WO2017145587A1 - 探知情報処理装置、気象観測システム、移動体監視システム及び探知情報処理方法 - Google Patents
探知情報処理装置、気象観測システム、移動体監視システム及び探知情報処理方法 Download PDFInfo
- Publication number
- WO2017145587A1 WO2017145587A1 PCT/JP2017/001683 JP2017001683W WO2017145587A1 WO 2017145587 A1 WO2017145587 A1 WO 2017145587A1 JP 2017001683 W JP2017001683 W JP 2017001683W WO 2017145587 A1 WO2017145587 A1 WO 2017145587A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- detection information
- information processing
- processing apparatus
- detection
- speed
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/04—Display arrangements
- G01S7/06—Cathode-ray tube displays or other two dimensional or three-dimensional displays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/50—Systems of measurement based on relative movement of target
- G01S13/58—Velocity or trajectory determination systems; Sense-of-movement determination systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/50—Systems of measurement based on relative movement of target
- G01S13/58—Velocity or trajectory determination systems; Sense-of-movement determination systems
- G01S13/62—Sense-of-movement determination
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/87—Combinations of radar systems, e.g. primary radar and secondary radar
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/95—Radar or analogous systems specially adapted for specific applications for meteorological use
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Definitions
- the present invention mainly relates to a detection information processing apparatus that processes information on an object detected via an antenna.
- Patent Document 1 discloses a multi-radar video processing device that processes video information observed by this type of radar.
- the multi-radar video processing apparatus disclosed in Patent Document 1 inputs video information of a target (detection target) in the observation area of the first radar, gives a first identification code, and outputs it.
- Video information output means for converting and outputting video information of different colors and patterns that can be identified and displayed, first and second radar observation areas and their overlapping areas, and the three identification codes Set composition / display conditions such as different colors and patterns to be converted And composition / display condition setting means.
- Japanese Patent Laid-Open No. 2004-228867 identifies which radar is the image observed by the radar among the plurality of radars when the video information transmitted from the plurality of radars is combined into one video and displayed. It is assumed that the display and the identification display of the image by only a single radar and the composite image by a plurality of radars are possible.
- a radar that acquires the velocity of an observation object using the Doppler effect principle when a detection signal is reflected by the observation object (detection object).
- this Doppler radar can only obtain the velocity component in the direction along the transmission direction of the detection signal in principle.
- the Doppler radar can only measure the velocity in the direction in which the observation object approaches or moves away from the radar antenna, and cannot measure the velocity along the Ryukyu shell around the radar antenna. It is difficult to get accurate movement trends.
- the three-dimensional movement of an observation object can be measured by installing three or more radar antennas at locations physically separated from each other and measuring the above Doppler velocity. It becomes possible. However, with such a measurement method, the cost of the radar increases, making it difficult to measure in a wide area.
- VVP method Vehicle Volume Processing
- Dual-Doppler method is calculated from the measurement result of two Doppler radars.
- the detectable range of a single radar is limited to a circular area centered on the radar antenna. Therefore, for example, when a plurality of radar antennas are arranged for weather observation, the number of radars (radar antennas) from which detection data can be obtained differs depending on the location.
- the multi-radar video processing apparatus disclosed in Patent Document 1 discloses displaying video information observed by a plurality of dredge radars or video information of overlapping observation areas so that they can be individually identified. It does not disclose anything about measuring the speed of an object (target).
- the present invention has been made in view of the above circumstances, and its purpose is to use the detection data of a plurality of antennas to grasp the speed trend of a detection object in a wide range geographically and spatially, and
- An object of the present invention is to provide a detection information processing apparatus that can use detection data flexibly and effectively.
- the detection information processing apparatus includes an acquisition unit and a calculation unit.
- the acquisition unit acquires detection information obtained by transmitting and receiving detection signals from a plurality of antennas provided at different positions.
- the calculation unit calculates the velocity information of the detection target existing in the analysis unit according to the number of the antennas that detected the detection information for each predetermined analysis unit by a different calculation method, and the velocity information Is output.
- the calculation unit includes the analysis unit in which the detection information from one antenna exists.
- the speed information is calculated by a different calculation method.
- the detection information of a plurality of antennas can be used flexibly and effectively by calculating speed information by a special calculation method.
- the calculation unit includes the analysis in which the detection information from two or less antennas exists. It is preferable to calculate the speed information by a calculation method different from the unit.
- the speed information is calculated by a special calculation method, so that the detection information of a plurality of antennas can be used flexibly and effectively.
- the detection information processing apparatus preferably has the following configuration. That is, the calculation unit is configured to be able to calculate the speed information by a plurality of calculation methods having different calculation accuracy. The calculation unit selects a calculation method having the highest calculation accuracy from the possible calculation methods based on the number of the antennas that have detected the detection information, and calculates the speed information by the selected calculation method.
- the acquisition unit is preferably configured to be able to acquire the detection information of three or more antennas.
- the calculation unit outputs the speed information so that the speed information for each analysis unit has the same format even when the calculation method of the speed information is different.
- the detection information processing apparatus preferably has the following configuration. That is, the detection information processing apparatus includes an image generation unit.
- the image generation unit generates and outputs a speed analysis image corresponding to the speed information for each analysis single position.
- the speed analysis image is drawn in a different expression mode depending on the speed information calculation method.
- the detection information processing apparatus it is preferable that at least a part of the speed analysis image is drawn with a different color depending on the speed information calculation method.
- the user can check the speed information, and at the same time, can easily grasp the difference in the calculation method of the speed information based on the color.
- the image generation unit draws a figure corresponding to the speed information for each analysis unit, and draws the figure having a different display mode according to the speed value of the speed information. It is preferable.
- the detection information processing apparatus preferably has the following configuration. That is, the figure is an arrow mark. The length of the arrow mark of the arrow mark is determined according to the speed value of the speed information.
- the detection information processing apparatus includes a display unit that displays the speed analysis image.
- the display unit preferably displays the speed analysis image superimposed on a map or a chart.
- the calculation of the speed information and the output of the speed information are performed each time the acquisition unit acquires the detection information.
- a meteorological observation system and a moving object monitoring system including the detection information processing apparatus.
- the detection information processing apparatus is preferably used for a weather observation system or a moving object monitoring system.
- this detection information processing method includes an acquisition process and a calculation process.
- the acquisition step detection information obtained by transmitting / receiving detection signals from a plurality of antennas provided at different positions is acquired.
- the speed information of the detection target existing in the analysis unit is calculated by a different calculation method according to the number of the antennas that detected the detection information, and the speed information Is output.
- the conceptual diagram which shows the structure of the weather observation system and server computer which concern on one Embodiment of this invention.
- the schematic diagram which shows a mode that a radar detects the Doppler velocity of a cloud particle.
- the top view which shows the observation space which a meteorological observation system makes object.
- the figure which shows the example of the image showing the speed information of the cloud particle.
- FIG. 1 is a conceptual diagram showing a configuration of a weather observation system 10 and a server computer 1 according to the present embodiment.
- the server computer (data analysis device, detection information processing device) 1 of the present embodiment is a device that processes information on a detection target acquired from a radar 20 for observing weather conditions.
- the meteorological observation system 10 displays information such as a plurality of radars 20 and detection object distributions and moving speeds based on detection data (detection information) acquired from the radars 20.
- a server computer 1 for analyzing and outputting.
- Radar 20 is a weather radar and includes a signal transmission / reception unit (not shown) and a radar antenna (antenna) 21.
- the signal transmitting / receiving unit can generate an electromagnetic wave signal (detection signal) using a control circuit, a magnetron, or the like.
- the radar antenna 21 emits an electromagnetic wave signal generated by the signal transmission / reception unit to the outside.
- the electromagnetic wave signal emitted by the radar antenna 21 ⁇ is reflected by rain, clouds, etc., and is received by the radar antenna 21.
- the reflected wave signal received by the radar antenna 21 is subjected to amplification processing, frequency down-conversion processing, and the like by the signal transmission / reception unit.
- the peripheral frequency of the electromagnetic wave emitted from the radar antenna 21 is appropriately determined according to what phenomenon is desired to be observed. Specifically, when the frequency band is 30 GHz to 100 GHz, cloud particles, fog particles, and the like can be observed. When the frequency band is 30 MHz to 3 GHz, precipitation particles such as rain and snow can be observed. In addition, since there is a relationship that the radar detection range can be expanded as the frequency of the emitted electromagnetic wave decreases, the length of the detection range (the width of the detection range) is also considered when determining the frequency of the electromagnetic wave.
- the frequency band is 30 GHz to 100 GHz
- cloud particles, fog particles, and the like can be observed.
- the frequency band is 30 MHz to 3 GHz
- precipitation particles such as rain and snow can be observed.
- the length of the detection range is also considered when determining the frequency of the electromagnetic wave.
- the server computer 1 is installed in a facility that collects weather observation data (for example, a data center or an observation center having a weather monitoring function).
- the server computer 1 acquires detection data from each of a plurality of radars 20 provided at positions sufficiently physically separated, and based on the detection data, various information (analysis information) for dredging weather observation is obtained.
- Analysis data including the speed information) can be obtained by calculation.
- the distance to the cloud or the like can be obtained from the time from when the radar antenna 21 transmits the electromagnetic wave signal to when it is received.
- the direction in which the cloud or the like exists can be obtained from the elevation angle and azimuth angle of the radar antenna 21 when the radar 20 transmits and receives the electromagnetic wave signal.
- the elevation angle of the radar antenna 21 When the elevation angle of the radar antenna 21 is large, information such as the position of the cloud in the sky and the amount of moisture contained in the cloud can be acquired from the detection data. When the elevation angle is small, the amount of rainfall and the size of the raindrops are obtained. Etc. can be acquired.
- the radar 20 is configured as a Doppler radar. Therefore, as shown in FIG. 2, the radar 20 has a principle (Doppler effect) in which the frequency of the reflected wave signal is different depending on the moving speed of the detection target (for example, cloud particles constituting the cloud such as the cumulonimbus 91). By utilizing this, the Doppler speed of the detection object can be obtained.
- This Doppler speed information is included in the detection data output by the radar 20.
- the server computer 1 can calculate and obtain information related to the direction of movement of the cloud particles and the magnitude of the moving speed (hereinafter sometimes referred to as speed information) based on the detection light data input from the radar 20. .
- the server computer 1 includes a communication unit (acquisition unit) 11, a determination unit 12, a calculation unit 13, an image generation unit 14, and a display (display unit) 15.
- the server computer 1 includes a CPU, a ROM, a RAM, an input / output interface and the like (not shown). Further, the ROM of the server computer 1 stores an information analysis program for acquiring and analyzing detection data from the radar 20. Through the cooperation of the hardware and software described above, the server computer 1 can be operated as the communication unit 11, the determination unit 12, the calculation unit 13, the image generation unit 14, and the like.
- the communication unit 11 is configured as a network interface that can be connected to a WAN (Wide Area Network) such as the Internet, for example.
- the communication unit 11 can acquire detection data output from the radar 20 by communicating with each of the plurality of radars 20 (acquisition process).
- the communication part 11 can output the result obtained by the calculation of the server computer 1 to the exterior by communicating with another apparatus (for example, client computer 2).
- the determination unit 12 determines the presence / absence of detection data acquired from each of the plurality of radars 20 in each of the meshes (analysis units, analysis target points) obtained by finely dividing the space to be observed by the weather observation system 10 in three dimensions. To do.
- FIG. 3 an example of the observation space shown in FIG.
- a plurality of (four) radar rods 20a, 20b, 20c, and 20d are installed.
- the respective radars 20 are provided at different positions.
- Each radar 20 has a spherical (circular shape in a plan view) detection range that has the detection distance as a radius, and the four radars 20 partially overlap each other. Is arranged.
- the observation space targeted by the atmospheric observation system 10 is defined as a space in which the detection ranges of the four radars 20 are synthesized.
- meteorological data is obtained for each mesh obtained by finely dividing the observation space in three dimensions.
- FIG. 3 shows the observation space in a plan view and five points P, Q, R, S, and T at a predetermined altitude.
- the detection data of the three radars 20a, 20b, and 20c can be acquired for this point P.
- detection data of two radar rods 20a and 20d can be acquired
- detection data of one radar 20c can be acquired.
- the point S is included in the detection range of the radar 20c and the radar 20d, but the detection signal from the radar 20d is blocked by the mountain 90, so that the point S cannot be detected. Only the radar 20c can be obtained from the kite.
- the point T is out of the observation space of the weather observation system 10, no detection data can be obtained. Therefore, the point T is not an object of analysis (that is, there is no analysis unit mesh at the point T).
- the determination unit 12 determines whether or not detection data can be obtained from the radar 20 for the cloud particles present at the point, and if so, which of the four radars can be obtained. Whether or not detection data can be obtained from 20 is determined. As a result, the number of radars 20 capable of obtaining detection data can be obtained for each point.
- the calculation unit 13 performs calculation processing for each point in the observation space based on detection data relating to cloud particles and the like existing at the point to obtain analysis data including velocity information such as cloud particles and the like.
- An analysis data group summarizing the above is output (calculation process).
- the calculation method for calculating the velocity information of the cloud droplets by the calculation collar 13 is based on the number of radars 20 (in other words, the number of detection data acquisition sources) that can detect the cloud particles and the like of each point (mesh). Accordingly, the method is selected from the VVP method, the Dual-Doppler method, and the Triple-Doppler method described later.
- the image generation unit 14 can generate and output an image (speed analysis image) that graphically represents the analysis data including the speed information output by the calculation unit 13 so that the user can easily understand it. For example, as illustrated in FIG. 4, the image generation unit 14 draws an arrow mark (mark) having a length and a direction corresponding to the speed of the cloud particle, thereby expressing the speed of the cloud particle on the haze image. At this time, the background of the arrow mark is displayed with a different color based on which of the above three calculation methods is used to calculate the speed information (details will be described later).
- the image generated by the image generation unit 14 is displayed on the display 15 described below.
- the image generated by the image generation unit 14 can be output to the client computer 2 in the form of an image file via the communication unit 11.
- the display 15 is composed of a liquid crystal display, for example, and can display various information.
- the display 15 can display the image generated by the image generation unit 14. Then, the display 15 can display the image generated by the image generation unit 14 so as to be superimposed on the map or chart corresponding to the observation space and the detection range of the dredge radar 20.
- the user can easily grasp where the cloud particles and the like are distributed at the present time and where he / she tries to move.
- cumulonimbus clouds are one of the causes of drastically worsening weather and heavy rain and lightning. Cumulonimbus is often accompanied by heavy rain, snow, etc., and may cause storm damage such as tornadoes. Therefore, it is particularly important in weather observation to properly and sufficiently grasp the behavior of clouds that may cause weather disasters such as cumulonimbus clouds.
- the Doppler radar can measure only the speed component in the direction along the transmission direction of the detection signal. Therefore, as shown in FIG. 2, it is not possible to accurately grasp, for example, the complicated cloud movement in the process in which the cumulonimbus 91 develops only by using one radar 20. This is because the cumulonimbus cloud 91 has a feature of developing greatly in the vertical direction, but when the elevation angle of the radar antenna 21 is small, the movement of the cloud particles in the vertical direction is hardly reflected in the Doppler velocity.
- the Doppler speeds based on the two points can be measured, respectively. Compared to the case, the vertical movement of the cloud can be measured with high accuracy.
- the Doppler velocity from three points can be measured, so that the movement of the cloud in the vertical direction can be measured with higher accuracy.
- the more radars 20 that detect the place the more accurate the calculation of the speed information based on the Doppler speed (particularly the accuracy in the vertical direction). ) Can be improved.
- the calculation unit 13 of the server computer 1 uses a different calculation process for each point (mesh) to be analyzed according to the number of radars 20 that can detect the point. It is configured to ask for information.
- velocity information at the point is calculated (estimated) using the VVP method.
- the speed information of the point is calculated using the Triple-Doppler method.
- the speed information can be obtained with higher accuracy than the VVP method or the Dual-Doppler method.
- the calculation unit 13 is configured to be able to calculate the speed information by a plurality of (three) calculation methods with different calculation accuracy, and is the most calculated according to the acquisition status of detection data that differs for each place. A calculation method with high accuracy is selected, and the speed of cloud haze is calculated using the selected calculation method. As a result, it is possible to acquire speed information with as good accuracy as possible at each location.
- the calculation unit 13 is configured to output an analysis data group for the observation space by generating and collecting analysis data for each point so as to include the obtained velocity information.
- a wide geographical / spatial range observation space
- speed information with high flexibility and flexibility according to the local circumstances.
- the calculation unit 13 ⁇ of the present embodiment is configured to output the speed information in the same format regardless of the calculation method.
- the velocity information may be output as three values indicating the components of the space vector (the east-west component, the north-south component, and the altitude component) indicating the cloud particle velocity. It is not limited to. This makes it easy to handle speed information as a calculation result in a unified manner, so that speed information can be easily processed and displayed.
- the image generation unit 14 generates an image indicating the analysis data calculated by the calculation unit 13 for each point (or picked-up point) that is an analysis unit.
- the speed information is drawn with an arrow mark as shown in FIG. 4, the direction of this arrow is the direction of movement of the cloud particle, and the length of the arrow (the length of the arrowhead of the arrow mark) is moved.
- the magnitude of speed (speed value) is shown respectively.
- the image generation unit 14 has different colors depending on the number of radars 20 that can detect the point (in other words, depending on the calculation method used when obtaining the speed information) so that the user can easily understand the point. Draw a background of speed information.
- FIG. 4 shows an example of picking up a point at a predetermined altitude from a large number of points (mesh) constituting the observation space, generating an image showing speed information of the point, and displaying it on the display 15.
- the background of the arrow is displayed in red in an area that can be detected by the three radars 20 (area with a grid-like hatching).
- the background of the arrow is green, and an area where only one radar 20 can be detected (hatching with a wide interval is attached).
- the background of the arrow is blue.
- the image generated by the image generation unit 14 is drawn in a different display manner depending on the speed information calculation method. Specifically, at least a part of the image generated by the image generation unit 14 is drawn with a different color depending on the speed information calculation method.
- the method for calculating the speed information for each point differs depending on how many radars 20 can detect the point. Therefore, the difference in the color of the above-described area (arrow background) also means a difference in the speed information calculation method in the area.
- Such color-coded display allows the user to easily understand the difference in information accuracy (ie, reliability) or calculation method when examining analysis data.
- the color coding is not limited to the above example, and how many colors are assigned to which region can be appropriately determined.
- the image generation unit 14 is configured to generate an image in which speed information is drawn with a unified expression (specifically, an arrow) even in different color regions. For example, as shown in FIG. 4, in the observation area, the speed information is displayed as an arrow mark in any color area. Therefore, even if the number of detection data is different between the two points and the calculation method is different for that, if the direction of movement and the magnitude of the movement speed of the cloud particle obtained as a result are the same, it is generated. In the image, arrows having the same direction or the same length are displayed. With such a unified expression, the user can easily understand the speed information.
- a unified expression specifically, an arrow
- the calculation of the speed information by the calculation unit 13 and the output of the analysis information group, and the generation of the image by the image generation unit 14 are performed from the radar 20 to the server. This is performed in real time as new detection data is input to the computer 1.
- the weather information that changes every moment can be monitored in real time, so that it is possible to quickly take necessary measures such as forecasting sudden torrential rain due to cumulonimbus clouds.
- the server computer 1 of this embodiment includes the communication unit 11 and the calculation unit 13.
- the communication unit 11 acquires detection data obtained by transmitting and receiving detection signals from a plurality of soot radar antennas 21 provided at different positions.
- the calculation unit 13 calculates the velocity information of the cloud particles existing in the mesh according to the number of soot radar antennas 21 that have detected the detection data, and outputs the velocity information. .
- the server computer 1 is configured to analyze a three-dimensional observation space.
- the server computer 1 may be configured to analyze a two-dimensional observation plane.
- the server computer 1 may be configured to integrate and analyze detection data from the radar 20 and various observation data obtained from other weather observation apparatuses.
- the content of the image generated by the image generation unit 14 may be anything as long as it indicates the result of the integrated processing of the detection data of the four radars 20. good.
- speed information may be expressed by a triangular mark instead of an arrow, or the contents of analysis data other than speed information may be expressed together.
- speed information instead of showing speed information in a plane sectional view as shown in FIG. 4, it may be configured to show speed information in a vertical sectional view, or a three-dimensional representation by combining a planar section and a vertical section. You may do it.
- the background color of the arrow is changed depending on the speed information calculation method.
- the expression mode of the speed information is not limited to the above.
- the color of the arrow itself may be changed depending on the calculation method, or different marks (for example, arrows and triangles) may be used depending on the calculation method. May be displayed.
- the display mode of the speed value of the speed information is not limited to the above.
- the size of the triangle may be varied according to the speed value.
- the image generation unit 14 and the bag display 15 may be omitted.
- an analysis data group is calculated on the server computer 1 side and output to a client computer (not shown) (in the form of numerical data), and an image is generated by the client computer based on this data and displayed on a display on the client computer side. It can also be configured to output.
- the above detection data analysis processing may be performed not only on the server computer 1 but also on a computer that does not have a server function.
- VVP method Various methods other than the VVP method, the Dual-Doppler method, and the Triple-Doppler method may be used as a method for calculating the speed information from the detection data.
- the number of radars 20 constituting the weather observation system 10 is not limited to four, and may be two, three, or five or more.
- the background of the points may be displayed in a color different from the above red, green, and blue.
- the radar 20 is not limited to the configuration using the magnetron as described above, and can be configured as a radar using a solidified element, for example.
- the speed analysis target (detection target by the radar 20) in the server computer 1 may be other than cloud particles, for example, rain or snow.
- the detection information processing apparatus of the present embodiment is not limited to use in the weather observation field, but can also be applied to a mobile monitoring system that monitors mobiles such as ships, airplanes, and birds.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
【課題】複数のアンテナの探知データを用いて、広範囲における探知対象物の速度傾向を把握し易くするとともに、当該探知データを柔軟かつ有効に活用する。 【解 決手段】気象観測システム10を構成するサーバコンピュータ1は、通信部11と、計算部13と、を備える。通信部11は、互いに異なる位置にある複数の レーダアンテナ21によって得られた探知データを取得する。計算部13は、予め定められた解析単位毎に、前記探知データを検出したレーダアンテナ21の数 に応じて当該解析単位に存在する探知対象物の速度情報を異なる計算方法で計算し、当該速度情報を出力する。
Description
本発明は、主として、アンテナを介して探知された対象物の情報を処理する探知情報処理装置に関する。
従来から、アンテナを介して電波又は電磁波(探知信号)を対象物に向けて発射し、対象物が反射した反射波を受信して解析することにより、対象物までの距離や方向を測定するレーダが知られている。
特許文献1は、この種のレーダによって観測された映像情報を処理する多重レーダ映像処理装置を開示する。この特許文献1の多重レーダ映像処理装置は、第1 のレーダの観測領域内の物標(探知対象物)の映像情報を入力し、第1の識別符号を付与して出力する第1の物標映像入力手段と、第2のレーダの観測領域内の 物標の映像情報を入力し、第2の識別符号を付与して出力する第2の物標映像入力手段と、第1及び第2レーダの観測領域の重複領域内の物標の映像情報を第3 の識別符号を付与して出力する映像合成手段と、第1と第2と第3の識別符号の付与された映像情報をそれぞれ識別表示可能な異なる色彩及びパターンの映像情 報に変換して出力する映像情報出力手段と、外部から第1と第2のレーダの観測領域及びその重複領域、並びに前記3つの識別符号に対応して変換する異なる色 彩及びパターン等の合成・表示条件を設定する合成・表示条件設定手段と、から構成されている。
特許文献1は、この構成に より、複数のレーダから送られてきた映像情報を1つの映像に合成して表示させる場合において、複数のレーダのうちどのレーダにより観測された映像であるか の識別表示、及び、単一のレーダのみによる映像と複数のレーダによる合成映像との識別表示が可能になるとする。
ところで、例えば気象観測の分野においては、探知信号が観測対象物(探知対象物)で反射される際のドップラ効果の原理を用いて、観測対象物の速度を取得す るレーダ(ドップラレーダ)が従来から用いられている。しかし、このドップラレーダは、その原理上、探知信号の送信向きに沿う方向の速度成分しか得ること ができない。即ち、ドップラレーダは、観測対象物がレーダアンテナに近づく方向/遠ざかる方向の速度を測定できるにとどまり、レーダアンテナを中心とした 球殻に沿う向きの速度は測定できないため、観測対象物の多次元的な移動の傾向を正確に取得することが難しい。
単純に考え ると、観測対象物の3次元的な移動の測定は、3台以上のレーダアンテナを互いに物理的に離れた場所に設置して、それぞれが上記のドップラ速度を測定するこ とで可能になる。しかしながら、このような測定方法では、レーダのコストが増大するため、広域での測定が困難である。
そ こで、従来から、1台のみのドップラレーダの計測結果から公知のVVP法(Velocity Volume Processing)等を用いて計算した り、2台のドップラレーダの計測結果から公知のDual-Doppler法を用いて計算することで、観測対象物の多次元的な移動を推定することが行われて いる。
平面的にみると、1台のレーダの探知可能範囲は、レーダアンテナを中心とした円形領域内に限られる。従って、例えば気象観測のために複数台のレーダアンテナを配置した場合、何台のレーダ(レーダアンテナ)からの探知データが得られるかは、場所に応じて異なることになる。
この点、従来は、所定の空間を対象として気象等を観測するためにレーダアンテナを複数台設置したときに、それぞれのレーダアンテナの探知結果をどのように 用いて探知対象物の速度分布を求めるのかについて、具体的に提案するものはなかった。例えば、上記特許文献1の多重レーダ映像処理装置においては、複数の レーダにより観測された映像情報又は重複観測領域の映像情報をそれぞれに識別できるように表示することを開示しているが、観測対象物(物標)の速度を測定 することについて何ら開示していない。
本発明は以上の事情に鑑みてされたものであり、その目的は、複数のアンテナの探知データを用いて、地理的/空間的に広範囲での探知対象物の速度傾向を把握できるとともに、当該探知データを柔軟かつ有効に活用できる探知情報処理装置を提供することにある。
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。
本発明の第1の観点によれば、以下の構成の探知情報処理装置が提供される。即ち、この探知情報処理装置は、取得部と、計算部と、を備える。前記取得部は、 互いに異なる位置に設けられた複数のアンテナから探知信号を送受信することにより得られた探知情報を取得する。前記計算部は、予め定められた解析単位毎 に、前記探知情報を検出した前記アンテナの数に応じて当該解析単位に存在する探知対象物の速度情報を異なる計算方法で計算し、当該速度情報を出力する。
これにより、地理的/空間的に広い範囲を対象とした速度情報の傾向を把握するのに有用な情報を得ることができる。これと同時に、アンテナからの探知情報の 有無に応じて速度情報の計算方法を変えることで、様々な場所に配置された複数のアンテナの探知情報を柔軟かつ有効に活用することができる。
前記の探知情報処理装置においては、前記計算部は、2つ以上の前記アンテナからの前記探知情報が存在する前記解析単位については、1つの前記アンテナからの前記探知情報が存在する前記解析単位とは異なる計算方法で前記速度情報を計算することが好ましい。
このように、2つ以上のアンテナからの探知情報がある場合には特別な計算方法で速度情報を計算することで、複数のアンテナの探知情報を柔軟かつ有効に活用することができる。
前記の探知情報処理装置においては、前記計算部は、3つ以上の前記アンテナからの前記探知情報が存在する前記解析単位については、2つ以下の前記アンテナからの前記探知情報が存在する前記解析単位とは異なる計算方法で前記速度情報を計算することが好ましい。
この場合も同様に、3つ以上のアンテナからの探知情報がある場合には特別な計算方法で速度情報を計算することで、複数のアンテナの探知情報を柔軟かつ有効に活用することができる。
前記の探知情報処理装置においては、以下の構成とすることが好ましい。即ち、前記計算部は、計算精度の異なる複数の計算方法で前記速度情報を計算可能に構 成されている。前記計算部は、前記探知情報を検出した前記アンテナの数に基づいて、可能な計算方法の中から最も計算精度が高い計算方法を選択し、選択され た計算方法で前記速度情報を計算する。
これにより、複数のアンテナの探知情報を用いて、速度情報の計算精度を可能な限り高めることができる。
前記の探知情報処理装置においては、前記取得部は、3つ以上の前記アンテナの前記探知情報を取得可能に構成されていることが好ましい。
これにより、探知対象物の3次元的に複雑な速度情報を精度良く計算することができる。
前記の探知情報処理装置においては、前記計算部は、前記速度情報の計算方法が異なる場合でも、前記解析単位毎の速度情報が同一の形式となるように前記速度情報を出力することが好ましい。
これにより、計算結果としての速度情報を一元的に取り扱うことが容易になるので、当該速度情報を簡単に活用することができる。
前記の探知情報処理装置においては、以下の構成とすることが好ましい。即ち、この探知情報処理装置は、画像生成部を備える。前記画像生成部は、前記解析単 位毎の前記速度情報に応じた速度解析画像を生成して出力する。前記速度解析画像は、前記速度情報の計算方法に応じて異なる表現態様で描画される。
これにより、ユーザは、出力された画像により、速度情報を容易に理解することができる。また、計算方法の違いを明確に意識しながら速度情報を検討することができる。
前記の探知情報処理装置においては、前記速度情報の計算方法に応じて前記速度解析画像のうち少なくとも一部が異なる色で描画されることが好ましい。
これにより、ユーザは、速度情報を確認できると同時に、当該速度情報の計算方法の違いを、色に基づいて容易に把握することができる。
前記の探知情報処理装置においては、前記画像生成部は、前記解析単位毎の前記速度情報に応じた図形を描画し、前記速度情報の速度値に応じて、異なる表示態様の前記図形を描画することが好ましい。
これにより、画像での表現に統一感を持たせることができるので、ユーザは速度情報を容易に理解することができるとともに、速度の大小を直感的に把握することができる。
前記の探知情報処理装置においては、以下の構成とすることが好ましい。即ち、前記図形は矢印マークである。前記矢印マークの矢柄の長さは、前記速度情報の速度値に応じて定められる。
これにより、異なる速度情報における速度の大小を容易に把握することができる。
前記の探知情報処理装置においては、前記速度解析画像を表示する表示部を備えることが好ましい。
これにより、ユーザが探知対象物の速度情報をより直感的に観測することができる。
前記の探知情報処理装置においては、前記表示部は、前記速度解析画像を地図又は海図に重畳して表示することが好ましい。
これにより、ユーザが探知対象物の所在地及び移動先等の情報を容易に把握することができる。
前記の探知情報処理装置においては、前記計算部の前記速度情報の計算及び当該速度情報の出力は、前記取得部が前記探知情報を取得する毎に行われることが好ましい。
これにより、リアルタイムでの監視が可能になるので、必要な対応を迅速に行うことができる。
本発明の第2の観点によれば、前記の探知情報処理装置を備える気象観測システム、及び、移動体監視システムが提供される。
即ち、前記の探知情報処理装置は、気象観測システムや移動体監視システムに用いることが好適である。
本発明の第3の観点によれば、以下の探知情報処理方法が提供される。即ち、この探知情報処理方法は、取得工程と、計算工程と、を含む。前記取得工程では、 互いに異なる位置に設けられた複数のアンテナから探知信号を送受信することにより得られた探知情報を取得する。前記計算工程では、予め定められた解析単位 毎に、前記探知情報を検出した前記アンテナの数に応じて当該解析単位に存在する探知対象物の速度情報を異なる計算方法で計算し、当該速度情報を出力する。
これにより、地理的/空間的に広い範囲を対象とした速度情報の傾向を把握するのに有用な情報を、解析情報群として得ることができる。これと同時に、アンテ ナからの探知情報の有無に応じて速度情報の計算方法を変えることで、様々な場所に配置された複数のアンテナの探知情報を柔軟かつ有効に活用することができ る。
次に、図面を参照して本発明の実施の形態を説明する。図1は、本実施形態に係る気象観測システム10及びサーバコンピュータ1の構成を示す概念図である。
本実施形態のサーバコンピュータ(データ解析装置、探知情報処理装置)1は、気象状況を観測するためのレーダ20から取得した探知対象物の情報を処理する装置である。
図1に示すように、本実施形態の気象観測システム10は、複数のレーダ20と、当該レーダ20から取得した探知データ(探知情報)に基づいて探知対象物の分布や移動速度等の情報を解析して出力するサーバコンピュータ1と、を備える。
レーダ20は、気象レーダであって、図示しない信号送受信部と、レーダアンテナ(アンテナ)21と、を備える。信号送受信部は、制御回路やマグネトロン等 により、電磁波信号(探知信号)を生成することができる。レーダアンテナ21は、信号送受信部が生成した電磁波信号を外部へ発射する。レーダアンテナ21 が発射した電磁波信号は、雨や雲等によって反射し、このレーダアンテナ21によって受信される。レーダアンテナ21が受信した反射波信号に対しては、信号 送受信部によって、増幅処理や周波数のダウンコンバート処理等が行われる。
レーダアンテナ21から発射される電磁波の周 波数は、どのような現象を観測したいかに応じて適宜定められる。具体的にいうと、周波数帯域が30GHzから100GHzの場合、雲粒や霧粒等を観測する ことができる。周波数帯域が30MHzから3GHzの場合、雨や雪等の降水粒子を観測することができる。また、発射する電磁波の周波数が低くなるにつれて レーダの探知距離を拡大できるという関係があるので、電磁波の周波数を定める際には、探知距離の長さ(探知範囲の広さ)の観点も考慮される。
本実施形態において、サーバコンピュータ1は、気象観測データを収集する施設(例えば、データセンターや、気象監視機能を備えた観測センター)に設置され る。このサーバコンピュータ1は、物理的に十分に離れた位置に設けられた複数のレーダ20のそれぞれから探知データを取得し、この探知データに基づいて、 気象観測のための様々な情報(解析情報としての速度情報を含む解析データ)を計算により求めることができる。具体例を挙げると、レーダアンテナ21が電磁 波信号を送信してから受信するまでの時間により、雲等までの距離を求めることができる。また、レーダ20が電磁波信号を送受信した時のレーダアンテナ21 の仰角及び方位角から、雲等が存在する方向を求めることができる。なお、レーダアンテナ21の仰角が大きい場合は、上空の雲の位置及び雲に含まれる水分量 等の情報を探知データから取得することができ、仰角が小さい場合は、降雨量及び雨粒の大きさ等の情報を取得することができる。
本実施形態の気象観測システム10において、レーダ20はドップラレーダとして構成されている。従って、レーダ20は、図2に示すように、探知対象物(例 えば、積乱雲91等の雲を構成する雲粒)の移動速度に応じて反射波信号の周波数が異なる原理(ドップラ効果)を利用して、当該探知対象物のドップラ速度を 求めることができる。このドップラ速度の情報は、レーダ20が出力する探知データに含まれている。サーバコンピュータ1は、レーダ20から入力された探知 データに基づいて、雲粒の移動の向きと移動速度の大きさに関する情報(以下、速度情報と呼ぶことがある)を計算して求めることができる。
以下、サーバコンピュータ1を詳細に説明する。このサーバコンピュータ1は、図1に示すように、通信部(取得部)11と、判定部12と、計算部13と、画像生成部14と、ディスプレイ(表示部)15と、を備える。
具体的には、サーバコンピュータ1は、図示しないCPU、ROM、RAM、入出力インタフェース等を備えている。また、サーバコンピュータ1のROM等に は、レーダ20から探知データを取得して解析するための情報解析プログラムが記憶されている。以上に示すハードウェアとソフトウェアの協働により、サーバ コンピュータ1を、上記の通信部11、判定部12、計算部13、画像生成部14等として動作させることができる。
通信部 11は、例えば、インターネット等のWAN(Wide Area Network)に接続可能なネットワークインタフェースとして構成されている。通信部 11は、複数のレーダ20のそれぞれと通信することにより、レーダ20が出力する探知データを取得することができる(取得工程)。また、通信部11は、他 の装置(例えば、クライアントコンピュータ2)と通信することにより、サーバコンピュータ1の計算により得られた結果を外部に出力することができる。
判定部12は、気象観測システム10の観測対象となる空間を3次元で細かく区切ったメッシュ(解析単位、解析対象点)のそれぞれにおいて、複数のレーダ20のそれぞれから取得した探知データの有無を判定する。
以下、図3に示す観測空間の例で説明する。本実施形態の気象観測システム10では、図3に示すように、複数(4台)のレーダ 20a,20b,20c,20dが設置されている。それぞれのレーダ20は、互いに異なる位置に設けられている。各レーダ20は、上記の探知距離を半径と する球状(平面視で円形状)の探知範囲を有しており、4台のレーダ20は、それぞれが有する探知範囲同士を互いに一部重複させるように配置されている。気 象観測システム10が対象とする観測空間は、4台のレーダ20の探知範囲を合成した空間として定義される。
上述したとおり、本実施形態の気象観測システム10では、観測空間を3次元的に細かく区切ったメッシュごとに気象データが求められる。図3には、観測空間が平面的に描かれるともに、所定の高度にある5つの点P,Q,R,S,Tが示されている。
図3の点Pに注目すると、この点Pに関しては、3つのレーダ20a,20b,20cの探知データを取得することができる。同様に、点Qでは、2つのレーダ 20a,20dの探知データを取得でき、点Rでは、1つのレーダ20cの探知データを取得することができる。また、点Sは、レーダ20c及びレーダ20d の探知範囲に含まれているが、レーダ20dからの探知信号は山90で遮られるために当該点Sを探知することができず、結局、探知データはレーダ20cのみ から得られることになる。
なお、点Tは、気象観測システム10の観測空間から外れているので、探知データを全く得ることができない。従って、点Tは解析の対象にならない(即ち、点Tには、解析単位のメッシュが存在しない)。
判定部12は、観測空間内のそれぞれの点(メッシュ)毎に、当該点に存在する雲粒についてレーダ20から探知データを得られるのか否か、得られるとすれ ば、4台のうちどのレーダ20から探知データを得られるのかを判定する。これにより、それぞれの点毎に、探知データを得ることが可能なレーダ20の数を取 得することができる。
計算部13は、観測空間内のそれぞれの点毎に、当該点に存在する雲粒等に関する探知データに基づい て計算処理を実行し、雲粒等の速度情報を含む解析データを求めるとともに、これをまとめた解析データ群を出力する(計算工程)。本実施形態において、計算 部13が雲粒の速度情報を求める計算方法は、それぞれの点(メッシュ)の雲粒等を探知できるレーダ20の数(言い換えれば、探知データの取得源の数)に応 じて、後述のVVP法、Dual-Doppler法、及びTriple-Doppler法の中から選択される。
画像生成 部14は、計算部13が出力する速度情報を含む解析データを、ユーザが理解し易いようにグラフィカルに表現した画像(速度解析画像)を生成して出力するこ とができる。画像生成部14は、例えば図4に示すように、雲粒の速度に応じた長さ及び向きの矢印マーク(マーク)を描画することにより、当該雲粒の速度を 画像上に表現する。このとき、当該矢印マークの背景には、上記した3つのうちどの計算方法で速度情報を計算したかに基づいて、異なる色が付けられて表示さ れる(詳細は後述する)。
本実施形態において、画像生成部14が生成した画像は、以下に説明するディスプレイ15に表示される。また、画像生成部14が生成した画像は、前記の通信部11を介して、クライアントコンピュータ2に対して画像ファイルの形で出力することもできる。
ディスプレイ15は、例えば液晶ディスプレイ等で構成されており、各種の情報を表示することができる。このディスプレイ15は、上記の画像生成部14で生 成された画像を表示することができる。そして、ディスプレイ15は、画像生成部14により生成された画像を、観測空間に対応する地図又は海図と、それぞれ のレーダ20の探知範囲と、に重畳させるように表示することができる。これにより、ユーザは、雲粒等が現時点においてどこに分布し、どこへ移動しようとし ているのかを容易に把握することができる。
次に、レーダ20を用いた探知対象物の速度の解析について簡単に説明する。
天気が急激に悪化して大雨や雷を引き起こす原因の1つに積乱雲があることは良く知られている。積乱雲は、激しい雨や雪等を伴うことが多く、竜巻等の突風災 害の原因になる場合もある。従って、この積乱雲のような気象災害を引き起こすおそれがある雲の挙動を適切かつ十分に把握することは、気象観測において特に 重要である。
この点に関し、ドップラレーダは上記で説明したように、その原理上、探知信号の送信向きに沿う方向の速度成 分しか測定することができない。従って、図2に示すように、1台のレーダ20を用いるだけでは、例えば積乱雲91が発達していく過程での複雑な雲の動きを 精度良く把握することができない。なぜなら、積乱雲91は垂直方向に大きく発達する特徴を有するが、レーダアンテナ21の仰角が小さい場合、雲粒の垂直方 向の移動はドップラ速度に殆ど反映されないからである。
一方、異なる位置に設置された2台のレーダ20を用いて雲粒を観測するようにすれば、2つの地点を基準としたドップラ速度をそれぞれ測定することができるので、レーダ20が1台だけの場合に比較して、雲の垂直方向の移動を精度良く測定することができる。
更に、3台のレーダ20を用いるようにすれば、3つの地点からのドップラ速度を測定することができるので、雲の垂直方向の移動を更に精度良く測定することができる。
このように、一般的には、ある場所の速度情報を解析するとき、当該場所を探知するレーダ20の数が多ければ多いほど、ドップラ速度に基づく速度情報の計算精度(特に、垂直方向における精度)を向上させることが可能である。
しかしながら、図3で説明したように、観測空間のうち、2台又は3台のレーダ20から探知データを得られる場所は限られている。従って、速度情報の精度を上げようとすると、速度情報が得られる範囲が狭くなってしまう。
以上の事情を考慮して、本実施形態のサーバコンピュータ1の計算部13は、解析の対象となる点(メッシュ)毎に、当該点を探知できるレーダ20の数に応じて異なる計算処理で速度情報を求めるように構成されている。
具体的には、ある点を探知できるレーダ20が1台の場合は、上記のVVP法を用いて、当該点における速度情報が計算(推定)される。
また、ある点を探知できるレーダ20が2台の場合は、Dual-Doppler法を用いて、当該点における速度情報が計算(推定)される。このDual-Doppler法によれば、速度情報をVVP法よりも精度良く求めることができる。
また、ある点を探知できるレーダ20が3台の場合は、Triple-Doppler法を用いて、当該点の速度情報が計算される。このTriple-Doppler法によれば、速度情報をVVP法やDual-Doppler法よりも精度良く求めることができる。
なお、上記の3つの計算方法は何れも公知であるため、詳細な説明は省略する。このように、計算部13は、計算精度の異なる複数(3つ)の計算方法で前記速 度情報を計算可能に構成されており、場所毎に異なる探知データの取得状況に応じて、最も計算精度が高い計算方法を選択し、選択された計算方法を用いて雲粒 の速度等を計算する。これにより、それぞれの場所において可能な限り良好な精度の速度情報を取得することができる。
そし て、計算部13は、得られた速度情報を含むようにして解析データを点毎に生成してまとめることで、観測空間を対象とした解析データ群を出力するように構成 されている。このように、解析データ群の中のそれぞれの速度情報の計算方法を柔軟に異ならせることで、地理的/空間的に広い範囲(観測空間)を解析対象と できるとともに、当該観測空間内で、場所的な事情に応じて柔軟性及び自由度の高い速度情報の計算を行うことができる。
な お、このように構成することで、出力される解析データ群には、様々な計算方法による速度情報が混在することになる。しかしながら、本実施形態の計算部13 は、どの計算方法による速度情報であったとしても、同一の形式で当該速度情報を出力するように構成されている。なお、速度情報は、例えば、雲粒の速度を示 す空間ベクトルの成分(東西方向の成分、南北方向の成分、高度方向の成分)を示す3つの値で出力することが考えられるが、これに限定されない。これによ り、計算結果としての速度情報を一元的に取り扱うことが容易になるので、速度情報の処理や表示を簡便に行うことができる。
画像生成部14は、解析単位である点のそれぞれ(又は、ピックアップされた点)について、計算部13によって計算された解析データを示す画像を生成する。 本実施形態において、速度情報は図4に示すように矢印マークで描画されており、この矢印の向きは雲粒の移動の向きを、矢印の長さ(矢印マークの矢柄の長 さ)は移動速度の大きさ(速度値)を、それぞれ表している。また、画像生成部14は、ユーザが分かり易いように、当該点を探知できるレーダ20の数に応じ て(言い換えれば、速度情報を求める際に用いられた計算方法に応じて)異なる色で、速度情報の背景を描画する。
図4に は、観測空間を構成する多数の点(メッシュ)から所定の高度にある点をピックアップして、当該点の速度情報を示す画像を生成してディスプレイ15に表示し た例が示されている。図4において、3台のレーダ20が探知できる領域(格子状のハッチングが付された領域)では、矢印の背景が赤色で表示されている。ま た、2台のレーダ20が探知できる領域(間隔の狭いハッチングが付された領域)では矢印の背景が緑色になり、1台のレーダ20のみが探知できる領域(間隔 の広いハッチングが付された領域)では矢印の背景が青色になっている。このように、画像生成部14が生成する画像は、速度情報の計算方法に応じて異なる表 現態様で描画される。具体的に言えば、画像生成部14が生成する画像の少なくとも一部が、速度情報の計算方法に応じて異なる色で描画される。
なお、上記したように、点毎の速度情報の計算方法は、当該点について何台のレーダ20が探知できるかに対応して異なっている。従って、上記した領域(矢印の背景)の色の違いは、当該領域における速度情報の計算方法の違いをも意味している。
このような色分け表示により、ユーザが解析データを検討するとき、情報の精度(即ち、信頼度)、あるいは計算方法の違いを容易に理解することができる。ただし、色分けは上記の例に限定されるものではなく、どの領域に何色を割り当てるかについては適宜定めることができる。
画像生成部14は、異なる色の領域においても、速度情報を、統一された表現(具体的には、矢印)で描画した画像を生成するように構成されている。例えば、 図4に示すように、観測領域において、速度情報は、どの色の領域においても矢印マークで表示されている。従って、2つの点の間で探知データの数が異なり、 そのために計算方法が違ったとしても、計算結果として得られた雲粒の移動の向きと移動速度の大きさが等しければ、生成される画像においては、同一の向きか つ同一の長さの矢印が表示されることになる。このように統一された表現により、ユーザは、速度情報を容易に理解することができる。
なお、本実施形態のサーバコンピュータ1において、計算部13による速度情報の計算及び解析情報群の出力、画像生成部14による画像の生成(画像のディス プレイ15への表示)は、レーダ20からサーバコンピュータ1に新しい探知データが入力されるのに応じて、リアルタイムに行われる。これにより、刻々と変 化する気象情報をリアルタイムに監視できるので、積乱雲による突発的な豪雨の予報等、必要な対応を迅速に行うことができる。
以上に説明したように、本実施形態のサーバコンピュータ1は、通信部11と、計算部13と、を備える。通信部11は、互いに異なる位置に設けられた複数の レーダアンテナ21から探知信号を送受信することにより得られた探知データを取得する。計算部13は、予め定められたメッシュ毎に、探知データを検出した レーダアンテナ21の数に応じて当該メッシュに存在する雲粒の速度情報を異なる計算方法で計算し、当該速度情報を出力する。
これにより、地理的/空間的に広い範囲(図3に示す観測空間)を対象とした速度情報の傾向を把握するのに有用な情報を得ることができる。これと同時に、 レーダアンテナ21からの探知データの有無に応じて速度情報の計算方法を変えることで、様々な場所に配置された複数のレーダアンテナ21の探知データを柔 軟かつ有効に活用することができる。
以上に本発明の好適な実施の形態を説明したが、上記の構成は例えば以下のように変更することができる。
上記の実施形態においては、サーバコンピュータ1は3次元的な観測空間を解析するように構成されているが、2次元的に定められた観測平面を解析するように構成されていても良い。
サーバコンピュータ1が、レーダ20からの探知データと、他の気象観測装置から得られた各種の観測データと、を統合して解析するように構成されても良い。
画像生成部14の生成する画像の内容(ディスプレイ15の表示内容)に関しては、4台のレーダ20の探知データを統合的に処理した結果を示すものであれ ば、どのようなものであっても良い。例えば、矢印でなく3角形のマークで速度情報を表現しても良いし、速度情報以外の解析データの内容を併せて表現しても 良い。また、図4のように平面断面図で速度情報を示すことに代えて、垂直断面図で速度情報を示すように構成しても良いし、平面断面と垂直断面を組み合わせ て3次元的に表現しても良い。
上記実施形態では、画像生成部14が画像を生成する際に、速度情報の計算方法に応じて矢印 の背景の色を異ならせて描画している。しかしながら、速度情報の表現態様としては上記に限定されず、例えば計算方法に応じて矢印自体の色を変化させるよう にしても良いし、計算方法に応じて異なるマーク(例えば、矢印と3角形)を表示するようにしても良い。また、速度情報の速度値の表示態様についても上記に 限定されず、例えば速度値に応じて3角形の大きさを異ならせても良い。
サーバコンピュータ1において、画像生成部14や ディスプレイ15を省略しても良い。例えば、サーバコンピュータ1側で解析データ群を計算して図略のクライアントコンピュータに(数値データの形で)出力 し、このデータに基づいてクライアントコンピュータが画像を生成して、クライアントコンピュータ側のディスプレイに出力するように構成することもできる。
サーバコンピュータ1に限らず、サーバ機能を有しないコンピュータにおいて、上記の探知データの解析処理が行われるように構成しても良い。
探知データから速度情報を計算する方法としては、VVP法、Dual-Doppler法、及びTriple-Doppler法以外の各種の方法を用いても良い。
気象観測システム10を構成するレーダ20の数は4台に限定されず、2台、3台、又は5台以上であっても良い。なお、4台以上のレーダ20で探知できる点(メッシュ)がある場合は、当該点の背景を、上記の赤、緑、青とは異なる色で表示するようにしても良い。
レーダ20は、上記のようにマグネトロンを用いる構成に限定されず、例えば固体化素子を用いたレーダとして構成することができる。
気象観測システム10において、サーバコンピュータ1における速度解析の対象(レーダ20による探知対象物)は、雲粒以外、例えば雨や雪等であっても良い。
本実施形態の探知情報処理装置は、気象観測分野で使用することに限定せず、移動体である船、飛行機、鳥等を監視する移動体監視システムにも適用することができる。
1 サーバコンピュータ(探知情報処理装置)
10 気象観測システム
11 通信部(取得部)
12 判定部
13 計算部
14 画像生成部
15 ディスプレイ(表示部)
20 レーダ
21 レーダアンテナ
90 山
91 積乱雲
10 気象観測システム
11 通信部(取得部)
12 判定部
13 計算部
14 画像生成部
15 ディスプレイ(表示部)
20 レーダ
21 レーダアンテナ
90 山
91 積乱雲
Claims (16)
- 互いに異なる位置に設けられた複数のアンテナから探知信号を送受信することにより得られた探知情報を取得する取得部と、
予め定められた解析単位毎に、前記探知情報を検出した前記アンテナの数に応じて当該解析単位に存在する探知対象物の速度情報を異なる計算方法で計算し、当該速度情報を出力する計算部と、
を備えることを特徴とする探知情報処理装置。 - 請求項1に記載の探知情報処理装置であって、
前記計算部は、2つ以上の前記アンテナからの前記探知情報が存在する前記解析単位については、1つの前記アンテナからの前記探知情報が存在する前記解析単位とは異なる計算方法で前記速度情報を計算することを特徴とする探知情報処理装置。 - 請求項1又は2に記載の探知情報処理装置であって、
前記計算部は、3つ以上の前記アンテナからの前記探知情報が存在する前記解析単位については、2つ以下の前記アンテナからの前記探知情報が存在する前記解析単位とは異なる計算方法で前記速度情報を計算することを特徴とする探知情報処理装置。 - 請求項1から3までの何れか一項に記載の探知情報処理装置であって、
前記計算部は、計算精度の異なる複数の計算方法で前記速度情報を計算可能に構成されており、
前記計算部は、前記探知情報を検出した前記アンテナの数に基づいて、可能な計算方法の中から最も計算精度が高い計算方法を選択し、選択された計算方法で前記速度情報を計算することを特徴とする探知情報処理装置。 - 請求項1から4までの何れか一項に記載の探知情報処理装置であって、
前記取得部は、3つ以上の前記アンテナの前記探知情報を取得可能に構成されていることを特徴とする探知情報処理装置。 - 請求項1から5までの何れか一項に記載の探知情報処理装置であって、
前記計算部は、前記速度情報の計算方法が異なる場合でも、前記解析単位毎の速度情報が同一の形式となるように前記速度情報を出力することを特徴とする探知情報処理装置。 - 請求項1から6までの何れか一項に記載の探知情報処理装置であって、
前記解析単位毎の前記速度情報に応じた速度解析画像を生成して出力する画像生成部を備え、
前記速度解析画像は、前記速度情報の計算方法に応じて異なる表現態様で描画されることを特徴とする探知情報処理装置。 - 請求項7に記載の探知情報処理装置であって、
前記速度情報の計算方法に応じて前記速度解析画像のうち少なくとも一部が異なる色で描画されることを特徴とする探知情報処理装置。 - 請求項7又は8に記載の探知情報処理装置であって、
前記画像生成部は、前記解析単位毎の前記速度情報に応じた図形を描画し、前記速度情報の速度値に応じて、異なる表示態様の前記図形を描画することを特徴とする探知情報処理装置。 - 請求項9に記載の探知情報処理装置であって、
前記図形は矢印マークであり、
前記矢印マークの矢柄の長さは、前記速度情報の速度値に応じて定められることを特徴とする探知情報処理装置。 - 請求項7から10までの何れか一項に記載の探知情報処理装置であって、
前記速度解析画像を表示する表示部を備えることを特徴とする探知情報処理装置。 - 請求項11に記載の探知情報処理装置であって、
前記表示部は、前記速度解析画像を地図又は海図に重畳して表示することを特徴とする探知情報処理装置。 - 請求項1から12までの何れか一項に記載の探知情報処理装置であって、
前記計算部の前記速度情報の計算及び当該速度情報の出力は、前記取得部が前記探知情報を取得する毎に行われることを特徴とする探知情報処理装置。 - 請求項1から13までの何れか一項に記載の探知情報処理装置を備えることを特徴とする気象観測システム。
- 請求項1から13までの何れか一項に記載の探知情報処理装置を備えることを特徴とする移動体監視システム。
- 互いに異なる位置に設けられた複数のアンテナから探知信号を送受信することにより得られた探知情報を取得する取得工程と、
予め定められた解析単位毎に、前記探知情報を検出した前記アンテナの数に応じて当該解析単位に存在する探知対象物の速度情報を異なる計算方法で計算し、当該速度情報を出力する計算工程と、
を含むことを特徴とする探知情報処理方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016034724 | 2016-02-25 | ||
JP2016-034724 | 2016-02-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017145587A1 true WO2017145587A1 (ja) | 2017-08-31 |
Family
ID=59685227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/001683 WO2017145587A1 (ja) | 2016-02-25 | 2017-01-19 | 探知情報処理装置、気象観測システム、移動体監視システム及び探知情報処理方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017145587A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107728149A (zh) * | 2017-09-20 | 2018-02-23 | 雷象科技(北京)有限公司 | 一种雷达适应性探测龙卷的方法 |
WO2019176462A1 (ja) * | 2018-03-13 | 2019-09-19 | 古野電気株式会社 | 降水粒子判別装置、降水粒子判別システム、降水粒子判別方法、及び降水粒子判別プログラム |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08313617A (ja) * | 1995-05-16 | 1996-11-29 | Oki Electric Ind Co Ltd | 多重レーダ映像処理装置 |
JP2000028705A (ja) * | 1998-07-09 | 2000-01-28 | Mitsubishi Electric Corp | 気象レーダネットワークシステム |
US20100315432A1 (en) * | 2007-12-03 | 2010-12-16 | Selex Systems Integration Gmbh | Method for determining compound data of weather radars in an overlapping region of the monitoring regions of at least two weather radars |
-
2017
- 2017-01-19 WO PCT/JP2017/001683 patent/WO2017145587A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08313617A (ja) * | 1995-05-16 | 1996-11-29 | Oki Electric Ind Co Ltd | 多重レーダ映像処理装置 |
JP2000028705A (ja) * | 1998-07-09 | 2000-01-28 | Mitsubishi Electric Corp | 気象レーダネットワークシステム |
US20100315432A1 (en) * | 2007-12-03 | 2010-12-16 | Selex Systems Integration Gmbh | Method for determining compound data of weather radars in an overlapping region of the monitoring regions of at least two weather radars |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107728149A (zh) * | 2017-09-20 | 2018-02-23 | 雷象科技(北京)有限公司 | 一种雷达适应性探测龙卷的方法 |
CN107728149B (zh) * | 2017-09-20 | 2021-10-22 | 雷象科技(北京)有限公司 | 一种雷达适应性探测龙卷的方法 |
WO2019176462A1 (ja) * | 2018-03-13 | 2019-09-19 | 古野電気株式会社 | 降水粒子判別装置、降水粒子判別システム、降水粒子判別方法、及び降水粒子判別プログラム |
JPWO2019176462A1 (ja) * | 2018-03-13 | 2021-03-25 | 古野電気株式会社 | 降水粒子判別装置、降水粒子判別システム、降水粒子判別方法、及び降水粒子判別プログラム |
US11520040B2 (en) | 2018-03-13 | 2022-12-06 | Furuno Electric Co., Ltd. | Precipitation particle discrimination device, precipitation particle discrimination system, precipitation particle discrimination method and precipitation particle discrimination program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Akturk et al. | Accuracy assessment of a low-cost UAV derived digital elevation model (DEM) in a highly broken and vegetated terrain | |
US10175353B2 (en) | Enhancement of airborne weather radar performance using external weather data | |
US9967707B2 (en) | Weather data dissemination | |
US9535158B1 (en) | Weather radar system and method with fusion of multiple weather information sources | |
CN104508515B (zh) | 用于天气检测的毫米波雷达系统和天气检测方法 | |
EP3070501B1 (en) | Prediction of ice crystal presence in a volume of airspace | |
US9869766B1 (en) | Enhancement of airborne weather radar performance using external weather data | |
EP2942638B1 (en) | Measuring point information providing device, change detection device, methods thereof, and recording medium | |
US9165383B1 (en) | Point cloud visualization using bi-modal color schemes based on 4D lidar datasets | |
US9689984B1 (en) | Weather radar system and method with latency compensation for data link weather information | |
US11181634B1 (en) | Systems and methods of intelligent weather sensing using deep learning convolutional neural networks | |
CN108037490B (zh) | 探地雷达定位精度检测方法及系统 | |
KR20180001195A (ko) | 3차원 대기환경 자료 생성 시스템 및 가시화 방법 | |
US9594162B1 (en) | Avian hazard detection and classification using airborne weather radar system | |
US20170146652A1 (en) | Passive radar weather detection systems and methods | |
WO2017145587A1 (ja) | 探知情報処理装置、気象観測システム、移動体監視システム及び探知情報処理方法 | |
JP7386136B2 (ja) | 雲高計測装置、計測点決定方法、および雲種類決定方法 | |
KR102322883B1 (ko) | 항행 안전시설과 항행 안전 시설 운영 환경의 검사 및 운영 분석 시스템 | |
CN111746787B (zh) | 播撒匀度确定方法及相关装置 | |
KR102010130B1 (ko) | 드론의 다각적 판별 시스템 및 그 방법 | |
JPH08509061A (ja) | 飛行中ドップラー気象レーダーウィンドシャー検出システム | |
JP2011058809A (ja) | レーダ信号処理装置 | |
JP2010190772A (ja) | 後方乱気流検出装置 | |
JP6858778B2 (ja) | レーダシステム、レーダ装置、及び気象観測方法 | |
Goshi et al. | Cable imaging with an active W-band millimeter-wave sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17756029 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17756029 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |