WO2017145279A1 - Method for manufacturing light emitting device, and light emitting device - Google Patents

Method for manufacturing light emitting device, and light emitting device Download PDF

Info

Publication number
WO2017145279A1
WO2017145279A1 PCT/JP2016/055368 JP2016055368W WO2017145279A1 WO 2017145279 A1 WO2017145279 A1 WO 2017145279A1 JP 2016055368 W JP2016055368 W JP 2016055368W WO 2017145279 A1 WO2017145279 A1 WO 2017145279A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting device
manufacturing
light
sealing member
Prior art date
Application number
PCT/JP2016/055368
Other languages
French (fr)
Japanese (ja)
Other versions
WO2017145279A8 (en
Inventor
隆介 小島
吉隆 野中
敦 小笠原
友哉 鏡
武実 内藤
Original Assignee
パイオニア株式会社
菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 菱ケミカル株式会社 filed Critical パイオニア株式会社
Priority to JP2018501463A priority Critical patent/JP6651224B2/en
Priority to PCT/JP2016/055368 priority patent/WO2017145279A1/en
Publication of WO2017145279A1 publication Critical patent/WO2017145279A1/en
Publication of WO2017145279A8 publication Critical patent/WO2017145279A8/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources

Definitions

  • the present invention relates to a method for manufacturing a light emitting device and a light emitting device.
  • An organic EL element is one of the light sources of a light emitting device.
  • the organic EL element has a configuration in which an organic layer is disposed between the first electrode and the second electrode. Since the organic layer is vulnerable to moisture and oxygen, the organic EL element is sealed using a sealing member.
  • Patent Document 1 describes that a protective layer made of a metal foil or the like is fixed to a substrate and an organic EL element using a thermoplastic resin in order to seal the organic EL element.
  • Patent Document 2 describes that a heat and pressure treatment is performed when a sealing substrate is fixed to an organic EL element and a support substrate with a sheet adhesive.
  • an adhesive or a pressure sensitive adhesive may be used by a method such as Patent Document 1 and Patent Document 2.
  • these adhesives and pressure-sensitive adhesives are generally easier to pass moisture and oxygen than the sealing member. Therefore, in order to suppress the deterioration of the organic layer of the organic EL element due to moisture or oxygen, the inventor of the present application reduces the moisture from the outside to the inside of the organic EL element by thinning the fixing layer made of an adhesive or an adhesive. And we thought about narrowing the invasion route of oxygen.
  • One method for achieving this purpose is to perform a so-called frame pushing process.
  • the frame pressing process is to depress the outside of the light emitting region of the organic EL element that seals a sealing member such as a metal foil with an adhesive or a pressure sensitive adhesive, thereby reducing the thickness of the adhesive or the pressure sensitive adhesive. It is a process. However, when this process was performed, it was confirmed that voids such as bubbles were formed in the adhesive as shown in the enlarged plan view of the adhesive layer of the light emitting device in FIG. The portion where such a void is formed becomes a path through which moisture passes without any obstacle, and the sealing performance is lowered.
  • the invention according to claim 1 is a first step of attaching a sealing member for sealing the light emitting part to a base material on which a light emitting part having an organic layer is formed via a fixed layer; A second step of pressing the first region located around the light emitting portion of the sealing member against the base material; A third step of pressurizing the base material to which the sealing member is attached at 0.15 Mpa or more;
  • a method for manufacturing a light emitting device comprising:
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. It is the figure which expanded the area
  • FIG. 2 is a flowchart which shows the manufacturing method of a light-emitting device. It is a graph which shows the change of the magnitude
  • FIG. 1 is a plan view showing a configuration of a light emitting device 10 according to the embodiment.
  • the sealing member 200 is shown by a dotted line in FIG. 1 and the desiccant 220 is omitted.
  • FIG. 2 is a view in which the sealing member 200 and the second electrode 130 are removed from FIG.
  • FIG. 3 is a diagram in which the insulating layer 150 and the organic layer 120 are removed from FIG. 4 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 5 is an enlarged view of a region surrounded by a dotted line ⁇ in FIG.
  • FIG. 6 is a flowchart showing a method for manufacturing the light emitting device 10.
  • the light emitting device 10 has a substrate 100 (base material).
  • a light emitting unit 140 is formed on the substrate 100.
  • the light emitting unit 140 has an organic layer 120.
  • the organic layer 120 is sealed using the sealing member 200.
  • the method for manufacturing the light emitting device 10 includes the following steps. First, the sealing member 200 is attached to the substrate 100 on which the light emitting unit 140 is formed using the fixed layer 210 made of a resin material (step S20: first step). Next, a portion of the sealing member 200 located around the light emitting unit 140 (hereinafter referred to as the edge 202) is pressed against the substrate 100 (step S30: second step). Next, the substrate 100 to which the sealing member 200 is fixed is pressurized with a pressure of 0.15 MPa or more (step S40: third step).
  • this embodiment will be described in detail.
  • the light emitting device 10 is a lighting device.
  • the light emitting device 10 may be a display.
  • the light emitting device 10 may be a bottom emission type light emitting device or a top emission type light emitting device.
  • the light emitting device 10 is formed using a substrate 100.
  • the substrate 100 is formed of a light transmissive material such as glass or a light transmissive resin.
  • the substrate 100 may be formed of the above-described translucent material or may be formed of a material that does not have translucency.
  • the substrate 100 is, for example, a polygon such as a rectangle.
  • the substrate 100 may have flexibility.
  • the thickness of the substrate 100 is, for example, not less than 10 ⁇ m and not more than 1000 ⁇ m.
  • the thickness of the substrate 100 is, for example, 200 ⁇ m or less.
  • the material of the substrate 100 includes, for example, PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), or polyimide. Is formed.
  • an inorganic barrier film such as SiN x or SiON is formed on at least the light emitting surface (preferably both surfaces) of the substrate 100 in order to suppress moisture from passing through the substrate 100. ing.
  • a light emitting unit 140 is formed on the substrate 100.
  • the light emitting unit 140 has an organic EL element.
  • This organic EL element has a first electrode 110, an organic layer 120, and a second electrode 130.
  • the organic layer 120 is located between the first electrode 110 and the second electrode 130.
  • At least one of the first electrode 110 and the second electrode 130 is a transparent electrode having optical transparency.
  • the first electrode 110 is a transparent electrode.
  • the second electrode 130 is a transparent electrode. Note that both the first electrode 110 and the second electrode 130 may be transparent electrodes.
  • the transparent conductive material constituting the transparent electrode is a metal-containing material, for example, a metal oxide such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IWZO (Indium Tungsten Zinc Oxide), ZnO (Zinc Oxide), and the like. is there.
  • the thickness of the first electrode 110 is, for example, not less than 10 nm and not more than 500 nm.
  • the first electrode 110 is formed using, for example, a sputtering method or a vapor deposition method.
  • the first electrode 110 may be a carbon nanotube, a conductive organic material such as PEDOT / PSS, or a thin metal electrode.
  • the non-transparent electrode is selected from, for example, a first group consisting of Al, Au, Ag, Pt, Mg, Sn, Zn, and In. Or a metal layer made of an alloy of metals selected from this first group.
  • This electrode is formed using, for example, a sputtering method or a vapor deposition method.
  • the first electrode 110 may have a structure in which a metal layer and a transparent conductive layer are laminated in this order.
  • the organic layer 120 has a configuration in which, for example, a hole injection layer, a light emitting layer, and an electron injection layer are stacked in this order.
  • a hole transport layer may be formed between the hole injection layer and the light emitting layer.
  • an electron transport layer may be formed between the light emitting layer and the electron injection layer.
  • the organic layer 120 may be formed by a vapor deposition method.
  • at least one layer of the organic layer 120 for example, a layer in contact with the first electrode 110, may be formed by a coating method such as an inkjet method, a printing method, or a spray method. In this case, the remaining layers of the organic layer 120 are formed by vapor deposition.
  • all the layers of the organic layer 120 may be formed using the apply
  • the edge of the first electrode 110 is covered with an insulating layer 150.
  • the insulating layer 150 is formed by including a photosensitive material in a resin material such as polyimide, and surrounds a portion of the first electrode 110 that becomes a light emitting region of the light emitting unit 140. By providing the insulating layer 150, it is possible to suppress a short circuit between the first electrode 110 and the second electrode 130 at the edge of the first electrode 110.
  • the insulating layer 150 is formed by applying a resin material to be the insulating layer 150 and then exposing and developing the resin material. This step is performed, for example, after forming the first electrode 110 and before forming the organic layer 120.
  • the light emitting device 10 has a first terminal 112 and a second terminal 132.
  • the first terminal 112 is electrically connected to the first electrode 110
  • the second terminal 132 is electrically connected to the second electrode 130.
  • the first terminal 112 and the second terminal 132 include a layer formed of the same material as that of the first electrode 110.
  • a lead wiring may be provided between the first terminal 112 and the first electrode 110.
  • a lead wiring may be provided between the second terminal 132 and the second electrode 130.
  • the light emitting unit 140 of the light emitting device 10 is sealed using a sealing member 200.
  • the sealing member 200 is a metal film such as an aluminum foil, and may be a metal sheet or a metal film. Preferably it has a thickness of 10 ⁇ m or more and 1 mm or less and has flexibility.
  • the sealing member 200 is fixed to the substrate 100 and the light emitting unit 140 via the fixing layer 210.
  • the fixed layer 210 is formed using an adhesive or an adhesive material.
  • the fixed layer 210 may be formed using, for example, a thermoplastic resin.
  • For the fixed layer 210 for example, at least one resin layer selected from polypropylene, polyethylene, polystyrene, polyisobutylene, polyester, and polyisoprene can be used.
  • the fixing layer 210 may be a sheet-like adhesive or pressure-sensitive adhesive.
  • the surface of the fixed layer 210 facing the sealing member 200 is deformed along the unevenness on the substrate 100, for example, the upper surface of the light emitting unit 140.
  • the sealing member 200 is fixed to at least a part of the light emitting unit 140 via the fixed layer 210.
  • a desiccant 220 is disposed between the fixed layer 210 and the light emitting unit 140.
  • the desiccant 220 is sealed together with the light emitting unit 140 between the fixed layer 210 and the substrate 100. Thereby, even if moisture enters the region between the substrate 100 and the sealing member 200, the moisture is absorbed by the desiccant 220. Therefore, it can suppress that the organic layer 120 of the light emission part 140 deteriorates.
  • the thickness of the sealing member 200 and the fixed layer 210 around the light emitting unit 140 will be described with reference to FIG.
  • the edge portion 202 (first region) located around the light emitting unit 140 in the sealing member 200 is pressed toward the substrate 100 using the frame member 300.
  • a portion of the fixed layer 210 located around the light emitting unit 140 for example, a portion that overlaps with the edge 202 of the sealing member 200 (hereinafter referred to as the edge 212) is another portion of the fixed layer 210 (for example, It is thinner than the portion located on the light emitting unit 140).
  • the thickness t of the thinned portion (the edge 212 in the example shown in FIG. 5) of the fixed layer 210 is, for example, 1 ⁇ m or more and 20 ⁇ m or less.
  • the thickness t of the thinned portion of the fixed layer 210 is 50% or less, preferably 20% or less, of the thickness of the other portion of the fixed layer 210 (the portion overlapping the light emitting unit 140).
  • the width of the edge 212 is, for example, not less than 0.5 mm and not more than 5 mm. Note that a part of the edge 212 may overlap with the first terminal 112. Similarly, another part of the edge 212 may overlap with the second terminal 132.
  • the edge portion 202 of the sealing member 200 and the edge portion 212 of the fixed layer 210 both surround the light emitting portion 140.
  • the first electrode 110, the insulating layer 150, the organic layer 120, and the second electrode 130 are formed on the substrate 100 in this order.
  • the light emission part 140 is formed (step S10).
  • the first terminal 112 and the second terminal 132 are also formed.
  • the sealing member 200 is attached to the surface of the substrate 100 where the light emitting unit 140 is formed using the fixed layer 210.
  • the desiccant 220 is disposed between the sealing member 200 and the light emitting unit 140.
  • the light emission part 140 and the desiccant 220 are sealed with the board
  • step S30 second step.
  • the pressing time at this time is, for example, 5 minutes or less, preferably 1 minute or less.
  • the process shown in step S30 is preferably performed at a temperature equal to or higher than the glass transition temperature of the resin constituting the fixed layer 210.
  • a predetermined time may be provided after step S20 is completed until step S30 is performed.
  • the predetermined time is appropriately set. The purpose of leaving a predetermined time is to stabilize the characteristics of the element.
  • another process may be included between step S20 and step S30.
  • another process for example, when the light emitting device 10 is collectively formed using a large-sized substrate 100, there is a step of cutting the light emitting device 10 by cutting the substrate 100. After this step, bubbles as shown in FIG. 16 were confirmed.
  • the light emitting device 10 is held in a high temperature and pressurized atmosphere (step S40: third step).
  • the light emitting device 10 is held in a chamber capable of adjusting temperature and pressure.
  • the temperature of this atmosphere is 30 ° C. or higher, preferably 50 ° C. or higher.
  • about the pressure to pressurize it is 0.15 Mpa or more, Preferably it is 0.30 Mpa or more, Preferably it is 0.5 Mpa or more.
  • the applied pressure is preferably 5.0 MPa or less.
  • the chamber gauge pressure when pressurizing in the chamber is preferably 0.5 MPa or more.
  • the atmosphere at this time is preferably an inert gas atmosphere.
  • the time for holding the light emitting device 10 in the above atmosphere is 15 minutes or longer, preferably 1 hour or longer, more preferably 5 hours or longer.
  • the inert atmosphere in step S40 is preferably an atmosphere that is not easily oxidized, a nitrogen atmosphere is also included in addition to a rare gas atmosphere.
  • the fixing layer 210 is formed using a material having a lower sealing ability than the sealing member 200. For this reason, if the fixing layer 210 is thick, moisture enters the region between the substrate 100 and the sealing member 200 (in other words, an entrance for moisture) through the fixing layer 210, and the organic layer 120 is deteriorated. .
  • the edge 202 of the sealing member 200 is pressed toward the substrate 100. For this reason, the edge 212 of the fixed layer 210 is thinner than other portions of the fixed layer 210.
  • the entry port can be made small, so that moisture can be prevented from entering the region between the substrate 100 and the sealing member 200 via the fixed layer 210.
  • the rate of erosion of the moisture into the organic layer 120 also decreases. Therefore, the lifetime of the light emitting device 10 can be extended.
  • the edge 212 of the fixed layer 210 is thinned using the frame member 300, a gap is formed between the edge 212 and the substrate 100 or between the edge 212 and the sealing member 200. It became clear that it became easy to occur. When this gap is left unattended, moisture easily enters between the sealing member 200 and the substrate 100 through the gap.
  • the light emitting device 10 is placed in a pressurized atmosphere. Since the sealing member 200 has flexibility, even when a gap is generated between the edge portion 212 and the sealing member 200, the gap can be reduced. Therefore, the lifetime of the light emitting device 10 can be extended. Further, since it is possible to suppress moisture from reaching the light emitting unit 140 without increasing the width of the edge portion 212, it is possible to suppress the area of the non-light emitting portion of the light emitting device 10 from being increased.
  • Example 2 The change in the size of the gap between the edge 212 of the fixed layer 210 and the sealing member 200 was examined while changing the pressure and temperature to be pressurized in step S40 (third process) in FIG.
  • the pressure to be applied is the value of the pressure applied to the element separately from the atmospheric pressure.
  • FIGS. These drawings show how the size of the air gap changed with the processing time under each condition.
  • the initial value of the size (width) of the void was selected and observed as 100 ⁇ m, 50 ⁇ m, and 25 ⁇ m.
  • FIG. 7 shows the results when the pressure applied is 0.05 MPa and the temperature is 30 ° C. Under these conditions, the reduction amount was small for all the voids.
  • FIG. 8 shows the results when the temperature is 50 ° C. when the same pressure (0.05 Mpa) as in FIG. 7 is applied. Under these conditions, the gap was smaller than the example shown in FIG. 7, but the reduction amount was not sufficient. Specifically, even when the process shown in step S40 was performed for 15 hours, all the voids remained including the void having the smallest initial size (25 ⁇ m width).
  • FIG. 9 shows the results when the pressurized pressure is 0.15 MPa and the temperature is 30 ° C. Under these conditions, all the gaps were greatly reduced as compared with the example shown in FIG. 7 and the example shown in FIG. In particular, the smallest initial void (width 25 ⁇ m) almost disappeared after 10 hours.
  • FIG. 10 shows the results when the temperature is 50 ° C. when the same pressure (0.15 Mpa) as in FIG. 9 is applied. Under these conditions, the gap was smaller than in the example shown in FIG. For example, voids with an initial size of 25 ⁇ m almost disappeared after 3 hours, and voids with an initial size of 50 ⁇ m almost disappeared after 12 hours. Further, the gap having an initial size of 100 ⁇ m became about 40 ⁇ m after 15 hours.
  • FIG. 11 shows the results when the pressurized pressure is 0.30 Mpa and the temperature is 30 ° C. Under these conditions, all the gaps were further reduced from the example shown in FIG. In particular, voids with an initial size of 25 ⁇ m almost disappeared after 2 hours, and voids with an initial size of 50 ⁇ m almost disappeared after 6 hours. Further, the void having an initial size of 100 ⁇ m also became 20 ⁇ m or less after 15 hours.
  • FIG. 12 shows the results when the temperature is 50 ° C. when the same pressure (0.30 Mpa) as in FIG. 11 is applied. Under these conditions, there were almost no voids. Specifically, the voids having an initial size of 25 ⁇ m and 50 ⁇ m voids almost disappeared after 2 hours, and the voids having an initial size of 100 ⁇ m almost disappeared after 3 hours.
  • FIG. 13 shows how much larger voids are reduced under the same conditions (0.30 Mpa, 50 ° C.) as in FIG. As shown in this figure, the void having an initial size of 250 ⁇ m almost disappeared after 13 hours, and the void having an initial size of 500 ⁇ m became around 230 ⁇ m after 15 hours.
  • step S40 As described above, it has been found that when the pressure in step S40 is set to 0.15 MPa, a certain amount of voids can be removed. In particular, it was found that when the pressure in step S40 was 0.30 MPa, the processing time in step S40 could be shortened. Furthermore, it was found that when the temperature of step S40 is 50 ° C., the time of step S40 can be shortened.
  • FIG. 14 shows, for each processing temperature, the pressure required for a gap having an initial size (diameter) of 800 ⁇ m to be 200 ⁇ m when the processing time of step S40 (third step) in FIG. 6 is 6 hours. It is a table. When the temperature was 40 ° C. or lower, the gap did not become 200 ⁇ m or lower unless the pressure was higher than 1 Mpa. On the other hand, when the temperature reached 50 ° C., the necessary pressure decreased to 0.73 Mpa, and when the temperature reached 60 ° C., the necessary pressure further decreased (0.50 Mpa).
  • FIG. 15 shows, for each processing temperature, the pressure required for a gap having an initial size (diameter) of 800 ⁇ m to be 200 ⁇ m when the processing time of step S40 (third step) in FIG. 6 is 8 hours. It is a table. When the temperature was 30 ° C. or lower, the gap did not become 200 ⁇ m or lower unless the pressure was higher than 1 Mpa. On the other hand, when the temperature reached 40 ° C., the necessary pressure decreased to 0.99 Mpa, and when the temperature reached 50 ° C., the necessary pressure further decreased (0.66 Mpa). When the temperature reached 60 ° C., the required pressure further decreased to 0.45 Mpa.
  • FIG. 14 and FIG. 15 show that the pressure in the third step can be reduced by increasing the treatment temperature in the third step. Moreover, it was shown that the processing time in the third step can be shortened by increasing the processing temperature in the third step.

Abstract

A sealing member (200) is attached to a substrate (100) using a fixing layer (210) formed of a resin material, said substrate having a light emitting section (140) formed thereon (step S20: first step), and a sealing member (200) portion (for instance, an end portion (202))positioned around the light emitting section (140) is pressed to the substrate (100) (step S30: second step). Then, the substrate (100) to which the sealing member (200) is fixed is pressurized at 0.15 Mpa or higher (step S40: third step).

Description

発光装置の製造方法及び発光装置Light emitting device manufacturing method and light emitting device
 本発明は、発光装置の製造方法及び発光装置に関する。 The present invention relates to a method for manufacturing a light emitting device and a light emitting device.
 発光装置の光源の一つに、有機EL素子がある。有機EL素子は、第1電極と第2電極の間に有機層を配置した構成を有している。有機層は水分や酸素に弱いため、有機EL素子は封止部材を用いて封止される。例えば特許文献1には、有機EL素子を封止するために、金属箔などからなる保護層を、熱可塑性の樹脂を用いて基板及び有機EL素子に固定することが記載されている。また、特許文献2には、封止基板をシート状接着剤で有機EL素子及び支持基板に固定する際に、加熱加圧処理を行うことが記載されている。 An organic EL element is one of the light sources of a light emitting device. The organic EL element has a configuration in which an organic layer is disposed between the first electrode and the second electrode. Since the organic layer is vulnerable to moisture and oxygen, the organic EL element is sealed using a sealing member. For example, Patent Document 1 describes that a protective layer made of a metal foil or the like is fixed to a substrate and an organic EL element using a thermoplastic resin in order to seal the organic EL element. Patent Document 2 describes that a heat and pressure treatment is performed when a sealing substrate is fixed to an organic EL element and a support substrate with a sheet adhesive.
特開2014-154507号公報JP 2014-154507 A 特開2010-67355号公報JP 2010-67355 A
 上記したように、有機EL素子が形成された基板に金属箔などの封止部材を固定するためには、特許文献1及び特許文献2のような方法で接着剤や粘着剤を用いる場合がある。しかし、これら接着剤や粘着剤は一般的に封止部材と比較して水分や酸素を通しやすい。そこで本願発明者は、有機EL素子の有機層が水分や酸素で劣化することを抑制するためには、接着剤や粘着剤からなる固定層を薄くすることで外部から有機EL素子内部への水分や酸素の侵入経路を狭くすることを考えた。この目的を達成するための方法の一つに、いわゆる枠押しという工程を行うことがある。枠押し工程とは、金属箔などの封止部材を接着剤や粘着剤などを用いて封止している有機EL素子の発光領域の外側を押下し、接着剤や粘着剤の厚みを薄くする工程である。しかしながら、この工程を行うと、図16の発光装置の粘着層を拡大した平面写真に示すように、粘着剤に気泡など空隙ができてしまうことが確認された。このような空隙ができる部分は、水分にとってなんら障害なく通過する経路(パス)となり、封止の性能を下げていた。つまり、封止性能を向上させるために、接着剤の厚みを薄くして外部からの侵入を防ぐことはできたが、侵入した水分の発光領域への水分の浸食の速度は速くなってしまい、却って封止の性能が悪くなるということが確認された。 As described above, in order to fix a sealing member such as a metal foil to a substrate on which an organic EL element is formed, an adhesive or a pressure sensitive adhesive may be used by a method such as Patent Document 1 and Patent Document 2. . However, these adhesives and pressure-sensitive adhesives are generally easier to pass moisture and oxygen than the sealing member. Therefore, in order to suppress the deterioration of the organic layer of the organic EL element due to moisture or oxygen, the inventor of the present application reduces the moisture from the outside to the inside of the organic EL element by thinning the fixing layer made of an adhesive or an adhesive. And we thought about narrowing the invasion route of oxygen. One method for achieving this purpose is to perform a so-called frame pushing process. The frame pressing process is to depress the outside of the light emitting region of the organic EL element that seals a sealing member such as a metal foil with an adhesive or a pressure sensitive adhesive, thereby reducing the thickness of the adhesive or the pressure sensitive adhesive. It is a process. However, when this process was performed, it was confirmed that voids such as bubbles were formed in the adhesive as shown in the enlarged plan view of the adhesive layer of the light emitting device in FIG. The portion where such a void is formed becomes a path through which moisture passes without any obstacle, and the sealing performance is lowered. In other words, in order to improve the sealing performance, it was possible to reduce the thickness of the adhesive to prevent intrusion from the outside, but the rate of moisture erosion to the light emitting region of the invading moisture becomes faster, On the other hand, it was confirmed that the sealing performance deteriorated.
 本発明が解決しようとする課題としては、有機EL素子の有機層が水分や酸素で劣化することを抑制するために、封止部材を固定するための固定層を薄くしながらも気泡や空隙を形成しないようにすることが一例として挙げられる。 As a problem to be solved by the present invention, in order to prevent the organic layer of the organic EL element from being deteriorated by moisture or oxygen, air bubbles and voids are formed while thinning the fixing layer for fixing the sealing member. One example is to prevent the formation.
 請求項1に記載の発明は、有機層を有する発光部が形成された基材に、前記発光部を封止する封止部材を、固定層を介して取り付ける第1工程と、
 前記封止部材のうち前記発光部の周囲に位置する第1領域を前記基材に押し付ける第2工程と、
 前記封止部材が取り付けられた前記基材を、0.15Mpa以上で加圧する第3工程と、
を備える発光装置の製造方法である。
The invention according to claim 1 is a first step of attaching a sealing member for sealing the light emitting part to a base material on which a light emitting part having an organic layer is formed via a fixed layer;
A second step of pressing the first region located around the light emitting portion of the sealing member against the base material;
A third step of pressurizing the base material to which the sealing member is attached at 0.15 Mpa or more;
A method for manufacturing a light emitting device comprising:
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
実施形態に係る発光装置の構成を示す平面図であるIt is a top view which shows the structure of the light-emitting device which concerns on embodiment. 図1から封止部材及び第2電極を取り除いた図である。It is the figure which removed the sealing member and the 2nd electrode from FIG. 図1から絶縁層及び有機層を取り除いた図である。It is the figure which removed the insulating layer and the organic layer from FIG. 図1のA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 図4の点線αで囲んだ領域を拡大した図である。It is the figure which expanded the area | region enclosed with the dotted line (alpha) of FIG. 発光装置の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of a light-emitting device. 比較例に係る発光装置の空隙の大きさの変化を示すグラフである。It is a graph which shows the change of the magnitude | size of the space | gap of the light-emitting device which concerns on a comparative example. 比較例に係る発光装置の空隙の大きさの変化を示すグラフである。It is a graph which shows the change of the magnitude | size of the space | gap of the light-emitting device which concerns on a comparative example. 実施例に係る発光装置の空隙の大きさの変化を示すグラフである。It is a graph which shows the change of the magnitude | size of the space | gap of the light-emitting device which concerns on an Example. 実施例に係る発光装置の空隙の大きさの変化を示すグラフである。It is a graph which shows the change of the magnitude | size of the space | gap of the light-emitting device which concerns on an Example. 実施例に係る発光装置の空隙の大きさの変化を示すグラフである。It is a graph which shows the change of the magnitude | size of the space | gap of the light-emitting device which concerns on an Example. 実施例に係る発光装置の空隙の大きさの変化を示すグラフである。It is a graph which shows the change of the magnitude | size of the space | gap of the light-emitting device which concerns on an Example. 実施例に係る発光装置の空隙の大きさの変化を示すグラフである。It is a graph which shows the change of the magnitude | size of the space | gap of the light-emitting device which concerns on an Example. 処理時間が6時間の場合において、空隙の径が800μmから200μmになるために必要な圧力を、処理温度別に示した表である。It is the table | surface which showed the pressure required in order that the diameter of a space | gap may be set to 800 micrometers from 200 micrometers in case processing time is 6 hours according to process temperature. 処理時間が8時間の場合において、空隙の径が800μmから200μmになるために必要な圧力を、処理温度別に示した表である。It is the table | surface which showed the pressure required in order to change the diameter of a space | gap from 800 micrometers to 200 micrometers in the case of processing time for 8 hours according to processing temperature. 課題を説明するための写真である。It is a photograph for explaining a subject.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
 図1は、実施形態に係る発光装置10の構成を示す平面図である。説明のため、図1において封止部材200は点線で示されており、また、乾燥材220は省略されている。図2は図1から封止部材200及び第2電極130を取り除いた図である。図3は図1から絶縁層150及び有機層120を取り除いた図である。図4は、図1のA-A断面図である。図5は図4の点線αで囲んだ領域を拡大した図である。図6は、発光装置10の製造方法を示すフローチャートである。 FIG. 1 is a plan view showing a configuration of a light emitting device 10 according to the embodiment. For the sake of explanation, the sealing member 200 is shown by a dotted line in FIG. 1 and the desiccant 220 is omitted. FIG. 2 is a view in which the sealing member 200 and the second electrode 130 are removed from FIG. FIG. 3 is a diagram in which the insulating layer 150 and the organic layer 120 are removed from FIG. 4 is a cross-sectional view taken along the line AA in FIG. FIG. 5 is an enlarged view of a region surrounded by a dotted line α in FIG. FIG. 6 is a flowchart showing a method for manufacturing the light emitting device 10.
 図1~図4に示すように、発光装置10は基板100(基材)を有している。基板100には発光部140が形成されている。発光部140は有機層120を有している。有機層120は封止部材200を用いて封止されている。図6に示すように、発光装置10の製造方法は、以下の工程を有している。まず、発光部140が形成された基板100に封止部材200を、樹脂材料からなる固定層210を用いて取り付ける(ステップS20:第1工程)。次いで、封止部材200のうち発光部140の周囲に位置する部分(以下、縁部202と記載)を基板100に押し付ける(ステップS30:第2工程)。次いで、封止部材200が固定された基板100を、0.15Mpa以上の圧力で加圧する(ステップS40:第3工程)。以下、本実施形態について詳細に説明する。 As shown in FIGS. 1 to 4, the light emitting device 10 has a substrate 100 (base material). A light emitting unit 140 is formed on the substrate 100. The light emitting unit 140 has an organic layer 120. The organic layer 120 is sealed using the sealing member 200. As shown in FIG. 6, the method for manufacturing the light emitting device 10 includes the following steps. First, the sealing member 200 is attached to the substrate 100 on which the light emitting unit 140 is formed using the fixed layer 210 made of a resin material (step S20: first step). Next, a portion of the sealing member 200 located around the light emitting unit 140 (hereinafter referred to as the edge 202) is pressed against the substrate 100 (step S30: second step). Next, the substrate 100 to which the sealing member 200 is fixed is pressurized with a pressure of 0.15 MPa or more (step S40: third step). Hereinafter, this embodiment will be described in detail.
 まず、図1~図4を用いて、発光装置10の構成について説明する。これらの図に示す例において、発光装置10は照明装置である。ただし、発光装置10はディスプレイであってもよい。発光装置10はボトムエミッション型の発光装置であってもよいし、トップエミッション型の発光装置であってもよい。発光装置10は、基板100を用いて形成されている。 First, the configuration of the light emitting device 10 will be described with reference to FIGS. In the examples shown in these drawings, the light emitting device 10 is a lighting device. However, the light emitting device 10 may be a display. The light emitting device 10 may be a bottom emission type light emitting device or a top emission type light emitting device. The light emitting device 10 is formed using a substrate 100.
 発光装置10がボトムエミッション型である場合、基板100は、例えばガラスや透光性の樹脂などの透光性の材料で形成されている。一方、発光装置10がトップエミッション型である場合、基板100は上述した透光性の材料で形成されていてもよいし、透光性を有さない材料で形成されていてもよい。基板100は、例えば矩形などの多角形である。また、基板100は可撓性を有していてもよい。基板100が可撓性を有している場合、基板100の厚さは、例えば10μm以上1000μm以下である。特に基板100をガラス材料で可撓性を持たせる場合、基板100の厚さは、例えば200μm以下である。基板100を樹脂材料で可撓性を持たせる場合は、基板100の材料として、例えばPEN(ポリエチレンナフタレート)、PES(ポリエーテルサルホン)、PET(ポリエチレンテレフタラート)、又はポリイミドを含ませて形成されている。また、基板100が樹脂材料を含む場合、水分が基板100を透過することを抑制するために、基板100の少なくとも発光面(好ましくは両面)に、SiNやSiONなどの無機バリア膜が形成されている。 When the light emitting device 10 is a bottom emission type, the substrate 100 is formed of a light transmissive material such as glass or a light transmissive resin. On the other hand, when the light emitting device 10 is a top emission type, the substrate 100 may be formed of the above-described translucent material or may be formed of a material that does not have translucency. The substrate 100 is, for example, a polygon such as a rectangle. Further, the substrate 100 may have flexibility. In the case where the substrate 100 has flexibility, the thickness of the substrate 100 is, for example, not less than 10 μm and not more than 1000 μm. In particular, when the substrate 100 is made of a glass material and has flexibility, the thickness of the substrate 100 is, for example, 200 μm or less. In the case where the substrate 100 is made of a resin material and is flexible, the material of the substrate 100 includes, for example, PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), or polyimide. Is formed. In the case where the substrate 100 includes a resin material, an inorganic barrier film such as SiN x or SiON is formed on at least the light emitting surface (preferably both surfaces) of the substrate 100 in order to suppress moisture from passing through the substrate 100. ing.
 基板100には発光部140が形成されている。発光部140は、有機EL素子を有している。この有機EL素子は、第1電極110、有機層120、及び第2電極130を有している。有機層120は第1電極110と第2電極130の間に位置している。 A light emitting unit 140 is formed on the substrate 100. The light emitting unit 140 has an organic EL element. This organic EL element has a first electrode 110, an organic layer 120, and a second electrode 130. The organic layer 120 is located between the first electrode 110 and the second electrode 130.
 第1電極110及び第2電極130の少なくとも一方は、光透過性を有する透明電極である。例えば発光装置10がボトムエミッション型の発光装置である場合、少なくとも第1電極110は透明電極である。一方、発光装置10がトップエミッション型の発光装置である場合、少なくとも第2電極130は透明電極である。なお、第1電極110及び第2電極130の双方が透明電極であってもよい。 At least one of the first electrode 110 and the second electrode 130 is a transparent electrode having optical transparency. For example, when the light emitting device 10 is a bottom emission type light emitting device, at least the first electrode 110 is a transparent electrode. On the other hand, when the light emitting device 10 is a top emission type light emitting device, at least the second electrode 130 is a transparent electrode. Note that both the first electrode 110 and the second electrode 130 may be transparent electrodes.
 透明電極を構成する透明導電材料は、金属を含む材料、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IWZO(Indium Tungsten Zinc Oxide)、ZnO(Zinc Oxide)等の金属酸化物である。第1電極110の厚さは、例えば10nm以上500nm以下である。第1電極110は、例えばスパッタリング法又は蒸着法を用いて形成される。なお、第1電極110は、カーボンナノチューブ、又はPEDOT/PSSなどの導電性有機材料であってもよいし、薄い金属電極であってもよい。 The transparent conductive material constituting the transparent electrode is a metal-containing material, for example, a metal oxide such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IWZO (Indium Tungsten Zinc Oxide), ZnO (Zinc Oxide), and the like. is there. The thickness of the first electrode 110 is, for example, not less than 10 nm and not more than 500 nm. The first electrode 110 is formed using, for example, a sputtering method or a vapor deposition method. The first electrode 110 may be a carbon nanotube, a conductive organic material such as PEDOT / PSS, or a thin metal electrode.
 第1電極110及び第2電極130のうち透光性を有していない電極は、例えば、Al、Au、Ag、Pt、Mg、Sn、Zn、及びInからなる第1群の中から選択される金属又はこの第1群から選択される金属の合金からなる金属層を含んでいる。この電極は、例えばスパッタリング法又は蒸着法を用いて形成される。 Of the first electrode 110 and the second electrode 130, the non-transparent electrode is selected from, for example, a first group consisting of Al, Au, Ag, Pt, Mg, Sn, Zn, and In. Or a metal layer made of an alloy of metals selected from this first group. This electrode is formed using, for example, a sputtering method or a vapor deposition method.
 なお、発光装置10がトップエミッション型の発光装置である場合、第1電極110は、金属層と透明導電層をこの順に積層した構造であってもよい。 When the light emitting device 10 is a top emission type light emitting device, the first electrode 110 may have a structure in which a metal layer and a transparent conductive layer are laminated in this order.
 有機層120は、例えば、正孔注入層、発光層、及び電子注入層をこの順に積層させた構成を有している。正孔注入層と発光層との間には正孔輸送層が形成されていてもよい。また、発光層と電子注入層との間には電子輸送層が形成されていてもよい。有機層120は蒸着法で形成されてもよい。また、有機層120のうち少なくとも一つの層、例えば第1電極110と接触する層は、インクジェット法、印刷法、又はスプレー法などの塗布法によって形成されてもよい。なお、この場合、有機層120の残りの層は、蒸着法によって形成されている。また、有機層120のすべての層が、塗布法を用いて形成されていてもよい。 The organic layer 120 has a configuration in which, for example, a hole injection layer, a light emitting layer, and an electron injection layer are stacked in this order. A hole transport layer may be formed between the hole injection layer and the light emitting layer. In addition, an electron transport layer may be formed between the light emitting layer and the electron injection layer. The organic layer 120 may be formed by a vapor deposition method. In addition, at least one layer of the organic layer 120, for example, a layer in contact with the first electrode 110, may be formed by a coating method such as an inkjet method, a printing method, or a spray method. In this case, the remaining layers of the organic layer 120 are formed by vapor deposition. Moreover, all the layers of the organic layer 120 may be formed using the apply | coating method.
 第1電極110の縁は、絶縁層150によって覆われている。絶縁層150は例えばポリイミドなどの樹脂材料に感光性の材料を含ませることによって形成されており、第1電極110のうち発光部140の発光領域となる部分を囲んでいる。絶縁層150を設けることにより、第1電極110の縁において第1電極110と第2電極130が短絡することを抑制できる。絶縁層150は、絶縁層150となる樹脂材料を塗布した後、この樹脂材料を露光及び現像することにより、形成される。この工程は、例えば第1電極110を形成した後、有機層120を形成する前に行われる。 The edge of the first electrode 110 is covered with an insulating layer 150. The insulating layer 150 is formed by including a photosensitive material in a resin material such as polyimide, and surrounds a portion of the first electrode 110 that becomes a light emitting region of the light emitting unit 140. By providing the insulating layer 150, it is possible to suppress a short circuit between the first electrode 110 and the second electrode 130 at the edge of the first electrode 110. The insulating layer 150 is formed by applying a resin material to be the insulating layer 150 and then exposing and developing the resin material. This step is performed, for example, after forming the first electrode 110 and before forming the organic layer 120.
 発光装置10は、第1端子112及び第2端子132を有している。第1端子112は第1電極110に電気的に接続しており、第2端子132は第2電極130に電気的に接続している。第1端子112及び第2端子132は、例えば、第1電極110と同一の材料で形成された層を有している。なお、第1端子112と第1電極110の間には引出配線が設けられていてもよい。また、第2端子132と第2電極130の間にも引出配線が設けられていてもよい。 The light emitting device 10 has a first terminal 112 and a second terminal 132. The first terminal 112 is electrically connected to the first electrode 110, and the second terminal 132 is electrically connected to the second electrode 130. For example, the first terminal 112 and the second terminal 132 include a layer formed of the same material as that of the first electrode 110. A lead wiring may be provided between the first terminal 112 and the first electrode 110. In addition, a lead wiring may be provided between the second terminal 132 and the second electrode 130.
 発光装置10の発光部140は、封止部材200を用いて封止されている。本実施形態において、封止部材200は、例えばアルミニウム箔などの金属膜であり、金属シートや金属フィルムであってもよい。好ましくは10μm以上1mm以下の厚みを有していて、可撓性を有している。封止部材200は、固定層210を介して基板100及び発光部140に固定されている。固定層210は接着剤又は粘着材を用いて形成されている。固定層210は、例えば熱可塑性の樹脂を用いて形成されていてもよい。固定層210には、例えば、ポリプロピレン、ポリエチレン、ポリスチレン、ポリイソブチレン、ポリエステル、及びポリイソプレンから選ばれる少なくとも一種以上の樹脂層を用いることができる。固定層210は、シート状の接着剤又は粘着剤であってもよい。固定層210の封止部材200と対向する面は、基板100の上の凹凸、例えば発光部140の上面に沿って変形している。そして封止部材200は、固定層210を介して発光部140の少なくとも一部に固定されている。 The light emitting unit 140 of the light emitting device 10 is sealed using a sealing member 200. In the present embodiment, the sealing member 200 is a metal film such as an aluminum foil, and may be a metal sheet or a metal film. Preferably it has a thickness of 10 μm or more and 1 mm or less and has flexibility. The sealing member 200 is fixed to the substrate 100 and the light emitting unit 140 via the fixing layer 210. The fixed layer 210 is formed using an adhesive or an adhesive material. The fixed layer 210 may be formed using, for example, a thermoplastic resin. For the fixed layer 210, for example, at least one resin layer selected from polypropylene, polyethylene, polystyrene, polyisobutylene, polyester, and polyisoprene can be used. The fixing layer 210 may be a sheet-like adhesive or pressure-sensitive adhesive. The surface of the fixed layer 210 facing the sealing member 200 is deformed along the unevenness on the substrate 100, for example, the upper surface of the light emitting unit 140. The sealing member 200 is fixed to at least a part of the light emitting unit 140 via the fixed layer 210.
 なお、図4に示す例において、固定層210と発光部140の間には乾燥材220が配置されている。乾燥材220は、固定層210及び基板100の間に、発光部140とともに封止されている。これにより、基板100と封止部材200の間の領域に水分が入っても、この水分は乾燥材220によって吸収される。従って、発光部140の有機層120が劣化することを抑制できる。 In the example shown in FIG. 4, a desiccant 220 is disposed between the fixed layer 210 and the light emitting unit 140. The desiccant 220 is sealed together with the light emitting unit 140 between the fixed layer 210 and the substrate 100. Thereby, even if moisture enters the region between the substrate 100 and the sealing member 200, the moisture is absorbed by the desiccant 220. Therefore, it can suppress that the organic layer 120 of the light emission part 140 deteriorates.
 次に、図5を用いて、発光部140の周囲における封止部材200及び固定層210の厚さについて説明する。封止部材200を基板100に固定する際、封止部材200のうち発光部140の周囲に位置する縁部202(第1領域)は、枠部材300を用いて基板100に向けて押し付けられる。これにより、固定層210のうち発光部140の周囲に位置する部分、例えば封止部材200の縁部202と重なる部分(以下、縁部212と記載)は、固定層210の他の部分(例えば発光部140の上に位置する部分)と比較して薄くなる。 Next, the thickness of the sealing member 200 and the fixed layer 210 around the light emitting unit 140 will be described with reference to FIG. When fixing the sealing member 200 to the substrate 100, the edge portion 202 (first region) located around the light emitting unit 140 in the sealing member 200 is pressed toward the substrate 100 using the frame member 300. As a result, a portion of the fixed layer 210 located around the light emitting unit 140, for example, a portion that overlaps with the edge 202 of the sealing member 200 (hereinafter referred to as the edge 212) is another portion of the fixed layer 210 (for example, It is thinner than the portion located on the light emitting unit 140).
 固定層210のうち薄くなった部分(図5に示す例では縁部212)の厚さtは、例えば1μm以上20μm以下である。または、固定層210のうち薄くなった部分の厚さtは固定層210の他の部分(発光部140と重なる部分)の厚みの50%以下、好ましくは20%以下である。さらに下限は限りなく0に近づく方がよい。また、縁部212の幅は、例えば0.5mm以上5mm以下である。なお、縁部212の一部は第1端子112と重なることもある。同様に、縁部212の他の一部は第2端子132と重なることもある。また、封止部材200の縁部202及び固定層210の縁部212は、いずれも発光部140を囲んでいる。 The thickness t of the thinned portion (the edge 212 in the example shown in FIG. 5) of the fixed layer 210 is, for example, 1 μm or more and 20 μm or less. Alternatively, the thickness t of the thinned portion of the fixed layer 210 is 50% or less, preferably 20% or less, of the thickness of the other portion of the fixed layer 210 (the portion overlapping the light emitting unit 140). Furthermore, it is better that the lower limit approaches 0 without limit. Further, the width of the edge 212 is, for example, not less than 0.5 mm and not more than 5 mm. Note that a part of the edge 212 may overlap with the first terminal 112. Similarly, another part of the edge 212 may overlap with the second terminal 132. Further, the edge portion 202 of the sealing member 200 and the edge portion 212 of the fixed layer 210 both surround the light emitting portion 140.
 次に、図6を用いて発光装置10の製造方法を説明する。まず、基板100の上に第1電極110、絶縁層150、有機層120、及び第2電極130をこの順に形成する。これにより、発光部140が形成される(ステップS10)。この工程において、第1端子112及び第2端子132も形成される。次いで、固定層210を用いて、基板100のうち発光部140が形成されている面に封止部材200を取り付ける。この際、封止部材200と発光部140の間に乾燥材220を配置する。これにより、発光部140及び乾燥材220は、基板100及び封止部材200により封止される(ステップS20)。このようにして、発光装置10が形成される。 Next, a method for manufacturing the light emitting device 10 will be described with reference to FIG. First, the first electrode 110, the insulating layer 150, the organic layer 120, and the second electrode 130 are formed on the substrate 100 in this order. Thereby, the light emission part 140 is formed (step S10). In this step, the first terminal 112 and the second terminal 132 are also formed. Next, the sealing member 200 is attached to the surface of the substrate 100 where the light emitting unit 140 is formed using the fixed layer 210. At this time, the desiccant 220 is disposed between the sealing member 200 and the light emitting unit 140. Thereby, the light emission part 140 and the desiccant 220 are sealed with the board | substrate 100 and the sealing member 200 (step S20). In this way, the light emitting device 10 is formed.
 次いで、枠部材300を用いて、封止部材200の縁部202を基板100に向けて押下する(ステップS30:第2工程)。この時の押下時間は、例えば5分以下、好ましくは1分以下である。固定層210が熱可塑型の樹脂で形成されている場合、ステップS30に示した処理は、固定層210を構成する樹脂のガラス転移温度以上の温度で行われるのが好ましい。なお、ステップS20に示した処理とステップS30に示した処理は同時に行われてもよい。また、ステップS20を終了してからステップS30を行うまでに所定時間あけてもよい。所定時間は適宜設定される。所定時間空ける目的としては素子の特性を安定させることにある。また、ステップS20とステップS30との間に別の工程が含まれてもよい。この別の工程としては、例えば、パネルを大判の基板100を用いて発光装置10を一括形成した場合において、基板100を切断して発光装置10を切り出す工程などがある。この工程の後に前述の図16のような気泡が確認された。 Next, using the frame member 300, the edge 202 of the sealing member 200 is pressed toward the substrate 100 (step S30: second step). The pressing time at this time is, for example, 5 minutes or less, preferably 1 minute or less. When the fixed layer 210 is formed of a thermoplastic resin, the process shown in step S30 is preferably performed at a temperature equal to or higher than the glass transition temperature of the resin constituting the fixed layer 210. Note that the process shown in step S20 and the process shown in step S30 may be performed simultaneously. Further, a predetermined time may be provided after step S20 is completed until step S30 is performed. The predetermined time is appropriately set. The purpose of leaving a predetermined time is to stabilize the characteristics of the element. Further, another process may be included between step S20 and step S30. As another process, for example, when the light emitting device 10 is collectively formed using a large-sized substrate 100, there is a step of cutting the light emitting device 10 by cutting the substrate 100. After this step, bubbles as shown in FIG. 16 were confirmed.
 次いで、発光装置10を高温かつ加圧された雰囲気の中に保持する(ステップS40:第3工程)。たとえば、温度および圧力を調整できるチャンバーの中に発光装置10を保持する。この雰囲気の温度は30℃以上、好ましくは50℃以上である。また、加圧する圧力については、0.15MPa以上、好ましくは0.30MPa以上、好ましくは0.5MPa以上である。また、加える圧力は5.0MPa以下が好ましい。チャンバーで加圧する際のチャンバーのゲージ圧力は0.5MPa以上が好ましい。また、このときの雰囲気は不活性化ガス雰囲気であることが好ましい。また、発光装置10を上記した雰囲気内に保持する時間は、15分以上、好ましくは1時間以上、さらに好ましくは5時間以上である。なお、ステップS40における不活性雰囲気は、酸化しにくい雰囲気が好ましいため、希ガス雰囲気の他、窒素雰囲気も含まれる。ステップ40を行うことで、固定層210、固定層210と封止部材200との界面、固定層210及び固定層210の下層(基板100や第1端子112など)との界面に発生した空隙を除去・減少させることができる。これは、空隙を形成する気泡が、加圧により固定層210とその上層または下層との界面を拡散して発光装置10の外部へ抜けていくためである。 Next, the light emitting device 10 is held in a high temperature and pressurized atmosphere (step S40: third step). For example, the light emitting device 10 is held in a chamber capable of adjusting temperature and pressure. The temperature of this atmosphere is 30 ° C. or higher, preferably 50 ° C. or higher. Moreover, about the pressure to pressurize, it is 0.15 Mpa or more, Preferably it is 0.30 Mpa or more, Preferably it is 0.5 Mpa or more. The applied pressure is preferably 5.0 MPa or less. The chamber gauge pressure when pressurizing in the chamber is preferably 0.5 MPa or more. The atmosphere at this time is preferably an inert gas atmosphere. The time for holding the light emitting device 10 in the above atmosphere is 15 minutes or longer, preferably 1 hour or longer, more preferably 5 hours or longer. In addition, since the inert atmosphere in step S40 is preferably an atmosphere that is not easily oxidized, a nitrogen atmosphere is also included in addition to a rare gas atmosphere. By performing step 40, voids generated at the fixed layer 210, the interface between the fixed layer 210 and the sealing member 200, and the interface between the fixed layer 210 and the lower layer of the fixed layer 210 (the substrate 100, the first terminal 112, etc.) It can be removed and reduced. This is because bubbles that form voids diffuse through the interface between the fixed layer 210 and its upper layer or lower layer by pressurization and escape to the outside of the light emitting device 10.
 固定層210は、封止部材200と比較して封止能力が低い材料を用いて形成されている。このため、固定層210が厚いと、固定層210を介して基板100と封止部材200の間の領域(換言すれば水分にとっての侵入口)に水分が入り込み、有機層120を劣化させてしまう。これに対して本実施形態では、封止部材200を基板100に取り付けた後、封止部材200の縁部202を基板100に向けて押下している。このため、固定層210の縁部212は固定層210の他の部分と比較して薄くなる。その結果、侵入口を小さくすることができるので、固定層210を介して基板100と封止部材200の間の領域に水分が入ることを抑制できる。また空隙も発生しないため、仮に水分が侵入したとしても、この水分の有機層120への浸食の速度も低下する。従って、発光装置10の寿命を長くすることができる。 The fixing layer 210 is formed using a material having a lower sealing ability than the sealing member 200. For this reason, if the fixing layer 210 is thick, moisture enters the region between the substrate 100 and the sealing member 200 (in other words, an entrance for moisture) through the fixing layer 210, and the organic layer 120 is deteriorated. . On the other hand, in this embodiment, after the sealing member 200 is attached to the substrate 100, the edge 202 of the sealing member 200 is pressed toward the substrate 100. For this reason, the edge 212 of the fixed layer 210 is thinner than other portions of the fixed layer 210. As a result, the entry port can be made small, so that moisture can be prevented from entering the region between the substrate 100 and the sealing member 200 via the fixed layer 210. In addition, since no voids are generated, even if moisture enters, the rate of erosion of the moisture into the organic layer 120 also decreases. Therefore, the lifetime of the light emitting device 10 can be extended.
 また、本発明者が検討した結果、枠部材300を用いて固定層210の縁部212を薄くした場合、縁部212と基板100の間、又は縁部212と封止部材200の間に空隙が生じやすくなることが判明した。この空隙を放置していた場合、この空隙を介して封止部材200と基板100の間に水分が入り込みやすくなる。これに対して本実施形態では、封止部材200の縁部202を基板100に向けて押下した後、発光装置10を加圧雰囲気下に配置する。封止部材200は可撓性を有しているため、縁部212と封止部材200の間に空隙が生じていた場合でも、この空隙を減らすことができる。従って、発光装置10の寿命を長くすることができる。また、縁部212の幅を広くしなくても発光部140に水分が到達することを抑制できるため、発光装置10の非発光部分の面積が広くなることを抑制できる。 Further, as a result of examination by the present inventor, when the edge 212 of the fixed layer 210 is thinned using the frame member 300, a gap is formed between the edge 212 and the substrate 100 or between the edge 212 and the sealing member 200. It became clear that it became easy to occur. When this gap is left unattended, moisture easily enters between the sealing member 200 and the substrate 100 through the gap. In contrast, in the present embodiment, after the edge 202 of the sealing member 200 is pressed toward the substrate 100, the light emitting device 10 is placed in a pressurized atmosphere. Since the sealing member 200 has flexibility, even when a gap is generated between the edge portion 212 and the sealing member 200, the gap can be reduced. Therefore, the lifetime of the light emitting device 10 can be extended. Further, since it is possible to suppress moisture from reaching the light emitting unit 140 without increasing the width of the edge portion 212, it is possible to suppress the area of the non-light emitting portion of the light emitting device 10 from being increased.
(実施例)
 図6のステップS40(第3工程)における加圧する圧力及び温度を変えながら、固定層210の縁部212と封止部材200の間の空隙の大きさの変化を調べた。ここで、加圧する圧力とは大気圧とは別に素子に加圧した圧力の値である。その結果を、図7~図13に示す。これらの図は、各条件において、空隙の大きさが処理時間によってどのように変化したかを示している。いずれの図においても、空隙の大きさ(幅)の初期値は、100μm、50μm、及び25μmのものを選択して観察した。
(Example)
The change in the size of the gap between the edge 212 of the fixed layer 210 and the sealing member 200 was examined while changing the pressure and temperature to be pressurized in step S40 (third process) in FIG. Here, the pressure to be applied is the value of the pressure applied to the element separately from the atmospheric pressure. The results are shown in FIGS. These drawings show how the size of the air gap changed with the processing time under each condition. In any of the figures, the initial value of the size (width) of the void was selected and observed as 100 μm, 50 μm, and 25 μm.
 図7は、加圧する圧力が0.05Mpaであり、温度が30℃の場合の結果を示している。この条件において、いずれの空隙も縮小量は小さかった。 FIG. 7 shows the results when the pressure applied is 0.05 MPa and the temperature is 30 ° C. Under these conditions, the reduction amount was small for all the voids.
 図8は、図7と同じ圧力(0.05Mpa)で加圧した場合において温度を50℃にした場合の結果を示している。この条件において、図7に示した例よりも空隙は小さくなったが、その縮小量は十分ではなかった。具体的には、ステップS40に示した処理を15時間行っても、最も初期の大きさが小さい(幅25μm)空隙を含め、全ての空隙が残ってしまった。 FIG. 8 shows the results when the temperature is 50 ° C. when the same pressure (0.05 Mpa) as in FIG. 7 is applied. Under these conditions, the gap was smaller than the example shown in FIG. 7, but the reduction amount was not sufficient. Specifically, even when the process shown in step S40 was performed for 15 hours, all the voids remained including the void having the smallest initial size (25 μm width).
 図9は、加圧した圧力が0.15Mpaであり、温度が30℃の場合の結果を示している。この条件において、いずれの空隙も、図7に示した例及び図8に示した例と比較して大きく縮小した。特に、最も初期の大きさが小さい(幅25μm)空隙は、10時間後にほぼ消滅した。 FIG. 9 shows the results when the pressurized pressure is 0.15 MPa and the temperature is 30 ° C. Under these conditions, all the gaps were greatly reduced as compared with the example shown in FIG. 7 and the example shown in FIG. In particular, the smallest initial void (width 25 μm) almost disappeared after 10 hours.
 図10は、図9と同じ圧力(0.15Mpa)で加圧した場合において温度を50℃にした場合の結果を示している。この条件において、図9に示した例よりも空隙はさらに小さくなった。例えば、初期の大きさが25μmの空隙は3時間後にほぼ消滅し、また、初期の大きさが50μmの空隙は12時間後にほぼ消滅した。また、初期の大きさが100μmの空隙は15時間後に40μm程度になった。 FIG. 10 shows the results when the temperature is 50 ° C. when the same pressure (0.15 Mpa) as in FIG. 9 is applied. Under these conditions, the gap was smaller than in the example shown in FIG. For example, voids with an initial size of 25 μm almost disappeared after 3 hours, and voids with an initial size of 50 μm almost disappeared after 12 hours. Further, the gap having an initial size of 100 μm became about 40 μm after 15 hours.
 図11は、加圧した圧力が0.30Mpaであり、温度が30℃の場合の結果を示している。この条件において、いずれの空隙も、図8に示した例よりもさらに縮小した。特に、初期の大きさが25μmの空隙は2時間後にほぼ消滅し、また、初期の大きさが50μmの空隙は6時間後にほぼ消滅した。また、初期の大きさが100μmの空隙も15時間後には20μm以下になった。 FIG. 11 shows the results when the pressurized pressure is 0.30 Mpa and the temperature is 30 ° C. Under these conditions, all the gaps were further reduced from the example shown in FIG. In particular, voids with an initial size of 25 μm almost disappeared after 2 hours, and voids with an initial size of 50 μm almost disappeared after 6 hours. Further, the void having an initial size of 100 μm also became 20 μm or less after 15 hours.
 図12は、図11と同じ圧力(0.30Mpa)で加圧した場合において温度を50℃にした場合の結果を示している。この条件において、空隙はほぼなくなった。詳細には、初期の大きさが25μmの空隙及び50μmの空隙は、いずれも2時間後にほぼ消滅し、また、初期の大きさが100μmの空隙は3時間後にほぼ消滅した。 FIG. 12 shows the results when the temperature is 50 ° C. when the same pressure (0.30 Mpa) as in FIG. 11 is applied. Under these conditions, there were almost no voids. Specifically, the voids having an initial size of 25 μm and 50 μm voids almost disappeared after 2 hours, and the voids having an initial size of 100 μm almost disappeared after 3 hours.
 図13は、図12と同じ条件(0.30Mpa,50℃)において、さらに大きな空隙がどの程度減少したかを示している。本図に示すように、初期の大きさが250μmの空隙は13時間後にほぼ消滅し、初期の空隙の大きさが500μmの空隙は15時間後に230μm前後になった。 FIG. 13 shows how much larger voids are reduced under the same conditions (0.30 Mpa, 50 ° C.) as in FIG. As shown in this figure, the void having an initial size of 250 μm almost disappeared after 13 hours, and the void having an initial size of 500 μm became around 230 μm after 15 hours.
 以上、ステップS40の圧力を0.15Mpaにすると、ある程度の空隙が除去できることが分かった。特にステップS40の圧力を0.30Mpaにすると、ステップS40の処理時間を短くできることが分かった。さらに、ステップS40の温度を50℃にすると、ステップS40の時間を短縮できることが分かった。 As described above, it has been found that when the pressure in step S40 is set to 0.15 MPa, a certain amount of voids can be removed. In particular, it was found that when the pressure in step S40 was 0.30 MPa, the processing time in step S40 could be shortened. Furthermore, it was found that when the temperature of step S40 is 50 ° C., the time of step S40 can be shortened.
 図14は、図6のステップS40(第3工程)の処理時間が6時間の場合において、初期の大きさ(径)が800μmの空隙が200μmになるために必要な圧力を、処理温度別に示した表である。温度が40℃以下の場合、1Mpaより大きい圧力にしないと、空隙は200μm以下にならなかった。一方、温度が50℃になると、必要な圧力は0.73Mpaに低下し、温度が60℃になると、必要な圧力はさらに低下した(0.50Mpa)。 FIG. 14 shows, for each processing temperature, the pressure required for a gap having an initial size (diameter) of 800 μm to be 200 μm when the processing time of step S40 (third step) in FIG. 6 is 6 hours. It is a table. When the temperature was 40 ° C. or lower, the gap did not become 200 μm or lower unless the pressure was higher than 1 Mpa. On the other hand, when the temperature reached 50 ° C., the necessary pressure decreased to 0.73 Mpa, and when the temperature reached 60 ° C., the necessary pressure further decreased (0.50 Mpa).
 図15は、図6のステップS40(第3工程)の処理時間が8時間の場合において、初期の大きさ(径)が800μmの空隙が200μmになるために必要な圧力を、処理温度別に示した表である。温度が30℃以下の場合、1Mpaより大きい圧力にしないと、空隙は200μm以下にならなかった。一方、温度が40℃になると、必要な圧力は0.99Mpaに低下し、温度が50℃になると、必要な圧力はさらに低下した(0.66Mpa)。また、温度が60℃になると、必要な圧力はさらに低下し、0.45Mpaになった。 FIG. 15 shows, for each processing temperature, the pressure required for a gap having an initial size (diameter) of 800 μm to be 200 μm when the processing time of step S40 (third step) in FIG. 6 is 8 hours. It is a table. When the temperature was 30 ° C. or lower, the gap did not become 200 μm or lower unless the pressure was higher than 1 Mpa. On the other hand, when the temperature reached 40 ° C., the necessary pressure decreased to 0.99 Mpa, and when the temperature reached 50 ° C., the necessary pressure further decreased (0.66 Mpa). When the temperature reached 60 ° C., the required pressure further decreased to 0.45 Mpa.
 図14及び図15から、第3工程における処理温度を上げると、第3工程の圧力を下げられることが示された。また、第3工程における処理温度を上げると、第3工程の処理時間を短縮できることが示された。 FIG. 14 and FIG. 15 show that the pressure in the third step can be reduced by increasing the treatment temperature in the third step. Moreover, it was shown that the processing time in the third step can be shortened by increasing the processing temperature in the third step.
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment and the Example were described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

Claims (8)

  1.  有機層を有する発光部が形成された基材に、前記発光部を封止する封止部材を、固定層を介して取り付ける第1工程と、
     前記封止部材のうち前記発光部の周囲に位置する第1領域を前記基材に押し付ける第2工程と、
     前記封止部材が取り付けられた前記基材を、0.15MPa以上で加圧する第3工程と、
    を備える発光装置の製造方法。
    A first step of attaching a sealing member for sealing the light emitting part to a base material on which a light emitting part having an organic layer is formed via a fixed layer;
    A second step of pressing the first region located around the light emitting portion of the sealing member against the base material;
    A third step of pressurizing the base material to which the sealing member is attached at a pressure of 0.15 MPa or more;
    A method for manufacturing a light emitting device.
  2.  請求項1に記載の発光装置の製造方法において、
     前記第2工程の後において、前記固定層のうち前記第1領域と重なる部分の厚さは前記固定層のうち前記発光部と重なる部分の50%以下である発光装置の製造方法。
    In the manufacturing method of the light-emitting device according to claim 1,
    After the second step, the thickness of the portion of the fixed layer that overlaps the first region is 50% or less of the portion of the fixed layer that overlaps the light emitting portion.
  3.  請求項1又は2に記載の発光装置の製造方法において、
     前記固定層は樹脂材料を含み、
     前記第2工程は前記樹脂材料のガラス転移温度以上の温度で行われる発光装置の製造方法。
    In the manufacturing method of the light-emitting device of Claim 1 or 2,
    The fixing layer includes a resin material,
    The method of manufacturing a light emitting device, wherein the second step is performed at a temperature equal to or higher than the glass transition temperature of the resin material.
  4.  請求項1乃至3のいずれか1つに記載の発光装置の製造方法において、
     前記第2工程の押し付ける時間は1分以内である発光装置の製造方法。
    In the manufacturing method of the light-emitting device as described in any one of Claims 1 thru | or 3,
    The method of manufacturing a light emitting device, wherein the pressing time in the second step is within 1 minute.
  5.  請求項1乃至4のいずれか1つに記載の発光装置の製造方法において、
     前記第3工程を不活性ガス雰囲気で行う発光装置の製造方法。
    In the manufacturing method of the light-emitting device as described in any one of Claims 1 thru | or 4,
    A method for manufacturing a light emitting device, wherein the third step is performed in an inert gas atmosphere.
  6.  請求項1乃至5のいずれか1つに記載の発光装置の製造方法において、
     前記第3工程を50℃以上で行う発光装置の製造方法。
    In the manufacturing method of the light-emitting device as described in any one of Claims 1 thru | or 5,
    A method for manufacturing a light emitting device, wherein the third step is performed at 50 ° C. or higher.
  7.  請求項1乃至6のいずれか1つに記載の発光装置の製造方法において、
     前記第3工程の圧力が0.5MPa以上である発光装置の製造方法。
    In the manufacturing method of the light-emitting device as described in any one of Claims 1 thru | or 6,
    The manufacturing method of the light-emitting device whose pressure of the said 3rd process is 0.5 Mpa or more.
  8.  請求項1乃至7のいずれか1つに記載の発光装置の製造方法において、
     前記第3工程を15分以上行う発光装置の製造方法。
    In the manufacturing method of the light-emitting device as described in any one of Claims 1 thru | or 7,
    A method for manufacturing a light emitting device, wherein the third step is performed for 15 minutes or more.
PCT/JP2016/055368 2016-02-24 2016-02-24 Method for manufacturing light emitting device, and light emitting device WO2017145279A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018501463A JP6651224B2 (en) 2016-02-24 2016-02-24 Light emitting device manufacturing method and light emitting device
PCT/JP2016/055368 WO2017145279A1 (en) 2016-02-24 2016-02-24 Method for manufacturing light emitting device, and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/055368 WO2017145279A1 (en) 2016-02-24 2016-02-24 Method for manufacturing light emitting device, and light emitting device

Publications (2)

Publication Number Publication Date
WO2017145279A1 true WO2017145279A1 (en) 2017-08-31
WO2017145279A8 WO2017145279A8 (en) 2017-11-02

Family

ID=59684857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055368 WO2017145279A1 (en) 2016-02-24 2016-02-24 Method for manufacturing light emitting device, and light emitting device

Country Status (2)

Country Link
JP (1) JP6651224B2 (en)
WO (1) WO2017145279A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284043A (en) * 2000-03-30 2001-10-12 Delta Optoelectronics Inc El element encapsulation method
JP2005011649A (en) * 2003-06-18 2005-01-13 Sanyo Electric Co Ltd Bonding method, manufacturing method of electroluminescent panel capable of utilizing the bonding method, and electroluminescent panel
JP2006179352A (en) * 2004-12-22 2006-07-06 Tohoku Pioneer Corp Manufacturing method of spontaneous light emitting panel
JP2009187941A (en) * 2008-02-01 2009-08-20 Samsung Mobile Display Co Ltd Organic light-emitting display device and method of manufacturing the same
JP2010067355A (en) * 2008-09-08 2010-03-25 Toppan Printing Co Ltd Organic el element panel and method of manufacturing the same
JP2010205550A (en) * 2009-03-03 2010-09-16 Rohm Co Ltd Organic light emitting element, and manufacturing method thereof
JP2010277690A (en) * 2009-05-26 2010-12-09 Sony Corp Display and method of manufacturing the same, and electronic apparatus
JP2014154507A (en) * 2013-02-13 2014-08-25 Mitsubishi Chemicals Corp Organic electroluminescent light emitting device, organic el display device, and organic el lighting
JP2015111596A (en) * 2012-06-15 2015-06-18 須賀 唯知 Sealing method of electronic element and substrate joint body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014203707A (en) * 2013-04-05 2014-10-27 凸版印刷株式会社 Method of manufacturing organic el display and organic el display

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284043A (en) * 2000-03-30 2001-10-12 Delta Optoelectronics Inc El element encapsulation method
JP2005011649A (en) * 2003-06-18 2005-01-13 Sanyo Electric Co Ltd Bonding method, manufacturing method of electroluminescent panel capable of utilizing the bonding method, and electroluminescent panel
JP2006179352A (en) * 2004-12-22 2006-07-06 Tohoku Pioneer Corp Manufacturing method of spontaneous light emitting panel
JP2009187941A (en) * 2008-02-01 2009-08-20 Samsung Mobile Display Co Ltd Organic light-emitting display device and method of manufacturing the same
JP2010067355A (en) * 2008-09-08 2010-03-25 Toppan Printing Co Ltd Organic el element panel and method of manufacturing the same
JP2010205550A (en) * 2009-03-03 2010-09-16 Rohm Co Ltd Organic light emitting element, and manufacturing method thereof
JP2010277690A (en) * 2009-05-26 2010-12-09 Sony Corp Display and method of manufacturing the same, and electronic apparatus
JP2015111596A (en) * 2012-06-15 2015-06-18 須賀 唯知 Sealing method of electronic element and substrate joint body
JP2014154507A (en) * 2013-02-13 2014-08-25 Mitsubishi Chemicals Corp Organic electroluminescent light emitting device, organic el display device, and organic el lighting

Also Published As

Publication number Publication date
JP6651224B2 (en) 2020-02-19
WO2017145279A8 (en) 2017-11-02
JPWO2017145279A1 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
US11844231B2 (en) Display device
JP4458379B2 (en) Organic EL display device
US10700306B2 (en) Light emitting apparatus
US20170170247A1 (en) Organic light-emitting display device
US20130075737A1 (en) Organic Light-Emitting Display Apparatus
JP2009266922A (en) Organic light-emitting device
JP6399801B2 (en) Organic electroluminescence display device
JP4512436B2 (en) Display device and manufacturing method thereof
US20220320466A1 (en) Display panel, method for manufacturing same, and display apparatus
US10524319B2 (en) Organic electroluminescent light emitting device
JP2013131339A (en) Organic light emitting device and manufacturing method of the same
KR102114154B1 (en) Display apparatus
US9832858B2 (en) Display device
WO2017145279A1 (en) Method for manufacturing light emitting device, and light emitting device
JP2017004747A (en) Organic EL display device
JP2017117653A (en) Light-emitting device
JP2011029081A (en) Organic el device
KR102246673B1 (en) Display device
JP2006210154A (en) Manufacturing method of organic el panel
JP2023108047A (en) Light-emitting device
JP2009110790A (en) Organic el element panel
WO2019187002A1 (en) Method for producing display device and base substrate for display devices
JP2016046141A (en) Light-emitting device
JP2017152170A (en) Method for manufacturing light emitting device
JP2020181755A (en) Manufacturing method of light-emitting device and light-emitting device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018501463

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891436

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16891436

Country of ref document: EP

Kind code of ref document: A1