WO2017143591A1 - 交通控制方法及装置 - Google Patents

交通控制方法及装置 Download PDF

Info

Publication number
WO2017143591A1
WO2017143591A1 PCT/CN2016/074711 CN2016074711W WO2017143591A1 WO 2017143591 A1 WO2017143591 A1 WO 2017143591A1 CN 2016074711 W CN2016074711 W CN 2016074711W WO 2017143591 A1 WO2017143591 A1 WO 2017143591A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
road
lane
server
speed
Prior art date
Application number
PCT/CN2016/074711
Other languages
English (en)
French (fr)
Inventor
宋永刚
钱湘江
李辉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16891045.3A priority Critical patent/EP3413018B1/en
Priority to CN201680063838.2A priority patent/CN108351219B/zh
Priority to PCT/CN2016/074711 priority patent/WO2017143591A1/zh
Publication of WO2017143591A1 publication Critical patent/WO2017143591A1/zh
Priority to US16/111,588 priority patent/US10943478B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096775Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a central station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/3815Road data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3863Structures of map data
    • G01C21/387Organisation of map data, e.g. version management or database structures
    • G01C21/3878Hierarchical structures, e.g. layering
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0145Measuring and analyzing of parameters relative to traffic conditions for specific applications for active traffic flow control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle

Definitions

  • the present invention relates to the field of intelligent transportation technologies, and in particular, to a traffic control method and apparatus.
  • the high-accuracy maps at the lane level collect the lane information on the actual road through the collecting vehicle or other collecting equipment, and the lane division is done in the map.
  • the lane division on the map is consistent with the lane division on the actual road. Since the number of lanes and the lane width of the road on the map are fixed at present, it is impossible to dynamically adjust the lane in which the vehicle travels according to information such as the traffic volume of the road.
  • Embodiments of the present invention provide a traffic control method and apparatus, which are capable of controlling a vehicle to dynamically adjust a driving lane.
  • a traffic control method comprising: a server acquiring a traffic flow of a road; the server adjusting a number of lanes or lanes of the road in a lane layer of the map according to traffic flow of the road Width; the server sends the adjusted lane layer so that the vehicle traveling on the road travels according to the adjusted lane.
  • the map used by the method includes a dynamic lane layer.
  • the method can be applied to a three-layer architecture of intelligent traffic based on network control.
  • the intelligent transportation three-tier architecture includes a central service device, a roadside device, and an in-vehicle device.
  • the in-vehicle device may communicate with the roadside device and the central service device, respectively, or the in-vehicle device may communicate with the central service device via the roadside device.
  • the server may be a central service device or a roadside device in a network-based intelligent traffic three-tier architecture.
  • the server may also be a device that combines the functions of a central service device and a roadside device.
  • the transmitting, by the server, the adjusted lane layer includes the server transmitting the adjusted lane layer to a vehicle traveling on the road.
  • the sending, by the server, the adjusted lane layer comprises: loading the server to the roadside Send the adjusted lane layer.
  • the vehicle traveling on the road can be driven according to the adjusted lane, thereby being able to dynamically plan according to the traffic flow. Control the precise lane in which the vehicle travels.
  • the method may further include: the server receiving a location of a respective vehicle that is reported by the plurality of in-vehicle devices; and obtaining, by the server, the traffic volume of the road, the server according to the location of the multiple vehicles Determine the traffic volume of the road.
  • the server can perform statistics based on the location of the vehicle reported by the in-vehicle device to determine the traffic volume of the road.
  • the server may also obtain traffic flow of the road from the traffic monitoring system.
  • the traffic monitoring system can detect the traffic volume of the road by using a video detection technology or the like.
  • the embodiment of the present invention is not limited thereto, and the server may also acquire the traffic volume of the road in other manners.
  • the method further includes: the server receiving a location of the vehicle reported by an in-vehicle device of a vehicle traveling on the road; Determining the lane in which the vehicle travels by revising the adjusted lane and the position of the vehicle, and determining path change information; the server transmitting the path change information to the in-vehicle device, the path change information being used to indicate the The vehicle travels on the re-planned target lane based on the adjusted lane.
  • the method further includes: the server receiving the reported on the road reported by the first onboard device Identification of the first vehicle; the server determines an attribute of the first vehicle based on the identification of the first vehicle; and adjusting a lane width of the road in the lane layer according to traffic flow of the road
  • the method includes: increasing a width of a lane where the first vehicle is located and reducing a width of another lane on the road when the attribute of the vehicle satisfies a preset condition.
  • the attributes of the vehicle may distinguish between functions or uses of the vehicle.
  • the attributes of the vehicle may include: private cars, public transportation, vehicles performing special tasks (eg, 110/120/119), and the like.
  • embodiments of the present invention are not limited thereto, and attributes of the vehicle may also include attributes described from other angles, such as the width of the vehicle, the optimal traveling speed of the vehicle, and the like.
  • the traffic volume of the road may also be considered.
  • the adjusting the lane of the road in the lane layer according to the traffic volume of the road includes: the traffic volume of the road is less than the preset traffic flow and the attribute of the vehicle satisfies the preset bar.
  • the server increases the width of the lane in which the vehicle is located in the lane layer and reduces the width of other lanes on the road.
  • the method further includes: the server receiving the reported on the road reported by the first onboard device The traveling speed of the first vehicle; the server adjusting the number of lanes of the road in the lane layer according to the traffic volume of the road, including: a decrease in traffic volume of the road, and driving of the first vehicle
  • N min the difference between the speed and the first preset speed is less than a preset threshold and the number N of lanes on the road is greater than the first preset value N min
  • the road is re-divided into M lanes in the lane layer Where N min ⁇ M ⁇ N.
  • the first preset value N min may be a minimum value of the number of lanes allowed to be divided in the road.
  • the width of the lane can be increased, thereby improving the user's driving experience.
  • the method further includes: the server sending indication information, where the indication information is used to indicate the The first vehicle increases the travel speed to a second preset speed.
  • the vehicle can achieve smooth running, thereby further improving the user's driving experience.
  • the number of lanes of the road includes: the traffic volume on the road increases, the number N of lanes on the road is less than a second preset value N max , and the traffic volume of each lane in the N lanes on the road has reached a case where a predetermined flow rate, the lane on the road in the layer reclassified lanes M, where N ⁇ M ⁇ N max.
  • the second preset value N max may be a maximum value of the number of lanes allowed to be divided in the road.
  • the traffic volume of the road can be increased, thereby improving traffic efficiency.
  • the method further includes: the server receiving the reported on the road reported by the second onboard device The traveling speed of the second vehicle; when the traveling speed of the second vehicle is lower than the third preset speed, the server transmits indication information for instructing the vehicle to increase the traveling speed to the The third preset speed.
  • the traffic volume of the road can be increased, thereby improving traffic efficiency.
  • the method further includes: the server receiving, by the second in-vehicle device, the second vehicle that is traveling on the road The speed of the vehicle; the server acquires the traffic density of the lane in which the second vehicle is located; the traffic density of the lane in which the second vehicle is located is less than the preset traffic density and the traveling speed of the vehicle is greater than the fourth preset speed
  • the server transmits indication information for instructing the vehicle to reduce the traveling speed to the fourth preset speed and shorten the distance from the preceding adjacent vehicle.
  • the safety of the vehicle travel can be improved, while the traffic density of the lane can be increased by shortening the distance between the vehicles adjacent to the front.
  • the traveling speed of the vehicle exceeds the preset speed, the traffic volume of the lane can be increased while ensuring traffic safety by reducing the traveling speed of the vehicle and increasing the traffic density of the lane.
  • the preset speeds in the above possible implementation manners may be pre-configured in the server, or may be calculated by the server according to the lane information of the vehicle currently located.
  • the lane information may include the lane width and may also include other factors such as road quality, slope, and the like.
  • the server may also refer to information such as traffic flow of the lane and traffic density when calculating the preset speed according to the information of the lane.
  • a traffic control method comprising: an in-vehicle device receiving a lane layer of a map sent by a server, wherein the lane layer is a traffic flow of the server according to a road where the in-vehicle device is located Obtaining the lane of the road in the original lane layer of the map; the in-vehicle device updates the map according to the adjusted lane layer; the in-vehicle device indicates that the in-vehicle device is located according to the updated map The vehicle travels according to the adjusted lane.
  • the map used by the method includes a dynamic lane layer.
  • the map is updated according to the adjusted lane layer sent by the server, and the vehicle is instructed to drive according to the adjusted lane according to the updated map, so that the server can dynamically plan and control the precise lane of the vehicle according to the traffic flow.
  • the in-vehicle device can also report the position of the vehicle where the in-vehicle device is located to the server. Set.
  • the in-vehicle device may further report the identifier of the vehicle to the server.
  • the method further includes: the in-vehicle device sends a location of the vehicle to the server; and the in-vehicle device receives the path change information sent by the server
  • the path change information is determined by the server according to the adjusted lane and the position of the vehicle; the in-vehicle device indicates that the vehicle in which the in-vehicle device is located according to the updated map includes the adjusted lane travel according to the updated map.
  • the in-vehicle device instructs the vehicle to travel on the target lane after the server re-planning according to the adjusted lane based on the updated map and the route change information.
  • the method further includes: the in-vehicle device reporting the traveling speed of the vehicle to the server;
  • the in-vehicle device receives the indication information sent by the server; the in-vehicle device instructs the vehicle to adjust the traveling speed according to the indication information.
  • a traffic control method includes: a server receiving a traveling speed reported by an in-vehicle device of a vehicle traveling on a road; the server acquiring a traffic volume of the road; and the server according to the road The flow rate and the travel speed of the vehicle determine indication information, the indication information is used to instruct the vehicle to adjust the travel speed; and the server transmits the indication information.
  • the indication information for instructing the vehicle to adjust the traveling speed is determined according to the traffic volume of the road and the traveling speed of the vehicle, and the indication information is transmitted, so that the vehicle can adjust the traveling speed according to the indication information, thereby being capable of dynamically planning and controlling the vehicle according to the traffic flow. Driving speed.
  • the traffic volume of the road is increased, the traffic volume of the lane is less than a preset traffic, and the traveling speed of the vehicle is less than the first preset.
  • the indication information is used to instruct the vehicle to increase the traveling speed to the first preset speed.
  • the traffic volume of the road is increased, the traffic volume of the lane is less than a preset traffic, and the traveling speed of the vehicle is greater than a second preset.
  • the indication information is used to instruct the vehicle to reduce the traveling speed to the second preset speed and shorten the distance from the preceding adjacent vehicle.
  • a traffic control method includes: an in-vehicle device reporting a traveling speed of a vehicle in which the in-vehicle device is located to a server; the in-vehicle device receiving indication information, wherein the indication information is that the server is based on the vehicle The traffic volume of the road on which it is located and the speed of the journey are determined The vehicle-mounted device instructs the vehicle to adjust the traveling speed according to the indication information.
  • the vehicle is instructed to adjust the traveling speed according to the indication information determined by the server according to the traffic volume of the road and the traveling speed of the vehicle, so that the server can realize the regulation of the traveling speed of the vehicle according to the traffic volume of the road.
  • the indication information may be used to instruct the vehicle to increase the traveling speed to a preset speed.
  • the indication information may be used to instruct the vehicle to reduce the travel speed to a preset speed and reduce the distance between the vehicle adjacent to the front.
  • a server for performing the traffic control method of any of the above-mentioned possible implementations of the first aspect or the first aspect.
  • the server includes: an acquiring unit, configured to acquire traffic flow of the road; and a processing unit, configured to adjust a lane of the road in a lane layer of the map according to the traffic volume of the road acquired by the acquiring unit a number or lane width; a sending unit, configured to send the adjusted lane layer of the processing unit, so that the vehicle traveling on the road runs according to the adjusted lane.
  • the method further includes: a first receiving unit, configured to receive a location of the vehicle reported by an in-vehicle device of a vehicle traveling on the road;
  • the processing unit is further configured to: re-plan the lane in which the vehicle travels according to the adjusted lane and the position of the vehicle received by the first receiving unit, and determine path change information;
  • the sending unit is further configured to: And transmitting the path change information to the in-vehicle device, the path change information for instructing the vehicle to travel on the re-planned target lane according to the adjusted lane.
  • the method further includes: a second receiving unit, configured to receive the report reported by the first onboard device Determining an identifier of the first vehicle traveling on the road; the processing unit is further configured to: determine an attribute of the first vehicle according to the identifier of the first vehicle received by the second receiving unit; And, when the attribute of the first vehicle satisfies a preset condition, increase a width of a lane where the first vehicle is located in the lane layer and reduce a width of another lane on the road.
  • the third possible implementation manner of the fifth aspect further includes: a second receiving unit, configured to receive the reported location of the first onboard device The traveling speed of the first vehicle traveling on the road; the processing unit is specifically configured to: reduce the traffic flow of the road, the difference between the traveling speed of the first vehicle and the first preset speed is less than a preset threshold when the number of lanes on the road N is greater than a first predetermined value N min, the server is re-divided in the lane of the road lanes in the layer is a M, wherein N min ⁇ M ⁇ N.
  • the sending unit is further configured to send indication information, where the indication information is used to indicate The first vehicle increases the travel speed to a second preset speed.
  • the processing unit is specifically configured to increase traffic volume of the road, In the case where the number N of lanes on the road is less than the second preset value N max and the traffic volume of each of the N lanes on the road has reached a preset flow rate, the server is in the lane layer The road is re-divided into M lanes, where N ⁇ M ⁇ N max .
  • the method further includes: a third receiving unit, configured to receive the reported on the road by the second onboard device The sending speed of the second vehicle; the sending unit is further configured to: when the traveling speed of the second vehicle is lower than a third preset speed, the server sends indication information, where the indication information is used to indicate the The second vehicle increases the travel speed to the third preset speed.
  • the method further includes: a third receiving unit, configured to receive the reported on the road by the second in-vehicle device The driving speed of the second vehicle; the acquiring unit is further configured to acquire a traffic density of the lane where the second vehicle is located; the sending unit is further configured to: when the traffic density of the lane where the second vehicle is located is less than And transmitting, when the preset vehicle flow density is greater than the fourth preset speed, the indication information is used to indicate that the second vehicle reduces the traveling speed to the fourth preset speed and Reduce the distance between the vehicles adjacent to the front.
  • the in-vehicle device for performing the traffic control method of any of the above-described possible implementations of the second aspect or the second aspect.
  • the in-vehicle device includes: a receiving unit, configured to receive a lane layer of a map sent by the server, where the lane layer is in a original lane of the map according to traffic flow of the road where the in-vehicle device is located a map obtained by adjusting a lane of the road in the layer; a processing unit, configured to update the map according to the adjusted lane layer received by the receiving unit; and an indication unit, configured to update according to the processing unit
  • the map indicates that the vehicle in which the in-vehicle device is located is traveling according to the adjusted lane.
  • the method further includes: a first sending unit, configured to send a location of the vehicle to the server; the receiving unit is further configured to: Receiving path change information sent by the server, where the path change information is determined by the server according to the adjusted lane and the location of the vehicle; the indication unit is specifically configured to: The map and the path change information instruct the vehicle to travel on the target lane after the server is re-planned according to the adjusted lane.
  • the second possible implementation manner of the sixth aspect further includes: a second sending unit, configured to report the vehicle to the server
  • the receiving unit is further configured to receive the indication information that is sent by the server according to the traveling speed of the vehicle; the indicating unit is further configured to instruct the vehicle to adjust the traveling speed according to the indication information.
  • a server for performing the traffic control method according to any one of the above possible implementation manners of the third aspect or the third aspect.
  • the server includes: a receiving unit, configured to receive a traveling speed of the vehicle reported by an in-vehicle device of a vehicle traveling on a road; an acquiring unit, configured to acquire a traffic volume of the road; and a processing unit, configured to: Determining the indication information according to the traffic flow of the road acquired by the acquiring unit and the traveling speed of the vehicle received by the receiving unit, the indication information is used to instruct the vehicle to adjust the traveling speed; and the transmitting unit is configured to: Send the indication information.
  • the traffic volume of the road is increased, the traffic volume of the lane is less than a preset traffic, and the traveling speed of the vehicle is less than the first preset.
  • the indication information is used to instruct the vehicle to increase the traveling speed to the first preset speed.
  • the traffic volume of the road is increased, the traffic volume of the lane is less than a preset traffic, and the traveling speed of the vehicle is greater than a second preset.
  • the indication information is used to instruct the vehicle to reduce the traveling speed to the second preset speed and shorten the distance from the preceding adjacent vehicle.
  • an in-vehicle device for performing the traffic control method of the fourth aspect.
  • the in-vehicle device includes: a sending unit, configured to report, to the server, a traveling speed of the vehicle where the in-vehicle device is located; and a receiving unit, configured to receive indication information, where the indication information is that the server is located according to the vehicle The traffic flow of the road and the travel speed are determined; the indication unit is configured to instruct the vehicle to adjust the travel speed according to the indication information received by the receiving unit.
  • a server including a processor, a memory, a bus system, and a receiver a processor, the processor, the memory and the transceiver are connected by the bus system, the memory is for storing instructions, the processor is configured to execute the memory stored instructions, so that the server performs The traffic control method of any of the above possible implementations of the first aspect or the first aspect.
  • the transceiver can be implemented by a transmitter.
  • an on-vehicle device comprising a processor, a memory, a bus system and a transceiver, the processor, the memory and the transceiver being connected by the bus system, the memory for storing An instruction, the processor, configured to execute the memory stored instructions, such that the server performs the traffic control method of any one of the above-described possible implementations of the second aspect or the second aspect.
  • the transceiver can be implemented by a receiver.
  • a server comprising a processor, a memory, a bus system and a transceiver, the processor, the memory and the transceiver being connected by the bus system, the memory for storing instructions
  • the processor is configured to execute the memory stored instructions, such that the server performs the traffic control method of any one of the above possible implementation manners of the third aspect or the third aspect.
  • an in-vehicle device comprising a processor, a memory, a bus system and a transceiver, the processor, the memory and the transceiver being connected by the bus system, the memory for storing An instruction, the processor, configured to execute the memory stored instructions, such that the server performs the traffic control method of any one of the above-described possible implementations of the fourth aspect or the fourth aspect.
  • Figure 1 is a schematic diagram showing the relationship between traffic flow, vehicle speed, and traffic density
  • FIG. 2 is a schematic diagram of an application scenario of an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of another application scenario of an embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of a traffic control method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of lane adjustment of a traffic control method according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of lane adjustment of a traffic control method according to another embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a traffic control method according to another embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a traffic control method according to another embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a server according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a server according to another embodiment of the present invention.
  • FIG. 11 is a schematic structural view of an in-vehicle device according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of an in-vehicle device according to another embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a server according to another embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a server according to another embodiment of the present invention.
  • 15 is a schematic structural view of an in-vehicle device according to another embodiment of the present invention.
  • FIG. 16 is a schematic structural view of an in-vehicle device according to another embodiment of the present invention.
  • Blocking density K j (vehicles/km), traffic density to traffic density when the vehicle cannot move (ie, the vehicle speed is zero).
  • the number of lanes in the lane layer may change.
  • Qr is the road traffic (vehicle / h)
  • Qi is the single-lane traffic (vehicle / h)
  • Ki is the single-lane average traffic density (vehicle / km)
  • Vi is the single-lane interval average speed (km / h)
  • n is the number of lanes.
  • the flow of a section of road is the sum of the flows of all lanes, where the traffic density and average speed of each lane may be different.
  • the flow rate of the road is exemplified by the unidirectional flow rate. It can be known from the above formula (1) that by increasing the number of lanes or increasing the traffic flow of the lane Density, or increasing the speed of the vehicle, can increase the traffic volume of the road.
  • the vehicle travels on a highly accurate navigation path and thus may no longer be constrained by the physical lane defined by the actual lane line.
  • the lane division in the map is no longer fixed, but a dynamic lane layer is added, and the lane of the road can be dynamically adjusted on the lane layer of the map, so that the vehicle can be adjusted according to the lane. travel.
  • FIG. 2 is a schematic diagram of an application scenario of an embodiment of the present invention.
  • An intelligent transportation system architecture is shown in Figure 2, including a server and an in-vehicle device.
  • the server stores high-resolution maps with detailed, accurate road information and dynamic lane layers.
  • the in-vehicle device can send a navigation request to the server, and the in-vehicle device can also report the information of the vehicle to the server, such as the location, the traveling speed, the identification, and the like.
  • the server can provide a server for the in-vehicle device according to the received request, and can also dynamically adjust the lane division of the road according to the traffic volume of the road.
  • FIG. 3 is a schematic diagram of an application scenario according to another embodiment of the present invention.
  • FIG. 3 shows a three-layer architecture of intelligent traffic based on network control, including a central service device, a roadside device, and an in-vehicle device.
  • the in-vehicle device can communicate with the central service device via the roadside device or directly with the central service device.
  • the roadside device can communicate directly with the in-vehicle device.
  • the so-called global path is a one-way driving route from the starting point to the ending point.
  • the starting point is generally the current position of the car, and the ending point can be specified by the occupant according to the demand.
  • the accuracy of the global path is required to reach the road level.
  • the central service device When the central service device is planning the global path, it needs to consider the dynamic road condition information of the entire road network to perform intelligent analysis and comprehensive scheduling.
  • the roadside device is responsible for local path planning
  • the so-called partial path refers to a detailed driving route on a relatively short route from the position where the vehicle is traveling along the global path, and the range is within the area covered by the roadside device.
  • the accuracy of the local path is required to reach the lane level.
  • the roadside device When planning the local path, the roadside device needs to consider the lane attributes in the area, the load condition of each lane, the destination direction of the vehicle, and perform local area vehicle scheduling and control to achieve lane load balancing and improve vehicle traffic efficiency. With quality (control speed, less parking).
  • the roadside device needs to be deployed along the road side, so in a transportation system, there may be multiple roadside devices, and the roadside device also needs sufficient processing performance and high reliability according to business processing requirements.
  • Vehicle-mounted device is responsible for vehicle autonomous path planning
  • the so-called autonomous path refers to the path planning of the vehicle without relying on the central service device and the roadside device, but a temporary path planned by the vehicle itself.
  • Autonomous path planning is an emergency path adjustment made by the vehicle itself to surrounding emergency situations or simple decision scenarios, such as emergency obstacle avoidance.
  • method 400 includes the following.
  • the server obtains the traffic volume of the road.
  • the server can monitor the traffic volume of the road in real time, and the server can determine the traffic volume of the road according to the position reported by the vehicle device at a time, and can also obtain the traffic volume of the road from other traffic monitoring systems.
  • the server adjusts the number of lanes or lane width of the road in the lane layer of the map according to the traffic volume of the road.
  • the server sends the adjusted lane layer, so that the vehicle traveling on the road is traveling according to the adjusted lane.
  • the implementation manner of the embodiment of the present invention for transmitting the adjusted lane layer by the server is not limited, as long as the vehicle traveling on the road receives the adjusted lane layer.
  • the server may be a central service device in the architecture shown in FIG.
  • the central service device in the architecture shown in FIG. 3 communicates with the in-vehicle device through the roadside device, the central service device sends the adjusted lane layer to the roadside device, so that the roadside device is on the road.
  • the onboard device of the vehicle forwards the adjusted lane layer.
  • the server may also be a roadside device in the architecture shown in FIG.
  • the server may also be a device that combines the functions of the central service device and the roadside device in the architecture shown in FIG.
  • the in-vehicle device receives the adjusted lane layer and updates the map according to the adjusted lane layer.
  • the in-vehicle device instructs the vehicle to travel according to the adjusted lane according to the updated map.
  • the vehicle-mounted device can be changed according to the adjusted lanes according to pre-configured parameters or algorithms.
  • the front travel path allows the drive to travel on the adjusted lane.
  • the in-vehicle device can instruct the vehicle to move from the current lane to the adjusted lane based on the updated map.
  • the in-vehicle device may instruct the vehicle to travel from the current lane to the nearest one lane based on the updated map.
  • the left side is the original lane division
  • the right side is the adjusted lane division.
  • the vehicle-mounted device of the vehicle traveling on the lane 1 can instruct the vehicle to move to the lane closest to the current position according to the re-divided lane. 1" driving. When the distance between the two lanes is equal, you can move to any of the lanes.
  • the vehicle traveling on lane 2 as shown in Figure 5 can move to lane 1" or move Drive to lane 2".
  • the vehicle traffic volume of the road is obtained, and the lane of the road is adjusted in the lane layer of the map according to the traffic volume of the road, so that the vehicle traveling on the road can travel according to the adjusted lane, thereby It can dynamically plan and control the precise lane of the vehicle according to the traffic flow.
  • the onboard device may also report the location of the vehicle to the server. Accordingly, the server can re-plan the lane in which the vehicle travels according to the adjusted lane and the position of the vehicle, and transmit the path change information to the in-vehicle device. The in-vehicle device can instruct the vehicle to travel on the re-planned target lane according to the adjusted lane based on the received route change information.
  • the in-vehicle device may also report the identity of the vehicle.
  • the server may determine the attribute of the vehicle according to the identification of the vehicle; in step 420, when the attribute of the vehicle satisfies the preset condition, the server increases the width of the lane in which the vehicle is located in the lane layer and reduces other on the road. The width of the driveway. As shown in Fig. 6, the left side is the lane division before the adjustment, and the right side is the adjusted lane division.
  • the traffic volume of the road may also be considered.
  • the server increases the width of the lane in which the vehicle is located in the lane layer and reduces the width of other lanes on the road.
  • the identification of the vehicle is used to identify the vehicle, for example the identification of the vehicle may be a license plate number.
  • Information related to the vehicle, such as the identification, attributes, etc. of the vehicle, may be stored in the server in advance.
  • the vehicle when the vehicle is an emergency mission or other special vehicle such as 110/120/119, by increasing the width of the lane in which the vehicle is located, it is possible to ensure the smooth running of the vehicle and solve the problem of special social needs.
  • step 420 when the traffic volume of the road decreases, the traveling speed of the vehicle is equal to the preset speed, and the number N of lanes on the road is greater than a preset value Nmin , the server may re-route the road in the lane layer. Divided into M lanes, where N min ⁇ M ⁇ N. As shown in Figure 5.
  • the width of each lane can be increased, so that the driving experience can be improved.
  • the server may further send indication information for instructing the vehicle to increase the traveling speed to a preset speed.
  • the speed of the current lane navigate the preset speed for the vehicle can be located, V f 1 as shown in FIG.
  • the embodiment of the invention can improve the driving speed by combining the actual vehicle flow rate, and can realize the smooth running, thereby solving the micro driving experience problem.
  • step 420 when the traffic volume of the road increases, the number N of lanes on the road is less than a preset value N max, and the traffic volume of each lane in the N lanes on the road has reached a preset traffic flow.
  • the server re-divides the road into M lanes in the lane layer, where N ⁇ M ⁇ N max . As shown in Figure 5, the right side is the lane division before adjustment, and the left side is the adjusted lane division.
  • the traffic volume of the road can be increased, and the traffic volume of the road can be maximized, thereby solving the macroscopic traffic efficiency problem.
  • the server can further increase the traffic volume of the road by instructing the vehicle to increase the driving speed, thereby solving the traffic efficiency problem.
  • the server may also obtain the traffic density of the lane in which the vehicle is located.
  • the server sends an indication message indicating that the vehicle reduces the traveling speed to the preset speed and reduces the vehicle adjacent to the front.
  • the preset speed may be the critical speed of the lane, as shown in Figure 1 Vm .
  • the traffic density of the lane can be increased by reducing the distance between the vehicles adjacent to the front.
  • the number of lanes and the lane width of the road are no longer fixed, but are dynamically adjusted according to requirements, and the precise path of the vehicle can be dynamically planned and controlled, thereby flexibly regulating traffic flow and Driving speed.
  • the traffic control method 700 includes the following.
  • the vehicle-mounted device reports vehicle information, and the vehicle information may include a location of the vehicle.
  • the vehicle information may also include the speed of travel, the identification of the vehicle.
  • the roadside device receives the vehicle information reported by the in-vehicle device, and forwards the vehicle information to the central service device.
  • the in-vehicle device directly transmits the vehicle information to the central device, and does not need to be forwarded by the roadside device.
  • the central service device receives the vehicle information reported by the in-vehicle device forwarded by the roadside device, and determines the traffic volume of the road according to the location of the vehicle.
  • the central service device may also determine the traffic flow and traffic density on each lane based on the vehicle information.
  • the central service device determines, according to the traffic volume of the road, whether the lane of the road needs to be adjusted. When the lane needs to be adjusted, adjust the lane in the lane layer.
  • the central service device sends the adjusted lane layer to the roadside device.
  • the roadside device receives the adjusted lane layer, updates the map according to the adjusted lane layer, and re-plans the lane of the vehicle according to the updated map, and determines the path change information.
  • the roadside device can also monitor the load condition of the road in real time, such as the traffic volume of the road, the traffic density, and the like.
  • the roadside device can plan the driving route of the lane level of the vehicle of the corresponding road section according to the updated map and the load condition of the road.
  • the roadside device transmits the adjusted lane layer and path change information to the in-vehicle device.
  • the roadside device transmits an adjusted lane layer to all vehicles on the road. Further, the roadside apparatus may transmit the corresponding route change information to each of the vehicles, or may transmit the route change information of all the vehicles to each of the vehicles, and the vehicle may select its own route change information based on the vehicle identification. In this way, the vehicle can be heavy based on the adjusted lane layer and path change information. Driving on the target lane after the new plan.
  • the central service device or the roadside device may further determine indication information for indicating that the vehicle adjusts the traveling speed according to the traffic flow, the traffic density, and the traveling speed of the vehicle.
  • the roadside information can also transmit the indication information to the corresponding vehicle so that the vehicle can adjust the travel speed accordingly.
  • the in-vehicle device receives the adjusted lane layer and path change information sent by the roadside device, updates the map according to the received adjusted lane layer, and according to the route change information, according to the adjusted lane in the updated map. Drive on the re-planned target lane.
  • the adjustment of the lanes in the embodiment of Figure 7 is determined and executed by the central service unit.
  • the server in method 700 is a roadside device
  • the adjustment of the lane is determined and executed by the roadside device.
  • the dynamic adjustment of the number of lanes and the lane width can be controlled, and the driving path of the vehicle can be dynamically changed, thereby realizing the traffic flow and The overall regulation of the speed of the car.
  • FIG. 8 is a schematic flow diagram of a traffic control method 800 in accordance with another embodiment of the present invention.
  • the in-vehicle device reports the vehicle information of the vehicle where the in-vehicle device is located to the server, where the vehicle information includes the location of the vehicle and the traveling speed.
  • the server receives the location of the vehicle and the speed of travel.
  • the server acquires traffic volume of the road.
  • the server can monitor the traffic flow of the road on which the lane is located in real time.
  • the server determines the indication information according to the traffic volume of the road and the traveling speed of the vehicle, where the indication information is used to instruct the vehicle to adjust the traveling speed.
  • the server sends the indication information.
  • the in-vehicle device receives the indication information, and instructs the vehicle to adjust the traveling speed according to the indication information.
  • the indication information for instructing the vehicle to adjust the traveling speed is determined according to the traffic flow of the road and the traveling speed of the vehicle, and the indication information is transmitted, so that the vehicle can adjust the traveling speed according to the indication information, thereby being able to The flow dynamically plans and controls the speed of the vehicle.
  • the indication information is used to indicate that the vehicle increases the traveling speed to the first preset speed.
  • the in-vehicle device can indicate that the vehicle will travel according to the indication information. The degree is increased to the first preset speed.
  • the traffic volume of the road can be increased, thereby improving traffic efficiency.
  • the indication information is used to indicate that the vehicle reduces the traveling speed to the second preset speed. And shorten the distance between the vehicles adjacent to the front.
  • the second preset speed may be the maximum safe speed allowed by the lane in which the vehicle is located.
  • the safety of the vehicle travel can be improved, while the traffic density of the lane can be increased by shortening the distance between the vehicles adjacent to the front.
  • the traveling speed of the vehicle exceeds the preset speed, the traffic volume of the lane can be increased while ensuring traffic safety by reducing the traveling speed of the vehicle and increasing the traffic density of the lane.
  • the server in the embodiment of the present invention may be a roadside device or a central service device in the architecture shown in FIG. 3, or may be a device having both functions.
  • FIG. 9 is a schematic structural diagram of a server 900 according to an embodiment of the present invention.
  • the server 900 includes an obtaining unit 910, a processing unit 920, and a transmitting unit 930.
  • the obtaining unit 910 is configured to acquire the traffic volume of the road.
  • the processing unit 920 is configured to adjust the lane number or the lane width of the road in the lane layer of the map according to the traffic volume of the road acquired by the acquiring unit.
  • the sending unit 930 is configured to send the adjusted lane layer of the processing unit, so that the vehicle traveling on the road travels according to the adjusted lane.
  • the vehicle traffic volume of the road is obtained, and the lane of the road is adjusted in the lane layer of the map according to the traffic volume of the road, so that the vehicle traveling on the road can travel according to the adjusted lane, thereby It can dynamically plan and control the precise lane of the vehicle according to the traffic flow.
  • the server 900 may further include a receiving unit 940, configured to receive vehicle information reported by the in-vehicle device.
  • the obtaining unit 910 may be implemented by a processor
  • the processing unit 920 may be implemented by a processor
  • the sending unit 930 may be implemented by a transmitter
  • the receiving unit 940 may be implemented by a receiver.
  • the server 1000 includes a processor 1010, a transmitter 1020, Receiver 1030 and memory 1040.
  • the memory 1040 can be used to store maps, related information of the vehicle, and can also be used to store codes and the like executed by the processor 1010.
  • the various components in server 1000 are coupled together by a bus system 1050, which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • server 900 shown in FIG. 9 or the server 1000 shown in FIG. 10 may correspond to the server in the traffic control method 400 according to the embodiment of the present invention, and the above-described sum of the respective modules/units in the server 900 or the server 1000.
  • Other operations and/or functions are respectively implemented in order to implement the corresponding processes of the method 400 of FIG. 4, and are not described herein again for brevity.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM Direct Memory Bus Random Access Memory
  • FIG. 11 is a schematic structural diagram of an in-vehicle device 1100 according to an embodiment of the present invention. As shown in FIG. 11, the in-vehicle device 1100 includes a receiving unit 1110, a processing unit 1120, and an indicating unit 1130.
  • the receiving unit 1110 is configured to receive a lane layer of a map sent by the server, where the lane layer is obtained by the server adjusting the lane of the road in the original lane layer of the map according to the traffic volume of the road where the vehicle is located.
  • the processing unit 1120 is configured to update the map according to the lane layer received by the receiving unit.
  • the indicating unit 1130 is configured to instruct the vehicle where the in-vehicle device is located to travel according to the adjusted lane according to the updated map of the processing unit.
  • the map is updated according to the adjusted lane layer sent by the server, and the vehicle is instructed to drive according to the adjusted lane according to the updated map, so that the server can dynamically plan and control the precise lane of the vehicle according to the traffic flow.
  • the in-vehicle device 1100 may further include a sending unit 1140 for reporting vehicle information.
  • the receiving unit 1110 may be implemented by a receiver
  • the processing unit 1120 may be implemented by a processor
  • the indicating unit 1130 may be implemented by a processor
  • the transmitting unit 1140 may be implemented by a transmitter.
  • the in-vehicle device 1200 includes a processor 1210, a receiver 1220, a transmitter 1230, and a memory 1240.
  • the memory 1240 can be used to store a map, and can also be used to store code and the like executed by the processor 1210.
  • the various components in the onboard device 1200 are coupled together by a bus system 1250 that includes, in addition to the data bus, a power bus, a control bus, and a status signal bus.
  • the in-vehicle device 1100 shown in FIG. 11 or the in-vehicle device 1200 shown in FIG. 12 may correspond to the in-vehicle device in the traffic control method 400 according to the embodiment of the present invention, and each module in the in-vehicle device 1000 or the in-vehicle device 1200
  • the above and other operations and/or functions of the unit are respectively implemented in order to implement the corresponding processes of the method 400 of FIG. 4, and are not described herein again for brevity.
  • the above described method embodiments of the present invention may be applied to a processor or implemented by a processor.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • the steps of the above method embodiments may be performed by an integrated logic circuit of hardware in the processor or an instruction in the form of software.
  • the above described processor may be a general purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a ROM, a PROM, an EPROM, an EEPROM, or a flash memory.
  • the volatile memory can be RAM, which acts as an external cache.
  • many forms of RAM are available, such as SRAM, DRAM, SDRAM, DDR SDRAM, ESDRAM, SLDRAM, and DR RAM. It should be noted that the memories of the systems and methods described herein are intended to comprise, without being limited to, these and any other suitable types of memory.
  • FIG. 13 is a schematic structural diagram of a server 1300 according to an embodiment of the present invention.
  • the server 1300 includes a receiving unit 1310, an obtaining unit 1320, a processing unit 1330, and a transmitting unit 1340.
  • a receiving unit 1310 configured to receive a traveling speed of the vehicle reported by the in-vehicle device of the vehicle traveling on the road;
  • the obtaining unit 1320 is configured to acquire traffic flow of the road
  • the processing unit 1330 is configured to determine indication information according to the traffic flow of the road acquired by the acquisition unit and the traveling speed of the vehicle received by the receiving unit, where the indication information is used to indicate that the vehicle adjusts the traveling speed;
  • the sending unit 1340 is configured to send the indication information determined by the processing unit 1330.
  • the indication information for instructing the vehicle to adjust the traveling speed is determined according to the traffic volume of the road and the traveling speed of the vehicle, and the indication information is transmitted, so that the vehicle can adjust the traveling speed according to the indication information, thereby being capable of dynamically planning and controlling the vehicle according to the traffic flow. Driving speed.
  • Server 1400 includes a processor 1410, a receiver 1420, a transmitter 1430, and a memory 1440.
  • the memory 1440 can be used to store maps, and can also be used to store code and the like executed by the processor 1410.
  • the various components in server 1400 are coupled together by a bus system 1450 that includes, in addition to the data bus, a power bus, a control bus, and a status signal bus.
  • server 1300 shown in FIG. 13 or the server 1400 shown in FIG. 14 may correspond to the server in the traffic control method 800 according to an embodiment of the present invention, and the above-described sum of each module/unit in the server 1300 or the server 1400.
  • the other operations and/or functions are respectively implemented in order to implement the corresponding processes of the method 800 of FIG. 8.
  • no further details are provided herein.
  • the above described method embodiments of the present invention may be applied to a processor or implemented by a processor.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above described processor may be a general purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a ROM, a PROM, an EPROM, an EEPROM, or a flash memory.
  • the volatile memory can be RAM, which acts as an external cache.
  • many forms of RAM are available, such as SRAM, DRAM, SDRAM, DDR SDRAM, ESDRAM, SLDRAM, and DR RAM. It should be noted that the memories of the systems and methods described herein are intended to comprise, without being limited to, these and any other suitable types of memory.
  • FIG. 15 is a schematic structural view of an in-vehicle device 1500 according to an embodiment of the present invention.
  • the in-vehicle device 1500 includes a transmitting unit 1510, a receiving unit 1520, and an instructing unit 1530.
  • the sending unit 1510 is configured to report, to the server, a traveling speed of the vehicle where the in-vehicle device is located;
  • the receiving unit 1520 is configured to receive indication information that is determined by the server according to the traffic volume and the traveling speed of the road where the vehicle is located;
  • the indicating unit 1530 is configured to instruct the vehicle to adjust the traveling speed according to the indication information received by the receiving unit 1520.
  • the vehicle is instructed to adjust the traveling speed according to the indication information determined by the server according to the traffic volume of the road and the traveling speed of the vehicle, so that the server can realize the regulation of the traveling speed of the vehicle according to the traffic volume of the road.
  • the sending unit 1510 may be implemented by a transmitter
  • the receiving unit 1520 may be implemented by a receiver
  • the indicating unit 1530 may be implemented by a processor.
  • the in-vehicle device 1600 includes a processor 1610, a transmitter 1620, a receiver 1630, and a memory 1640.
  • the memory 1640 can be used to store maps, and can also be used to store code and the like executed by the processor 1610.
  • the various components in the in-vehicle device 1600 are coupled together by a bus system 1650 that includes, in addition to the data bus, a power bus, a control bus, and a status signal bus.
  • the in-vehicle device 1500 shown in FIG. 15 or the in-vehicle device 1600 shown in FIG. 16 may correspond to the in-vehicle device in the traffic control method 800 according to the embodiment of the present invention, and each module in the in-vehicle device 1500 or the in-vehicle device 1600/
  • the above and other operations and/or functions of the unit are respectively implemented in order to implement the corresponding processes of the method 800 of FIG. 8.
  • no further details are provided herein.
  • the above described method embodiments of the present invention may be applied to a processor or implemented by a processor.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above described processor may be a general purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiment of the present invention may be a volatile memory or a non-volatile memory.
  • the memory may include both volatile and non-volatile memory.
  • the non-volatile memory may be a ROM, a PROM, an EPROM, an EEPROM, or a flash memory.
  • the volatile memory can be RAM, which acts as an external cache.
  • many forms of RAM are available, such as SRAM, DRAM, SDRAM, DDR SDRAM, ESDRAM, SLDRAM, and DR RAM. It should be noted that the memories of the systems and methods described herein are intended to comprise, without being limited to, these and any other suitable types of memory.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of cells is only a logical function division.
  • multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Databases & Information Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明实施例提供了一种交通控制方法及装置。该方法包括:服务器获取道路的车流量;所述服务器根据所述道路的车流量在地图的车道图层中调整所述道路的车道数量或车道宽度;所述服务器发送调整后的车道图层,以便在所述道路上行驶的车辆根据调整后的车道行驶。本发明实施例中,通过获取道路的车流量,并根据道路的车流量在地图的车道图层中调整该道路的车道数量或车道宽度,使得在该道路上行驶的车辆能够根据调整后的车道行驶,从而能够根据车流量动态规划和控制车辆行驶的精确车道。

Description

交通控制方法及装置 技术领域
本发明涉及智能交通技术领域,尤其涉及交通控制方法及装置。
背景技术
目前主要地图厂商都开始开发高精度地图,其中非常重要的一点就是将道路精度提高到车道级。目前车道级的高精度地图都是通过采集车或者其他采集设备在实际道路上采集车道信息,并将车道划分情况做到地图中去,地图上的车道划分与实际道路上的车道划分保持一致。由于目前地图上道路的车道数量和车道宽度都是固定不变的,因此无法根据道路的车流量等信息动态调整车辆行驶的车道。
发明内容
本发明实施例提供了一种交通控制方法及装置,能够控制车辆动态调整行驶的车道。
第一方面,提供了一种交通控制方法,所述方法包括:服务器获取道路的车流量;所述服务器根据所述道路的车流量在地图的车道图层中调整所述道路的车道数量或车道宽度;所述服务器发送调整后的车道图层,以便在所述道路上行驶的车辆根据调整后的车道行驶。
其中所述方法采用的地图包括动态的车道图层。
所述方法可以应用于基于网络控制的智能交通三层架构。智能交通三层架构包括中央服务装置、路侧装置和车载装置。所述车载装置可以分别与路侧装置和中央服务装置进行通信,或者所述车载装置可以通过所述路侧装置与所述中央服务装置进行通信。
所述服务器可以为基于网络控制的智能交通三层架构中的中央服务装置或者路侧装置。
所述服务器还可以为兼具中央服务装置和路侧装置的功能的设备。
所述服务器发送调整后的车道图层包括:所述服务器向在所述道路上行驶的车辆发送所述调整后的车道图层。
可选地,所述服务器发送调整后的车道图层包括:所述服务器向路侧装 置发送所述调整后的车道图层。
通过获取道路的车流量,并根据道路的车流量在地图的车道图层中调整该道路的车道,使得在该道路上行驶的车辆能够根据调整后的车道行驶,从而能够根据车流量动态规划和控制车辆行驶的精确车道。
可选地,所述方法还可以包括:所述服务器接收多个车载装置分别上报的各自所在的车辆的位置;所述服务器获取道路的车流量包括:所述服务器根据所述多个车辆的位置确定所述道路的车流量。这样,服务器可以根据车载装置上报的车辆位置进行统计,以确定道路的车流量。
可选地,服务器还可以从交通监测系统处获取道路的车流量。具体地,交通监测系统可以采用视频检测技术等检测道路的车流量。但本发明实施例对此并不限定,服务器还可以采用其他方式获取道路的车流量。
结合第一方面,在第一方面的第一种可能的实现方式中,还包括:所述服务器接收在所述道路上行驶的车辆的车载装置上报的所述车辆的位置;所述服务器根据所述调整后的车道和所述车辆的位置重新规划所述车辆行驶的车道,确定路径变更信息;所述服务器向所述车载装置发送所述路径变更信息,所述路径变更信息用于指示所述车辆根据所述调整后的车道在重新规划后的目标车道上行驶。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,还包括:所述服务器接收第一车载装置上报的在所述道路上行驶的第一车辆的标识;所述服务器根据所述第一车辆的标识确定所述第一车辆的属性;所述根据所述道路的车流量在所述车道图层中调整所述道路的车道宽度包括:在所述车辆的属性满足预设条件时,在所述车道图层中增加所述第一车辆所在的车道的宽度并减小所述道路上的其他车道的宽度。
例如,车辆的属性可以对车辆的职能或用途进行区分,例如车辆的属性可以包括:私家车、公共交通、执行特殊任务的车辆(如110/120/119)等。但本发明实施例并不限于此,车辆的属性还可以包括从其他角度描述的属性,例如车辆的宽度、车辆的最佳行驶速度等。
可选地,在根据车辆的属性调整车辆所在的车道的宽度时,还可以考虑道路的车流量。例如,所述根据所述道路的车流量在所述车道图层中调整所述道路的车道包括:在道路的车流量小于预设流量且车辆的属性满足预设条 件时,服务器在车道图层中增加车辆所在的车道的宽度并减小道路上的其他车道的宽度。
通过根据车辆的属性动态增加特殊车辆所在车道的宽度,从而能够提升特殊车辆的畅行速度,保证特殊车辆能够快速通行。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第三种可能的实现方式中,还包括:所述服务器接收第一车载装置上报的在所述道路上行驶的第一车辆的行驶速度;所述服务器根据所述道路的车流量在所述车道图层中调整所述道路的车道数量包括:在所述道路的车流量减少、所述第一车辆的行驶速度与第一预设速度的差小于预设阈值且所述道路上的车道的数量N大于第一预设值Nmin时,在所述车道图层中将所述道路重新划分为M条车道,其中Nmin≤M<N。
其中,所述第一预设值Nmin可以是所述道路中允许划分的车道的数量的最小值。
通过减少车道的数量能够增加车道的宽度,从而能够提高用户的行车体验。
结合第一方面的第二种或第三种可能的实现方式,在第一方面的第四种可能的实现方式中,还包括:所述服务器发送指示信息,所述指示信息用于指示所述第一车辆将行驶速度提高至第二预设速度。
当车辆所在的车道变宽时,通过指示车辆提高行驶速度,使得车辆能够实现畅速行驶,进一步提升用户的行车体验。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第五种可能的实现方式中,所述根据所述道路的车流量在所述车道图层中调整所述道路的车道数量包括:在所述道路的车流量增加、所述道路上的车道的数量N小于第二预设值Nmax且所述道路上的N条车道中每条车道的车流量已达到预设流量的情况下,在所述车道图层中将所述道路重新划分为M条车道,其中N<M≤Nmax
其中,第二预设值Nmax可以是所述道路中允许划分的车道的数量的最大值。
通过增加车道的数量能够增加道路的车流量,从而能够提高交通效率。
结合第一方面的第五种可能的实现方式,在第一方面的第六种可能的实现方式中,还包括:所述服务器接收第二车载装置上报的在所述道路上行驶 的第二车辆的行驶速度;在所述第二车辆的行驶速度低于第三预设速度时,所述服务器发送指示信息,所述指示信息用于指示所述车辆将行驶速度提高至所述第三预设速度。
通过指示车辆提高行驶速度能够增加道路的车流量,从而能够提高交通效率。
结合第一方面的第五种可能的实现方式,在第一方面的第七种可能的实现方式中,还包括:所述服务器接收第二车载装置上报的在所述道路上行驶的第二车辆的行驶速度;所述服务器获取所述第二车辆所在的车道的车流密度;在所述第二车辆所在的车道的车流密度小于预设车流密度且所述车辆的行驶速度大于第四预设速度时,所述服务器发送指示信息,所述指示信息用于指示所述车辆将行驶速度减小至所述第四预设速度并缩短与前方相邻车辆之间的距离。
通过指示车辆将行驶速度减小至预设速度能够提高车辆行驶的安全性,同时通过缩短与前方相邻车辆之间的距离能够增加车道的车流密度。当车辆的行驶速度超出预设速度时,通过降低车辆的行驶速度并增加车道的车流密度能够在保证交通安全的情况下增加车道的车流量。
上述可能的实现方式中的各预设速度可以是预先配置在服务器中的,也可以是服务器根据车辆当前所在的车道信息按计算出来的。例如,车道信息可以包括车道宽度,还可以包括路面质量、坡度等其他因素。可选地,服务器根据车道的信息计算预设速度时还可以参考车道的流量以及车流密度等信息。
第二方面,提供了一种交通控制方法,所述方法包括:车载装置接收服务器发送的地图的车道图层,所述车道图层是所述服务器根据所述车载装置所在道路的车流量在所述地图的原车道图层中调整所述道路的车道得到的;所述车载装置根据所述调整后的车道图层更新所述地图;所述车载装置根据更新后的地图指示所述车载装置所在的车辆根据调整后的车道行驶。
其中所述方法采用的地图包括动态的车道图层。
通过根据服务器发送的调整后的车道图层更新地图,并根据更新的后的地图指示车辆根据调整后的车道行驶,使得服务器能够根据车流量动态规划和控制车辆行驶的精确车道。
可选地,车载装置还可以向所述服务器上报车载装置所在的车辆的位 置。
可选地,所述车载装置还可以向所述服务器上报所述车辆的标识。
结合第二方面,在第二方面的第一种可能的实现方式中,还包括:所述车载装置向所述服务器发送所述车辆的位置;所述车载装置接收所述服务器发送的路径变更信息,所述路径变更信息是所述服务器根据所述调整后的车道和所述车辆的位置确定的;所述车载装置根据更新后的地图指示所述车载装置所在的车辆根据调整后的车道行驶包括:所述车载装置根据更新后的地图和所述路径变更信息指示所述车辆根据所述调整后的车道在所述服务器重新规划后的目标车道上行驶。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,还包括:所述车载装置向所述服务器上报所述车辆的行驶速度;所述车载装置接收所述服务器发送的指示信息;所述车载装置根据所述指示信息指示所述车辆调节行驶速度。
第三方面,提供了一种交通控制方法,包括:服务器接收在道路上行驶的车辆的车载装置上报的行驶速度;所述服务器获取所述道路的车流量;所述服务器根据所述道路的车流量和所述车辆的行驶速度确定指示信息,所述指示信息用于指示所述车辆调节行驶速度;所述服务器发送所述指示信息。
通过根据道路的车流量和车辆的行驶速度确定用于指示车辆调节行驶速度的指示信息,并发送该指示信息,使得车辆能够根据该指示信息调节行驶速度,从而能够根据车流量动态规划和控制车辆的行驶速度。
结合第三方面,在第三方面的第一种可能的实现方式中,在所述道路的车流量增加、所述车道的车流量小于预设流量且所述车辆的行驶速度小于第一预设速度的情况下,所述指示信息用于指示所述车辆将行驶速度提高至所述第一预设速度。
结合第三方面,在第三方面的第二种可能的实现方式中,在所述道路的车流量增加、所述车道的车流量小于预设流量且所述车辆的行驶速度大于第二预设速度的情况下,所述指示信息用于指示所述车辆将行驶速度降低至所述第二预设速度并缩短与前方相邻车辆之间的距离。
第四方面,提供了一种交通控制方法,包括:车载装置向服务器上报所述车载装置所在的车辆的行驶速度;所述车载装置接收指示信息,所述指示信息是所述服务器根据所述车辆所在的道路的车流量和所述行驶速度确定 的;所述车载装置根据所述指示信息指示所述车辆调节行驶速度。
通过根据服务器根据道路的车流量和车辆的行驶速度确定的指示信息指示车辆调节行驶速度,使得服务器能够根据道路的车流量实现对车辆行驶速度的调控。
所述指示信息可以用于指示所述车辆将行驶速度提高至预设速度。
所述指示信息可以用于指示所述车辆将行驶速度降低至预设速度并减小与前方相邻车辆之间的距离。
第五方面,提供了一种服务器,用于执行第一方面或第一方面的上述任一种可能的实现方式所述的交通控制方法。具体地,所述服务器包括:获取单元,用于获取道路的车流量;处理单元,用于根据所述获取单元获取的所述道路的车流量在地图的车道图层中调整所述道路的车道数量或车道宽度;发送单元,用于发送所述处理单元调整后的车道图层,以便在所述道路上行驶的车辆根据调整后的车道行驶。
结合第五方面,在第五方面的第一种可能的实现方式中,还包括:第一接收单元,用于接收在所述道路上行驶的车辆的车载装置上报的所述车辆的位置;所述处理单元还用于,根据所述调整后的车道和所述第一接收单元接收到的所述车辆的位置重新规划所述车辆行驶的车道,确定路径变更信息;所述发送单元还用于,向所述车载装置发送所述路径变更信息,所述路径变更信息用于指示所述车辆根据调整后的车道在重新规划后的目标车道上行驶。
结合第五方面或第五方面的第一种可能的实现方式,在第五方面的第二种可能的实现方式中,还包括:第二接收单元,用于接收第一车载装置上报的在所述道路上行驶的第一车辆的标识;所述处理单元还用于:根据所述第二接收单元接收到的所述第一车辆的标识确定所述第一车辆的属性;所述处理单元具体用于,在所述第一车辆的属性满足预设条件时,在所述车道图层中增加所述第一车辆所在的车道的宽度并减小所述道路上的其他车道的宽度。
结合第五方面或第五方面的第一种可能的实现方式,在第五方面的第三种可能的实现方式中,还包括:第二接收单元,用于接收第一车载装置上报的在所述道路上行驶的第一车辆的行驶速度;所述处理单元具体用于,在所述道路的车流量减少、所述第一车辆的行驶速度与第一预设速度的差小于预 设阈值且所述道路上的车道的数量N大于第一预设值Nmin时,所述服务器在所述车道图层中将所述道路重新划分为M条车道,其中Nmin≤M<N。
结合第五方面的第二种或第三种可能的实现方式,在第五方面的第四种可能的实现方式中,所述发送单元还用于,发送指示信息,所述指示信息用于指示所述第一车辆将行驶速度提高至第二预设速度。
结合第五方面或第五方面的第一种可能的实现方式,在第五方面的第五种可能的实现方式中,所述处理单元具体用于,在所述道路的车流量增加、所述道路上的车道的数量N小于第二预设值Nmax且所述道路上的N条车道中每条车道的车流量已达到预设流量的情况下,所述服务器在所述车道图层中将所述道路重新划分为M条车道,其中N<M≤Nmax
结合第五方面的第五种可能的实现方式,在第五方面的第六种可能的实现方式中,还包括:第三接收单元,用于接收第二车载装置上报的在所述道路上行驶的第二车辆的行驶速度;所述发送单元还用于,在所述第二车辆的行驶速度低于第三预设速度时,所述服务器发送指示信息,所述指示信息用于指示所述第二车辆将行驶速度提高至所述第三预设速度。
结合第五方面的第五种可能的实现方式,在第五方面的第七种可能的实现方式中,还包括:第三接收单元,用于接收第二车载装置上报的在所述道路上行驶的第二车辆的行驶速度;所述获取单元还用于,获取所述第二车辆所在的车道的车流密度;所述发送单元还用于,在所述第二车辆所在的车道的车流密度小于预设车流密度且所述第二车辆的行驶速度大于第四预设速度时,发送指示信息,所述指示信息用于指示所述第二车辆将行驶速度降低至所述第四预设速度并减小与前方相邻车辆之间的距离。
第六方面,提供了一种车载装置,用于执行第二方面或第二方面的上述任一种可能的实现方式所述的交通控制方法。具体地,所述车载装置包括:接收单元,用于接收服务器发送的地图的车道图层,所述车道图层是所述服务器根据所述车载装置所在道路的车流量在所述地图的原车道图层中调整所述道路的车道得到的;处理单元,用于根据所述接收单元接收到的所述调整后的车道图层更新所述地图;指示单元,用于根据所述处理单元更新后的地图指示所述车载装置所在的车辆根据调整后的车道行驶。
结合第六方面,在第六方面的第一种可能的实现方式中,还包括:第一发送单元,用于向所述服务器发送所述车辆的位置;所述接收单元还用于, 接收所述服务器发送的路径变更信息,所述路径变更信息是所述服务器根据所述调整后的车道和所述车辆的位置确定的;所述指示单元具体用于,所述车载装置根据更新后的地图和所述路径变更信息指示所述车辆根据所述调整后的车道在所述服务器重新规划后的目标车道上行驶。
结合第六方面或第六方面的第一种可能的实现方式,在第六方面的第二种可能的实现方式中,还包括:第二发送单元,用于向所述服务器上报所述车辆的行驶速度;所述接收单元还用于,接收所述服务器根据所述车辆的行驶速度发送的指示信息;所述指示单元还用于,根据所述指示信息指示所述车辆调节行驶速度。
第七方面,提供了一种服务器,用于执行第三方面或第三方面的上述任一种可能的实现方式所述的交通控制方法。具体地,所述服务器包括:接收单元,用于接收在道路上行驶的车辆的车载装置上报的所述车辆的行驶速度;获取单元,用于获取所述道路的车流量;处理单元,用于根据所述获取单元获取的所述道路的车流量和所述接收单元接收到的所述车辆的行驶速度确定指示信息,所述指示信息用于指示所述车辆调节行驶速度;发送单元,用于发送所述指示信息。
结合第七方面,在第七方面的第一种可能的实现方式中,在所述道路的车流量增加、所述车道的车流量小于预设流量且所述车辆的行驶速度小于第一预设速度的情况下,所述指示信息用于指示所述车辆将行驶速度提高至所述第一预设速度。
结合第七方面,在第七方面的第二种可能的实现方式中,在所述道路的车流量增加、所述车道的车流量小于预设流量且所述车辆的行驶速度大于第二预设速度的情况下,所述指示信息用于指示所述车辆将行驶速度降低至所述第二预设速度并缩短与前方相邻车辆之间的距离。
第八方面,提供了一种车载装置,用于执行第四方面所述的交通控制方法。具体地,所述车载装置包括:发送单元,用于向服务器上报所述车载装置所在的车辆的行驶速度;接收单元,用于接收指示信息,所述指示信息是所述服务器根据所述车辆所在的道路的车流量和所述行驶速度确定的;指示单元,用于根据所述接收单元接收到的所述指示信息指示所述车辆调节行驶速度。
第十二方面,提供了一种服务器,包括处理器、存储器、总线系统和收 发器,所述处理器、所述存储器和所述收发器通过所述总线系统相连,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,使得所述服务器执行第一方面或第一方面的上述任一种可能的实现方式所述的交通控制方法。
可选地,所述收发器可以由发送器实现。
第十三方面,提供了一种车载装置,包括处理器、存储器、总线系统和收发器,所述处理器、所述存储器和所述收发器通过所述总线系统相连,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,使得所述服务器执行第二方面或第二方面的上述任一种可能的实现方式所述的交通控制方法。
可选地,所述收发器可以由接收器实现。
第十四方面,提供了一种服务器,包括处理器、存储器、总线系统和收发器,所述处理器、所述存储器和所述收发器通过所述总线系统相连,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,使得所述服务器执行第三方面或第三方面的上述任一种可能的实现方式所述的交通控制方法。
第十五方面,提供了一种车载装置,包括处理器、存储器、总线系统和收发器,所述处理器、所述存储器和所述收发器通过所述总线系统相连,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,使得所述服务器执行第四方面或第四方面的上述任一种可能的实现方式所述的交通控制方法。
附图说明
图1是交通流量、车辆速度和车流密度之间的关系示意图;
图2是本发明实施例的应用场景的示意图;
图3是本发明实施例的另一应用场景示意图;
图4是根据本发明实施例的交通控制方法的示意性流程图;
图5是根据本发明实施例的交通控制方法的车道调整的示意图;
图6是根据本发明另一实施例的交通控制方法的车道调整的示意图;
图7是根据本发明另一实施例的交通控制方法的示意性流程图;
图8是根据本发明另一实施例的交通控制方法的示意性流程图;
图9是根据本发明实施例的服务器的结构示意图;
图10是根据本发明另一实施例的服务器的结构示意图;
图11是根据本发明实施例的车载装置的结构示意图;
图12是根据本发明另一实施例的车载装置的结构示意图;
图13是根据本发明另一实施例的服务器的结构示意图;
图14是根据本发明另一实施例的服务器的结构示意图;
图15是根据本发明另一实施例的车载装置的结构示意图;
图16是根据本发明另一实施例的车载装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
图1示出了单车道的流量Q、速度V、密度K三者之间的关系为:Q=K·V。下面首先结合图1介绍反映车道流量特性的一些术语。
极大流量Qm(辆/h),车道流量极大值;
临界速度Vm(km/h),车道流量达到极大时的速度;
畅行速度Vf(km/h),车流密度趋于零时,车辆可以畅行无阻的平均速度;
临界密度Km(辆/km),流量达到极大时的车流密度;
阻塞密度Kj(辆/km),车流密度到车辆无法移动(即车速为零)时的车流密度。
本发明实施例中,由于车道图层中的车道的数量会发生改变。将以上公式进行扩展可以得到:
Figure PCTCN2016074711-appb-000001
其中,Qr为道路车流量(辆/h),Qi为单车道车流量(辆/h),Ki为单车道平均车流密度(辆/km),Vi为单车道区间平均速度(km/h),n为车道数量。
从上式可看出一段道路的流量为所有车道的流量之和,这里每条车道的车流密度和平均速度都可能是不同的。本发明实施例中道路的流量以单方向流量为例。由上式(1)可知,通过增加车道的数量,或者增加车道的车流 密度,或者提高车辆的行驶速度,均能够增加道路的车流量。
近年来智能交通技术快速发展,自动驾驶已经成为主要趋势,而以网络通信为基础的自动驾驶将会成为未来自动驾驶的主流和必然趋势。在基于网络的自动驾驶场景中,车辆是按照高精度的导航路径行驶的,因此可以不再受限于通过实际的车道线界定的物理车道。本发明实施例中地图中的车道划分不再是固定不变的,而是增加动态的车道图层,能够动态地在地图的车道图层上调整道路的车道,使得车辆能够根据调整后的车道行驶。
图2是本发明一个实施例的应用场景的示意图。图2中示出了一种智能交通系统架构,包括服务器和车载装置。
服务器存储有高精地图,地图中包括详细、精确的道路信息,以及动态的车道图层。
车载装置可以向服务器发送导航请求,车载装置还可以向服务器上报车辆的信息,如位置、行驶速度、标识等。服务器可以根据接收到的请求为车载装置提供服务器,还可以根据道路的车流量动态调整道路的车道划分。
图3是本发明另一实施例的应用场景的示意图。图3中示出了一种基于网络控制的智能交通三层架构,包括中央服务装置、路侧装置、车载装置。车载装置可以通过路侧装置与中央服务装置进行通信,也可以直接与中央服务装置进行通信。路侧装置可以与车载装置直接进行通信。
1)中央服务装置负责全局路径规划
所谓全局路径,就是一段由起点到终点的单向行车路线,起点一般是汽车当前位置,终点可以由乘车人根据需求指定。全局路径的精度要求达到道路级。
中央服务装置在做全局路径规划时,需要考虑整个路网的动态路况信息,进行智能分析与综合调度。
2)路侧装置负责局部路径规划
所谓局部路径,是指在汽车沿全局路径行驶的过程中,在其所在位置到前方相对较短的路线上的详细行车路线,其范围是在路侧装置所覆盖区域内。局部路径的精度要求达到车道级。
路侧装置在做局部路径规划时,需要考虑区域内的车道属性、每条车道的负载情况、车辆的目的地方向,进行局部区域车辆调度与控制,以实现车道负载均衡,并提高车辆通行效率与质量(控制车速、少停车)。
路侧装置需要沿路侧部署,因此在一个交通系统中,可以有多个路侧装置,路侧装置也需要根据业务处理需求具有足够的处理性能和较高的可靠性。
3)车载装置负责车辆自主路径规划
所谓自主路径,是指车辆不依赖中央服务装置和路侧装置的路径规划,而是由车辆自身规划的临时路径。
自主路径规划是车辆自身对周围紧急情况或简单决策场景做出的应急路径调整,如紧急避障。
图4是根据本发明实施例的交通控制方法400的示意性流程图。如图4所示,方法400包括如下内容。
410、服务器获取道路的车流量。
例如,服务器可以实时监测该道路的车流量,服务器可以根据车载装置定时上报的位置确定道路的车流量,还可以从其他交通监测系统获取道路的车流量。
420、服务器根据道路的车流量在地图的车道图层中调整道路的车道数量或车道宽度。
430、服务器发送调整后的车道图层,以便在该道路上行驶的车辆在根据调整后的车道行驶。
本发明实施例对服务器发送调整后的车道图层采用的实现方式不做限定,只要使得该道路上行驶的车辆接收到该调整后的车道图层即可。
可选地,服务器可以为图3所示架构中的中央服务装置。
需要说明的是,当图3所示架构中的中央服务装置通过路侧装置与车载装置通信时,中央服务装置向路侧装置发送调整后的车道图层,以便路侧装置向该道路上的车辆的车载装置转发调整后的车道图层。
可选地,服务器还可以为图3所示架构中的路侧装置。
可选地,服务器还可以为兼具图3所示架构中的中央服务装置和路侧装置的功能的设备。
440、车载装置接收调整后的车道图层,并根据调整后的车道图层更新地图。
450、车载装置根据更新后的地图指示车辆根据调整后的车道行驶。
车载装置可以根据预先配置好的参数或算法根据调整后的车道变更当 前行驶路径,使得在调整后的车道上行驶。
车载装置可以根据更新后的地图指示车辆从当前车道移动至调整后的车道行驶。例如,车载装置可以根据更新后的地图指示车辆从当前车道移动至距离最近的一条车道行驶。如图5所示左侧为原来的车道划分,右侧为调整后的车道划分,在车道1上行驶的车辆的车载装置可以根据重新划分后的车道指示车辆移动至在距离当前位置最近的车道1”上行驶。当车辆距离两条的车道的距离相等时,可以移动至其中任一条车道上行驶。如图5所示在车道2上行驶的车辆可以移动至车道1”行驶,也可以移动至车道2”行驶。
本发明实施例中,通过获取道路的车流量,并根据道路的车流量在地图的车道图层中调整该道路的车道,使得在该道路上行驶的车辆能够在根据调整后的车道行驶,从而能够根据车流量动态规划和控制车辆行驶的精确车道。
可选地,在方法400中,车载装置还可以向服务器上报车辆的位置。相应地,服务器可以根据调整后的车道和车辆的位置重新规划车辆行驶的车道,并向车载装置发送路径变更信息。车载装置可以根据接收到的路径变更信息指示车辆根据调整后的车道在重新规划后的目标车道上行驶。
可选地,车载装置还可以上报车辆的标识。相应地,服务器可以根据该车辆的标识确定车辆的属性;在步骤420中,在车辆的属性满足预设条件时,服务器在车道图层中增加车辆所在的车道的宽度并减小道路上的其他车道的宽度。如图6所示左侧为调整前的车道划分,右侧为调整后的车道划分。
可选地,在根据车辆的属性调整车辆所在的车道的宽度时,还可以考虑道路的车流量。例如,在步骤420中,在道路的车流量小于预设流量且车辆的属性满足预设条件时,服务器在车道图层中增加车辆所在的车道的宽度并减小道路上的其他车道的宽度。
车辆的标识用于标识车辆,例如车辆的标识可以为车牌号。可以预先在服务器中存储车辆的相关信息,例如车辆的标识、属性等。
现有技术中,根据对道路路段的自由车速的特性分析,可知在一定范围内,车道越宽,在该车道上的车辆可以行驶的越快。也就是说,车道越宽,该车道允许的畅行速度越快。
通过增加车辆所在的车道的宽度,能够使得该车道上的车辆的畅行速度越快。
例如,当车辆为110/120/119等执行紧急任务或其他特殊的车辆时,通过增加该车辆所在的车道的宽度,能够保证该车辆的畅速行驶,解决社会特殊需求问题。
可选地,在步骤420中,在道路的车流量减少、车辆的行驶速度等于预设速度且道路上的车道的数量N大于预设值Nmin时,服务器可以在车道图层中将道路重新划分为M条车道,其中Nmin≤M<N。如图5所示。
本发明实施例中,通过在允许的范围内减少车道数,能够增加每条车道的宽度,从而能够提高行车体验。
当车辆所在的车道宽度变宽后,相应地,车道允许的畅行速度随之提高。可选地,服务器还可以发送指示信息,该指示信息用于指示车辆将行驶速度提高至预设速度。例如,该预设速度可以为该车辆所在的当前车道的畅行速度,如图1所示Vf
本发明实施例通过结合实际的车流量指示车辆提高行驶速度,能够实现畅速行驶,从而解决微观的行车体验问题。
可选地,在步骤420中,在道路的车流量增加、道路上的车道的数量N小于预设值Nmax且道路上的N条车道中每条车道的车流量已达到预设流量的情况下,服务器在车道图层中将道路重新划分为M条车道,其中N<M≤Nmax。如图5所示右侧为调整前的车道划分,左侧为调整后的车道划分。
本发明实施例中,通过在允许的范围内增加车道的数量,能够增加道路的车流量,实现道路的车流量最大化,从而解决宏观的交通效率问题。
同样,服务器增加道路的车道数量之后,还可以通过指示车辆提高行驶速度来进一步增加道路的车流量,解决交通效率问题。
可选地,服务器还可以获取车辆所在的车道的车流密度。相应地,在该车道的车流密度小于预设车流密度且车辆的行驶速度大于预设速度时,服务器发送指示信息,指示车辆将行驶速度降低至该预设速度并减小与前方相邻车辆之间的距离。例如,该预设速度可以为车道的临界速度,如图1所示Vm
通过减小与前方相邻车辆之间的距离可以增加车道的车流密度。
当道路的车辆流量增加、车辆的行驶速度超出允许的预设速度时,通过指示车辆降低至允许的行驶速度并增加车流密度,能够进一步增加道路的车流量,解决交通效率问题。另一方面,当车流密度增加时,通过降低车辆的 行驶速度还能够保证交通安全。
在本发明实施例中道路的车道数量和车道宽度都不再是固定不变的,而是根据需要动态调整的,同时还可以动态规划和控制车辆行驶的精确路径,从而能够灵活调控交通流量和行车速度。
下面结合图7,以服务器为中央服务装置为例描述根据本发明实施例的方法。中央服务装置和路侧装置可以实时监测道路的车流量、车流密度、车速等情况。如图7所示,交通控制方法700包括如下内容。
701、车载装置上报车辆信息,车辆信息可以包括车辆的位置。
可选地,车辆信息还可以包括车辆的行驶速度、标识。
702、路侧装置接收车载装置上报的车辆信息,并将车辆信息转发至中央服务装置。
需要说明的是,车载装置直接向中央装置发送车辆信息,无需路侧装置转发。
703、中央服务装置接收路侧装置转发的车载装置上报的车辆信息,根据车辆的位置确定道路的车流量。
应理解,中央服务装置还可以根据车辆信息确定每条车道上的车流量和车流密度。
704、中央服务装置根据道路的车流量判断是否需要调整该道路的车道。当需要调整车道时,在车道图层中的调整车道。
调整车道图层中的车道的具体方法可以参考上文所述,在此不再赘述。
705、中央服务装置向路侧装置发送调整后的车道图层。
706、路侧装置接收调整后的车道图层,并根据调整后的车道图层更新地图,根据更新后的地图重新规划车辆行驶的车道,确定路径变更信息。
可选地,路侧装置也可以实时监测道路的负载情况,例如道路的车流量、车流密度等。路侧装置可以根据更新后的地图和道路的负载情况规划相应路段的车辆的车道级的行驶路径。
707、路侧装置向车载装置发送调整后的车道图层和路径变更信息。
具体地,路侧装置向该道路上的所有车辆发送调整后的车道图层。并且路侧装置可以向各个车辆分别发送各自对应的路径变更信息,或者也可以向各个车辆发送所有车辆的路径变更信息,车辆可以根据车辆标识选择自身的路径变更信息。这样,车辆根据调整后的车道图层和路径变更信息可以在重 新规划后的目标车道上行驶。
可选地,中央服务装置或路侧装置还可以根据车流量、车流密度、车辆的行驶速度确定用于指示车辆调节行驶速度的指示信息。路侧信息还可以将该指示信息发送给对应的车辆,以便车辆能够相应调节行驶速度。
708、车载装置接收路侧装置发送的调整后的车道图层和路径变更信息,根据接收到的调整后的车道图层更新地图,并根据路径变更信息根据更新后的地图中的调整后的车道在重新规划后的目标车道上行驶。
图7所示实施例中车道的调整是由中央服务装置决策并执行的。
应理解,当方法700中的服务器为路侧装置时,车道的调整由路侧装置来决策并执行。
本发明实施例中,通过根据道路的车流量,通过服务器与车载装置之间的通信协作,能够控制车道数量和车道宽度的动态调整,以及控制动态变更车辆的行驶路径,进而实现对车流量和车速的整体调控。
图8是根据本发明另一实施例的交通控制方法800的示意性流程图。
810、车载装置向服务器上报车载装置所在的车辆的车辆信息,车辆信息包括车辆的位置和行驶速度。
服务器接收车辆的位置和行驶速度。
820、服务器获取该道路的车流量。
例如,服务器可以实时监测该车道所在的道路的车流量。
830、服务器根据道路的车流量和车辆的行驶速度确定指示信息,指示信息用于指示车辆调节行驶速度。
840、服务器发送该指示信息。
850、车载装置接收该指示信息,并根据该指示信息指示车辆调节行驶速度。
本发明实施例中,通过根据道路的车流量和车辆的行驶速度确定用于指示车辆调节行驶速度的指示信息,并发送该指示信息,使得车辆能够根据该指示信息调节行驶速度,从而能够根据车流量动态规划和控制车辆的行驶速度。
可选地,在道路的车流量增加、车道的车流量小于预设流量且车辆的行驶速度小于第一预设速度的情况下,指示信息用于指示车辆将行驶速度提高至第一预设速度。相应地,车载装置可以根据该指示信息指示车辆将行驶速 度提高至第一预设速度。
通过指示车辆提高行驶速度能够增加道路的车流量,从而能够提高交通效率。
可选地,在道路的车流量增加、车道的车流量小于预设流量且车辆的行驶速度大于第二预设速度的情况下,指示信息用于指示车辆将行驶速度降低至第二预设速度并缩短与前方相邻车辆之间的距离。其中,第二预设速度可以是车辆所在的车道允许的最大安全速度。
通过指示车辆将行驶速度减小至预设速度能够提高车辆行驶的安全性,同时通过缩短与前方相邻车辆之间的距离能够增加车道的车流密度。当车辆的行驶速度超出预设速度时,通过降低车辆的行驶速度并增加车道的车流密度能够在保证交通安全的情况下增加车道的车流量。
本发明实施例中的服务器可以为图3所示架构中的路侧装置或中央服务装置,也可以为兼具二者功能的设备。
上文结合图4至图8描述了根据本发明实施例的交通控制方法,下面将结合图9至图14描述根据本发明实施例的服务器和车载装置。
如图9所示为根据本发明实施例的服务器900的结构示意图。如图9所示,服务器900包括获取单元910、处理单元920和发送单元930。
获取单元910用于获取道路的车流量。
处理单元920用于根据获取单元获取的道路的车流量在地图的车道图层中调整道路的车道数量或车道宽度。
发送单元930用于发送处理单元调整后的车道图层,以便在道路上行驶的车辆根据调整后的车道行驶。
本发明实施例中,通过获取道路的车流量,并根据道路的车流量在地图的车道图层中调整该道路的车道,使得在该道路上行驶的车辆能够在根据调整后的车道行驶,从而能够根据车流量动态规划和控制车辆行驶的精确车道。
可选地,服务器900还可以包括接收单元940,用于接收车载装置上报的车辆信息。
应注意,本发明实施例中,获取单元910可以由处理器实现,处理单元920可以由处理器实现,发送单元930可以由发送器实现,接收单元940可以由接收器实现。如图10所示,服务器1000包括处理器1010、发送器1020、 接收器1030和存储器1040。其中存储器1040可以用于存储地图、车辆的相关信息,还可以用于存储处理器1010执行的代码等。服务器1000中的各个组件通过总线系统1050连接在一起,其中总线系统1050除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
应理解,图9所示的服务器900或图10所示的服务器1000可对应于根据本发明实施例的交通控制方法400中的服务器,并且服务器900或服务器1000中的各个模块/单元的上述和其它操作和/或功能分别为了实现图4的方法400的相应流程,为了简洁,在此不再赘述。
应注意,本发明上述方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、 双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
如图11所示为根据本发明实施例的车载装置1100的结构示意图。如图11所示,车载装置1100包括接收单元1110、处理单元1120和指示单元1130。
接收单元1110,用于接收服务器发送的地图的车道图层,该车道图层是服务器根据车载装置所在道路的车流量在地图的原车道图层中调整道路的车道得到的。
处理单元1120,用于根据接收单元接收到的该车道图层更新地图。
指示单元1130,用于根据处理单元更新后的地图指示车载装置所在的车辆根据调整后的车道行驶。
通过根据服务器发送的调整后的车道图层更新地图,并根据更新的后的地图指示车辆根据调整后的车道行驶,使得服务器能够根据车流量动态规划和控制车辆行驶的精确车道。
可选地,车载装置1100还可以包括发送单元1140,用于上报车辆信息。
应注意,本发明实施例中,接收单元1110可以由接收器实现,处理单元1120可以由处理器实现,指示单元1130可以由处理器实现、发送单元1140可以由发送器实现。如图12所示,车载装置1200包括处理器1210、接收器1220、发送器1230和存储器1240。其中存储器1240可以用于存储地图,还可以用于存储处理器1210执行的代码等。车载装置1200中的各个组件通过总线系统1250连接在一起,其中总线系统1250除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
应理解,图11所示的车载装置1100或图12所示的车载装置1200可对应于根据本发明实施例的交通控制方法400中的车载装置,并且车载装置1000或车载装置1200中的各个模块/单元的上述和其它操作和/或功能分别为了实现图4的方法400的相应流程,为了简洁,在此不再赘述。
应注意,本发明上述方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中, 上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、PROM、EPROM、EEPROM或闪存。易失性存储器可以是RAM,其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如SRAM、DRAM、SDRAM、DDR SDRAM、ESDRAM、SLDRAM和DR RAM。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
如图13所示为根据本发明实施例的服务器1300的结构示意图。如图13所示,服务器1300包括接收单元1310、获取单元1320、处理单元1330和发送单元1340。
接收单元1310,用于接收在道路上行驶的车辆的车载装置上报的车辆的行驶速度;
获取单元1320,用于获取道路的车流量;
处理单元1330,用于根据获取单元获取的道路的车流量和接收单元接收到的车辆的行驶速度确定指示信息,指示信息用于指示车辆调节行驶速度;
发送单元1340,用于发送处理单元1330确定的指示信息。
通过根据道路的车流量和车辆的行驶速度确定用于指示车辆调节行驶速度的指示信息,并发送该指示信息,使得车辆能够根据该指示信息调节行驶速度,从而能够根据车流量动态规划和控制车辆的行驶速度。
应注意,接收单元1310可以由接收器实现,发送单元1340可以由发送器实现,获取单元1320和处理单元1330可以由处理器实现。如图14所示, 服务器1400包括处理器1410、接收器1420、发送器1430和存储器1440。其中存储器1440可以用于存储地图,还可以用于存储处理器1410执行的代码等。服务器1400中的各个组件通过总线系统1450连接在一起,其中总线系统1450除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
应理解,图13所示的服务器1300或图14所示的服务器1400可对应于根据本发明实施例的交通控制方法800中的服务器,并且服务器1300或服务器1400中的各个模块/单元的上述和其它操作和/或功能分别为了实现图8的方法800的相应流程,为了简洁,在此不再赘述。
应注意,本发明上述方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、PROM、EPROM、EEPROM或闪存。易失性存储器可以是RAM,其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如SRAM、DRAM、SDRAM、DDR SDRAM、ESDRAM、SLDRAM和DR RAM。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
如图15所示为根据本发明实施例的车载装置1500的结构示意图。如图15所示,车载装置1500包括发送单元1510、接收单元1520和指示单元1530。
发送单元1510,用于向服务器上报车载装置所在的车辆的行驶速度;
接收单元1520,用于接收指示信息,指示信息是服务器根据车辆所在的道路的车流量和行驶速度确定的;
指示单元1530,用于根据接收单元1520接收到的指示信息指示车辆调节行驶速度。
通过根据服务器根据道路的车流量和车辆的行驶速度确定的指示信息指示车辆调节行驶速度,使得能够实现服务器根据道路的车流量实现对车辆行驶速度的调控。
应注意,本发明实施例中,发送单元1510可以由发送器实现,接收单元1520可以由接收器实现,指示单元1530可以由处理器实现。如图16所示,车载装置1600包括处理器1610、发送器1620、接收器1630和存储器1640。其中存储器1640可以用于存储地图,还可以用于存储处理器1610执行的代码等。车载装置1600中的各个组件通过总线系统1650连接在一起,其中总线系统1650除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
应理解,图15所示车载装置1500或图16所示的车载装置1600可对应于根据本发明实施例的交通控制方法800中的车载装置,并且车载装置1500或车载装置1600中的各个模块/单元的上述和其它操作和/或功能分别为了实现图8的方法800的相应流程,为了简洁,在此不再赘述。
应注意,本发明上述方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存 储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、PROM、EPROM、EEPROM或闪存。易失性存储器可以是RAM,其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如SRAM、DRAM、SDRAM、DDR SDRAM、ESDRAM、SLDRAM和DR RAM。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。

Claims (26)

  1. 一种交通控制方法,其特征在于,所述方法包括:
    服务器获取道路的车流量;
    所述服务器根据所述道路的车流量在地图的车道图层中调整所述道路的车道数量或车道宽度;
    所述服务器发送调整后的车道图层,以便在所述道路上行驶的车辆根据调整后的车道行驶。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    所述服务器接收在所述道路上行驶的车辆的车载装置上报的所述车辆的位置;
    所述服务器根据所述调整后的车道和所述车辆的位置重新规划所述车辆行驶的车道,确定路径变更信息;
    所述服务器向所述车载装置发送所述路径变更信息,所述路径变更信息用于指示所述车辆根据调整后的车道在重新规划后的目标车道上行驶。
  3. 根据权利要求1或2所述的方法,其特征在于,还包括:
    所述服务器接收第一车载装置上报的在所述道路上行驶的第一车辆的标识;
    所述服务器根据所述第一车辆的标识确定所述第一车辆的属性;
    所述服务器根据所述道路的车流量在所述车道图层中调整所述道路的车道宽度包括:
    在所述第一车辆的属性满足预设条件时,所述服务器在所述车道图层中增加所述第一车辆所在的车道的宽度并减小所述道路上的其他车道的宽度。
  4. 根据权利要求1或2所述的方法,其特征在于,还包括:
    所述服务器接收第一车载装置上报的在所述道路上行驶的第一车辆的行驶速度;
    所述服务器根据所述道路的车流量在所述车道图层中调整所述道路的车道数量包括:
    在所述道路的车流量减少、所述第一车辆的行驶速度与第一预设速度的差小于预设阈值且所述道路上的车道的数量N大于第一预设值Nmin时,所述服务器在所述车道图层中将所述道路重新划分为M条车道,其中Nmin≤M <N。
  5. 根据权利要求1或2所述的方法,其特征在于,所述服务器根据所述道路的车流量在所述车道图层中调整所述道路的车道数量包括:
    在所述道路的车流量增加、所述道路上的车道的数量N小于第二预设值Nmax且所述道路上的N条车道中每条车道的车流量已达到预设流量的情况下,所述服务器在所述车道图层中将所述道路重新划分为M条车道,其中N<M≤Nmax
  6. 根据权利要求5所述的方法,其特征在于,还包括:
    所述服务器接收第二车载装置上报的在所述道路上行驶的第二车辆的行驶速度;
    在所述第二车辆的行驶速度低于第三预设速度时,所述服务器发送指示信息,所述指示信息用于指示所述第二车辆将行驶速度提高至所述第三预设速度。
  7. 根据权利要求5所述的方法,其特征在于,还包括:
    所述服务器接收第二车载装置上报的在所述道路上行驶的第二车辆的行驶速度;
    所述服务器获取所述第二车辆所在的车道的车流密度;
    在所述第二车辆所在的车道的车流密度小于预设车流密度且所述第二车辆的行驶速度大于第四预设速度时,所述服务器发送指示信息,所述指示信息用于指示所述第二车辆将行驶速度降低至所述第四预设速度并减小与前方相邻车辆之间的距离。
  8. 一种交通控制方法,其特征在于,所述方法包括:
    车载装置接收服务器发送的地图的车道图层,所述车道图层是所述服务器根据所述车载装置所在道路的车流量在所述地图的原车道图层中调整所述道路的车道得到的;
    所述车载装置根据所述调整后的车道图层更新所述地图;
    所述车载装置根据更新后的地图指示所述车载装置所在的车辆根据调整后的车道行驶。
  9. 根据权利要求8所述的方法,其特征在于,还包括:
    所述车载装置向所述服务器发送所述车辆的位置;
    所述车载装置接收所述服务器发送的路径变更信息,所述路径变更信息 是所述服务器根据所述调整后的车道和所述车辆的位置确定的;
    所述车载装置根据更新后的地图指示所述车载装置所在的车辆根据调整后的车道行驶包括:
    所述车载装置根据更新后的地图和所述路径变更信息指示所述车辆根据所述调整后的车道在所述服务器重新规划后的目标车道上行驶。
  10. 根据权利要求8或9所述的方法,其特征在于,还包括:
    所述车载装置向所述服务器上报所述车辆的行驶速度;
    所述车载装置接收所述服务器根据所述车辆的行驶速度发送的指示信息;
    所述车载装置根据所述指示信息指示所述车辆调节行驶速度。
  11. 一种交通控制方法,其特征在于,包括:
    服务器接收在道路上行驶的车辆的车载装置上报的所述车辆的行驶速度;
    所述服务器获取所述道路的车流量;
    所述服务器根据所述道路的车流量和所述车辆的行驶速度确定指示信息,所述指示信息用于指示所述车辆调节行驶速度;
    所述服务器发送所述指示信息。
  12. 根据权利要求11所述的方法,其特征在于,在所述道路的车流量增加、所述车道的车流量小于预设流量且所述车辆的行驶速度小于第一预设速度的情况下,所述指示信息用于指示所述车辆将行驶速度提高至所述第一预设速度。
  13. 根据权利要求11所述的方法,其特征在于,在所述道路的车流量增加、所述车道的车流量小于预设流量且所述车辆的行驶速度大于第二预设速度的情况下,所述指示信息用于指示所述车辆将行驶速度降低至所述第二预设速度并缩短与前方相邻车辆之间的距离。
  14. 一种服务器,其特征在于,所述服务器包括:
    获取单元,用于获取道路的车流量;
    处理单元,用于根据所述获取单元获取的所述道路的车流量在地图的车道图层中调整所述道路的车道数量或车道宽度;
    发送单元,用于发送所述处理单元调整后的车道图层,以便在所述道路上行驶的车辆根据调整后的车道行驶。
  15. 根据权利要求14所述的服务器,其特征在于,还包括:
    第一接收单元,用于接收在所述道路上行驶的车辆的车载装置上报的所述车辆的位置;
    所述处理单元还用于,根据所述调整后的车道和所述第一接收单元接收到的所述车辆的位置重新规划所述车辆行驶的车道;
    所述发送单元还用于,向所述车载装置发送路径变更信息,所述路径变更信息用于指示所述车辆根据调整后的车道在重新规划后的目标车道上行驶。
  16. 根据权利要求14或15所述的服务器,其特征在于,还包括:
    第二接收单元,用于接收第一车载装置上报的在所述道路上行驶的第一车辆的标识;
    所述处理单元还用于:根据所述第二接收单元接收到的所述第一车辆的标识确定所述第一车辆的属性;
    所述处理单元具体用于,在所述第一车辆的属性满足预设条件时,在所述车道图层中增加所述第一车辆所在的车道的宽度并减小所述道路上的其他车道的宽度。
  17. 根据权利要求14或15所述的服务器,其特征在于,还包括:
    第二接收单元,用于接收第一车载装置上报的在所述道路上行驶的第一车辆的行驶速度;
    所述处理单元具体用于,在所述道路的车流量减少、所述第一车辆的行驶速度与第一预设速度的差小于预设阈值且所述道路上的车道的数量N大于第一预设值Nmin时,所述服务器在所述车道图层中将所述道路重新划分为M条车道,其中Nmin≤M<N。
  18. 根据权利要求14或15所述的服务器,其特征在于,所述处理单元具体用于,在所述道路的车流量增加、所述道路上的车道的数量N小于第二预设值Nmax且所述道路上的N条车道中每条车道的车流量已达到预设流量的情况下,所述服务器在所述车道图层中将所述道路重新划分为M条车道,其中N<M≤Nmax
  19. 根据权利要求18所述的服务器,其特征在于,还包括:
    第三接收单元,用于接收第二车载装置上报的在所述道路上行驶的第二车辆的行驶速度;
    所述发送单元还用于,在所述第二车辆的行驶速度低于第三预设速度时,所述服务器发送指示信息,所述指示信息用于指示所述第二车辆将行驶速度提高至所述第三预设速度。
  20. 根据权利要求18所述的服务器,其特征在于,还包括:
    第三接收单元,用于接收第二车载装置上报的在所述道路上行驶的第二车辆的行驶速度;
    所述获取单元还用于,获取所述第二车辆所在的车道的车流密度;
    所述发送单元还用于,在所述第二车辆所在的车道的车流密度小于预设车流密度且所述第二车辆的行驶速度大于第四预设速度时,发送指示信息,所述指示信息用于指示所述第二车辆将行驶速度降低至所述第四预设速度并减小与前方相邻车辆之间的距离。
  21. 一种车载装置,其特征在于,所述车载装置包括:
    接收单元,用于接收服务器发送的地图的车道图层,所述车道图层是所述服务器根据所述车载装置所在道路的车流量在所述地图的原车道图层中调整所述道路的车道得到的;
    处理单元,用于根据所述接收单元接收到的所述车道图层更新所述地图;
    指示单元,用于根据所述处理单元更新后的地图指示所述车载装置所在的车辆根据调整后的车道行驶。
  22. 根据权利要求21所述的车载装置,其特征在于,还包括:
    第一发送单元,用于向所述服务器发送所述车辆的位置;
    所述接收单元还用于,接收所述服务器发送的路径变更信息,所述路径变更信息是所述服务器根据所述调整后的车道和所述车辆的位置确定的;
    所述指示单元具体用于,所述车载装置根据更新后的地图和所述路径变更信息指示所述车辆根据所述调整后的车道在所述服务器重新规划后的目标车道上行驶。
  23. 根据权利要求21或22所述的车载装置,其特征在于,还包括:
    第二发送单元,用于向所述服务器上报所述车辆的行驶速度;
    所述接收单元还用于,接收所述服务器根据所述车辆的行驶速度发送的指示信息;
    所述指示单元还用于,根据所述接收单元接收到的所述指示信息指示所 述车辆调节行驶速度。
  24. 一种服务器,其特征在于,包括:
    接收单元,用于接收在道路上行驶的车辆的车载装置上报的所述车辆的行驶速度;
    获取单元,用于获取所述道路的车流量;
    处理单元,用于根据所述获取单元获取的所述道路的车流量和所述接收单元接收到的所述车辆的行驶速度确定指示信息,所述指示信息用于指示所述车辆调节行驶速度;
    发送单元,用于发送所述处理单元确定的所述指示信息。
  25. 根据权利要求24所述的服务器,其特征在于,在所述道路的车流量增加、所述车道的车流量小于预设流量且所述车辆的行驶速度小于第一预设速度的情况下,所述指示信息用于指示所述车辆将行驶速度提高至所述第一预设速度。
  26. 根据权利要求24所述的服务器,其特征在于,在所述道路的车流量增加、所述车道的车流量小于预设流量且所述车辆的行驶速度大于第二预设速度的情况下,所述指示信息用于指示所述车辆将行驶速度降低至所述第二预设速度并缩短与前方相邻车辆之间的距离。
PCT/CN2016/074711 2016-02-26 2016-02-26 交通控制方法及装置 WO2017143591A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16891045.3A EP3413018B1 (en) 2016-02-26 2016-02-26 Traffic control method and device
CN201680063838.2A CN108351219B (zh) 2016-02-26 2016-02-26 交通控制方法及装置
PCT/CN2016/074711 WO2017143591A1 (zh) 2016-02-26 2016-02-26 交通控制方法及装置
US16/111,588 US10943478B2 (en) 2016-02-26 2018-08-24 Traffic control method, and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/074711 WO2017143591A1 (zh) 2016-02-26 2016-02-26 交通控制方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/111,588 Continuation US10943478B2 (en) 2016-02-26 2018-08-24 Traffic control method, and apparatus

Publications (1)

Publication Number Publication Date
WO2017143591A1 true WO2017143591A1 (zh) 2017-08-31

Family

ID=59685940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074711 WO2017143591A1 (zh) 2016-02-26 2016-02-26 交通控制方法及装置

Country Status (4)

Country Link
US (1) US10943478B2 (zh)
EP (1) EP3413018B1 (zh)
CN (1) CN108351219B (zh)
WO (1) WO2017143591A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019190695A1 (en) * 2018-03-30 2019-10-03 Intel Corporation Intelligent traffic management for vehicle platoons
CN111489569A (zh) * 2020-05-28 2020-08-04 兰州理工大学 一种立交匝道车道宽度动态调整系统及其调整方法
CN113257013A (zh) * 2021-07-16 2021-08-13 深圳市安达信通讯设备有限公司 用于匝道的交通控制系统
CN113295181A (zh) * 2021-07-28 2021-08-24 国汽智控(北京)科技有限公司 车辆的路径规划方法、装置和系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10048688B2 (en) * 2016-06-24 2018-08-14 Qualcomm Incorporated Dynamic lane definition
US10735984B2 (en) * 2017-12-29 2020-08-04 Dish Network L.L.C. Systems and methods for identifying user density from network data
CN109377770B (zh) * 2018-09-05 2021-06-22 华为技术有限公司 统计车流量的方法和装置、计算设备和存储介质
CN111369784A (zh) * 2018-12-25 2020-07-03 北京嘀嘀无限科技发展有限公司 一种控制车道流量的方法及装置
CN113615241B (zh) * 2019-03-29 2023-12-19 本田技研工业株式会社 信息处理装置、信息处理方法以及存储介质
US11255693B2 (en) * 2019-03-30 2022-02-22 Intel Corporation Technologies for intelligent traffic optimization with high-definition maps
US11398150B2 (en) * 2019-07-31 2022-07-26 Verizon Patent And Licensing Inc. Navigation analysis for a multi-lane roadway
CN112158201B (zh) * 2020-10-12 2021-08-10 北京信息职业技术学院 一种智能驾驶车辆横向控制方法及系统
CN113628456A (zh) * 2021-07-02 2021-11-09 周孟婵 一种车道管理方法、系统及存储介质
CN115691145B (zh) * 2023-01-04 2023-03-28 中国科学技术大学先进技术研究院 车道数目调整方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102568222A (zh) * 2011-11-18 2012-07-11 厦门市鼎朔信息技术有限公司 一种根据交通流量实时变更道路通行规则的系统及方法
CN103471596A (zh) * 2012-06-08 2013-12-25 纽海信息技术(上海)有限公司 最短路径引导方法和最短路径引导系统
CN103559009A (zh) * 2013-10-30 2014-02-05 浙江省公众信息产业有限公司 地理信息终端以及地理信息呈现方法
CN104658284A (zh) * 2013-11-25 2015-05-27 青岛网媒软件有限公司 智能道路调流系统及其工作方法
CN104658283A (zh) * 2013-11-25 2015-05-27 青岛网媒软件有限公司 智能道路调流系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10210546A1 (de) * 2002-03-09 2003-09-18 Bosch Gmbh Robert Verfahren und System zur automatischen Fahrzeugführung
US20040091313A1 (en) * 2002-11-07 2004-05-13 Zhou Jie Zhang Method of modifying traffic roads to create efficient transportation of both full-size and mini-size vehicles
US7739030B2 (en) * 2007-11-13 2010-06-15 Desai Shitalkumar V Relieving urban traffic congestion
CN102194314B (zh) * 2010-03-08 2013-08-21 方福德 最大车流量方法及道路设施
EP2659472A1 (en) * 2010-12-31 2013-11-06 Tomtom Belgium N.V. Navigation methods and systems
CN102157071A (zh) * 2011-03-22 2011-08-17 芜湖伯特利汽车安全系统有限公司 一种基于车际网络的智能交通管理系统及控制方法
CN103177596B (zh) 2013-02-25 2016-01-06 中国科学院自动化研究所 一种交叉路口自主管控系统
US9547986B1 (en) * 2015-11-19 2017-01-17 Amazon Technologies, Inc. Lane assignments for autonomous vehicles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102568222A (zh) * 2011-11-18 2012-07-11 厦门市鼎朔信息技术有限公司 一种根据交通流量实时变更道路通行规则的系统及方法
CN103471596A (zh) * 2012-06-08 2013-12-25 纽海信息技术(上海)有限公司 最短路径引导方法和最短路径引导系统
CN103559009A (zh) * 2013-10-30 2014-02-05 浙江省公众信息产业有限公司 地理信息终端以及地理信息呈现方法
CN104658284A (zh) * 2013-11-25 2015-05-27 青岛网媒软件有限公司 智能道路调流系统及其工作方法
CN104658283A (zh) * 2013-11-25 2015-05-27 青岛网媒软件有限公司 智能道路调流系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3413018A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019190695A1 (en) * 2018-03-30 2019-10-03 Intel Corporation Intelligent traffic management for vehicle platoons
US11113960B2 (en) 2018-03-30 2021-09-07 Intel Corporation Intelligent traffic management for vehicle platoons
US20210407285A1 (en) * 2018-03-30 2021-12-30 Intel Corporation Intelligent traffic management for vehicle platoons
CN113888874A (zh) * 2018-03-30 2022-01-04 英特尔公司 用于交通工具列队的智能交通管理
CN111489569A (zh) * 2020-05-28 2020-08-04 兰州理工大学 一种立交匝道车道宽度动态调整系统及其调整方法
CN111489569B (zh) * 2020-05-28 2021-08-31 兰州理工大学 一种立交匝道车道宽度动态调整系统及其调整方法
CN113257013A (zh) * 2021-07-16 2021-08-13 深圳市安达信通讯设备有限公司 用于匝道的交通控制系统
CN113257013B (zh) * 2021-07-16 2021-09-21 深圳市安达信通讯设备有限公司 用于匝道的交通控制系统
CN113295181A (zh) * 2021-07-28 2021-08-24 国汽智控(北京)科技有限公司 车辆的路径规划方法、装置和系统

Also Published As

Publication number Publication date
US20180365994A1 (en) 2018-12-20
EP3413018B1 (en) 2020-08-26
EP3413018A4 (en) 2019-03-06
CN108351219B (zh) 2020-09-11
US10943478B2 (en) 2021-03-09
CN108351219A (zh) 2018-07-31
EP3413018A1 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
WO2017143591A1 (zh) 交通控制方法及装置
US20210407285A1 (en) Intelligent traffic management for vehicle platoons
US10527432B2 (en) Methods and systems for generating a horizon for use in an advanced driver assistance system (ADAS)
CN110603181B (zh) 一种智能驾驶车辆让行方法、装置及车载设备
US10906539B2 (en) Automatic driving navigation method, apparatus, and system, in-vehicle terminal, and server
JP6682629B2 (ja) 車両の車線変更のために2車両間の交通空隙を特定する方法および制御システム
EP3680876A1 (en) Method for planning trajectory of vehicle
KR101703144B1 (ko) 차량의 자율주행 장치 및 그 방법
TW202108419A (zh) 用於與具有不同自主水平的車輛建立協調式駕駛參與的方法和系統
US20170276492A1 (en) Automated lane assignment for vehicles
JP2019510674A5 (zh)
US10896603B2 (en) System and method for reducing delays in road traffic
US9958283B2 (en) Determining speed information
JP2015212863A (ja) 交通信号制御装置、交通信号制御方法、及びコンピュータプログラム
US11238734B2 (en) Systems, methods and/or devices for navigation
US10393534B2 (en) Determining speed information
US11626012B2 (en) Hierarchical integrated traffic management system for managing vehicles
CN114093158A (zh) 一种交通管理方法及装置
KR20210059493A (ko) 차로별 대기행렬 정보 생성 시스템 및 이를 이용한 차로별 대기행렬 정보를 생성하는 방법
EP4397947A1 (en) Leveraging external data streams to optimize autonomous vehicle fleet operations
WO2023105730A1 (ja) 優先度設定システム、優先度設定装置、及び、優先度設定方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016891045

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016891045

Country of ref document: EP

Effective date: 20180906

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891045

Country of ref document: EP

Kind code of ref document: A1