WO2017143706A1 - 烹饪方法和烹饪器具 - Google Patents

烹饪方法和烹饪器具 Download PDF

Info

Publication number
WO2017143706A1
WO2017143706A1 PCT/CN2016/086710 CN2016086710W WO2017143706A1 WO 2017143706 A1 WO2017143706 A1 WO 2017143706A1 CN 2016086710 W CN2016086710 W CN 2016086710W WO 2017143706 A1 WO2017143706 A1 WO 2017143706A1
Authority
WO
WIPO (PCT)
Prior art keywords
food
cooking
spectral information
light
cooked
Prior art date
Application number
PCT/CN2016/086710
Other languages
English (en)
French (fr)
Inventor
刘敏
孙宁
彭涛
刘连程
区毅成
唐春玉
Original Assignee
广东美的厨房电器制造有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201620148872.7U external-priority patent/CN205758285U/zh
Priority claimed from CN201610109597.2A external-priority patent/CN105708306B/zh
Application filed by 广东美的厨房电器制造有限公司, 美的集团股份有限公司 filed Critical 广东美的厨房电器制造有限公司
Publication of WO2017143706A1 publication Critical patent/WO2017143706A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J27/00Cooking-vessels

Definitions

  • the present invention relates to the field of cooking technology, and more particularly to a cooking method and a cooking appliance.
  • the cooking utensils in the related art are all manually selected by the user, and the cooking program is set to achieve the targeted cooking of the food to be cooked, thereby achieving the desired cooking effect.
  • the automatic working ability of the cooking utensils in the related art is not strong. Humanized design needs to be improved.
  • the present invention aims to solve at least one of the technical problems existing in the prior art.
  • the present invention is directed to a cooking method which can analyze relevant information of a food to be cooked by spectral detection, and perform targeted cooking on the cooked food according to the analysis result to achieve an optimal cooking effect. Automated cooking.
  • the invention also proposes a cooking appliance.
  • the cooking method includes the following steps: A: illuminating the food to be cooked with a predetermined light to reflect the food to be cooked out of the emitted light and detecting spectral information of the emitted light; The spectral information sets the corresponding cooking program and/or adjusts the programmed cooking program.
  • the information about the food to be cooked can be analyzed by means of spectroscopic detection, and the cooked food can be purposely cooked according to the analysis result to achieve an optimal cooking effect and realize automatic cooking.
  • the step B is specifically: B1, analyzing at least one of the kind of the food to be cooked, the degree of freshness and the degree of heating according to the spectral information; B2, according to the step B1
  • the result of the analysis sets the corresponding cooking program and/or adjusts the programmed cooking program.
  • the step B1 is specifically: analyzing the kind of the food to be cooked according to the food type model and the spectral information.
  • the method for obtaining a food type model includes the steps of: selecting a plurality of kinds of food samples; respectively irradiating the food samples of each kind with the preset light to reflect the food samples Detecting light, detecting spectral information of the detected light, and establishing the food type model according to the corresponding relationship with the species type.
  • the step B1 is specifically: analyzing the freshness of the food to be cooked according to the food freshness model and the spectral information.
  • the method for obtaining the food freshness model includes the steps of: respectively, when the food sample exhibits a plurality of freshness levels, respectively, using the predetermined light irradiation to reflect the food sample out of the detection light, The spectral information of the detected light is detected and the food freshness model is established according to its correspondence with the degree of freshness.
  • the step B1 is specifically: analyzing the degree of heating of the food to be cooked according to the food heating degree model and the spectral information.
  • the method for obtaining a food heating degree model includes the steps of: respectively, using a predetermined light irradiation when the food sample is at a plurality of heating levels to reflect the food sample out of the detection light, and detecting the detection.
  • the spectral information of the light is used to establish the food heating degree model based on its correspondence with the degree of heating.
  • the step B is specifically: setting a corresponding cooking program according to the spectral information and the optimal taste model and/or adjusting the set cooking program.
  • the adjusting the cooking program according to the spectral information and the optimal mouthfeel model is specifically: comparing the spectral information and the optimal taste model by using a correlation coefficient method or a spectral distance method to prepare the to-be cooked Stop the cooking process when cooking the food for the best taste.
  • the method for obtaining the optimal mouthfeel model includes the steps of: using the predetermined light irradiation to cause the food sample to reflect the detection light when the food sample exhibits an optimal mouthfeel, and detecting the The spectral information of the light is detected and the optimal mouthfeel model is established based on its correspondence with the optimal mouthfeel.
  • the cooking method further comprises the step of: C. counting the spectral information in the step A within a predetermined duration to give a dietary recommendation, the dietary suggestion comprising: detecting the food within the predetermined length of time At least one of an analysis report of the nutrient composition, an analysis report of the health effect of the detected food on the predetermined duration, and a recommended recipe.
  • the step C is specifically: C1, qualitatively determining the type composition of the food according to the spectral information of the detected food within the predetermined duration; C2, quantitatively analyzing the result according to the judgment result in the step C1 The nutrient component of the food has been detected within the predetermined length of time; C3, the dietary recommendation is given according to the analysis result in the step C2.
  • a cooking appliance comprising: a casing having a cooking chamber therein; a spectrum detecting device, the spectrum detecting device being disposed in and/or outside the cooking chamber, the spectrum detecting device Constructing to illuminate the food to be cooked with predetermined light to reflect the food to be cooked out of the emitted light, and to detect spectral information of the emitted light; and a controller, the controller being disposed in the cooking cavity and/or Or externally connected to the spectrum detecting device, the controller is configured to A corresponding cooking program is set according to the spectral information and/or a programmed cooking program is adjusted.
  • the cooking appliance according to the invention is compact, powerful and automated.
  • the spectrum detecting device includes: an inductor disposed in the cooking cavity and configured to emit the preset light and receive the emitted light; and a control processor disposed in the cooking cavity And being connected to the inductor to control the sensor to emit the preset light and perform an analysis process on the emitted light received by the sensor.
  • the inductor is contact or non-contact.
  • the inductor is a contact probe and is fixed to the bottom within the cooking cavity.
  • the inductor is a contact probe and is freely disposed within the cooking cavity by an optical fiber for insertion into the interior of the food to be cooked.
  • control processor includes a light source, a filter, a photodetector, and a data processing chip.
  • the light source, the filter and the photodetector are integrated on the data processing chip.
  • the filter is a linear gradient filter.
  • the controller is configured to analyze at least one of a kind of the food to be cooked, a degree of freshness, and a degree of heating according to the spectral information, and set a corresponding cooking program according to the analysis result and And/or adjusting the programmed cooking program, and/or the controller is configured to set a corresponding cooking program and/or adjust the programmed cooking program based on the spectral information and the optimal mouthfeel model.
  • the controller is further configured to perform nutritional analysis management by statistical information within the predetermined length of time and to provide a reasonable dietary recommendation.
  • FIG. 1 is a schematic structural view of a cooking appliance according to an embodiment of the present invention.
  • Figure 2 is a schematic view showing the connection of the spectrum detecting device shown in Figure 1;
  • FIG. 3 is a schematic structural view of a cooking appliance according to another embodiment of the present invention.
  • FIG. 4 is a flowchart showing the operation of a cooking method according to an embodiment of the present invention.
  • FIG. 5 is a flow chart of a nutritional analysis performed by a cooking method in accordance with an embodiment of the present invention.
  • first adapter 231 a first adapter 231; a second adapter 232; a first fiber 241; and a second fiber 242.
  • the cooking method according to the embodiment of the present invention comprises the following two steps: Step 1: illuminating the food to be cooked with a preset light to reflect the food to be cooked out of the emitted light, and detecting spectral information of the emitted light, for example, the following may be used
  • the spectral detection device described herein implements this step.
  • Step 2 Set the corresponding cooking program according to the spectral information, and/or adjust the programmed cooking program, that is, the cooking program can be set according to the spectral information, and/or the current set is adjusted. Cooking program.
  • part of the light when the light is irradiated with the light, part of the light can be absorbed by the food, and the other part of the light can be reflected by the food, and the emitted light reflected (for example, diffused) can be detected at the time, thereby facilitating detection. And facilitate the processing and manufacturing of the spectrum detecting device.
  • the soybean milk machine 200 can detect the type of food inside by the method of spectral detection described above, for example, whether it is beans or vegetables, and if it is beans, The cooking program for cooking soy milk is automatically set, and if it is a vegetable, the cooking program for smashing and stirring is set.
  • the microwave oven 100 can detect the degree of heating of the internal food by the method of spectral detection described above, and determine whether the currently set cooking firepower is appropriate, if not suitable. Then, the cooking firepower is adjusted to achieve the adjustment of the programmed cooking program.
  • the related information of the food to be cooked can be analyzed by the method of spectral detection, and the cooked food is subjected to targeted cooking according to the analysis result to achieve an optimal cooking effect.
  • the second step that is, “setting the corresponding cooking program according to the spectral information and/or adjusting the set cooking program” may be: first, analyzing the type and freshness of the food to be cooked according to the spectral information. And at least one of heating degrees; then, according to the analysis result, setting a corresponding cooking program and/or adjusting the set cooking program. That is to say, the type of the food to be cooked, the degree of freshness, and the degree of heating are analyzed by means of spectroscopic detection, thereby performing targeted cooking. Thereby, the cooking effect can be effectively improved, the cooking can be automated, the labor can be reduced, and the user who has no cooking skill or even basic cooking knowledge can complete the cooking by the cooking appliance that can perform the above cooking method.
  • the type of food to be cooked can be analyzed based on the spectral information.
  • the most authentic information of the food to be tested can be obtained, so that the type of food can be analyzed for targeted cooking.
  • it is also possible to analyze the type composition of the food thereby identifying the authenticity of the food, whether it is adulterated, etc., for example, whether the honey is adulterated, whether the milk powder is adulterated, whether the lamb or the beef is Mixed with duck meat, etc.
  • the specific step of analyzing the kind of the food to be cooked is: after detecting the spectral information of the emitted light, analyzing the kind of the food to be cooked according to the spectral information and the food type model.
  • the method for obtaining the “food type model” may include the following steps: first, selecting a plurality of kinds of food samples; then, irradiating each type of food sample with a preset light to reflect the food sample to the detection light; then, The spectral information of the detected light is detected and a food type model is established based on its correspondence with each type of food sample.
  • the first-level qualitative judgment of the food category for example, belongs to meat, starch, or vegetables
  • second secondary qualitative judgment
  • the specific subcategories of food, such as meat, are subdivided into cattle, pigs, sheep, chickens, ducks, fish, and starches are subdivided into potatoes, sweet potatoes, taro, etc., and vegetables are subdivided into cabbage, broccoli, and pepper. Wait.
  • the freshness of the food to be cooked can be analyzed based on the spectral information. Specifically, because of the various nutrients in the food, This series of changes will be reflected in the spectrum, so the analysis of the spectrum can be used to judge the freshness of the food. Thus, by judging the freshness of the food, it is possible to analyze whether the food has deteriorated, or whether the food is in a fresh state or a dried state.
  • the specific step of analyzing the freshness of the food to be cooked is: after detecting the spectral information of the emitted light, analyzing the freshness of the food to be cooked according to the spectral information and the freshness model of the food.
  • the method for obtaining the “food freshness model” may include the following steps: selecting a plurality of types of food samples, and respectively adopting preset light irradiation to reflect the food samples when each type of food sample exhibits multiple vividness levels The detection light is detected, the spectral information of the detected light is detected, and the food freshness model is established according to the correspondence relationship with the freshness of the food sample.
  • the degree of heating of the food to be cooked can be analyzed based on the spectral information. Specifically, the quality and taste of the food to be heated are related to information such as nutrients (such as protein, fat, starch, etc.) and moisture content in the food, and changes in nutrients and moisture content during heating are reflected in the spectrum. The degree of heating of the food can be judged by the change in the spectrum. Thereby, the cooking program can be set or adjusted according to the determined degree of heating of the food, for example, the cooking firepower is adjusted, the cooking heating end time is adjusted, and the like, thereby cooking a more delicious, nutritious, healthy food.
  • nutrients such as protein, fat, starch, etc.
  • the specific step of analyzing the degree of heating of the food to be cooked is: after detecting the spectral information of the emitted light, the heating degree of the food to be cooked is analyzed according to the spectral information and the degree of food heating.
  • the method for obtaining the “food heating degree model” includes the following steps: selecting a plurality of kinds of food samples, and respectively adopting preset light irradiation to make the food samples reflect the detection light when each kind of food sample is in various heating degrees.
  • the spectral information of the detected light is detected and a food heating degree model is established according to the correspondence relationship with the degree of heating of the food sample.
  • the relationship between the spectral change process and the taste of the food can be statistically recorded by recording the spectral change process during food heating, thereby using it as a basis for guiding the adjustment of the cooking program based on the spectral change.
  • the second step that is, “setting the corresponding cooking program according to the spectral information and/or adjusting the set cooking program” may specifically: setting the corresponding cooking program according to the spectral information and the optimal taste model and/or Alternatively, the programmed cooking program can be adjusted.
  • the correlation coefficient method or the spectral distance method can be used to compare the spectral information and the optimal taste model to stop the cooking process when the food to be cooked presents the best taste.
  • the quality and taste of the food to be heated are related to information such as nutrients (such as protein, fat, starch, etc.) and moisture content in the food, and the changes in nutrients and moisture content during heating are It is reflected in the spectrum, so the taste of the food can be judged by the change of the spectrum.
  • the cooking program can be adjusted according to the taste of the determined food, for example, adjusting the cooking heating end time and the like, thereby cooking a more delicious, nutritious, healthy food.
  • the method for obtaining the “best taste model” may include the following steps: selecting a plurality of kinds of food samples, and adopting preset light irradiation to make the food sample reflect the detection light when detecting the best taste of each food sample, detecting and detecting
  • the spectral information of the light is based on its correspondence to the optimal mouthfeel of the food sample to establish an optimal mouthfeel model.
  • the "dietary suggestion" may include: an analysis report of the nutrient composition of the detected food within the predetermined time period, an analysis report of the health effect of the detected food within the predetermined time period, and at least one of the recommended recipes.
  • the nutrient data of the foods tested for a period of time can be stored in the system.
  • the nutrient content of the daily diet it is reasonable to analyze the dietary mix, and give suggestions on relevant dietary combinations. Therefore, in the environment where people's living standards are increasingly improved, the cooking method can monitor and count the nutrients of the daily diet, and facilitate the user to more rationally match the diet. That is to say, the user can carry out a reasonable eating and matching without the guidance of a professional dietitian by means of a cooking appliance that can perform the cooking method.
  • the method of "giving dietary advice” is as follows: First, qualitatively determining the type composition of the food according to the spectral information of the food that has been detected within the predetermined length of time; and then quantitatively analyzing the food that has been detected within the predetermined length of time according to the previous judgment result Nutritional ingredients; then, based on the analytical data, give reasonable dietary advice. For example, it can be counted that the microwave oven 100 cooks more meat or vegetables in one week, and if there is more meat, it can give dietary advice that should increase the intake of vegetables.
  • qualitative analysis is first performed.
  • qualitative judgment is made on the types of foods that have been cooked for a predetermined period of time, such as meat, starch, or vegetables.
  • Qualitative judgment of the specific sub-categories of foods cooked for a predetermined period of time such as meat subdivided into cattle, pigs, sheep, chicken, duck, fish, starch and subdivided into potatoes, sweet potatoes, taro, etc.
  • quantitative analysis is carried out, that is to say, after the secondary qualitative judgment, the nutrient content of the cooked food in the predetermined time period is quantitatively analyzed.
  • the meat substance mainly analyzes the moisture, protein and fat content
  • the main analysis of the starch type Its moisture, starch content
  • vegetables mainly analyze its water, carbohydrates, vitamins and other content.
  • conduct nutrition management use quantitative analysis of nutrient data, make recommendations for daily diet, or automatically give a recommendation menu.
  • the cooking appliance may be a microwave oven 100, a soymilk machine 200, a fruit and vegetable machine, and a rice cooker or the like.
  • the cooking appliance may include: a casing, a spectrum detecting device, and a controller, the casing having a cooking cavity 11 therein, the spectral detecting device being disposed in and/or outside the cooking cavity 11 and for detecting spectral information, such as a spectrum detecting device
  • a spectrum detecting device such as a spectrum detecting device
  • An inductor 21 disposed within the cooking chamber 11 and a control processor 22 disposed outside the cooking chamber 11 may be included, the controller being disposed within and/or outside of the cooking chamber 11 and coupled to the spectral sensing device for setting based on spectral information Corresponding cooking procedures and/or adjustments to the programmed cooking program.
  • the cooking appliance according to the embodiment of the present invention is compact in structure, powerful in function, and strong in automation.
  • the spectrum detecting device of the embodiment of the invention has the advantages of fast, non-destructive, green, environmental protection, etc., and is very suitable for detecting and analyzing nutrients of food.
  • the inductor 21 is disposed in the cooking cavity 11 and is configured to emit a predetermined light and receive the emitted light. Preferably, after the predetermined light is irradiated to the food, the emitted light reflected by the food is detected.
  • the inductors 21 for emitting the preset light and for receiving the outgoing light can be integrated and located on the same side of the food to emit both the preset light and the emitted light, whereby the inductor 21
  • the integration is high, compact and compact, so that the on-line detection of food can be facilitated, and the structure of the spectrum detecting device is more compact and compact.
  • the inductor 21 can be contact or non-contact.
  • the inductor 21 may be embedded in the cooking cavity 11 of a soymilk machine 200, a fruit and vegetable machine, a rice cooker or the like in the form of an accessory, for example, as a contact probe and fixed at the bottom in the cooking chamber 11 (as shown in FIG. 3). ), thereby facilitating installation and good detection results.
  • the inductor 21 can also be configured as a contact probe and freely disposed within the cooking cavity 11 by an optical fiber (as shown in FIG. 1), that is, the user can hold the probe to insert the probe into the food to be cooked. Internally, the detection effect can be improved.
  • a control processor 22 is disposed outside of the cooking chamber 11 and coupled to the inductor 21 to control the inductor 21 to emit a predetermined ray and perform spectral analysis of the outgoing ray.
  • the control processor 22 may include a light source 220, a filter 221, a collimator, a focusing mirror, a photodetector 222, and a data processing chip 223.
  • the light source 220, the filter 221, the collimator, the focusing mirror, and the photodetector 222 can be integrated on the data processing chip 223 by MEMS technology, so that the control processor 22 has high integration, compact structure and compactness.
  • the light source 220 can be used to emit a preset light, for example, a near-infrared light segment, and the near-infrared light segment is a frequency multiplication and a combined frequency of the fundamental frequency vibration, and the absorption thereof is weak.
  • a preset light for example, a near-infrared light segment
  • the near-infrared light segment is a frequency multiplication and a combined frequency of the fundamental frequency vibration, and the absorption thereof is weak.
  • the sample does not need to be diluted.
  • the on-line detection is realized, and the requirements for the sample to be tested are low, the anti-interference is good, and the detectable range and practicability of the spectrum detecting device are improved.
  • the infrared spectrum is the absorption spectrum of the substance
  • the infrared spectrum of the substance reflects the microstructure and state of the molecule, and can be used for observing, analyzing, and processing the structure and composition of the substance.
  • the near-infrared light is used to irradiate the food
  • a part of the infrared light is absorbed by the food, and another part of the infrared light can be diffused and reflected by the food.
  • the infrared spectrum reflected by the food is closely related to the composition and concentration of the food. Therefore, information on the composition and concentration of the food can be obtained by analyzing the infrared spectrum reflected by the food.
  • the method for detecting the spectrum is a non-destructive detection method, and the sample does not need to be destroyed, and the sample does not need to be pretreated, the detection process is simple, and since the infrared spectrum is a molecular spectrum, the molecular information is detected, so that the detection result is accurate and reliable. it is good.
  • the filter 221 may be a linear gradation filter, and the central wavelength of the linear gradation filter may vary according to the position on the filter, and the volume is small, the price is low, and the wavelength range and the channel are small.
  • the size, average transmittance, high dispersion coefficient, etc. all meet the requirements of miniaturization, integration and stability of the filter in space applications.
  • Linear gradient filters can be selected based on FP interference adjustable filters, An acousto-optic tunable filter based on a Bragg diffraction crystal to achieve miniaturization of the spectrum detecting device.
  • the working process of the spectrum detecting device may be as follows: the light source 220 emits a preset light to directly irradiate the predetermined light onto the sample, and a part of the preset light is absorbed by the sample during the interaction between the preset light and the sample. The unabsorbed light is diffusely reflected by the sample. When the diffused reflected light reaches the filter 221, it reaches the photodetector 222. The photodetector 222 records the spectral intensity signal of the emitted light and transmits the spectral intensity signal.
  • the AD conversion and post-processing of the data are performed in the data processing chip 223, and the post-processing may include food type identification D1, freshness degree determination D2, heating degree judgment D3, nutrition analysis and management D4.
  • the structure of the spectrum detecting device according to the embodiment of the present invention is small, compact, and inexpensive, and is not limited to laboratory applications, and can be detected online and used in cooking appliances for monitoring the daily dietary nutrients of the user, and According to the nutritional data, it is more reasonable to match the diet.
  • the microwave oven 100 of the present embodiment is a microwave oven 100 capable of displaying food nutrients
  • the microwave oven 100 includes a spectrum detecting device and a controller
  • the spectrum detecting device monitors a heating process of the heated food, and monitors the food in the heating process in real time.
  • Nutrient composition according to the change of spectral data detected during heating, to judge the degree of food heating and the adjustment of heating firepower, and combined with the design of spectral data analysis logic, it is used for the monitoring and analysis of nutrients in daily diet. And save the nutritional analysis data to suggest people to better match the diet based on the analytical data.
  • the cooking chamber 11 of the microwave oven 100 has a control processor 22 and a first adapter 231.
  • the cooking chamber 11 is provided with a sensor 21, and the cooking chamber 11 has a second adapter 232.
  • the first adapter The 231 and the second adapter 232 are connected by the first optical fiber 241, and the inductor 21 and the second adapter 232 are connected by the second optical fiber 242.
  • the inductor 21 is designed in the form of a probe, one end is connected to the second optical fiber 242 to be inserted into the second adapter 232, and the other end is freely disposed (hand held by the user) to insert the center of the food 300, thereby closing the microwave oven 100.
  • the heating state of the food to be heated in the cooking chamber 11 can be monitored online according to the spectrum detecting device.
  • the preset light emitted by the light source 220 in the control processor 22 is coupled into the first optical fiber 241 via a fiber adapter (for example, the first adapter 231), and then coupled through the fiber adapter (for example, the second adapter 232).
  • the second optical fiber 242 the preset light is transmitted to the probe 21 of the second optical fiber 242, and is irradiated into the inside of the food 300, wherein a part of the light is absorbed by the food 300, and the other part is not absorbed and is diffused and reflected by the food 300, and the emitted light passes through the probe.
  • the needle 21 returns to the second optical fiber 242, returns to the control processor 22 through the first optical fiber 241, passes through the linear gradation filter 221, and then reaches the photodetector 222, and the reflected signal is photoelectrically converted into the photodetector 222.
  • the electrical signal that is, the spectral signal
  • the spectral signal is sent to the data processing chip 223 for AD conversion and data processing, and the result of the data processing is used as feedback to adjust the heating process, display the nutrient content and other information and make nutritional suggestion.
  • the spectrum detecting device can be embedded not only as a stand-alone structure, but also as an accessory in the cooking appliance to realize the identification of the food type, the judgment of the freshness of the food, the judgment of the degree of food heating, and the food.
  • the analysis and management functions of nutrients, combined with the software of the data processing logic, can obtain the information on the composition and percentage of the substance without the need of professional analysis, and manage the daily diet through the nutrient data, and Cook delicious food.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. Or integrated; can be directly connected, or indirectly connected through an intermediate medium, which can be the internal communication of two elements or the interaction of two elements.
  • an intermediate medium which can be the internal communication of two elements or the interaction of two elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种烹饪方法和烹饪器具,所述烹饪方法包括以下步骤:以预设光线照射待烹煮食物使所述待烹煮食物反射出出射光线并检测所述出射光线的光谱信息;根据所述光谱信息设定相应的烹饪程序和/或调节已设定的烹饪程序。

Description

烹饪方法和烹饪器具 技术领域
本发明涉及烹饪技术领域,尤其是涉及一种烹饪方法和烹饪器具。
背景技术
相关技术中的烹饪器具都是用户手动选择、设定烹饪程序,以实现对待烹煮食物的针对性烹饪,达到理想的烹饪效果,由此可见,相关技术中的烹饪器具的自动化工作能力不强,人性化设计有待提高。
另外,随着生活水平的提高,人们对日常饮食的营养成分越来越关注,然而,相关技术中的烹饪器具都只能对食物进行烹煮,无法分析待烹煮食物的营养成分,功能不够强大。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明在于提出一种烹饪方法,所述烹饪方法可以通过光谱检测分析待烹煮食物的相关信息,并根据分析结果对待烹煮食物进行针对性烹饪,达到最优的烹饪效果,实现自动化烹饪。
本发明还提出一种烹饪器具。
根据本发明第一方面的烹饪方法,包括以下步骤:A、以预设光线照射待烹煮食物使所述待烹煮食物反射出出射光线并检测所述出射光线的光谱信息;B、根据所述光谱信息设定相应的烹饪程序和/或调节已设定的烹饪程序。
根据本发明的烹饪方法,可以通过光谱检测的方法分析待烹煮食物的相关信息,并根据分析结果对待烹煮食物进行针对性烹饪,达到最优的烹饪效果,实现自动化烹饪。
根据本发明的一个示例,所述步骤B具体为:B1、根据所述光谱信息分析所述待烹煮食物的种类、鲜活程度和加热程度中的至少一个;B2、根据所述步骤B1中的分析结果设定相应的烹饪程序和/或调节已设定的烹饪程序。
根据本发明的一个示例,所述步骤B1具体为:根据食物种类模型和所述光谱信息分析所述待烹煮食物的种类。
根据本发明的一个示例,所述食物种类模型的获得方法包括以下步骤:选取多个种类的食物样品;采用所述预设光线分别照射每个种类的所述食物样品以使所述食物样品反射出检测光线,检测所述检测光线的光谱信息并根据其与种类的对应关系建立所述食物种类模 型。
根据本发明的一个示例,所述步骤B1具体为:根据食物鲜活程度模型和所述光谱信息分析所述待烹煮食物的鲜活程度。
根据本发明的一个示例,所述食物鲜活程度模型的获得方法包括以下步骤:在食物样品呈现多种鲜活程度时分别采用所述预设光线照射以使所述食物样品反射出检测光线,检测所述检测光线的光谱信息并根据其与鲜活程度的对应关系建立所述食物鲜活程度模型。
根据本发明的一个示例,所述步骤B1具体为:根据食物加热程度模型和所述光谱信息分析所述待烹煮食物的加热程度。
根据本发明的一个示例,所述食物加热程度模型的获得方法包括以下步骤:在食物样品处于多种加热程度时分别采用预设光线照射以使所述食物样品反射出检测光线,检测所述检测光线的光谱信息并根据其与加热程度的对应关系建立所述食物加热程度模型。
根据本发明的一个示例,所述步骤B具体为:根据所述光谱信息和最佳口感模型设定相应的烹饪程序和/或调节已设定的烹饪程序。
根据本发明的一个示例,所述根据所述光谱信息和最佳口感模型调节烹饪程序具体为:采用相关系数法或光谱距离法比较所述光谱信息和最佳口感模型,以在所述待烹煮食物呈现最佳口感时停止烹饪程序。
根据本发明的一个示例,所述最佳口感模型的获得方法包括以下步骤:在所述食物样品呈现最佳口感时采用所述预设光线照射以使所述食物样品反射出检测光线,检测所述检测光线的光谱信息并根据其与最佳口感的对应关系建立所述最佳口感模型。
根据本发明的一个示例,所述烹饪方法进一步包括步骤:C、统计预定时长内所述步骤A中的所述光谱信息给出饮食建议,所述饮食建议包括:所述预定时长内已检测食物的营养成分的分析报告、所述预定时长内已检测食物对健康影响的分析报告、以及推荐菜谱中的至少一项。
根据本发明的一个示例,所述步骤C具体为:C1、根据所述预定时长内已检测食物的光谱信息定性判断食物的种类组成;C2、根据所述步骤C1中的判断结果定量分析所述预定时长内已检测食物的营养成分;C3、根据所述步骤C2中的分析结果给出所述饮食建议。
根据本发明第二方面的烹饪器具,包括:机壳,所述机壳内具有烹饪腔;光谱检测装置,所述光谱检测装置设在所述烹饪腔内和/或外,所述光谱检测装置构造成以预设光线照射待烹煮食物使所述待烹煮食物反射出出射光线、并检测所述出射光线的光谱信息;以及控制器,所述控制器设在所述烹饪腔内和/或外且与所述光谱检测装置相连,所述控制器构造成 根据所述光谱信息设定相应的烹饪程序和/或调节已设定的烹饪程序。
根据本发明的烹饪器具,结构紧凑,功能强大,自动化强。
根据本发明的一个示例,所述光谱检测装置包括:感应器,设在所述烹饪腔内且用于发射所述预设光线和接收所述出射光线;控制处理器,设在所述烹饪腔外且与所述感应器相连,以控制所述感应器发射所述预设光线且对所述感应器接收的所述出射光线进行分析处理。
根据本发明的一个示例,所述感应器为接触式或非接触式。
根据本发明的一个示例,所述感应器为接触式探头且固定在所述烹饪腔内的底部。
根据本发明的一个示例,所述感应器为接触式探针且通过光纤在所述烹饪腔内自由设置以用于插入待烹煮食物内部。
根据本发明的一个示例,所述控制处理器包括:光源、滤光器、光检测器以及数据处理芯片。
根据本发明的一个示例,所述光源、所述滤光器和所述光检测器集成在所述数据处理芯片上。
根据本发明的一个示例,所述滤光器为线性渐变滤光片。
根据本发明的一个示例,所述控制器构造成根据所述光谱信息分析所述待烹煮食物的种类、鲜活程度和加热程度中的至少一个,且根据分析结果设定相应的烹饪程序和/或调节已设定的烹饪程序,和/或,所述控制器构造成根据所述光谱信息和最佳口感模型设定相应的烹饪程序和/或调节已设定的烹饪程序。
根据本发明的一个示例,所述控制器进一步构造成通过统计预定时长内的所述光谱信息进行营养分析管理并给出合理的饮食建议。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1是根据本发明一个实施例的烹饪器具的结构示意图;
图2是图1中所示的光谱检测装置的连接示意图;
图3是根据本发明另一个实施例的烹饪器具的结构示意图;
图4是根据本发明实施例的烹饪方法的工作流程图;
图5是根据本发明实施例的烹饪方法进行营养分析的流程图。
附图标记:
微波炉100;豆浆机200;食物300;
烹饪腔11;感应器21;控制处理器22;
光源220;滤光器221;光检测器222;数据处理芯片223;
第一转接头231;第二转接头232;第一光纤241;第二光纤242。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。
下面,简要描述根据本发明实施例的烹饪方法。
根据本发明实施例的烹饪方法,包括以下两个步骤:步骤一:以预设光线照射待烹煮食物使待烹煮食物反射出出射光线,检测出射光线的光谱信息,例如,可以采用下文所述的光谱检测装置实现本步骤。步骤二:根据光谱信息设定相应的烹饪程序,和/或,调节已设定烹饪程序,也就是说,可以根据光谱信息针对性地设定烹饪程序、和/或、调节当前已设定的烹饪程序。这里,可以理解的是,当采用光线照射食物时,一部分光可以被食物吸收,另一部分光可以被食物反射出,此时可以检测食物反射出(例如漫反射出)的出射光线,从而方便检测,且便于光谱检测装置的加工和制造。
例如,当该烹饪方法用于图3中所示的豆浆机200时,豆浆机200可以通过上述光谱检测的方法检测其内部的食物种类,例如检测是豆类还是蔬菜,如果是豆类、就自动设定烹煮豆浆的烹饪程序,如果是蔬菜、就设定粉碎搅拌的烹饪程序。又例如,当该烹饪方法用于图1中所示的微波炉100时,微波炉100可以通过上述光谱检测的方法检测其内部食物的加热程度,判断当前设定的烹饪火力大小是否合适,如果不合适、则调节烹饪火力,从而实现已设定烹饪程序的调节。
由此,根据本发明实施例的烹饪方法,可以通过光谱检测的方法分析待烹煮食物的相关信息,并根据分析结果对待烹煮食物进行针对性烹饪,以达到最优的烹饪效果。
下面,参照图4和图5,详细描述根据本发明一些实施例的烹饪方法。
具体而言,上述步骤二,即“根据光谱信息设定相应的烹饪程序和/或调节已设定的烹饪程序”具体可以为:首先,根据光谱信息分析待烹煮食物的种类、鲜活程度和加热程度中的至少一个;然后,根据此分析结果设定相应的烹饪程序和/或调节已设定的烹饪程序。也就是说,通过光谱检测的方法分析待烹煮食物的种类、鲜活程度、加热程度,从而进行针对性地烹饪。由此,可以有效地提高烹饪效果,实现烹饪的自动化进行,减轻人力劳动,且使得无烹饪技艺、甚至无基本烹饪常识的用户也可以通过可执行上述烹饪方法的烹饪器具完成烹饪。
示例一
可以根据光谱信息分析待烹煮食物的种类。由此,根据光谱数据可以得到被测食物最真实的信息,从而可以分析食物的种类,以进行针对性烹饪。另外,当检测出食物中包括多个种类时,还可以分析食物的种类组成,从而识别食物的真伪、是否掺假等,例如可以识别蜂蜜是否掺假、奶粉是否掺假、羊肉或牛肉是否掺鸭肉等。
分析待烹煮食物的种类的具体步骤为:检测出射光线的光谱信息后,根据该光谱信息和食物种类模型分析待烹煮食物的种类。其中,“食物种类模型”的获得方法可以包括以下步骤:首先,选取多个种类的食物样品;然后,采用预设光线分别照射每个种类的食物样品以使食物样品反射出检测光线;接着,检测检测光线的光谱信息并根据其与每个种类的食物样品的对应关系建立食物种类模型。
简单地说,就是采集不同种类的食物样品进行光谱检测,建立食物种类模型描述食物样品种类与光谱之间的关系,将食物种类模型读入数据处理芯片。这样,当采集到待烹煮食物的光谱数据后,可以将该光谱数据导入数据处理芯片中,代入食物种类模型进行计算,从而可以判断出待烹煮食物的种类。
具体地,参照图5,判断食物种类时,可以具体包括以下两级判断:首先,一级定性判断食物的大类,例如是属于肉类、淀粉类、还是蔬菜类;其次,二级定性判断食物的具体小类,例如肉类又细分为牛、猪、羊、鸡、鸭、鱼,淀粉类又细分为土豆、红薯、芋头等,蔬菜类又细分为白菜、西兰花、辣椒等。
示例二
可以根据光谱信息分析待烹煮食物的鲜活程度。具体而言,由于食物内部各营养成分随 着其新鲜程度的不同而变化,这一系列变化会在光谱中体现,因此,通过分析光谱可以实现对食物新鲜程度的判断。由此,通过判断食物的新鲜程度可以分析食物是否变质、或者分析食物是处于鲜嫩状态还是晒干状态。
分析待烹煮食物的鲜活程度的具体步骤为:检测出射光线的光谱信息后,根据该光谱信息和食物鲜活程度模型分析待烹煮食物的鲜活程度。其中,“食物鲜活程度模型”的获得方法可以包括以下步骤:选取多个种类的食物样品,在每个种类的食物样品呈现多种鲜活程度时分别采用预设光线照射以使食物样品反射出检测光线,检测检测光线的光谱信息并根据其与食物样品所呈的鲜活程度的对应关系建立食物鲜活程度模型。
简单地说,就是采集不同新鲜程度的食物样品进行光谱检测,建立食物鲜活程度模型描述食物样品新鲜程度与光谱之间的关系,将食物鲜活程度模型读入数据处理芯片。这样,当采集到待烹煮食物的光谱数据后,可以将该光谱数据导入数据处理芯片中,代入食物鲜活程度模型进行计算,从而可以判断出待烹煮食物的新鲜程度。
示例三
可以根据光谱信息分析待烹煮食物的加热程度。具体而言,被加热食物的质量和口感与食物中的营养成分(如蛋白质、脂肪、淀粉等)、水分含量等信息相关,而加热过程中营养成分、水分含量变化会在光谱中体现,因此可以通过光谱的变化来判断食物的加热程度。由此,可以根据判断出的食物的加热程度设定或调节烹饪程序,例如,调节烹饪火力大小、调节烹饪加热结束时间等,从而烹制出更美味、营养、健康的食物。
分析待烹煮食物的加热程度的具体步骤为:检测出射光线的光谱信息后,根据该光谱信息和食物加热程度模型分析待烹煮食物的加热程度。其中,“食物加热程度模型”的获得方法包括以下步骤:选取多个种类的食物样品,在每个种类的食物样品处于多种加热程度时分别采用预设光线照射以使食物样品反射出检测光线,检测检测光线的光谱信息并根据其与食物样品所处的加热程度的对应关系建立食物加热程度模型。简言之,可以通过记录食物加热过程中的光谱变化过程,统计光谱变化过程与食物口感之间的关系,从而将其作为依据指导基于光谱变化的烹饪程序调节。
这里,需要说明的是,在上述三个示例中,由于每个种类的食物处于不同加热程度和不同鲜活程度时,反射出的出射光线的光谱都会有所变化,因此,为了更加准确地判断食物的种类、鲜活程度以及加热程度。在选取每个种类的食物样品时,在每种食物样品处于不同新鲜程度和不同加热程度时都最好分别选取一个样本,以建立更加健全的“模型”,该“模型”包括上文所述的“食物种类模型”、“食物鲜活程度模型”和“食物加热程度模型”。由 此,当将待烹煮食物出射光线的光谱数据代入上述模型后,就可以得到待烹煮食物最真实的种类、鲜活程度和加热程度信息。
下面,详细描述根据本发明另一些实施例的烹饪方法。
具体而言,上述步骤二,即“根据光谱信息设定相应的烹饪程序和/或调节已设定的烹饪程序”具体可以为:根据光谱信息和最佳口感模型设定相应的烹饪程序和/或调节已设定的烹饪程序,例如,可以采用相关系数法或光谱距离法比较光谱信息和最佳口感模型,以在待烹煮食物呈现最佳口感时停止烹饪程序。具体而言,如上文所述,被加热食物的质量和口感与食物中的营养成分(如蛋白质、脂肪、淀粉等)、水分含量等信息相关,而加热过程中营养成分、水分含量变化会在光谱中体现,因此可以通过光谱的变化来判断食物的口感。由此,可以根据判断出的食物的口感调节烹饪程序,例如,调节烹饪加热结束时间等,从而烹制出更美味、营养、健康的食物。
其中,“最佳口感模型”的获得方法可以包括以下步骤:选取多个种类的食物样品,在每种食物样品呈现最佳口感时采用预设光线照射以使食物样品反射出检测光线,检测检测光线的光谱信息并根据其与食物样品所呈的最佳口感的对应关系建立最佳口感模型。简言之,记录每种食物呈现最佳质量与口感时的出射光线的光谱,并将食物加热过程中出射光线的光谱与最佳口感时的光谱相比较,最接近最佳光谱时,即停止加热,从而保证加热食物呈现最佳质量与口感。
下面,详细描述根据本发明再一些实施例的烹饪方法。
首先,以预设光线照射待烹煮食物使所述待烹煮食物反射出出射光线并检测所述出射光线的光谱信息;然后,根据统计预定时长内的光谱信息给出饮食建议,其中,预定时长可以为一小时、一天、一星期、一个月等。其中,“饮食建议”可以包括:预定时长内已检测食物的营养成分的分析报告、预定时长内已检测食物对健康影响的分析报告、以及推荐菜谱中的至少一项。
简言之,可以将一段时间所检测食物的营养成分数据保存在系统中,根据日常饮食的营养成分含量,分析饮食搭配是否合理,并给出相关饮食搭配的建议等。由此,在人们生活水平日益提高的大环境下,本烹饪方法可以监测、统计日常饮食的营养成分,方便用户更加合理的搭配饮食。也就是说,用户凭借可执行本烹饪方法的烹饪器具,在没有专业营养师的指导下也能进行合理的饮食搭配。
其中,“给出饮食建议”的方法具体如下:首先,根据预定时长内已检测食物的光谱信息定性判断食物的种类组成;然后,根据前一判断结果定量分析预定时长内已检测食物的 营养成分;接着,根据分析数据,给出合理的饮食建议。例如,可以统计微波炉100在一星期内烹饪的肉类较多还是蔬菜较多,如果肉类较多,则可以给出应当提高蔬菜摄入量的饮食建议等。
参照图5,在给出饮食建议前,首先进行定性分析,先一级定性判断预定时长内已烹饪食物的种类大类有那些,例如是属于肉类、淀粉类,还是蔬菜类,再二级定性判断预定时长内烹饪的食物的具体小类有那些,例如肉类又细分为牛、猪、羊、鸡、鸭、鱼,淀粉类又细分为土豆、红薯、芋头等,蔬菜类又细分为白菜、西兰花、辣椒等。其次,进行定量分析,也就是说,在二级定性判断后,再定量分析预定时长内已烹饪食物的营养物质含量,其中,肉类物质主要分析其水分、蛋白质、脂肪含量,淀粉类主要分析其水分、淀粉含量,蔬菜类主要分析其水分、碳水化合物、维生素等含量。最后,进行营养管理,运用定量分析的营养成分的数据,对日常饮食做出建议,或者自动给出推荐菜单。
下面,参照图1-图3,简要描述根据本发明实施例的烹饪器具,其中,烹饪器具可以为微波炉100、豆浆机200、蔬果机、以及电饭煲等。
根据本发明实施例的烹饪器具,可以执行上述烹饪方法。具体地,烹饪器具可以包括:机壳、光谱检测装置以及控制器,机壳内具有烹饪腔11,光谱检测装置设在烹饪腔11内和/或外且用于检测光谱信息,例如光谱检测装置可以包括设在烹饪腔11内的感应器21和设在烹饪腔11外的控制处理器22,控制器设在烹饪腔11内和/或外且与光谱检测装置相连,以根据光谱信息设定相应的烹饪程序和/或调节已设定的烹饪程序。由此,根据本发明实施例的烹饪器具,结构紧凑,功能强大,自动化强。另外,本发明实施例的光谱检测装置具有快速、无损、绿色、环保等优点,非常适合于食物营养成分的检测与分析。
在本发明的一些实施例中,感应器21设在烹饪腔11内且用于发射预设光线和接收出射光线,优选地,以预设光线照射食物后,检测由食物漫反射出的出射光线,这样,用于发射预设光线和用于接收出射光线的感应器21可以集成在一起且位于食物的同侧,以既能发射预设光线、又能收出射光线,由此,感应器21的集成度高,结构紧凑、小巧,从而可以方便对食物的在线检测,使得光谱检测装置的结构更加紧凑、小巧。
可选地,感应器21可以为接触式或非接触式。例如,感应器21可以以附件的形式嵌入到豆浆机200、果蔬机、电饭煲等烹饪器具的烹饪腔11内,例如构造为接触式探头且固定在烹饪腔11内的底部(如图3所示),由此,方便安装且检测效果好。又例如,感应器21还可以构造为接触式探针且通过光纤在烹饪腔11内自由设置(如图1所示),也就是说,用户可以手持探针以将探针插入待烹煮食物内部,由此,可以提高检测效果。
在本发明的一些实施例中,参照图1和图3,控制处理器22设在烹饪腔11外且与感应器21相连,以控制感应器21发射预设光线且对出射光线进行光谱分析。例如,参照图4,控制处理器22可以包括:光源220、滤光器221、准直器、聚焦镜、光检测器222以及数据处理芯片223。其中,光源220、滤光器221、准直器、聚焦镜以及光检测器222等可以通过MEMS技术集成在数据处理芯片223上,从而控制处理器22的集成度高,结构紧凑、小巧。
具体地,光源220可以用于发射预设光线、例如近红外光段,近红外光段是基频振动的倍频、合频,其吸收较弱,对样品进行检测时,无需稀释样品,可以实现在线检测,且对待检测样品的要求低,抗干扰性好,提高光谱检测装置的可检测范围和实用性。这里,可以理解的是,由于红外光谱是物质的吸收光谱,物质的红外光谱反应分子的微观结构和状态,可以用于对物质的结构和成分进行观测、分析和处理。这样,当采用近红外光段照射食物后,有一部分红外光被食物吸收,另一部分红外光可以被食物漫反射出,其中,食物漫反射出的红外光谱与食物的组分和浓度密切相关,所以通过对食物漫反射出的红外光谱的分析可以得到食物的组成和浓度的信息。由此,本检测光谱的方法是无损检测方法,不需要破坏样品,且样品无需预处理,检测过程简单,而且由于红外光谱是分子光谱,从而检测的是分子信息,使得检测结果精准,可靠性好。
具体地,滤光器221可以为线性渐变滤光片,线性渐变滤光片可透射的中心波长随着在滤光片上的位置不同而变化,其体积较小,价格便宜,波长范围、通道的大小、平均透射率、高色散系数等都完全满足滤光片在空间应用时对小型化、集成化和稳定性的需求,线性渐变滤光片可选基于FP干涉的可调滤光片、基于布拉格衍射晶体的声光可调滤光片,以实现光谱检测装置的小型化。
参照图4,光谱检测装置的工作过程可以如下:光源220发出预设光线,使预设光线直接照射到样品上,在预设光线与样品相互作用的过程中,一部分预设光线被样品吸收,未被吸收的光线由样品漫反射出,当漫反射出的出射光线到达滤光器221后,再到达光检测器222,光检测器222记录出射光线的光谱强度信号,并将光谱强度信号传到数据处理芯片223中进行AD转化和数据的后处理,后处理可以包括食物种类识别D1、新鲜程度判断D2、加热程度判断D3、营养分析与管理D4。
由此,根据本发明实施例的光谱检测装置的结构小巧、紧凑,价格低廉,不局限于实验室应用,可以在线检测,应用于烹饪器具中,以用于用户日常饮食营养成分的监测,并根据营养成分数据,来更加合理的搭配饮食。
下面,参照图1和图2,简要描述根据本发明实施例的烹饪器具为微波炉100的技术方案。
具体地,本实施例的微波炉100为可显示食物营养成分的微波炉100,本微波炉100包括光谱检测装置和控制器,光谱检测装置对被加热食物的加热过程进行监测,实时监测加热过程中食物的营养成分,并根据加热过程中检测的光谱数据的变化,来进行食物加热程度的判断和加热火力的调整,并且,结合光谱数据分析逻辑的设计,将其用于日常饮食的营养成分监测与分析,并保存营养分析数据以根据分析数据来建议人们更加合理的搭配饮食。
如图1所示,微波炉100的烹饪腔11外具有控制处理器22和第一转接头231,烹饪腔11内设有感应器21,烹饪腔11上具有第二转接头232,第一转接头231和第二转接头232通过第一光纤241相连,感应器21和第二转接头232通过第二光纤242相连。其中,感应器21设计成探针形式,一端与第二光纤242相连以插入第二转接头232内、另一端自由设置(可用户手持)以插入食物300的中心,由此,关上微波炉100的炉门进行加热后,即可以根据光谱检测装置在线监测烹饪腔11内被加热食物的加热状态。
具体工作过程如下:控制处理器22内的光源220发出的预设光线经光纤适配器(例如第一转接头231)耦合进入第一光纤241,再经过光纤适配器(例如第二转接头232)耦合进入第二光纤242,预设光线传输到第二光纤242的探针21上照到食物300内部,其中一部分光被食物300吸收,另一部分未被吸收而被食物300漫反射出,出射光线通过探针21回到第二光纤242,再通过第一光纤241回到控制处理器22内,经过线性渐变滤光器221,再到达光检测器222,反射信号在光检测器222内进行光电转换为电信号,即得到光谱信号,光谱信号到数据处理芯片223内进行AD转换并进行数据处理,数据处理的结果用于作为反馈来调整加热过程、显示营养成分含量等信息并做出营养搭配建议。
综上所述,根据本发明实施例的光谱检测装置不仅可以作为独立式结构,还可以作为附件嵌入到烹饪器具中,实现食物种类的识别、食物新鲜程度的判断、食物加热程度的判断、食物营养成分的分析与管理等功能,并且结合数据处理逻辑的软件,不需要专业人员进行分析,就能得到物质的组分及百分含量等信息、并通过营养成分数据对日常饮食进行管理,并且烹制出美味可口的美食。
在本发明的描述中,需要理解的是,术语“中心”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件 必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (23)

  1. 一种烹饪方法,其特征在于,包括以下步骤:
    A、以预设光线照射待烹煮食物使所述待烹煮食物反射出出射光线并检测所述出射光线的光谱信息;
    B、根据所述光谱信息设定相应的烹饪程序和/或调节已设定的烹饪程序。
  2. 根据权利要求1所述的烹饪方法,其特征在于,所述步骤B具体为:
    B1、根据所述光谱信息分析所述待烹煮食物的种类、鲜活程度和加热程度中的至少一个;
    B2、根据所述步骤B1中的分析结果设定相应的烹饪程序和/或调节已设定的烹饪程序。
  3. 根据权利要求2所述的烹饪方法,其特征在于,所述步骤B1具体包括:根据食物种类模型和所述光谱信息分析所述待烹煮食物的种类。
  4. 根据权利要求3所述的烹饪方法,其特征在于,所述食物种类模型的获得方法包括以下步骤:
    选取多个种类的食物样品;
    采用所述预设光线分别照射每个种类的所述食物样品以使所述食物样品反射出检测光线,检测所述检测光线的光谱信息并根据其与种类的对应关系建立所述食物种类模型。
  5. 根据权利要求2-4中任一项所述的烹饪方法,其特征在于,所述步骤B1具体包括:根据食物鲜活程度模型和所述光谱信息分析所述待烹煮食物的鲜活程度。
  6. 根据权利要求5所述的烹饪方法,其特征在于,所述食物鲜活程度模型的获得方法包括以下步骤:
    在食物样品呈现多种鲜活程度时分别采用所述预设光线照射以使所述食物样品反射出检测光线,检测所述检测光线的光谱信息并根据其与鲜活程度的对应关系建立所述食物鲜活程度模型。
  7. 根据权利要求2-6中任一项所述的烹饪方法,其特征在于,所述步骤B1具体包括:根据食物加热程度模型和所述光谱信息分析所述待烹煮食物的加热程度。
  8. 根据权利要求7所述的烹饪方法,其特征在于,所述食物加热程度模型的获得方法包括以下步骤:
    在食物样品处于多种加热程度时分别采用预设光线照射以使所述食物样品反射出检测光线,检测所述检测光线的光谱信息并根据其与加热程度的对应关系建立所述食物加热程度模型。
  9. 根据权利要求1所述的烹饪方法,其特征在于,所述步骤B具体为:根据所述光谱信息和最佳口感模型设定相应的烹饪程序和/或调节已设定的烹饪程序。
  10. 根据权利要求9所述的烹饪方法,其特征在于,所述根据所述光谱信息和最佳口感模型调节烹饪程序具体为:采用相关系数法或光谱距离法比较所述光谱信息和最佳口感模型,以在所述待烹煮食物呈现最佳口感时停止烹饪程序。
  11. 根据权利要求9或10所述的烹饪方法,其特征在于,所述最佳口感模型的获得方法包括以下步骤:
    在所述食物样品呈现最佳口感时采用所述预设光线照射以使所述食物样品反射出检测光线,检测所述检测光线的光谱信息并根据其与最佳口感的对应关系建立所述最佳口感模型。
  12. 根据权利要求1-11中任一项所述的烹饪方法,其特征在于,进一步包括步骤:
    C、统计预定时长内所述步骤A中的所述光谱信息给出饮食建议,所述饮食建议包括:所述预定时长内已检测食物的营养成分的分析报告、所述预定时长内已检测食物对健康影响的分析报告、以及推荐菜谱中的至少一项。
  13. 根据权利要求12所述的烹饪方法,其特征在于,所述步骤C具体为:
    C1、根据所述预定时长内已检测食物的光谱信息定性判断食物的种类组成;
    C2、根据所述步骤C1中的判断结果定量分析所述预定时长内已检测食物的营养成分;
    C3、根据所述步骤C2中的分析结果给出所述饮食建议。
  14. 一种烹饪器具,其特征在于,包括:
    机壳,所述机壳内具有烹饪腔;
    光谱检测装置,所述光谱检测装置设在所述烹饪腔内和/或外,所述光谱检测装置构造成以预设光线照射待烹煮食物使所述待烹煮食物反射出出射光线、并检测所述出射光线的光谱信息;以及
    控制器,所述控制器设在所述烹饪腔内和/或外且与所述光谱检测装置相连,所述控制器构造成根据所述光谱信息设定相应的烹饪程序和/或调节已设定的烹饪程序。
  15. 根据权利要求14所述的烹饪器具,其特征在于,所述光谱检测装置包括:
    感应器,设在所述烹饪腔内且用于发射所述预设光线和接收所述出射光线;
    控制处理器,设在所述烹饪腔外且与所述感应器相连,以控制所述感应器发射所述预设光线且对所述感应器接收的所述出射光线进行分析处理。
  16. 根据权利要求15所述的烹饪器具,其特征在于,所述感应器为接触式或非接触式。
  17. 根据权利要求16所述的烹饪器具,其特征在于,所述感应器为接触式探头且固定在所述烹饪腔内的底部。
  18. 根据权利要求16所述的烹饪器具,其特征在于,所述感应器为接触式探针且通过光纤在所述烹饪腔内自由设置以用于插入待烹煮食物内部。
  19. 根据权利要求15-18中任一项所述的烹饪器具,其特征在于,所述控制处理器包括:光源、滤光器、光检测器以及数据处理芯片。
  20. 根据权利要求19所述的烹饪器具,其特征在于,所述光源、所述滤光器和所述光检测器集成在所述数据处理芯片上。
  21. 根据权利要求19或20所述的烹饪器具,其特征在于,所述滤光器为线性渐变滤光片。
  22. 根据权利要求14-21中任一项所述的烹饪器具,其特征在于,所述控制器构造成根据所述光谱信息分析所述待烹煮食物的种类、鲜活程度和加热程度中的至少一个,且根据分析结果设定相应的烹饪程序和/或调节已设定的烹饪程序,和/或,所述控制器构造成根据所述光谱信息和最佳口感模型设定相应的烹饪程序和/或调节已设定的烹饪程序。
  23. 根据权利要求14-22中任一项所述的烹饪器具,其特征在于,所述控制器进一步构造成通过统计预定时长内的所述光谱信息进行营养分析管理并给出合理的饮食建议。
PCT/CN2016/086710 2016-02-26 2016-06-22 烹饪方法和烹饪器具 WO2017143706A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201620148872.7U CN205758285U (zh) 2016-02-26 2016-02-26 烹饪器具
CN201610109597.2 2016-02-26
CN201620148872.7 2016-02-26
CN201610109597.2A CN105708306B (zh) 2016-02-26 2016-02-26 烹饪方法和烹饪器具

Publications (1)

Publication Number Publication Date
WO2017143706A1 true WO2017143706A1 (zh) 2017-08-31

Family

ID=59685804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086710 WO2017143706A1 (zh) 2016-02-26 2016-06-22 烹饪方法和烹饪器具

Country Status (1)

Country Link
WO (1) WO2017143706A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1278705A (zh) * 1997-11-11 2001-01-03 新颖烘烤系统公司 烘烤系统
US6299920B1 (en) * 1998-11-05 2001-10-09 Premark Feg L.L.C. Systems and method for non-invasive assessment of cooked status of food during cooking
DE102008010099A1 (de) * 2008-02-20 2009-10-08 Rational Ag Verfahren zur Bestimmung des Zustands eines Garguts und dieses einsetzendes Gargerät
CN102680530A (zh) * 2011-03-17 2012-09-19 伊莱克斯家用产品股份有限公司 获得烹饪过程中的或用于烹饪过程的食物原料的信息的方法
CN103417103A (zh) * 2012-05-24 2013-12-04 林靖权 利用辨识功能执行加热的方法及烹饪器具
CN203810478U (zh) * 2014-05-15 2014-09-03 淮安信息职业技术学院 一种自动识别食物的微波炉

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1278705A (zh) * 1997-11-11 2001-01-03 新颖烘烤系统公司 烘烤系统
US6299920B1 (en) * 1998-11-05 2001-10-09 Premark Feg L.L.C. Systems and method for non-invasive assessment of cooked status of food during cooking
DE102008010099A1 (de) * 2008-02-20 2009-10-08 Rational Ag Verfahren zur Bestimmung des Zustands eines Garguts und dieses einsetzendes Gargerät
CN102680530A (zh) * 2011-03-17 2012-09-19 伊莱克斯家用产品股份有限公司 获得烹饪过程中的或用于烹饪过程的食物原料的信息的方法
CN103417103A (zh) * 2012-05-24 2013-12-04 林靖权 利用辨识功能执行加热的方法及烹饪器具
CN203810478U (zh) * 2014-05-15 2014-09-03 淮安信息职业技术学院 一种自动识别食物的微波炉

Similar Documents

Publication Publication Date Title
CN105708306B (zh) 烹饪方法和烹饪器具
CN205758285U (zh) 烹饪器具
CN111527348B (zh) 可配置的烹饪系统和方法
US10207859B2 (en) Nutritional substance label system for adaptive conditioning
Kademi et al. Applications of miniaturized and portable near infrared spectroscopy (NIRS) for inspection and control of meat and meat products
CN107806656B (zh) 食物加热控制方法和食物加热装置
US10215744B2 (en) Dynamic recipe control
US9528972B2 (en) Dynamic recipe control
US9564064B2 (en) Conditioner with weight sensors for nutritional substances
US9436170B2 (en) Appliances with weight sensors for nutritional substances
US20180063900A1 (en) Calibration Of Dynamic Conditioning Systems
US8851365B2 (en) Adaptive storage and conditioning systems for nutritional substances
CN108338650B (zh) 烹饪器具和烹饪器具的控制方法
CN108960315B (zh) 一种调理肉制品品质智能评价系统及方法
US20150057773A1 (en) Multi-Conditioner Control for Conditioning Nutritional Substances
WO2015069325A1 (en) Multi-conditioner control for conditioning nutritional substances
WO2015073569A1 (en) Nutritional substance label system for adaptive conditioning
KR20190038184A (ko) 자동 조리 장치 및 방법
CN110132890A (zh) 根据食材成分优化无人厨房烹饪操作的方法及装置
US20100260903A1 (en) Device for the qualification of cooking oils, and methods
Schwartz et al. Effects of increasing internal end‐point temperatures on physicochemical and sensory properties of meat: A review
CN104330382A (zh) 一种生鲜牛肉的安全分级方法
CN109310243A (zh) 具有至少一个加工装置和监控装置的电动厨房多用机
CN108720546A (zh) 烹饪器具的控制方法、控制装置及烹饪器具
WO2017143706A1 (zh) 烹饪方法和烹饪器具

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891159

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/11/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16891159

Country of ref document: EP

Kind code of ref document: A1