JP6143042B2 - Ladder type polysilsesquioxane and method for producing the same - Google Patents

Ladder type polysilsesquioxane and method for producing the same Download PDF

Info

Publication number
JP6143042B2
JP6143042B2 JP2012032783A JP2012032783A JP6143042B2 JP 6143042 B2 JP6143042 B2 JP 6143042B2 JP 2012032783 A JP2012032783 A JP 2012032783A JP 2012032783 A JP2012032783 A JP 2012032783A JP 6143042 B2 JP6143042 B2 JP 6143042B2
Authority
JP
Japan
Prior art keywords
ladder
psq
formula
represented
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012032783A
Other languages
Japanese (ja)
Other versions
JP2013170175A (en
Inventor
芳郎 金子
芳郎 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagoshima University NUC
Original Assignee
Kagoshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagoshima University NUC filed Critical Kagoshima University NUC
Priority to JP2012032783A priority Critical patent/JP6143042B2/en
Publication of JP2013170175A publication Critical patent/JP2013170175A/en
Application granted granted Critical
Publication of JP6143042B2 publication Critical patent/JP6143042B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Polymers (AREA)

Description

本発明は、可溶性を示すアニオン性のラダー型ポリシルセスキオキサン及びその製造方法に関する。   The present invention relates to an anionic ladder-type polysilsesquioxane exhibiting solubility and a method for producing the same.

近年、有機成分と無機成分とを混合することにより、両成分の特徴を相乗的に高める有機−無機ハイブリッド材料が様々な分野で注目されている。その中でも、三官能性有機シランモノマー(シランカップリング剤)を用いて合成されるラダー型ポリシルセスキオキサン(PSQ)は、有機−無機ハイブリッド材料の中で注目されている材料の1つである。   In recent years, organic-inorganic hybrid materials that synergistically enhance the characteristics of both components by mixing organic and inorganic components have attracted attention in various fields. Among them, ladder type polysilsesquioxane (PSQ) synthesized using a trifunctional organosilane monomer (silane coupling agent) is one of the materials attracting attention among organic-inorganic hybrid materials. is there.

このラダー型PSQは、シロキサン結合が一次元方向に規則的につながったポリマーであり、主鎖構造が結合エネルギーの大きいSi−O結合からなり、さらにラダー構造であるため、熱的、力学的及び化学的に安定した材料である。また、このPSQは可溶性であるため、透明な溶液として利用することができる。   This ladder-type PSQ is a polymer in which siloxane bonds are regularly connected in a one-dimensional direction, the main chain structure is composed of Si—O bonds having a large bond energy, and is a ladder structure. It is a chemically stable material. Moreover, since this PSQ is soluble, it can be utilized as a transparent solution.

特開2006−219570号公報JP 2006-219570 A

ラダー型PSQは、分子構造を制御することによって様々な用途に応用することができ、キラリティー誘起材料や化合物の吸着剤といった用途に用いることが期待されているが、カチオン性化合物の吸着剤として利用できるラダー型PSQについては報告されていない。   Ladder-type PSQ can be applied to various applications by controlling the molecular structure, and is expected to be used for applications such as chirality-inducing materials and compound adsorbents. There is no report on available ladder-type PSQ.

本発明は前述の問題点に鑑み、カチオン性化合物の吸着剤などに利用できるアニオン性のラダー型ポリシルセスキオキサン及びその製造方法を提供することを目的としている。   An object of the present invention is to provide an anionic ladder-type polysilsesquioxane that can be used as an adsorbent for a cationic compound and a method for producing the same, in view of the above-described problems.

本発明のラダー型ポリシルセスキオキサン及びその製造方法については、以下のとおりである。
(1)下記式(I)により表される単位の構造を有することを特徴とするラダー型ポリシルセスキオキサン。
The ladder-type polysilsesquioxane of the present invention and the production method thereof are as follows.
(1) A ladder-type polysilsesquioxane having a structure of a unit represented by the following formula (I).

Figure 0006143042
(式中、X+は、アルカリ金属イオンを示す。)
Figure 0006143042
(In the formula, X + represents an alkali metal ion.)

(2)前記アルカリ金属イオンは、ナトリウムイオンであることを特徴とする前記(1)に記載のラダー型ポリシルセスキオキサン。 (2) The ladder-type polysilsesquioxane according to (1), wherein the alkali metal ion is a sodium ion.

(3)前記式(I)に表される単位の構造は、主鎖がねじれて形成されていることを特徴とする前記(1)又は(2)に記載のラダー型ポリシルセスキオキサン。   (3) The ladder type polysilsesquioxane according to (1) or (2), wherein the structure of the unit represented by the formula (I) is formed by twisting the main chain.

(4)2−シアノエチルトリエトキシシランを水酸化ナトリウム水溶液に混合して下記式(II)に表される構造の化合物を中間体として得る工程と、
下記式(II)に表される構造の化合物を加熱して縮合重合させ、陽イオン交換樹脂により下記式(III)に表される単位の構造の化合物を得る工程と、
下記式(III)に表される単位の構造の化合物に、メタノールまたはエタノールを含むアルカリ性溶液を混合し、カルボキシレート基と前記アルカリ性溶液中のアルカリ金属イオンとのイオン対を形成した固形物として下記式(VII)に表されるラダー型ポリシルセスキオキサンを抽出する工程と、
を有することを特徴とするラダー型ポリシルセスキオキサンの製造方法。
(4) mixing 2-cyanoethyltriethoxysilane with an aqueous sodium hydroxide solution to obtain a compound having a structure represented by the following formula (II) as an intermediate;
Heating and condensing a compound having a structure represented by the following formula (II) to obtain a compound having a unit structure represented by the following formula (III) by a cation exchange resin;
The compound of structural units represented by the following formula (III), following the mixed alkaline solution containing methanol or ethanol, solids to form an ion pair with the carboxylate groups and alkali metal ions of the alkaline solution Extracting the ladder-type polysilsesquioxane represented by the formula (VII) ;
A process for producing a ladder-type polysilsesquioxane, comprising:

Figure 0006143042
(式中、Z+ 、X + は、アルカリ金属イオンを示す。)
Figure 0006143042
(In the formula, Z + and X + represent alkali metal ions.)

本発明によれば、アニオン性を有するラダー型PSQにより、カチオン性化合物の吸着剤など、様々な分野に応用できる。   According to the present invention, the ladder type PSQ having an anionic property can be applied to various fields such as an adsorbent for a cationic compound.

本発明のラダー型PSQの立体的な構造を説明する図である。It is a figure explaining the three-dimensional structure of ladder type PSQ of this invention. 本発明のラダー型PSQの積層構造を説明する図である。It is a figure explaining the laminated structure of ladder type PSQ of this invention. 本発明の実施例により作製したPSQ−COOHの赤外分光法による測定結果を示す図である。It is a figure which shows the measurement result by the infrared spectroscopy of PSQ-COOH produced by the Example of this invention. 本発明の実施例により作製したPSQ−COOHのプロトン核磁気共鳴(1H−NMR)分光法による測定結果を示す図である。It is a view showing measurement results of the fabricated PSQ-COOH proton nuclear magnetic resonance (1 H-NMR) spectroscopy according to an embodiment of the present invention. 本発明の実施例により作製したPSQ−COOHのカーボン核磁気共鳴(13C−NMR)分光法による測定結果を示す図である。It is a figure which shows the measurement result by the carbon nuclear magnetic resonance (< 13 > C-NMR) spectroscopy of PSQ-COOH produced by the Example of this invention. 本発明の実施例により作製したPSQ−COOHのシリコン核磁気共鳴(29Si−NMR)分光法による測定結果を示す図である。It is a view showing measurement results of the fabricated PSQ-COOH silicon nuclear magnetic resonance (29 Si-NMR) spectroscopy according to an embodiment of the present invention. 本発明の実施例により作製したPSQ−COOH及びPSQ−COO-Na+の赤外分光法による測定結果を示す図である。It is a figure which shows the measurement result by the infrared spectroscopy of PSQ-COOH and PSQ-COO < - > Na <+> produced by the Example of this invention. 本発明の実施例により作製したPSQ−COOH及びPSQ−COO-Na+のX線回折法による測定結果を示す図である。It is a figure which shows the measurement result by the X-ray-diffraction method of PSQ-COOH and PSQ-COO < - > Na <+> produced by the Example of this invention. X線回折による構造解析の結果を示す図である。It is a figure which shows the result of the structural analysis by X-ray diffraction.

本発明者は、アニオン性を有するラダー型ポリシルセスキオキサン(PSQ)を生成するため、鋭意に研究した結果、モノマーとして2−シアノエチルトリエトキシシランを用いてアルカリ性の条件下で重合反応させたところ、規則的な配列のラダー構造からなるアニオン性ラダー型PSQを得ることができることを見出した。   As a result of intensive research to produce an anionic ladder-type polysilsesquioxane (PSQ), the present inventor conducted a polymerization reaction under alkaline conditions using 2-cyanoethyltriethoxysilane as a monomer. However, it has been found that an anionic ladder type PSQ having a ladder structure with a regular arrangement can be obtained.

本発明に係るアニオン性ラダー型PSQは、主鎖がねじれた構造を形成し、複数のアニオン性ラダー型PSQが重なってヘキサゴナル積層構造を形成する。また、側鎖にはアニオン性のカルボキシレート基が形成されており、アルカリ金属イオンとイオン対を形成する。   The anionic ladder type PSQ according to the present invention forms a structure in which the main chain is twisted, and a plurality of anionic ladder type PSQs overlap to form a hexagonal laminated structure. In addition, an anionic carboxylate group is formed in the side chain and forms an ion pair with an alkali metal ion.

ここで、アルカリ金属イオンとは、ナトリウムイオン(Na+)、リチウムイオン(Li+)、カリウムイオン(K+)、ルビジウムイオン(Rb+)、及びセシウムイオン(Cs+)のことを指し、この中でも、水酸化ナトリウムは入手が容易であることから、ナトリウムイオンであることが好ましい。 Here, the alkali metal ion means sodium ion (Na + ), lithium ion (Li + ), potassium ion (K + ), rubidium ion (Rb + ), and cesium ion (Cs + ). Especially, since sodium hydroxide is easy to acquire, it is preferable that it is a sodium ion.

次に、アニオン性ラダー型PSQの製造方法について説明する。
まず、水酸化ナトリウム水溶液に2−シアノエチルトリエトキシシランを混合比(重量比)が0.9:1〜3:1となるように混合して6時間〜24時間攪拌することにより加水分解が起こり、次式(IV)に表される構造の化合物が得られる。
Next, the manufacturing method of anionic ladder type PSQ is demonstrated.
First, 2-cyanoethyltriethoxysilane is mixed with an aqueous sodium hydroxide solution so that the mixing ratio (weight ratio) is 0.9: 1 to 3: 1 and stirred for 6 to 24 hours to cause hydrolysis. Thus, a compound having a structure represented by the following formula (IV) is obtained.

Figure 0006143042
Figure 0006143042

なお、水酸化ナトリウム水溶液の代わりに、他のアルカリ性水溶液を用いてもよい。水酸化ナトリウム水溶液の代わりに水酸化リチウム水溶液を用いる場合には、ナトリウムイオンの代わりにリチウムイオンの塩が得られる。また、水酸化ナトリウム水溶液の代わりに水酸化カリウム水溶液を用いる場合には、ナトリウムイオンの代わりにカリウムイオンの塩が得られる。また、水酸化ナトリウム水溶液の代わりに水酸化ルビジウム水溶液を用いる場合には、ナトリウムイオンの代わりにルビジウムイオンの塩が得られる。また、水酸化ナトリウム水溶液の代わりに水酸化セシウム水溶液を用いる場合には、ナトリウムイオンの代わりにセシウムイオンの塩が得られる。   In addition, you may use another alkaline aqueous solution instead of sodium hydroxide aqueous solution. When a lithium hydroxide aqueous solution is used instead of the sodium hydroxide aqueous solution, a lithium ion salt is obtained instead of the sodium ion. Moreover, when using potassium hydroxide aqueous solution instead of sodium hydroxide aqueous solution, the salt of potassium ion is obtained instead of sodium ion. When a rubidium hydroxide aqueous solution is used instead of the sodium hydroxide aqueous solution, a salt of rubidium ion can be obtained instead of sodium ion. When a cesium hydroxide aqueous solution is used instead of the sodium hydroxide aqueous solution, a cesium ion salt can be obtained instead of the sodium ion.

次に、式(IV)に表される構造の化合物を開放系で50〜70℃で加熱することで溶媒を蒸発させて縮合重合させる。一般的にモノマーから縮合重合によりPSQを得る場合、不規則な3次元ネットワーク構造を形成し、不溶性の材料となりやすい。これに対して本実施形態では、式(IV)に表される構造の化合物が酸とアルカリとからなる塩を形成しているため、この構造により3次元的な重合を抑制し、可溶性の規則的な配列のラダー構造が得られる。   Next, the compound having the structure represented by the formula (IV) is heated at 50 to 70 ° C. in an open system to evaporate the solvent and undergo condensation polymerization. In general, when PSQ is obtained from a monomer by condensation polymerization, an irregular three-dimensional network structure is formed, which tends to be an insoluble material. On the other hand, in the present embodiment, since the compound having the structure represented by the formula (IV) forms a salt composed of an acid and an alkali, this structure suppresses three-dimensional polymerization, and the solubility rule. A typical ladder structure is obtained.

次に、陽イオン交換樹脂を用いてナトリウムイオンと水素イオンとを交換させると、次式(V)に表される構造のポリマーが得られる。ここで陽イオン交換樹脂としては、交換基としてスルホン酸基を有するもの、カルボキシル基を有するものなどが挙げられる。具体的には、生成した粉末状の粗生成物を陽イオン交換樹脂が入っている水に加えて室温で1〜3時間撹拌することによって、式(V)に表される構造のポリマーが得られる。   Next, when sodium ions and hydrogen ions are exchanged using a cation exchange resin, a polymer having a structure represented by the following formula (V) is obtained. Here, examples of the cation exchange resin include those having a sulfonic acid group as an exchange group and those having a carboxyl group. Specifically, the resulting powdery crude product is added to water containing a cation exchange resin and stirred at room temperature for 1 to 3 hours to obtain a polymer having a structure represented by the formula (V). It is done.

Figure 0006143042
Figure 0006143042

次に、式(V)に表されるポリマーに水酸化ナトリウムのメタノール溶液を混合すると、イオン化して次式(VI)に表されるカルボキシレート基を有するラダー構造のPSQが得られる。なお、メタノール溶液の代わりにエタノール溶液を用いてもよい。また、式(V)に表されるポリマーと、水酸化ナトリウムとの混合比(モル比)が1:1となるように混合し、水酸化ナトリウム溶液の濃度は、0.1〜1重量%とする。   Next, when a methanol solution of sodium hydroxide is mixed with the polymer represented by the formula (V), PSQ having a ladder structure having a carboxylate group represented by the following formula (VI) is obtained by ionization. An ethanol solution may be used instead of the methanol solution. Further, the polymer represented by the formula (V) and sodium hydroxide were mixed so that the mixing ratio (molar ratio) was 1: 1, and the concentration of the sodium hydroxide solution was 0.1 to 1% by weight. And

Figure 0006143042
Figure 0006143042

なお、アルカリ金属イオンを他のイオンにする場合は、水酸化ナトリウムの代わりにそのイオンを有するアルカリ性物質を用いる。具体的には、リチウムイオンのラダー型PSQを得る場合には、水酸化ナトリウムの代わりに水酸化リチウムを用いる。また、カリウムイオンのラダー型PSQを得る場合には、水酸化ナトリウムの代わりに水酸化カリウムを用いる。また、ルビジウムイオンのラダー型PSQを得る場合には、水酸化ナトリウムの代わりに水酸化ルビジウムを用いる。また、セシウムイオンのラダー型PSQを得る場合には、水酸化ナトリウムの代わりに水酸化セシウムを用いる。   When the alkali metal ion is changed to another ion, an alkaline substance having the ion is used instead of sodium hydroxide. Specifically, lithium hydroxide is used instead of sodium hydroxide to obtain a lithium ion ladder type PSQ. In addition, when obtaining a ladder-type PSQ of potassium ions, potassium hydroxide is used instead of sodium hydroxide. Further, when obtaining rubidium ion ladder type PSQ, rubidium hydroxide is used instead of sodium hydroxide. Moreover, when obtaining ladder type PSQ of cesium ions, cesium hydroxide is used instead of sodium hydroxide.

以上のような製造手順により得られるアニオン性のラダー型PSQは、図1に示すように、主鎖が右または左回りにねじれて形成されており、その結果、図2に示すようなヘキサゴナル積層構造を形成する。このとき、ラダー型PSQの主鎖部分の両端は、Si−OH結合が形成されている。また、分子量は、以上のような条件下で縮合重合させると、8000〜16000の範囲内であると考えられる。   As shown in FIG. 1, the anionic ladder-type PSQ obtained by the manufacturing procedure as described above is formed by twisting the main chain clockwise or counterclockwise. As a result, the hexagonal laminate as shown in FIG. Form a structure. At this time, Si—OH bonds are formed at both ends of the main chain portion of the ladder-type PSQ. Further, the molecular weight is considered to be in the range of 8000 to 16000 when subjected to condensation polymerization under the above conditions.

このように本発明のラダー型PSQは、官能基としてアニオン性のカルボキシレート基を有し、さらに可溶性であることから、カチオン性化合物の吸着剤として利用することができる。例えば、セシウムイオンなどの陽イオンを含む化合物から選択的に陽イオンを除去することも可能である。また、陽性の発光性物質を吸着し、円偏光発光材料などへ応用することも可能である。   Thus, the ladder-type PSQ of the present invention has an anionic carboxylate group as a functional group and is further soluble, so that it can be used as an adsorbent for a cationic compound. For example, it is possible to selectively remove cations from a compound containing cations such as cesium ions. It is also possible to adsorb positive luminescent substances and apply them to circularly polarized light emitting materials.

次に、本発明の実施例について説明する。なお、この実験における条件等は、本発明の実施可能性等を確認するために採用した例であり、本発明は、これらの例に限定されるものではない。   Next, examples of the present invention will be described. The conditions and the like in this experiment are examples adopted for confirming the feasibility of the present invention, and the present invention is not limited to these examples.

まず、0.217gの2−シアノエチルトリエトキシシランを濃度が8%の水酸化ナトリウム水溶液5mLに混合して13時間攪拌し、式(IV)に表される化合物を生成した。この化合物は単離することが困難であるため、そのまま次の反応に用い、水溶液を開放系で50〜60℃で加熱し、溶媒を蒸発させて重縮合を進行させた。その後、生成した粉末状の粗生成物を約100cm3のH+タイプの陽イオン交換樹脂が入っている100mLの水に加えて室温で3時間撹拌し、陽イオン交換樹脂をろ別した後、得られた水溶液をロータリーエバポレーターで20mLまで濃縮し、その後凍結乾燥することで1.765gの式(V)に表される構造の化合物(以下、PSQ−COOH)を得た。そして、PSQ−COOHの一部を採取し、Shimadzu製のFTIR-8400 spectrometerによる赤外分光測定、及びJEOL製のECX-400 spectrometerによる核磁気共鳴(NMR)分光測定を行った。 First, 0.217 g of 2-cyanoethyltriethoxysilane was mixed with 5 mL of an aqueous 8% sodium hydroxide solution and stirred for 13 hours to produce a compound represented by the formula (IV). Since this compound is difficult to isolate, it was directly used in the next reaction, and the aqueous solution was heated in an open system at 50 to 60 ° C. to evaporate the solvent and proceed polycondensation. Thereafter, the resulting powdery crude product was added to 100 mL of water containing about 100 cm 3 of H + type cation exchange resin, stirred at room temperature for 3 hours, and the cation exchange resin was filtered off. The obtained aqueous solution was concentrated to 20 mL with a rotary evaporator, and then lyophilized to obtain 1.765 g of a compound represented by the formula (V) (hereinafter, PSQ-COOH). Then, a part of PSQ-COOH was sampled and subjected to infrared spectroscopic measurement using Shimadzu FTIR-8400 spectrometer and nuclear magnetic resonance (NMR) spectroscopic measurement using JEOL ECX-400 spectrometer.

図3は、本実施例により作製したPSQ−COOHの赤外分光法による測定結果を示す図である。図3に示すように、カルボキシル基については1713cm-1付近に吸収ピークが確認され、Si−O結合については、1034cm-1、1126cm-1付近に吸収ピークが確認された。 FIG. 3 is a diagram showing a measurement result of infrared spectroscopy of PSQ-COOH produced according to this example. As shown in FIG. 3, for the carboxyl group was confirmed absorption peak near 1713 cm -1, for the Si-O bond, 1034Cm -1, absorption peaks were confirmed near 1126cm -1.

図4〜図6は、本実施例により作製したPSQ−COOHの核磁気共鳴(NMR)分光法による測定結果を示す図である。図4〜図6に示すように、a,bの位置における(−CH2−)の存在が確認され、さらに、カルボキシル基を構成するC、及び主鎖部分のSiの存在も確認された。また、T2ピークが存在することから、PSQ−COOHの主鎖部分の両端はSi−OH結合が存在していることも確認された。 4-6 is a figure which shows the measurement result by the nuclear magnetic resonance (NMR) spectroscopy of PSQ-COOH produced by the present Example. As shown in FIGS. 4 to 6, the presence of (—CH 2 —) at the positions a and b was confirmed, and the presence of C constituting the carboxyl group and Si in the main chain portion was also confirmed. Further, since the T 2 peak was present, it was also confirmed that Si—OH bonds were present at both ends of the main chain portion of PSQ—COOH.

次に、0.0228gの本実施例により作製したPSQ−COOHに、0.0072gの水酸化ナトリウムとメタノール溶液1.8mLとを加えて1時間撹拌し、この懸濁液をガラス基板上に塗布して室温で放置して乾燥することで式(VI)に表される単位の構造の化合物(以下、PSQ−COO-Na+)を得た。そして、PSQ−COO-Na+の一部を採取し、Shimadzu製のFTIR-8400 spectrometerによる赤外分光測定、及びX'Pert Pro diffractometer (PANalytical製)によるX線回折測定を行った。 Next, to 0.0228 g of PSQ-COOH prepared in this example, 0.0072 g of sodium hydroxide and 1.8 mL of methanol solution were added and stirred for 1 hour, and this suspension was applied onto a glass substrate. Then, the compound having a unit structure represented by the formula (VI) (hereinafter referred to as PSQ-COO Na + ) was obtained by allowing to stand and drying at room temperature. Then, a part of PSQ-COO Na + was collected and subjected to infrared spectroscopic measurement using FTIR-8400 spectrometer manufactured by Shimadzu and X-ray diffraction measurement using X′Pert Pro diffractometer (manufactured by PANallytical).

図7は、本実施例により作製したPSQ−COOH及びPSQ−COO-Na+の赤外分光法による測定結果を示す図である。図7に示すように、1412cm-1、1566cm-1付近に吸収ピークが確認され、カルボキシル基からカルボキシレート基に置換されていることが確認された。また、Si−O結合もPSQ−COOHの場合とほぼ同じ位置に吸収ピークが確認され、そのままSi−O結合が存在していることが確認された。 FIG. 7 is a graph showing the measurement results of PSQ—COOH and PSQ—COO Na + produced in this example by infrared spectroscopy. As shown in FIG. 7, absorption peaks were confirmed in the vicinity of 1412 cm −1 and 1566 cm −1 , and it was confirmed that the carboxyl group was substituted with a carboxylate group. In addition, the absorption peak of Si—O bond was confirmed at almost the same position as in the case of PSQ—COOH, and it was confirmed that the Si—O bond was present as it was.

図8は、本実施例により作製したPSQ−COOH及びPSQ−COO-Na+のX線回折法による測定結果を示す図である。図8に示すように、(100)面、(110)面及び(200)面のピークが検出され、図9に示すように複数のPSQ−COO-Na+がヘキサゴナル状に積層された構造であることが確認された。また、分子量は、29Si−NMR測定による末端定量法により約10×103と算出された。 FIG. 8 is a diagram showing measurement results of PSQ—COOH and PSQ—COO Na + produced by this example by the X-ray diffraction method. As shown in FIG. 8, peaks of (100) plane, (110) plane and (200) plane are detected, and as shown in FIG. 9, a plurality of PSQ-COO Na + are stacked in a hexagonal shape. It was confirmed that there was. The molecular weight was calculated to be about 10 × 10 3 by terminal quantification by 29 Si-NMR measurement.

以上のように本実施例によれば、アニオン性のカルボキシレート基を有するラダー型PSQを作製することができる。これにより、カチオン性化合物の吸着剤や、円偏光発光材料などへ応用することも可能であるといえる。   As described above, according to this example, a ladder-type PSQ having an anionic carboxylate group can be produced. Thus, it can be applied to adsorbents of cationic compounds and circularly polarized light emitting materials.

Claims (4)

下記式(I)により表される単位の構造を有することを特徴とするラダー型ポリシルセスキオキサン。
Figure 0006143042
(式中、X+は、アルカリ金属イオンを示す。)
A ladder-type polysilsesquioxane having a structure of a unit represented by the following formula (I).
Figure 0006143042
(In the formula, X + represents an alkali metal ion.)
前記アルカリ金属イオンは、ナトリウムイオンであることを特徴とする請求項1に記載のラダー型ポリシルセスキオキサン。   The ladder-type polysilsesquioxane according to claim 1, wherein the alkali metal ion is a sodium ion. 前記式(I)に表される単位の構造は、主鎖がねじれて形成されていることを特徴とする請求項1又は2に記載のラダー型ポリシルセスキオキサン。   The ladder type polysilsesquioxane according to claim 1 or 2, wherein the structure of the unit represented by the formula (I) is formed by twisting the main chain. 2−シアノエチルトリエトキシシランをアルカリ性水溶液に混合して下記式(II)に表される構造の化合物を中間体として得る工程と、
下記式(II)に表される構造の化合物を加熱して縮合重合させ、陽イオン交換樹脂により下記式(III)に表される単位の構造の化合物を得る工程と、
下記式(III)に表される単位の構造の化合物に、メタノールまたはエタノールを含むアルカリ性溶液を混合し、カルボキシレート基と前記アルカリ性溶液中のアルカリ金属イオンとのイオン対を形成した固形物として下記式(IV)に表されるラダー型ポリシルセスキオキサンを抽出する工程と、
を有することを特徴とするラダー型ポリシルセスキオキサンの製造方法。
Figure 0006143042
(式中、Z+ 、X + は、アルカリ金属イオンを示す。)
A step of mixing 2-cyanoethyltriethoxysilane with an alkaline aqueous solution to obtain a compound having a structure represented by the following formula (II) as an intermediate;
Heating and condensing a compound having a structure represented by the following formula (II) to obtain a compound having a unit structure represented by the following formula (III) by a cation exchange resin;
The compound of structural units represented by the following formula (III), following the mixed alkaline solution containing methanol or ethanol, solids to form an ion pair with the carboxylate groups and alkali metal ions of the alkaline solution Extracting the ladder-type polysilsesquioxane represented by the formula (IV) ;
A process for producing a ladder-type polysilsesquioxane, comprising:
Figure 0006143042
(In the formula, Z + and X + represent alkali metal ions.)
JP2012032783A 2012-02-17 2012-02-17 Ladder type polysilsesquioxane and method for producing the same Active JP6143042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012032783A JP6143042B2 (en) 2012-02-17 2012-02-17 Ladder type polysilsesquioxane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012032783A JP6143042B2 (en) 2012-02-17 2012-02-17 Ladder type polysilsesquioxane and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013170175A JP2013170175A (en) 2013-09-02
JP6143042B2 true JP6143042B2 (en) 2017-06-07

Family

ID=49264340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012032783A Active JP6143042B2 (en) 2012-02-17 2012-02-17 Ladder type polysilsesquioxane and method for producing the same

Country Status (1)

Country Link
JP (1) JP6143042B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6083643B2 (en) * 2013-05-13 2017-02-22 国立大学法人 鹿児島大学 Ionic liquid having silsesquioxane structure and method for producing the same
JP5802902B2 (en) * 2013-05-16 2015-11-04 株式会社サンセイアールアンドディ Game machine
JP6057378B2 (en) * 2013-08-26 2017-01-11 国立大学法人 鹿児島大学 Sulfo group-containing ladder-type polysilsesquioxane and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128693A (en) * 1981-01-30 1982-08-10 Tokyo Denshi Zairyo Kogyo Kk Organosilicon compound
JPS58198528A (en) * 1982-05-17 1983-11-18 Katsuji Abe Organosilicon compound
JPH1160734A (en) * 1997-08-14 1999-03-05 Showa Denko Kk Polymer, resist resin composition and formation of pattern using the same

Also Published As

Publication number Publication date
JP2013170175A (en) 2013-09-02

Similar Documents

Publication Publication Date Title
Mosby et al. Surface functionalization of zirconium phosphate nanoplatelets for the design of polymer fillers
Qin et al. Water-robust zinc–organic framework with mixed nodes and its handy mixed-matrix membrane for highly effective luminescent detection of Fe3+, CrO42–, and Cr2O72–in aqueous solution
Yan et al. Two luminescent molecular hybrids composed of bridged Eu (III)-β-diketone chelates covalently trapped in silica and titanate gels
Mizoshita et al. Tetraphenylpyrene-bridged periodic mesostructured organosilica films with efficient visible-light emission
Serre et al. Synthesis and characterization of a new three-dimensional lanthanide carboxyphosphonate: Ln4 (H2O) 7 [O2C− C5H10N− CH2-PO3] 4 (H2O) 5
Zhou et al. Imparting tunable and white-light luminescence to a nanosized metal–organic framework by controlled encapsulation of lanthanide cations
Li et al. Synthesis, structure, and luminescent and magnetic properties of novel lanthanide metal− organic frameworks with zeolite-like topology
Chandra et al. Highly luminescent organic− inorganic hybrid mesoporous silicas containing tunable chemosensor inside the pore wall
Liu et al. Dramatically enhanced luminescence of layered terbium hydroxides as induced by the synergistic effect of Gd3+ and organic sensitizers
Chen et al. The first europium (III) β‐diketonate complex functionalized polyhedral oligomeric silsesquioxane
Chen et al. Mixed-solvothermal syntheses and structures of six new zinc phosphonocarboxylates with zeolite-type and pillar-layered frameworks
Yu et al. A new organic− inorganic hybrid layered molybdenum (V) cobalt phosphate constructed from [H24 (Mo16O32) Co16 (PO4) 24 (OH) 4 (C5H4N) 2 (H2O) 6] 4− wheels and 4, 4′-bipyridine linkers
Baig et al. Facile synthesis of an electrically conductive polycarbazole–zirconium (IV) phosphate cation exchange nanocomposite and its room temperature ammonia sensing performance
JP6143042B2 (en) Ladder type polysilsesquioxane and method for producing the same
Serre et al. An Open-Framework Rare-Earth Acetylenedicarboxylate: MIL-95, EuIII2 (H2O) 2 (CO3) 2⊙{O2C− C2− CO2}⊙{H2O} x
Peng et al. Lanthanide derivatives of Ta/W mixed-addendum POMs as proton-conducting materials
Wang et al. Three Robust Blue-Emitting Anionic Metal–Organic Frameworks with High Stability and Good Proton Conductivities
Jiao et al. Chiral and achiral copper (II) carboxyphosphonates supramolecular structures: synthesis, structures, surface photovoltage, and magnetic properties
JP6057378B2 (en) Sulfo group-containing ladder-type polysilsesquioxane and method for producing the same
Lin et al. Synthesis and characterization of three ytterbium coordination polymers featuring various cationic species and a luminescence study of a terbium analogue with open channels
Rom et al. Colossal dielectric responses from the wide band gap 2D-semiconducting amine templated hybrid framework materials
Tan et al. Luminescent coordination polymer gels based on rigid terpyridyl phosphine and Ag (i)
Rom et al. Syntheses, crystal structures, topology and dual electronic behaviors of a family of amine-templated three-dimensional zinc-organophosphonate hybrid solids
Qiao et al. Covalently bonded assembly of lanthanide/silicon− oxygen network/polyethylene glycol hybrid materials through functionalized 2-thenoyltrifluoroacetone linkage
Li et al. Novel luminescent hybrids by incorporating rare earth β-diketonates into polymers through ion pairing with an imidazolium counter ion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170426

R150 Certificate of patent or registration of utility model

Ref document number: 6143042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250