリシルセスキオキサン積層体の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and has a ladder-type polysilsesquioxane, a ladder-type polysilsesquioxane laminate, and a ladder having a phosphonic acid group and a phosphonate group that are more excellent in heat resistance in the side chain. It aims at providing the manufacturing method of a type polysilsesquioxane, and the manufacturing method of a ladder type polysilsesquioxane laminated body.
 本発明の第1の観点に係るラダー型ポリシルセスキオキサンは、
 式1又は式2で表される、
Figure JPOXMLDOC01-appb-C000006

(式1及び式2中、Rは炭素数1~6のアルキレン基、nは正の実数を表し、式2中、Xはアルカリ金属陽イオン、アルカリ土類金属陽イオン、アンモニウム陽イオン、又はイミダゾリウム陽イオンを表す。)
 ことを特徴とする。
The ladder-type polysilsesquioxane according to the first aspect of the present invention is:
Represented by Formula 1 or Formula 2,
Figure JPOXMLDOC01-appb-C000006

(In Formula 1 and Formula 2, R 1 represents an alkylene group having 1 to 6 carbon atoms, n represents a positive real number, and in Formula 2, X represents an alkali metal cation, an alkaline earth metal cation, an ammonium cation, Or represents an imidazolium cation.)
It is characterized by that.
 また、主鎖がねじれたロッド構造になっていてもよい。 Moreover, the main chain may have a twisted rod structure.
 本発明の第2の観点に係るラダー型ポリシルセスキオキサン積層体は、
 式2で表され、主鎖がねじれたロッド構造になっている複数のラダー型ポリシルセスキオキサンがヘキサゴナルに積層されている、
Figure JPOXMLDOC01-appb-C000007

(式2中、Xはアルカリ金属陽イオン、アルカリ土類金属陽イオン、アンモニウム陽イオン、又はイミダゾリウム陽イオン、Rは炭素数1~6のアルキレン基、nは正の実数を表す。)
 ことを特徴とする。
The ladder-type polysilsesquioxane laminate according to the second aspect of the present invention,
A plurality of ladder-type polysilsesquioxanes represented by Formula 2 and having a rod structure in which the main chain is twisted are laminated on hexagonal,
Figure JPOXMLDOC01-appb-C000007

(In Formula 2, X is an alkali metal cation, alkaline earth metal cation, ammonium cation, or imidazolium cation, R 1 is an alkylene group having 1 to 6 carbon atoms, and n is a positive real number.)
It is characterized by that.
 本発明の第3の観点に係るラダー型ポリシルセスキオキサンの製造方法は、
 式3で表される化合物を加水分解、縮合させて、式1で表されるラダー型ポリシルセスキオキサンを得る、
Figure JPOXMLDOC01-appb-C000008

(式3中、Rは炭素数1~6のアルキレン基、Rは炭素数1~4のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000009

(式1中、Rは炭素数1~6のアルキレン基、nは正の実数を表す。)
 ことを特徴とする。
The method for producing a ladder-type polysilsesquioxane according to the third aspect of the present invention is as follows.
The compound represented by Formula 3 is hydrolyzed and condensed to obtain a ladder-type polysilsesquioxane represented by Formula 1.
Figure JPOXMLDOC01-appb-C000008

(In Formula 3, R 1 represents an alkylene group having 1 to 6 carbon atoms, and R 2 represents an alkyl group having 1 to 4 carbon atoms.)
Figure JPOXMLDOC01-appb-C000009

(In Formula 1, R 1 represents an alkylene group having 1 to 6 carbon atoms, and n represents a positive real number.)
It is characterized by that.
 本発明の第4の観点に係るラダー型ポリシルセスキオキサン積層体の製造方法は、
 本発明の第3の観点に係るラダー型ポリシルセスキオキサンの製造方法で得られたラダー型ポリシルセスキオキサンを塩基で処理し、
 式2で表され、主鎖がねじれたロッド構造になっている複数のラダー型ポリシルセスキオキサンがヘキサゴナルに積層された積層体を得る、
Figure JPOXMLDOC01-appb-C000010

(式2中、Xはアルカリ金属陽イオン、アルカリ土類金属陽イオン、アンモニウム陽イオン、又はイミダゾリウム陽イオン、Rは炭素数1~6のアルキレン基、nは正の実数を表す。)
 ことを特徴とする。
The method for producing a ladder-type polysilsesquioxane laminate according to the fourth aspect of the present invention includes:
The ladder-type polysilsesquioxane obtained by the method for producing a ladder-type polysilsesquioxane according to the third aspect of the present invention is treated with a base,
Obtaining a laminate in which a plurality of ladder-type polysilsesquioxanes represented by formula 2 and having a rod structure in which the main chain is twisted is laminated on hexagonal,
Figure JPOXMLDOC01-appb-C000010

(In Formula 2, X is an alkali metal cation, alkaline earth metal cation, ammonium cation, or imidazolium cation, R 1 is an alkylene group having 1 to 6 carbon atoms, and n is a positive real number.)
It is characterized by that.
 本発明では、より耐熱性に優れるホスホン酸基或いはホスホネート基を側鎖に有するラダー型ポリシルセスキオキサンを提供できる。 In the present invention, it is possible to provide a ladder type polysilsesquioxane having a phosphonic acid group or a phosphonate group having a more excellent heat resistance in the side chain.
ラダー型ポリシルセスキオキサンのねじれ構造を模式的に示す図である。It is a figure which shows typically the twist structure of ladder type polysilsesquioxane. ラダー型ポリシルセスキオキサン積層体の構造を模式的に示す図である。It is a figure which shows typically the structure of a ladder type polysilsesquioxane laminated body. 実施例における生成物のH NMRスペクトルを示す図である。It is a diagram showing the 1 H NMR spectrum of the product in Example. 実施例における生成物のIRスペクトルを示す図である。It is a figure which shows IR spectrum of the product in an Example. 実施例における生成物の29Si NMRスペクトルを示す図である。Is a diagram showing the 29 Si NMR spectrum of the product in Example. 実施例におけるPSQ-PO(OH)の酸素雰囲気下でのTGA分析結果を示す図である。It is a figure which shows the TGA analysis result in the oxygen atmosphere of PSQ-PO (OH) 2 in an Example. 実施例におけるPSQ-PO(OH)の窒素雰囲気下でのTGA分析結果を示す図である。It is a figure which shows the TGA analysis result in nitrogen atmosphere of PSQ-PO (OH) 2 in an Example. 実施例におけるPSQ-PO(OH)のIRスペクトルを示す図である。It is a figure which shows IR spectrum of PSQ-PO (OH) 2 in an Example. 実施例におけるPSQ-PO(OH)及びPSQ-PO(OK)のXRDパターンを示す図である。It is a figure which shows the XRD pattern of PSQ-PO (OH) 2 and PSQ-PO (OK) 2 in an Example. PSQ-PO(OK)のTEM写真である。 3 is a TEM photograph of PSQ-PO (OK) 2 .
(ラダー型ポリシルセスキオキサン、ラダー型ポリシルセスキオキサン積層体)
 本実施の形態に係るラダー型ポリシルセスキオキサンは、式1又は式2で表される。式1及び式2中、Rは炭素数1~6のアルキレン基、nは正の実数を表す。また、式2中Xはアルカリ陽イオン、アルカリ土類金属陽イオン、アンモニウム陽イオン、又はイミダゾリウム陽イオンを表す。
(Ladder type polysilsesquioxane, ladder type polysilsesquioxane laminate)
The ladder-type polysilsesquioxane according to the present embodiment is represented by Formula 1 or Formula 2. In Formula 1 and Formula 2, R 1 represents an alkylene group having 1 to 6 carbon atoms, and n represents a positive real number. In Formula 2, X represents an alkali cation, an alkaline earth metal cation, an ammonium cation, or an imidazolium cation.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式1及び式2で表されるラダー型ポリシルセスキオキサンは、ポリマー主鎖のSiにそれぞれ側鎖としてホスホン酸基或いはホスホネート基が結合している。即ち、ポリマー主鎖の一つのSiに対して一つのホスホン酸基或いはホスホネート基が結合している。この側鎖同士の電荷の反発により、式1及び式2で表されるラダー型ポリシルセスキオキサンは、図1に示すように、ポリマー主鎖が一次元的に延びるとともに、主鎖がねじれたロッド構造となっている。 In the ladder-type polysilsesquioxane represented by Formula 1 and Formula 2, a phosphonic acid group or a phosphonate group is bonded as a side chain to Si of the polymer main chain. That is, one phosphonic acid group or phosphonate group is bonded to one Si of the polymer main chain. Due to the repulsion of charges between the side chains, the ladder-type polysilsesquioxane represented by Formula 1 and Formula 2 has a one-dimensional extension of the polymer main chain and a twist of the main chain as shown in FIG. It has a rod structure.
 そして、式1で表されるラダー型ポリシルセスキオキサンでは、側鎖のホスホン酸基が連続的なプロトン伝達経路を形成し、高いプロトン伝導性を発揮する。 In the ladder-type polysilsesquioxane represented by Formula 1, the side chain phosphonic acid groups form a continuous proton transfer path and exhibit high proton conductivity.
 また、本実施の形態に係るラダー型ポリシルセスキオキサンは、主鎖のSi-O-Si結合に由来する優れた耐熱性、耐久性、並びに、二重鎖構造の剛直な主鎖に由来する高いガラス転移点を備える。このため、ラダー型ポリシルセスキオキサンは、100℃を超える高温下(例えば、150℃~200℃)での固体高分子形燃料電池の固体電解質として好適に利用され得る。 Further, the ladder-type polysilsesquioxane according to the present embodiment is derived from the excellent heat resistance and durability derived from the Si—O—Si bond of the main chain, and the rigid main chain of the double chain structure. With a high glass transition point. Therefore, the ladder type polysilsesquioxane can be suitably used as a solid electrolyte of a polymer electrolyte fuel cell at a high temperature exceeding 100 ° C. (for example, 150 ° C. to 200 ° C.).
 更には、本実施の形態に係るラダー型ポリシルセスキオキサンは、ホスホン酸基或いはホスホネート基に由来する難燃性も備える。このため、本実施の形態に係るラダー型ポリシルセスキオキサンは、難燃性材料としても好適に利用され得る。そして、ラダー型ポリシルセスキオキサンは、水性溶媒や極性の高い有機溶媒に対する相溶性に優れ、可溶である。例えば、ラダー型ポリシルセスキオキサンを溶媒に溶解した溶液を種々の素材にコーティングして製膜することが可能であり、難燃性のコーティング材料としても利用可能である。 Furthermore, the ladder-type polysilsesquioxane according to the present embodiment also has flame retardancy derived from a phosphonic acid group or a phosphonate group. For this reason, the ladder type polysilsesquioxane according to the present embodiment can be suitably used as a flame retardant material. And ladder type polysilsesquioxane is excellent in compatibility with an aqueous solvent or a highly polar organic solvent, and is soluble. For example, a solution in which a ladder type polysilsesquioxane is dissolved in a solvent can be coated on various materials to form a film, and can also be used as a flame retardant coating material.
 また、式2で表されるホスホネート基を有するラダー型ポリシルセスキオキサンでは、図2に示すように、ロッド構造が規則的に配列してヘキサゴナルに積層された構造が構築される。 Further, in the ladder type polysilsesquioxane having a phosphonate group represented by the formula 2, as shown in FIG. 2, a structure in which rod structures are regularly arranged and laminated in hexagonal is constructed.
(ラダー型ポリシルセスキオキサン、ラダー型ポリシルセスキオキサン積層体の製造方法)
 上述した式1で表されるラダー型ポリシルセスキオキサンは、式3で表される化合物の加水分解、重縮合により得られる。
(Ladder type polysilsesquioxane, method for producing ladder type polysilsesquioxane laminate)
The ladder-type polysilsesquioxane represented by the above formula 1 is obtained by hydrolysis and polycondensation of the compound represented by the formula 3.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式3中、Rは炭素数1~6のアルキレン基である。アルキレン基がこれより長い場合、規則的な立体配位が困難になり、ラダー構造の形成を妨げるおそれがある。更に、得られるラダー型ポリシルセスキオキサンの耐熱性、耐久性が低くなるおそれがある。 In Formula 3, R 1 is an alkylene group having 1 to 6 carbon atoms. When the alkylene group is longer than this, regular steric coordination becomes difficult, and the formation of a ladder structure may be hindered. Furthermore, the heat resistance and durability of the resulting ladder-type polysilsesquioxane may be lowered.
 また、Rは炭素数1~4のアルキル基である。アルキル鎖が長いと後述の加水分解が生じにくくなるおそれがある。 R 2 is an alkyl group having 1 to 4 carbon atoms. If the alkyl chain is long, hydrolysis described later may be difficult to occur.
 式3で表される化合物として、2-ジエチルホスフェートエチルトリエトキシシラン、2-ジエチルホスフェートブチルトリエチルシラン、2-ジエチルホスフェートヘキシルトリエチルシラン、2-ジメチルホスフェートメチルトリメトキシシラン、2-ジプロピルホスフェートプロピルトリプロピルシラン、2-ジブチルホスフェートブチルトリブチルシランなど種々の化合物が挙げられる。 As the compound represented by the formula 3, 2-diethyl phosphate ethyl triethoxysilane, 2-diethyl phosphate butyl triethyl silane, 2-diethyl phosphate hexyl triethyl silane, 2-dimethyl phosphate methyl trimethoxy silane, 2-dipropyl phosphate propyl tri Various compounds such as propylsilane and 2-dibutylphosphate butyltributylsilane are exemplified.
 式3で表される化合物の加水分解、重縮合は、式3で表される化合物を濃塩酸等の強酸性水溶液と混合し、還流攪拌することで行うことができる。また、その温度は100℃程度、反応時間は12時間程度とすればよい。なお、濃塩酸は式3で表される化合物に対し、過剰量(例えば、モル比で120倍)加えることが好ましい。濃塩酸が少ない場合、リンに結合しているアルコキシ基の水酸基化が進行し難くなるためである。 Hydrolysis and polycondensation of the compound represented by Formula 3 can be performed by mixing the compound represented by Formula 3 with a strong acidic aqueous solution such as concentrated hydrochloric acid and stirring under reflux. The temperature may be about 100 ° C. and the reaction time may be about 12 hours. Concentrated hydrochloric acid is preferably added in excess (for example, 120 times in molar ratio) with respect to the compound represented by Formula 3. This is because when there is little concentrated hydrochloric acid, hydroxylation of the alkoxy group bonded to phosphorus is difficult to proceed.
 そして、反応させた後、開放系で加熱(50~60℃程度)し、溶媒を蒸発させて除去することで、式1で表されるラダー型ポリシルセスキオキサンが得られる。 And after making it react, the ladder-type polysilsesquioxane represented by Formula 1 is obtained by heating in an open system (about 50 to 60 ° C.) and evaporating and removing the solvent.
 以下に、式3で表される化合物として、2-ジエチルホスフェートエチルトリエトキシシラン(DPETES)を用いて式1で表されるラダー型ポリシルセスキオキサンの合成例を示す。 Hereinafter, a synthesis example of a ladder-type polysilsesquioxane represented by Formula 1 using 2-diethyl phosphate ethyltriethoxysilane (DPETES) as a compound represented by Formula 3 is shown.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 更に、式1で表されるラダー型ポリシルセスキオキサンを、塩基で中和することで、下記の合成例に示すように、水酸基のHが種々の陽イオンに置換され、ホスホン酸基がホスホネート基になった式2で表されるラダー型ポリシルセスキオキサンが得られる。そして、式2で表されるラダー型ポリシルセスキオキサンは、図2に示したように、ポリマー主鎖が規則的に配列したヘキサゴナルな積層体を構築する。 Furthermore, by neutralizing the ladder-type polysilsesquioxane represented by Formula 1 with a base, as shown in the following synthesis examples, the hydroxyl group H is substituted with various cations, and the phosphonic acid group A ladder-type polysilsesquioxane represented by the formula 2 that becomes a phosphonate group is obtained. And the ladder type polysilsesquioxane represented by Formula 2 constructs a hexagonal laminate in which polymer main chains are regularly arranged as shown in FIG.
 以下に、式1で表されるラダー型ポリシルセスキオキサンをKOHで処理し、式2で表されるラダー型ポリシルセスキオキサンの合成例を示す。 Hereinafter, a ladder-type polysilsesquioxane represented by formula 1 is treated with KOH, and a synthesis example of a ladder-type polysilsesquioxane represented by formula 2 is shown.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 以下の実施例により、本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。 The following examples further illustrate the present invention, but the present invention is not limited to the examples.
 1.0mmolのDPETESに10mLの濃塩酸(120mmol)を加え、100℃で12時間還流攪拌した。その後、この溶液を開放系で加熱(約50~60℃、2~3時間)し、溶媒を蒸発させて除去し、生成物を得た(収率93%)。 10 mL concentrated hydrochloric acid (120 mmol) was added to 1.0 mmol DPETES and stirred at 100 ° C. for 12 hours under reflux. The solution was then heated in an open system (about 50-60 ° C., 2-3 hours) and the solvent was removed by evaporation to give the product (93% yield).
 得られた生成物が各種溶媒に溶解するか否か試みた。その結果を表1に示す。生成物は、水及びジメチルスルホキシド(DMSO)に可溶であった。 It was tried whether or not the obtained product was dissolved in various solvents. The results are shown in Table 1. The product was soluble in water and dimethyl sulfoxide (DMSO).
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 得られた生成物を重水に溶解させ、H NMRスペクトルを測定した。また、生成物のIRスペクトル、29Si NMRスペクトルを測定した。H NMRスペクトル、IRスペクトル、29Si NMRスペクトルをそれぞれ図3、図4、図5に示す。 The obtained product was dissolved in heavy water, and a 1 H NMR spectrum was measured. In addition, IR spectrum and 29 Si NMR spectrum of the product were measured. The 1 H NMR spectrum, IR spectrum, and 29 Si NMR spectrum are shown in FIGS. 3, 4, and 5, respectively.
 図3のH NMRスペクトルを見ると、ホスホン酸エステルに由来するピークは観測されず、エチル基由来の2本のブロードなピークのみが観測された。 When the 1 H NMR spectrum of FIG. 3 was observed, no peak derived from the phosphonate ester was observed, and only two broad peaks derived from the ethyl group were observed.
 図4のIRスペクトルを見ると、938cm-1、1010cm-1、及び、1187cm-1に、ホスホン酸基のP-OH、P(=O)OおよびP=Oに由来する吸収ピークがそれぞれ観測された。 Looking at the IR spectrum of Figure 4, 938cm -1, 1010cm -1 and, in 1187cm -1, P-OH phosphonic acid group, P (= O) O - and P = absorption peaks originating from O, respectively Observed.
 これらの結果から、ホスホン酸エステル基の加水分解反応が進行したことにより、生成物がホスホン酸基を有することを確認した。 From these results, it was confirmed that the product had a phosphonic acid group as the hydrolysis reaction of the phosphonic acid ester group proceeded.
 また、図4のIRスペクトルを見ると、1041cm-1および1135cm-1にSi-O-Si結合由来の吸収ピークが観測された。また、図5の29Si NMRスペクトルを見ると、3つのSi-O-Si結合を有するSi原子に由来するブロードなTピークが主に観測された。これらのことから、DPETESの加水分解/縮合反応が進行し、Si-O-Si結合が形成されたことが確認できる。 Further, when the IR spectrum of FIG. 4 was observed, absorption peaks derived from Si—O—Si bonds were observed at 1041 cm −1 and 1135 cm −1 . In addition, in the 29 Si NMR spectrum of FIG. 5, broad T 3 peaks derived from Si atoms having three Si—O—Si bonds were mainly observed. From these facts, it can be confirmed that the hydrolysis / condensation reaction of DPETES has progressed and Si—O—Si bonds have been formed.
 これらの結果から、生成物は式4で示される側鎖にホスホン酸基を有するラダー型ポリシルセスキオキサン(以下、PSQ-PO(OH))であることを確認した。 From these results, it was confirmed that the product was a ladder type polysilsesquioxane (hereinafter referred to as PSQ-PO (OH) 2 ) having a phosphonic acid group in the side chain represented by Formula 4.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 また、PSQ-PO(OH)について、酸素雰囲気下、及び、窒素雰囲気下にて、TGA(Thermogravimetric Analysis)測定を行った。その結果を図6、図7に示す。 PSGA-PO (OH) 2 was subjected to TGA (Thermogravimetric Analysis) measurement in an oxygen atmosphere and a nitrogen atmosphere. The results are shown in FIGS.
 図6、図7のいずれにおいても、210℃付近から若干の重量減少が見られる。これは、以下のように、考えられる。図8のPSQ-PO(OH)の250℃での加熱後のIRスペクトルを見ると、1279cm-1にP-O-P=O結合のP=O結合に由来するピークが生じている。即ち、側鎖のホスホン酸基の脱水縮合が起こったため、重量が減少したものである。 In both FIG. 6 and FIG. 7, a slight weight reduction is seen from around 210.degree. This is considered as follows. When the IR spectrum of PSQ-PO (OH) 2 in FIG. 8 after heating at 250 ° C. is observed, a peak derived from the P═O bond of the P—O—P═O bond is generated at 1279 cm −1 . That is, the weight is reduced because dehydration condensation of the phosphonic acid group in the side chain occurred.
 また、図6、図7のいずれにおいても、460℃付近から大幅な重量減少が見られるが、これは主鎖に結合する側鎖のエチレン基が分解したためと考えられる。 6 and FIG. 7, a significant weight reduction is observed from around 460 ° C., which is considered to be due to decomposition of the side chain ethylene group bonded to the main chain.
 以上のことから、PSQ-PO(OH)は200℃付近まで熱的に安定であり、固体電解質として利用した場合、100℃を超える温度条件下での使用にも耐え得ることがわかる。 From the above, it can be seen that PSQ-PO (OH) 2 is thermally stable up to about 200 ° C., and can be used even under temperature conditions exceeding 100 ° C. when used as a solid electrolyte.
 続いて、PSQ-PO(OH)のXRD測定を行った。その測定結果を図9に示す。PSQ-PO(OH)のスペクトルでは、ブロードな回折ピークが観測され、規則的な積層構造に由来するピークは観測されなかった。 Subsequently, XRD measurement of PSQ-PO (OH) 2 was performed. The measurement results are shown in FIG. In the spectrum of PSQ-PO (OH) 2 , a broad diffraction peak was observed, and no peak derived from a regular laminated structure was observed.
 続いて、PSQ-PO(OH)にKOHメタノール溶液(0.2mol/L)を加えて室温で攪拌(1時間)した。これにより、ホスホン酸基の-OHを-OKに変換した式5に示すホスホネート基を側鎖に有するラダー型ポリシルセスキオキサン(以下、PSQ-PO(OK))を得た。 Subsequently, a KOH methanol solution (0.2 mol / L) was added to PSQ-PO (OH) 2 and stirred at room temperature (1 hour). As a result, a ladder-type polysilsesquioxane (hereinafter referred to as PSQ-PO (OK) 2 ) having a phosphonate group represented by Formula 5 in the side chain, in which —OH of the phosphonic acid group was converted to —OK, was obtained.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 合成したPSQ-PO(OK)について、XRD測定を行った。その測定結果を図9に示す。PSQ-PO(OK)のスペクトルでは、d値の比が低角度側から1:1/√3:1/2:1/√7:1/3である回折ピークが観測された。これは典型的なヘキサゴナル相の回折パターンであり、ロッド状PSQ-PO(OK)が規則的に積層した構造を形成したことを示している。 The synthesized PSQ-PO (OK) 2 was subjected to XRD measurement. The measurement results are shown in FIG. In the spectrum of PSQ-PO (OK) 2 , a diffraction peak having a ratio of d value of 1: 1 / √3: 1/2: 1 / √7: 1/3 from the low angle side was observed. This is a typical hexagonal phase diffraction pattern, which shows that a rod-shaped PSQ-PO (OK) 2 has a regularly laminated structure.
 XRDパターンから計算されたロッド状PSQ-PO(OK)の直径は2nm以下であり、また、図5の29Si NMRスペクトルよりTピークが主に観測されたことから、非常に限られた空間の中でSi-O-Si結合からなるネットワーク構造が形成されていると考えられる。すなわち、合成されたPSQ-PO(OK)は、Si-O-Si結合から構成される8員環が一次元方向につながったラダー状構造を有することが示唆された。さらに、ラダー状構造を有するPSQ-PO(OK)が側鎖のアニオン同士の電荷の反発により、側鎖間距離が最も離れたコンフォメーションと考えられるねじれた構造(ロッド構造)を形成し、ヘキサゴナル積層体を構築していると考えられる。 The diameter of the rod-shaped PSQ-PO (OK) 2 calculated from the XRD pattern was 2 nm or less, and the T 3 peak was mainly observed from the 29 Si NMR spectrum of FIG. It is considered that a network structure composed of Si—O—Si bonds is formed in the space. That is, it was suggested that the synthesized PSQ-PO (OK) 2 has a ladder-like structure in which 8-membered rings composed of Si—O—Si bonds are connected in a one-dimensional direction. Furthermore, PSQ-PO (OK) 2 having a ladder-like structure forms a twisted structure (rod structure) that is considered to be the conformation in which the distance between the side chains is farthest due to the repulsion of the charges between the side chain anions, It is thought that a hexagonal laminate is constructed.
 また、PSQ-PO(OK)のTEM(Transmission Electron Microscope)写真を図10に示す。TEM写真からも、PSQ-PO(OK)がヘキサゴナル積層体になっていることがわかる。 Further, a TEM (Transmission Electron Microscope) photograph of PSQ-PO (OK) 2 is shown in FIG. It can be seen from the TEM photograph that PSQ-PO (OK) 2 is a hexagonal laminate.
 上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内およびそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 The embodiment described above is for explaining the present invention, and does not limit the scope of the present invention. In other words, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
 本出願は、2016年2月26日に出願された日本国特許出願2016-35903号に基づく。本明細書中に、日本国特許出願2016-35903号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2016-35903 filed on February 26, 2016. In the present specification, the specification, claims, and entire drawings of Japanese Patent Application No. 2016-35903 are incorporated by reference.
 本発明に係るラダー型ポリシルセスキオキサンは、側鎖のホスホン酸基が連続的なプロトン伝達経路を形成し、高いプロトン伝導性を示すことから、燃料電池の電解質等への利用が期待される。また、主鎖のSi-O-Si結合に由来する耐熱性、耐久性に加え、ホスホン酸基或いはホスホネート基由来の難燃性から、難燃性材料としての利用が期待される。 The ladder type polysilsesquioxane according to the present invention is expected to be used for fuel cell electrolytes and the like because the phosphonic acid groups in the side chain form a continuous proton transfer path and show high proton conductivity. The In addition to the heat resistance and durability derived from the Si—O—Si bond in the main chain, the flame retardancy derived from the phosphonic acid group or phosphonate group is expected to be used as a flame retardant material.

Claims (5)

  1.  式1又は式2で表される、
    Figure JPOXMLDOC01-appb-C000001

    (式1及び式2中、Rは炭素数1~6のアルキレン基、nは正の実数を表し、式2中、Xはアルカリ金属陽イオン、アルカリ土類金属陽イオン、アンモニウム陽イオン、又はイミダゾリウム陽イオンを表す。)
     ことを特徴とするラダー型ポリシルセスキオキサン。
    Represented by Formula 1 or Formula 2,
    Figure JPOXMLDOC01-appb-C000001

    (In Formula 1 and Formula 2, R 1 represents an alkylene group having 1 to 6 carbon atoms, n represents a positive real number, and in Formula 2, X represents an alkali metal cation, an alkaline earth metal cation, an ammonium cation, Or represents an imidazolium cation.)
    Ladder type polysilsesquioxane characterized by the above.
  2.  主鎖がねじれたロッド構造になっている、
     ことを特徴とする請求項1に記載のラダー型ポリシルセスキオキサン。
    The main chain has a twisted rod structure,
    The ladder-type polysilsesquioxane according to claim 1.
  3.  式2で表され、主鎖がねじれたロッド構造になっている複数のラダー型ポリシルセスキオキサンがヘキサゴナルに積層されている、
    Figure JPOXMLDOC01-appb-C000002

    (式2中、Xはアルカリ金属陽イオン、アルカリ土類金属陽イオン、アンモニウム陽イオン、又はイミダゾリウム陽イオン、Rは炭素数1~6のアルキレン基、nは正の実数を表す。)
     ことを特徴とするラダー型ポリシルセスキオキサン積層体。
    A plurality of ladder-type polysilsesquioxanes represented by Formula 2 and having a rod structure in which the main chain is twisted are laminated on hexagonal,
    Figure JPOXMLDOC01-appb-C000002

    (In Formula 2, X is an alkali metal cation, alkaline earth metal cation, ammonium cation, or imidazolium cation, R 1 is an alkylene group having 1 to 6 carbon atoms, and n is a positive real number.)
    A ladder-type polysilsesquioxane laminate characterized by the above.
  4.  式3で表される化合物を加水分解、縮合させて、式1で表されるラダー型ポリシルセスキオキサンを得る、
    Figure JPOXMLDOC01-appb-C000003

    (式3中、Rは炭素数1~6のアルキレン基、Rは炭素数1~4のアルキル基を表す。)
    Figure JPOXMLDOC01-appb-C000004

    (式1中、Rは炭素数1~6のアルキレン基、nは正の実数を表す。)
     ことを特徴とするラダー型ポリシルセスキオキサンの製造方法。
    The compound represented by Formula 3 is hydrolyzed and condensed to obtain a ladder-type polysilsesquioxane represented by Formula 1.
    Figure JPOXMLDOC01-appb-C000003

    (In Formula 3, R 1 represents an alkylene group having 1 to 6 carbon atoms, and R 2 represents an alkyl group having 1 to 4 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000004

    (In Formula 1, R 1 represents an alkylene group having 1 to 6 carbon atoms, and n represents a positive real number.)
    A method for producing a ladder-type polysilsesquioxane, characterized in that:
  5.  請求項4に記載のラダー型ポリシルセスキオキサンの製造方法で得られたラダー型ポリシルセスキオキサンを塩基で処理し、
     式2で表され、主鎖がねじれたロッド構造になっている複数のラダー型ポリシルセスキオキサンがヘキサゴナルに積層された積層体を得る、
    Figure JPOXMLDOC01-appb-C000005

    (式2中、Xはアルカリ金属陽イオン、アルカリ土類金属陽イオン、アンモニウム陽イオン、又はイミダゾリウム陽イオン、Rは炭素数1~6のアルキレン基、nは正の実数を表す。)
     ことを特徴とするラダー型ポリシルセスキオキサン積層体の製造方法。
    The ladder-type polysilsesquioxane obtained by the method for producing a ladder-type polysilsesquioxane according to claim 4 is treated with a base,
    Obtaining a laminate in which a plurality of ladder-type polysilsesquioxanes represented by formula 2 and having a rod structure in which the main chain is twisted is laminated on hexagonal,
    Figure JPOXMLDOC01-appb-C000005

    (In Formula 2, X is an alkali metal cation, alkaline earth metal cation, ammonium cation, or imidazolium cation, R 1 is an alkylene group having 1 to 6 carbon atoms, and n is a positive real number.)
    A method for producing a ladder-type polysilsesquioxane laminate, wherein:
PCT/JP2017/003756 2016-02-26 2017-02-02 Ladder-type polysilsesquioxane having phosphonic acid group and phosphonate group in side chains thereof, ladder-type polysilsesquioxane laminate, method for producing ladder-type polysilsesquioxane, and method for producing ladder-type polysilsesquioxane laminate WO2017145690A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018501100A JP6842777B2 (en) 2016-02-26 2017-02-02 A method for producing a ladder-type polysilsesquioxane having a phosphonic acid group and a phosphonate group in a side chain, a ladder-type polysilsesquioxane laminate, and a ladder-type polysilsesquioxane laminate.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-035903 2016-02-26
JP2016035903 2016-02-26

Publications (1)

Publication Number Publication Date
WO2017145690A1 true WO2017145690A1 (en) 2017-08-31

Family

ID=59686365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003756 WO2017145690A1 (en) 2016-02-26 2017-02-02 Ladder-type polysilsesquioxane having phosphonic acid group and phosphonate group in side chains thereof, ladder-type polysilsesquioxane laminate, method for producing ladder-type polysilsesquioxane, and method for producing ladder-type polysilsesquioxane laminate

Country Status (2)

Country Link
JP (1) JP6842777B2 (en)
WO (1) WO2017145690A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108467407A (en) * 2018-04-09 2018-08-31 山东大学 A method of enhancing two-dimensional layer rare earth organic phosphonate proton conductivity
CN109054023A (en) * 2018-07-23 2018-12-21 德清顾舒家华高分子材料有限公司 A kind of preparation method of organic silicon-phosphorus synergistic fire retardant
CN109912799A (en) * 2019-03-29 2019-06-21 太原理工大学 A kind of phosphorus-containing organosilicon flame retardant and its preparation and application
WO2020128860A1 (en) * 2018-12-18 2020-06-25 3M Innovative Properties Company Composition including polysiloxane phosphate or phosphonate and method of making a treated article
CN114031779A (en) * 2021-11-01 2022-02-11 兰州瑞朴科技有限公司 Phosphorus-containing ladder-shaped polysiloxane, preparation method thereof and application of phosphorus-containing ladder-shaped polysiloxane as flame-retardant synergist

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3780127A (en) * 1972-10-02 1973-12-18 Union Carbide Corp Catalytic process for dehydration of alcohols
US3816550A (en) * 1972-10-02 1974-06-11 Union Carbide Corp Catalytic process for hydration of olefins
JP2004022393A (en) * 2002-06-18 2004-01-22 Tdk Corp Proton conductive electrolyte, solid electrolyte membrane and fuel cell using the same, and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3780127A (en) * 1972-10-02 1973-12-18 Union Carbide Corp Catalytic process for dehydration of alcohols
US3816550A (en) * 1972-10-02 1974-06-11 Union Carbide Corp Catalytic process for hydration of olefins
JP2004022393A (en) * 2002-06-18 2004-01-22 Tdk Corp Proton conductive electrolyte, solid electrolyte membrane and fuel cell using the same, and manufacturing method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GRACE JONES D. KALAW: "Novel polysilsesquioxane hybrid membranes for proton exchange membrane fuel cell (PEMFC) applications", SEPARATION SCIENCE AND TECHNOLOGY, vol. 43, 2008, pages 3981 - 4008, XP055411996 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108467407A (en) * 2018-04-09 2018-08-31 山东大学 A method of enhancing two-dimensional layer rare earth organic phosphonate proton conductivity
CN109054023A (en) * 2018-07-23 2018-12-21 德清顾舒家华高分子材料有限公司 A kind of preparation method of organic silicon-phosphorus synergistic fire retardant
CN109054023B (en) * 2018-07-23 2021-02-12 德清顾舒家华高分子材料有限公司 Preparation method of organic silicon-phosphorus synergistic flame retardant
WO2020128860A1 (en) * 2018-12-18 2020-06-25 3M Innovative Properties Company Composition including polysiloxane phosphate or phosphonate and method of making a treated article
CN109912799A (en) * 2019-03-29 2019-06-21 太原理工大学 A kind of phosphorus-containing organosilicon flame retardant and its preparation and application
CN109912799B (en) * 2019-03-29 2021-03-26 太原理工大学 Phosphorus-containing organic silicon flame retardant and preparation and application thereof
CN114031779A (en) * 2021-11-01 2022-02-11 兰州瑞朴科技有限公司 Phosphorus-containing ladder-shaped polysiloxane, preparation method thereof and application of phosphorus-containing ladder-shaped polysiloxane as flame-retardant synergist
CN114031779B (en) * 2021-11-01 2023-02-28 兰州瑞朴科技有限公司 Phosphorus-containing ladder-shaped polysiloxane, preparation method thereof and application of phosphorus-containing ladder-shaped polysiloxane as flame-retardant synergist

Also Published As

Publication number Publication date
JP6842777B2 (en) 2021-03-17
JPWO2017145690A1 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
WO2017145690A1 (en) Ladder-type polysilsesquioxane having phosphonic acid group and phosphonate group in side chains thereof, ladder-type polysilsesquioxane laminate, method for producing ladder-type polysilsesquioxane, and method for producing ladder-type polysilsesquioxane laminate
Wu et al. An intramolecular hybrid of metal polyhedral oligomeric silsesquioxanes with special titanium-embedded cage structure and flame retardant functionality
Liao et al. One-step reduction and functionalization of graphene oxide with phosphorus-based compound to produce flame-retardant epoxy nanocomposite
CN107652468B (en) Imidazole sulfonic acid ionic liquid fire retardant, preparation method and application containing DOPO
Wang et al. Flame-retardant performance of epoxy resin composites with SiO2 nanoparticles and phenethyl-bridged DOPO derivative
CN109180952B (en) Nitrogen-phosphorus-silicon synergistic halogen-free flame retardant grafted with graphene and preparation method thereof
TWI655197B (en) Phosphorous containing compounds and process for synthesis
JP6057378B2 (en) Sulfo group-containing ladder-type polysilsesquioxane and method for producing the same
CN112166167B (en) Etching composition for silicon nitride and etching method using the same
CN104725668A (en) Fluorophenyl and phosphate structure-containing novel phosphorus-silicon flame retardant and preparation method and application thereof
CN107663278B (en) A kind of epoxy resin highly effective flame-retardant agent dispersing liquid and preparation method thereof
CN114096511A (en) Method for synthesizing organic iodide, composition for forming perovskite containing organic iodide, and photovoltaic cell having perovskite layer obtained thereby
US10056638B2 (en) Phosphonium cations and polymers incorporating them
JP6843719B2 (en) Organic inorganic metal compounds
Zhao et al. A simple, high yield method for the synthesis of organic wires from aromatic molecules using nitric acid as the solvent
CN114316366B (en) Preparation method and application of phosphorus-grafted titanium hydroxide/graphene flame retardant
JP6143042B2 (en) Ladder type polysilsesquioxane and method for producing the same
JP5780481B2 (en) Electrolyte, electrolyte membrane, lithium ion secondary battery and phosphazene compound
CN104893243A (en) Bisphenol S-base phosphorus-nitrogen compound containing hardener, and epoxy composition
US8710254B2 (en) Method for producing organo-oligo silsesquioxanes
KR102156531B1 (en) Method Of Synthesizing A Covalent Triazine Framework And A Covalent Triazine Framework Synthesized According To The Method
Wang et al. Phosphaphenanthrene-modified zirconium phosphate nanosheets for improving fire resistance, smoke suppression and water tolerance of intumescent coatings
KR101430261B1 (en) Organosilicon Nanocluster, Method for preparing the same and Method for preparing Thin Film using the same
JP5790250B2 (en) Novel sulfonated triarylamine polymer and process for producing the same
GOLCHOUBIAN Crystal structure of a new mixed-chelate complex of [Cu (diamine)(acac)] ClO4

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018501100

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756132

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756132

Country of ref document: EP

Kind code of ref document: A1