WO2017142089A1 - Compound and luminescent material - Google Patents

Compound and luminescent material Download PDF

Info

Publication number
WO2017142089A1
WO2017142089A1 PCT/JP2017/006002 JP2017006002W WO2017142089A1 WO 2017142089 A1 WO2017142089 A1 WO 2017142089A1 JP 2017006002 W JP2017006002 W JP 2017006002W WO 2017142089 A1 WO2017142089 A1 WO 2017142089A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
compound
bromide
solution
perovskite
Prior art date
Application number
PCT/JP2017/006002
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 内藤
正直 江良
Original Assignee
住友化学株式会社
国立大学法人佐賀大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 国立大学法人佐賀大学 filed Critical 住友化学株式会社
Priority to CN201780008752.4A priority Critical patent/CN108602756B/en
Priority to JP2018500238A priority patent/JP6786582B2/en
Publication of WO2017142089A1 publication Critical patent/WO2017142089A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/62Quaternary ammonium compounds
    • C07C211/63Quaternary ammonium compounds having quaternised nitrogen atoms bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/16Halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/24Lead compounds

Definitions

  • the present invention relates to a compound and a light emitting material.
  • This application claims priority based on Japanese Patent Application No. 2016-30201 filed in Japan on February 19, 2016 and Japanese Patent Application No. 2016-122603 filed in Japan on June 24, 2016, and its contents Is hereby incorporated by reference.
  • an organic-inorganic perovskite AMX 3 compound comprising an organic cation (A), a halide ion (X), and a divalent metal ion (M) is known.
  • A organic cation
  • X halide ion
  • M divalent metal ion
  • Non-patent Document 1 when the divalent metal ion is Pb (II), a strong light emission phenomenon at room temperature has been observed in the range from the ultraviolet region to the red spectral region (Non-patent Document 1). Further, the emission wavelength can be adjusted depending on the type of halide ion (X) (Non-patent Document 2).
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a compound having a perovskite structure having high emission intensity when used as a light emitting material, and a light emitting material containing the compound.
  • the embodiments of the present invention include the following [1] to [6].
  • a compound having a structure (A is a monovalent cation located at each vertex of a hexahedron centered on B in the perovskite crystal structure.
  • B is a lead ion.
  • M is a divalent or trivalent metal ion, and is a cation selected from metal ions having an ionic radius in a hexacoordination of 0.9 to 1.5 ⁇ , and at least a part of M is In the perovskite crystal structure, a part of B is substituted.
  • X represents a component located at each vertex of an octahedron centered on B in the perovskite crystal structure, and is selected from the group consisting of chloride ion, bromide ion, fluoride ion, iodide ion, and thiocyanate ion. And at least chloride ion or bromide ion as X.
  • the value of the molar ratio [M / (M + B)] obtained by dividing A amount by the total amount of M and B is 0, with A, B, X, and M as components. It is a compound having a perovskite crystal structure that is 0.7 or less.
  • A is a monovalent cation located at each vertex of a hexahedron centered on B in the perovskite crystal structure.
  • B is Pb ion.
  • M is a divalent or trivalent metal ion, and is a cation selected from metal ions having an ionic radius in a hexacoordination of 0.9 to 1.5 ⁇ , and at least a part of M is In the perovskite crystal structure, a part of B is substituted.
  • X represents a component located at each vertex of an octahedron centered on B in the perovskite crystal structure, and is selected from the group consisting of chloride ion, bromide ion, fluoride ion, iodide ion, and thiocyanate ion. One or more ions. However, X includes at least a chloride ion or a bromide ion.
  • the basic structure of a compound having a perovskite crystal structure is a three-dimensional structure or a two-dimensional structure.
  • A′B′X ′ 3 When the basic structure is a three-dimensional structure, it is represented by A′B′X ′ 3 .
  • a ′ represents an organic cation or an inorganic cation
  • B ′ represents a metal cation
  • X ′ represents a halide ion or a thiocyanate ion.
  • a ′, B ′, and X ′ represent the same meaning as described above.
  • the basic structure When the basic structure is the above-described three-dimensional structure or two-dimensional structure, it has a three-dimensional network of vertex shared octahedrons represented by B′X ′ 6 with B ′ as the center and the vertex as X ′.
  • B ′ is a metal cation capable of taking the octahedral coordination of X ′.
  • a ′ is located at each vertex of a hexahedron centered on B ′.
  • the compound having a perovskite crystal structure containing A, B, X, and M as components is not particularly limited, and the basic structure is any one of a three-dimensional structure, a two-dimensional structure, and a pseudo two-dimensional structure.
  • the compound which has the structure of may be sufficient.
  • the basic structure is a three-dimensional structure
  • the perovskite crystal structure is represented by AB (1-a) M a X (3 + ⁇ ) .
  • the perovskite crystal structure is represented by A 2 B (1-a) M a X (4 + ⁇ ) .
  • the a represents the molar ratio [M / (M + B)].
  • is a number that can be appropriately changed according to the charge balance of B and M, and is preferably 0 or more and 0.7 or less.
  • A is a monovalent cation
  • B is a divalent anion (Pb ion)
  • M is a divalent or trivalent anion (metal ion)
  • X is a monovalent anion (chloride ion
  • may be selected so that the compound is neutral (charge is 0) when it is one or more ions selected from the group consisting of bromide ion, fluoride ion, iodide ion and thiocyanate ion). it can.
  • the metal cation of the B ′ component is Pb ion (B component), and a part of the plurality of Pb ions (B component) is M component.
  • the luminescence intensity of the compound can be improved by substituting with a cation selected from metal ions that are valence metal ions and have an ionic radius in hexacoordination of 0.9 to 1.5 ⁇ . I found out that I can do it.
  • At least a part of M in the compound having a perovskite crystal structure according to this embodiment means a component that substitutes a part of the lead ion represented by B.
  • M may be present at the position where the B component (lead ion) is present in the basic structure described above, or may be present at the position where the A component is present. It may exist in the lattice gap of the skeleton constituting the structure.
  • a compound having a perovskite crystal structure containing A, B, X, and M as components in the present embodiment will be described later.
  • the perovskite crystal structure is, for example, when a compound is measured by means of X-ray diffraction (XRD, Cu K ⁇ ray, X'pert PRO MPD, made by Spectris),
  • XRD X-ray diffraction
  • Cu K ⁇ ray Cu K ⁇ ray
  • X'pert PRO MPD made by Spectris
  • A is a monovalent cation
  • M is a divalent or trivalent metal ion
  • the six-coordinate ion radius is 0.9 to 1.5
  • X is at least one ion selected from the group consisting of chloride ion, bromide ion, fluoride ion, iodide ion and thiocyanate ion (where X is at least Including a chloride ion or bromide ion), and has a perovskite structure represented by the following general formula (1).
  • A is a monovalent cation
  • B is a divalent anion (Pb ion)
  • M is a divalent or trivalent anion (metal ion)
  • X is a monovalent anion (chloride ion
  • may be selected so that the compound is neutral (charge is 0) when it is one or more ions selected from the group consisting of bromide ion, fluoride ion, iodide ion and thiocyanate ion). it can.
  • the basic structural form of the perovskite structure is an A′B′X ′ 3 structure.
  • the basic structural form of the perovskite is an A′B′X ′ 3 structure, and has a three-dimensional network of vertex sharing B′X ′ 6 octahedrons.
  • the B ′ component of the A′B′X ′ 3 structure is a metal cation that can take octahedral coordination of the X ′ anion.
  • the A ′ cation is located at each apex of the hexahedron centered on the B ′ atom, and is an organic cation or an inorganic cation in this embodiment.
  • the X ′ component of the A′B′X ′ 3 structure is usually a halide ion.
  • the metal cation of the B component is lead, and a part of the plurality of lead ions is substituted with other atoms, whereby It has been found that the emission intensity can be improved.
  • the compound having a perovskite structure represented by the general formula (1) (hereinafter sometimes referred to as “compound (1)”) is mainly composed of A, Pb (lead), M, and X. Ingredients.
  • M means an atom that substitutes a part of the Pb ion that is a metal cation.
  • M may replace the position where the B component (lead ion) exists in the basic structure, may replace the position where the A component exists, or the lattice gap of the skeleton constituting the basic structure. May be present.
  • the compound having a perovskite crystal structure having A, B, X, and M as components in the present embodiment will be described.
  • A is a monovalent cation.
  • A is preferably a cesium ion or an organic ammonium ion.
  • organic ammonium ion of A examples include a cation represented by the following general formula (A1).
  • R 1 to R 4 are each independently a hydrogen atom or an alkyl group, and one of the hydrogen atoms constituting each alkyl group may be substituted with an amino group.
  • the alkyl group for R 1 to R 4 is preferably a linear or branched alkyl group, more preferably a linear or branched alkyl group having 1 to 4 carbon atoms, and a C 1 to 3 carbon group.
  • a linear or branched alkyl group is more preferable.
  • the total number of carbon atoms in the alkyl group of R 1 ⁇ R 4 is 1-4, among the R 1 ⁇ R 4, R 1 is an alkyl group having 1 to 3 carbon atoms, R 2 It is particularly preferable that R 4 is a hydrogen atom.
  • A is preferably CH 3 NH 3 + , C 2 H 5 NH 3 + or C 3 H 7 NH 3 + , and is CH 3 NH 3 + or C 2 H 5 NH 3 + . More preferably, it is most preferably CH 3 NH 3 + (methylammonium ion).
  • the B component is a metal cation that becomes the center of the crystal structure.
  • the B component is Pb (lead).
  • the Pb ions in this embodiment are divalent Pb ions.
  • the emission intensity of the compound of the present embodiment can be improved by substituting a part of the B component (Pb ion) contained in the plurality of crystal structures constituting the compound with other atoms.
  • M substitutes a part of the Pb ion that is a metal cation. More specifically, M is a divalent or trivalent metal ion, and is a cation selected from metal ions having an ionic radius in a hexacoordinate of 0.9 to 1.5.
  • the ion radius of the metal ion represented by M is preferably 0.95 to 1.4 and more preferably 0.95 to 1.3.
  • M is, for example, a barium ion (six-coordinate ion radius; 1.35 ⁇ ) ), Calcium ions (6-coordinate ion radius; 1.00 ⁇ ), cerium ions (6-coordinate ion radius; 1.01 ⁇ ), dysprosium ions (6-coordinate ion radius; 1.07 ⁇ ), Lanthanum ion (6-coordinate ion radius; 1.03 ⁇ ), samarium ion (6-coordinate ion radius; 1.19 ⁇ ), strontium ion (6-coordinate ion radius; 1.18 ⁇ ), or ytterbium Cations of elements such as ions (6 coordination ionic radii: 1.02 ⁇ ) can be given.
  • M is preferably an alkaline earth metal ion, and more preferably a calcium ion.
  • a is preferably 0.01 or more and 0.7 or less, and more preferably 0.02 or more and 0.6 or less.
  • the value a is a value calculated from the value obtained by measuring the synthesized compound using ICP-MS described in ⁇ Method for calculating a ⁇ below.
  • the value of a that is, the molar ratio [M / (M + B)] can be measured using ICP-MS (ELAN DRCII, manufactured by PerkinElmer). The molar ratio is measured after a compound having a perovskite crystal structure is dissolved using nitric acid or the like.
  • the value of the molar ratio [M / (M + B)] is a value calculated according to the following formula (T).
  • Mmol is the number of moles of M measured by ICP-MS
  • Pbmol is the number of moles of Pb measured by ICP-MS.
  • the value calculated by the above ⁇ calculation method for a ⁇ is preferably “a”.
  • the value of a is a charge ratio adjusted so that a in the compound of the first embodiment and the second embodiment is a desired value when the compound of the present embodiment is synthesized. It can also be calculated from the value.
  • X is at least one ion selected from the group consisting of chloride ion, bromide ion, fluoride ion, iodide ion and thiocyanate ion.
  • X contains a chloride ion or a bromide ion at least.
  • the amount of chloride ion or bromide ion is preferably 10% or more, more preferably 30% or more, further preferably 70% or more, and particularly preferably 80% or more, when expressed in mol% in X.
  • the upper limit value is not particularly limited, but can be arbitrarily selected as long as it is 100% or less.
  • X contains a bromide ion.
  • the content ratio of the anions can be appropriately selected depending on the emission wavelength.
  • ions When two or more ions are selected as X, a combination of bromide ions and chloride ions, or a combination of bromide ions and iodide ions is preferable.
  • Specific examples of the compounds of the first embodiment and the second embodiment include CH 3 NH 3 Pb (1-a) Ca a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, 0 ⁇ ⁇ ⁇ 0. 7), CH 3 NH 3 Pb (1-a) Sr a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, 0 ⁇ ⁇ ⁇ 0.7), CH 3 NH 3 Pb (1-a) La a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, 0 ⁇ ⁇ ⁇ 0.7), CH 3 NH 3 Pb (1-a) Ba a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, 0 ⁇ ⁇ ⁇ 0.7), CH 3 NH 3 Pb (1-a) Dy a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, 0 ⁇ ⁇ ⁇ 0.7), CH 3 NH 3 Pb (1-a) Ca a (Br 2 Cl) (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, 0 ⁇
  • the compound having a perovskite structure according to this embodiment can be synthesized by a self-assembly reaction using a solution.
  • a solution obtained by dissolving a compound containing Pb and the above X, a compound containing the above M and the above X, and a compound containing the above A and the above X in a solvent is applied, and the solvent is removed.
  • the compound having the perovskite structure of this embodiment can be synthesized.
  • a coating film is formed by applying a solution obtained by dissolving a compound containing Pb and the above-described X and the above-described compound containing M and the above-described X in a solvent, and removing the solvent.
  • the compound having the perovskite structure of this embodiment can be synthesized by applying a solution obtained by dissolving the compound containing A and X described above in a solvent onto the coating film and removing the solvent.
  • the type and amount of the compound to be blended may be adjusted so that a and ⁇ in the compounds of the first embodiment and the second embodiment have desired values.
  • the compound having a perovskite structure according to the present embodiment is a light emitter that emits fluorescence in the visible light wavelength region.
  • X is a bromide ion
  • it is usually 480 nm or more, preferably 500 nm or more, more preferably 520 nm or more. It emits fluorescence. Further, it emits fluorescence in a wavelength range of usually 700 nm or less, preferably 600 nm or less, more preferably 580 nm or less.
  • the above upper limit value and lower limit value can be arbitrarily combined.
  • the maximum emission intensity of the compound having the perovskite structure of the present embodiment is obtained from the maximum intensity in the visible light wavelength region measured using a fluorometer and the transmittance of excitation light measured using an ultraviolet-visible absorptiometer.
  • a fluorometer for example, a spectrofluorometer (FT-6500) manufactured by JASCO Corporation can be used.
  • FT-6500 spectrofluorometer
  • the ultraviolet-visible absorptiometer for example, an ultraviolet-visible absorptiometer (trade name: V-670) manufactured by JASCO Corporation can be used.
  • the maximum light emission intensity of the compound is a value corrected according to the following formula (S).
  • Pmax is the maximum intensity in the visible light wavelength region
  • Ep indicates the transmittance (%) of excitation light. Pmax / (100 ⁇ Ep) ⁇ 100 (S)
  • the present embodiment provides a light emitting material including the compounds of the first embodiment and the second embodiment.
  • the luminescent material using the compounds of the first embodiment and the second embodiment may have components other than the compounds of the first embodiment and the second embodiment.
  • it may further include a compound having a slight impurity or a perovskite structure and having the same or similar composition as the compounds of the first embodiment and the second embodiment described above.
  • the form of the light emitting material containing the compound having a perovskite structure is not particularly limited, and can be appropriately determined according to the application.
  • a film obtained by forming the compound of the first embodiment and the second embodiment into a film form, or an adsorbent formed into a powder form and adsorbed on a base material may be used.
  • the film or adsorbent of the compound having the perovskite structure of the present embodiment is obtained by dissolving the compound of the first embodiment and the second embodiment in an organic solvent, and then applying the gravure coating method, bar coating method, printing method, spraying method. , And a coating method such as a spin coating method, a dip method, or a die coating method.
  • the organic solvent is not particularly limited as long as it can dissolve the aforementioned A, Pb, M, X, and other components before dissolution into ions.
  • the organic solvent may have various organic compounds and a branched structure or a cyclic structure, and may have a plurality of functional groups such as —O—, —CO—, —COO—, or —OH,
  • the hydrogen atom may be substituted with a halogen atom such as fluorine.
  • organic solvent examples include esters such as methyl formate, ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate, or pentyl acetate; ⁇ -butyrolactone, N-methyl-2-pyrrolidone, acetone , Ketones such as dimethyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, or methylcyclohexanone; diethyl ether, methyl-tert-butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane , Ethers such as 4-methyldioxolane, tetrahydrofuran, methyltetrahydrofuran, anisole or phenetole; methanol, ethanol, 1-propanol 2-propanol 2-
  • any one or more of pressure reduction, drying, and ventilation is performed as needed, and an organic solvent is volatilized. It is preferable. Drying may be performed at room temperature or by heating. The temperature for heating can be appropriately determined in consideration of the time required for drying and the heat resistance of the substrate, but is preferably 50 to 200 ° C., more preferably 50 to 100 ° C.
  • Example 1 A glass substrate having a size of 2.5 cm ⁇ 2.5 cm was prepared. This glass substrate was treated with ozone UV.
  • Lead bromide (PbBr 2 ) was dissolved in a solvent of N, N-dimethylformamide (hereinafter referred to as “DMF”) at 70 ° C. to prepare a lead bromide solution having a concentration of 0.1M.
  • DMF N, N-dimethylformamide
  • CaBr 2 calcium bromide
  • CaBr 2 calcium bromide
  • methylammonium bromide (CH 3 NH 3 Br) was dissolved in DMF solvent at 70 ° C. to prepare a methylammonium bromide solution having a concentration of 0.1M.
  • the above lead bromide solution and calcium bromide solution were mixed so that the molar ratio of Ca / (Ca + Pb) was 0.03 to prepare a solution.
  • the solution was applied to the glass substrate by spin coating at a rotation speed of 1000 rpm, and dried in air at 100 ° C.
  • Example 2 A coating film of a compound having a perovskite structure was obtained in the same manner as in Example 1 except that Ca / (Ca + Pb) was set to 0.05.
  • Example 3 A coating film of a compound having a perovskite structure was obtained in the same manner as in Example 1 except that Ca / (Ca + Pb) was 0.1.
  • Example 4 A coating film of a compound having a perovskite structure was obtained in the same manner as in Example 1 except that Ca / (Ca + Pb) was 0.2.
  • a glass substrate having a size of 2.5 cm ⁇ 2.5 cm was prepared. This glass substrate was treated with ozone UV.
  • Lead bromide (PbBr 2 ) was dissolved in a DMF solvent at 70 ° C. to prepare a lead bromide solution having a concentration of 0.1M.
  • methylammonium bromide (CH 3 NH 3 Br) was dissolved in a DMF solvent to prepare a methylammonium bromide solution having a concentration of 0.1M.
  • the solution was applied to the glass substrate by spin coating at a rotation speed of 1000 rpm, and dried at 100 ° C. for 10 minutes to obtain a coating film of a compound having a perovskite structure.
  • a glass substrate having a size of 2.5 cm ⁇ 2.5 cm was prepared. This glass substrate was treated with ozone UV.
  • Lead iodide (PbI 2 ) was dissolved in a DMF solvent at 70 ° C. to prepare a 0.1 M concentration lead iodide solution.
  • Methyl ammonium iodide (CH 3 NH 3 I) was dissolved in a DMF solvent at 70 ° C. to prepare a methyl ammonium iodide solution having a concentration of 0.1M.
  • the solution was applied to the glass substrate by spin coating at a rotation speed of 1000 rpm, and dried at 100 ° C. for 10 minutes to obtain a coating film of a compound having a perovskite structure.
  • a glass substrate having a size of 2.5 cm ⁇ 2.5 cm was prepared. This glass substrate was treated with ozone UV.
  • Lead iodide (PbI 2 ) was dissolved in a DMF solvent at 70 ° C. to prepare a 0.1 M concentration lead iodide solution.
  • calcium iodide (CaI 2 ) was dissolved in a DMF solvent at 70 ° C. to prepare a calcium iodide solution having a concentration of 0.1M.
  • the above lead iodide solution and calcium iodide solution were mixed so that the molar ratio of Ca / (Ca + Pb) was 0.05 to prepare a solution.
  • the solution was applied to the glass substrate by spin coating at a rotation speed of 1000 rpm, and dried in air at 100 ° C. for 10 minutes to obtain a coating film of a compound having a perovskite structure.
  • the emission spectra of the coating films of the compounds having the perovskite structure obtained in Examples 1 to 4 and Comparative Example 1 were measured with a fluorometer (trade name FT-6500, manufactured by JASCO Corporation, trade name FT-6500, wavelength cut filter, excitation light 430 nm, Sensitivity high). Moreover, the transmittance
  • the emission spectrum of the coating film of the compound having the perovskite structure obtained in Comparative Examples 2 and 3 was measured with a fluorometer (manufactured by JASCO, trade name FT-6500, wavelength cut filter of 600 nm or less, excitation light 550 nm, sensitivity high). It measured using. Further, the transmittance was measured using an ultraviolet-visible absorptiometer of the coating film. In addition, the comparison of the luminescence intensity between the coating films was performed by correcting the maximum luminescence intensity near the wavelength of 750 nm by the following formula (S) -2. [Maximum emission intensity near wavelength 750 nm / (100 ⁇ transmittance at wavelength 550 nm)] ⁇ 100 (S) -2
  • Table 1 shows the composition of the compounds having the perovskite structure of Examples 1 to 4 and Comparative Examples 1 to 3 and the maximum emission intensity.
  • M / (M + Pb) is a value in the charging ratio of “a” in the general formula (1).
  • the light-emitting materials of Examples 1 to 4 including the compound having the perovskite structure according to the present embodiment have excellent emission intensity as compared with the compounds having the perovskite structure of Comparative Examples 1 to 3. It was confirmed that
  • Example 5 A glass substrate having a size of 2.5 cm ⁇ 2.5 cm was prepared. This glass substrate was treated with ozone UV. Lead bromide (PbBr 2 ) was dissolved in a DMF solvent at 70 ° C. to prepare a lead bromide solution having a concentration of 0.1M. Similarly, strontium bromide (SrBr 2 ) was dissolved in a DMF solvent at 70 ° C. to prepare a strontium bromide solution having a concentration of 0.1M. Next, methylammonium bromide (CH 3 NH 3 Br) was dissolved in DMF solvent at 70 ° C.
  • a methylammonium bromide solution having a concentration of 0.1M having a concentration of 0.1M.
  • the above lead bromide solution and strontium bromide solution were mixed so that the molar ratio of Sr / (Sr + Pb) was 0.1 to prepare a solution.
  • the solution was applied to the glass substrate by spin coating at a rotation speed of 1000 rpm, and dried in air at 100 ° C. for 10 minutes to obtain a coating film of a compound having a perovskite structure.
  • Example 6 A coating film of a compound having a perovskite structure was obtained in the same manner as in Example 5 except that Sr / (Sr + Pb) was 0.2.
  • Example 7 A coating film of a compound having a perovskite structure was obtained in the same manner as in Example 5 except that Sr / (Sr + Pb) was set to 0.3.
  • Example 8 A coating film of a compound having a perovskite structure was obtained in the same manner as in Example 5 except that Sr / (Sr + Pb) was set to 0.5.
  • Example 9 A glass substrate having a size of 2.5 cm ⁇ 2.5 cm was prepared. This glass substrate was treated with ozone UV.
  • Lead bromide (PbBr 2 ) was dissolved in a DMF solvent at 70 ° C. to prepare a lead bromide solution having a concentration of 0.1M.
  • lanthanum bromide (LaBr 3 ) was dissolved in a DMF solvent at 70 ° C. to prepare a lanthanum bromide solution having a concentration of 0.1M.
  • methylammonium bromide CH 3 NH 3 Br
  • the above lead bromide solution and strontium bromide solution were mixed so that La / (La + Pb) was 0.05 by molar ratio to prepare a solution.
  • the solution was applied to the glass substrate by spin coating at a rotation speed of 1000 rpm, and dried in air at 100 ° C. for 10 minutes to obtain a coating film of a compound having a perovskite structure.
  • Example 10 A coating film of a compound having a perovskite structure was obtained in the same manner as in Example 9 except that La / (La + Pb) was set to 0.1.
  • the light emitting materials of Examples 5 to 10 including the compound having the perovskite structure according to the present embodiment have superior light emission intensity as compared with the compound having the perovskite structure of Comparative Example 1. I was able to confirm.
  • Example 6 As a result of measurement by ICP-MS, the value of [M / (M + Pb)] in Example 6 was 0.20. As a result of measurement by ICP-MS, the value of [M / (M + Pb)] in Example 7 was 0.29. As a result of measurement by ICP-MS, the value of [M / (M + Pb)] in Example 8 was 0.51.
  • Example 11 A glass substrate having a size of 2.5 cm ⁇ 2.5 cm was prepared. This glass substrate was treated with ozone UV.
  • Lead bromide (PbBr 2 ) was dissolved in a solvent of N, N-dimethylformamide (hereinafter referred to as “DMF”) at 70 ° C. to prepare a lead bromide solution having a concentration of 0.1M.
  • DMF N, N-dimethylformamide
  • barium bromide (BaBr 2 ) was dissolved in a DMF solvent at 70 ° C. to prepare a barium bromide solution having a concentration of 0.1M.
  • methylammonium bromide (CH 3 NH 3 Br) was dissolved in DMF solvent at 70 ° C.
  • a methylammonium bromide solution having a concentration of 0.1M having a concentration of 0.1M.
  • the above lead bromide solution and barium bromide solution were mixed so that Ba / (Ba + Pb) was 0.03 in molar ratio to prepare a solution.
  • the solution was applied to the glass substrate by spin coating at a rotation speed of 1000 rpm, and dried in air at 100 ° C. for 10 minutes to obtain a coating film of a compound having a perovskite structure.
  • Example 12 A coating film of a compound having a perovskite structure was obtained in the same manner as in Example 11 except that Ba / (Ba + Pb) was set to 0.05.
  • Example 13 A coating film of a compound having a perovskite structure was obtained in the same manner as in Example 11 except that Ba / (Ba + Pb) was 0.1.
  • Example 14 A glass substrate having a size of 2.5 cm ⁇ 2.5 cm was prepared. This glass substrate was treated with ozone UV.
  • Lead bromide (PbBr 2 ) was dissolved in a solvent of N, N-dimethylformamide (hereinafter referred to as “DMF”) at 70 ° C. to prepare a lead bromide solution having a concentration of 0.1M.
  • DMF N, N-dimethylformamide
  • DyBr 3 dysprosium bromide
  • was dissolved in a DMF solvent at 70 ° C. to prepare a dysprosium bromide solution having a concentration of 0.1M.
  • methylammonium bromide (CH 3 NH 3 Br) was dissolved in DMF solvent at 70 ° C.
  • a methylammonium bromide solution having a concentration of 0.1M having a concentration of 0.1M.
  • the above lead bromide solution and dysprosium bromide solution were mixed so that the molar ratio Dy / (Dy + Pb) was 0.1 to prepare a solution.
  • the solution was applied to the glass substrate by spin coating at a rotation speed of 1000 rpm, and dried in air at 100 ° C. for 10 minutes to obtain a coating film of a compound having a perovskite structure.
  • Example 15 A glass substrate having a size of 2.5 cm ⁇ 2.5 cm was prepared. This glass substrate was treated with ozone UV.
  • Lead bromide (PbBr 2 ) was dissolved in a solvent of N, N-dimethylformamide (hereinafter referred to as “DMF”) at 70 ° C. to prepare a lead bromide solution having a concentration of 0.1M.
  • calcium bromide (CaBr 2 ) was dissolved in a DMF solvent at 70 ° C. to prepare a calcium bromide solution having a concentration of 0.1M.
  • methylammonium chloride (CH 3 NH 3 Cl) was dissolved in a DMF solvent at 70 ° C.
  • the above lead bromide solution and calcium bromide solution were mixed so that the molar ratio of Ca / (Ca + Pb) was 0.1 to prepare a solution.
  • the solution was applied to the glass substrate by spin coating at a rotation speed of 1000 rpm, and dried in air at 100 ° C. for 10 minutes to obtain a coating film of a compound having a perovskite structure.
  • Example 16 A glass substrate having a size of 2.5 cm ⁇ 2.5 cm was prepared. This glass substrate was treated with ozone UV.
  • Lead bromide (PbBr 2 ) was dissolved in a solvent of N, N-dimethylformamide (hereinafter referred to as “DMF”) at 70 ° C. to prepare a lead bromide solution having a concentration of 0.1M.
  • calcium bromide (CaBr 2 ) was dissolved in a DMF solvent at 70 ° C. to prepare a calcium bromide solution having a concentration of 0.1M.
  • methylammonium iodide (CH 3 NH 3 I) was dissolved in a DMF solvent at 70 ° C.
  • a methylammonium iodide solution having a concentration of 0.1M having a concentration of 0.1M.
  • the above lead bromide solution and calcium bromide solution were mixed so that the molar ratio of Ca / (Ca + Pb) was 0.1 to prepare a solution.
  • the solution was applied to the glass substrate by spin coating at a rotation speed of 1000 rpm, and dried in air at 100 ° C. for 10 minutes to obtain a coating film of a compound having a perovskite structure.
  • a glass substrate having a size of 2.5 cm ⁇ 2.5 cm was prepared. This glass substrate was treated with ozone UV.
  • Lead bromide (PbBr 2 ) was dissolved in a solvent of N, N-dimethylformamide (hereinafter referred to as “DMF”) at 70 ° C. to prepare a lead bromide solution having a concentration of 0.1M.
  • methylammonium chloride (CH 3 NH 3 Cl) was dissolved in a DMF solvent at 70 ° C. to prepare a 0.1M concentration methylammonium chloride solution.
  • the solution was applied to the glass substrate by spin coating at a rotation speed of 1000 rpm, and dried in air at 100 ° C. for 10 minutes to obtain a coating film of a compound having a perovskite structure.
  • a glass substrate having a size of 2.5 cm ⁇ 2.5 cm was prepared. This glass substrate was treated with ozone UV.
  • Lead bromide (PbBr 2 ) was dissolved in a solvent of N, N-dimethylformamide (hereinafter referred to as “DMF”) at 70 ° C. to prepare a lead bromide solution having a concentration of 0.1M.
  • methylammonium iodide (CH 3 NH 3 I) was dissolved in a DMF solvent at 70 ° C. to prepare a methylammonium iodide solution having a concentration of 0.1M.
  • the solution was applied to the glass substrate by spin coating at a rotation speed of 1000 rpm, and dried in air at 100 ° C. for 10 minutes to obtain a coating film of a compound having a perovskite structure.
  • Tables 3 and 4 below show the composition of the compounds having the perovskite structure of Examples 11 to 14 and Comparative Examples 4 to 5 and the maximum emission intensity.
  • M / (M + Pb) is a value in the charging ratio of “a” in the general formula (1).
  • this embodiment is applied to Examples 11 to 13 using barium ions as divalent or trivalent metal ions to which this embodiment is applied and Examples 14 using dysprosium ions.
  • the maximum emission intensity was higher than that of Comparative Example 1 that was not used.
  • Example 15 to which the present embodiment was applied using two types of halide ions (Br and Cl) as X had higher maximum emission intensity than Comparative Example 4 to which the present embodiment was not applied.
  • Example 16 to which the present embodiment was applied using two types of halide ions (Br and I) as X had higher maximum emission intensity than Comparative Example 5 to which the present embodiment was not applied.
  • the compound having the perovskite structure of the present embodiment and the light emitting material using the compound can be suitably used in the field of light emission related materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Provided are a compound having a perovskite structure and having a high luminescence intensity, and a luminescent material comprising the compound. The compound that has a perovskite crystal structure comprises A, B, X, and M as components, wherein the molar ratio obtained by dividing the amount of M by the total amount of M and B, M/(M+B), is 0.7 or less (A is a monovalent cation located at each of the vertexes of a hexahedron centered by B in the perovskite crystal structure. B is a lead ion. M is a cation that is a divalent or trivalent metal ion with which some of the B sites in the perovskite crystal structure are substituted, and that is selected from among metal ions which have a 6-coordination ion radius of 0.9-1.5 Å. X indicates components located at the vertexes of an octahedron centered by B in the perovskite crystal structure, and is at least one kind of ion selected from the group consisting of Cl-, Br-, F-, I-, and SCN-, X including at least a chloride ion or a bromide ion.).

Description

化合物及び発光材料Compound and luminescent material
 本発明は、化合物及び発光材料に関する。
 本願は、2016年2月19日に日本に出願された特願2016-30201号及び2016年6月24日に日本に出願された特願2016-126043号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a compound and a light emitting material.
This application claims priority based on Japanese Patent Application No. 2016-30201 filed in Japan on February 19, 2016 and Japanese Patent Application No. 2016-122603 filed in Japan on June 24, 2016, and its contents Is hereby incorporated by reference.
 従来から有機物の陽イオン(A)、ハロゲン化物イオン(X)、及び2価の金属イオン(M)からなる有機-無機ペロブスカイトAMX3化合物が知られている。近年、金属イオンの位置(M)にIV族元素(Ge、Sn、及びPb)のイオンを有するペロブスカイト構造を有する化合物の導電性及び発光特性に対する関心が高まっている。 Conventionally, an organic-inorganic perovskite AMX 3 compound comprising an organic cation (A), a halide ion (X), and a divalent metal ion (M) is known. In recent years, there has been an increasing interest in the conductivity and emission characteristics of compounds having a perovskite structure having group IV elements (Ge, Sn, and Pb) ions at the metal ion position (M).
 特に前記2価の金属イオンがPb(II)の場合、紫外域から赤色のスペクトル領域の範囲で、室温での強い発光現象が観察されている(非特許文献1)。またハロゲン化物イオン(X)の種類により、発光波長を調整することも可能になっている(非特許文献2)。 In particular, when the divalent metal ion is Pb (II), a strong light emission phenomenon at room temperature has been observed in the range from the ultraviolet region to the red spectral region (Non-patent Document 1). Further, the emission wavelength can be adjusted depending on the type of halide ion (X) (Non-patent Document 2).
 しかしながら、上記非特許文献1又は2に記載のようなペロブスカイト構造を有する化合物を発光材料として産業応用するにあたり、前記化合物のさらなる発光強度の向上が求められている。
 本発明は、上記課題に鑑みてなされたものであって、発光材料として用いた場合に高い発光強度を持つペロブスカイト構造を有する化合物及び前記化合物を含む発光材料を提供することを目的とする。
However, when a compound having a perovskite structure as described in Non-Patent Document 1 or 2 above is industrially applied as a light emitting material, further improvement in light emission intensity of the compound is required.
The present invention has been made in view of the above problems, and an object of the present invention is to provide a compound having a perovskite structure having high emission intensity when used as a light emitting material, and a light emitting material containing the compound.
 上記課題を解決するために、本発明者らは鋭意検討した結果、以下の本発明に至った。 In order to solve the above-mentioned problems, the present inventors have intensively studied, and as a result, have reached the following present invention.
 すなわち、本発明の実施態様は、下記[1]~[6]の発明を包含する。
[1]A、B、X、及びMを成分とし、Mの量をM及びBの合計量で除したモル比[M/(M+B)]の値が0.7以下である、ペロブスカイト型結晶構造を有する化合物。
(Aは、前記ぺロブスカイト型結晶構造においてBを中心とする6面体の各頂点に位置する1価の陽イオンである。
 Bは、鉛イオンである。
 Mは、2価又は3価の金属イオンであって、且つ6配位でのイオン半径が0.9Å以上1.5Å以下の金属イオンから選択される陽イオンであり、Mの少なくとも一部は、前記ぺロブスカイト型結晶構造においてBの一部を置換する。
 Xは、前記ぺロブスカイト型結晶構造においてBを中心とする8面体の各頂点に位置する成分を表し、塩化物イオン、臭化物イオン、フッ化物イオン、ヨウ化物イオン及びチオシアン酸イオンからなる群より選ばれる1種以上のイオンであり、前記Xとして少なくとも塩化物イオン又は臭化物イオンを含む。)
[2]下記一般式(1)で表される、[1]に記載の化合物。
 AB(1-a)(3+δ) (0<a≦0.7,0≦δ≦0.7) …(1)
(A、B、M、及びXは、前述と同じ意味を表す。)
[3]前記Mがアルカリ土類金属のイオンである[1]又は[2]に記載の化合物。
[4]前記Mがカルシウムイオンである[3]に記載の化合物。
[5]前記Aが有機アンモニウムイオンである[1]~[4]のいずれか1項に記載の化合物。
[6][1]~[5]のいずれか1項に記載の化合物を含む発光材料。
That is, the embodiments of the present invention include the following [1] to [6].
[1] Perovskite crystal having a molar ratio [M / (M + B)] obtained by dividing A, B, X, and M as components and dividing the amount of M by the total amount of M and B is 0.7 or less A compound having a structure.
(A is a monovalent cation located at each vertex of a hexahedron centered on B in the perovskite crystal structure.
B is a lead ion.
M is a divalent or trivalent metal ion, and is a cation selected from metal ions having an ionic radius in a hexacoordination of 0.9 to 1.5 Å, and at least a part of M is In the perovskite crystal structure, a part of B is substituted.
X represents a component located at each vertex of an octahedron centered on B in the perovskite crystal structure, and is selected from the group consisting of chloride ion, bromide ion, fluoride ion, iodide ion, and thiocyanate ion. And at least chloride ion or bromide ion as X. )
[2] The compound according to [1], represented by the following general formula (1).
AB (1-a) M a X (3 + δ) (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7) (1)
(A, B, M, and X represent the same meaning as described above.)
[3] The compound according to [1] or [2], wherein M is an alkaline earth metal ion.
[4] The compound according to [3], wherein M is a calcium ion.
[5] The compound according to any one of [1] to [4], wherein A is an organic ammonium ion.
[6] A luminescent material comprising the compound according to any one of [1] to [5].
 本発明によれば、発光強度が高いペロブスカイト構造を有する化合物及び前記化合物を含む発光材料を提供することができる。 According to the present invention, it is possible to provide a compound having a perovskite structure with high emission intensity and a luminescent material containing the compound.
 以下、実施形態を示して本発明を詳細に説明する。
<化合物>
≪第1実施形態≫
 本実施形態の化合物の第1実施形態は、A、B、X、及びMを成分とし、Mの量をM及びBの合計量で除したモル比[M/(M+B)]の値が0.7以下である、ペロブスカイト型結晶構造を有する化合物である。
 本実施形態において、Aは、前記ぺロブスカイト型結晶構造においてBを中心とする6面体の各頂点に位置する1価の陽イオンである。
 Bは、Pbイオンである。
 Mは、2価又は3価の金属イオンであって、且つ6配位でのイオン半径が0.9Å以上1.5Å以下の金属イオンから選択される陽イオンであり、Mの少なくとも一部は、前記ぺロブスカイト型結晶構造においてBの一部を置換する。
 Xは、前記ぺロブスカイト型結晶構造においてBを中心とする8面体の各頂点に位置する成分を表し、塩化物イオン、臭化物イオン、フッ化物イオン、ヨウ化物イオン及びチオシアン酸イオンからなる群より選ばれる1種以上のイオンである。但し、Xとして、少なくとも塩化物イオン又は臭化物イオンを含む。なお、ここで1Å=0.1nm(以下同じ)とした場合、Mの6配位でのイオン半径は0.09nm以上0.15以下である。
Hereinafter, embodiments of the present invention will be described in detail.
<Compound>
<< First Embodiment >>
In the first embodiment of the compound of the present embodiment, the value of the molar ratio [M / (M + B)] obtained by dividing A amount by the total amount of M and B is 0, with A, B, X, and M as components. It is a compound having a perovskite crystal structure that is 0.7 or less.
In this embodiment, A is a monovalent cation located at each vertex of a hexahedron centered on B in the perovskite crystal structure.
B is Pb ion.
M is a divalent or trivalent metal ion, and is a cation selected from metal ions having an ionic radius in a hexacoordination of 0.9 to 1.5 Å, and at least a part of M is In the perovskite crystal structure, a part of B is substituted.
X represents a component located at each vertex of an octahedron centered on B in the perovskite crystal structure, and is selected from the group consisting of chloride ion, bromide ion, fluoride ion, iodide ion, and thiocyanate ion. One or more ions. However, X includes at least a chloride ion or a bromide ion. Here, when 1Å = 0.1 nm (hereinafter the same), the ionic radius of M 6-coordinate is 0.09 nm or more and 0.15 or less.
 通常、ペロブスカイト型結晶構造を有する化合物の基本構造は、3次元構造又は2次元構造である。
 前記基本構造が3次元構造の場合は、A’B’X’で表される。ここで、A’は有機カチオン又は無機カチオンを表し、B’は金属カチオンを表し、X’はハロゲン化物イオン又はチオシアン酸イオンを表す。
 前記基本構造が2次元構造の場合は、A’B’X’で表される。ここで、A’、B’及びX’は、前述と同じ意味を表す。
 前記基本構造が上記3次元構造又は2次元構造の場合、B’を中心とし、頂点をX’とする、B’X’で表される頂点共有八面体の三次元ネットワークを有する。
 B’は、X’の八面体配位をとることができる金属カチオンである。
 A’は、B’を中心とする六面体の各頂点に位置する。
Usually, the basic structure of a compound having a perovskite crystal structure is a three-dimensional structure or a two-dimensional structure.
When the basic structure is a three-dimensional structure, it is represented by A′B′X ′ 3 . Here, A ′ represents an organic cation or an inorganic cation, B ′ represents a metal cation, and X ′ represents a halide ion or a thiocyanate ion.
When the basic structure is a two-dimensional structure, it is represented by A ′ 2 B′X ′ 4 . Here, A ′, B ′, and X ′ represent the same meaning as described above.
When the basic structure is the above-described three-dimensional structure or two-dimensional structure, it has a three-dimensional network of vertex shared octahedrons represented by B′X ′ 6 with B ′ as the center and the vertex as X ′.
B ′ is a metal cation capable of taking the octahedral coordination of X ′.
A ′ is located at each vertex of a hexahedron centered on B ′.
 本実施形態において、A、B、X、及びMを成分とするペロブスカイト型結晶構造を有する化合物としては、特に限定されず、前記基本構造が3次元構造、2次元構造、疑似2次元構造のいずれの構造を有する化合物であってもよい。
 前記基本構造が3次元構造の場合には、ペロブスカイト型結晶構造は、AB(1-a)(3+δ)で表される。
 前記基本構造が2次元構造の場合には、ペロブスカイト型結晶構造は、A(1-a)(4+δ)で表される。
 ここで、前記aは、前述のモル比[M/(M+B)]を表す。
 前記δは、B及びMの電荷バランスに応じて適宜変更が可能な数であるが、好ましくは0以上0.7以下である。例えば、Aが1価の陽イオン、Bが2価の陰イオン(Pbイオン)、Mが2価又は3価の陰イオン(金属イオン)、及びXが1価の陰イオン(塩化物イオン、臭化物イオン、フッ化物イオン、ヨウ化物イオン及びチオシアン酸イオンからなる群より選ばれる1種以上のイオン)である場合、前記化合物が中性(電荷が0)となるようにδを選択することができる。
In the present embodiment, the compound having a perovskite crystal structure containing A, B, X, and M as components is not particularly limited, and the basic structure is any one of a three-dimensional structure, a two-dimensional structure, and a pseudo two-dimensional structure. The compound which has the structure of may be sufficient.
When the basic structure is a three-dimensional structure, the perovskite crystal structure is represented by AB (1-a) M a X (3 + δ) .
When the basic structure is a two-dimensional structure, the perovskite crystal structure is represented by A 2 B (1-a) M a X (4 + δ) .
Here, the a represents the molar ratio [M / (M + B)].
Δ is a number that can be appropriately changed according to the charge balance of B and M, and is preferably 0 or more and 0.7 or less. For example, A is a monovalent cation, B is a divalent anion (Pb ion), M is a divalent or trivalent anion (metal ion), and X is a monovalent anion (chloride ion, Δ may be selected so that the compound is neutral (charge is 0) when it is one or more ions selected from the group consisting of bromide ion, fluoride ion, iodide ion and thiocyanate ion). it can.
 本実施形態では、ぺロブスカイト型結晶構造を有する化合物において、B’成分の金属カチオンをPbイオン(B成分)とし、複数あるPbイオン(B成分)の一部をM成分として、2価又は3価の金属イオンであって、且つ6配位でのイオン半径が0.9Å以上1.5Å以下の金属イオンから選択される陽イオンで置換することにより、前記化合物の発光強度を向上させることができることを見出した。
 本実施形態に係るペロブスカイト型結晶構造を有する化合物におけるMの少なくとも一部は、Bで表される鉛イオンの一部を置換する成分を意味する。
 本実施形態の化合物は、Mは、前述の基本構造において、B成分(鉛イオン)が存在する位置に存在していてもよいし、A成分が存在する位置に存在してもよいし、基本構造を構成する骨格の格子間隙に存在していてもよい。
 本実施形態における、A、B、X、及びMを成分とするペロブスカイト型の結晶構造を有する化合物については後述する。
In the present embodiment, in a compound having a perovskite crystal structure, the metal cation of the B ′ component is Pb ion (B component), and a part of the plurality of Pb ions (B component) is M component. The luminescence intensity of the compound can be improved by substituting with a cation selected from metal ions that are valence metal ions and have an ionic radius in hexacoordination of 0.9 to 1.5 Å. I found out that I can do it.
At least a part of M in the compound having a perovskite crystal structure according to this embodiment means a component that substitutes a part of the lead ion represented by B.
In the compound of the present embodiment, M may be present at the position where the B component (lead ion) is present in the basic structure described above, or may be present at the position where the A component is present. It may exist in the lattice gap of the skeleton constituting the structure.
A compound having a perovskite crystal structure containing A, B, X, and M as components in the present embodiment will be described later.
 本実施形態では、ペロブスカイト型結晶構造とは、例えば、化合物をX線回折(XRD、Cu Kα線、X’pert PRO MPD, スペクトリス社製)の手段で計測したとき、
 3次元構造のペロブスカイト化合物:AB(1-a)(3+δ)の場合、通常、2θ=12~18°の位置に、(hkl)=(001)のピークが、または、2θ=18~25°の位置に、(hkl)=(100)由来のピークが存在する化合物であり、好ましくは、2θ=13~16°の位置に、(hkl)=(001)のピークが、または、2θ=20~23°の位置に、(hkl)=(100)由来のピークが存在する化合物であり、
 2次元構造のペロブスカイト化合物:A(1-a)(4+δ)の場合、通常、2θ=1~10°の位置に、(hkl)=(002)由来のピークが存在する化合物であり、好ましくは、2θ=2~8°の位置に、(hkl)=(002)由来のピークが存在する化合物である。
In the present embodiment, the perovskite crystal structure is, for example, when a compound is measured by means of X-ray diffraction (XRD, Cu Kα ray, X'pert PRO MPD, made by Spectris),
In the case of a perovskite compound having a three-dimensional structure: AB (1-a) M a X (3 + δ) , a peak of (hkl) = (001) is usually present at a position of 2θ = 12 to 18 °, or 2θ = 18 A compound having a peak derived from (hkl) = (100) at a position of ˜25 °, preferably a peak of (hkl) = (001) at a position of 2θ = 13 to 16 °, or A compound having a peak derived from (hkl) = (100) at a position of 2θ = 20 to 23 °,
Perovskite compound having a two-dimensional structure: a compound having a peak derived from (hkl) = (002) at a position of 2θ = 1 to 10 ° in the case of A 2 B (1-a) M a X (4 + δ) Preferably, the compound has a peak derived from (hkl) = (002) at a position of 2θ = 2 to 8 °.
≪第2実施形態≫
 本実施形態の化合物は、Aは1価の陽イオンであり、Mは2価又は3価の金属イオンであって、且つ6配位でのイオン半径が0.9Å以上1.5Å以下の金属イオンから選択される陽イオンであり、Xは塩化物イオン、臭化物イオン、フッ化物イオン、ヨウ化物イオン及びチオシアン酸イオンからなる群より選ばれる1種以上のイオンである(但し、Xは、少なくとも塩化物イオン又は臭化物イオンを含む。)、下記一般式(1)で表されるペロブスカイト構造を有する。
    APb(1-a)(3+δ) (0<a≦0.7,0≦δ≦0.7) …(1)
 例えば、Aが1価の陽イオン、Bが2価の陰イオン(Pbイオン)、Mが2価又は3価の陰イオン(金属イオン)、及びXが1価の陰イオン(塩化物イオン、臭化物イオン、フッ化物イオン、ヨウ化物イオン及びチオシアン酸イオンからなる群より選ばれる1種以上のイオン)である場合、前記化合物が中性(電荷が0)となるようにδを選択することができる。
<< Second Embodiment >>
In the compound of this embodiment, A is a monovalent cation, M is a divalent or trivalent metal ion, and the six-coordinate ion radius is 0.9 to 1.5 Å A cation selected from ions, and X is at least one ion selected from the group consisting of chloride ion, bromide ion, fluoride ion, iodide ion and thiocyanate ion (where X is at least Including a chloride ion or bromide ion), and has a perovskite structure represented by the following general formula (1).
APb (1-a) M a X (3 + δ) (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7) (1)
For example, A is a monovalent cation, B is a divalent anion (Pb ion), M is a divalent or trivalent anion (metal ion), and X is a monovalent anion (chloride ion, Δ may be selected so that the compound is neutral (charge is 0) when it is one or more ions selected from the group consisting of bromide ion, fluoride ion, iodide ion and thiocyanate ion). it can.
 一般的にペロブスカイト構造の基本的構造形態はA’B’X’構造である。
 ここで、本実施形態では、ペロブスカイトの基本的構造形態は、A’B’X’構造であり、頂点共有B’X’八面体の3次元ネットワークを有する。A’B’X’構造のB’成分は、X’アニオンの八面体配位をとることができる金属カチオンである。A’カチオンは、B’原子を中心とする六面体の各頂点に位置し、本実施形態では有機カチオン又は無機カチオンである。A’B’X’構造のX’成分は、本実施形態では通常、ハロゲン化物イオンである。
In general, the basic structural form of the perovskite structure is an A′B′X ′ 3 structure.
Here, in the present embodiment, the basic structural form of the perovskite is an A′B′X ′ 3 structure, and has a three-dimensional network of vertex sharing B′X ′ 6 octahedrons. The B ′ component of the A′B′X ′ 3 structure is a metal cation that can take octahedral coordination of the X ′ anion. The A ′ cation is located at each apex of the hexahedron centered on the B ′ atom, and is an organic cation or an inorganic cation in this embodiment. In this embodiment, the X ′ component of the A′B′X ′ 3 structure is usually a halide ion.
 本発明者らが鋭意検討した結果、上記ペロブスカイト構造を有する化合物の基本構造において、B成分の金属カチオンを鉛とし、複数ある鉛イオンの一部を他の原子で置換することにより、前記化合物の発光強度を向上させることができることを見出した。
 本実施形態において、一般式(1)で表されるペロブスカイト構造を有する化合物(以下、「化合物(1)」と記載することがある。)は、A、Pb(鉛)、M及びXを主成分とする。
 ここで、Mは金属カチオンであるPbイオンの一部を置換する原子を意味する。尚、Mは前記基本構造でB成分(鉛イオン)が存在する位置を置換してもよいし、A成分が存在する位置を置換してもよいし、前記基本構造を構成する骨格の格子間隙に存在してもよい。
 以下、本実施形態における、A、B、X、及びMを成分とするペロブスカイト型の結晶構造を有する化合物について説明する。
As a result of intensive studies by the present inventors, in the basic structure of the compound having the perovskite structure, the metal cation of the B component is lead, and a part of the plurality of lead ions is substituted with other atoms, whereby It has been found that the emission intensity can be improved.
In this embodiment, the compound having a perovskite structure represented by the general formula (1) (hereinafter sometimes referred to as “compound (1)”) is mainly composed of A, Pb (lead), M, and X. Ingredients.
Here, M means an atom that substitutes a part of the Pb ion that is a metal cation. Note that M may replace the position where the B component (lead ion) exists in the basic structure, may replace the position where the A component exists, or the lattice gap of the skeleton constituting the basic structure. May be present.
Hereinafter, the compound having a perovskite crystal structure having A, B, X, and M as components in the present embodiment will be described.
〔A〕
 前記第1実施形態及び前記第2実施形態の化合物中、Aは1価の陽イオンである。化合物中、Aはセシウムイオン又は有機アンモニウムイオンが好ましい。
[A]
In the compounds of the first embodiment and the second embodiment, A is a monovalent cation. In the compound, A is preferably a cesium ion or an organic ammonium ion.
 Aの有機アンモニウムイオンとして具体的には、下記一般式(A1)で表される陽イオンが挙げられる。 Specific examples of the organic ammonium ion of A include a cation represented by the following general formula (A1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(A1)中、R~Rは、それぞれ独立に水素原子又はアルキル基であって、各アルキル基を構成する水素原子の1つはアミノ基で置換されていてもよい。
 R~Rのアルキル基としては、直鎖状又は分岐鎖状のアルキル基が好ましく、炭素数1~4の直鎖状又は分岐鎖状のアルキル基がより好ましく、炭素数1~3の直鎖状又は分岐鎖状のアルキル基がさらに好ましい。アルキル基の数及びアルキル基の炭素数を小さくすることにより、発光特性を有する3次元ペロブスカイト構造を得ることができる。また、R~Rのアルキル基の炭素数の合計数は1~4であることが好ましく、R~Rのうち、Rが炭素数1~3のアルキル基であり、R~Rが水素原子であることが特に好ましい。
In general formula (A1), R 1 to R 4 are each independently a hydrogen atom or an alkyl group, and one of the hydrogen atoms constituting each alkyl group may be substituted with an amino group.
The alkyl group for R 1 to R 4 is preferably a linear or branched alkyl group, more preferably a linear or branched alkyl group having 1 to 4 carbon atoms, and a C 1 to 3 carbon group. A linear or branched alkyl group is more preferable. By reducing the number of alkyl groups and the number of carbon atoms in the alkyl group, a three-dimensional perovskite structure having luminescent properties can be obtained. It is preferable that the total number of carbon atoms in the alkyl group of R 1 ~ R 4 is 1-4, among the R 1 ~ R 4, R 1 is an alkyl group having 1 to 3 carbon atoms, R 2 It is particularly preferable that R 4 is a hydrogen atom.
 さらに具体的には、Aは、CHNH 、CNH 又はCNH であることが好ましく、CHNH 又はCNH であることがより好ましく、CHNH (メチルアンモニウムイオン)であることが最も好ましい。 More specifically, A is preferably CH 3 NH 3 + , C 2 H 5 NH 3 + or C 3 H 7 NH 3 + , and is CH 3 NH 3 + or C 2 H 5 NH 3 + . More preferably, it is most preferably CH 3 NH 3 + (methylammonium ion).
〔B〕
 本実施形態のペロブスカイト構造を有する化合物においては、B成分は結晶構造の中心となる金属カチオンである。本実施形態においては、B成分はPb(鉛)とする。本実施形態におけるPbイオンは、2価のPbイオンである。
 本実施形態では、化合物を構成する複数の結晶構造に含まれるB成分(Pbイオン)の一部を他の原子で置換することにより、本実施形態の化合物の発光強度を向上させることができる。
[B]
In the compound having a perovskite structure of the present embodiment, the B component is a metal cation that becomes the center of the crystal structure. In the present embodiment, the B component is Pb (lead). The Pb ions in this embodiment are divalent Pb ions.
In the present embodiment, the emission intensity of the compound of the present embodiment can be improved by substituting a part of the B component (Pb ion) contained in the plurality of crystal structures constituting the compound with other atoms.
〔M〕
 前記第1実施形態及び前記第2実施形態の化合物中、Mの少なくとも一部は、金属カチオンであるPbイオンの一部を置換する。
 より詳細には、Mは2価又は3価の金属イオンであって、且つ6配位でのイオン半径が0.9Å以上1.5Å以下の金属イオンから選択される陽イオンである。
 Mで表される金属イオンのイオン半径は、0.95Å以上1.4Å以下が好ましく、0.95Å以上1.3Å以下がより好ましい。
[M]
In the compounds of the first embodiment and the second embodiment, at least a part of M substitutes a part of the Pb ion that is a metal cation.
More specifically, M is a divalent or trivalent metal ion, and is a cation selected from metal ions having an ionic radius in a hexacoordinate of 0.9 to 1.5.
The ion radius of the metal ion represented by M is preferably 0.95 to 1.4 and more preferably 0.95 to 1.3.
 前記第1実施形態及び前記第2実施形態の化合物のペロブスカイト結晶構造を維持させ、十分な発光強度を得る観点から、Mとしては、例えば、バリウムイオン(6配位でのイオン半径;1.35Å)、カルシウムイオン(6配位でのイオン半径;1.00Å)、セリウムイオン(6配位でのイオン半径;1.01Å)、ジスプロシウムイオン(6配位でのイオン半径;1.07Å)、ランタンイオン(6配位でのイオン半径;1.03Å)、サマリウムイオン(6配位でのイオン半径;1.19Å)、ストロンチウムイオン(6配位でのイオン半径;1.18Å)、又はイッテルビウムイオン(6配位でのイオン半径;1.02Å)等の元素の陽イオンが挙げられる。なかでも、Mはアルカリ土類金属のイオンであることが好ましく、カルシウムイオンであることがより好ましい。 From the viewpoint of maintaining the perovskite crystal structure of the compounds of the first embodiment and the second embodiment and obtaining sufficient emission intensity, M is, for example, a barium ion (six-coordinate ion radius; 1.35Å) ), Calcium ions (6-coordinate ion radius; 1.00Å), cerium ions (6-coordinate ion radius; 1.01Å), dysprosium ions (6-coordinate ion radius; 1.07Å), Lanthanum ion (6-coordinate ion radius; 1.03Å), samarium ion (6-coordinate ion radius; 1.19Å), strontium ion (6-coordinate ion radius; 1.18Å), or ytterbium Cations of elements such as ions (6 coordination ionic radii: 1.02Å) can be given. Among these, M is preferably an alkaline earth metal ion, and more preferably a calcium ion.
〔a〕
 ペロブスカイト化合物の結晶構造を維持させ、十分な発光強度を得る観点から、前記MのPbに対する置換量は、a、M及びPbのモル比をa=M/(Pb+M)で表したときに、aは0より大きく0.7以下である。aは、0.01以上0.7以下であることが好ましく、0.02以上0.6以下であることがより好ましい。
[A]
From the viewpoint of maintaining the crystal structure of the perovskite compound and obtaining sufficient emission intensity, the substitution amount of M with respect to Pb is such that when the molar ratio of a, M, and Pb is expressed as a = M / (Pb + M), Is greater than 0 and less than or equal to 0.7. a is preferably 0.01 or more and 0.7 or less, and more preferably 0.02 or more and 0.6 or less.
 本実施形態において、aの値は、下記{aの算出方法}に記載の、合成後の化合物をICP-MSを用いて測定した値から算出した値である。 In the present embodiment, the value a is a value calculated from the value obtained by measuring the synthesized compound using ICP-MS described in {Method for calculating a} below.
{aの測定方法}
 本実施形態に係る化合物中において、前記a、即ち前記モル比[M/(M+B)]の値は、ICP-MS(ELAN DRCII、パーキンエルマー製)を用いて測定することができる。前記モル比の測定は、ペロブスカイト型結晶構造を有する化合物を硝酸等を用いて溶解した後に測定を行う。
 具体的には、モル比[M/(M+B)]の値は、下記式(T)に従って算出した値とする。下記式(T)中、Mmolは、ICP-MSで測定したMのモル数であり、Pbmolは、ICP-MSで測定したPbのモル数を示す。
 [M/(M+B)]=(Mmol)/(Mmol+Pbmol)  …(T)
{Measurement method of a}
In the compound according to the present embodiment, the value of a, that is, the molar ratio [M / (M + B)] can be measured using ICP-MS (ELAN DRCII, manufactured by PerkinElmer). The molar ratio is measured after a compound having a perovskite crystal structure is dissolved using nitric acid or the like.
Specifically, the value of the molar ratio [M / (M + B)] is a value calculated according to the following formula (T). In the following formula (T), Mmol is the number of moles of M measured by ICP-MS, and Pbmol is the number of moles of Pb measured by ICP-MS.
[M / (M + B)] = (Mmol) / (Mmol + Pbmol) (T)
 本実施形態においては、合成後の化合物中のMのPbに対する置換量をより正確に算出できる観点から、前記{aの算出方法}により算出した値を「a」とすることが好ましい。
 なお、簡易的には、aの値は、本実施形態の化合物を合成する際に前記第1実施形態及び前記第2実施形態の化合物におけるaが所望の値になるように調整した仕込み比の値から算出することもできる。
In the present embodiment, from the viewpoint of more accurately calculating the substitution amount of M for Pb in the compound after synthesis, the value calculated by the above {calculation method for a} is preferably “a”.
For simplicity, the value of a is a charge ratio adjusted so that a in the compound of the first embodiment and the second embodiment is a desired value when the compound of the present embodiment is synthesized. It can also be calculated from the value.
〔X〕
 Xは塩化物イオン、臭化物イオン、フッ化物イオン、ヨウ化物イオン及びチオシアン酸イオンからなる群より選ばれる1種以上のイオンである。但し、Xは、少なくとも塩化物イオン又は臭化物イオンを含む。
 Xのうち、塩化物イオン又は臭化物イオンの量は、X中のモル%で表した場合、10%以上が好ましく、30%以上がより好ましく、70%以上がさらに好ましく、80%以上が特に好ましい。上限の値は特に限定されないが、100%以下であれば任意に選択することができる。
 なかでも、Xは臭化物イオンを含むことが好ましい。Xが2種以上の陰イオンである場合、陰イオンの含有比率は、発光波長により適宜選ぶことができる。
[X]
X is at least one ion selected from the group consisting of chloride ion, bromide ion, fluoride ion, iodide ion and thiocyanate ion. However, X contains a chloride ion or a bromide ion at least.
Among X, the amount of chloride ion or bromide ion is preferably 10% or more, more preferably 30% or more, further preferably 70% or more, and particularly preferably 80% or more, when expressed in mol% in X. . The upper limit value is not particularly limited, but can be arbitrarily selected as long as it is 100% or less.
Especially, it is preferable that X contains a bromide ion. When X is two or more kinds of anions, the content ratio of the anions can be appropriately selected depending on the emission wavelength.
 Xとして2種以上のイオンを選択する場合には、臭化物イオンと塩化物イオンとの組み合わせ、又は、臭化物イオンとヨウ化物イオンとの組み合わせが好ましい。 When two or more ions are selected as X, a combination of bromide ions and chloride ions, or a combination of bromide ions and iodide ions is preferable.
 前記第1実施形態及び前記第2実施形態の化合物の具体例としては、CHNHPb(1-a)CaBr(3+δ)(0<a≦0.7,0≦δ≦0.7)、CHNHPb(1-a)SrBr(3+δ)(0<a≦0.7,0≦δ≦0.7)、CHNHPb(1-a)LaBr(3+δ)(0<a≦0.7,0≦δ≦0.7)、CHNHPb(1-a)BaBr(3+δ)(0<a≦0.7,0≦δ≦0.7)、CHNHPb(1-a)DyBr(3+δ)(0<a≦0.7,0≦δ≦0.7)、CHNHPb(1-a)Ca (BrCl)(3+δ)(0<a≦0.7,0≦δ≦0.7)、又はCHNHPb(1-a)Ca (BrI)(3+δ)(0<a≦0.7,0
≦δ≦0.7)、等が好ましいものとして挙げられる。
Specific examples of the compounds of the first embodiment and the second embodiment include CH 3 NH 3 Pb (1-a) Ca a Br (3 + δ) (0 <a ≦ 0.7, 0 ≦ δ ≦ 0. 7), CH 3 NH 3 Pb (1-a) Sr a Br (3 + δ) (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7), CH 3 NH 3 Pb (1-a) La a Br (3 + δ) (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7), CH 3 NH 3 Pb (1-a) Ba a Br (3 + δ) (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7), CH 3 NH 3 Pb (1-a) Dy a Br (3 + δ) (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7), CH 3 NH 3 Pb (1-a) Ca a (Br 2 Cl) (3 + δ) (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7), or CH 3 NH 3 Pb (1-a) Ca a (Br 2 I) (3 + δ) (0 <A 0.7, 0
≦ δ ≦ 0.7) and the like are preferable.
 本実施形態のペロブスカイト構造を有する化合物は、溶液を用いた自己組織化反応によって合成することができる。
 たとえば、Pb及び上述のXを含む化合物と、上述のM及び上述のXを含む化合物と、上述のA及び上述のXを含む化合物とを溶媒に溶解させた溶液を塗布し、溶媒を除去することにより、本実施形態のペロブスカイト構造を有する化合物を合成することができる。
 その他の方法としては、Pb及び上述のXを含む化合物と、上述のM及び上述のXを含む化合物とを溶媒に溶解させた溶液を塗布し、溶媒を除去することで塗布膜を形成する。ついで、上述のA及び上述のXを含む化合物を溶媒に溶解させた溶液を上記塗布膜上に塗布し、溶媒を除去することにより、本実施形態のペロブスカイト構造を有する化合物を合成することができる。
 合成する際、前記第1実施形態及び前記第2実施形態の化合物におけるaとδが所望の値になるように、上記配合する化合物の種類とその量を調整すればよい。
The compound having a perovskite structure according to this embodiment can be synthesized by a self-assembly reaction using a solution.
For example, a solution obtained by dissolving a compound containing Pb and the above X, a compound containing the above M and the above X, and a compound containing the above A and the above X in a solvent is applied, and the solvent is removed. Thus, the compound having the perovskite structure of this embodiment can be synthesized.
As another method, a coating film is formed by applying a solution obtained by dissolving a compound containing Pb and the above-described X and the above-described compound containing M and the above-described X in a solvent, and removing the solvent. Next, the compound having the perovskite structure of this embodiment can be synthesized by applying a solution obtained by dissolving the compound containing A and X described above in a solvent onto the coating film and removing the solvent. .
When synthesizing, the type and amount of the compound to be blended may be adjusted so that a and δ in the compounds of the first embodiment and the second embodiment have desired values.
≪発光スペクトル≫
 本実施形態のペロブスカイト構造を有する化合物は、可視光波長領域に蛍光を発する発光体であり、Xが臭化物イオンの場合は、通常480nm以上、好ましくは500nm以上、より好ましくは520nm以上の波長範囲の蛍光を発するものである。また、通常700nm以下、好ましくは600nm以下、より好ましくは580nm以下の波長範囲の蛍光を発するものである。
 上記の上限値及び下限値は任意に組み合わせることができる。
≪Emission spectrum≫
The compound having a perovskite structure according to the present embodiment is a light emitter that emits fluorescence in the visible light wavelength region. When X is a bromide ion, it is usually 480 nm or more, preferably 500 nm or more, more preferably 520 nm or more. It emits fluorescence. Further, it emits fluorescence in a wavelength range of usually 700 nm or less, preferably 600 nm or less, more preferably 580 nm or less.
The above upper limit value and lower limit value can be arbitrarily combined.
 本実施形態のペロブスカイト構造を有する化合物の最大発光強度は、蛍光光度計を用いて測定した可視光波長領域の最大強度と、紫外可視吸光光度計を用いて測定した励起光の透過率から求めることができる。
 蛍光光度計としては、例えば、日本分光製の蛍光光度計(FT-6500)を用いることができる。紫外可視吸光光度計としては、例えば、日本分光製の紫外可視吸光光度計(商品名:V-670)を用いることができる。
 本実施形態において前記化合物の最大発光強度は、下記式(S)に従って補正した値とする。下記式(S)中、Pmaxは、可視光波長領域の最大強度であり、Epは、励起光の透過率(%)を示す。
 Pmax/(100-Ep) ×100  …(S)
The maximum emission intensity of the compound having the perovskite structure of the present embodiment is obtained from the maximum intensity in the visible light wavelength region measured using a fluorometer and the transmittance of excitation light measured using an ultraviolet-visible absorptiometer. Can do.
As the fluorometer, for example, a spectrofluorometer (FT-6500) manufactured by JASCO Corporation can be used. As the ultraviolet-visible absorptiometer, for example, an ultraviolet-visible absorptiometer (trade name: V-670) manufactured by JASCO Corporation can be used.
In this embodiment, the maximum light emission intensity of the compound is a value corrected according to the following formula (S). In the following formula (S), Pmax is the maximum intensity in the visible light wavelength region, and Ep indicates the transmittance (%) of excitation light.
Pmax / (100−Ep) × 100 (S)
<発光材料>
 本実施形態は、前記第1実施形態及び前記第2実施形態の化合物を含む発光材料を提供する。
 前記第1実施形態及び前記第2実施形態の化合物を用いた発光材料は、前記第1実施形態及び前記第2実施形態の化合物以外の成分を有していてもよい。例えば、若干の不純物や、ペロブスカイト構造を有さない化合物であって、上述した前記第1実施形態及び前記第2実施形態の化合物と同様又は類似した組成を有する化合物をさらに含んでいてもよい。
 ペロブスカイト構造を有する化合物を含む発光材料の形態は特に限定されるものではなく、用途に応じて適宜決定することができる。前記第1実施形態及び前記第2実施形態の化合物を膜状にした被膜でもよく、粉末状にし、基材に吸着させた吸着体でもよい。
<Light emitting material>
The present embodiment provides a light emitting material including the compounds of the first embodiment and the second embodiment.
The luminescent material using the compounds of the first embodiment and the second embodiment may have components other than the compounds of the first embodiment and the second embodiment. For example, it may further include a compound having a slight impurity or a perovskite structure and having the same or similar composition as the compounds of the first embodiment and the second embodiment described above.
The form of the light emitting material containing the compound having a perovskite structure is not particularly limited, and can be appropriately determined according to the application. A film obtained by forming the compound of the first embodiment and the second embodiment into a film form, or an adsorbent formed into a powder form and adsorbed on a base material may be used.
 本実施形態のペロブスカイト構造を有する化合物の被膜あるいは吸着体は、前記第1実施形態及び前記第2実施形態の化合物を有機溶媒に溶解した後、グラビア塗布法、バー塗布法、印刷法、スプレー法、スピンコーティング法、ディップ法、又はダイコート法等の塗布方法によって形成できる。 The film or adsorbent of the compound having the perovskite structure of the present embodiment is obtained by dissolving the compound of the first embodiment and the second embodiment in an organic solvent, and then applying the gravure coating method, bar coating method, printing method, spraying method. , And a coating method such as a spin coating method, a dip method, or a die coating method.
 有機溶媒は、上述のA、Pb、M、X、及びその他の溶解前の成分を溶解してイオンとし得るものであれば特に限定されるものではない。有機溶媒は、各種有機化合物及び分岐構造若しくは環状構造を有していてもよく、-O-、-CO-、-COO-、又は、-OH等の官能基を複数有していてもよく、水素原子がフッ素等のハロゲン原子で置換されていてもよい。有機溶媒としては、例えば、メチルホルメート、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート、若しくはペンチルアセテート等のエステル類;γ-ブチロラクトン、N‐メチル-2-ピロリドン、アセトン、ジメチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、若しくはメチルシクロヘキサノン等のケトン類;ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4-ジオキサン、1,3-ジオキソラン、4-メチルジオキソラン、テトラヒドロフラン、メチルテトラヒドロフラン、アニソール、若しくはフェネトール等のエーテル類;メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、tert-ブタノール、1-ペンタノール、2-メチル-2-ブタノール、メトキシプロパノール、ジアセトンアルコール、シクロヘキサノール、2-フルオロエタノール、2,2,2-トリフルオロエタノール、若しくは2,2,3,3-テトラフルオロ-1-プロパノール等のアルコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、若しくはトリエチレングリコールジメチルエーテル等のグリコールエーテル類;N,N-ジメチルホルムアミド、アセトアミド、若しくはN,N-ジメチルアセトアミド等のアミド系有機溶媒;アセトニトリル、イソブチロニトリル、プロピオニトリル、若しくはメトキシアセトニトリル等のニトリル系有機溶媒;エチレンカーボネート、若しくはプロピレンカーボネート等のカーボート系有機溶媒;塩化メチレン、ジクロロメタン、若しくはクロロホルム等のハロゲン化炭化水素系有機溶媒;n-ペンタン、シクロヘキサン、n-ヘキサン、ベンゼン、トルエン、若しくはキシレン等の炭化水素系有機溶媒;又は、ジメチルスルホキシド等が挙げられる。 The organic solvent is not particularly limited as long as it can dissolve the aforementioned A, Pb, M, X, and other components before dissolution into ions. The organic solvent may have various organic compounds and a branched structure or a cyclic structure, and may have a plurality of functional groups such as —O—, —CO—, —COO—, or —OH, The hydrogen atom may be substituted with a halogen atom such as fluorine. Examples of the organic solvent include esters such as methyl formate, ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate, or pentyl acetate; γ-butyrolactone, N-methyl-2-pyrrolidone, acetone , Ketones such as dimethyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, or methylcyclohexanone; diethyl ether, methyl-tert-butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane , Ethers such as 4-methyldioxolane, tetrahydrofuran, methyltetrahydrofuran, anisole or phenetole; methanol, ethanol, 1-propanol 2-propanol, 1-butanol, 2-butanol, tert-butanol, 1-pentanol, 2-methyl-2-butanol, methoxypropanol, diacetone alcohol, cyclohexanol, 2-fluoroethanol, 2,2,2- Alcohols such as trifluoroethanol or 2,2,3,3-tetrafluoro-1-propanol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, or triethylene Glycol ethers such as glycol dimethyl ether; Amide organic solvents such as N, N-dimethylformamide, acetamide, or N, N-dimethylacetamide; Acetonitrile Nitrile organic solvents such as isobutyronitrile, propionitrile, or methoxyacetonitrile; carboat organic solvents such as ethylene carbonate or propylene carbonate; halogenated hydrocarbon organic solvents such as methylene chloride, dichloromethane, or chloroform; Examples include hydrocarbon organic solvents such as n-pentane, cyclohexane, n-hexane, benzene, toluene, and xylene; or dimethyl sulfoxide.
 また、前記第1実施形態及び前記第2実施形態の化合物を上記有機溶媒に溶解した溶液を塗布した後、必要に応じて減圧、乾燥及び送風のいずれか1以上を行い、有機溶媒を揮発させることが好ましい。乾燥は常温下で行ってもよく、加熱して行ってもよい。加熱する場合の温度は、乾燥にかかる時間と基板の耐熱性とを考慮して適宜決定することができるが、50~200℃が好ましく、50~100℃がより好ましい。 Moreover, after apply | coating the solution which melt | dissolved the compound of the said 1st Embodiment and the said 2nd Embodiment in the said organic solvent, any one or more of pressure reduction, drying, and ventilation is performed as needed, and an organic solvent is volatilized. It is preferable. Drying may be performed at room temperature or by heating. The temperature for heating can be appropriately determined in consideration of the time required for drying and the heat resistance of the substrate, but is preferably 50 to 200 ° C., more preferably 50 to 100 ° C.
 なお、本実施形態の技術範囲は上述した実施形態に限定されるものではなく、本実施形態の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 Note that the technical scope of the present embodiment is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present embodiment.
 以下、実施例及び比較例に基づいて本発明の実施態様をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, embodiments of the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.
(ペロブスカイト構造を有する化合物の合成)
[実施例1]
 2.5cm×2.5cmサイズのガラス基板を用意した。このガラス基板をオゾンUV処理した。
 70℃で臭化鉛(PbBr)をN,N-ジメチルホルムアミド(以下、「DMF」と記載する)の溶媒に溶解して0.1Mの濃度の臭化鉛溶液を作製した。同様に、70℃で臭化カルシウム(CaBr)をDMFの溶媒に溶解して0.1Mの濃度の臭化カルシウム溶液を作製した。次いで、70℃で臭化メチルアンモニウム(CHNHBr)をDMFの溶媒に溶解して0.1Mの濃度の臭化メチルアンモニウム溶液を作製した。
 上記の臭化鉛溶液と臭化カルシウム溶液をモル比でCa/(Ca+Pb)が0.03となるように混合し溶液を作製した。得られた混合溶液と、上記の臭化メチルアンモニウム溶液を、モル比で臭化メチルアンモニウム/(Ca+Pb)=1となるように更に溶液を混合した。
 上記のガラス基板に、1000rpmの回転数で前記溶液をスピンコートにより塗布し、大気中100℃で10分間乾燥させることで、ペロブスカイト構造を有する化合物の塗布膜を得た。
 前記塗布膜の化合物を、X線回折(XRD、Cu Kα線、X’pert PRO MPD, スペクトリス社製)の手段で測定することにより、2θ=14°の位置に(hkl)=(001)由来のピークを有しており、3次元のペロブスカイト構造であることを確認した。
(Synthesis of compounds having a perovskite structure)
[Example 1]
A glass substrate having a size of 2.5 cm × 2.5 cm was prepared. This glass substrate was treated with ozone UV.
Lead bromide (PbBr 2 ) was dissolved in a solvent of N, N-dimethylformamide (hereinafter referred to as “DMF”) at 70 ° C. to prepare a lead bromide solution having a concentration of 0.1M. Similarly, calcium bromide (CaBr 2 ) was dissolved in a DMF solvent at 70 ° C. to prepare a calcium bromide solution having a concentration of 0.1M. Next, methylammonium bromide (CH 3 NH 3 Br) was dissolved in DMF solvent at 70 ° C. to prepare a methylammonium bromide solution having a concentration of 0.1M.
The above lead bromide solution and calcium bromide solution were mixed so that the molar ratio of Ca / (Ca + Pb) was 0.03 to prepare a solution. The obtained mixed solution and the above methylammonium bromide solution were further mixed so that the molar ratio was methylammonium bromide / (Ca + Pb) = 1.
The solution was applied to the glass substrate by spin coating at a rotation speed of 1000 rpm, and dried in air at 100 ° C. for 10 minutes to obtain a coating film of a compound having a perovskite structure.
The compound of the coating film is measured by means of X-ray diffraction (XRD, Cu Kα ray, X'pert PRO MPD, manufactured by Spectris Co.), and (hkl) = (001) origin at a position of 2θ = 14 °. It was confirmed that the structure had a three-dimensional perovskite structure.
[実施例2]
 Ca/(Ca+Pb)を0.05とする以外は上記実施例1と同様の方法でペロブスカイト構造を有する化合物の塗布膜を得た。
[Example 2]
A coating film of a compound having a perovskite structure was obtained in the same manner as in Example 1 except that Ca / (Ca + Pb) was set to 0.05.
[実施例3]
 Ca/(Ca+Pb)を0.1とする以外は上記実施例1と同様の方法でペロブスカイト構造を有する化合物の塗布膜を得た。
[Example 3]
A coating film of a compound having a perovskite structure was obtained in the same manner as in Example 1 except that Ca / (Ca + Pb) was 0.1.
[実施例4]
 Ca/(Ca+Pb)を0.2とする以外は上記実施例1と同様の方法でペロブスカイト構造を有する化合物の塗布膜を得た。
[Example 4]
A coating film of a compound having a perovskite structure was obtained in the same manner as in Example 1 except that Ca / (Ca + Pb) was 0.2.
[比較例1]
 2.5cm×2.5cmサイズのガラス基板を用意した。このガラス基板をオゾンUV処理した。
 70℃で臭化鉛(PbBr)をDMFの溶媒に溶解して0.1Mの濃度の臭化鉛溶液を作製した。70℃で臭化メチルアンモニウム(CHNHBr)をDMFの溶媒に溶解して0.1Mの濃度の臭化メチルアンモニウム溶液を作製した。次いで、モル比で臭化メチルアンモニウム/Pb=1となるように溶液を混合した。
 上記のガラス基板に、1000rpmの回転数で前記溶液をスピンコートにより塗布し、100℃で10分間乾燥させることで、ペロブスカイト構造を有する化合物の塗布膜を得た。
[Comparative Example 1]
A glass substrate having a size of 2.5 cm × 2.5 cm was prepared. This glass substrate was treated with ozone UV.
Lead bromide (PbBr 2 ) was dissolved in a DMF solvent at 70 ° C. to prepare a lead bromide solution having a concentration of 0.1M. At 70 ° C., methylammonium bromide (CH 3 NH 3 Br) was dissolved in a DMF solvent to prepare a methylammonium bromide solution having a concentration of 0.1M. Next, the solution was mixed so that methylammonium bromide / Pb = 1 by molar ratio.
The solution was applied to the glass substrate by spin coating at a rotation speed of 1000 rpm, and dried at 100 ° C. for 10 minutes to obtain a coating film of a compound having a perovskite structure.
[比較例2]
 2.5cm×2.5cmサイズのガラス基板を用意した。このガラス基板をオゾンUV処理した。
 70℃でヨウ化鉛(PbI)をDMFの溶媒に溶解して0.1Mの濃度のヨウ化鉛溶液を作製した。70℃でヨウ化メチルアンモニウム(CHNHI)をDMFの溶媒に溶解して0.1Mの濃度のヨウ化メチルアンモニウム溶液を作製した。次いで、モル比でヨウ化メチルアンモニウム/Pb=1となるように溶液を混合した。
 上記のガラス基板に、1000rpmの回転数で前記溶液をスピンコートにより塗布し、100℃で10分間乾燥させることで、ペロブスカイト構造を有する化合物の塗布膜を得た。
[Comparative Example 2]
A glass substrate having a size of 2.5 cm × 2.5 cm was prepared. This glass substrate was treated with ozone UV.
Lead iodide (PbI 2 ) was dissolved in a DMF solvent at 70 ° C. to prepare a 0.1 M concentration lead iodide solution. Methyl ammonium iodide (CH 3 NH 3 I) was dissolved in a DMF solvent at 70 ° C. to prepare a methyl ammonium iodide solution having a concentration of 0.1M. Next, the solution was mixed so that methylammonium iodide / Pb = 1 by molar ratio.
The solution was applied to the glass substrate by spin coating at a rotation speed of 1000 rpm, and dried at 100 ° C. for 10 minutes to obtain a coating film of a compound having a perovskite structure.
[比較例3]
 2.5cm×2.5cmサイズのガラス基板を用意した。このガラス基板をオゾンUV処理した。
 70℃でヨウ化鉛(PbI)をDMFの溶媒に溶解して0.1Mの濃度のヨウ化鉛溶液を作製した。同様に、70℃でヨウ化カルシウム(CaI)をDMFの溶媒に溶解して0.1Mの濃度のヨウ化カルシウム溶液を作製した。
 上記のヨウ化鉛溶液とヨウ化カルシウム溶液をモル比でCa/(Ca+Pb)が0.05となるように混合し溶液を作製した。得られた混合溶液と、[実施例1]に記載の臭化メチルアンモニウム溶液を、モル比で臭化メチルアンモニウム/(Ca+Pb)=1となるように更に溶液を混合した。
 上記のガラス基板に、1000rpmの回転数で前記溶液をスピンコートにより塗布し、大気中100℃で10分間乾燥させることで、ペロブスカイト構造を有する化合物の塗布膜を得た。
[Comparative Example 3]
A glass substrate having a size of 2.5 cm × 2.5 cm was prepared. This glass substrate was treated with ozone UV.
Lead iodide (PbI 2 ) was dissolved in a DMF solvent at 70 ° C. to prepare a 0.1 M concentration lead iodide solution. Similarly, calcium iodide (CaI 2 ) was dissolved in a DMF solvent at 70 ° C. to prepare a calcium iodide solution having a concentration of 0.1M.
The above lead iodide solution and calcium iodide solution were mixed so that the molar ratio of Ca / (Ca + Pb) was 0.05 to prepare a solution. The obtained mixed solution and the methylammonium bromide solution described in [Example 1] were further mixed so that the molar ratio was methylammonium bromide / (Ca + Pb) = 1.
The solution was applied to the glass substrate by spin coating at a rotation speed of 1000 rpm, and dried in air at 100 ° C. for 10 minutes to obtain a coating film of a compound having a perovskite structure.
(発光スペクトル測定)
 実施例1~4及び比較例1で得られたペロブスカイト構造を有する化合物の塗布膜の発光スペクトルを、蛍光光度計(日本分光製、商品名FT-6500、430nm以下波長カットフィルター、励起光430nm、感度high)を用いて測定した。また、前記塗布膜の紫外可視吸光光度計を用いて透過率(%)を測定した。紫外可視吸光光度計としては、日本分光製、商品名V-670を用いた(以下も同機器を用いた)。
 尚、前記塗布膜間の発光強度の比較は、波長530nm付近の最大発光強度を、以下の式(S)-1で補正して行った。
 [波長530nm付近の最大発光強度/(100-波長430nmの透過率)]×100 … (S)-1
(Measurement of emission spectrum)
The emission spectra of the coating films of the compounds having the perovskite structure obtained in Examples 1 to 4 and Comparative Example 1 were measured with a fluorometer (trade name FT-6500, manufactured by JASCO Corporation, trade name FT-6500, wavelength cut filter, excitation light 430 nm, Sensitivity high). Moreover, the transmittance | permeability (%) was measured using the ultraviolet visible absorptiometer of the said coating film. As a UV-visible absorptiometer, a product name V-670 manufactured by JASCO was used (hereinafter, the same device was also used).
In addition, the comparison of the luminescence intensity between the coating films was performed by correcting the maximum luminescence intensity near the wavelength of 530 nm by the following formula (S) -1.
[Maximum emission intensity near wavelength 530 nm / (100-transmittance at wavelength 430 nm)] × 100 (S) -1
(発光スペクトル測定)
 比較例2、及び3で得られたペロブスカイト構造を有する化合物の塗布膜の発光スペクトルを、蛍光光度計(日本分光製、商品名FT-6500、600nm以下波長カットフィルター、励起光550nm、感度high)を用いて測定した。また、前記塗布膜の紫外可視吸光光度計を用いて透過率を測定した。
 尚、前記塗布膜間の発光強度の比較は、波長750nm付近の最大発光強度を、以下の式(S)-2で補正して行った。
 [波長750nm付近の最大発光強度/(100-波長550nmの透過率)]×100 … (S)-2
(Measurement of emission spectrum)
The emission spectrum of the coating film of the compound having the perovskite structure obtained in Comparative Examples 2 and 3 was measured with a fluorometer (manufactured by JASCO, trade name FT-6500, wavelength cut filter of 600 nm or less, excitation light 550 nm, sensitivity high). It measured using. Further, the transmittance was measured using an ultraviolet-visible absorptiometer of the coating film.
In addition, the comparison of the luminescence intensity between the coating films was performed by correcting the maximum luminescence intensity near the wavelength of 750 nm by the following formula (S) -2.
[Maximum emission intensity near wavelength 750 nm / (100−transmittance at wavelength 550 nm)] × 100 (S) -2
 以下の表1に、実施例1~4、比較例1~3のペロブスカイト構造を有する化合物の溶液作成における構成と、最大発光強度を記載する。表1中、「M/(M+Pb)」は上記一般式(1)中の「a」の仕込み比における値である。 Table 1 below shows the composition of the compounds having the perovskite structure of Examples 1 to 4 and Comparative Examples 1 to 3 and the maximum emission intensity. In Table 1, “M / (M + Pb)” is a value in the charging ratio of “a” in the general formula (1).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記の結果から、本実施形態に係るペロブスカイト構造を有する化合物を含む実施例1~4の発光材料は、比較例1~3のペロブスカイト構造を有する化合物と比して、優れた発光強度を有していることが確認できた。 From the above results, the light-emitting materials of Examples 1 to 4 including the compound having the perovskite structure according to the present embodiment have excellent emission intensity as compared with the compounds having the perovskite structure of Comparative Examples 1 to 3. It was confirmed that
(ペロブスカイト構造を有する化合物の合成)
[実施例5]
 2.5cm×2.5cmサイズのガラス基板を用意した。このガラス基板をオゾンUV処理した。
 70℃で臭化鉛(PbBr)をDMFの溶媒に溶解して0.1Mの濃度の臭化鉛溶液を作製した。同様に、70℃で臭化ストロンチウム(SrBr)をDMFの溶媒に溶解して0.1Mの濃度の臭化ストロンチウム溶液を作製した。次いで、70℃で臭化メチルアンモニウム(CHNHBr)をDMFの溶媒に溶解して0.1Mの濃度の臭化メチルアンモニウム溶液を作製した。
 上記の臭化鉛溶液と臭化ストロンチウム溶液をモル比でSr/(Sr+Pb)が0.1となるように混合し溶液を作製した。得られた混合溶液と、上記の臭化メチルアンモニウム溶液を、モル比で臭化メチルアンモニウム/(Sr+Pb)=1となるように更に溶液を混合した。
 上記のガラス基板に、1000rpmの回転数で前記溶液をスピンコートにより塗布し、大気中100℃で10分間乾燥させることで、ペロブスカイト構造を有する化合物の塗布膜を得た。
(Synthesis of compounds having a perovskite structure)
[Example 5]
A glass substrate having a size of 2.5 cm × 2.5 cm was prepared. This glass substrate was treated with ozone UV.
Lead bromide (PbBr 2 ) was dissolved in a DMF solvent at 70 ° C. to prepare a lead bromide solution having a concentration of 0.1M. Similarly, strontium bromide (SrBr 2 ) was dissolved in a DMF solvent at 70 ° C. to prepare a strontium bromide solution having a concentration of 0.1M. Next, methylammonium bromide (CH 3 NH 3 Br) was dissolved in DMF solvent at 70 ° C. to prepare a methylammonium bromide solution having a concentration of 0.1M.
The above lead bromide solution and strontium bromide solution were mixed so that the molar ratio of Sr / (Sr + Pb) was 0.1 to prepare a solution. The obtained mixed solution and the above methylammonium bromide solution were further mixed so that the molar ratio was methylammonium bromide / (Sr + Pb) = 1.
The solution was applied to the glass substrate by spin coating at a rotation speed of 1000 rpm, and dried in air at 100 ° C. for 10 minutes to obtain a coating film of a compound having a perovskite structure.
[実施例6]
 Sr/(Sr+Pb)を0.2とした以外は上記実施例5と同様の方法でペロブスカイト構造を有する化合物の塗布膜を得た。
[Example 6]
A coating film of a compound having a perovskite structure was obtained in the same manner as in Example 5 except that Sr / (Sr + Pb) was 0.2.
[実施例7]
 Sr/(Sr+Pb)を0.3とした以外は上記実施例5と同様の方法でペロブスカイト構造を有する化合物の塗布膜を得た。
[Example 7]
A coating film of a compound having a perovskite structure was obtained in the same manner as in Example 5 except that Sr / (Sr + Pb) was set to 0.3.
[実施例8]
 Sr/(Sr+Pb)を0.5とした以外は上記実施例5と同様の方法でペロブスカイト構造を有する化合物の塗布膜を得た。
[Example 8]
A coating film of a compound having a perovskite structure was obtained in the same manner as in Example 5 except that Sr / (Sr + Pb) was set to 0.5.
[実施例9]
 2.5cm×2.5cmサイズのガラス基板を用意した。このガラス基板をオゾンUV処理した。
 70℃で臭化鉛(PbBr)をDMFの溶媒に溶解して0.1Mの濃度の臭化鉛溶液を作製した。同様に、70℃で臭化ランタン(LaBr)をDMFの溶媒に溶解して0.1Mの濃度の臭化ランタン溶液を作製した。次いで、70℃で臭化メチルアンモニウム(CHNHBr)をDMFの溶媒に溶解して0.1Mの濃度の臭化メチルアンモニウム溶液を作製した。
 上記の臭化鉛溶液と臭化ストロンチウム溶液をモル比でLa/(La+Pb)が0.05となるように混合し溶液を作製した。得られた混合溶液と、上記の臭化メチルアンモニウム溶液を、モル比で臭化メチルアンモニウム/(La+Pb)=1となるように更に溶液を混合した。
 上記のガラス基板に、1000rpmの回転数で前記溶液をスピンコートにより塗布し、大気中100℃で10分間乾燥させることで、ペロブスカイト構造を有する化合物の塗布膜を得た。
[Example 9]
A glass substrate having a size of 2.5 cm × 2.5 cm was prepared. This glass substrate was treated with ozone UV.
Lead bromide (PbBr 2 ) was dissolved in a DMF solvent at 70 ° C. to prepare a lead bromide solution having a concentration of 0.1M. Similarly, lanthanum bromide (LaBr 3 ) was dissolved in a DMF solvent at 70 ° C. to prepare a lanthanum bromide solution having a concentration of 0.1M. Next, methylammonium bromide (CH 3 NH 3 Br) was dissolved in DMF solvent at 70 ° C. to prepare a methylammonium bromide solution having a concentration of 0.1M.
The above lead bromide solution and strontium bromide solution were mixed so that La / (La + Pb) was 0.05 by molar ratio to prepare a solution. The obtained mixed solution and the above methylammonium bromide solution were further mixed so that the molar ratio was methylammonium bromide / (La + Pb) = 1.
The solution was applied to the glass substrate by spin coating at a rotation speed of 1000 rpm, and dried in air at 100 ° C. for 10 minutes to obtain a coating film of a compound having a perovskite structure.
[実施例10]
 La/(La+Pb)を0.1とした以外は実施例9と同様の方法でペロブスカイト構造を有する化合物の塗布膜を得た。
[Example 10]
A coating film of a compound having a perovskite structure was obtained in the same manner as in Example 9 except that La / (La + Pb) was set to 0.1.
(発光スペクトル測定)
  発光強度の比較方法は上記実施例1~4及び比較例1と同様の方法で行なった。
(Measurement of emission spectrum)
The light emission intensity was compared in the same manner as in Examples 1 to 4 and Comparative Example 1 above.
 以下の表2に、実施例5~10及び比較例1のペロブスカイト構造を有する化合物の溶液作成における構成と、最大発光強度を記載する。表2中、「M/(M+Pb)」は上記一般式(1)中の「a」の仕込み比における値である。 In Table 2 below, the composition of the compounds having the perovskite structure of Examples 5 to 10 and Comparative Example 1 and the maximum emission intensity are described. In Table 2, “M / (M + Pb)” is a value in the charging ratio of “a” in the general formula (1).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記の結果から、本実施形態に係るペロブスカイト構造を有する化合物を含む実施例5~10の発光材料は、比較例1のペロブスカイト構造を有する化合物と比して、優れた発光強度を有していることが確認できた。 From the above results, the light emitting materials of Examples 5 to 10 including the compound having the perovskite structure according to the present embodiment have superior light emission intensity as compared with the compound having the perovskite structure of Comparative Example 1. I was able to confirm.
≪ICP-MSによる測定≫
 実施例5~8で得られたガラス基板上のペロブスカイト型結晶構造を有する化合物に対して硝酸1mL添加し、ペロブスカイト型結晶構造を有する化合物を溶解させた。溶解後の溶液をイオン交換水で合計10mlとし、ICP-MS(ELAN DRCII、パーキンエルマー製)によってPb、及びMの量を測定し、ペロブスカイト型結晶構造を有する化合物に含まれるMの量を(M)/(M+Pb)の式に当てはめて評価した。
 ICP-MSによる測定の結果、実施例5の[M/(M+Pb)]の値が0.10であった。
 ICP-MSによる測定の結果、実施例6の[M/(M+Pb)]の値が0.20であった。
 ICP-MSによる測定の結果、実施例7の[M/(M+Pb)]の値が0.29であった。
 ICP-MSによる測定の結果、実施例8の[M/(M+Pb)]の値が0.51であった。
≪Measurement by ICP-MS≫
1 mL of nitric acid was added to the compound having a perovskite type crystal structure on the glass substrate obtained in Examples 5 to 8, and the compound having a perovskite type crystal structure was dissolved. The solution after dissolution is made up to 10 ml in total with ion-exchanged water, the amounts of Pb and M are measured by ICP-MS (ELAN DRCII, manufactured by PerkinElmer), and the amount of M contained in the compound having a perovskite crystal structure is ( The evaluation was applied to the equation of M) / (M + Pb).
As a result of measurement by ICP-MS, the value of [M / (M + Pb)] in Example 5 was 0.10.
As a result of measurement by ICP-MS, the value of [M / (M + Pb)] in Example 6 was 0.20.
As a result of measurement by ICP-MS, the value of [M / (M + Pb)] in Example 7 was 0.29.
As a result of measurement by ICP-MS, the value of [M / (M + Pb)] in Example 8 was 0.51.
[実施例11]
 2.5cm×2.5cmサイズのガラス基板を用意した。このガラス基板をオゾンUV処理した。
 70℃で臭化鉛(PbBr)をN,N-ジメチルホルムアミド(以下、「DMF」と記載する)の溶媒に溶解して0.1Mの濃度の臭化鉛溶液を作製した。同様に、70℃で臭化バリウム(BaBr)をDMFの溶媒に溶解して0.1Mの濃度の臭化バリウム溶液を作製した。次いで、70℃で臭化メチルアンモニウム(CHNHBr)をDMFの溶媒に溶解して0.1Mの濃度の臭化メチルアンモニウム溶液を作製した。
 上記の臭化鉛溶液と臭化バリウム溶液をモル比でBa/(Ba+Pb)が0.03となるように混合し溶液を作製した。得られた混合溶液と、上記の臭化メチルアンモニウム溶液を、モル比で臭化メチルアンモニウム/(Ba+Pb)=1となるように更に溶液を混合した。
 上記のガラス基板に、1000rpmの回転数で前記溶液をスピンコートにより塗布し、大気中100℃で10分間乾燥させることで、ペロブスカイト構造を有する化合物の塗布膜を得た。
[Example 11]
A glass substrate having a size of 2.5 cm × 2.5 cm was prepared. This glass substrate was treated with ozone UV.
Lead bromide (PbBr 2 ) was dissolved in a solvent of N, N-dimethylformamide (hereinafter referred to as “DMF”) at 70 ° C. to prepare a lead bromide solution having a concentration of 0.1M. Similarly, barium bromide (BaBr 2 ) was dissolved in a DMF solvent at 70 ° C. to prepare a barium bromide solution having a concentration of 0.1M. Next, methylammonium bromide (CH 3 NH 3 Br) was dissolved in DMF solvent at 70 ° C. to prepare a methylammonium bromide solution having a concentration of 0.1M.
The above lead bromide solution and barium bromide solution were mixed so that Ba / (Ba + Pb) was 0.03 in molar ratio to prepare a solution. The obtained mixed solution and the above methylammonium bromide solution were further mixed so that the molar ratio was methylammonium bromide / (Ba + Pb) = 1.
The solution was applied to the glass substrate by spin coating at a rotation speed of 1000 rpm, and dried in air at 100 ° C. for 10 minutes to obtain a coating film of a compound having a perovskite structure.
[実施例12]
 Ba/(Ba+Pb)を0.05とする以外は上記実施例11と同様の方法でペロブスカイト構造を有する化合物の塗布膜を得た。
[Example 12]
A coating film of a compound having a perovskite structure was obtained in the same manner as in Example 11 except that Ba / (Ba + Pb) was set to 0.05.
[実施例13]
 Ba/(Ba+Pb)を0.1とする以外は上記実施例11と同様の方法でペロブスカイト構造を有する化合物の塗布膜を得た。
[Example 13]
A coating film of a compound having a perovskite structure was obtained in the same manner as in Example 11 except that Ba / (Ba + Pb) was 0.1.
[実施例14]
 2.5cm×2.5cmサイズのガラス基板を用意した。このガラス基板をオゾンUV処理した。
 70℃で臭化鉛(PbBr)をN,N-ジメチルホルムアミド(以下、「DMF」と記載する)の溶媒に溶解して0.1Mの濃度の臭化鉛溶液を作製した。同様に、70℃で臭化ジスプロシウム(DyBr)をDMFの溶媒に溶解して0.1Mの濃度の臭化ジスプロシウム溶液を作製した。次いで、70℃で臭化メチルアンモニウム(CHNHBr)をDMFの溶媒に溶解して0.1Mの濃度の臭化メチルアンモニウム溶液を作製した。
 上記の臭化鉛溶液と臭化ジスプロシウム溶液をモル比でDy/(Dy+Pb)が0.1となるように混合し溶液を作製した。得られた混合溶液と、上記の臭化メチルアンモニウム溶液を、モル比で臭化メチルアンモニウム/(Dy+Pb)=1となるように更に溶液を混合した。
 上記のガラス基板に、1000rpmの回転数で前記溶液をスピンコートにより塗布し、大気中100℃で10分間乾燥させることで、ペロブスカイト構造を有する化合物の塗布膜を得た。
[Example 14]
A glass substrate having a size of 2.5 cm × 2.5 cm was prepared. This glass substrate was treated with ozone UV.
Lead bromide (PbBr 2 ) was dissolved in a solvent of N, N-dimethylformamide (hereinafter referred to as “DMF”) at 70 ° C. to prepare a lead bromide solution having a concentration of 0.1M. Similarly, dysprosium bromide (DyBr 3 ) was dissolved in a DMF solvent at 70 ° C. to prepare a dysprosium bromide solution having a concentration of 0.1M. Next, methylammonium bromide (CH 3 NH 3 Br) was dissolved in DMF solvent at 70 ° C. to prepare a methylammonium bromide solution having a concentration of 0.1M.
The above lead bromide solution and dysprosium bromide solution were mixed so that the molar ratio Dy / (Dy + Pb) was 0.1 to prepare a solution. The obtained mixed solution and the above methylammonium bromide solution were further mixed so that the molar ratio was methylammonium bromide / (Dy + Pb) = 1.
The solution was applied to the glass substrate by spin coating at a rotation speed of 1000 rpm, and dried in air at 100 ° C. for 10 minutes to obtain a coating film of a compound having a perovskite structure.
[実施例15]
 2.5cm×2.5cmサイズのガラス基板を用意した。このガラス基板をオゾンUV処理した。
 70℃で臭化鉛(PbBr)をN,N-ジメチルホルムアミド(以下、「DMF」と記載する)の溶媒に溶解して0.1Mの濃度の臭化鉛溶液を作製した。同様に、70℃で臭化カルシウム(CaBr)をDMFの溶媒に溶解して0.1Mの濃度の臭化カルシウム溶液を作製した。次いで、70℃で塩化メチルアンモニウム(CHNHCl)をDMFの溶媒に溶解して0.1Mの濃度の塩化メチルアンモニウム溶液を作製した。
 上記の臭化鉛溶液と臭化カルシウム溶液をモル比でCa/(Ca+Pb)が0.1となるように混合し溶液を作製した。得られた混合溶液と、上記の塩化メチルアンモニウム溶液を、モル比で塩化メチルアンモニウム/(Ca+Pb)=1となるように更に溶液を混合した。
 上記のガラス基板に、1000rpmの回転数で前記溶液をスピンコートにより塗布し、大気中100℃で10分間乾燥させることで、ペロブスカイト構造を有する化合物の塗布膜を得た。
[Example 15]
A glass substrate having a size of 2.5 cm × 2.5 cm was prepared. This glass substrate was treated with ozone UV.
Lead bromide (PbBr 2 ) was dissolved in a solvent of N, N-dimethylformamide (hereinafter referred to as “DMF”) at 70 ° C. to prepare a lead bromide solution having a concentration of 0.1M. Similarly, calcium bromide (CaBr 2 ) was dissolved in a DMF solvent at 70 ° C. to prepare a calcium bromide solution having a concentration of 0.1M. Next, methylammonium chloride (CH 3 NH 3 Cl) was dissolved in a DMF solvent at 70 ° C. to prepare a 0.1M concentration methylammonium chloride solution.
The above lead bromide solution and calcium bromide solution were mixed so that the molar ratio of Ca / (Ca + Pb) was 0.1 to prepare a solution. The obtained mixed solution and the above methylammonium chloride solution were further mixed so that the molar ratio was methylammonium chloride / (Ca + Pb) = 1.
The solution was applied to the glass substrate by spin coating at a rotation speed of 1000 rpm, and dried in air at 100 ° C. for 10 minutes to obtain a coating film of a compound having a perovskite structure.
[実施例16]
 2.5cm×2.5cmサイズのガラス基板を用意した。このガラス基板をオゾンUV処理した。
 70℃で臭化鉛(PbBr)をN,N-ジメチルホルムアミド(以下、「DMF」と記載する)の溶媒に溶解して0.1Mの濃度の臭化鉛溶液を作製した。同様に、70℃で臭化カルシウム(CaBr)をDMFの溶媒に溶解して0.1Mの濃度の臭化カルシウム溶液を作製した。次いで、70℃でヨウ化メチルアンモニウム(CHNHI)をDMFの溶媒に溶解して0.1Mの濃度のヨウ化メチルアンモニウム溶液を作製した。
 上記の臭化鉛溶液と臭化カルシウム溶液をモル比でCa/(Ca+Pb)が0.1となるように混合し溶液を作製した。得られた混合溶液と、上記のヨウ化メチルアンモニウム溶液を、モル比でヨウ化メチルアンモニウム/(Ca+Pb)=1となるように更に溶液を混合した。
 上記のガラス基板に、1000rpmの回転数で前記溶液をスピンコートにより塗布し、大気中100℃で10分間乾燥させることで、ペロブスカイト構造を有する化合物の塗布膜を得た。
[Example 16]
A glass substrate having a size of 2.5 cm × 2.5 cm was prepared. This glass substrate was treated with ozone UV.
Lead bromide (PbBr 2 ) was dissolved in a solvent of N, N-dimethylformamide (hereinafter referred to as “DMF”) at 70 ° C. to prepare a lead bromide solution having a concentration of 0.1M. Similarly, calcium bromide (CaBr 2 ) was dissolved in a DMF solvent at 70 ° C. to prepare a calcium bromide solution having a concentration of 0.1M. Next, methylammonium iodide (CH 3 NH 3 I) was dissolved in a DMF solvent at 70 ° C. to prepare a methylammonium iodide solution having a concentration of 0.1M.
The above lead bromide solution and calcium bromide solution were mixed so that the molar ratio of Ca / (Ca + Pb) was 0.1 to prepare a solution. The obtained mixed solution and the above methylammonium iodide solution were further mixed so that the molar ratio was methylammonium iodide / (Ca + Pb) = 1.
The solution was applied to the glass substrate by spin coating at a rotation speed of 1000 rpm, and dried in air at 100 ° C. for 10 minutes to obtain a coating film of a compound having a perovskite structure.
[比較例4]
 2.5cm×2.5cmサイズのガラス基板を用意した。このガラス基板をオゾンUV処理した。
 70℃で臭化鉛(PbBr)をN,N-ジメチルホルムアミド(以下、「DMF」と記載する)の溶媒に溶解して0.1Mの濃度の臭化鉛溶液を作製した。次いで、70℃で塩化メチルアンモニウム(CHNHCl)をDMFの溶媒に溶解して0.1Mの濃度の塩化メチルアンモニウム溶液を作製した。次いで、モル比で塩化メチルアンモニウム/(Pb)=1となるように更に溶液を混合した。
 上記のガラス基板に、1000rpmの回転数で前記溶液をスピンコートにより塗布し、大気中100℃で10分間乾燥させることで、ペロブスカイト構造を有する化合物の塗布膜を得た。
[Comparative Example 4]
A glass substrate having a size of 2.5 cm × 2.5 cm was prepared. This glass substrate was treated with ozone UV.
Lead bromide (PbBr 2 ) was dissolved in a solvent of N, N-dimethylformamide (hereinafter referred to as “DMF”) at 70 ° C. to prepare a lead bromide solution having a concentration of 0.1M. Next, methylammonium chloride (CH 3 NH 3 Cl) was dissolved in a DMF solvent at 70 ° C. to prepare a 0.1M concentration methylammonium chloride solution. Subsequently, the solution was further mixed so that the molar ratio was methylammonium chloride / (Pb) = 1.
The solution was applied to the glass substrate by spin coating at a rotation speed of 1000 rpm, and dried in air at 100 ° C. for 10 minutes to obtain a coating film of a compound having a perovskite structure.
 [比較例5]
 2.5cm×2.5cmサイズのガラス基板を用意した。このガラス基板をオゾンUV処理した。
 70℃で臭化鉛(PbBr)をN,N-ジメチルホルムアミド(以下、「DMF」と記載する)の溶媒に溶解して0.1Mの濃度の臭化鉛溶液を作製した。次いで、70℃でヨウ化メチルアンモニウム(CHNHI)をDMFの溶媒に溶解して0.1Mの濃度のヨウ化メチルアンモニウム溶液を作製した。次いで、モル比でヨウ化メチルアンモニウム/(Pb)=1となるように更に溶液を混合した。
 上記のガラス基板に、1000rpmの回転数で前記溶液をスピンコートにより塗布し、大気中100℃で10分間乾燥させることで、ペロブスカイト構造を有する化合物の塗布膜を得た。
[Comparative Example 5]
A glass substrate having a size of 2.5 cm × 2.5 cm was prepared. This glass substrate was treated with ozone UV.
Lead bromide (PbBr 2 ) was dissolved in a solvent of N, N-dimethylformamide (hereinafter referred to as “DMF”) at 70 ° C. to prepare a lead bromide solution having a concentration of 0.1M. Next, methylammonium iodide (CH 3 NH 3 I) was dissolved in a DMF solvent at 70 ° C. to prepare a methylammonium iodide solution having a concentration of 0.1M. Next, the solution was further mixed so that methylammonium iodide / (Pb) = 1 in molar ratio.
The solution was applied to the glass substrate by spin coating at a rotation speed of 1000 rpm, and dried in air at 100 ° C. for 10 minutes to obtain a coating film of a compound having a perovskite structure.
 (発光スペクトル測定)
 実施例11~14で得られたペロブスカイト構造を有する化合物の塗布膜の発光スペクトルを、蛍光光度計(日本分光製、商品名FT-6500、励起光430nm、感度High)を用いて測定した。また、前記塗布膜の紫外可視吸光光度計を用いて透過率(%)を測定した。
 尚、前記塗布膜間の発光強度の比較は、波長530nm付近の最大発光強度を、以下の式(S)-3で補正して行った。
[波長530nm付近の最大発光強度/(100-波長430nmの透過率)]×100 … (S)-3
(Measurement of emission spectrum)
The emission spectrum of the coating film of the compound having the perovskite structure obtained in Examples 11 to 14 was measured using a fluorometer (manufactured by JASCO Corporation, trade name FT-6500, excitation light 430 nm, sensitivity High). Moreover, the transmittance | permeability (%) was measured using the ultraviolet visible absorptiometer of the said coating film.
The comparison of the emission intensity between the coating films was performed by correcting the maximum emission intensity near the wavelength of 530 nm by the following formula (S) -3.
[Maximum emission intensity near wavelength 530 nm / (100−transmittance at wavelength 430 nm)] × 100 (S) -3
(発光スペクトル測定)
 実施例15及び比較例4で得られたペロブスカイト構造を有する化合物の塗布膜の発光スペクトルを、蛍光光度計(日本分光製、商品名FT-6500、励起光430nm、感度High)を用いて測定した。また、前記塗布膜の紫外可視吸光光度計を用いて透過率(%)を測定した。
 尚、前記塗布膜間の発光強度の比較は、波長500nm付近の最大発光強度を、以下の式(S)-4で補正して行った。
[波長500nm付近の最大発光強度/(100-波長430nmの透過率)]×100 … (S)-4
(Measurement of emission spectrum)
The emission spectrum of the coating film of the compound having the perovskite structure obtained in Example 15 and Comparative Example 4 was measured using a fluorimeter (manufactured by JASCO, trade name FT-6500, excitation light 430 nm, sensitivity High). . Moreover, the transmittance | permeability (%) was measured using the ultraviolet visible absorptiometer of the said coating film.
The comparison of the luminescence intensity between the coating films was performed by correcting the maximum luminescence intensity in the vicinity of a wavelength of 500 nm by the following formula (S) -4.
[Maximum emission intensity near wavelength 500 nm / (100−transmittance at wavelength 430 nm)] × 100 (S) -4
(発光スペクトル測定)
 実施例16及び比較例5で得られたペロブスカイト構造を有する化合物の塗布膜の発光スペクトルを、蛍光光度計(日本分光製、商品名FT-6500、励起光430nm、感度High)を用いて測定した。また、前記塗布膜の紫外可視吸光光度計を用いて透過率(%)を測定した。
 尚、前記塗布膜間の発光強度の比較は、波長540nm付近の最大発光強度を、以下の式(S)-5で補正して行った。
[波長540nm付近の最大発光強度/(100-波長430nmの透過率)]×100 … (S)-5
(Measurement of emission spectrum)
The emission spectrum of the coating film of the compound having the perovskite structure obtained in Example 16 and Comparative Example 5 was measured using a fluorometer (manufactured by JASCO Corporation, trade name FT-6500, excitation light 430 nm, sensitivity High). . Moreover, the transmittance | permeability (%) was measured using the ultraviolet visible absorptiometer of the said coating film.
In addition, the comparison of the luminescence intensity between the coating films was performed by correcting the maximum luminescence intensity in the vicinity of the wavelength of 540 nm by the following formula (S) -5.
[Maximum emission intensity near wavelength 540 nm / (100-transmittance at wavelength 430 nm)] × 100 (S) -5
 以下の表3及び表4に、実施例11~14及び比較例4~5のペロブスカイト構造を有する化合物の溶液作成における構成と、最大発光強度を記載する。表3及び表4中、「M/(M+Pb)」は上記一般式(1)中の「a」の仕込み比における値である。 Tables 3 and 4 below show the composition of the compounds having the perovskite structure of Examples 11 to 14 and Comparative Examples 4 to 5 and the maximum emission intensity. In Tables 3 and 4, “M / (M + Pb)” is a value in the charging ratio of “a” in the general formula (1).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記結果に示した通り、本実施形態を適用した、2価又は3価の金属イオンとしてバリウムイオンを用いた実施例11~13、及びジスプロシウムイオンを用いた実施例14は、本実施形態を適用しない比較例1よりも最大発光強度が高かった。
 また、Xとして2種のハロゲン化物イオン(Br及びCl)を用い、本実施形態を適用した実施例15は本実施形態を適用しない比較例4よりも最大発光強度が高かった。
 同様に、Xとして2種のハロゲン化物イオン(Br及びI)を用い、本実施形態を適用した実施例16は本実施形態を適用しない比較例5よりも最大発光強度が高かった。
As shown in the above results, this embodiment is applied to Examples 11 to 13 using barium ions as divalent or trivalent metal ions to which this embodiment is applied and Examples 14 using dysprosium ions. The maximum emission intensity was higher than that of Comparative Example 1 that was not used.
Further, Example 15 to which the present embodiment was applied using two types of halide ions (Br and Cl) as X had higher maximum emission intensity than Comparative Example 4 to which the present embodiment was not applied.
Similarly, Example 16 to which the present embodiment was applied using two types of halide ions (Br and I) as X had higher maximum emission intensity than Comparative Example 5 to which the present embodiment was not applied.
 本実施形態によれば、高い発光強度を有するペロブスカイト構造を有する化合物及び前記化合物を含む発光材料を提供することが可能となる。
 したがって、本実施形態のペロブスカイト構造を有する化合物及び前記化合物を用いた発光材料は、発光関連材料分野において好適に使用することができる。
According to this embodiment, it becomes possible to provide a compound having a perovskite structure having high emission intensity and a light emitting material containing the compound.
Therefore, the compound having the perovskite structure of the present embodiment and the light emitting material using the compound can be suitably used in the field of light emission related materials.

Claims (6)

  1.  A、B、X、及びMを成分とし、Mの量をM及びBの合計量で除したモル比[M/(M+B)]の値が0.7以下である、ペロブスカイト型結晶構造を有する化合物。
    (Aは、前記ぺロブスカイト型結晶構造においてBを中心とする6面体の各頂点に位置する1価の陽イオンである。
     Bは、Pbイオンである。
     Mは、2価又は3価の金属イオンであって、且つ6配位でのイオン半径が0.9Å以上1.5Å以下の金属イオンから選択される陽イオンであり、Mの少なくとも一部は、前記ぺロブスカイト型結晶構造においてBの一部を置換する。
     Xは、前記ぺロブスカイト型結晶構造においてBを中心とする8面体の各頂点に位置する成分を表し、塩化物イオン、臭化物イオン、フッ化物イオン、ヨウ化物イオン及びチオシアン酸イオンからなる群より選ばれる1種以上のイオンであり、前記Xとして少なくとも塩化物イオン又は臭化物イオンを含む。)
    A perovskite crystal structure having a molar ratio [M / (M + B)] obtained by dividing A, B, X, and M as components and dividing the amount of M by the total amount of M and B is 0.7 or less. Compound.
    (A is a monovalent cation located at each vertex of a hexahedron centered on B in the perovskite crystal structure.
    B is Pb ion.
    M is a divalent or trivalent metal ion, and is a cation selected from metal ions having an ionic radius in a hexacoordination of 0.9 to 1.5 Å, and at least a part of M is In the perovskite crystal structure, a part of B is substituted.
    X represents a component located at each vertex of an octahedron centered on B in the perovskite crystal structure, and is selected from the group consisting of chloride ion, bromide ion, fluoride ion, iodide ion, and thiocyanate ion. And at least chloride ion or bromide ion as X. )
  2.  下記一般式(1)で表される、請求項1に記載の化合物。
     AB(1-a)(3+δ) (0<a≦0.7,0≦δ≦0.7) …(1)
    (A、B、M、及びXは、前述と同じ意味を表す。)
    The compound of Claim 1 represented by following General formula (1).
    AB (1-a) M a X (3 + δ) (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7) (1)
    (A, B, M, and X represent the same meaning as described above.)
  3.  前記Mがアルカリ土類金属のイオンである請求項1又は2に記載の化合物。 The compound according to claim 1 or 2, wherein the M is an alkaline earth metal ion.
  4.  前記Mがカルシウムイオンである請求項3に記載の化合物。 The compound according to claim 3, wherein said M is calcium ion.
  5.  前記Aが有機アンモニウムイオンである請求項1~4のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 4, wherein A is an organic ammonium ion.
  6.  請求項1~5のいずれか1項に記載の化合物を含む発光材料。 A luminescent material comprising the compound according to any one of claims 1 to 5.
PCT/JP2017/006002 2016-02-19 2017-02-17 Compound and luminescent material WO2017142089A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780008752.4A CN108602756B (en) 2016-02-19 2017-02-17 Compound and light-emitting material
JP2018500238A JP6786582B2 (en) 2016-02-19 2017-02-17 Compounds and luminescent materials

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016030201 2016-02-19
JP2016-030201 2016-02-19
JP2016126043 2016-06-24
JP2016-126043 2016-06-24

Publications (1)

Publication Number Publication Date
WO2017142089A1 true WO2017142089A1 (en) 2017-08-24

Family

ID=59625262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006002 WO2017142089A1 (en) 2016-02-19 2017-02-17 Compound and luminescent material

Country Status (4)

Country Link
JP (1) JP6786582B2 (en)
CN (1) CN108602756B (en)
TW (1) TWI718254B (en)
WO (1) WO2017142089A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017226645A (en) * 2016-06-20 2017-12-28 旭化成株式会社 Composition
WO2018159244A1 (en) * 2017-02-28 2018-09-07 株式会社小糸製作所 Fluorophore
RU2776161C2 (en) * 2018-05-23 2022-07-14 Бтисино Спа Switch

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7257184B2 (en) * 2019-03-01 2023-04-13 住友化学株式会社 Compositions, films, laminated structures, light-emitting devices and displays
CN111477746B (en) * 2020-04-24 2022-03-04 武汉大学 Low-temperature doped high photoluminescence quantum yield perovskite thin film and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10316685A (en) * 1997-05-08 1998-12-02 Internatl Business Mach Corp <Ibm> Luminescent organic-inorganic perovskite
JP2014078392A (en) * 2012-10-10 2014-05-01 Peccell Technologies Inc Electroluminescence element using perovskite compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10316685A (en) * 1997-05-08 1998-12-02 Internatl Business Mach Corp <Ibm> Luminescent organic-inorganic perovskite
JP2014078392A (en) * 2012-10-10 2014-05-01 Peccell Technologies Inc Electroluminescence element using perovskite compound

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ADITYA SADHANALA ET AL.: "Preparation of Single- Phase Films of CH 3NH3Pb (I1-xBrx) 3 with Sharp Optical Band Edges", THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS, vol. 5, 9 July 2014 (2014-07-09), pages 2501 - 2505, XP055408778 *
FELIX DESCHLER ET AL.: "High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors", THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS, vol. 5, 24 March 2014 (2014-03-24), pages 1421 - 1426, XP055408772 *
L OREDANA PROTESESCU ET AL.: "Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X=C1, Br,and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut", NANO LETTERS, vol. 15, 29 January 2015 (2015-01-29), pages 3692 - 3696, XP055241814 *
NAM- PARK, GYU: "Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell", THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS, vol. 4, 11 July 2013 (2013-07-11), pages 2423 - 2429, XP055131816 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017226645A (en) * 2016-06-20 2017-12-28 旭化成株式会社 Composition
WO2018159244A1 (en) * 2017-02-28 2018-09-07 株式会社小糸製作所 Fluorophore
US11377593B2 (en) 2017-02-28 2022-07-05 Koito Manufacturing Co., Ltd. Phosphor
RU2776161C2 (en) * 2018-05-23 2022-07-14 Бтисино Спа Switch

Also Published As

Publication number Publication date
JPWO2017142089A1 (en) 2018-12-06
JP6786582B2 (en) 2020-11-18
CN108602756B (en) 2021-03-30
CN108602756A (en) 2018-09-28
TW201739753A (en) 2017-11-16
TWI718254B (en) 2021-02-11

Similar Documents

Publication Publication Date Title
JP6786582B2 (en) Compounds and luminescent materials
WO2017221833A1 (en) Composition, and compound
JP6948168B2 (en) Compounds, dispersion compositions, resin compositions, films, laminated structures and light emitting devices
KR102088630B1 (en) Composite of silicon oxide nanoparticles and silsesquioxane polymer, method for producing same, and composite material produced using composite thereof
EP3067392B1 (en) Sealing resin composition and sealing sheet
EP3067391A1 (en) Hydrotalcite-containing sealing resin composition and sealing sheet
EP2513120B1 (en) Method of preparation of indiumchlorodialkoxides
JP6902539B2 (en) Compounds, dispersion compositions and resin compositions
Zhou et al. Rapid Synthesis of Bright, Shape‐Controlled, Large Single Crystals of Cs3Cu2X5 for Phase Pure Single (X= Br, Cl) and Mixed Halides (X= Br/Cl) as the Blue and Green Components for Printable White Light‐Emitting Devices
Ledneva et al. Controlled synthesis and luminescence properties of trans-[Re6S8 (CN) 4 (OH) 2− n (H2O) n] n− 4 octahedral rhenium (III) cluster units (n= 0, 1 or 2)
WO2016001219A1 (en) Suspension of a magnesium silicate, method for making same and use thereof as a phosphor
KR101759004B1 (en) Silver-containing composition, and base for use in formation of silver element
DE102012105782A1 (en) Producing composite material from at least one phosphor and a polymer matrix useful for producing lighting means comprises synthesizing luminescent phosphor nanoparticles in ionic liquid, and polymerizing ionic liquid
CN110304616B (en) Cerium-doped zinc phosphate material, preparation method thereof and anticorrosive paint containing cerium-doped zinc phosphate material
JP2019147941A (en) Fluorescent material and production method of the same
JP6924187B2 (en) Composition
WO2022264768A1 (en) Antibacterial-antiviral agent, antibacterial-antiviral coating composition, laminate, antibacterial-antiviral resin composition, and molded article
EP3013837A1 (en) Formulations for producing indium oxide-containing layers, methods for producing said layers and the use thereof
WO2023054724A1 (en) Method for preparing copper halide-containing solution, and copper halide-containing solution
WO2018047951A1 (en) Light emitting material, ink and light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753343

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018500238

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17753343

Country of ref document: EP

Kind code of ref document: A1