WO2017143687A1 - 阵列基板及其制作方法、显示面板、触控面板 - Google Patents

阵列基板及其制作方法、显示面板、触控面板 Download PDF

Info

Publication number
WO2017143687A1
WO2017143687A1 PCT/CN2016/084083 CN2016084083W WO2017143687A1 WO 2017143687 A1 WO2017143687 A1 WO 2017143687A1 CN 2016084083 W CN2016084083 W CN 2016084083W WO 2017143687 A1 WO2017143687 A1 WO 2017143687A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
pixel region
sub
array substrate
arrangement period
Prior art date
Application number
PCT/CN2016/084083
Other languages
English (en)
French (fr)
Inventor
刘震
张锋
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/525,733 priority Critical patent/US10386947B2/en
Publication of WO2017143687A1 publication Critical patent/WO2017143687A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/34Colour display without the use of colour mosaic filters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to an array substrate and a method for fabricating the same, a display panel, and a touch panel.
  • TFT-LCD Thin Film Transistor Liquid Crystal Display
  • the color filter is an important component of the liquid crystal display.
  • the light emitted by the backlight module is processed by the color filter to present a color picture.
  • Color filters are mostly made of organic pigments or dyes.
  • the method of making color filters is usually as follows: firstly, a black matrix is formed on a transparent substrate to form a pitch; then a red color filter unit, a green color filter unit, and a blue color are separately formed.
  • the color filter unit has a complicated manufacturing process, resulting in a high cost of the liquid crystal display.
  • the present disclosure provides an array substrate and a manufacturing method thereof, a display panel, and a touch panel, which can simplify the manufacturing process of the liquid crystal display panel and reduce the cost of the liquid crystal display panel.
  • an array substrate in one aspect, includes a plurality of pixel regions arranged in an array, each of the pixel regions is provided with a plurality of metal patterns, and each of the metal patterns includes a plurality of periodically arranged metal units.
  • the metal pattern can reflect and filter light from ambient light or a front light source, wherein each pixel region includes a plurality of sub-pixel regions, and the plurality of sub-pixel regions and the plurality of pixel regions Metal graphics one-to-one correspondence, metal graphics corresponding to sub-pixel regions of different colors The arrangement period of the metal cells is different.
  • the metal unit is a rectangle, and an arrangement period of the metal unit is a sum of a spacing between two adjacent metal units and a width of the metal unit.
  • a red sub-pixel region, a green sub-pixel region, and a blue sub-pixel region are formed on the array substrate.
  • the width of the metal unit in the red sub-pixel region ranges from 490 to 510 nm, and the arrangement period ranges from 530 to 550 nm; the width of the metal unit in the green sub-pixel region ranges from 440 to 460 nm, and the arrangement period ranges from 475 to - 495 nm; the metal unit in the blue sub-pixel region has a width ranging from 290 to 305 nm, and an arrangement period ranging from 315 to 330 nm.
  • the metal unit in the red sub-pixel region has a width of 500 nm and an arrangement period of 540 nm; the metal unit in the green sub-pixel region has a width of 450 nm and an arrangement period of 485 nm; The metal unit in the pixel region has a width of 300 nm and an arrangement period of 320 nm.
  • a yellow sub-pixel region, a magenta sub-pixel region, and a cyan sub-pixel region are formed on the array substrate,
  • the metal unit in the yellow sub-pixel region has a width ranging from 50 to 70 nm, and the arrangement period ranges from 190 to 210 nm; the metal unit in the magenta sub-pixel region has a width ranging from 66 to 86 nm, and the arrangement period ranges from 190 to 190 nm. -210 nm; the metal unit in the blue sub-pixel region has a width ranging from 82 to 102 nm, and an arrangement period ranging from 190 to 210 nm.
  • the metal unit in the yellow sub-pixel region has a width of 60 nm and an arrangement period of 200 nm; the metal unit in the magenta sub-pixel region has a width of 76 nm and an arrangement period of 200 nm; The metal unit in the sub-pixel region has a width of 92 nm and an arrangement period of 200 nm.
  • the metal unit is circular, and the arrangement period of the metal unit is a sum of a minimum spacing between adjacent two metal units and a diameter of the metal unit.
  • the metal unit has a thickness of 100 to 220 nm.
  • the metal unit has a thickness of 120 nm.
  • the array substrate further includes a plurality of thin film transistors respectively corresponding to the respective sub-pixel regions, and all the metal units in each sub-pixel region are connected to the drains of the corresponding thin film transistors.
  • adjacent ones of the plurality of metal units corresponding to each sub-pixel region of the array substrate are connected by a metal connection structure, and the metal connection structure is made of the same material as the metal unit.
  • the array substrate further includes a touch electrode, and the metal pattern is disposed in the same material as the touch electrode.
  • the array substrate further includes a plurality of thin film transistors, the touch electrodes are located above the thin film transistors, and an orthographic projection of the thin film transistors on the array substrate falls on the touch electrodes on the array substrate In the orthographic projection.
  • the present disclosure also provides a display panel including the array substrate as described above.
  • the present disclosure also provides a touch panel including the array substrate as described above.
  • the present disclosure also provides a method for fabricating an array substrate, the method comprising:
  • each metal pattern including a periodically arranged metal unit capable of reflecting and filtering light from external ambient light or a front light source, wherein each The plurality of sub-pixel regions in the pixel region are in one-to-one correspondence with the plurality of metal patterns in the pixel region, and the metal cells of the different color sub-pixel regions have different arrangement periods of the metal cells.
  • a plurality of thin film transistors are further formed on the array substrate, and the step of forming a plurality of metal patterns in each pixel region of the array substrate further includes:
  • a plurality of metal cells each connected to a drain of a thin film transistor corresponding to the sub-pixel region are formed in each sub-pixel region.
  • the step of forming a plurality of metal patterns on each of the pixel regions of the array substrate further includes:
  • the touch electrode and the metal pattern are simultaneously formed by one patterning process.
  • the metal pattern can reflect and filter the light from the ambient light or the front light source, and the different colors can be filtered by designing metal units with different arrangement periods and widths.
  • the metal pattern can function as a color filter layer, and the color filter layer is not separately prepared, which can simplify the manufacturing process of the liquid crystal display and reduce the cost of the liquid crystal display; and can reduce the color filter layer without separately providing The thickness of the display panel.
  • FIG. 1 is a schematic structural view of a reflective liquid crystal display panel in the related art
  • FIGS. 2 and 3 are schematic views of a single metal pattern in some embodiments of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a reflective liquid crystal display panel according to some embodiments of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a touch panel according to some embodiments of the present disclosure.
  • FIG. 6 is a schematic diagram of metal patterns in different sub-pixel regions of some embodiments of the present disclosure.
  • FIG. 7 is a schematic plan view of an array substrate according to some embodiments of the present disclosure.
  • Figure 8 is a cross-sectional view of the array substrate of Figure 7 taken along line AA';
  • Figure 9 is a cross-sectional view of the array substrate of Figure 7 taken along line BB';
  • FIG. 10 is a schematic diagram of reflection efficiency of a liquid crystal display panel according to some embodiments of the present disclosure.
  • the reflective liquid crystal display panel in the related art is shown in FIG. 1 , which still uses an organic pigment or a dye filter.
  • This type of color filter requires separately preparing a red color filter, a green color filter, and a blue color filter. The preparation process is complicated, the cost is high, and the filtering efficiency is low, only about 30%.
  • the present disclosure provides an array substrate, a manufacturing method thereof, a display panel, and a touch panel, which can simplify the manufacturing process of the liquid crystal display panel and reduce the cost of the liquid crystal display panel.
  • Some embodiments of the present disclosure provide an array substrate including a plurality of pixel regions arranged in an array, each of the pixel regions being provided with a plurality of metal patterns, each of the metal patterns including periodically arranged metal units
  • the metal pattern can reflect and filter light from ambient light or a front light source.
  • Each of the pixel regions includes a plurality of sub-pixel regions, the plurality of sub-pixel regions are in one-to-one correspondence with the plurality of metal patterns in the pixel region, and the arrangement of the metal elements of the metal pattern corresponding to the sub-pixel regions of different colors The cycle is different.
  • the metal pattern can reflect and filter the light from the ambient light or the front light source, and the metal elements of different arrangement periods and widths can be filtered to filter different colors, so that the metal pattern can be color filtered.
  • the function of the layer eliminates the need to separately prepare the color filter layer, which simplifies the manufacturing process of the liquid crystal display and reduces the cost of the liquid crystal display; and the thickness of the display panel can be reduced because the color filter layer is not additionally provided.
  • the metal elements of the metal pattern are arranged in a matrix, and the arrangement period and width of the metal elements of the metal pattern in the different color sub-pixel regions are different; the sub-pixel region corresponds to the wavelength of the color.
  • the metal unit may be circular, square or rectangular.
  • the metal unit is rectangular, and the arrangement period of the metal unit is the sum of the spacing between adjacent two metal units and the width of the metal unit.
  • a red sub-pixel region, a green sub-pixel region, and a blue sub-pixel region are formed on the array substrate.
  • the width of the metal unit in the red sub-pixel region ranges from 490 to 510 nm, and the arrangement period ranges from 530 to 550 nm; the width of the metal unit in the green sub-pixel region ranges from 440 to 460 nm, and the arrangement period ranges from 475 to - 495 nm; the metal unit width in the blue sub-pixel region ranges from 290 to 305 nm, and the arrangement period ranges from 315 to 330 nm.
  • the width of the metal unit in the red sub-pixel region is 500 nm, and the arrangement period is 540 nm; the width of the metal unit in the green sub-pixel region is 450 nm, and the arrangement period is 485 nm;
  • the metal unit in the blue sub-pixel region has a width of 300 nm and an arrangement period of 320 nm.
  • a yellow sub-pixel region, a magenta sub-pixel region, and a cyan sub-pixel region may be formed on the array substrate.
  • the metal unit in the yellow sub-pixel region has a width ranging from 50 to 70 nm, and the arrangement period ranges from 190 to 210 nm; the metal unit in the magenta sub-pixel region has a width ranging from 66 to 86 nm, and the arrangement period ranges from 190 to 190 nm. -210 nm; the metal unit in the blue sub-pixel region has a width ranging from 82 to 102 nm, and an arrangement period ranging from 190 to 210 nm.
  • the metal unit in the yellow sub-pixel region has a width of 60 nm and an arrangement period of 200 nm; the metal unit in the magenta sub-pixel region has a width of 76 nm and an arrangement period of 200 nm; The metal unit in the pixel region has a width of 92 nm and an arrangement period of 200 nm.
  • the metal unit is circular, and the arrangement period of the metal unit is the sum of the minimum distance between two adjacent metal units and the diameter of one of the metal units.
  • a red sub-pixel region, a green sub-pixel region, and a blue sub-pixel region may be formed on the array substrate.
  • the metal unit in the red sub-pixel region has a diameter ranging from 160 to 280 nm, and the arrangement period ranges from 410 to 430 nm; the metal unit in the green sub-pixel region has a diameter ranging from 120 to 240 nm, and the arrangement period ranges from 330 to 350 nm; the metal unit in the blue sub-pixel region has a diameter ranging from 100 to 180 nm, and the arrangement period ranges from 250 to 270 nm.
  • the diameter of the metal unit in the red sub-pixel region is 220 nm; the diameter of the metal unit in the green sub-pixel region is 180 nm; and the diameter of the metal unit in the blue sub-pixel region is 140 nm.
  • the metal unit has a thickness of 100 to 220 nm.
  • the metal pattern has a thickness of 120 nm.
  • a plurality of thin film transistors respectively corresponding to the respective sub-pixel regions are formed on the array substrate, and all the metal units in each sub-pixel region are connected to the drains of the corresponding thin film transistors.
  • the metal pattern can also serve as a pixel electrode, which can eliminate the patterning process for fabricating the pixel electrode, further simplify the fabrication process of the array substrate, and reduce the cost of the array substrate.
  • a touch electrode is further formed on the array substrate, and the metal pattern is disposed on the same layer as the touch electrode, and the touch electrode and the metal pattern can be simultaneously formed by one patterning process, thereby further simplifying the fabrication of the array substrate. Process to reduce the cost of the array substrate.
  • the touch electrode is located above the thin film transistor, and an orthographic projection of the thin film transistor on the array substrate falls into an orthographic projection of the touch electrode on the array substrate, so that the touch The electrodes can block the thin film transistor and prevent the performance of the thin film transistor from being affected by illumination.
  • Some embodiments of the present disclosure also provide a display panel including the array substrate as described above.
  • Some embodiments of the present disclosure also provide a touch panel including the array substrate as described above.
  • Some embodiments of the present disclosure provide a method for fabricating an array substrate, the method comprising:
  • each metal pattern including a periodically arranged metal unit capable of reflecting and filtering light from external ambient light or a front light source, wherein each The pixel region includes a plurality of sub-pixel regions, and the plurality of sub-pixel regions are in one-to-one correspondence with the plurality of metal patterns in the pixel region, and the metal cells of the different color sub-pixel regions have different arrangement periods of the metal cells.
  • the metal pattern can reflect and filter the light from the ambient light or the front light source, and the metal elements of different arrangement periods and widths can be filtered to filter different colors, so that the metal pattern can be color filtered.
  • the function of the layer eliminates the need to separately prepare the color filter layer, which simplifies the manufacturing process of the liquid crystal display and reduces the cost of the liquid crystal display; and the thickness of the display panel can be reduced because the color filter layer is not additionally provided.
  • a plurality of thin film transistors are further formed on the array substrate, and the step of forming a plurality of metal patterns in each pixel region of the array substrate further includes:
  • a plurality of metal cells each connected to a drain of a thin film transistor corresponding to the sub-pixel region are formed in each sub-pixel region.
  • the metal pattern thus formed can also serve as a pixel electrode, which can eliminate the composition of the pixel electrode.
  • the process further simplifies the fabrication process of the array substrate and reduces the cost of the array substrate.
  • the step of forming a plurality of metal patterns on each of the pixel regions of the array substrate further includes:
  • the touch electrode and the metal pattern are simultaneously formed by one patterning process, which can further simplify the fabrication process of the array substrate and reduce the cost of the array substrate.
  • the reflective liquid crystal display panel includes: an array substrate and a substrate substrate 104 disposed opposite to each other, and is disposed on the array substrate and the substrate substrate 104 .
  • a polarizer 105 and an asymmetric forward scattering film 106 are attached to the base substrate 104;
  • the array substrate includes: a base substrate 100, and a plurality of metal patterns formed on the base substrate 100,
  • Each metal image includes a plurality of metal units 71 made of a conductive material such as aluminum, gold, silver or copper.
  • the metal pattern is preferably made of Al in terms of cost and process compatibility.
  • a plurality of metal units are formed in each sub-pixel region, and a plurality of rectangular metal units are periodically arranged in the sub-pixel region.
  • the arrangement period P of the metal unit is the sum of the pitch of the adjacent two metal units and the width D of the metal unit.
  • the arrangement period of the metal units corresponding to the sub-pixel regions of different colors is different, and the widths of the metal units corresponding to the sub-pixel regions of different colors are different.
  • the surface plasmon resonance enhancement effect is caused by the excitation and coupling effect of the surface plasmon in the metal pattern.
  • Metal cells arranged in a specific period only cause reflection enhancement for light of a specific wavelength, while light of other wavelengths is absorbed, and energy is dissipated, so that the metal pattern can reflect light from external ambient light or front light source. Filtered.
  • a red sub-pixel region, a green sub-pixel region, and a blue sub-pixel region are formed on the array substrate, and the metal cells corresponding to the sub-pixel regions of each color have the same width and the same arrangement period.
  • the incident light illuminates the surface of the metal pattern in the sub-pixel region of a certain color, the light of the same color is reflected, so the sub-pixel region displays a single color, such as red;
  • the two sub-pixel regions use the width and arrangement period of green and blue to set the periodic array of metal cells, respectively reflecting green and blue, and the three sub-pixel regions of red, green and blue form a complete pixel unit.
  • the metal elements of the metal pattern in the sub-pixel region of each color have the same width and the same arrangement.
  • the yellow and cyan colors are reflected separately.
  • the yellow sub-pixel region, the magenta sub-pixel region, and the cyan sub-region are capable of reflecting yellow light, magenta light, and cyan light, respectively. It can be seen from FIG. 10 that the metal pattern in the yellow sub-pixel region can reflect nearly 80% of the yellow light with a wavelength of 700 nm, and the metal pattern in the magenta sub-pixel region can reflect the magenta light with a wavelength of 400 nm. When the ratio reaches 80%, the metal pattern in the cyan sub-pixel region can reflect the cyan light having a wavelength of 400 nm by more than 70%, and the filter efficiency can be effectively improved compared with the color filter layer in the related art.
  • a plurality of thin film transistors are further formed on the array substrate, and the array substrate includes a gate metal layer 1 formed on the base substrate 100, and a gate insulating layer 2, which is active on the gate insulating layer 2.
  • the graphic can also act as a pixel electrode, which can eliminate the patterning process for fabricating the pixel electrode, further simplify the fabrication process of the array substrate, and reduce the cost of the array substrate.
  • Step 1 Perform deposition of the gate metal layer 1 on the base substrate 100, and form a pattern of gate lines and gate lines by a patterning process;
  • Step 2 depositing a gate insulating layer 2 on the base substrate 100 on which the step 1 is completed, and depositing a semiconductor layer on the gate insulating layer 2, and forming a pattern of the active layer 3 by a patterning process;
  • Step 3 performing deposition of the source/drain metal layer 4 on the base substrate 100 completing the step 2, forming a data line, a source and a drain through a patterning process;
  • Step 4 performing deposition of the passivation layer 5 on the base substrate 100 on which the step 3 is completed;
  • Step 5 depositing a flat layer 6 on the base substrate 100 completing the step 4, forming a pattern of the passivation layer 5 and the flat layer 6 by a patterning process;
  • Step 6 Perform deposition of a metal layer on the base substrate 100 on which the step 5 is completed, and then pattern the masks with different periods, so that the sub-pixel regions corresponding to different colors are formed by the metal units 71 having different arrangement periods.
  • Metal pattern the metal pattern can realize reflective filtering; and the metal pattern functioning as a reflective filter in the sub-pixel region is electrically connected to the drain through the via of the passivation layer 5 and the flat layer 6, so that the metal pattern has both The role of the pixel electrode.
  • the metal pattern can reflect and filter the light from the ambient light or the front light source, and the metal elements of different arrangement periods and widths can be filtered to filter different colors, so that the metal pattern can be color filtered.
  • the function of the layer eliminates the need to separately prepare the color filter layer, which simplifies the manufacturing process of the liquid crystal display and reduces the cost of the liquid crystal display; and because the color filter layer is not separately provided, the thickness of the display panel can be reduced;
  • the metal pattern can also be As a pixel electrode, the patterning process for fabricating the pixel electrode can be omitted, the fabrication process of the array substrate is further simplified, and the cost of the array substrate is reduced.
  • FIG. 5 is a schematic structural diagram of a touch panel according to some embodiments of the present disclosure.
  • the touch panel of the present embodiment includes: an array substrate and a substrate substrate 104 disposed opposite to each other, and the array substrate and the substrate a liquid crystal cell between 104, a polarizing plate 105 and an asymmetric forward scattering film 106 are attached to the base substrate 104; a touch sensing electrode 73 is formed on the base substrate 104; and the array substrate includes: a substrate substrate 100, And a plurality of metal patterns and touch driving electrodes 72 formed on the substrate substrate 100.
  • Each of the metal images includes a plurality of metal units 71.
  • the metal patterns and the touch driving electrodes 72 are made of aluminum, gold, silver, copper, etc.
  • the movable electrode 72 is preferably made of Al. Since the metal pattern and the touch driving electrode 72 are disposed in the same layer, the metal pattern and the touch driving electrode 72 can be simultaneously formed by one patterning process, which can simplify the manufacturing process of the array substrate and reduce the array. The cost of the substrate.
  • a plurality of rectangular metal units are formed in each sub-pixel region, and the plurality of metal units are periodically in the sub-pixel region.
  • the arrangement period of the metal cells is the sum of the pitch of the adjacent two metal cells and the width D of the metal cells.
  • the arrangement period of the metal units corresponding to the sub-pixel regions of different colors is different, and the widths of the metal units corresponding to the sub-pixel regions of different colors are different.
  • the surface plasmon resonance enhancement effect due to the excitation and coupling effect of the surface plasmon in the metal pattern is arranged for a specific period.
  • the metal pattern causes reflection enhancement only for light of a specific wavelength, while light of other wavelengths absorbs, and its energy is dissipated, so that the metal pattern can reflect and filter light from ambient light or a front light source.
  • a red sub-pixel region, a green sub-pixel region, and a blue sub-pixel region are formed on the array substrate, and the metal elements of the metal pattern in the sub-pixel region of each color have the same width and the same arrangement.
  • the periodic array of metal cells is set to reflect green and blue, respectively, and the three sub-pixel regions of red, green and blue form a complete pixel unit.
  • the metal elements of the metal pattern in the sub-pixel region of each color have the same width and the same arrangement.
  • the yellow and cyan colors are reflected separately.
  • a yellow sub-pixel region, magenta sub-region is formed on the array substrate In the pixel region and the cyan sub-pixel region, as shown in FIG. 10, the metal pattern of the present embodiment can reflect yellow light, magenta light, and cyan light.
  • the yellow sub-pixel region and the metal inside The reflection efficiency of the yellow light with a wavelength of 700 nm can reach nearly 80%, and the metal pattern in the magenta sub-pixel region can reflect 80% of the magenta light with a wavelength of 400 nm, and the metal pattern versus wavelength in the cyan sub-pixel region.
  • the reflection efficiency of cyan light for 400 nm can exceed 70%, and the filter efficiency can be effectively improved compared to the color filter layer in the related art.
  • a plurality of thin film transistors are further formed on the array substrate, and the array substrate includes a gate metal layer 1 formed on the base substrate 100, and the gate insulating layer 2 is disposed on the gate insulating layer 2.
  • the active layer 3 is located on the active layer 3, the source and the drain formed by the source/drain metal layer 4, wherein the plurality of metal cells 71 in each sub-pixel region and the drain of the corresponding thin film transistor.
  • the connection is such that the metal pattern can also serve as a pixel electrode, which can eliminate the patterning process for fabricating the pixel electrode, further simplify the fabrication process of the array substrate, and reduce the cost of the array substrate.
  • Step 1 Perform deposition of the gate metal layer 1 on the base substrate 100, and form a pattern of gate lines and gate lines by a patterning process;
  • Step 2 depositing a gate insulating layer 2 on the base substrate 100 on which the step 1 is completed, and depositing a semiconductor layer on the gate insulating layer 2, and forming a pattern of the active layer 3 by a patterning process;
  • Step 3 performing deposition of the source/drain metal layer 4 on the base substrate 100 completing the step 2, forming a data line, a source and a drain through a patterning process;
  • Step 4 performing deposition of the passivation layer 5 on the base substrate 100 on which the step 3 is completed;
  • Step 5 depositing a flat layer 6 on the base substrate 100 completing the step 4, forming a pattern of the passivation layer 5 and the flat layer 6 by a patterning process;
  • Step 6 Perform deposition of a metal layer on the base substrate 100 on which the step 5 is completed, and then pattern the masks corresponding to the metal cells of different arrangement periods, so that sub-pixel regions corresponding to different colors are formed by metal having different periods.
  • the metal pattern composed of the unit 71 retains a mesh metal layer at a position corresponding to the gate line, the data line, and the thin film transistor, and the mesh metal layer can be partitioned and cut as
  • the touch driving electrode 72 and the touch sensing electrode 73 form a touch structure.
  • the orthographic projection of the thin film transistor on the array substrate falls into the orthographic projection of the touch driving electrode 72 on the array substrate, so that the touch driving electrode 72 can block the thin film transistor and prevent the performance of the thin film transistor from being affected by illumination. Further, the touch driving electrode 72 can also prevent light leakage.
  • the metal pattern can realize reflective filtering; and the metal pattern functioning as a reflection filter in the sub-pixel region is electrically connected to the drain through the via holes of the passivation layer 5 and the flat layer 6, so that the metal pattern simultaneously functions as a pixel electrode.
  • the metal pattern can reflect and filter the light from the ambient light or the front light source, and the metal elements of different arrangement periods and widths can be filtered to filter different colors, so that the metal pattern can be color filtered.
  • the function of the layer eliminates the need to separately prepare the color filter layer, which simplifies the manufacturing process of the liquid crystal display and reduces the cost of the liquid crystal display.
  • the thickness of the display panel can be reduced;
  • the patterning process simultaneously forms the touch driving electrode and the metal pattern, further simplifies the fabrication process of the array substrate, and reduces the cost of the array substrate; the metal pattern can also serve as a pixel electrode, which can eliminate the patterning process for fabricating the pixel electrode, and further simplify the array substrate. The manufacturing process reduces the cost of the array substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种阵列基板及其制作方法、显示面板、触控面板。所述阵列基板包括多个阵列排布的像素区域,每个像素区域内设置有多个金属图形,每个金属图形包括多个周期性排列的金属单元(71),所述金属图形(71)能够对来自外界环境光或前置光源的光线进行反射滤光。每个像素区域包括多个亚像素区域,所述多个亚像素区域分别对应所述像素区域内的多个金属图形,其中,不同颜色的亚像素区域对应的金属图形的金属单元(71)的排列周期不同。

Description

阵列基板及其制作方法、显示面板、触控面板
相关申请的交叉引用
本申请主张在2016年2月24日在中国提交的中国专利申请号No.201610101464.0的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,特别涉及一种阵列基板及其制作方法、显示面板、触控面板。
背景技术
薄膜晶体管液晶显示器(Thin Film Transistor Liquid Crystal Display,TFT-LCD)具有体积小、功耗低、无辐射等特点,在当今平板显示器市场中占据了主导地位。
彩色滤光片是液晶显示器的重要组件,在液晶显示器中,背光模组发射的光经过彩色滤光片的处理,而呈现出彩色的画面。彩色滤光片多采用有机颜料或者染料来制作,制作彩色滤光片的方法通常是:首先在透明基板上制作黑色矩阵形成间距;然后再分别制作红色滤色单元、绿色滤色单元和蓝色滤色单元,制作工艺复杂,导致液晶显示器的成本较高。
发明内容
本公开提供一种阵列基板及其制作方法、显示面板、触控面板,能够简化液晶显示面板的制作工艺,降低液晶显示面板的成本。
一方面,提供一种阵列基板,所述阵列基板包括多个成阵列排布的像素区域,每个像素区域内设置有多个金属图形,每个金属图形包括多个周期性排列的金属单元,所述金属图形能够对来自外界环境光或前置光源的光线进行反射滤光,其中,每个像素区域包含多个亚像素区域,所述多个亚像素区域与所述像素区域内的多个金属图形一一对应,不同颜色的亚像素区域对应的金属图形 的金属单元的排列周期不同。
可选的,所述金属单元为长方形,所述金属单元的排列周期为相邻两金属单元之间的间距与金属单元的宽度之和。
可选的,所述阵列基板上形成有红色亚像素区域、绿色亚像素区域和蓝色亚像素区域,
所述红色亚像素区域内的金属单元的宽度范围为490-510nm,排列周期范围为530-550nm;所述绿色亚像素区域内的金属单元的宽度范围为440-460nm,排列周期范围为475-495nm;所述蓝色亚像素区域内的金属单元的宽度范围为290-305nm,排列周期范围为315-330nm。
进一步可选的,所述红色亚像素区域内的金属单元的宽度为500nm,排列周期为540nm;所述绿色亚像素区域内的金属单元的宽度为450nm,排列周期为485nm;所述蓝色亚像素区域内的金属单元的宽度为300nm,排列周期为320nm。
可选的,所述阵列基板上形成有黄色亚像素区域、品红色亚像素区域和青色亚像素区域,
所述黄色亚像素区域内的金属单元的宽度范围为50-70nm,排列周期范围为190-210nm;所述品红色亚像素区域内的金属单元的宽度范围为66-86nm,排列周期范围为190-210nm;所述蓝色亚像素区域内的金属单元的宽度范围为82-102nm,排列周期范围为190-210nm。
进一步可选的,所述黄色亚像素区域内的金属单元的宽度为60nm,排列周期为200nm;所述品红色亚像素区域内的金属单元的宽度为76nm,排列周期为200nm;所述蓝色亚像素区域内的金属单元的宽度为92nm,排列周期为200nm。
可选的,所述金属单元为圆形,所述金属单元的排列周期为相邻两金属单元之间的最小间距与金属单元的直径之和。
可选的,所述金属单元的厚度为100~220nm。
进一步可选的,所述金属单元的厚度为120nm。
可选的,所述阵列基板还包括分别对应各个亚像素区域的多个薄膜晶体管,每一亚像素区域内的所有金属单元均与对应的薄膜晶体管的漏极连接。
可选的,所述阵列基板的每个亚像素区域对应的多个金属单元中相邻的金属单元通过金属连接结构连接,所述金属连接结构与所述金属单元同材料。
可选的,所述阵列基板还包括触控电极,所述金属图形与所述触控电极同层同材料设置。
可选的,所述阵列基板还包括多个薄膜晶体管,所述触控电极位于所述薄膜晶体管上方,且所述薄膜晶体管在阵列基板上的正投影落入所述触控电极在阵列基板上的正投影中。
本公开还提供了一种显示面板,包括如上所述的阵列基板。
本公开还提供了一种触控面板,包括如上所述的阵列基板。
本公开还提供了一种阵列基板的制作方法,所述制作方法包括:
在阵列基板的各个像素区域形成多个金属图形,每个金属图形包括周期性排列的金属单元,所述金属图形能够对来自外界环境光或前置光源的光线进行反射滤光,其中,每个像素区域内的多个亚像素区域与所述像素区域内的多个金属图形一一对应,不同颜色的亚像素区域对应的金属图形的金属单元的排列周期不同。
可选的,所述阵列基板上还形成有多个薄膜晶体管,在阵列基板的各个像素区域形成多个金属图形的步骤还包括:
在每一亚像素区域内形成均与对应该亚像素区域的薄膜晶体管的漏极连接的多个金属单元。
可选的,所述阵列基板上还形成有触控电极,在阵列基板的各个像素区域形成多个金属图形的步骤还包括:
通过一次构图工艺同时形成所述触控电极和所述金属图形。
本公开的方案中,金属图形能够对来自外界环境光或前置光源的光线进行反射滤光,通过设计不同排列周期和宽度的金属单元能够过滤出不同的颜色, 使得金属图形能够起到彩色滤光层的作用,不用再单独制备彩色滤光层,能够简化液晶显示器的制作工艺,降低液晶显示器的成本;并且由于不用再单独设置彩色滤光层,还能够降低显示面板的厚度。
附图说明
图1为相关技术中反射式液晶显示面板的结构示意图;
图2和图3为本公开一些实施例中单个金属图形的示意图;
图4为本公开一些实施例反射式液晶显示面板的结构示意图;
图5为本公开一些实施例的触控面板的结构示意图;
图6为本公开一些实施例不同亚像素区域内金属图形的示意图;
图7为本公开一些实施例阵列基板的平面示意图;
图8为图7所示阵列基板沿线AA’的截面示意图;
图9为图7所示阵列基板沿线BB’的截面示意图;
图10为本公开一些实施例液晶显示面板的反射效率示意图。
附图标记说明如下:
100、104 衬底基板   102 反射电极   103 彩色滤光片
105 偏光片    106 不对称前方散射膜   1 栅金属层   2 栅绝缘层
3 有源层      4 源漏金属层   5 钝化层   6 平坦层
71 金属单元   72 触控驱动电极   73 触控感应电极
具体实施方式
为使本公开的技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
相关技术中的反射式液晶显示面板如图1所示,其仍然采用有机颜料或者染料滤色片,该类型滤色片需要单独制备红色滤色片、绿色滤色片、蓝色滤色片,制备工艺复杂,成本较高,并且滤光效率较低,只有30%左右。
有鉴于此,本公开提供了一种阵列基板及其制作方法、显示面板、触控面板,能够简化液晶显示面板的制作工艺,降低液晶显示面板的成本。
本公开一些实施例提供了一种阵列基板,所述阵列基板包括多个成阵列排布的像素区域,每个像素区域内设置有多个金属图形,每个金属图形包括周期性排列的金属单元,所述金属图形能够对来自外界环境光或前置光源的光线进行反射滤光。其中,每个像素区域包含多个亚像素区域,所述多个亚像素区域与所述像素区域内的多个金属图形一一对应,不同颜色的亚像素区域对应的金属图形的金属单元的排列周期不同。
本实施例中,金属图形能够对来自外界环境光或前置光源的光线进行反射滤光,通过设计不同排列周期和宽度的金属单元能够过滤出不同的颜色,使得金属图形能够起到彩色滤光层的作用,不用再单独制备彩色滤光层,能够简化液晶显示器的制作工艺,降低液晶显示器的成本;并且由于不用再额外设置彩色滤光层,还能够降低显示面板的厚度。
具体地,所述阵列基板的每个亚像素区域中,金属图形的金属单元成矩阵排列,不同颜色亚像素区域中的金属图形的金属单元的排列周期和宽度不同;亚像素区域对应颜色的波长越长,金属单元的排列周期越大;亚像素区域对应颜色的波长越长,金属单元的宽度越大。
在本公开一些实施例中,金属单元可以为圆形、正方形或长方形。
在本公开一些实施例中,如图2所示,所述金属单元为长方形,所述金属单元的排列周期为相邻两金属单元之间的间距与金属单元的宽度之和。
进一步地,在金属单元为长方形时,所述阵列基板上形成有红色亚像素区域、绿色亚像素区域和蓝色亚像素区域,
所述红色亚像素区域内的金属单元的宽度范围为490-510nm,排列周期范围为530-550nm;所述绿色亚像素区域内的金属单元的宽度范围为440-460nm,排列周期范围为475-495nm;所述蓝色亚像素区域内的金属单元宽度范围为290-305nm,排列周期范围为315-330nm。
可选的,所述红色亚像素区域内的金属单元的宽度为500nm,排列周期为540nm;所述绿色亚像素区域内的金属单元的宽度为450nm,排列周期为485nm; 所述蓝色亚像素区域内的金属单元的宽度为300nm,排列周期为320nm。
进一步地,在金属单元为长方形时,所述阵列基板上可形成有黄色亚像素区域、品红色亚像素区域和青色亚像素区域,
所述黄色亚像素区域内的金属单元的宽度范围为50-70nm,排列周期范围为190-210nm;所述品红色亚像素区域内的金属单元的宽度范围为66-86nm,排列周期范围为190-210nm;所述蓝色亚像素区域内的金属单元的宽度范围为82-102nm,排列周期范围为190-210nm。
可选的,所述黄色亚像素区域内的金属单元的宽度为60nm,排列周期为200nm;所述品红色亚像素区域内的金属单元的宽度为76nm,排列周期为200nm;所述蓝色亚像素区域内的金属单元的宽度为92nm,排列周期为200nm。
在本公开一些实施例中,如图3所示,所述金属单元为圆形,所述金属单元的排列周期为相邻两金属单元之间最小距离与其中一个金属单元的直径之和。
进一步地,在金属单元为圆形时,所述阵列基板上可形成有红色亚像素区域、绿色亚像素区域和蓝色亚像素区域,
所述红色亚像素区域内的金属单元的直径范围为160-280nm,排列周期范围为410-430nm;所述绿色亚像素区域内的金属单元的直径范围为120-240nm,排列周期范围为330~350nm;所述蓝色亚像素区域内的金属单元的直径范围为100~180nm,排列周期范围为250-270nm。
可选的,所述红色亚像素区域内的金属单元的直径为220nm;所述绿色亚像素区域内的金属单元的直径为180nm;所述蓝色亚像素区域内的金属单元的直径为140nm。
进一步地,所述金属单元的厚度为100~220nm。可选的,所述金属图形的厚度为120nm。
进一步地,所述阵列基板上还形成有分别对应各个亚像素区域的多个薄膜晶体管,每一亚像素区域内的所有金属单元均与对应的薄膜晶体管的漏极连接, 则金属图形还可以充当像素电极,能够省去制作像素电极的构图工艺,进一步简化阵列基板的制作工艺,降低阵列基板的成本。
进一步地,所述阵列基板上还形成触控电极,所述金属图形与所述触控电极同层同材料设置,可以通过一次构图工艺同时形成触控电极和金属图形,进一步简化阵列基板的制作工艺,降低阵列基板的成本。
进一步地,可选地,所述触控电极位于所述薄膜晶体管上方,且所述薄膜晶体管在阵列基板上的正投影落入所述触控电极在阵列基板上的正投影中,这样触控电极能够遮挡住薄膜晶体管,避免薄膜晶体管的性能被光照影响。
本公开一些实施例还提供了一种显示面板,包括如上所述的阵列基板。
本公开一些实施例还提供了一种触控面板,包括如上所述的阵列基板。
本公开一些实施例提供了一种阵列基板的制作方法,所述制作方法包括:
在阵列基板的各个像素区域形成多个金属图形,每个金属图形包括周期性排列的金属单元,所述金属图形能够对来自外界环境光或前置光源的光线进行反射滤光,其中,每个像素区域中包含多个亚像素区域,所述多个亚像素区域与所述像素区域内的多个金属图形一一对应,不同颜色的亚像素区域对应的金属图形的金属单元的排列周期不同。
本实施例中,金属图形能够对来自外界环境光或前置光源的光线进行反射滤光,通过设计不同排列周期和宽度的金属单元能够过滤出不同的颜色,使得金属图形能够起到彩色滤光层的作用,不用再单独制备彩色滤光层,能够简化液晶显示器的制作工艺,降低液晶显示器的成本;并且由于不用再额外设置彩色滤光层,还能够降低显示面板的厚度。
进一步地,所述阵列基板上还形成有多个薄膜晶体管,在阵列基板的各个像素区域形成多个金属图形的步骤还包括:
在每一亚像素区域内形成均与对应该亚像素区域的薄膜晶体管的漏极连接的多个金属单元。
这样形成的金属图形还可以充当像素电极,能够省去制作像素电极的构图 工艺,进一步简化阵列基板的制作工艺,降低阵列基板的成本。
进一步地,所述阵列基板上还形成有触控电极,在阵列基板的各个像素区域形成多个金属图形的步骤还包括:
通过一次构图工艺同时形成所述触控电极和所述金属图形,这样能够进一步简化阵列基板的制作工艺,降低阵列基板的成本。
图4为本公开一些实施例反射式液晶显示面板的结构示意图,如图4所示,该反射式液晶显示面板包括:相对设置的阵列基板和衬底基板104,位于阵列基板和衬底基板104之间的液晶盒,在衬底基板104上贴附有偏光片105和不对称前方散射膜106;所述阵列基板包括:衬底基板100,以及衬底基板100上形成的多个金属图形,每个金属图像包括多个金属单元71,金属图形采用铝,金,银,铜等导电性好的材料制成,从成本和工艺兼容性考虑,金属图形优选采用Al制成。
如图6-图7所示,在本公开一些实施例的显示面板的阵列基板中,每一亚像素区域内形成有多个金属单元,多个长方形的金属单元在亚像素区域内周期性排列,金属单元的排列周期P为相邻两金属单元的间距与金属单元的宽度D之和。其中,不同颜色的亚像素区域对应的金属单元的排列周期不同,不同颜色的亚像素区域对应的金属单元的宽度不同。外界的环境光或前置光源的光线入射到金属单元周期性纳米阵列表面时发生反射,由于金属图形中的表面等离子体激元的激发和耦合效应,也就是表面等离子体共振增强效应,对于按照特定周期排列的金属单元只对特定波长的光引起反射增强现象,而其他波长的光则发生吸收,其能量被耗散,从而使得金属图形能够对来自外界环境光或前置光源的光线进行反射滤光。
如图6所示,阵列基板上形成有红色亚像素区域、绿色亚像素区域和蓝色亚像素区域,每一种颜色的亚像素区域对应的金属单元具有相同的宽度和相同的排列周期,当有入射光照射在某一颜色的亚像素区域内的金属图形表面时,反射同一种颜色的光,因此此亚像素区域显示单一颜色,例如红色;同样另外 两个亚像素区域采用绿色和蓝色对应的宽度和排列周期来设置金属单元的周期阵列,则分别反射显示绿色和蓝色,红绿蓝三个亚像素区域构成一个完整像素单元。
可选的,在阵列基板上形成有黄色亚像素区域、品红色亚像素区域和青色亚像素区域时,每一种颜色的亚像素区域内的金属图形的金属单元具有相同的宽度和相同的排列周期,当有入射光照射在金属图形表面时,反射同一种颜色的光,因此此亚像素区域显示单一颜色,例如品红色;同样另外两个亚像素区域采用黄色和青色对应的宽度和排列周期来设置金属单元的周期阵列,则分别反射显示黄色和青色。
在本公开的一些实施例中,阵列基板上形成有黄色亚像素区域、品红色亚像素区域和青色亚像素区域时,如图10所示,黄色亚像素区域、品红色亚像素区域和青色亚像素区域内的金属图形分别能够对黄色光、品红色光和青色光进行反射。由图10可以看出,黄色亚像素区域内的金属图形对波长为700nm的黄色光反射效率可以达到接近80%,品红色亚像素区域内的金属图形对波长为400nm的品红色光反射效率可以达到80%,青色亚像素区域内的金属图形对波长为400nm的青色光反射效率可以超过70%,相比相关技术中的彩色滤光层,能够有效提高滤光效率。
进一步地,如图9所示,阵列基板上还形成有多个薄膜晶体管,阵列基板包括形成在衬底基板100上的栅金属层1,栅绝缘层2,位于栅绝缘层2上的有源层3,位于有源层3上、由源漏金属层4形成的源极和漏极,其中,每一亚像素区域内的金属单元71均可与对应的薄膜晶体管的漏极连接,这样金属图形还可以充当像素电极,能够省去制作像素电极的构图工艺,进一步简化阵列基板的制作工艺,降低阵列基板的成本。
本实施例的显示面板的阵列基板的制作方法具体包括以下步骤:
步骤1、在衬底基板100上进行栅金属层1的沉积,通过构图工艺形成栅极和栅线的图形;
步骤2、在完成步骤1的衬底基板100上沉积栅绝缘层2,并在栅绝缘层2上进行半导体层的沉积,通过构图工艺形成有源层3的图形;
步骤3、在完成步骤2的衬底基板100上进行源漏金属层4的沉积,通过构图工艺形成数据线、源极和漏极;
步骤4、在完成步骤3的衬底基板100上进行钝化层5的沉积;
步骤5、在完成步骤4的衬底基板100上沉积平坦层6,通过构图工艺形成钝化层5和平坦层6的图形;
步骤6、在完成步骤5的衬底基板100上进行金属层的沉积,然后采用具有不同周期的掩膜板进行构图,使得对应不同颜色的亚像素区域形成由具有不同排列周期的金属单元71组成的金属图形,该金属图形可以实现反射式滤光;并且亚像素区域内起反射滤光作用的金属图形通过钝化层5和平坦层6的过孔与漏极电连接,使得金属图形同时具有像素电极的作用。
本实施例中,金属图形能够对来自外界环境光或前置光源的光线进行反射滤光,通过设计不同排列周期和宽度的金属单元能够过滤出不同的颜色,使得金属图形能够起到彩色滤光层的作用,不用再单独制备彩色滤光层,能够简化液晶显示器的制作工艺,降低液晶显示器的成本;并且由于不用再单独设置彩色滤光层,还能够降低显示面板的厚度;金属图形还可以充当像素电极,能够省去制作像素电极的构图工艺,进一步简化阵列基板的制作工艺,降低阵列基板的成本。
图5为本公开一些实施例提供的触控面板的结构示意图,如图5所示,本实施例的触控面板包括:相对设置的阵列基板和衬底基板104,位于阵列基板和衬底基板104之间的液晶盒,在衬底基板104上贴附有偏光片105和不对称前方散射膜106;在衬底基板104上形成有触控感应电极73;阵列基板包括:衬底基板100,以及衬底基板100上形成的多个金属图形和触控驱动电极72,每个金属图像包括多个金属单元71,金属图形和触控驱动电极72采用铝,金,银,铜等导电性好的材料制成,从成本和工艺兼容性考虑,金属图形和触控驱 动电极72优选采用Al制成;由于金属图形和触控驱动电极72同层同材料设置,可以通过一次构图工艺同时形成金属图形和触控驱动电极72,能够简化阵列基板的制作工艺,降低阵列基板的成本。
如图6-图7所示,在本公开一些实施例的触控面板的阵列基板中,每一亚像素区域内形成有多个长方形的金属单元,多个金属单元在亚像素区域内周期性排列,金属单元的排列周期P为相邻两金属单元的间距与金属单元宽度D之和。其中,不同颜色的亚像素区域对应的金属单元的排列周期不同,不同颜色的亚像素区域对应的金属单元的宽度不同。外界的环境光或前置光源的光线入射到金属图形表面时发生反射,由于金属图形中的表面等离子体激元的激发和耦合效应,也就是表面等离子体共振增强效应,对于按照特定周期排列的金属图形只对特定波长的光引起反射增强现象,而其他波长的光则发生吸收,其能量被耗散,从而使得金属图形能够对来自外界环境光或前置光源的光线进行反射滤光。
如图6所示,阵列基板上形成有红色亚像素区域、绿色亚像素区域和蓝色亚像素区域,每一种颜色的亚像素区域内的金属图形的金属单元具有相同的宽度和相同的排列周期,当有入射光照射在金属图形表面时,反射同一种颜色的光,因此此亚像素区域显示单一颜色,例如红色;同样另外两个亚像素区域采用绿色和蓝色对应宽度和排列周期来设置金属单元的周期阵列,则分别反射显示绿色和蓝色,红绿蓝三个亚像素区域构成一个完整像素单元。
可选的,在阵列基板上形成有黄色亚像素区域、品红色亚像素区域和青色亚像素区域时,每一种颜色的亚像素区域内的金属图形的金属单元具有相同的宽度和相同的排列周期,当有入射光照射在金属图形表面时,反射同一种颜色的光,因此此亚像素区域显示单一颜色,例如品红色;同样另外两个亚像素区域采用黄色和青色对应的宽度和排列周期来设置金属单元的周期阵列,则分别反射显示黄色和青色。
在本公开的一些实施例中,阵列基板上形成有黄色亚像素区域、品红色亚 像素区域和青色亚像素区域时,如图10所示,本实施例的金属图形能够对黄色光、品红色光和青色光进行反射,由图10可以看出,黄色亚像素区域、内的金属图形对波长为700nm的黄色光反射效率可以达到接近80%,品红色亚像素区域内的金属图形对波长为400nm的品红色光反射效率可以达到80%,青色亚像素区域内的金属图形对波长为400nm的青色光反射效率可以超过70%,相比相关技术中的彩色滤光层,能够有效提高滤光效率。
进一步地,如图8和图9所示,阵列基板上还形成有多个薄膜晶体管,阵列基板包括形成在衬底基板100上的栅金属层1,栅绝缘层2,位于栅绝缘层2上的有源层3,位于有源层3上、由源漏金属层4形成的源极和漏极,其中,每一亚像素区域内的多个金属单元71均与对应的薄膜晶体管的漏极连接,这样金属图形还可以充当像素电极,能够省去制作像素电极的构图工艺,进一步简化阵列基板的制作工艺,降低阵列基板的成本。
本实施例的触控面板的阵列基板的制作方法具体包括以下步骤:
步骤1、在衬底基板100上进行栅金属层1的沉积,通过构图工艺形成栅极和栅线的图形;
步骤2、在完成步骤1的衬底基板100上沉积栅绝缘层2,并在栅绝缘层2上进行半导体层的沉积,通过构图工艺形成有源层3的图形;
步骤3、在完成步骤2的衬底基板100上进行源漏金属层4的沉积,通过构图工艺形成数据线、源极和漏极;
步骤4、在完成步骤3的衬底基板100上进行钝化层5的沉积;
步骤5、在完成步骤4的衬底基板100上沉积平坦层6,通过构图工艺形成钝化层5和平坦层6的图形;
步骤6、在完成步骤5的衬底基板100上进行金属层的沉积,然后采用对应不同排列周期的金属单元的掩膜板进行构图,使得对应不同颜色的亚像素区域形成由具有不同周期的金属单元71组成的金属图形,同时在对应于栅线、数据线和薄膜晶体管的位置保留有网状金属层,此网状金属层可分区切断作为 触控驱动电极72,与触控感应电极73组成触控结构。
可选地,薄膜晶体管在阵列基板上的正投影落入触控驱动电极72在阵列基板上的正投影中,这样触控驱动电极72能够遮挡住薄膜晶体管,避免薄膜晶体管的性能被光照影响,进一步地,触控驱动电极72还可以防止漏光。金属图形可以实现反射式滤光;并且亚像素区域内起反射滤光作用的金属图形通过钝化层5和平坦层6的过孔与漏极电连接,使得金属图形同时具有像素电极的作用。
本实施例中,金属图形能够对来自外界环境光或前置光源的光线进行反射滤光,通过设计不同排列周期和宽度的金属单元能够过滤出不同的颜色,使得金属图形能够起到彩色滤光层的作用,不用再单独制备彩色滤光层,能够简化液晶显示器的制作工艺,降低液晶显示器的成本;并且由于不用再单独设置彩色滤光层,还能够降低显示面板的厚度;本实施例通过一次构图工艺同时形成触控驱动电极和金属图形,进一步简化阵列基板的制作工艺,降低阵列基板的成本;金属图形还可以充当像素电极,能够省去制作像素电极的构图工艺,进一步简化阵列基板的制作工艺,降低阵列基板的成本。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (18)

  1. 一种阵列基板,包括多个成阵列排布的像素区域,每个像素区域内设置有多个金属图形,每个金属图形包括多个周期性排列的金属单元,所述金属图形能够对来自外界环境光或前置光源的光线进行反射滤光,其中,每个像素区域包含多个亚像素区域,所述多个亚像素区域与所述像素区域内的多个金属图形一一对应,不同颜色的亚像素区域对应的金属图形的金属单元的排列周期不同。
  2. 根据权利要求1所述的阵列基板,其中,所述金属单元为长方形,所述金属单元的排列周期为相邻两金属单元之间的间距与金属单元的宽度之和。
  3. 根据权利要求2所述的阵列基板,其中,所述阵列基板上形成有红色亚像素区域、绿色亚像素区域和蓝色亚像素区域,
    所述红色亚像素区域内的金属单元的宽度范围为490-510nm,排列周期范围为530-550nm;所述绿色亚像素区域内的金属单元的宽度范围为440-460nm,排列周期范围为475-495nm;所述蓝色亚像素区域内的金属单元的宽度范围为290-305nm,排列周期范围为315-330nm。
  4. 根据权利要求3所述的阵列基板,其中,
    所述红色亚像素区域内的金属单元的宽度为500nm,排列周期为540nm;所述绿色亚像素区域内的金属单元的宽度为450nm,排列周期为485nm;所述蓝色亚像素区域内的金属单元的宽度为300nm,排列周期为320nm。
  5. 根据权利要求2所述的阵列基板,其中,所述阵列基板上形成有黄色亚像素区域、品红色亚像素区域和青色亚像素区域,
    所述黄色亚像素区域内的金属单元的宽度范围为50-70nm,排列周期范围为190-210nm;所述品红色亚像素区域内的金属单元的宽度范围为66-86nm,排列周期范围为190-210nm;所述蓝色亚像素区域内的金属单元的宽度范围为82-102nm,排列周期范围为190-210nm。
  6. 根据权利要求5所述的阵列基板,其中,
    所述黄色亚像素区域内的金属单元的宽度为60nm,排列周期为200nm;所述品红色亚像素区域内的金属单元的宽度为76nm,排列周期为200nm;所述蓝色亚像素区域内的金属单元的宽度为92nm,排列周期为200nm。
  7. 根据权利要求1所述的阵列基板,其中,所述金属单元为圆形,所述金属单元的排列周期为相邻两金属单元之间的最小间距与金属单元的直径之和。
  8. 根据权利要求1-7中任一项所述的阵列基板,其中,所述金属单元的厚度为100~220nm。
  9. 根据权利要求8所述的阵列基板,其中,所述金属单元的厚度为120nm。
  10. 根据权利要求8所述的阵列基板,还包括分别对应各个亚像素区域的多个薄膜晶体管,每一亚像素区域内的所有金属单元均与对应的薄膜晶体管的漏极连接。
  11. 根据权利要求1所述的阵列基板,其中,每个亚像素区域对应的多个金属单元中相邻的金属单元通过金属连接结构连接,所述金属连接结构与所述金属单元同材料。
  12. 根据权利要求1所述的阵列基板,还包括触控电极,所述金属图形与所述触控电极同层同材料设置。
  13. 根据权利要求12所述的阵列基板,还包括多个薄膜晶体管,所述触控电极位于所述薄膜晶体管上方,且所述薄膜晶体管在阵列基板上的正投影落入所述触控电极在阵列基板上的正投影中。
  14. 一种显示面板,包括如权利要求1-13中任一项所述的阵列基板。
  15. 一种触控面板,包括如权利要求1-13中任一项所述的阵列基板。
  16. 一种如权利要求1-13中任一项所述的阵列基板的制作方法,包括:
    在阵列基板的各个像素区域形成多个金属图形,每个金属图形包括周期性排列的金属单元,所述金属图形能够对来自外界环境光或前置光源的光线进行 反射滤光,其中,每个像素区域内的多个亚像素区域与所述像素区域内的多个金属图形一一对应,不同颜色的亚像素区域对应的金属图形的金属单元的排列周期不同。
  17. 根据权利要求16所述的阵列基板的制作方法,其中,所述阵列基板上还形成有多个薄膜晶体管,在阵列基板的各个像素区域形成多个金属图形的步骤还包括:
    在每一亚像素区域内形成均与对应该亚像素区域的薄膜晶体管的漏极连接的多个金属单元。
  18. 根据权利要求16所述的阵列基板的制作方法,其中,所述阵列基板上还形成有触控电极,在阵列基板的各个像素区域形成多个金属图形的步骤还包括:
    通过一次构图工艺同时形成所述触控电极和所述金属图形。
PCT/CN2016/084083 2016-02-24 2016-05-31 阵列基板及其制作方法、显示面板、触控面板 WO2017143687A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/525,733 US10386947B2 (en) 2016-02-24 2016-05-31 Array substrate, method for manufacturing the same, display panel and touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610101464.0 2016-02-24
CN201610101464.0A CN105572955A (zh) 2016-02-24 2016-02-24 阵列基板及其制作方法、显示面板、触控面板

Publications (1)

Publication Number Publication Date
WO2017143687A1 true WO2017143687A1 (zh) 2017-08-31

Family

ID=55883267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084083 WO2017143687A1 (zh) 2016-02-24 2016-05-31 阵列基板及其制作方法、显示面板、触控面板

Country Status (3)

Country Link
US (1) US10386947B2 (zh)
CN (1) CN105572955A (zh)
WO (1) WO2017143687A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105572955A (zh) * 2016-02-24 2016-05-11 京东方科技集团股份有限公司 阵列基板及其制作方法、显示面板、触控面板
CN105974657A (zh) * 2016-07-26 2016-09-28 京东方科技集团股份有限公司 显示面板及显示装置
CN106773405B (zh) * 2016-12-29 2020-01-03 武汉华星光电技术有限公司 阵列基板及液晶显示器
CN107154420B (zh) * 2017-05-08 2020-06-02 京东方科技集团股份有限公司 一种显示面板及其制造方法、显示装置
CN107193157A (zh) * 2017-06-08 2017-09-22 京东方科技集团股份有限公司 光学模组和包括其的反射式显示器件
CN107359180B (zh) * 2017-07-07 2020-05-22 京东方科技集团股份有限公司 一种显示装置和显示装置的制作方法
KR102353472B1 (ko) * 2017-09-07 2022-01-19 엘지디스플레이 주식회사 액정캡슐을 포함하는 액정표시장치 및 그 제조방법
CN109597511B (zh) * 2017-09-30 2022-05-17 昆山国显光电有限公司 触控面板及显示屏及电子产品
CN109768053B (zh) * 2019-01-28 2021-12-28 京东方科技集团股份有限公司 阵列基板及其控制方法、制造方法、显示面板、显示装置
KR102150465B1 (ko) * 2019-03-27 2020-09-01 한국과학기술연구원 나노 플라즈모닉스를 이용한 양면 표시 장치 및 이의 제조 방법
CN111323957A (zh) * 2020-01-15 2020-06-23 武汉大学 一种彩色柔性显示模块及其制备方法
CN111552105A (zh) * 2020-03-30 2020-08-18 武汉大学 一种反射型彩色柔性显示屏及其制备方法
CN115728988A (zh) * 2021-08-27 2023-03-03 京东方科技集团股份有限公司 前置光源模组及显示装置
CN114879390B (zh) * 2022-06-06 2023-09-12 南京信息工程大学 一种纳米线结构色彩色显示屏及其制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1359459A2 (en) * 2002-04-30 2003-11-05 Samsung Electronics Co., Ltd. Reflective display device using photonic crystals
EP1939672A1 (en) * 2006-12-29 2008-07-02 Samsung Electronics Co., Ltd. Transflective display panel and display apparatus using the same
CN101963719A (zh) * 2010-01-26 2011-02-02 李冠军 液晶屏与液晶显示装置
CN103472516A (zh) * 2013-09-17 2013-12-25 京东方科技集团股份有限公司 反射式滤光片及其制备方法、显示装置
CN103885240A (zh) * 2012-12-21 2014-06-25 三星电子株式会社 显示面板和具有显示面板的显示设备
CN105572955A (zh) * 2016-02-24 2016-05-11 京东方科技集团股份有限公司 阵列基板及其制作方法、显示面板、触控面板
CN105607334A (zh) * 2016-01-06 2016-05-25 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示面板、显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101338117B1 (ko) 2009-10-29 2013-12-06 엘지디스플레이 주식회사 액정표시장치 및 그 제조방법
KR101313654B1 (ko) 2009-12-18 2013-10-02 엘지디스플레이 주식회사 표면 플라즈몬을 이용한 컬러필터와 액정표시장치 및 그 제조방법
WO2012162880A1 (zh) * 2011-05-31 2012-12-06 苏州苏大维格光电科技股份有限公司 一种反射式彩色滤光片
US20140017641A1 (en) * 2012-07-13 2014-01-16 David J. Nowacki Method and system for monitoring, verifying, measuring, reporting, rating and ranking company, industry and individual training, education, licensing, certification, or other trade, professional designations, or regulatory requirements.
CN102789021A (zh) * 2012-08-31 2012-11-21 苏州大学 一种反射式彩色滤光片
CN103513316B (zh) * 2013-09-29 2017-03-22 苏州大学 一种选择吸收滤光结构
CN104716144B (zh) * 2015-03-06 2018-02-16 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN105045011B (zh) 2015-08-28 2018-05-25 京东方科技集团股份有限公司 阵列基板及其制备方法、显示面板以及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1359459A2 (en) * 2002-04-30 2003-11-05 Samsung Electronics Co., Ltd. Reflective display device using photonic crystals
EP1939672A1 (en) * 2006-12-29 2008-07-02 Samsung Electronics Co., Ltd. Transflective display panel and display apparatus using the same
CN101963719A (zh) * 2010-01-26 2011-02-02 李冠军 液晶屏与液晶显示装置
CN103885240A (zh) * 2012-12-21 2014-06-25 三星电子株式会社 显示面板和具有显示面板的显示设备
CN103472516A (zh) * 2013-09-17 2013-12-25 京东方科技集团股份有限公司 反射式滤光片及其制备方法、显示装置
CN105607334A (zh) * 2016-01-06 2016-05-25 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示面板、显示装置
CN105572955A (zh) * 2016-02-24 2016-05-11 京东方科技集团股份有限公司 阵列基板及其制作方法、显示面板、触控面板

Also Published As

Publication number Publication date
CN105572955A (zh) 2016-05-11
US10386947B2 (en) 2019-08-20
US20180348923A1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
WO2017143687A1 (zh) 阵列基板及其制作方法、显示面板、触控面板
US10094962B2 (en) Color filter array substrate, method for fabricating the same and display device
TWI253520B (en) Manufacturing method of electrooptic device and electrooptic device
CN105607334B (zh) 一种阵列基板及其制备方法、显示面板、显示装置
WO2013181899A1 (zh) 集成彩膜的阵列基板、其制造方法及显示装置
JP2007114303A5 (zh)
US20180188598A1 (en) Display panels and polarizers thereof
US20220128860A1 (en) Reflective display substrate and method for fabricating the same, display panel and display device
KR20180107385A (ko) 광루미네선스 장치, 이의 제조 방법 및 이를 포함하는 표시 장치
JP2013104888A (ja) 表示装置
KR101067052B1 (ko) 액정표시장치
TWI547747B (zh) 彩色顯示裝置
CN107102487B (zh) 阵列基板及其制作方法、反射式液晶显示装置
JPH112810A (ja) 液晶表示装置およびその製造方法
WO2015078157A1 (zh) 彩膜基板及其制作方法、显示装置
WO2020107537A1 (zh) 显示面板及其制造方法和显示装置
CN101510033B (zh) 液晶显示装置
CN108279522B (zh) 反射器件、像素单元、显示装置及其制作方法
KR102522531B1 (ko) 미러 디스플레이 패널
JP2004144965A (ja) 半透過型液晶表示装置
JP2002268054A (ja) 液晶表示装置及び液晶表示装置の製造方法
CN100430759C (zh) 彩色滤光片的制造方法
JP2005092041A (ja) 電気光学装置及びこれを備えた電子機器
JP4370758B2 (ja) 電気光学装置用基板、電気光学装置用基板の製造方法、電気光学装置、および電子機器
JP2000275629A (ja) 液晶表示装置及びその製造方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891141

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16891141

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/05/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16891141

Country of ref document: EP

Kind code of ref document: A1