WO2017144222A1 - Method and device for operating a lambda probe in an exhaust gas channel of an internal combustion engine - Google Patents
Method and device for operating a lambda probe in an exhaust gas channel of an internal combustion engine Download PDFInfo
- Publication number
- WO2017144222A1 WO2017144222A1 PCT/EP2017/051597 EP2017051597W WO2017144222A1 WO 2017144222 A1 WO2017144222 A1 WO 2017144222A1 EP 2017051597 W EP2017051597 W EP 2017051597W WO 2017144222 A1 WO2017144222 A1 WO 2017144222A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lambda probe
- heating element
- combustion engine
- temperature
- internal combustion
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2451—Methods of calibrating or learning characterised by what is learned or calibrated
- F02D41/2474—Characteristics of sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
- F01N11/002—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/06—Introducing corrections for particular operating conditions for engine starting or warming up
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1439—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1446—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
- F02D41/1447—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures with determination means using an estimation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1454—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1493—Details
- F02D41/1494—Control of sensor heater
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2451—Methods of calibrating or learning characterised by what is learned or calibrated
- F02D41/2454—Learning of the air-fuel ratio control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/02—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
- F01N2560/025—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/06—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/20—Sensor having heating means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/10—Parameters used for exhaust control or diagnosing said parameters being related to the vehicle or its components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/14—Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
- F01N2900/1404—Exhaust gas temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/70—Input parameters for engine control said parameters being related to the vehicle exterior
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the invention relates to a method for operating a lambda probe in an exhaust passage of an internal combustion engine and to an apparatus for carrying out such a method according to the preambles of the independent claims.
- a temperature measurement in the exhaust passage can provide important information about the condition of the exhaust system.
- an intervention in the engine control of the engine take place in order to avoid overheating of components for exhaust aftertreatment of the internal combustion engine.
- the lambda control can be improved in such a way that the
- Measurement accuracy of the lambda probes increases and thus the internal combustion engine can be adjusted in a narrower window to a stoichiometric combustion air ratio.
- Temperature sensors are known from the prior art, which measure an exhaust gas temperature and this information to the engine control unit of the
- a method for controlling a lambda-controlled exhaust system of an internal combustion engine wherein the exhaust system has at least one catalyst and at least one heating element for heating the lambda probe to an operating temperature. It is envisaged that the performance of the heating element is determined and at least one corrected control parameter is used by the heating element control for controlled heating of the heating element.
- the invention is based on the object of further improving such a method and, using temperature sensors already present on the motor vehicle
- the object is achieved by an inventive method for operating a lambda probe in an exhaust passage of an internal combustion engine, wherein the lambda probe in the
- Exhaust passage is arranged upstream of a catalyst, wherein the lambda probe a
- Has heating element wherein the operating temperature of the lambda probe by means of a
- Heating controller of the heating element is set, wherein an exhaust gas temperature of the
- Internal combustion engine is determined by an internal resistance of the lambda probe, and wherein by means of a temperature sensor, a reference temperature is determined at the determined reference temperature an internal resistance of the heating element is measured, the heating element is acted upon by a defined heating voltage, a step response of
- a first resistance of the heating element and at a later time a second resistance of the heating element is evaluated.
- the adaptation of the resistor takes place as a function of three
- Resistance measurements of the heating element wherein a first resistance measurement takes place at a temperature determined by the temperature sensor and two more
- Resistance measurements are carried out at unknown temperatures and based on the measured internal resistance R, a lambda probe individual heating resistor R h is calculated for the heating element of the lambda probe. There are thus three temperature measurements, one at the known temperature and two at unknown temperatures. It can be one
- Relationship between the internal resistance R, and the heating resistor R h are made to the size of the lambda probe-individual heating resistor R h or to conclude a deviation from a heating resistor of a standard lambda probe. As a result, component variations in the heating resistor can be compensated and thus an improved model for calculating the exhaust gas temperature can be provided.
- Reference temperature is the ambient temperature is provided. In general, it is on
- the exhaust gas temperature model can be made plausible by a sensor value, which improves the modeling over the entire exhaust system of the internal combustion engine.
- Heating resistor R h is stored in a control unit of the internal combustion engine.
- the corrected heating resistor is available for the further operation of the internal combustion engine and does not have to be constantly redetermined.
- the measurement can be used to correct the
- Heating resistor R h are repeated at regular intervals to compensate for aging of the lambda probe or a change in the heating resistance over the life of the lambda probe.
- the method is started or carried out before a starting process of the internal combustion engine.
- the temperature of the lambda probe substantially corresponds to the ambient temperature.
- the internal resistance R, of the heating resistance of the lambda probe can be determined at a precisely known temperature, whereby a stable support point for the model for calculating the exhaust gas temperature is formed.
- a door contact switch, a buckle sensor or a sensor for detecting a seat occupancy of a motor vehicle Before starting a motor vehicle, the driver usually opens the driver's door, sits on the driver's seat, closes the belt and starts the vehicle and thus the internal combustion engine. Consequently are a door contact switch, a buckle sensor or a sensor for detecting a seat occupancy of the driver's seat well suited to start before starting the engine, a corresponding method. In this case, appropriate warning devices are usually present both for a non-closed door contact or for a non-applied seat belt, the signal simply to the control unit of the
- Internal combustion engine can be forwarded to start the process.
- a device for correcting a characteristic curve of a lambda probe in an exhaust duct of an internal combustion engine wherein a catalytic converter is arranged in the exhaust duct, wherein in the flow direction of an exhaust gas of the internal combustion engine through the exhaust duct upstream of the catalyst, the lambda sensor is arranged, wherein the operating temperature of the lambda probe means a heating controller of the heating element is adjustable, wherein an exhaust gas temperature of the internal combustion engine by a
- Internal resistance of the lambda probe can be determined, wherein a temperature sensor is provided for determining a reference temperature, and wherein the device comprises a control unit.
- a temperature sensor is provided for determining a reference temperature
- the device comprises a control unit.
- FIG. 1 shows a motor vehicle with a device according to the invention for operating a
- Figure 2 is a flow chart for carrying out a method according to the invention.
- the internal combustion engine 32 has an exhaust gas channel 12, in which a catalytic converter 14, preferably a three-way Catalyst, is arranged.
- the internal combustion engine 10 is arranged upstream of the catalytic converter 14 via an exhaust gas flow direction of an exhaust gas of the internal combustion engine 10
- Lambda probe 20 controlled by a control unit 18, wherein the internal combustion engine 10 is preferably operated alternately with low excess air and low fuel excess by a stoichiometric combustion air ratio.
- the lambda probe 20 is preferably designed as a broadband probe and has a controllable heating element 22, preferably a heating resistor on. To control the heating element 22 is a
- Heating controller 24 is provided, which, for example, in the control unit 18 of the
- Internal combustion engine 10 may be integrated or formed as a separate component.
- a temperature sensor 16 is arranged, with which a, preferably substantially constant temperature, in particular the
- sensors 26, 28, 30 are further installed, which are designed as a door contact switch 26, as a buckle sensor 28 or as a sensor 30 for detecting the seat occupancy.
- the lambda probe 20 is heated both via the hot exhaust gas of the internal combustion engine and via the heating element 22 and regulated to a predefined operating temperature.
- the heating power requirement to the electric heating element 22 is low because a larger heat flow is supplied to the lambda probe 20 via the exhaust gas.
- the electric heating element 22 is based on an ohmic resistance.
- the applied voltage U is quadratically proportional to the heating power of the heating element 22.
- the heating resistance R h of the heating element 22 determines how much voltage has to be applied to regulate the target temperature.
- the target value of this regulation is the internal resistance R, of the heating element 22 of the lambda probe 20.
- Heating resistor are.
- the heating resistor is subject to manufacturing tolerances, so that during operation of the lambda probe 20 different heating powers are required to achieve the target internal resistance R ,. These tolerances must be adapted. Therefore, a comparison to existing ones Temperature sensors 16 helpful. This is preferably carried out in cold and stationary internal combustion engine 10 via a sensor for detecting the ambient temperature.
- the control unit 18 can start, for example via a door contact sensor 26, an adaptation routine with which a defined heating voltage U h is brought to the lambda probe 20 and the step response of the internal resistance R, of the heating element 22
- the gradient of the internal resistance R is higher for lambda probes 20 with a lower heating resistance R h of the heating element 22 than for lambda probes 20 with a maximum permissible heating resistance.
- the temperature of the lambda probe is proportional to the internal resistance R, of the heating element 22.
- R the internal resistance of the heating element 22
- T the temperature of the lambda probe 20.
- the internal resistance R is also proportional to the introduced heating power P h.
- R, ⁇ P h the temperature at the lambda probe 20 is inversely proportional to the heating resistance R h .
- FIG. 2 shows a flow diagram of a method according to the invention for operating a lambda probe 20.
- the ambient temperature is determined by the
- Temperature sensor 16 measured. In a second process step ⁇ 1 10> takes place
- Heating voltage U h given to the heating element 22 at cold lambda probe 20 At a first time t-1, in a method step ⁇ 130>, a second measurement of the
- the lambda probe 20 is heated both with the electric heating element 22 and by the exhaust gas of the internal combustion engine 10.
- the known and adapted heating resistor R h of the heating element 22 and the applied heating voltage U h can thus be clearly and reliably closed to the temperature of the exhaust gas at the lambda probe 20.
- the exhaust gas temperature model may provide an additional sensor value for
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
The invention relates to a method for operating a lambda probe (20) in an exhaust gas channel (12) of an internal combustion engine (10), wherein the lambda probe (20) is arranged in the exhaust gas channel (12) upstream of a catalyst (14), wherein the lambda probe (20) has a heating element (22), wherein the operating temperature of the lambda probe (20) is set by means of a heating controller (24) of the heating element (22), and wherein an exhaust gas temperature of the internal combustion engine (10) is determined by means of an internal resistance of the lambda probe (20), wherein a reference temperature is determined by means of a temperature sensor (16), an internal resistance (Ri) of the heating element (22) is measured at the determined reference temperature, a defined heating voltage is applied to the heating element (22), a step response of the internal resistance of the heating element (22) is evaluated, and the heating resistance (Rh) of the heating element (22) is adjusted on the basis of the step response. The invention further relates to a device for performing such a method and to a control unit (18) for performing such a method.
Description
Beschreibung description
Verfahren und Vorrichtung zum Betreiben einer Lambdasonde in einem Abgaskanal einer Method and device for operating a lambda probe in an exhaust duct of a
Brennkraftmaschine Internal combustion engine
Die Erfindung betrifft ein Verfahren zum Betreiben einer Lambdasonde in einem Abgaskanal einer Brennkraftmaschine sowie eine Vorrichtung zur Durchführung eines solchen Verfahrens gemäß den Oberbegriffen der unabhängigen Patentansprüche. The invention relates to a method for operating a lambda probe in an exhaust passage of an internal combustion engine and to an apparatus for carrying out such a method according to the preambles of the independent claims.
Bei Kraftfahrzeugen mit einem Verbrennungsmotor, insbesondere mit einem Otto-Motor, sind heute Drei-Wege-Katalysatoren zur Abgasnachbehandlung Standard. Dabei werden die Verbrennungsmotoren anhand von Lambdasonden alternierend um ein stöchiometrisches Verbrennungsluftverhältnis geregelt, damit solche Drei-Wege-Katalysatoren ihre maximale Wirksamkeit bezüglich der Konvertierung schädlicher Abgasbestandteile entfalten können. Dabei kann eine Temperaturmessung im Abgaskanal wichtige Informationen zum Zustand des Abgassystems liefern. So kann beispielsweise durch eine Temperaturmessung im Abgaskanal ein Eingriff in die Motorsteuerung des Verbrennungsmotors erfolgen, um eine Überhitzung von Komponenten zur Abgasnachbehandlung des Verbrennungsmotors zu vermeiden. Ferner kann über die Temperaturmessung die Lambdaregelung derart verbessert werden, dass die In motor vehicles with an internal combustion engine, in particular with a petrol engine, today three-way catalytic converters for exhaust aftertreatment standard. The internal combustion engines are controlled by lambda probes alternately by a stoichiometric combustion air ratio, so that such three-way catalysts can develop their maximum efficiency with respect to the conversion of harmful exhaust gas components. In this case, a temperature measurement in the exhaust passage can provide important information about the condition of the exhaust system. Thus, for example, by a temperature measurement in the exhaust passage, an intervention in the engine control of the engine take place in order to avoid overheating of components for exhaust aftertreatment of the internal combustion engine. Furthermore, via the temperature measurement, the lambda control can be improved in such a way that the
Messgenauigkeit der Lambdasonden steigt und somit die Brennkraftmaschine in einem engeren Fenster um ein stöchiometrisches Verbrennungsluftverhältnis eingeregelt werden kann. Measurement accuracy of the lambda probes increases and thus the internal combustion engine can be adjusted in a narrower window to a stoichiometric combustion air ratio.
Dadurch sinken die Rohemissionen des Verbrennungsmotors und somit die Gesamtemissionen des Kraftfahrzeuges. Aus dem Stand der Technik sind Temperatursensoren bekannt, welche eine Abgastemperatur messen und diese Information an das Motorsteuergerät des This reduces the raw emissions of the internal combustion engine and thus the total emissions of the motor vehicle. Temperature sensors are known from the prior art, which measure an exhaust gas temperature and this information to the engine control unit of the
Verbrennungsmotors senden. Diese Sensoren sind jedoch relativ teuer, sodass in der Send combustion engine. However, these sensors are relatively expensive, so in the
Vergangenheit bereits Anstrengungen unternommen wurden, um die Abgastemperatur über den Heizwiderstand einer beheizbaren Lambdasonde zu ermitteln. Efforts have already been made in the past to determine the exhaust gas temperature via the heating resistor of a heated lambda probe.
Aus der DE 10 2008 01 1 833 A1 ist ein Verfahren zum Steuern einer lambdageregelten Abgasanlage einer Brennkraftmaschine bekannt, wobei die Abgasanlage wenigstens einen Katalysator und wenigstens ein Heizelement zum Aufheizen der Lambdasonde auf eine Betriebstemperatur aufweist. Es ist vorgesehen, dass die Leistungsfähigkeit des Heizelementes ermittelt wird und wenigstens ein korrigierter Regelparameter von der Heizelementsteuerung zum geregelten Beheizen des Heizelementes verwendet wird.
Der Erfindung liegt nun die Aufgabe zugrunde, ein solches Verfahren weiter zu verbessern und unter Verwendung bereits am Kraftfahrzeug vorhandener Temperatursensoren eine From DE 10 2008 01 1 833 A1 a method for controlling a lambda-controlled exhaust system of an internal combustion engine is known, wherein the exhaust system has at least one catalyst and at least one heating element for heating the lambda probe to an operating temperature. It is envisaged that the performance of the heating element is determined and at least one corrected control parameter is used by the heating element control for controlled heating of the heating element. The invention is based on the object of further improving such a method and, using temperature sensors already present on the motor vehicle
verbesserte Aussage über die Temperatur im Abgaskanal zu ermöglichen. to provide improved information about the temperature in the exhaust duct.
Die Aufgabe wird durch ein erfindungsgemäßes Verfahren zum Betreiben einer Lambdasonde in einem Abgaskanal einer Brennkraftmaschine gelöst, wobei die Lambdasonde in dem The object is achieved by an inventive method for operating a lambda probe in an exhaust passage of an internal combustion engine, wherein the lambda probe in the
Abgaskanal stromauf eines Katalysators angeordnet ist, wobei die Lambdasonde ein Exhaust passage is arranged upstream of a catalyst, wherein the lambda probe a
Heizelement aufweist, wobei die Betriebstemperatur der Lambdasonde mittels eines Has heating element, wherein the operating temperature of the lambda probe by means of a
Heizungsreglers des Heizelements eingestellt wird, wobei eine Abgastemperatur der Heating controller of the heating element is set, wherein an exhaust gas temperature of the
Brennkraftmaschine durch einen Innenwiderstand der Lambdasonde ermittelt wird, und wobei mittels eines Temperatursensors eine Referenztemperatur ermittelt wird, bei der ermittelten Referenztemperatur ein Innenwiderstand des Heizelements gemessen wird, das Heizelement mit einer definierten Heizspannung beaufschlagt wird, eine Sprungantwort des Internal combustion engine is determined by an internal resistance of the lambda probe, and wherein by means of a temperature sensor, a reference temperature is determined at the determined reference temperature an internal resistance of the heating element is measured, the heating element is acted upon by a defined heating voltage, a step response of
Innenwiderstands des Heizelements ausgewertet wird und anhand der Sprungantwort eine Adaption des Heizwiderstands des Heizelements erfolgt. Dadurch ist eine individuelle Internal resistance of the heating element is evaluated and based on the step response, an adaptation of the heating resistance of the heating element takes place. This is an individual
Kompensation der Bauteilstreuungen des Heizwiderstandes der Lambdasonden möglich, sodass Lambdasonden-individuell eine Temperatur-Widerstandskurve der Lambdasonde errechnet werden kann und somit eine verbesserte Bestimmung der Temperatur im Abgaskanal anhand des Innenwiderstands der jeweiligen Lambdasonde möglich ist. Compensation of component scattering of the heating resistor of the lambda probes possible so that lambda probes-individually a temperature-resistance curve of the lambda probe can be calculated and thus an improved determination of the temperature in the exhaust passage based on the internal resistance of the respective lambda probe is possible.
Gemäß einer vorteilhaften Ausführungsform des Verfahrens ist vorgesehen, dass zu einem ersten Zeitpunkt ein erster Widerstand des Heizelements und zu einem späteren Zeitpunkt ein zweiter Widerstand des Heizelements ausgewertet wird. Durch eine zweifache Auswertung des Innenwiderstands des Heizelements ist eine einfache Erstellung einer Korrekturfunktion der Lambdasonde möglich. According to an advantageous embodiment of the method it is provided that at a first time a first resistance of the heating element and at a later time a second resistance of the heating element is evaluated. By a two-fold evaluation of the internal resistance of the heating element, a simple creation of a correction function of the lambda probe is possible.
Vorzugsweise erfolgt die Adaption des Widerstands in Abhängigkeit von drei Preferably, the adaptation of the resistor takes place as a function of three
Widerstandsmessungen des Heizelements, wobei eine erste Widerstandsmessung bei einer durch den Temperatursensor ermittelten Temperatur erfolgt und zwei weitere Resistance measurements of the heating element, wherein a first resistance measurement takes place at a temperature determined by the temperature sensor and two more
Widerstandsmessungen bei unbekannten Temperaturen erfolgen und anhand des gemessenen Innenwiderstand R, ein Lambdasonden-individueller Heizwiderstand Rh für das Heizelement der Lambdasonde errechnet wird. Dadurch existieren drei Temperaturmessungen, eine bei der bekannten Temperatur und zwei weitere bei unbekannten Temperaturen. Es kann ein Resistance measurements are carried out at unknown temperatures and based on the measured internal resistance R, a lambda probe individual heating resistor R h is calculated for the heating element of the lambda probe. There are thus three temperature measurements, one at the known temperature and two at unknown temperatures. It can be one
Zusammenhang zwischen dem Innenwiderstand R, und dem Heizwiderstand Rh hergestellt werden, um auf die Größe des Lambdasonden-individuellen Heizwiderstands Rh
beziehungsweise eine Abweichung von einem Heizwiderstand einer Norm-Lambdasonde zu schließen. Dadurch können Bauteilstreuungen beim Heizwiderstand kompensiert und somit ein verbessertes Modell zur Berechnung der Abgastemperatur bereitgestellt werden. Relationship between the internal resistance R, and the heating resistor R h are made to the size of the lambda probe-individual heating resistor R h or to conclude a deviation from a heating resistor of a standard lambda probe. As a result, component variations in the heating resistor can be compensated and thus an improved model for calculating the exhaust gas temperature can be provided.
Gemäß einer vorteilhaften Ausführungsform des Verfahrens ist vorgesehen, dass als According to an advantageous embodiment of the method is provided that as
Referenztemperatur die Umgebungstemperatur vorgesehen ist. In der Regel ist an Reference temperature is the ambient temperature is provided. In general, it is on
Kraftfahrzeugen ein Sensor zur Erfassung der Umgebungstemperatur vorhanden, Motor vehicles a sensor for detecting the ambient temperature exists
beispielsweise um den Fahrzeugführer über ein Display mit dieser Information zu versorgen, die Heizung beziehungsweise Klimaanlage des Fahrzeugs zu regeln oder um den Fahrzeugführer vor Glatteis zu warnen. Durch einen solchen Temperatursensor und eine genaue For example, to provide the driver via a display with this information to regulate the heating or air conditioning of the vehicle or to warn the driver against black ice. By such a temperature sensor and accurate
Temperaturmessung kann das Abgastemperaturmodell durch einen Sensorwert plausibilisiert werden, was die Modellierung über das gesamte Abgassystem der Brennkraftmaschine verbessert. Temperature measurement, the exhaust gas temperature model can be made plausible by a sensor value, which improves the modeling over the entire exhaust system of the internal combustion engine.
In bevorzugter Ausgestaltung der Erfindung ist vorgesehen, dass ein adaptierter In a preferred embodiment of the invention, it is provided that an adapted
Heizwiderstand Rh in einem Steuergerät der Brennkraftmaschine abgelegt wird. Somit steht der korrigierte Heizwiderstand für den weiteren Betrieb der Brennkraftmaschine zur Verfügung und muss nicht ständig neu ermittelt werden. Zudem kann die Messung zur Korrektur des Heating resistor R h is stored in a control unit of the internal combustion engine. Thus, the corrected heating resistor is available for the further operation of the internal combustion engine and does not have to be constantly redetermined. In addition, the measurement can be used to correct the
Heizwiderstands Rh in regelmäßigen Abständen wiederholt werden, um eine Alterung der Lambdasonde beziehungsweise eine Veränderung des Heizwiderstands über die Laufzeit der Lambdasonde zu kompensieren. Heating resistor R h are repeated at regular intervals to compensate for aging of the lambda probe or a change in the heating resistance over the life of the lambda probe.
In weiterer bevorzugter Ausgestaltung der Erfindung ist vorgesehen, dass das Verfahren vor einem Startvorgang der Brennkraftmaschine gestartet beziehungsweise durchgeführt wird. Vor dem Start der Brennkraftmaschine beziehungsweise nach einem längeren Stillstand der Brennkraftmaschine beziehungsweise des Kraftfahrzeuges entspricht die Temperatur der Lambdasonde im Wesentlichen der Umgebungstemperatur. Somit kann der Innenwiderstand R, des Heizwiderstands der Lambdasonde bei einer genau bekannten Temperatur ermittelt werden, wodurch eine stabile Stützstelle für das Modell zur Berechnung der Abgastemperatur gebildet wird. In a further preferred embodiment of the invention, it is provided that the method is started or carried out before a starting process of the internal combustion engine. Before the start of the internal combustion engine or after a longer standstill of the internal combustion engine or the motor vehicle, the temperature of the lambda probe substantially corresponds to the ambient temperature. Thus, the internal resistance R, of the heating resistance of the lambda probe can be determined at a precisely known temperature, whereby a stable support point for the model for calculating the exhaust gas temperature is formed.
Gemäß einer bevorzugten Ausführungsform des Verfahrens ist vorgesehen, dass das According to a preferred embodiment of the method it is provided that the
Verfahren durch einen Türkontaktschalter, einen Gurtschloss-Sensor oder einen Sensor zur Erkennung einer Sitzbelegung eines Kraftfahrzeuges gestartet wird. Vor dem Startvorgang eines Kraftfahrzeuges öffnet der Fahrzeugführer in der Regel die Fahrertür, setzt sich auf den Fahrersitz, schließt den Gurt und startet das Fahrzeug und somit die Brennkraftmaschine. Somit
sind ein Türkontaktschalter, ein Gurtschloss-Sensor oder eine Sensor zur Erkennung einer Sitzbelegung des Fahrersitzes gut geeignet, um vor dem Start des Verbrennungsmotors ein entsprechendes Verfahren zu starten. Dabei sind in der Regel sowohl für einen nicht geschlossenen Türkontakt oder für einen nicht angelegten Sicherheitsgurt entsprechende Warneinrichtungen vorhanden, deren Signal einfach an das Steuergerät der Method by a door contact switch, a buckle sensor or a sensor for detecting a seat occupancy of a motor vehicle is started. Before starting a motor vehicle, the driver usually opens the driver's door, sits on the driver's seat, closes the belt and starts the vehicle and thus the internal combustion engine. Consequently are a door contact switch, a buckle sensor or a sensor for detecting a seat occupancy of the driver's seat well suited to start before starting the engine, a corresponding method. In this case, appropriate warning devices are usually present both for a non-closed door contact or for a non-applied seat belt, the signal simply to the control unit of the
Brennkraftmaschine weitergeleitet werden kann, um das Verfahren zu starten. Internal combustion engine can be forwarded to start the process.
Erfindungsgemäß wird eine Vorrichtung zur Korrektur einer Kennlinie einer Lambdasonde in einem Abgaskanal eines Verbrennungsmotors vorgeschlagen, wobei in dem Abgaskanal ein Katalysator angeordnet ist, wobei in Strömungsrichtung eines Abgases der Brennkraftmaschine durch den Abgaskanal stromauf des Katalysators die Lambdasonde angeordnet ist, wobei die Betriebstemperatur der Lambdasonde mittels eines Heizungsreglers des Heizelements einstellbar ist, wobei eine Abgastemperatur der Brennkraftmaschine durch einen According to the invention, a device for correcting a characteristic curve of a lambda probe in an exhaust duct of an internal combustion engine is proposed, wherein a catalytic converter is arranged in the exhaust duct, wherein in the flow direction of an exhaust gas of the internal combustion engine through the exhaust duct upstream of the catalyst, the lambda sensor is arranged, wherein the operating temperature of the lambda probe means a heating controller of the heating element is adjustable, wherein an exhaust gas temperature of the internal combustion engine by a
Innenwiderstand der Lambdasonde ermittelbar ist, wobei ein Temperatursensor zur Ermittlung einer Referenztemperatur vorgesehen ist, und wobei die Vorrichtung ein Steuergerät aufweist. Durch eine solche Vorrichtung lässt sich auf einfache Weise ein in den vorherstehenden Abschnitten beschriebenes Verfahren durchführen. Mit einer solchen Vorrichtung kann eine verbesserte Berechnung der Temperatur im Abgaskanal anhand des Heizwiderstands der Lambdasonde erfolgen. Internal resistance of the lambda probe can be determined, wherein a temperature sensor is provided for determining a reference temperature, and wherein the device comprises a control unit. By such a device can be carried out in a simple manner described in the preceding sections method. With such a device, an improved calculation of the temperature in the exhaust duct based on the heating resistance of the lambda probe can be done.
Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen. Further preferred embodiments of the invention will become apparent from the remaining, mentioned in the dependent claims characteristics.
Die verschiedenen in dieser Anmeldung genannten Ausführungsformen der Erfindung sind, sofern im Einzelfall nicht anders ausgeführt, mit Vorteil miteinander kombinierbar. The various embodiments of the invention mentioned in this application are, unless otherwise stated in the individual case, advantageously combinable with each other.
Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen The invention is described below in embodiments with reference to the associated
Zeichnungen erläutert. Es zeigen: Drawings explained. Show it:
Figur 1 ein Kraftfahrzeug mit einer erfindungsgemäßen Vorrichtung zum Betrieb einer 1 shows a motor vehicle with a device according to the invention for operating a
Lambdasonde lambda probe
Figur 2 ein Ablaufschema zur Durchführung eines erfindungsgemäßen Verfahrens. Figure 2 is a flow chart for carrying out a method according to the invention.
Figur 1 zeigt ein Kraftfahrzeug 32 mit einer Brennkraftmaschine 10. Die Brennkraftmaschine 32 weist einen Abgaskanal 12 auf, in welchem ein Katalysator 14, vorzugsweise ein Drei-Wege-
Katalysator, angeordnet ist. Die Brennkraftmaschine 10 ist über eine in Abgasstromrichtung eines Abgases der Brennkraftmaschine 10 stromauf des Katalysators 14 angeordnete 1 shows a motor vehicle 32 with an internal combustion engine 10. The internal combustion engine 32 has an exhaust gas channel 12, in which a catalytic converter 14, preferably a three-way Catalyst, is arranged. The internal combustion engine 10 is arranged upstream of the catalytic converter 14 via an exhaust gas flow direction of an exhaust gas of the internal combustion engine 10
Lambdasonde 20 durch ein Steuergerät 18 regelbar, wobei die Brennkraftmaschine 10 vorzugsweise alternierend mit geringem Luftüberschuss und geringem Kraftstoffuberschuss um ein stöchiometrisches Verbrennungsluftverhältnis betrieben wird. Die Lambdasonde 20 ist vorzugsweise als Breitbandsonde ausgebildet und weist ein regelbares Heizelement 22, vorzugsweise einen Heizwiderstand, auf. Zur Regelung des Heizelements 22 ist ein Lambda probe 20 controlled by a control unit 18, wherein the internal combustion engine 10 is preferably operated alternately with low excess air and low fuel excess by a stoichiometric combustion air ratio. The lambda probe 20 is preferably designed as a broadband probe and has a controllable heating element 22, preferably a heating resistor on. To control the heating element 22 is a
Heizungsregler 24 vorgesehen, welcher beispielsweise in das Steuergerät 18 des Heating controller 24 is provided, which, for example, in the control unit 18 of the
Verbrennungsmotors 10 integriert sein kann oder als separates Bauteil ausgebildet ist. Internal combustion engine 10 may be integrated or formed as a separate component.
An dem Kraftfahrzeug 32 ist ein Temperatursensor 16 angeordnet, mit welchen eine, vorzugsweise im Wesentlichen konstante Temperatur, insbesondere die On the motor vehicle 32, a temperature sensor 16 is arranged, with which a, preferably substantially constant temperature, in particular the
Umgebungstemperatur, erfasst werden kann. An dem Kraftfahrzeug 32 sind ferner Sensoren 26, 28, 30 verbaut, welche als Türkontakt-Schalter 26, als Gurtschloss-Sensor 28 oder als Sensor 30 zur Erkennung der Sitzbelegung ausgebildet sind. Ambient temperature, can be detected. On the motor vehicle 32 sensors 26, 28, 30 are further installed, which are designed as a door contact switch 26, as a buckle sensor 28 or as a sensor 30 for detecting the seat occupancy.
Im Betrieb der Brennkraftmaschine 10 wird die Lambdasonde 20 sowohl über das heiße Abgas der Brennkraftmaschine als auch über das Heizelement 22 beheizt und auf eine vordefinierte Betriebstemperatur geregelt. Bei heißem Abgas ist grundsätzlich die Heizleistungsanforderung an das elektrische Heizelement 22 gering, weil ein größerer Wärmestrom über das Abgas zur Lambdasonde 20 zugeführt wird. Das elektrische Heizelement 22 basiert auf einem ohmschen Widerstand. Die angelegte Spannung U ist quadratisch proportional zur Heizleistung des Heizelements 22. Der Heizwiderstand Rh des Heizelements 22 bestimmt, wieviel Spannung angelegt werden muss, um die Zieltemperatur einzuregeln. Zielwert dieser Regelung ist der Innenwiderstand R, des Heizelements 22 der Lambdasonde 20. During operation of the internal combustion engine 10, the lambda probe 20 is heated both via the hot exhaust gas of the internal combustion engine and via the heating element 22 and regulated to a predefined operating temperature. In the case of hot exhaust gas, in principle the heating power requirement to the electric heating element 22 is low because a larger heat flow is supplied to the lambda probe 20 via the exhaust gas. The electric heating element 22 is based on an ohmic resistance. The applied voltage U is quadratically proportional to the heating power of the heating element 22. The heating resistance R h of the heating element 22 determines how much voltage has to be applied to regulate the target temperature. The target value of this regulation is the internal resistance R, of the heating element 22 of the lambda probe 20.
Der funktionale Zusammenhang lässt sich wie folgt beschreiben: The functional relationship can be described as follows:
Ph = U * l = U2 / Rh P h = U * l = U 2 / R h
Wobei Ph die Heizleistung, U die Heizspannung, I der fließende Strom und Rh der Where P h is the heating power, U the heating voltage, I the flowing current and R h the
Heizwiderstand sind. Heating resistor are.
Der Heizwiderstand unterliegt Fertigungstoleranzen, sodass im Betrieb der Lambdasonde 20 unterschiedliche Heizleistungen angefordert werden, um den zielwertigen Innenwiderstand R, zu erreichen. Diese Toleranzen müssen adaptiert werden. Daher ist ein Abgleich zu bestehenden
Temperatursensoren 16 hilfreich. Bevorzugt wird dieser bei kalter und stehender Brennkraftmaschine 10 über einen Sensor zur Erfassung der Umgebungstemperatur durchgeführt. Das Steuergerät 18 kann beispielsweise über einen Türkontakt-Sensor 26 eine Adaptionsroutine starten, mit der eine definierte Heizspannung Uh an die Lambdasonde 20 gebracht wird und die Sprungantwort des Innenwiderstands R, des Heizelements 22 The heating resistor is subject to manufacturing tolerances, so that during operation of the lambda probe 20 different heating powers are required to achieve the target internal resistance R ,. These tolerances must be adapted. Therefore, a comparison to existing ones Temperature sensors 16 helpful. This is preferably carried out in cold and stationary internal combustion engine 10 via a sensor for detecting the ambient temperature. The control unit 18 can start, for example via a door contact sensor 26, an adaptation routine with which a defined heating voltage U h is brought to the lambda probe 20 and the step response of the internal resistance R, of the heating element 22
ausgewertet wird. Der Gradient des Innenwiderstands R, ist bei Lambdasonden 20 mit geringerem Heizwiderstand Rh des Heizelements 22 höher als bei Lambdasonden 20 mit maximal zulässigem Heizwiderstand. is evaluated. The gradient of the internal resistance R is higher for lambda probes 20 with a lower heating resistance R h of the heating element 22 than for lambda probes 20 with a maximum permissible heating resistance.
Die Temperatur der Lambdasonde ist proportional zum Innenwiderstand R, des Heizelements 22. Es gilt: T ~ R, , wobei R, der Innenwiderstand des Heizelements 22 und T die Temperatur der Lambdasonde 20 ist. The temperature of the lambda probe is proportional to the internal resistance R, of the heating element 22. The following applies: T ~ R, where R, the internal resistance of the heating element 22 and T is the temperature of the lambda probe 20.
Der Innenwiderstand R, ist ferner proportional zur eingebrachten Heizleistung Ph. Es gilt: R, ~ Ph. Damit ist die Temperatur an der Lambdasonde 20 invers proportional zum Heizwiderstand Rh. Es gilt:
The internal resistance R, is also proportional to the introduced heating power P h. The following applies: R, ~ P h . Thus, the temperature at the lambda probe 20 is inversely proportional to the heating resistance R h . The following applies:
In Figur 2 ist ein Ablaufdiagramm eines erfindungsgemäßen Verfahrens zum Betreiben einer Lambdasonde 20 dargestellt. FIG. 2 shows a flow diagram of a method according to the invention for operating a lambda probe 20.
In einem ersten Verfahrensschritt <100> wird die Umgebungstemperatur durch den In a first method step <100>, the ambient temperature is determined by the
Temperatursensor 16 gemessen. In einem zweiten Verfahrensschritt <1 10> erfolgt eine Temperature sensor 16 measured. In a second process step <1 10> takes place
Messung des Innenwiderstands R, zum Zeitpunkt t0, also bei Umgebungstemperatur und bevor die Lambdasonde 20 beziehungsweise das Heizelement mit einer definierten Heizspannung beaufschlagt werden. In einem weiteren Verfahrensschritt <120> wird eine definierte Measurement of the internal resistance R, at the time t 0 , ie at ambient temperature and before the lambda probe 20 or the heating element are acted upon by a defined heating voltage. In a further method step <120>, a defined
Heizspannung Uh auf das Heizelement 22 bei kalter Lambdasonde 20 gegeben. Zu einem ersten Zeitpunkt t-ι erfolgt in einem Verfahrensschritt <130> ein zweite Messung des Heating voltage U h given to the heating element 22 at cold lambda probe 20. At a first time t-1, in a method step <130>, a second measurement of the
Innenwiderstandes R, des Heizelements 22. Nach Ablauf einer weiteren Verzugszeit erfolgt zu einem zweiten, späteren Zeitpunkt t2 eine erneute Messung des Innenwiderstands R, des Heizelements 22. In einem folgenden Verfahrensschritt <140> wird die Adaptionsroutine beendet und der gelernte, adaptierte Wert der Heizspannung Rh im Steuergerät 18 gespeichert. Internal resistance R, of the heating element 22. After another delay time has elapsed, a second, later time t 2 re-measures the internal resistance R, of the heating element 22. In a following process step <140>, the adaptation routine is ended and the learned, adapted value of Heating voltage R h stored in the control unit 18.
Dadurch, dass drei Messungen des Innenwiderstands R,, eine bei bekannter (Umgebungs-) Temperatur und zwei weitere bei unbekannten Temperaturen erfolgen, kann ein
Zusammenhang zwischen R, und Rh hergestellt werden, um auf die Größe des adaptierten Heizwiderstands Rh beziehungsweise den Abstand zu einem normierten Heizelement 22 zu schließen. By making three measurements of the internal resistance R ,, one at a known (ambient) temperature and two more at unknown temperatures, a Relationship between R, and R h are made to close on the size of the adapted heating resistor R h or the distance to a normalized heating element 22.
Im Betrieb der Brennkraftmaschine 10 wird die Lambdasonde 20 sowohl mit dem elektrischen Heizelement 22 als auch durch das Abgas der Brennkraftmaschine 10 beheizt. Mit dem bekannten und adaptierten Heizwiderstand Rh des Heizelements 22 und der angelegten Heizspannung Uh kann somit eindeutig und zuverlässig auf die Temperatur des Abgases an der Lambdasonde 20 geschlossen werden. Damit werden die Nachteile eines unadaptierten Heizelements 22 überwunden und somit eine größere Genauigkeit bei der During operation of the internal combustion engine 10, the lambda probe 20 is heated both with the electric heating element 22 and by the exhaust gas of the internal combustion engine 10. With the known and adapted heating resistor R h of the heating element 22 and the applied heating voltage U h can thus be clearly and reliably closed to the temperature of the exhaust gas at the lambda probe 20. Thus, the disadvantages of an unadaptierten heating element 22 are overcome and thus greater accuracy in the
Temperaturermittlung erreicht. Durch eine genauere Temperaturermittlung über dieses Temperature determination achieved. By a more accurate temperature determination over this
Verfahren kann das Abgastemperaturmodell einen zusätzlichen Sensorwert zur Method, the exhaust gas temperature model may provide an additional sensor value for
Plausibilisierung erlangen, welches die Modellierung über das gesamte Abgassystem verbessert.
Achieve plausibility that enhances modeling across the entire exhaust system.
Bezugszeichenliste LIST OF REFERENCE NUMBERS
10 Brennkraftmaschine 10 internal combustion engine
12 Abgaskanal 12 exhaust duct
14 Katalysator 14 catalyst
16 Temperatursensor 16 temperature sensor
18 Steuergerät 18 control unit
20 Lambdasonde 20 lambda probe
22 Heizelement 22 heating element
24 Heizungsregler 24 heating controller
26 Türkontaktschalter 26 door contact switch
28 Gurtschloss-Sensor 28 buckle sensor
30 Sensor zur Erkennung der Sitzbelegung 30 Seat occupancy sensor
32 Kraftfahrzeug 32 motor vehicle
I Stromstärke I current
Ph Heizleistung P h heating power
Rh Heizwiderstand R h heating resistor
R, Innenwiderstand R, internal resistance
T Temperatur T temperature
U Spannung t0 Messzeitpunkt vor Aufbringen der Heizspannung t-ι erster Messzeitpunkt U voltage t 0 measuring time before applying the heating voltage t-ι first measurement time
t2 zweiter Messzeitpunkt
t 2 second measuring time
Claims
1 . Verfahren zum Betreiben einer Lambdasonde (20) in einem Abgaskanal (12) einer Brennkraftmaschine (10), wobei die Lambdasonde (20) in dem Abgaskanal (12) stromauf eines Katalysators (14) angeordnet ist, wobei die Lambdasonde (20) ein Heizelement (22) aufweist, wobei die Betriebstemperatur der Lambdasonde (20) mittels eines Heizungsreglers (24) des Heizelements (22) eingestellt wird, und wobei eine Abgastemperatur der Brennkraftmaschine (10) durch einen Innenwiderstand der Lambdasonde (20) ermittelt wird, dadurch gekennzeichnet, dass mittels eines 1 . Method for operating a lambda probe (20) in an exhaust gas duct (12) of an internal combustion engine (10), wherein the lambda probe (20) is arranged in the exhaust gas duct (12) upstream of a catalytic converter (14), wherein the lambda probe (20) comprises a heating element ( 22), wherein the operating temperature of the lambda probe (20) by means of a heating controller (24) of the heating element (22) is set, and wherein an exhaust gas temperature of the internal combustion engine (10) by an internal resistance of the lambda probe (20) is determined, characterized in that by means of a
Temperatursensors (16) eine Referenztemperatur ermittelt wird, bei der ermittelten Referenztemperatur ein Innenwiderstand (R,) des Heizelements (22) gemessen wird, das Heizelement (22) mit einer definierten Heizspannung (Uh) beaufschlagt wird, eine Sprungantwort des Innenwiderstands (R,) des Heizelements (22) ausgewertet wird und anhand der Sprungantwort eine Adaption des Heizwiderstands (Rh) des Heizelements (22) erfolgt. Temperature sensor (16) is determined a reference temperature at the determined reference temperature an internal resistance (R,) of the heating element (22) is measured, the heating element (22) with a defined heating voltage (U h ) is applied, a step response of the internal resistance (R, ) of the heating element (22) is evaluated and based on the step response, an adaptation of the heating resistor (R h ) of the heating element (22).
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass zu einem ersten Zeitpunkt (t-ι ) ein erster Widerstand des Heizelements (22) und zu einem späteren Zeitpunkt (t2) ein zweiter Widerstand des Heizelements (22) ausgewertet wird. 2. The method according to claim 1, characterized in that at a first time (t-ι) a first resistance of the heating element (22) and at a later time (t 2 ), a second resistance of the heating element (22) is evaluated.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Adaption des 3. The method according to claim 2, characterized in that the adaptation of the
Widerstands in Abhängigkeit von drei Widerstandsmessungen des Heizelements (22) erfolgt, wobei eine erste Widerstandsmessung bei einer durch den Temperatursensor (16) ermittelten Temperatur erfolgt und zwei weitere Widerstandsmessungen bei unbekannten Temperaturen erfolgen und anhand des gemessenen Innenwiderstands (Ri) ein sondenindividueller Heizwiderstand (Rh) für das Heizelement (22) der Resistance in dependence on three resistance measurements of the heating element (22) takes place, wherein a first resistance measurement takes place at a temperature determined by the temperature sensor (16) and two further resistance measurements are carried out at unknown temperatures and based on the measured internal resistance (Ri) a probe-individual heating resistor (R h ) for the heating element (22) of
Lambdasonde (20) errechnet wird. Lambda probe (20) is calculated.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als 4. The method according to any one of claims 1 to 3, characterized in that as
Referenztemperatur die Umgebungstemperatur gewählt wird. Reference temperature, the ambient temperature is selected.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass ein 5. The method according to any one of claims 1 to 4, characterized in that a
adaptierter Heizwiderstand (Rh) in einem Steuergerät (18) der Brennkraftmaschine (10) abgelegt wird.
adapted heating resistor (R h ) in a control unit (18) of the internal combustion engine (10) is stored.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Verfahren vor einem Startvorgang der Brennkraftmaschine (10) gestartet 6. The method according to any one of claims 1 to 5, characterized in that the method is started before a starting operation of the internal combustion engine (10)
beziehungsweise durchgeführt wird. or is performed.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das Verfahren durch einen Türkontaktschalter (26), einen Gurtschloss-Sensor (28) oder einen Sensor (30) zur Erkennung einer Sitzbelegung eines Kraftfahrzeuges (32) gestartet wird. 7. The method according to claim 6, characterized in that the method by a door contact switch (26), a buckle sensor (28) or a sensor (30) for detecting a seat occupancy of a motor vehicle (32) is started.
8. Steuergerät (18) mit einem Programmcode, der auf einem maschinenlesbaren Träger gespeichert ist, zur Durchführung eines Verfahrens gemäß einem der Ansprüche 1 bis 7, wenn das Programm auf einem Rechengerät, insbesondere auf einem Steuergerät (18) der Brennkraftmaschine (10), ausgeführt wird. 8. Control unit (18) with a program code, which is stored on a machine-readable carrier, for carrying out a method according to one of claims 1 to 7, when the program on a computing device, in particular on a control unit (18) of the internal combustion engine (10), is performed.
9. Vorrichtung zur Korrektur einer Kennlinie einer Lambdasonde (20) in einem Abgaskanal (12) einer Brennkraftmaschine (10), wobei in dem Abgaskanal (12) ein Katalysator (14) angeordnet ist, wobei in Strömungsrichtung eines Abgases der Brennkraftmaschine (10) durch den Abgaskanal (12) stromauf des Katalysators (14) die Lambdasonde (20) angeordnet ist, wobei die Betriebstemperatur der Lambdasonde (20) mittels eines Heizungsreglers (24) des Heizelements (22) einstellbar ist, wobei eine Abgastemperatur der Brennkraftmaschine (10) durch einen Innenwiderstand der Lambdasonde (20) ermittelbar ist, dadurch gekennzeichnet, dass ein Temperatursensor (16) zur Ermittlung einer Referenztemperatur vorgesehen ist und dass die Vorrichtung ein Steuergerät (18) aufweist, wobei die Vorrichtung eingerichtet ist, ein Verfahren gemäß einem der 9. A device for correcting a characteristic curve of a lambda probe (20) in an exhaust passage (12) of an internal combustion engine (10), wherein in the exhaust passage (12) a catalyst (14) is arranged, wherein in the flow direction of an exhaust gas of the internal combustion engine (10) the exhaust gas duct (12) upstream of the catalyst (14), the lambda probe (20) is arranged, wherein the operating temperature of the lambda probe (20) by means of a heating controller (24) of the heating element (22) is adjustable, wherein an exhaust gas temperature of the internal combustion engine (10) an internal resistance of the lambda probe (20) can be determined, characterized in that a temperature sensor (16) is provided for determining a reference temperature and that the device has a control device (18), wherein the device is set up, a method according to one of
Ansprüche 1 bis 7 durchzuführen. Perform claims 1 to 7.
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Lambdasonde (20) als Breitbandsonde ausgebildet ist.
10. The device according to claim 9, characterized in that the lambda probe (20) is designed as a broadband probe.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016202854.5 | 2016-02-24 | ||
DE102016202854.5A DE102016202854A1 (en) | 2016-02-24 | 2016-02-24 | Method and device for operating a lambda probe in an exhaust passage of an internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017144222A1 true WO2017144222A1 (en) | 2017-08-31 |
Family
ID=57944404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2017/051597 WO2017144222A1 (en) | 2016-02-24 | 2017-01-26 | Method and device for operating a lambda probe in an exhaust gas channel of an internal combustion engine |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102016202854A1 (en) |
WO (1) | WO2017144222A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018189047A1 (en) * | 2017-04-10 | 2018-10-18 | Volkswagen Ag | Method for commissioning an internal combustion engine, and motor vehicle comprising an internal combustion engine |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019214766B4 (en) * | 2019-09-26 | 2021-11-04 | Vitesco Technologies GmbH | Method and device for determining the icing condition of a component of the exhaust tract of a motor vehicle that is not arranged directly in the exhaust gas mass flow |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10108291A1 (en) * | 2000-07-03 | 2002-01-24 | Mitsubishi Electric Corp | Heater control device for an exhaust gas sensor |
EP1413728A2 (en) * | 2002-10-23 | 2004-04-28 | Volkswagen Aktiengesellschaft | Controller and method for controlling a NOX-sensor arranged in an exhaust gas channel of an internal combustion engine |
US20040086023A1 (en) * | 2002-10-31 | 2004-05-06 | Smith James Craig | Method and apparatus to control an exhaust gas sensor to a predetermined temperature |
US20090064663A1 (en) * | 2007-09-11 | 2009-03-12 | Gm Global Technology Operations, Inc. | Method and apparatus for determining temperature in a gas feedstream |
DE102012205017A1 (en) * | 2011-04-28 | 2012-10-31 | Robert Bosch Gmbh | Method for operating internal combustion engine, involves detecting trigger event to activate heating element before activating internal combustion engine, where heating element is activated for heating ceramic sensor element |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3056365B2 (en) * | 1993-12-28 | 2000-06-26 | 三菱電機株式会社 | Control device for oxygen concentration sensor |
DE19719390A1 (en) * | 1997-05-07 | 1998-11-12 | Bayerische Motoren Werke Ag | Method for checking the functionality of the electrical heating of a lambda probe in the exhaust pipe of an internal combustion engine |
DE102008011833B4 (en) | 2008-02-27 | 2020-06-25 | Volkswagen Ag | Method for controlling a lambda-controlled exhaust system of an internal combustion engine |
DE102008011834B4 (en) * | 2008-02-27 | 2017-09-21 | Volkswagen Ag | Method for operating a lambda probe |
DE102010002458A1 (en) * | 2009-09-11 | 2011-03-24 | Robert Bosch Gmbh | gas probe |
-
2016
- 2016-02-24 DE DE102016202854.5A patent/DE102016202854A1/en not_active Ceased
-
2017
- 2017-01-26 WO PCT/EP2017/051597 patent/WO2017144222A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10108291A1 (en) * | 2000-07-03 | 2002-01-24 | Mitsubishi Electric Corp | Heater control device for an exhaust gas sensor |
EP1413728A2 (en) * | 2002-10-23 | 2004-04-28 | Volkswagen Aktiengesellschaft | Controller and method for controlling a NOX-sensor arranged in an exhaust gas channel of an internal combustion engine |
US20040086023A1 (en) * | 2002-10-31 | 2004-05-06 | Smith James Craig | Method and apparatus to control an exhaust gas sensor to a predetermined temperature |
US20090064663A1 (en) * | 2007-09-11 | 2009-03-12 | Gm Global Technology Operations, Inc. | Method and apparatus for determining temperature in a gas feedstream |
DE102012205017A1 (en) * | 2011-04-28 | 2012-10-31 | Robert Bosch Gmbh | Method for operating internal combustion engine, involves detecting trigger event to activate heating element before activating internal combustion engine, where heating element is activated for heating ceramic sensor element |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018189047A1 (en) * | 2017-04-10 | 2018-10-18 | Volkswagen Ag | Method for commissioning an internal combustion engine, and motor vehicle comprising an internal combustion engine |
US11060473B2 (en) | 2017-04-10 | 2021-07-13 | Volkswagen Aktiengesellschaft | Method for commissioning an internal combustion engine, and motor vehicle comprising an internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
DE102016202854A1 (en) | 2017-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10312240B4 (en) | Determination of the exhaust gas temperature and control of the oxygen sensor heating | |
EP2260195B1 (en) | Method for operating a lambda sensor during the heating phase | |
DE102006011837B4 (en) | Method for determining a gas concentration in a measuring gas with a gas sensor | |
DE3840247C2 (en) | ||
EP2193353A1 (en) | Method for the detection of a contamination level of a particle sensor and particle sensor | |
DE102008005110B4 (en) | Method and control for operating and adjusting a lambda probe | |
DE3822415A1 (en) | METHOD AND DEVICE FOR REGULATING THE COMBUSTION AIR CONDITION IN COMBUSTION ENGINES | |
WO1999057555A1 (en) | METHOD FOR DETERMINING NOx CONCENTRATION | |
WO2017144222A1 (en) | Method and device for operating a lambda probe in an exhaust gas channel of an internal combustion engine | |
EP2271920B1 (en) | Control circuit for an electrochemical gas sensor and method for adjusting an electrochemical gas sensor | |
EP3152432B1 (en) | Method for correcting a voltage-lambda characteristic plot | |
EP0877159B1 (en) | Process for checking the operability of the heater of a lambda sensor in the exhaust pipe of an internal combustion engine | |
DE19818332B4 (en) | Method for detecting an element resistance of a gas concentration sensor | |
DE102008011834B4 (en) | Method for operating a lambda probe | |
DE102008011833B4 (en) | Method for controlling a lambda-controlled exhaust system of an internal combustion engine | |
EP2322916B1 (en) | Method for processing a measured ohm resistance R(t) of a measuring element with temperature-dependent ohm resistance | |
EP2652297B1 (en) | Method for detecting the operational readiness of a jump lambda sensor | |
EP0943077A1 (en) | Operating procedure related to a resistance heating element and device for applying same | |
DE102012212580A1 (en) | Method for operating e.g. broadband-lambda sensor used in exhaust duct of Otto engine of passenger car, involves correcting Nernst-voltage as output signal of exhaust gas sensor according to measure of sensor aging | |
DE102013216024A1 (en) | Method for lambda control of an internal combustion engine and control device | |
EP0552173B1 (en) | Device for determining fluid throughput | |
DE102007035188A1 (en) | Method for heating a gas sensor | |
DE102013216595A1 (en) | Method and device for correcting a characteristic curve of a lambda probe | |
DE102008004015B4 (en) | Method for detecting contact resistances in leads of a probe | |
DE10340194B4 (en) | Method for adjusting the fan speed of a fan-assisted heater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17702340 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17702340 Country of ref document: EP Kind code of ref document: A1 |