WO2017145649A1 - Acoustic generator and electronic apparatus provided with same - Google Patents

Acoustic generator and electronic apparatus provided with same Download PDF

Info

Publication number
WO2017145649A1
WO2017145649A1 PCT/JP2017/003090 JP2017003090W WO2017145649A1 WO 2017145649 A1 WO2017145649 A1 WO 2017145649A1 JP 2017003090 W JP2017003090 W JP 2017003090W WO 2017145649 A1 WO2017145649 A1 WO 2017145649A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
piezoelectric element
bonding material
main surface
laminated
Prior art date
Application number
PCT/JP2017/003090
Other languages
French (fr)
Japanese (ja)
Inventor
悟 岩崎
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2018501086A priority Critical patent/JP6585821B2/en
Publication of WO2017145649A1 publication Critical patent/WO2017145649A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers

Definitions

  • the present disclosure relates to an acoustic generator and an electronic device including the same.
  • a piezoelectric vibration device including a diaphragm and a laminated piezoelectric element joined to a main surface of the diaphragm via a joining member.
  • Such a piezoelectric vibration device can also be applied to an acoustic generator (see, for example, Patent Document 1).
  • the piezoelectric vibration device and the sound generator described above join the main surface of the plate-shaped multilayer piezoelectric element to the main surface of the diaphragm so that the direction perpendicular to the main surface of the diaphragm is the stacking direction, A d31 mode displacement is generated in the multilayer piezoelectric element, and bending vibration is generated in the multilayer piezoelectric element and the diaphragm.
  • the acoustic generator of the present disclosure includes a laminated piezoelectric element having a laminated body in which piezoelectric layers and internal electrode layers are alternately laminated, and a diaphragm having a main surface, and the laminated piezoelectric element has a laminating direction. Is disposed along the main surface of the diaphragm.
  • an electronic device of the present disclosure includes the acoustic generator, an electronic circuit connected to the acoustic generator, and a housing that houses the electronic circuit and the acoustic generator.
  • (A) is a schematic perspective view which shows an example of the sound generator of this embodiment
  • (b) is a schematic side view of the sound generator shown to (a). It is a schematic side view which shows the other example of the acoustic generator of this embodiment. It is a schematic side view which shows the other example of the acoustic generator of this embodiment. It is a schematic perspective view which shows the other example of the acoustic generator of this embodiment.
  • FIG. 1A is a schematic perspective view showing an example of the sound generator of the present embodiment
  • FIG. 1B is a schematic side view of the sound generator shown in FIG.
  • the acoustic generator 10 of the example shown in FIG. 1 includes a laminated piezoelectric element 1 having a laminated body 13 in which piezoelectric layers 11 and internal electrode layers 12 are alternately laminated, and a diaphragm 2 having a main surface.
  • the stacking direction is arranged along the main surface of the diaphragm 2.
  • the multilayer body 13 constituting the multilayer piezoelectric element 1 has active portions in which a plurality of piezoelectric layers 11 and internal electrode layers 12 are alternately stacked, and both ends in the stacking direction of the multilayer body 13 positioned outside the active portion. And an inactive portion made of the piezoelectric layer 11 provided.
  • the laminated body 13 is formed in a rectangular parallelepiped shape, for example, and when disposed on the main surface of the diaphragm 2 described later, the thickness t in the direction perpendicular to the main surface of the diaphragm 2 is, for example, 1.0 to 5.0 mm.
  • the length L in the stacking direction parallel to the main surface of the diaphragm 2 is, for example, 5.0 to 50 mm, and the width W in the direction parallel to the main surface of the diaphragm 2 and perpendicular to the stacking direction is, for example, 1.0 to 10 mm.
  • the dimensions are as follows.
  • the laminated body 13 in which the piezoelectric layers 11 and the internal electrode layers 12 are alternately laminated may include an active portion in which the piezoelectric layers 11 and the internal electrode layers 12 are alternately laminated. It does not exclude the configuration in which inactive portions are present at both ends in the stacking direction as described above.
  • the piezoelectric layer 11 constituting the multilayer body 13 is formed of ceramics having piezoelectric characteristics.
  • ceramics for example, a perovskite oxide made of lead zirconate titanate (PbZrO 3 -PbTiO 3 ), Lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), or the like can be used.
  • the thickness of one layer of the piezoelectric layer 11 is preferably set to, for example, 0.01 to 0.1 mm in order to drive at a low voltage.
  • the internal electrode layer 12 constituting the laminate 13 is fired at the same time as the ceramic forming the piezoelectric layer 11.
  • the internal electrode layer 12 includes a first internal electrode layer 121 and a second internal electrode layer 122 which are different poles, and applies a driving voltage to the piezoelectric layer 11 sandwiched therebetween.
  • a conductor mainly composed of silver or a silver-palladium alloy that can be fired at a low temperature, or a conductor containing copper, platinum, or the like can be used. You may make it contain.
  • the thickness of one layer of the internal electrode layer 12 is, for example, 0.1 to 5 ⁇ m.
  • the stacked body 13 has two end faces located at one end and the other end in the stacking direction, and four side faces.
  • the first internal electrode layer 121 or the second internal electrode layer 122 (one of the first internal electrode layer 121 and the second internal electrode layer 122) is formed on a pair of side surfaces facing each other among the four side surfaces. Has been derived. Further, the end surfaces of both the first internal electrode layer 121 and the second internal electrode layer 122 are exposed on the other pair of side surfaces facing each other among the four side surfaces.
  • the external electrode layer 14 is provided on each of a pair of opposing side surfaces from which the first internal electrode layer 121 or the second internal electrode layer 122 is derived in the stacked body 13.
  • the pair of external electrode layers 14 are made of, for example, a conductive paste containing a metal metal such as Ag or Cu, and are provided on opposite side surfaces of the laminate 13 from the active portion to the inactive portion. .
  • the thickness of the external electrode layer 14 is set to, for example, 5 to 70 ⁇ m.
  • a coating layer may be provided so as to surround a part or the whole of the side surface of the laminated body 13. This covering layer is provided in order to suppress migration or discharge that occurs through the end portion of the internal electrode layer 12 provided so as to reach the side surface of the multilayer body 13 and be exposed. If necessary, an external electrode plate may be provided on the external electrode layer 14 via a conductive adhesive or the like.
  • the diaphragm 2 has a main surface (upper surface) having a relatively large area, and the laminated piezoelectric element 1 is disposed on the main surface (upper surface) of the diaphragm 2 and bonded by a bonding material 3. Yes.
  • the diaphragm 2 is, for example, a rectangular thin plate, and has a rectangular shape in plan view in the example shown in the figure. There is no restriction
  • metals such as brass, phosphor bronze, and stainless steel, glass, resins such as acrylic and polycarbonate, and resin films such as polyethylene and polyimide can be preferably used.
  • the diaphragm 2 is made of tempered glass having a thickness of 0.4 to 1.0 mm, and the main surface has a rectangular shape with a longitudinal (short direction) of 30 to 80 mm and a lateral (longitudinal direction) of 80 to 150 mm. Can do.
  • a diaphragm 2 made of a resin film such as polyethylene or polyimide having a thickness of 10 to 200 ⁇ m and having a main surface of a rectangular shape with a length (short direction) of 8 to 28 mm and a width (long direction) of 28 to 60 mm is provided. It can also be used.
  • the bonding material 3 use may be made of a resin adhesive, a viscoelastic material molded into a sheet, or a structure in which a base material layer and a layer made of a viscoelastic material are laminated (double-sided tape). It can.
  • acrylic-based, epoxy-based, silicone-based adhesives, and rubber-based, acrylic-based, silicone-based, urethane-based adhesives are used.
  • the base material layer acetate foam, acrylic foam, cellophane, polyethylene foam, paper, and nonwoven fabric are used.
  • the bonding material 3 since at least a part of the bonding material 3 is formed of a viscoelastic body, strong vibration from the multilayer piezoelectric element 1 is transmitted to the vibration plate 2, while weak vibration reflected from the vibration plate 2 is transmitted to the bonding material. 3 can absorb.
  • the thickness of the bonding material 3 can be set to 0.1 mm to 2 mm, for example.
  • the material of the bonding material 3 is not limited, and the bonding material 3 may be formed of a material that is harder than the diaphragm 2 and hardly deformed. In some cases, the bonding material 3 does not include the bonding material 3. It doesn't matter.
  • the lamination type piezoelectric element 1 is arranged along the main surface (upper surface) of the diaphragm 2 in the lamination direction.
  • the multilayer piezoelectric element 1 is configured such that one of a plurality of side surfaces of the multilayer piezoelectric element 1 is the diaphragm 2 so that a direction parallel to the main surface (upper surface) of the diaphragm 2 is a lamination direction. Are joined to the main surface (upper surface).
  • FIG. 1 of the four side surfaces of the multilayer body 13 constituting the multilayer piezoelectric element 1, the surface where both end surfaces of the first internal electrode layer 121 and the second internal electrode layer 122 are exposed is vibrated.
  • the main surface (upper surface) of the plate 2 is opposed and joined.
  • one end surface of either the first internal electrode layer 121 or the second internal electrode layer 122 is led out to provide the external electrode layer 14.
  • the side surfaces are arranged at positions perpendicular to the main surface of the diaphragm 2.
  • a lead member is joined to the end of the external electrode layer 14 and is electrically connected to an external circuit via the lead member.
  • the laminated piezoelectric element 1 is driven by receiving a voltage to vibrate the diaphragm 2.
  • the multilayer piezoelectric element 1 is bonded to the main surface (upper surface) of the diaphragm 2 by the bonding material 3, and the multilayer piezoelectric element 1 and the diaphragm 2 are restrained by the bonding material 3.
  • the multilayer piezoelectric element 1 and the diaphragm 2 are flexibly vibrated when the multilayer piezoelectric element 1 tries to expand and contract in the stacking direction.
  • a displacement in the stacking direction of the multilayer piezoelectric element 1 (a direction perpendicular to the electrode surface of the internal electrode layer 12), that is, a so-called d33 mode displacement is used for the vibration of the diaphragm 2. Therefore, the piezoelectric d constant becomes larger than the displacement in the direction along the electrode surface of the internal electrode layer 12, that is, the displacement in the so-called d31 mode, and the displacement amount and the generated force of the multilayer piezoelectric element 1 can be improved. Due to this effect, the bending vibration of the diaphragm 2 can be increased, so that the sound pressure of the sound generator 10 can be improved.
  • both end portions in the stacking direction of the multilayer piezoelectric element 1 may be bonded to the diaphragm 2 by the bonding material 3.
  • the bonding material 3 may be disposed only at both ends of the region between the multilayer piezoelectric element 1 and the diaphragm 2.
  • both end portions mean portions within the range of the distance from the end of the stacked body 13 to one third of the length in the stacking direction.
  • the displacement of the multilayer piezoelectric element 1 can be increased and the flexural vibration of the diaphragm 2 can be increased.
  • the sound pressure of the sound generator 10 can be improved.
  • the laminated piezoelectric element 1 has both end portions joined to the diaphragm 2 by the first joining material 31, and a region other than both end portions is joined to the diaphragm 2 by the second joining material 32.
  • the first bonding material 31 and the second bonding material 32 may have different elastic moduli.
  • the elastic modulus of the first bonding material 31 is larger than the elastic modulus of the second bonding material 32.
  • the second bonding material 32 includes a silicone-based adhesive
  • the first bonding material 31 includes an acrylic-based or epoxy-based adhesive.
  • the peak dip can be flattened while amplifying the displacement of the multilayer piezoelectric element 1 without greatly hindering expansion and contraction of the active portion of the multilayer piezoelectric element 1. Therefore, the sound pressure of the sound generator 10 can be improved and the sound quality can be improved.
  • the thickness t in the direction perpendicular to the main surface of the diaphragm 2 has a length L in the stacking direction parallel to the main surface of the diaphragm 2 and a width W in the direction perpendicular to the stacking direction. It should be thin. With such a configuration, flexural vibration is likely to occur, and the entire diaphragm 2 can be vibrated. Therefore, the resonance frequency can be shifted to the low frequency side because the region where the fundamental vibration is generated is wide. Since the sound pressure peak accompanying the fundamental vibration in the sound generator 10 can be shifted to the low frequency side, the sound pressure in the low frequency region can be improved.
  • the surface where both end surfaces of the first internal electrode layer 121 and the second internal electrode layer 122 are exposed. Is bonded to the main surface (upper surface) of the diaphragm 2.
  • the first internal electrode Either the end surface of the layer 121 or the second internal electrode layer 122 may be led out and the side surface on which the external electrode layer 14 is provided may be opposed to the main surface of the diaphragm.
  • a bonding material 3 for bonding the multilayer piezoelectric element 1 and the diaphragm 2 is used as a conductive adhesive, and the conductive adhesive protrudes between the multilayer piezoelectric element 1 and the diaphragm 2.
  • the lead member may be bonded to the conductive adhesive.
  • the diaphragm 2 may be made of metal, and a lead member may be joined thereto.
  • a ceramic green sheet to be the piezoelectric layer 11 is produced.
  • a ceramic slurry is prepared by mixing a calcined powder of piezoelectric ceramic, a binder made of an organic polymer such as acrylic or butyral, and a plasticizer. And a ceramic green sheet is produced using this ceramic slurry by using tape molding methods, such as a doctor blade method and a calender roll method.
  • the piezoelectric ceramic any material having piezoelectric characteristics may be used.
  • a perovskite oxide made of lead zirconate titanate (PbZrO 3 -PbTiO 3 ) can be used.
  • the plasticizer dibutyl phthalate (DBP), dioctyl phthalate (DOP), or the like can be used.
  • a conductive paste to be the internal electrode layer 12 (the first internal electrode layer 121 and the second internal electrode layer 122) is prepared.
  • a conductive paste is prepared by adding and mixing a binder and a plasticizer to a metal powder of a silver-palladium alloy. This conductive paste is applied on the ceramic green sheet in the pattern of the internal electrode layer 12 using a screen printing method. Further, a plurality of ceramic green sheets on which the conductive paste is printed are laminated, subjected to binder removal treatment at a predetermined temperature, fired at a temperature of 900 to 1200 ° C., and then subjected to a predetermined grinding using a surface grinder or the like.
  • an active portion including the piezoelectric layers 11 and the internal electrode layers 12 that are alternately stacked is manufactured.
  • the inactive part is produced by laminating ceramic green sheets that are not coated with the conductive paste to be the internal electrode layer 12.
  • the laminated body 13 is manufactured by combining the active part and the inactive part.
  • the laminated body 13 is not limited to the one produced by the above manufacturing method, and any laminated body 13 may be produced as long as the laminated body 13 formed by laminating a plurality of piezoelectric layers 11 and internal electrode layers 12 can be produced. It may be produced by a manufacturing method.
  • the external electrode layer 14 is provided on the side surface of the laminate 13.
  • a paste obtained by mixing glass powder or lead zirconate titanate powder with Ag powder is applied using screen printing, and baked on the laminate 13 at a temperature of 550 to 650 ° C., for example.
  • the external electrode plate which consists of metal flat plates, such as copper, iron, stainless steel, phosphor bronze, is joined via.
  • a punching die or laser processing may be used.
  • the lead member is used for electrical connection with the outside, and is preferably a copper wire, and is preferably silver-plated for soldering.
  • a resin such as polytetrafluoroethylene, polyvinyl chloride, or polyurethane.
  • the acoustic generator 10 is obtained by bonding and fixing the laminated piezoelectric element 1 to the main surface of the diaphragm 2 using the bonding material 3.
  • an anaerobic resin adhesive is used as the bonding material 3
  • an anaerobic adhesive paste is applied and formed at a predetermined position of the diaphragm 2 using a technique such as screen printing.
  • the multilayer piezoelectric element 1 is bonded and fixed to the diaphragm 2 by applying pressure while the multilayer piezoelectric element 1 is in contact with the paste and curing the anaerobic adhesive paste.
  • the anaerobic adhesive paste may be applied and formed on the laminated piezoelectric element 1 side.
  • an adhesive such as a thermosetting epoxy adhesive can be used as the other bonding material 3.
  • the bonding material 3 is composed of two types of adhesives having different elastic moduli, it is only necessary to apply adhesives having different elastic moduli to respective desired regions. Further, one adhesive is applied to a predetermined position of the multilayer piezoelectric element 1 by screen printing or the like, and the other adhesive is applied to a predetermined position of the diaphragm 2 by screen printing or the like, and then laminated on the diaphragm 2.
  • the type piezoelectric element 1 may be mounted and cured.
  • FIG. 5 is a block diagram illustrating a configuration of the electronic device 50. Note that FIG. 5 shows an example in which the electronic device 50 is a mobile terminal, and only the components necessary for the description are shown, and descriptions of general components are omitted.
  • the electronic device 50 of this example includes an acoustic generator 10, an electronic circuit 60 connected to the acoustic generator 10, and a housing 70 that houses the electronic circuit 60 and the acoustic generator 10. And having a function of generating sound from the sound generator 10.
  • the electronic device 50 of this embodiment not only the sound generator 10 accommodated in the housing 70 but also a part of the housing 70 may be the diaphragm 2 constituting the sound generator 10. Good.
  • the electronic device 50 includes an electronic circuit 60.
  • Examples of the electronic circuit 60 include a circuit that processes image information displayed on a display and audio information transmitted by a portable terminal, a communication circuit, and the like. At least one of these circuits may be included, or all the circuits may be included. Further, it may be a circuit having other functions. Furthermore, you may have a some electronic circuit.
  • the electronic circuit and the piezoelectric element 1 are connected by a connection wiring (not shown).
  • the electronic circuit 60 shown in the figure includes, for example, a controller 60a, a transmission / reception unit 60b, a key input unit 60c, and a microphone input unit 60d.
  • the electronic circuit 60 is connected to the sound generator 10 and has a function of outputting an audio signal to the sound generator 10.
  • the sound generator 10 generates sound based on the sound signal input from the electronic circuit 60.
  • the electronic device 50 includes a display unit 50a, an antenna 50b, and the sound generator 10. Further, the electronic device 50 includes a housing 70 that accommodates these devices.
  • FIG. 5 shows a state in which each device including the controller 60a is accommodated in one casing 70, the accommodation form of each device is not limited. In the present embodiment, it is only necessary that at least the electronic circuit 60 and the sound generator 10 are accommodated in one housing 70.
  • the controller 60 a is a control unit of the electronic device 50.
  • the transmission / reception unit 60b transmits / receives data via the antenna 50b based on the control of the controller 60a.
  • the key input unit 60c is an input device of the electronic device 50 and accepts a key input operation by an operator.
  • the key input unit 60c may be a button-like key or a touch panel integrated with the display unit 50a.
  • the microphone input unit 60d is also an input device of the electronic device 50, and receives a voice input operation by an operator.
  • the display unit 50a is a display output device of the electronic device 50, outputs display information based on the control of the controller 60a, and corresponds to a display.
  • known displays such as a liquid crystal display and an organic EL display, can be used suitably, for example.
  • the sound generator 10 operates as a sound output device in the electronic device 50.
  • the sound generator 10 is connected to the controller 60a of the electronic circuit 60, and emits sound upon application of a voltage controlled by the controller 60a.
  • the portable terminal which has a communication means which transmits / receives data via an antenna etc. was demonstrated as the electronic device 50, it does not ask
  • flat-screen televisions and car audio devices can of course be used for products having a function of generating sound, for example, various products such as vacuum cleaners, washing machines, refrigerators, microwave ovens, and the like.
  • a multilayer piezoelectric element was produced as follows. First, by a doctor blade method using a ceramic slurry in which a calcined powder of a piezoelectric ceramic mainly composed of lead zirconate titanate (PbZrO 3 -PbTiO 3 ) having an average particle diameter of 0.4 ⁇ m, a binder and a plasticizer are mixed. A ceramic green sheet to be a piezoelectric layer having a thickness of 50 ⁇ m was produced.
  • a calcined powder of a piezoelectric ceramic mainly composed of lead zirconate titanate (PbZrO 3 -PbTiO 3 ) having an average particle diameter of 0.4 ⁇ m, a binder and a plasticizer are mixed.
  • a ceramic green sheet to be a piezoelectric layer having a thickness of 50 ⁇ m was produced.
  • a binder was added to silver-palladium to produce a conductive paste to be an internal electrode layer.
  • a conductive paste serving as an internal electrode layer was printed on one side of the ceramic green sheet by a screen printing method, and 200 ceramic green sheets printed with the conductive paste were laminated. Further, a total of 15 ceramic green sheets not printed with the conductive paste serving as the internal electrode layer were laminated on the top and bottom of the 200 ceramic green sheets printed with the conductive paste serving as the internal electrode layer. . Then, it was fired at 980 to 1100 ° C. and ground to a predetermined shape using a surface grinder to obtain a laminate.
  • a paste containing Ag powder and a glass component was applied to the surface of the laminate by screen printing and baked at about 600 ° C. to form an external electrode layer having a width of 1.5 mm and a thickness of 30 ⁇ m.
  • the obtained multilayer piezoelectric element was a long plate having a length in the stacking direction of 15 mm, a width of 2 mm, and a thickness in the direction perpendicular to the diaphragm of 2 mm.
  • This laminated piezoelectric element was joined with a double-sided tape on a diaphragm made of tempered glass and having a thickness of 0.7 mm, a length of 120 mm, and a width of 50 mm, to produce an acoustic generator as shown in FIG.
  • the stacking direction of the multilayer piezoelectric element is parallel to the glass surface.
  • a frequency sweep test from 200 Hz to 10 kHz was performed on the sound pressure characteristics of the sound generator according to the example produced as described above, and the frequency characteristics were measured. The result is shown in FIG.
  • the laminated piezoelectric element is made of the same material as in the example, and has a plate shape with a length of 23 mm along the diaphragm, a width of 3.3 mm, and a thickness perpendicular to the diaphragm of 0.8 mm.
  • the lamination direction of the multilayer piezoelectric element is a direction perpendicular to the main surface of the diaphragm, and 40 ceramic green sheets on which a conductive paste serving as an internal electrode layer is printed, and a conductive paste disposed on the uppermost layer are provided.
  • a laminated body is made from an unprinted ceramic green sheet, and a surface electrode is baked on the top surface of the uppermost layer, and an external electrode layer that electrically connects the surface electrode and the internal electrode layer is baked on the side surface. To be formed.
  • the sound generator was manufactured by bonding the multilayer piezoelectric element on the same diaphragm as the example with double-sided tape. At this time, the stacking direction of the multilayer piezoelectric element is perpendicular to the glass surface.

Abstract

Disclosed is an acoustic generator that is provided with: a laminated piezoelectric element 1 having a laminated body 13 in which piezoelectric layers 11 and internal electrode layers 12 are alternately laminated; and a diaphragm 2 having a main surface. The laminated piezoelectric element 1 is disposed such that the lamination direction is along the main surface of the diaphragm 2. Consequently, since displacement in the lamination direction of the laminated piezoelectric element, said displacement being what is called displacement in the d33 mode, is used for the purpose of vibrating the diaphragm, a piezoelectric d constant becomes large compared with that in displacement in the d31 mode, and the displacement quantity and generative force of the laminated piezoelectric element can be improved.

Description

音響発生器およびこれを備えた電子機器SOUND GENERATOR AND ELECTRONIC DEVICE HAVING THE SAME
 本開示は、音響発生器およびこれを備えた電子機器に関するものである。 The present disclosure relates to an acoustic generator and an electronic device including the same.
 従来から、振動板と、振動板の主面に接合部材を介して接合された積層型圧電素子とを備えた圧電振動装置が知られている。このような圧電振動装置は、音響発生器に応用することもできる(例えば、特許文献1を参照)。 Conventionally, there has been known a piezoelectric vibration device including a diaphragm and a laminated piezoelectric element joined to a main surface of the diaphragm via a joining member. Such a piezoelectric vibration device can also be applied to an acoustic generator (see, for example, Patent Document 1).
 ここで、上述した圧電振動装置および音響発生器は、振動板の主面に垂直な方向を積層方向とするように板状の積層型圧電素子の主面を振動板の主面に接合し、積層型圧電素子にd31モードの変位を生じさせて、積層型圧電素子および振動板に屈曲振動を生じさせるものである。 Here, the piezoelectric vibration device and the sound generator described above join the main surface of the plate-shaped multilayer piezoelectric element to the main surface of the diaphragm so that the direction perpendicular to the main surface of the diaphragm is the stacking direction, A d31 mode displacement is generated in the multilayer piezoelectric element, and bending vibration is generated in the multilayer piezoelectric element and the diaphragm.
国際公開第2013/046909号公報International Publication No. 2013/046909
 本開示の音響発生器は、圧電体層と内部電極層とが交互に積層された積層体を有する積層型圧電素子と、主面を有する振動板とを備え、前記積層型圧電素子は積層方向が前記振動板の主面に沿って配置されている。 The acoustic generator of the present disclosure includes a laminated piezoelectric element having a laminated body in which piezoelectric layers and internal electrode layers are alternately laminated, and a diaphragm having a main surface, and the laminated piezoelectric element has a laminating direction. Is disposed along the main surface of the diaphragm.
 また本開示の電子機器は、上記音響発生器と、該音響発生器に接続された電子回路と、該電子回路および前記音響発生器を収容する筐体とを備えている。 Also, an electronic device of the present disclosure includes the acoustic generator, an electronic circuit connected to the acoustic generator, and a housing that houses the electronic circuit and the acoustic generator.
(a)は本実施形態の音響発生器の一例を示す概略斜視図、(b)は(a)に示す音響発生器の概略側面図である。(A) is a schematic perspective view which shows an example of the sound generator of this embodiment, (b) is a schematic side view of the sound generator shown to (a). 本実施形態の音響発生器の他の例を示す概略側面図である。It is a schematic side view which shows the other example of the acoustic generator of this embodiment. 本実施形態の音響発生器の他の例を示す概略側面図である。It is a schematic side view which shows the other example of the acoustic generator of this embodiment. 本実施形態の音響発生器の他の例を示す概略斜視図である。It is a schematic perspective view which shows the other example of the acoustic generator of this embodiment. 本実施形態の電子機器の一例を示すブロック図である。It is a block diagram which shows an example of the electronic device of this embodiment. 本実施形態の音響発生器の一例の音圧特性を示す図である。It is a figure which shows the sound pressure characteristic of an example of the acoustic generator of this embodiment.
 以下、添付図面を参照して、本実施形態の音響発生器の一例を詳細に説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。 Hereinafter, an example of the sound generator of the present embodiment will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited by embodiment shown below.
 図1(a)は本実施形態の音響発生器の一例を示す概略斜視図、図1(b)は図1(a)に示す音響発生器の概略側面図である。図1に示す例の音響発生器10は、圧電体層11と内部電極層12とが交互に積層された積層体13を有する積層型圧電素子1と、主面を有する振動板2とを備え、積層型圧電素子1は積層方向が振動板2の主面に沿って配置されている。 FIG. 1A is a schematic perspective view showing an example of the sound generator of the present embodiment, and FIG. 1B is a schematic side view of the sound generator shown in FIG. The acoustic generator 10 of the example shown in FIG. 1 includes a laminated piezoelectric element 1 having a laminated body 13 in which piezoelectric layers 11 and internal electrode layers 12 are alternately laminated, and a diaphragm 2 having a main surface. In the multilayer piezoelectric element 1, the stacking direction is arranged along the main surface of the diaphragm 2.
 積層型圧電素子1を構成する積層体13は、圧電体層11および内部電極層12が交互に複数積層されてなる活性部と、活性部の外側に位置する積層体13の積層方向両端部に設けられた圧電体層11からなる不活性部とを有している。この積層体13は例えば直方体状に形成され、後述する振動板2の主面上に配置したときに、当該振動板2の主面に垂直な方向の厚みtが例えば1.0~5.0mm、振動板2の主面に平行な積層方向の長さLが例えば5.0~50mm、振動板2の主面に平行で積層方向に垂直な方向の幅Wが例えば1.0~10mmとなるような寸法とされる。 The multilayer body 13 constituting the multilayer piezoelectric element 1 has active portions in which a plurality of piezoelectric layers 11 and internal electrode layers 12 are alternately stacked, and both ends in the stacking direction of the multilayer body 13 positioned outside the active portion. And an inactive portion made of the piezoelectric layer 11 provided. The laminated body 13 is formed in a rectangular parallelepiped shape, for example, and when disposed on the main surface of the diaphragm 2 described later, the thickness t in the direction perpendicular to the main surface of the diaphragm 2 is, for example, 1.0 to 5.0 mm. The length L in the stacking direction parallel to the main surface of the diaphragm 2 is, for example, 5.0 to 50 mm, and the width W in the direction parallel to the main surface of the diaphragm 2 and perpendicular to the stacking direction is, for example, 1.0 to 10 mm. The dimensions are as follows.
 なお、圧電体層11および内部電極層12が交互に積層された積層体13とは、圧電体層11および内部電極層12が交互に複数積層されてなる活性部を含んでいればよいことを意味し、上述のように積層方向の両端部に不活性部がある構成を排除するものではない。 Note that the laminated body 13 in which the piezoelectric layers 11 and the internal electrode layers 12 are alternately laminated may include an active portion in which the piezoelectric layers 11 and the internal electrode layers 12 are alternately laminated. It does not exclude the configuration in which inactive portions are present at both ends in the stacking direction as described above.
 積層体13を構成する圧電体層11は、圧電特性を有するセラミックスで形成されたもので、このようなセラミックスとして、例えばチタン酸ジルコン酸鉛(PbZrO-PbTiO)からなるペロブスカイト型酸化物、ニオブ酸リチウム(LiNbO)、タンタル酸リチウム(LiTaO)などを用いることができる。この圧電体層11の1層の厚みは、低電圧で駆動させるために、例えば0.01~0.1mmに設定するのがよい。 The piezoelectric layer 11 constituting the multilayer body 13 is formed of ceramics having piezoelectric characteristics. As such ceramics, for example, a perovskite oxide made of lead zirconate titanate (PbZrO 3 -PbTiO 3 ), Lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), or the like can be used. The thickness of one layer of the piezoelectric layer 11 is preferably set to, for example, 0.01 to 0.1 mm in order to drive at a low voltage.
 積層体13を構成する内部電極層12は、圧電体層11を形成するセラミックスと同時焼成されたものである。内部電極層12は、異なる極となる第1の内部電極層121と第2の内部電極層122とからなり、それらの間に挟まれた圧電体層11に駆動電圧を印加するものである。内部電極層12の材料として、例えば低温焼成が可能な銀や銀-パラジウム合金を主成分とする導体、あるいは銅、白金などを含む導体を用いることができるが、これらにセラミック成分やガラス成分を含有させてもよい。この内部電極層12の1層の厚みは、例えば0.1~5μmとされる。 The internal electrode layer 12 constituting the laminate 13 is fired at the same time as the ceramic forming the piezoelectric layer 11. The internal electrode layer 12 includes a first internal electrode layer 121 and a second internal electrode layer 122 which are different poles, and applies a driving voltage to the piezoelectric layer 11 sandwiched therebetween. As a material for the internal electrode layer 12, for example, a conductor mainly composed of silver or a silver-palladium alloy that can be fired at a low temperature, or a conductor containing copper, platinum, or the like can be used. You may make it contain. The thickness of one layer of the internal electrode layer 12 is, for example, 0.1 to 5 μm.
 積層体13は、積層方向の一方の端部および他方の端部に位置する2つの端面と、4つの側面とを有している。4つの側面のうちの対向する一対の側面には、第1の内部電極層121または第2の内部電極層122(第1の内部電極層121および第2の内部電極層122のうちの一方)が導出されている。また、4つの側面のうちの対向する他の一対の側面には、第1の内部電極層121および第2の内部電極層122の両方の端面が露出している。 The stacked body 13 has two end faces located at one end and the other end in the stacking direction, and four side faces. The first internal electrode layer 121 or the second internal electrode layer 122 (one of the first internal electrode layer 121 and the second internal electrode layer 122) is formed on a pair of side surfaces facing each other among the four side surfaces. Has been derived. Further, the end surfaces of both the first internal electrode layer 121 and the second internal electrode layer 122 are exposed on the other pair of side surfaces facing each other among the four side surfaces.
 積層体13における第1の内部電極層121または第2の内部電極層122が導出された対向する一対の側面には、それぞれ外部電極層14が設けられている。この一対の外部電極層14は、例えばAgやCuなど金属の金属を含んだ導電性ペーストを焼き付けたものからなり、積層体13の対向する側面に活性部から不活性部にかけてそれぞれ設けられている。ここで、外部電極層14を積層体13の側面に垂直な横断面で見たときに、外部電極層14の厚みは例えば5~70μmとされる。 The external electrode layer 14 is provided on each of a pair of opposing side surfaces from which the first internal electrode layer 121 or the second internal electrode layer 122 is derived in the stacked body 13. The pair of external electrode layers 14 are made of, for example, a conductive paste containing a metal metal such as Ag or Cu, and are provided on opposite side surfaces of the laminate 13 from the active portion to the inactive portion. . Here, when the external electrode layer 14 is viewed in a cross section perpendicular to the side surface of the multilayer body 13, the thickness of the external electrode layer 14 is set to, for example, 5 to 70 μm.
 なお、図示しないが、積層体13の側面の一部あるいは全体を取り囲むように被覆層が設けられていてもよい。この被覆層は、積層体13の側面まで達して露出するように設けられた内部電極層12の端部を介して生じるマイグレーションや放電を抑制するために設けられる。また、必要により、外部電極層14の上に導電性接着剤などを介して外部電極板が設けられてもよい。 Although not shown, a coating layer may be provided so as to surround a part or the whole of the side surface of the laminated body 13. This covering layer is provided in order to suppress migration or discharge that occurs through the end portion of the internal electrode layer 12 provided so as to reach the side surface of the multilayer body 13 and be exposed. If necessary, an external electrode plate may be provided on the external electrode layer 14 via a conductive adhesive or the like.
 振動板2は相対的に面積の広い主面(上面)を有していて、当該振動板2の主面(上面)の上に積層型圧電素子1が配置され、接合材3で接合されている。 The diaphragm 2 has a main surface (upper surface) having a relatively large area, and the laminated piezoelectric element 1 is disposed on the main surface (upper surface) of the diaphragm 2 and bonded by a bonding material 3. Yes.
 振動板2は、例えば矩形状の薄板であって、図に示す例では平面視で長方形状になっている。振動板2の形状に特に制限はなく、図に示す例のような長方形状などの多角形板状のもの以外に、円形板状や楕円形板状のものであってもよい。振動板2の材質としては、黄銅、リン青銅、ステンレス等の金属や、ガラスや、アクリル系、ポリカーボネート系等の樹脂や、ポリエチレン、ポリイミド等の樹脂フィルムを好適に用いることができる。例えば、厚み0.4~1.0mmの強化ガラスで、主面の形状が縦(短手方向)30~80mm、横(長手方向)80~150mmの長方形状とされた振動板2を用いることができる。また、厚さ10~200μmのポリエチレン、ポリイミド等の樹脂フィルムで、主面の形状が縦(短手方向)8~28mm、横(長手方向)28~60mmの長方形状とされた振動板2を用いることもできる。 The diaphragm 2 is, for example, a rectangular thin plate, and has a rectangular shape in plan view in the example shown in the figure. There is no restriction | limiting in particular in the shape of the diaphragm 2, In addition to polygonal plate shapes, such as a rectangular shape like the example shown to a figure, circular plate shape and elliptical plate shape may be sufficient. As the material of the diaphragm 2, metals such as brass, phosphor bronze, and stainless steel, glass, resins such as acrylic and polycarbonate, and resin films such as polyethylene and polyimide can be preferably used. For example, the diaphragm 2 is made of tempered glass having a thickness of 0.4 to 1.0 mm, and the main surface has a rectangular shape with a longitudinal (short direction) of 30 to 80 mm and a lateral (longitudinal direction) of 80 to 150 mm. Can do. Further, a diaphragm 2 made of a resin film such as polyethylene or polyimide having a thickness of 10 to 200 μm and having a main surface of a rectangular shape with a length (short direction) of 8 to 28 mm and a width (long direction) of 28 to 60 mm is provided. It can also be used.
 接合材3としては、樹脂系接着剤や、粘弾性体をシート状に成型したものや、基材層と粘弾性体からなる層とを積層した構成のもの(両面テープ)などを用いることができる。これらの材料として、アクリル系、エポキシ系、シリコーン系等の接着剤やゴム系、アクリル系、シリコーン系、ウレタン系等の粘着剤が用いられる。また、基材層としては、アセテートフォーム、アクリルフォーム、セロハン、ポリエチレンフォーム、紙、不織布が用いられる。中でも、接合材3の少なくとも一部が粘弾性体で構成されていることで、積層型圧電素子1からの強い振動を振動板2へ伝える一方、振動板2から反射される弱い振動を接合材3が吸収することができる。接合材3の厚みとしては、例えば0.1mm~2mmに設定することができる。ただし、接合材3の材質に限定はなく、接合材3が振動板2よりも固く変形し難いもので形成されていても構わず、場合によっては、接合材3を有していない構成であっても構わない。 As the bonding material 3, use may be made of a resin adhesive, a viscoelastic material molded into a sheet, or a structure in which a base material layer and a layer made of a viscoelastic material are laminated (double-sided tape). it can. As these materials, acrylic-based, epoxy-based, silicone-based adhesives, and rubber-based, acrylic-based, silicone-based, urethane-based adhesives are used. As the base material layer, acetate foam, acrylic foam, cellophane, polyethylene foam, paper, and nonwoven fabric are used. In particular, since at least a part of the bonding material 3 is formed of a viscoelastic body, strong vibration from the multilayer piezoelectric element 1 is transmitted to the vibration plate 2, while weak vibration reflected from the vibration plate 2 is transmitted to the bonding material. 3 can absorb. The thickness of the bonding material 3 can be set to 0.1 mm to 2 mm, for example. However, the material of the bonding material 3 is not limited, and the bonding material 3 may be formed of a material that is harder than the diaphragm 2 and hardly deformed. In some cases, the bonding material 3 does not include the bonding material 3. It doesn't matter.
 ここで、積層型圧電素子1は積層方向が振動板2の主面(上面)に沿って配置されている。具体的には、積層型圧電素子1は、振動板2の主面(上面)に平行な方向を積層方向とするように、積層型圧電素子1の複数の側面のうちの一面を振動板2の主面(上面)に接合されている。 Here, the lamination type piezoelectric element 1 is arranged along the main surface (upper surface) of the diaphragm 2 in the lamination direction. Specifically, the multilayer piezoelectric element 1 is configured such that one of a plurality of side surfaces of the multilayer piezoelectric element 1 is the diaphragm 2 so that a direction parallel to the main surface (upper surface) of the diaphragm 2 is a lamination direction. Are joined to the main surface (upper surface).
 図1においては、積層型圧電素子1を構成する積層体13の4つの側面のうち、第1の内部電極層121および第2の内部電極層122の両方の端面が露出している面を振動板2の主面(上面)と対向させて接合している。積層型圧電素子1を構成する積層体13の4つの側面のうち、第1の内部電極層121または第2の内部電極層122のどちらか一方の端面が導出されて外部電極層14が設けられた側面は、振動板2の主面に垂直な位置に配置されている。なお、図示しないが、外部電極層14の端部にリード部材が接合され、リード部材を介して外部回路との電気的な接続がなされている。 In FIG. 1, of the four side surfaces of the multilayer body 13 constituting the multilayer piezoelectric element 1, the surface where both end surfaces of the first internal electrode layer 121 and the second internal electrode layer 122 are exposed is vibrated. The main surface (upper surface) of the plate 2 is opposed and joined. Of the four side surfaces of the multilayer body 13 constituting the multilayer piezoelectric element 1, one end surface of either the first internal electrode layer 121 or the second internal electrode layer 122 is led out to provide the external electrode layer 14. The side surfaces are arranged at positions perpendicular to the main surface of the diaphragm 2. Although not shown, a lead member is joined to the end of the external electrode layer 14 and is electrically connected to an external circuit via the lead member.
 そして、積層型圧電素子1が電圧の印加を受けて駆動することによって、振動板2を振動させる。具体的には、積層型圧電素子1が接合材3により振動板2の主面(上面)に接合され、積層型圧電素子1および振動板2は互いに接合材3で拘束されていることから、積層型圧電素子1が積層方向に伸縮しようとすることによって、積層型圧電素子1と振動板2とが屈曲振動するようになっている。 Then, the laminated piezoelectric element 1 is driven by receiving a voltage to vibrate the diaphragm 2. Specifically, the multilayer piezoelectric element 1 is bonded to the main surface (upper surface) of the diaphragm 2 by the bonding material 3, and the multilayer piezoelectric element 1 and the diaphragm 2 are restrained by the bonding material 3. The multilayer piezoelectric element 1 and the diaphragm 2 are flexibly vibrated when the multilayer piezoelectric element 1 tries to expand and contract in the stacking direction.
 このような構成とすることで、積層型圧電素子1の積層方向(内部電極層12の電極面に垂直な方向)の変位、いわゆるd33モードの変位を振動板2の振動に利用することとなるため、内部電極層12の電極面に沿った方向の変位、いわゆるd31モードの変位と比較して、圧電d定数が大きくなり、積層型圧電素子1の変位量と発生力を向上できる。この効果により、振動板2の屈曲振動を増大できるため、音響発生器10の音圧を向上できる。 With such a configuration, a displacement in the stacking direction of the multilayer piezoelectric element 1 (a direction perpendicular to the electrode surface of the internal electrode layer 12), that is, a so-called d33 mode displacement is used for the vibration of the diaphragm 2. Therefore, the piezoelectric d constant becomes larger than the displacement in the direction along the electrode surface of the internal electrode layer 12, that is, the displacement in the so-called d31 mode, and the displacement amount and the generated force of the multilayer piezoelectric element 1 can be improved. Due to this effect, the bending vibration of the diaphragm 2 can be increased, so that the sound pressure of the sound generator 10 can be improved.
 なお、図1に示す例では、積層型圧電素子1の側面のうち、振動板2の主面と対向する面の全ての領域が接合材3により接合されているが、図2に示すように、積層型圧電素子1の積層方向の両端部のみが接合材3により振動板2に接合されていてもよい。言い換えると、接合材3は、積層型圧電素子1と振動板2との間の領域の両端部にのみ配置されていてもよい。ここで、両端部(一方の端部および他方の端部)とは、それぞれ積層体13の端から積層方向の長さの3分の1までの距離の範囲内の部位のことを意味する。 In the example shown in FIG. 1, the entire region of the side surface of the multilayer piezoelectric element 1 that faces the main surface of the diaphragm 2 is bonded by the bonding material 3, but as shown in FIG. 2. Only both end portions in the stacking direction of the multilayer piezoelectric element 1 may be bonded to the diaphragm 2 by the bonding material 3. In other words, the bonding material 3 may be disposed only at both ends of the region between the multilayer piezoelectric element 1 and the diaphragm 2. Here, both end portions (one end portion and the other end portion) mean portions within the range of the distance from the end of the stacked body 13 to one third of the length in the stacking direction.
 接合材3による積層型圧電素子1の拘束領域を両端部のみとすることで、積層型圧電素子1の変位が増加し、振動板2の屈曲振動を増大させることができるため、音響発生器10として用いられたときにおいて当該音響発生器10の音圧を向上できる。 By making the constrained region of the multilayer piezoelectric element 1 by the bonding material 3 only at both ends, the displacement of the multilayer piezoelectric element 1 can be increased and the flexural vibration of the diaphragm 2 can be increased. When used as the sound pressure of the sound generator 10 can be improved.
 また、図3に示すように、積層型圧電素子1は、両端部が第1の接合材31により振動板2に接合され、両端部以外の領域が第2の接合材32により振動板2に接合されており、第1の接合材31と第2の接合材32とで弾性率が異なっていてもよい。 Further, as shown in FIG. 3, the laminated piezoelectric element 1 has both end portions joined to the diaphragm 2 by the first joining material 31, and a region other than both end portions is joined to the diaphragm 2 by the second joining material 32. The first bonding material 31 and the second bonding material 32 may have different elastic moduli.
 このような構成とすることで、スプリアス振動が誘発され、第1の接合材31と第2の接合材32の各々と接する積層型圧電素子1のそれぞれの領域の共振が分割され、ダンピングできる。この効果により、音響発生器10における共振周波数付近の音圧レベルのピークが分割、ダンピングされ、ピークやディップを平坦化できるため、音響発生器10の音質を向上できる。 With such a configuration, spurious vibrations are induced, and the resonance of each region of the multilayer piezoelectric element 1 in contact with each of the first bonding material 31 and the second bonding material 32 is divided and can be damped. With this effect, the sound pressure level peak in the vicinity of the resonance frequency in the sound generator 10 is divided and damped, and the peak and dip can be flattened, so that the sound quality of the sound generator 10 can be improved.
 ここで、第2の接合材32の弾性率よりも第1の接合材31の弾性率のほうが大きいのがよい。組合せとして、例えば、第2の接合材32としてシリコーン系の接着剤が挙げられ、第1の接合材31としてアクリル系、エポキシ系の接着剤が挙げられる。 Here, it is preferable that the elastic modulus of the first bonding material 31 is larger than the elastic modulus of the second bonding material 32. As the combination, for example, the second bonding material 32 includes a silicone-based adhesive, and the first bonding material 31 includes an acrylic-based or epoxy-based adhesive.
 このような構成とすることで、積層型圧電素子1の活性部の伸縮が大きく妨げられることなく、積層型圧電素子1の変位を増幅させつつ、かつピークディップを平坦化できる。したがって、音響発生器10の音圧を向上させ、音質も向上できる。 With such a configuration, the peak dip can be flattened while amplifying the displacement of the multilayer piezoelectric element 1 without greatly hindering expansion and contraction of the active portion of the multilayer piezoelectric element 1. Therefore, the sound pressure of the sound generator 10 can be improved and the sound quality can be improved.
 また、積層型圧電素子1は、振動板2の主面に垂直な方向の厚みtが、振動板2の主面に平行な積層方向の長さLおよび積層方向に垂直な方向の幅Wよりも薄いのがよい。このような構成とすることで、たわみ振動が起こりやすく、振動板2全体を振動させることができるため、基本振動が発生する領域が広いことにより、共振周波数を低周波数側へシフトできる。音響発生器10における基本振動に伴う音圧ピークを低周波数側へシフトできるため、低周波数領域の音圧を向上できる。 Further, in the multilayer piezoelectric element 1, the thickness t in the direction perpendicular to the main surface of the diaphragm 2 has a length L in the stacking direction parallel to the main surface of the diaphragm 2 and a width W in the direction perpendicular to the stacking direction. It should be thin. With such a configuration, flexural vibration is likely to occur, and the entire diaphragm 2 can be vibrated. Therefore, the resonance frequency can be shifted to the low frequency side because the region where the fundamental vibration is generated is wide. Since the sound pressure peak accompanying the fundamental vibration in the sound generator 10 can be shifted to the low frequency side, the sound pressure in the low frequency region can be improved.
 また、図1においては、積層型圧電素子1を構成する積層体13の4つの側面のうち、第1の内部電極層121および第2の内部電極層122の両方の端面が露出している面を振動板2の主面(上面)と対向させて接合していたが、図4に示すように、積層型圧電素子1を構成する積層体13の4つの側面のうち、第1の内部電極層121または第2の内部電極層122のどちらか一方の端面が導出されて外部電極層14が設けられた側面を振動板の主面と対向させて接合するようにしてもよい。このとき、例えば、積層型圧電素子1と振動板2とを接合する接合材3を導電性接着剤とし、この導電性接着剤を積層型圧電素子1と振動板2との間からはみ出させるように設け、この導電性接着剤にリード部材を接合するようにしてもよい。また、振動板2が金属からなる構成とし、これにリード部材を接合するようにしてもよい。 Further, in FIG. 1, of the four side surfaces of the multilayer body 13 constituting the multilayer piezoelectric element 1, the surface where both end surfaces of the first internal electrode layer 121 and the second internal electrode layer 122 are exposed. Is bonded to the main surface (upper surface) of the diaphragm 2. As shown in FIG. 4, among the four side surfaces of the multilayer body 13 constituting the multilayer piezoelectric element 1, the first internal electrode Either the end surface of the layer 121 or the second internal electrode layer 122 may be led out and the side surface on which the external electrode layer 14 is provided may be opposed to the main surface of the diaphragm. At this time, for example, a bonding material 3 for bonding the multilayer piezoelectric element 1 and the diaphragm 2 is used as a conductive adhesive, and the conductive adhesive protrudes between the multilayer piezoelectric element 1 and the diaphragm 2. The lead member may be bonded to the conductive adhesive. Alternatively, the diaphragm 2 may be made of metal, and a lead member may be joined thereto.
 次に、本実施形態の音響発生器10の製造方法の一例について説明する。 Next, an example of a method for manufacturing the sound generator 10 of the present embodiment will be described.
 まず、圧電体層11となるセラミックグリーンシートを作製する。具体的には、圧電セラミックスの仮焼粉末と、アクリル系,ブチラール系等の有機高分子からなるバインダーと、可塑剤とを混合してセラミックスラリーを作製する。そして、ドクターブレード法、カレンダーロール法等のテープ成型法を用いることにより、このセラミックスラリーを用いてセラミックグリーンシートを作製する。圧電セラミックスとしては圧電特性を有するものであればよく、例えば、チタン酸ジルコン酸鉛(PbZrO-PbTiO)からなるペロブスカイト型酸化物等を用いることができる。また、可塑剤としては、フタル酸ジブチル(DBP),フタル酸ジオクチル(DOP)等を用いることができる。 First, a ceramic green sheet to be the piezoelectric layer 11 is produced. Specifically, a ceramic slurry is prepared by mixing a calcined powder of piezoelectric ceramic, a binder made of an organic polymer such as acrylic or butyral, and a plasticizer. And a ceramic green sheet is produced using this ceramic slurry by using tape molding methods, such as a doctor blade method and a calender roll method. As the piezoelectric ceramic, any material having piezoelectric characteristics may be used. For example, a perovskite oxide made of lead zirconate titanate (PbZrO 3 -PbTiO 3 ) can be used. As the plasticizer, dibutyl phthalate (DBP), dioctyl phthalate (DOP), or the like can be used.
 次に、内部電極層12(第1の内部電極層121および第2の内部電極層122)となる導電性ペーストを作製する。具体的には、銀-パラジウム合金の金属粉末にバインダーおよび可塑剤を添加混合することによって導電性ペーストを作製する。この導電性ペーストを上記のセラミックグリーンシート上に、スクリーン印刷法を用いて内部電極層12のパターンで塗布する。さらに、この導電性ペーストが印刷されたセラミックグリーンシートを複数枚積層し、所定の温度で脱バインダー処理を行なった後、900~1200℃の温度で焼成し、平面研削盤等を用いて所定の形状になるよう研削処理を施すことによって、交互に積層された圧電体層11および内部電極層12を備えた活性部を作製する。不活性部は内部電極層12となる導電性ペーストを塗布していないセラミックグリーンシートを積層することで作製する。活性部と不活性部とを組み合わせることで積層体13を製造する。 Next, a conductive paste to be the internal electrode layer 12 (the first internal electrode layer 121 and the second internal electrode layer 122) is prepared. Specifically, a conductive paste is prepared by adding and mixing a binder and a plasticizer to a metal powder of a silver-palladium alloy. This conductive paste is applied on the ceramic green sheet in the pattern of the internal electrode layer 12 using a screen printing method. Further, a plurality of ceramic green sheets on which the conductive paste is printed are laminated, subjected to binder removal treatment at a predetermined temperature, fired at a temperature of 900 to 1200 ° C., and then subjected to a predetermined grinding using a surface grinder or the like. By applying a grinding process so as to form a shape, an active portion including the piezoelectric layers 11 and the internal electrode layers 12 that are alternately stacked is manufactured. The inactive part is produced by laminating ceramic green sheets that are not coated with the conductive paste to be the internal electrode layer 12. The laminated body 13 is manufactured by combining the active part and the inactive part.
 なお、積層体13は、上記の製造方法によって作製されるものに限定されるものではなく、圧電体層11と内部電極層12とを複数積層してなる積層体13を作製できれば、どのような製造方法によって作製されてもよい。 The laminated body 13 is not limited to the one produced by the above manufacturing method, and any laminated body 13 may be produced as long as the laminated body 13 formed by laminating a plurality of piezoelectric layers 11 and internal electrode layers 12 can be produced. It may be produced by a manufacturing method.
 次に、外部電極層14を積層体13の側面に設ける。外部電極層14は、例えばAg粉末にガラスやチタン酸ジルコン酸鉛の粉末を混ぜたペーストを、スクリーン印刷を用いて塗布し、例えば550~650℃の温度で積層体13に焼き付ける。 Next, the external electrode layer 14 is provided on the side surface of the laminate 13. For the external electrode layer 14, for example, a paste obtained by mixing glass powder or lead zirconate titanate powder with Ag powder is applied using screen printing, and baked on the laminate 13 at a temperature of 550 to 650 ° C., for example.
 必要により、外部電極層14の上に、Ag粉末やCu粉末などの導電性の良好な金属粉末を含んだエポキシ樹脂やポリイミド樹脂からなる導電性接着剤や、すず、銀、銅などからなるはんだを介して、銅、鉄、ステンレス、リン青銅等の金属平板からなる外部電極板を接合する。外部電極板として例えば幅方向にスリットの入った形状や網目状にするには、打ち抜き金型で打ち抜くかレーザ加工などの方法を用いればよい。 If necessary, a conductive adhesive made of an epoxy resin or a polyimide resin containing a metal powder having good conductivity such as Ag powder or Cu powder on the external electrode layer 14, or a solder made of tin, silver, copper or the like. The external electrode plate which consists of metal flat plates, such as copper, iron, stainless steel, phosphor bronze, is joined via. For example, in order to form the external electrode plate with a slit in the width direction or a mesh shape, a punching die or laser processing may be used.
 リード部材は外部との導通をとるためのもので、銅線などが好ましく、はんだ付けするために、銀メッキしてあることが望ましい。外部電極層14との接合部を除いた部位を被覆する場合はポりテトラフルオロエチレン、ポリ塩化ビニル、ポリウレタンなどの樹脂で被覆すればよい。 The lead member is used for electrical connection with the outside, and is preferably a copper wire, and is preferably silver-plated for soldering. When covering the portion excluding the joint with the external electrode layer 14, it may be covered with a resin such as polytetrafluoroethylene, polyvinyl chloride, or polyurethane.
 その後、外部電極層14に0.1~3kV/mmの直流電界を印加し、積層体13を構成する圧電体層11を分極することによって、積層型圧電素子1が完成する。 Thereafter, a DC electric field of 0.1 to 3 kV / mm is applied to the external electrode layer 14 to polarize the piezoelectric layer 11 constituting the multilayer body 13, thereby completing the multilayer piezoelectric element 1.
 そして、振動板2の主面に接合材3を用いて積層型圧電素子1を接合固定することで音響発生器10となる。ここで、接合材3として、例えば嫌気性樹脂接着剤を用いる場合は、振動板2の所定の位置に嫌気性接着剤用ペーストをスクリーン印刷等の手法を用いて塗布形成する。その後、積層型圧電素子1を当接させた状態で圧力を印加し嫌気性接着剤用ペーストを硬化させることにより、積層型圧電素子1を振動板2に接合固定する。なお、嫌気性接着剤用ペーストは、積層型圧電素子1側に塗布形成しておいてもよい。その他の接合材3としては、例えば、加熱硬化型のエポキシ系接着剤等の接着剤を用いることができる。 Then, the acoustic generator 10 is obtained by bonding and fixing the laminated piezoelectric element 1 to the main surface of the diaphragm 2 using the bonding material 3. Here, for example, when an anaerobic resin adhesive is used as the bonding material 3, an anaerobic adhesive paste is applied and formed at a predetermined position of the diaphragm 2 using a technique such as screen printing. Thereafter, the multilayer piezoelectric element 1 is bonded and fixed to the diaphragm 2 by applying pressure while the multilayer piezoelectric element 1 is in contact with the paste and curing the anaerobic adhesive paste. The anaerobic adhesive paste may be applied and formed on the laminated piezoelectric element 1 side. As the other bonding material 3, for example, an adhesive such as a thermosetting epoxy adhesive can be used.
 なお、接合材3を異なった弾性率の2種類の接着剤で構成する場合は、それぞれの所望の領域に異なる弾性率の接着剤を塗布すればよい。また、一方の接着剤を積層型圧電素子1の所定の位置にスクリーン印刷等で塗布し、他方の接着剤を振動板2の所定の位置にスクリーン印刷等で塗布した後、振動板2に積層型圧電素子1を搭載し硬化させてもよい。 In addition, when the bonding material 3 is composed of two types of adhesives having different elastic moduli, it is only necessary to apply adhesives having different elastic moduli to respective desired regions. Further, one adhesive is applied to a predetermined position of the multilayer piezoelectric element 1 by screen printing or the like, and the other adhesive is applied to a predetermined position of the diaphragm 2 by screen printing or the like, and then laminated on the diaphragm 2. The type piezoelectric element 1 may be mounted and cured.
 次に、音響発生器10を搭載した電子機器の一例について、図5を用いて説明する。図5は、電子機器50の構成を示すブロック図である。なお、図5においては、電子機器50が携帯端末である場合の例を示しており、説明に必要となる構成要素のみを示しており、一般的な構成要素についての記載を省略している。 Next, an example of an electronic device equipped with the sound generator 10 will be described with reference to FIG. FIG. 5 is a block diagram illustrating a configuration of the electronic device 50. Note that FIG. 5 shows an example in which the electronic device 50 is a mobile terminal, and only the components necessary for the description are shown, and descriptions of general components are omitted.
 図5に示すように、本例の電子機器50は、音響発生器10と、音響発生器10に接続された電子回路60と、電子回路60および音響発生器10を収容する筐体70とを備え、音響発生器10から音響を発生させる機能を有する。なお、本実施形態の電子機器50としては、音響発生器10を筐体70に収容したもののみならず、筐体70の一部が音響発生器10を構成する振動板2となっていてもよい。 As shown in FIG. 5, the electronic device 50 of this example includes an acoustic generator 10, an electronic circuit 60 connected to the acoustic generator 10, and a housing 70 that houses the electronic circuit 60 and the acoustic generator 10. And having a function of generating sound from the sound generator 10. In addition, as the electronic device 50 of this embodiment, not only the sound generator 10 accommodated in the housing 70 but also a part of the housing 70 may be the diaphragm 2 constituting the sound generator 10. Good.
 電子機器50は、電子回路60を備えている。電子回路60としては、例えば、ディスプレイに表示させる画像情報や携帯端末によって伝達する音声情報を処理する回路や、通信回路等が例示できる。これらの回路の少なくとも1つであってもよいし、全ての回路が含まれていても構わない。また、他の機能を有する回路であってもよい。さらに、複数の電子回路を有していても構わない。なお、電子回路と圧電素子1とは図示しない接続用配線で接続されている。 The electronic device 50 includes an electronic circuit 60. Examples of the electronic circuit 60 include a circuit that processes image information displayed on a display and audio information transmitted by a portable terminal, a communication circuit, and the like. At least one of these circuits may be included, or all the circuits may be included. Further, it may be a circuit having other functions. Furthermore, you may have a some electronic circuit. The electronic circuit and the piezoelectric element 1 are connected by a connection wiring (not shown).
 図に示す電子回路60は、例えば、コントローラ60aと、送受信部60bと、キー入力部60cと、マイク入力部60dとから構成される。電子回路60は、音響発生器10に接続されており、音響発生器10へ音声信号を出力する機能を有している。音響発生器10は電子回路60から入力された音声信号に基づいて音響を発生させる。 The electronic circuit 60 shown in the figure includes, for example, a controller 60a, a transmission / reception unit 60b, a key input unit 60c, and a microphone input unit 60d. The electronic circuit 60 is connected to the sound generator 10 and has a function of outputting an audio signal to the sound generator 10. The sound generator 10 generates sound based on the sound signal input from the electronic circuit 60.
 また、電子機器50は、表示部50aと、アンテナ50bと、音響発生器10とを備えている。また、電子機器50は、これら各デバイスを収容する筐体70を備えている。なお、図5では、1つの筐体70にコントローラ60aをはじめとする各デバイスがすべて収容されている状態をあらわしているが、各デバイスの収容形態を限定するものではない。本実施形態では、少なくとも電子回路60と音響発生器10とが、1つの筐体70に収容されていればよい。 In addition, the electronic device 50 includes a display unit 50a, an antenna 50b, and the sound generator 10. Further, the electronic device 50 includes a housing 70 that accommodates these devices. Although FIG. 5 shows a state in which each device including the controller 60a is accommodated in one casing 70, the accommodation form of each device is not limited. In the present embodiment, it is only necessary that at least the electronic circuit 60 and the sound generator 10 are accommodated in one housing 70.
 コントローラ60aは、電子機器50の制御部である。送受信部60bは、コントローラ60aの制御に基づき、アンテナ50bを介してデータの送受信などを行う。キー入力部60cは、電子機器50の入力デバイスであり、操作者によるキー入力操作を受け付ける。キー入力部60cは、ボタン状のキーであってもよいし、表示部50aと一体となっているタッチパネルであってもよい。マイク入力部60dは、同じく電子機器50の入力デバイスであり、操作者による音声入力操作などを受け付ける。表示部50aは、電子機器50の表示出力デバイスであり、コントローラ60aの制御に基づき、表示情報の出力を行うものであり、ディスプレイに相当する。なお、ディスプレイとしては、例えば、液晶ディスプレイおよび有機ELディスプレイ等の既知のディスプレイを好適に用いることができる。 The controller 60 a is a control unit of the electronic device 50. The transmission / reception unit 60b transmits / receives data via the antenna 50b based on the control of the controller 60a. The key input unit 60c is an input device of the electronic device 50 and accepts a key input operation by an operator. The key input unit 60c may be a button-like key or a touch panel integrated with the display unit 50a. The microphone input unit 60d is also an input device of the electronic device 50, and receives a voice input operation by an operator. The display unit 50a is a display output device of the electronic device 50, outputs display information based on the control of the controller 60a, and corresponds to a display. In addition, as a display, known displays, such as a liquid crystal display and an organic EL display, can be used suitably, for example.
 そして、音響発生器10は、電子機器50における音響出力デバイスとして動作する。なお、音響発生器10は、電子回路60のコントローラ60aに接続されており、コントローラ60aによって制御された電圧の印加を受けて音響を発することとなる。 The sound generator 10 operates as a sound output device in the electronic device 50. The sound generator 10 is connected to the controller 60a of the electronic circuit 60, and emits sound upon application of a voltage controlled by the controller 60a.
 なお、電子機器50として、アンテナなどを介してデータの送受信などを行う通信手段を有する携帯端末について説明を行ったが、電子機器50の種別を問うものではなく、音響を発する機能を有する様々な民生機器に適用されてよい。たとえば、薄型テレビやカーオーディオ機器は無論のこと、音響を発する機能を有する製品、例を挙げれば、掃除機や洗濯機、冷蔵庫、電子レンジなどといった種々の製品に用いられてよい。 In addition, although the portable terminal which has a communication means which transmits / receives data via an antenna etc. was demonstrated as the electronic device 50, it does not ask | require the classification of the electronic device 50, but has various functions which emit a sound. It may be applied to consumer equipment. For example, flat-screen televisions and car audio devices can of course be used for products having a function of generating sound, for example, various products such as vacuum cleaners, washing machines, refrigerators, microwave ovens, and the like.
 次に、本実施形態の音響発生器の具体例について説明する。 Next, a specific example of the sound generator of this embodiment will be described.
 積層型圧電素子を以下のようにして作製した。まず、平均粒径が0.4μmのチタン酸ジルコン酸鉛(PbZrO-PbTiO)を主成分とする圧電セラミックスの仮焼粉末、バインダーおよび可塑剤を混合したセラミックスラリーを用いてドクターブレード法により厚み50μmの圧電体層となるセラミックグリーンシートを作製した。 A multilayer piezoelectric element was produced as follows. First, by a doctor blade method using a ceramic slurry in which a calcined powder of a piezoelectric ceramic mainly composed of lead zirconate titanate (PbZrO 3 -PbTiO 3 ) having an average particle diameter of 0.4 μm, a binder and a plasticizer are mixed. A ceramic green sheet to be a piezoelectric layer having a thickness of 50 μm was produced.
 次に、銀-パラジウムにバインダーを加えて、内部電極層となる導電性ペーストを作製した。 Next, a binder was added to silver-palladium to produce a conductive paste to be an internal electrode layer.
 次に、セラミックグリーンシートの片面に、内部電極層となる導電性ペーストをスクリーン印刷法により印刷し、導電性ペーストが印刷されたセラミックグリーンシートを200枚積層した。また、内部電極層となる導電性ペーストが印刷されたセラミックグリーンシート200枚を中心にして、その上下に、内部電極層となる導電性ペーストが印刷されていないセラミックグリーンシート合計15枚を積層した。そして、980~1100℃で焼成し、平面研削盤を用いて所定の形状に研削して、積層体を得た。 Next, a conductive paste serving as an internal electrode layer was printed on one side of the ceramic green sheet by a screen printing method, and 200 ceramic green sheets printed with the conductive paste were laminated. Further, a total of 15 ceramic green sheets not printed with the conductive paste serving as the internal electrode layer were laminated on the top and bottom of the 200 ceramic green sheets printed with the conductive paste serving as the internal electrode layer. . Then, it was fired at 980 to 1100 ° C. and ground to a predetermined shape using a surface grinder to obtain a laminate.
 次に、積層体の表面にAg粉末とガラス成分を含んだペーストをスクリーン印刷で塗布して、約600℃で焼き付けし、外部電極層を幅1.5mm、厚み30μmで形成した。 Next, a paste containing Ag powder and a glass component was applied to the surface of the laminate by screen printing and baked at about 600 ° C. to form an external electrode layer having a width of 1.5 mm and a thickness of 30 μm.
 得られた積層型圧電素子は、積層方向の長さが15mm、幅が2mm、振動板に垂直な方向の厚みが2mmとなる長尺板状のものとした。この積層型圧電素子を、強化ガラスで厚み0.7mm、縦120mm、横50mmとされた振動板の上に、両面テープで接合して、図1に示すような音響発生器を作製した。このとき、積層型圧電素子の積層方向は、ガラス面に対して平行となる。 The obtained multilayer piezoelectric element was a long plate having a length in the stacking direction of 15 mm, a width of 2 mm, and a thickness in the direction perpendicular to the diaphragm of 2 mm. This laminated piezoelectric element was joined with a double-sided tape on a diaphragm made of tempered glass and having a thickness of 0.7 mm, a length of 120 mm, and a width of 50 mm, to produce an acoustic generator as shown in FIG. At this time, the stacking direction of the multilayer piezoelectric element is parallel to the glass surface.
 上記のようにして作製した実施例となる音響発生器の音圧特性を、200Hzから10kHzまでの周波数掃引試験を行い、周波数特性を測定した。その結果を図7のAに示す。 A frequency sweep test from 200 Hz to 10 kHz was performed on the sound pressure characteristics of the sound generator according to the example produced as described above, and the frequency characteristics were measured. The result is shown in FIG.
 一方、比較例として、以下の音響発生器を作製した。 On the other hand, the following sound generator was produced as a comparative example.
 積層型圧電素子は、実施例と同様の材料で、振動板に沿った方向の長さが23mm、幅が3.3mm、振動板に垂直な方向の厚みが0.8mmの板状としたものを作製した。なお、積層型圧電素子の積層方向は振動板の主面に垂直な方向とし、内部電極層となる導電性ペーストが印刷されたセラミックグリーンシート40枚と、最上層に配置された導電性ペーストが印刷されていないセラミックグリーンシートとから、積層体を作製し、最上層の上面に表面電極を焼き付けて形成するとともに、側面に表面電極と内部電極層とを電気的に接続する外部電極層を焼き付けて形成してなるものとした。 The laminated piezoelectric element is made of the same material as in the example, and has a plate shape with a length of 23 mm along the diaphragm, a width of 3.3 mm, and a thickness perpendicular to the diaphragm of 0.8 mm. Was made. The lamination direction of the multilayer piezoelectric element is a direction perpendicular to the main surface of the diaphragm, and 40 ceramic green sheets on which a conductive paste serving as an internal electrode layer is printed, and a conductive paste disposed on the uppermost layer are provided. A laminated body is made from an unprinted ceramic green sheet, and a surface electrode is baked on the top surface of the uppermost layer, and an external electrode layer that electrically connects the surface electrode and the internal electrode layer is baked on the side surface. To be formed.
 この積層型圧電素子を、実施例と同じ振動板の上に、両面テープで接合して、音響発生器を作製した。このとき、積層型圧電素子の積層方向は、ガラス面に対して垂直となる。 The sound generator was manufactured by bonding the multilayer piezoelectric element on the same diaphragm as the example with double-sided tape. At this time, the stacking direction of the multilayer piezoelectric element is perpendicular to the glass surface.
 この音響発生器について、上記実施例と同様に音圧特性を測定した。その結果を図6のBに示す。 The sound pressure characteristics of this acoustic generator were measured in the same manner as in the above example. The result is shown in FIG.
 図6に示す結果によれば、実施例であるAの方が比較例であるBに対して、明らかに変位特性の向上が認められる。 According to the results shown in FIG. 6, it is apparent that the displacement characteristics of the example A are improved compared to the comparison example B.
 以上のことから、本実施例の構造にすることで、変位を改善できることが確認できた。 From the above, it was confirmed that the displacement can be improved by adopting the structure of this example.
1 積層型圧電素子
11 圧電体層
12 内部電極層
13 積層体
14 外部電極層
2 振動板
3 接合材
31 第1の接合材
32 第2の接合材
DESCRIPTION OF SYMBOLS 1 Multilayer piezoelectric element 11 Piezoelectric layer 12 Internal electrode layer 13 Laminated body 14 External electrode layer 2 Diaphragm 3 Bonding material 31 First bonding material 32 Second bonding material

Claims (6)

  1.  圧電体層と内部電極層とが交互に積層された積層体を有する積層型圧電素子と、主面を有する振動板とを備え、前記積層型圧電素子は積層方向が前記振動板の主面に沿って配置されている音響発生器。 A laminated piezoelectric element having a laminated body in which piezoelectric layers and internal electrode layers are alternately laminated; and a diaphragm having a main surface, wherein the laminated piezoelectric element has a laminating direction on the main surface of the diaphragm. Sound generators placed along.
  2.  前記積層型圧電素子の積層方向の両端部のみが接合材により前記振動板に接合されている請求項1に記載の音響発生器。 The acoustic generator according to claim 1, wherein only both end portions in the stacking direction of the stacked piezoelectric element are bonded to the diaphragm by a bonding material.
  3.  前記積層型圧電素子は、両端部が第1の接合材により前記振動板に接合され、両端部以外の領域が第2の接合材により前記振動板に接合されており、前記第1の接合材と前記第2の接合材とで弾性率が異なっている請求項1に記載の音響発生器。 The laminated piezoelectric element has both ends bonded to the diaphragm by a first bonding material, and a region other than both ends bonded to the diaphragm by a second bonding material. The acoustic generator according to claim 1, wherein the elastic modulus is different between the second bonding material and the second bonding material.
  4.  前記第2の接合材の弾性率よりも前記第1の接合材の弾性率のほうが大きい請求項3に記載の音響発生器。 The acoustic generator according to claim 3, wherein the elastic modulus of the first bonding material is larger than the elastic modulus of the second bonding material.
  5.  前記積層型圧電素子は、前記振動板の主面に垂直な方向の厚みが、前記振動板の主面に平行な前記積層方向の長さおよび前記積層方向に垂直な方向の幅よりも薄い請求項1乃至請求項4のうちのいずれかに記載の音響発生器。 The laminated piezoelectric element has a thickness in a direction perpendicular to the main surface of the diaphragm that is thinner than a length in the lamination direction parallel to the main surface of the diaphragm and a width in a direction perpendicular to the lamination direction. The sound generator according to any one of claims 1 to 4.
  6.  請求項1乃至請求項5のうちのいずれかに記載の音響発生器と、該音響発生器に接続された電子回路と、該電子回路および前記音響発生器を収容する筐体とを備えている電子機器。
     
    A sound generator according to any one of claims 1 to 5, an electronic circuit connected to the sound generator, and a housing that houses the electronic circuit and the sound generator. Electronics.
PCT/JP2017/003090 2016-02-25 2017-01-30 Acoustic generator and electronic apparatus provided with same WO2017145649A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018501086A JP6585821B2 (en) 2016-02-25 2017-01-30 SOUND GENERATOR AND ELECTRONIC DEVICE HAVING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-034521 2016-02-25
JP2016034521 2016-02-25

Publications (1)

Publication Number Publication Date
WO2017145649A1 true WO2017145649A1 (en) 2017-08-31

Family

ID=59686293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003090 WO2017145649A1 (en) 2016-02-25 2017-01-30 Acoustic generator and electronic apparatus provided with same

Country Status (2)

Country Link
JP (1) JP6585821B2 (en)
WO (1) WO2017145649A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10631072B2 (en) * 2018-06-25 2020-04-21 Google Llc Actuator for distributed mode loudspeaker with extended damper and systems including the same
JP2020205514A (en) * 2019-06-17 2020-12-24 吉郎 古賀 Acoustic generation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287725A (en) * 2005-04-01 2006-10-19 Ngk Insulators Ltd Piezoelectric acoustic element and piezoelectric acoustic generating device
JP2014168132A (en) * 2013-01-31 2014-09-11 Teijin Ltd Polymer piezoelectric speaker
JP2015185819A (en) * 2014-03-26 2015-10-22 京セラ株式会社 Driver of bimorph piezoelectric element and portable terminal including the same, acoustic generator, acoustic generation device, electronic apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6286119B2 (en) * 2012-10-01 2018-02-28 京セラ株式会社 Sound generator, piezoelectric vibrator for sound generator, and sound generation system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287725A (en) * 2005-04-01 2006-10-19 Ngk Insulators Ltd Piezoelectric acoustic element and piezoelectric acoustic generating device
JP2014168132A (en) * 2013-01-31 2014-09-11 Teijin Ltd Polymer piezoelectric speaker
JP2015185819A (en) * 2014-03-26 2015-10-22 京セラ株式会社 Driver of bimorph piezoelectric element and portable terminal including the same, acoustic generator, acoustic generation device, electronic apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10631072B2 (en) * 2018-06-25 2020-04-21 Google Llc Actuator for distributed mode loudspeaker with extended damper and systems including the same
US11109131B2 (en) 2018-06-25 2021-08-31 Google Llc Actuator for distributed mode loudspeaker with extended damper and systems including the same
JP2020205514A (en) * 2019-06-17 2020-12-24 吉郎 古賀 Acoustic generation device
JP7033323B2 (en) 2019-06-17 2022-03-10 株式会社シザナック Sound generator

Also Published As

Publication number Publication date
JP6585821B2 (en) 2019-10-02
JPWO2017145649A1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
JP6228994B2 (en) Piezoelectric element and piezoelectric vibration device including the same, portable terminal, sound generator, sound generator, electronic device
KR101601748B1 (en) Piezoelectric actuator, piezoelectric vibration apparatus and portable terminal
JP5989910B2 (en) SOUND GENERATOR, SOUND GENERATOR HAVING THE SAME, AND ELECTRONIC DEVICE
JP5788110B2 (en) Piezoelectric element and piezoelectric vibration device including the same, portable terminal, acoustic generator, acoustic generator, and electronic device
JP6193783B2 (en) Piezoelectric actuator, piezoelectric vibration device including the same, portable terminal, acoustic generator, electronic device
JP2016100760A (en) Piezoelectric element, piezoelectric vibration device, acoustic generator, acoustic generation device, and electronic apparatus
WO2015129061A1 (en) Piezoelectric actuator, and piezoelectric vibration device, portable terminal, acoustic generator, acoustic generation device, and electronic device provided therewith
JP6585821B2 (en) SOUND GENERATOR AND ELECTRONIC DEVICE HAVING THE SAME
JP2015126605A (en) Piezoelectric actuator, piezoelectric vibration device having the same, portable terminal, acoustic generator, and electronic apparatus
JP5730452B1 (en) Piezoelectric actuator, piezoelectric vibration device including the same, portable terminal, sound generator, sound generator, electronic device
JP6741609B2 (en) Piezoelectric actuator, piezoelectric vibration device, and electronic device
JP2017005537A (en) Piezoelectric actuator and piezoelectric vibration device including the same, acoustic generator, acoustic generation device, and electronic device
JP6411958B2 (en) SOUND GENERATOR, SOUND GENERATOR HAVING THE SAME, AND ELECTRONIC DEVICE
JP2019146108A (en) Acoustic generator and electronic apparatus
US9826315B2 (en) Acoustic generator, acoustic generation device, and electronic apparatus
KR101579121B1 (en) Piezoelectric actuator, piezoelectric vibration apparatus and portable terminal
JP2015207740A (en) Piezoelectric actuator, piezoelectric vibration device, portable terminal, acoustic generator, acoustic generation device, and electronic apparatus
JP6193748B2 (en) Piezoelectric actuator, piezoelectric vibration device including the same, portable terminal, acoustic generator, electronic device
JP6923476B2 (en) Piezoelectric vibrating device and electronic equipment equipped with it
JP2019147122A (en) Vibration generator and electronic equipment
JP6920188B2 (en) Piezoelectric elements, audio generators and electronics
JP6418962B2 (en) Multilayer piezoelectric element, acoustic generator, acoustic generator and electronic device
JP2017117934A (en) Piezoelectric element, sound generator, sound generation device and electronic apparatus
JP2017118424A (en) Acoustic generator, acoustic generation device and electronic apparatus
JP2017118023A (en) Piezoelectric element and sound generator including the same, sound generation device, electronic apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018501086

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756091

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756091

Country of ref document: EP

Kind code of ref document: A1