WO2023054724A1 - Method for preparing copper halide-containing solution, and copper halide-containing solution - Google Patents

Method for preparing copper halide-containing solution, and copper halide-containing solution Download PDF

Info

Publication number
WO2023054724A1
WO2023054724A1 PCT/JP2022/036872 JP2022036872W WO2023054724A1 WO 2023054724 A1 WO2023054724 A1 WO 2023054724A1 JP 2022036872 W JP2022036872 W JP 2022036872W WO 2023054724 A1 WO2023054724 A1 WO 2023054724A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
halide
sulfide
iodide
solution
Prior art date
Application number
PCT/JP2022/036872
Other languages
French (fr)
Japanese (ja)
Inventor
学 石▲崎▼
正人 栗原
Original Assignee
国立大学法人山形大学
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山形大学, 日産化学株式会社 filed Critical 国立大学法人山形大学
Publication of WO2023054724A1 publication Critical patent/WO2023054724A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/04Halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Definitions

  • the present invention relates to a copper halide-containing solution that is mainly used as a precursor for forming a coating containing copper (I) halide.
  • Copper (I) halides in which monovalent copper and a halogen group element are combined, especially copper (I) iodide (CuI) and copper (I) bromide (CuBr), are colorless and transparent in the visible and near-infrared regions. have They are also inorganic P-type semiconductor materials that exhibit electrical conductivity due to their hole mobility and carrier density. Taking advantage of such properties, for example, a copper (I) halide thin film can be used as a material for constituting a hole transport layer of a thin film solar cell, a hole injection layer of an electroluminescence (EL) device, a thermoelectric conversion device, or the like. is expected.
  • EL electroluminescence
  • Non-Patent Document 2 describes that CuI is used as a hole transport layer of an all-solid-state dye-sensitized solar cell by utilizing its colorless transparency and high conductivity derived from its high mobility and carrier density. ing.
  • Non-Patent Document 3 copper (I) bromide (CuBr), whose work function is at a deeper position (about 5.7 eV) than CuI, has a smaller number of hole carriers than CuI. It is described that it can be suitably used for thin film transistors (TFTs) due to its low degree of resistance.
  • TFTs thin film transistors
  • Non-Patent Documents 2 and 3 describe the use of a solution of copper (I) halide dissolved in acetonitrile as a precursor to produce a copper halide thin film by a solution process.
  • copper halide copper (I) iodide, copper (I) bromide
  • a solvent such as acetonitrile or dialkyl sulfide
  • a complex compound composed of copper halide and dialkyl sulfide having various forms is precipitated by mixing with a poor solvent.
  • Patent Document 1 and Non-Patent Document 6 a CuI thin film in which Alkanolamine and halide ions are coordinated to Cu(II) is prepared by introducing CuI into a solution containing alkanolamine and oxidizing it with air. Precursor solutions for preparation are described.
  • Non-Patent Document 7 describes a CuI solution of aqueous ammonia.
  • the present inventors found that CuBr 1-x having different compositions between CuI and CuBr when using copper(I) halide as the hole transport layer of the perovskite thin film solar cell or all-solid-state dye-sensitized solar cell.
  • I x 0 to 1
  • the present inventors have found a solvent that can dissolve copper (I) halide and is suitable for the solution process.
  • a search has been made and only a few solvents have been found to be capable of dissolving copper(I) halides. This is thought to be due to the fact that copper (I) halide is a sparingly soluble salt in which copper ions and halide ions are continuously and strongly bonded.
  • the solvent used for dissolving copper (I) halide is particularly limited. Due to this problem, the technique of forming a layer containing copper (I) halide by a solution process is not necessarily generalized.
  • Non-Patent Documents 2, 3, etc. acetonitrile used as a solvent for copper (I) halide is limited in the solubility of copper (I) halide, and the layer containing copper (I) halide, etc. It is not always possible to dissolve a sufficient concentration of copper(I) halide to form In addition, there is concern that the solution may cause destruction due to dissolution, peeling, decomposition, etc., depending on the underlying material on which the layer containing copper (I) halide is formed. Difficult to use in device manufacturing processes.
  • Dipropyl sulfide and diethyl sulfide can also be used as a solvent for copper (I) halide, but there is concern that, like acetonitrile, they may cause destruction due to dissolution, peeling, decomposition, etc. of the underlying material. , it is difficult to use it widely in the manufacturing process of various devices.
  • a base for forming a layer containing copper (I) halide in order to form a layer containing copper (I) halide in various devices by a solution process, depending on the device structure, in particular, a base for forming a layer containing copper (I) halide and It is desired to provide a copper halide-containing solution that can be used by properly selecting a solvent that is suitable for various device manufacturing processes, such as not causing breakage of other layers.
  • the present invention provides the following means.
  • a method for preparing a copper halide-containing solution comprising mixing copper(I) halide and sulfide to form a complex compound containing copper(I) halide and sulfide, and A method for preparing a copper halide-containing solution, wherein the copper halide solution contains the complex compound dissolved in an organic solvent.
  • a copper halide-containing solution which is obtained by dissolving a complex compound containing a copper (I) halide and a sulfide in an organic solvent.
  • a laminated structure of a layer containing the copper (I) halide according to any one of (7) to (12) or a layer containing the copper (I) halide according to (13) or (14) A device or a manufacturing method thereof, comprising:
  • a copper halide solution containing various organic solvents is provided. Moreover, a laminated structure of a layer containing copper (I) halide is provided by using the copper halide-containing solution.
  • FIG. 2 shows X-ray diffraction patterns obtained from copper (I) iodide films deposited from copper (I) iodide-containing solutions using various organic solvents as solvents.
  • FIG. 3 is a diagram showing the measurement results of the electron spectrum (transmission spectrum) in the ultraviolet-visible region of a film deposited from a copper (I) iodide-containing solution using toluene as a solvent.
  • 1 is an SEM image of a copper (I) iodide film deposited on a glass substrate surface from a copper (I) iodide-containing solution using various organic solvents as solvents.
  • FIG. 1 is an SEM image of a copper (I) iodide film deposited on a glass substrate surface from a copper (I) iodide-containing solution using various organic solvents as solvents.
  • FIG. 2 shows X-ray diffraction patterns obtained from various copper(I) halide coatings deposited from a copper(I) halide-containing solution using toluene as a solvent.
  • 1 is an SEM image showing a cross-section of a film in which copper (I) bromide is deposited on the surface of copper (I) iodide.
  • FIG. 2 is a diagram showing an X-ray diffraction pattern obtained from a film in which copper (I) iodide is deposited on the surface of an organic/inorganic perovskite layer.
  • 1 is an SEM image showing a cross-section of a film in which copper (I) iodide is deposited on the surface of an organic/inorganic perovskite layer.
  • FIG. 3 shows the results of X-ray diffraction of a Cu 1-2x Zn x I film produced in Example.
  • 3 shows a Tauc plot diagram created from the transmission spectrum of the Cu 1-2x Zn x I film produced in the example, an example of a bandgap calculation method from the Tauc plot, and a change in the bandgap with respect to the Zn doping amount.
  • 2 shows an SEM-EDS mapping image and characteristic X-ray spectrum of Example A1.
  • 2 shows the X-ray diffraction results of the film of Example A9.
  • FIG. 4 shows a cross-sectional SEM image of the membrane of Example A9.
  • the copper halide solution used in the solution process is required not to cause destruction of the existing structure that exists as the base when the solution is applied.
  • the thickness of the layer containing copper (I) halide in various devices is expected to be about several tens to 1000 nm.
  • the copper halide-containing solution can contain copper (I) halide at a concentration such that a layer having the thickness is formed when the solution is applied by spin coating and dried.
  • various devices can be constructed by being able to form a layer containing copper (I) halide by drying the solvent under relatively mild conditions after applying the copper halide solution. It is required to suppress the load on other components.
  • Dipropyl sulfide and diethyl sulfide can be used alone as solvents for copper (I) halides.
  • the sulfide can be diluted, and a solution in which copper (I) halide is dissolved can be produced while the activity is low.
  • Non-Patent Documents 2 and 3 acetonitrile described as a solvent for copper (I) halide is limited in solubility of copper (I) halide, whereas according to the present invention, further It becomes possible to produce a solution capable of containing copper(I) halide at a high concentration.
  • this complex compound has a structure in which the surface of the complex compound is modified by a functional group such as an alkyl group contained in the sulfide.
  • a functional group such as an alkyl group contained in the sulfide.
  • this complex compound in addition, the ability of this complex compound to generate a uniform solution in various organic solvents and maintain it stably means that the complex compound does not dissociate into copper (I) halide and sulfide, etc., and the complex compound It was considered to indicate that it can exist in an organic solvent in the form of
  • a complex compound can be easily formed by mixing various sulfides with copper(I) halide, and the complex compound can be stably formed in various organic solvents. can be present to form a copper halide-containing solution.
  • the mechanism by which the complex compound is easily dissociated to regenerate the copper (I) halide by applying the copper halide solution to a base material or the like and heating the solution is not clear, but as described below, It is believed that the strength of the coordinate bond of the sulfide to the copper (I) halide is appropriate and the sulfide has a relatively high vapor pressure.
  • the formation reaction of this complex compound proceeds spontaneously, the formation reaction of the complex compound is an exothermic reaction, which reflects the bond strength when the sulfide is coordinated to the copper(I) halide. Conceivable. If the reaction generates a large amount of heat, the complex compound is generally easily formed and is considered to be highly stable when dissolved in an organic solvent. It is considered that progress of the dissociation reaction for regenerating copper (I) becomes difficult. This means that the regeneration of the copper(I) halide requires heating to a high temperature, the use of a reducing agent, etc., and is not necessarily considered desirable.
  • this complex compound is easily dissociated even at a mild temperature of about 100° C. or less to regenerate copper(I) halide. It was observed that the complex compound existed stably in the organic solvent. This indicates that the bond strength of the coordination bond between the sulfide and the copper(I) halide makes the copper(I) halide soluble in the organic solvent, and then the copper(I) halide on the surface of the substrate or the like. ) is considered to be within an appropriate range when trying to reproduce.
  • the formation reaction and dissociation reaction of the complex compound are considered to be reversible reactions.
  • sulfide generally has a high vapor pressure, sulfide can quickly desorb out of the reaction system after being dissociated from the copper(I) halide. Therefore, by opening the reaction system, the dissociation reaction of the complex compound can be caused substantially irreversibly. As a result, it is considered that the formation reaction and the dissociation reaction of the complex compound can be carried out in the same temperature range.
  • copper (I) iodide CuI
  • copper (I) bromide CuBr
  • copper (I) halides containing other halogen group elements such as fluorine (F) and chlorine (Cl).
  • a copper halide added with a transition metal halide other than copper can be used.
  • the above sulfide is an organic compound in which two monovalent organic groups (e.g., alkyl groups) are bonded by a sulfur atom, and has the general formula: RSR' (R and R' are each a monovalent organic group), disulfide represented by the general formula: R—S—S—R′, trisulfide represented by the general formula: R—S—S—S—R′, and the like.
  • RSR' R and R' are each a monovalent organic group
  • disulfide represented by the general formula: R—S—S—R′ trisulfide represented by the general formula: R—S—S—S—R′
  • any sulfide that forms a complex compound with copper (I) halide can be used without particular limitation.
  • a sulfide molecule represented by the structure of the general formula: R—S—R′ that can form a complex compound having a structure can be preferably used.
  • the monovalent organic group bonded to the sulfur atom in the sulfide molecule is mainly from the viewpoint of affinity for various organic solvents generated by modifying the complex compound, various substrate surfaces, etc. From the viewpoint of easiness in regenerating the copper (I) halide by dissociation of the complex compound, it can be appropriately selected depending on the purpose of use.
  • the surface of the complex compound is modified with the organic group by using a sulfide molecule bonded with an organic group that exerts an affinity depending on the type of organic solvent used, and can exist stably as a solute at
  • the vapor pressure of the sulfide molecule is determined by considering the molecular weight of the organic group bonded to the sulfur atom in the sulfide molecule, the presence or absence of polarity, and the like.
  • the organic solvent evaporates, causing rapid dissociation of the complex compound, resulting in the dissociation of the copper halide (I ) can be played.
  • an organic group containing saturated or unsaturated carbon such as a hydrocarbon groups are preferably used.
  • sulfides containing alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, and hexyl group having saturated carbons exhibit affinity for a wide range of organic solvents and are preferably used in the present invention. can do.
  • an organic group partially containing an unsaturated bond such as an aromatic group can also be preferably used.
  • a polar group such as a hydroxyl group, an ester group, an ether group, etc.
  • copper (I) halide can be converted into a highly polar solvent represented by a hydrophilic organic solvent. can be dissolved.
  • the two organic groups of the sulfide molecule may be the same or different from each other. Moreover, it is also possible to use a mixture of a plurality of types of sulfide molecules having mutually different organic groups depending on the purpose. Further, when forming a complex compound containing copper (I) halide, by replacing part of the sulfide with another molecule (ligand) capable of forming a complex with copper halide, the sulfide It is possible to use less.
  • a molecule (ligand) capable of forming a complex with the copper(I) halide a molecular species capable of dissolving the copper(I) halide by itself, such as acetonitrile, can be used.
  • the copper halide-containing solution according to the present invention even an organic solvent that does not substantially dissolve copper (I) halide can be used. By utilizing this, it becomes possible to appropriately select and use an organic solvent that does not damage the substrate on which the solution is applied. At that time, as described above, by selecting the sulfide molecule to be used according to the organic solvent to be used, the range of usable organic solvents can be expanded.
  • the concentration of iodine is such that a layer containing the copper (I) halide having an effective thickness can be formed by a technique such as spin coating.
  • An organic solvent that cannot dissolve copper (I) bromide and/or copper (I) bromide, specifically, the solubility of copper (I) iodide and copper (I) bromide at room temperature is It shall mean an organic solvent that is 0.01 mol/L or less.
  • organic solvents other than sulfides can be used as the organic solvent used in the present invention.
  • an alkyl group having a long alkyl chain as the organic group of the sulfide, it is possible to improve the solubility in nonpolar/hydrophobic organic solvents.
  • alkanes that are liquid at room temperature among which octane, nonane, decane, dodecane, and alkyl-substituted benzenes such as benzene and toluene, which have a large number of carbon atoms, can be used.
  • the effect of the polarity of the copper (I) halide bonded to the sulfide is relatively enhanced.
  • Polarity is increased by using a sulfide containing a polar group such as a hydroxyl group as the organic group. Accordingly, a polar/hydrophobic organic solvent, a polar/hydrophilic organic solvent, a protic organic solvent, or the like can be used as the organic solvent.
  • Polar/hydrophobic organic solvents include halogen-substituted benzene such as chlorobenzene, benzene substituted with a polar group such as nitrobenzene and benzonitrile; polar group-substituted alkyl and polar group-substituted alkene such as chloroform, dichloromethane and nitromethane; tetrahydrofuran (THF). , ethers such as diethyl ether; esters such as ethyl acetate and butyl acetate; ketones such as 2-butanone; alkylene carbonates such as propylene carbonate.
  • halogen-substituted benzene such as chlorobenzene, benzene substituted with a polar group such as nitrobenzene and benzonitrile
  • polar group-substituted alkyl and polar group-substituted alkene such as chloroform, dichloromethane
  • polar/hydrophilic organic solvents miscible with water include acetonitrile, acetone, N,N-dimethylformamide, dimethylsulfoxide, 1,4-dioxane, 1,2-dimethoxyethane, ⁇ -butyrolactone, and N-methylpyrrolidone. etc. can be mentioned.
  • protic organic solvents include ethanol, isopropanol (IPA), n-butanol, cyclohexanol, methoxyethanol and the like. These organic solvents can be used alone or mixed with each other.
  • a complex compound composed of copper (I) halide and sulfide is dissolved at a predetermined concentration and used as a copper halide-containing solution. can do.
  • a solution containing copper halide is applied to the base surface by spin coating, spraying, or the like, and then the solvent contained in the solution and the complex compound are applied. It is common to employ a step of regenerating copper (I) halide by volatilizing and removing the sulfide that formed the .
  • the method according to the present invention Various additive components can be added to the copper halide-containing solution.
  • the substrate surface may be subjected to various treatments in advance to improve wettability with the copper halide-containing solution, and/or to provide nucleation sites for copper (I) halide. can be done.
  • the complex compound used in the present invention can be formed by mixing copper (I) halide and sulfide.
  • the copper (I) halide is solid such as powder
  • liquid sulfide can be used.
  • a solid copper (I) halide can be mixed in the form of a sulfide-containing solution obtained by dissolving a solid sulfide in a small amount of an organic solvent.
  • each copper atom constituting the copper(I) halide is typically contained in the sulfide.
  • Sulfur atoms in each are coordinated in various forms in a 1:1 ratio. Therefore, when the complex compound is produced, the complex compound can be produced by mixing substantially equimolar amounts of copper (I) halide and sulfide.
  • sulfide generally exhibits a high vapor pressure, it is conceivable that sulfide is desorbed outside the reaction system with copper(I) halide. In order to prevent this, it is preferable to mix the copper(I) halide and the sulfide in a container that can be sealed to prevent the composition from shifting.
  • copper(I) halide constitutes a coordination polymer crystal, whereas in the present invention, sulfide is a coordination bond between copper(I) halide molecules. Cleavage of the copper atom is thought to generate a coordinate bond.
  • the heat of formation of the reaction to form the complex compound between the copper(I) halide and the sulfide is not necessarily large, and it is expected that the driving force for the formation of the coordinate bond is limited. be. Therefore, for example, heating to a temperature of about 120° C. or less, particularly a temperature of about 50 to 80° C. can promote the formation of the complex compound.
  • the mixing ratio of sulfide to copper (I) halide can be made greater than equimolar and about 3 times the molar amount or less. Thereby, it is also preferable to prevent a decrease in the activity of sulfide accompanying the formation of the complex compound and promote the formation reaction of the complex compound.
  • the resulting complex compound is a mixture with residual sulfide. Therefore, from the viewpoint of suppressing residual sulfide, it is preferable to set the mixing ratio of sulfide to, for example, about 1.1 to 2.0 times the molar amount.
  • the mixing ratio of sulfide to copper (I) halide should be equimolar or less. can be By adjusting the mixing ratio to, for example, about 0.8 times the molar amount, substantially the entire amount of the sulfide can be converted into the form of the complex compound.
  • the remaining copper(I) halide can be separated and then dissolved in an organic solvent. Alternatively, it is preferable to separate the remaining copper(I) halide after dissolving the complex compound in the organic solvent.
  • the method it is possible to suppress the dissolution of sulfide in the form of sulfide molecules in an organic solvent, and in particular when forming a layer containing copper (I) halide on a substrate surface that is easily affected by sulfide. can be suitably used for
  • the concentration of sulfide is high when mixed with copper(I) halide. It is preferred to mix the untreated sulfide with the copper(I) halide.
  • copper (I) halide is mixed with sulfide dissolved in an organic solvent at a predetermined concentration in advance to the extent that a complex compound is formed, and a complex compound is formed in the organic solvent to form a copper halide solution. It is also possible to For the purpose of imparting additional properties to the complex compound containing copper(I) halide, an appropriate organic substance or the like can be present in the reaction system for producing the complex compound.
  • the copper halide-containing solution according to the present invention can further contain a dissolved zinc-based compound.
  • the semiconductor properties of the finally obtained thin film can be adjusted by containing the zinc-based compound. That is, although thin films produced by copper halide-containing solutions containing only copper halide tend to have high carrier counts and high electrical conductivity, such thin films are not suitable for some applications, such as certain types of solar cells, TFTs, etc., may be inappropriate.
  • a copper halide solution containing a zinc-based compound can control the semiconducting properties of the resulting thin film depending on the content and type of the zinc-based compound, so that thin films suitable for various applications can be manufactured. I found it possible.
  • Such embodiments of the invention are particularly advantageous because controlling the semiconducting properties without degrading other properties of the thin film is typically very difficult for thin films based on such inorganic materials.
  • copper iodide is used as the copper halide and zinc iodide is used as the zinc-based compound, it is possible to reduce the number of carriers of copper iodide, which is too high for some applications, while increasing the mobility of iodide ions. It is particularly effective because it is considered that the degree can be maintained.
  • Such a zinc-based compound is not particularly limited as long as it can control the semiconducting properties of a thin film produced from a copper halide solution.
  • Examples of such zinc compounds include zinc fluoride, zinc chloride, zinc bromide, zinc iodide, zinc oxide, zinc sulfide, and zinc thiocyanate.
  • zinc iodide can be used when the copper halide is copper iodide.
  • the semiconducting properties of the resulting thin film can be controlled to some extent by mixing copper bromide in addition to copper iodide.
  • mixing zinc iodide is more preferable than mixing copper bromide because it is expected that iodide ions can maintain high carrier mobility.
  • the amount of the zinc-based compound that can be contained in the copper halide solution is more than 0%, 1% or more, 3% or more, 5% or more, 10% or more, 15% or more, based on the doping amount calculation method described in the Examples. % or more, or 20% or more, and can be 40% or less, 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, or 10% or less.
  • the doping amount can be greater than 0% and 40% or less, 1% or more and 30% or less, or 5% or more and 20% or less.
  • the copper halide-containing solution can be obtained by mixing the copper halide, the zinc-based compound, the sulfide, and the organic solvent in various orders.
  • a copper halide and a zinc-based compound may be mixed to obtain a mixed powder, then the mixed powder may be mixed with sulfide, and further mixed with an organic solvent.
  • the copper halide and the zinc-based compound may be separately mixed with the sulfide, and after mixing these, the organic solvent may be further mixed.
  • a zinc-based compound may be further mixed therein.
  • the copper halide and the zinc-based compound may be separately mixed with the sulfide, then the organic solvent may be added, and the respective solutions may be mixed to obtain a copper halide-containing solution.
  • the copper halide-containing solution according to the present invention is produced by dissolving the complex compound produced as described above in an appropriate organic solvent.
  • a sulfide dissolved in an appropriate organic solvent is used, and a copper (I) halide is mixed with the sulfide to form a complex compound in the organic solvent.
  • a copper solution can be produced.
  • the copper halide solution produced as described above can be stored for a long period of time without deposits. is.
  • This is considered to mean that the complex compound can stably exist in the organic solvent, and in particular, the sulfide contained in the complex compound is desorbed from the complex compound and is difficult to be eluted as a sulfide molecule into the organic solvent. is considered to mean
  • the copper halide-containing solution according to the present invention is applied to the surface of a substrate or the like by, for example, a spin coating method, and then the solvent is volatilized to dissociate the complex compound to regenerate the copper (I) halide, A layer comprising a copper(I) halide can be deposited on the surface of a substrate or the like.
  • the copper halide-containing solution according to the present invention is prepared by considering the thickness of the layer containing the copper (I) halide to be formed by the process and the film thickness of the solution when applied by spin coating. It can be used after being appropriately adjusted so as to contain the complex compound at a predetermined concentration.
  • a copper halide-containing solution containing the above complex compound at a concentration of about 0.01 mol / L can be used. can.
  • a layer containing copper (I) halide can be formed with a thickness of up to about 10 nm, and is suitably used when forming an active layer of a TFT or the like.
  • a layer containing copper (I) halide can be formed with a thickness of about 10 to 30 nm.
  • a layer containing copper (I) halide having a thickness of about 30 to 100 nm is formed in one process by using a copper halide solution containing the complex compound at a concentration of about 0.1 mol/L.
  • a copper halide solution containing the complex compound at a concentration of about 0.1 mol/L.
  • it can also be used as the hole transport layer of dye-sensitized solar cells and the activity of thermoelectric conversion devices.
  • the copper halide-containing solution according to the present invention can be prepared and stored as a solution containing a complex compound at a high concentration, and when used, it can be diluted to an appropriate concentration according to the purpose of use. can.
  • the solution After applying the copper halide solution according to the present invention to the surface of a substrate or the like by spin coating, the solution is heated to a temperature of, for example, about 100° C. or less to promote volatilization of the solvent and dissociation of the complex compound. is possible, and it is preferable to perform heating and the like within a range that does not affect the structure and the like of the device to be manufactured. This makes it possible to easily obtain a layer containing copper (I) halide. A thin film can be produced in the same manner when the copper halide solution contains a zinc-based compound.
  • the concentration of the sulfide component contained in the copper halide-containing solution is such that the complex compound is formed. limited to those attributed to the sulfides used in the process. Then, most of the sulfide components present inside the copper halide solution can be brought into a state of forming a complex compound. By suppressing the concentration of liberation as sulfide molecules in an organic solvent, it is possible to substantially not exhibit activity as a sulfide in a solution.
  • the activity of sulfide is sufficient. can be lowered to For example, even if copper (I) halide or the like is newly added to the solution, it is difficult to dissolve it.
  • the sulfide generated by the dissociation of the complex compound is quickly released as a gas to the outside of the system by volatilization, the layer containing copper (I) halide formed by the copper halide-containing solution according to the present invention It is considered that there will be no substantial impact on strata and the like.
  • the copper halide-containing solution according to the present invention it is possible to contain copper (I) halide while suppressing the effect even on the surface of the base that is affected by using sulfide as a solvent. Layers can be formed. In addition, by utilizing this phenomenon, the surface of the already formed copper (I) halide-containing layer can be coated with the copper halide-containing solution according to the present invention and dried to achieve halogenation. It is possible to form a structure in which layers containing copper (I) are stacked. This allows, for example, the formation of a layer containing copper(I) halide having a thickness that is difficult to form by a single process.
  • copper (I) halides with different compositions can be obtained. It becomes possible to laminate layers containing. As a result, it is possible to form a layer containing copper (I) halide whose physical properties such as work function change sequentially, and to manufacture an electronic device including the structure.
  • Example 1 A toluene solution containing copper (I) iodide as a solute is prepared using dipropyl sulfide (hereinafter sometimes referred to as “Pr 2 S”), which is a kind of sulfide, by the method described below. bottom.
  • Pr 2 S dipropyl sulfide
  • toluene Korean, special grade
  • toluene Korean, special grade
  • the content of copper (I) iodide in the toluene solution was 5.0 wt %, and was estimated to have a molar concentration of about 2.4 ⁇ 10 ⁇ 1 mol/L from the density of toluene and the like.
  • a spin-coated thin film was prepared on a glass substrate using the above toluene solution (75 ⁇ L).
  • the spin coating conditions were 1000 rpm for 5 seconds and then 1500 rpm for 30 seconds. Thereafter, the glass substrate was held at 80° C. for 1 hour to volatilize toluene and the like, thereby forming a colorless and highly transparent film on the glass substrate.
  • FIG. 1 shows the results of X-ray diffraction (XRD, Rigaku MiniFlex II, Cu ⁇ 1, 30 kV) of the glass substrate to which the film was attached. Diffraction peaks observed by X-ray diffraction corresponded to respective peaks derived from copper(I) iodide crystals.
  • FIG. 2 shows the results of electron spectrum (transmission spectrum) measurement (Shimadzu UV-2600) in the ultraviolet-visible region of the coating. In the measurement, a sharp absorption was observed near 405 nm due to direct transition peculiar to copper (I) iodide. Further, as shown in Example 2 below, the film exhibited a sheet resistance value of about 6.5 k ⁇ /sq.
  • the film formed on the glass substrate was crystalline copper (I) iodide.
  • Copper (I) iodide by itself does not dissolve in toluene, and copper (I) iodide is regenerated by evaporating toluene or the like from the toluene solution.
  • I) is dissolved in the form of a complex compound with dipropyl sulfide, and when toluene or the like is volatilized, dipropyl sulfide is dissociated from the complex compound and copper (I) iodide is presumably deposited. rice field.
  • Example 2 A viscous solution prepared by mixing copper (I) iodide and dipropyl sulfide prepared in the same manner as in Example 1 was examined for its solubility in various organic solvents. Verification was performed by adding each organic solvent to the viscous solution in a sealable container so that the content of copper(I) iodide was 20.0 wt % and stirring at room temperature. Table 1 shows the organic solvents used and the solubility of the viscous solutions containing copper(I) iodide and dipropyl sulfide in the organic solvents. In Table 1, the solubility described as " ⁇ " indicates that the viscous solution was dissolved in the organic solvent to form a uniform solution without forming precipitates or the like.
  • the spin coating conditions were 1000 rpm for 5 seconds and then 1500 rpm for 30 seconds. After that, by holding at 80° C. for 1 hour to volatilize toluene and the like, a colorless and highly transparent film was formed on each of the glass substrates.
  • FIG. 1 shows the result of X-ray diffraction (XRD, Rigaku MiniFlex II, Cu ⁇ 1, 30 kV) of a film formed on a glass substrate using a copper halide solution containing octane, ethyl acetate, and butyl acetate as solvents. is shown together with one using toluene as a solvent (Example 1). All of the diffraction peaks obtained by the measurement of each film corresponded to each peak derived from copper (I) iodide crystals.
  • XRD X-ray diffraction
  • Fig. 3 shows the results of observing each coating with a scanning electron microscope (SEM, JEOL JSM-7600F). As shown in FIG. 3, it was confirmed that a generally uniform film was formed on the surface of each glass substrate. In addition, each film is composed of crystal grains with a particle size of about 70 nm, and it was observed that the state of the voids generated between the crystal grains differed depending on the organic solvent used. It was considered that this was caused by differences in surface tension, wettability with the substrate surface, and differences in crystal growth rate.
  • Table 2 shows the sheet resistance value (Kyowa Riken K-705RS) measured by the four-probe method for each of the above coatings. As shown in Table 2, it was confirmed that all films exhibited a sheet resistance of several k ⁇ /sq and exhibited conductivity within the surface of the film.
  • the copper halide-containing solution according to the present invention it is possible to form a coating of copper (I) iodide that exhibits a predetermined conductivity using various organic solvents as solvents.
  • Example 3 As sulfides to be used, diethyl sulfide (Fuji Film Wako Pure Chemical, first grade) (hereinafter sometimes referred to as “Et 2 S”.), dibutyl sulfide (Tokyo Kasei, 98% or more) (hereinafter, “Bu 2 S ), 2-(Ethylthio) ethanol (Tokyo Kasei, 98% or more) (hereinafter sometimes referred to as “Et (EtOH) S”.) Except for using In the same manner as in 1 and 2, preparation of a mixture containing a complex compound containing copper (I) iodide and evaluation of the solubility of the mixture containing the complex compound in various organic solvents were performed.
  • Et 2 S diethyl sulfide
  • Bu 2 S dibutyl sulfide
  • Et (EtOH) S 2-(Ethylthio) ethanol
  • Example 4 In order to verify the conditions for producing a complex compound between the copper (I) iodide and sulfide and the conditions for producing a copper halide-containing solution containing the complex compound as a solute, an organic solvent The solubility of copper (I) iodide in organic solvents containing the sulfide was investigated using sulfides dissolved in .
  • Table 4 shows the time required for the copper(I) iodide powder to dissolve and form a homogeneous solution at room temperature and 70° C. with stirring when using each Pr 2 S/toluene mixed solution. indicate the time.
  • Example 5 The following studies were conducted in order to investigate complex compounds containing components other than sulfide as ligands for producing complex compounds containing copper (I) iodide.
  • Acetonitrile can dissolve copper (I) iodide at a saturation concentration of about 0.1 mol / L, and the dissolution of the copper (I) iodide causes the acetonitrile molecule to form a coordinate bond with the copper (I) iodide molecule. As a result, it is speculated that the acetonitrile molecule acts as a ligand for the copper (I) iodide molecule.
  • Example 6 Using copper (I) bromide as the copper halide, preparing a copper halide solution containing a complex compound containing copper (I) bromide as a solute, Formation of a film containing copper chloride (I) and the like were carried out.
  • the copper halide solution (75 ⁇ L) was applied onto a glass substrate by spin coating, and then held at 80° C. for 1 hour to volatilize toluene or the like. A colorless and highly transparent coating was produced. Further, using a glass substrate having a copper (I) iodide film formed on the surface in the same manner as in Example 1, except that the content of copper (I) iodide was 10.0 wt%, the above Similarly, a copper halide solution (75 ⁇ L) containing 10.0 wt % copper (I) bromide was applied by spin coating, and then held at 80° C. for 1 hour to volatilize toluene and the like.
  • FIG. 4 shows (a) the results of X-ray diffraction using a glass substrate coated with copper (I) iodide as a sample, and (b) copper (I) bromide on the glass substrate. (c) A glass substrate on which a copper (I) iodide coating has been previously formed, and a copper halide-containing solution containing copper (I) bromide is applied and dried on the glass substrate. The results of X-ray diffraction are shown for the sample obtained by applying the
  • a diffraction pattern (b) corresponding to crystals of copper (I) bromide was obtained from the film formed on the glass substrate using the above copper halide-containing solution containing copper (I) bromide. , it was considered that the coating was mainly composed of copper (I) bromide.
  • the diffraction pattern (b) corresponding to the copper (I) bromide is based on the diffraction pattern (a) of the copper (I) iodide film, and the copper (I) iodide and the copper (I) bromide It was observed that there is a certain amount of shift thought to correspond to the difference in the lattice constants of the crystals that make up the .
  • the sample in which the copper (I) bromide film was formed on the previously formed copper (I) iodide film was considered to be copper (I) iodide and copper (I) bromide, respectively. It was confirmed that two layers are laminated and exist.
  • the copper halide solution of the present invention is prepared by dissolving copper (I) bromide, which forms a complex compound with approximately equimolar sulfides, in toluene. It was considered that a laminate of copper (I) iodide and copper (I) bromide could be stably formed because of its poor ability to dissolve the existing copper (I) iodide film.
  • Example 7 A copper halide solution is prepared using copper (I) iodide and copper (I) bromide as copper halides, and copper (I) iodide and copper bromide are prepared using the copper halide solution. Formation of the mixed film of (I) was carried out.
  • a halogen A mixture of a complex compound containing copper (I) iodide, copper (I) bromide and dipropyl sulfide and dipropyl sulfide was produced by performing the same operation as in Example 1 except that copper was used as copper chloride. , toluene was used as an organic solvent to prepare a copper halide-containing solution containing 10.0 wt % of copper (I) iodide and copper (I) bromide.
  • Example 2 In the same manner as in Example 1, the above copper halide solution (75 ⁇ L) was applied onto a glass substrate by spin coating, and then held at 80° C. for 1 hour to volatilize toluene or the like, thereby forming a colorless coating on the glass substrate. A film with high transparency was formed.
  • FIG. 4 shows the result (d) of X-ray diffraction of the film produced on the glass substrate as described above, (a) the film containing copper (I) iodide prepared in Example 1, (b) Example 6 It is shown in comparison with the X-ray diffraction results for the coating containing copper (I) bromide prepared in . It was shown that the film (d) produced in this example produced a diffraction signal peak at an intermediate position between the diffraction signal peaks derived from copper (I) iodide and copper (I) bromide. .
  • the copper halide containing the plurality of halogen group elements can be formed, and in particular, it can be used as a method for adjusting its electrical characteristics.
  • Example 8 a copper (I) iodide layer was formed on the surface of an organic/inorganic perovskite layer (CH 3 NH 3 PbI 3 ) used in thin-film solar cells and the like using the copper halide-containing solution according to the present invention. formed.
  • a thin film of copper (I) iodide was formed by spin coating at 1000 rpm for 5 seconds and 1500 rpm for 30 seconds, followed by heating at 80° C. for 30 minutes.
  • FIG. 6 shows X-ray diffraction of a sample in which an organic/inorganic perovskite layer (CH 3 NH 3 PbI 3 ) is formed on a glass substrate and a copper (I) iodide thin film is laminated on the surface of the layer. Show the results. Further, FIG. 7 shows a SEM image of a cross section of a sample in which a copper (I) iodide thin film is laminated on the surface of an organic/inorganic perovskite layer.
  • an organic/inorganic perovskite layer CH 3 NH 3 PbI 3
  • FIG. 7 shows a SEM image of a cross section of a sample in which a copper (I) iodide thin film is laminated on the surface of an organic/inorganic perovskite layer.
  • Example A2 Copper (I) iodide is used as the copper halide, and further mixed with zinc (I) iodide to prepare a copper halide solution, and the copper (I) iodide solution is used to prepare the copper halide solution. and zinc iodide (I) were formed.
  • the Zn doping amount (%) is obtained by the following formula. Zn material amount/(Cu material amount + Zn material amount) x 100
  • composition of a thin film formed from a mixed solution of copper iodide and zinc iodide is expressed as Cu 1-2x Zn x I.
  • Cu 0.818 Zn 0 thus prepared was placed on a glass substrate (2.5 cm ⁇ 2.5 cm) treated with ozone in a glove box controlled to a relative humidity of 20% or less by removing moisture in the atmosphere.
  • 150 ⁇ L of a toluene solution of .0909 I was dropped, and a film was formed by a spin coating method. After that, heating was performed at 80° C. for 1 hour using a hot plate.
  • Examples A0-A1 and A3-A6 By changing the mixing ratio of copper (I) iodide and zinc iodide and performing the same operation as in Example A2, 0, 5, 15, 20, 25, and 30% doping amounts of copper iodide relative to copper iodide were obtained. A toluene solution consisting of was prepared. However, for Example A0, firing was performed in the air, not in the glove box. The following table shows the mixing amount and composition of the 1.00M copper iodide solution and the 1.00M zinc iodide solution.
  • Examples A7 and A8 The Cu 0.818 Zn 0.0909 I films of Examples A7 and A8 were produced in the same manner as in Example A2, but the firing temperatures were 100° C. and 130° C., respectively.
  • the resistance values of the Cu 1-2x Zn x I films produced in Examples A0 to A6 were measured immediately after film formation. The film thickness was measured with a stylus profilometer (Bruker Dektak). The results are shown in the table below. As for Examples A3 to A6, the resistance was very high and could not be measured with the measuring apparatus of this time.
  • FIG. 9 shows a Tauc plot diagram created from the transmission spectrum, an example of a bandgap calculation method from the Tauc plot, and bandgap change with respect to the Zn doping amount. It was found that the bandgap tends to decrease as the doping amount of Zn increases.
  • FIG. 10 shows the SEM-EDS mapping image and characteristic X-ray spectrum of Example A1 (Cu 0.818 Zn 0.0909 I). Cu, Zn and I were uniformly distributed over the entire film, and signals of each element were also observed from the characteristic X-ray spectrum. Zn is not segregated, suggesting that it is incorporated into the CuI film.
  • Example A9 An organic/inorganic perovskite layer was formed on a glass substrate in the same manner as in Example 8.
  • Example A1 150 ⁇ L of the toluene solution of Example A1 is applied to the surface of the organic/inorganic perovskite layer formed on the glass substrate, and spin-coated at 1000 rpm for 5 seconds and 1500 rpm for 10 seconds, followed by heating at 80° C. for 30 minutes. Thus, a Cu 0.818 Zn 0.0909 I thin film was produced.
  • Examples A10 to A13 the mixed solution of the copper (I) iodide solution and the zinc iodide solution was used to form the film.
  • a copper (I) iodide-zinc iodide mixed solution was prepared by mixing and adding dipropyl sulfide or the like to the mixed powder.
  • copper (I) iodide and zinc iodide were weighed in the amounts shown in the table below, 1.18 g (10.0 ⁇ 10 -3 mol) of dipropyl sulfide was added, and the mixture was heated at 70°C. Dissolved by heating for 1 hour. Toluene was added here to obtain a clear solution with a volume of 5.00 mL. This solution was subjected to centrifugal separation (4000 rpm, 5 minutes) to separate the supernatant. Further, it was passed through a PTFE filter (pore size 0.22 ⁇ m) to obtain a copper (I) iodide-zinc iodide mixed solution (1.00 M).
  • a copper (I) iodide-zinc iodide mixed solution (1.00 M) was diluted 10-fold with toluene to prepare a 0.10 M solution.
  • a 0.10 M solution was formed into a film in the same manner as in Example A1 to obtain a Cu 1-2x Zn x I film.
  • the results were generally similar to those of Examples A2 to A5 with the same zinc doping amount.
  • the copper halide-containing solution according to the present invention By using the copper halide-containing solution according to the present invention, it is possible to form a layer containing a poorly soluble copper (I) halide by a solution process in the manufacturing process of various devices.
  • the solvent component constituting the copper halide-containing solution according to the present invention can be appropriately selected, and when the layer containing copper halide is formed, the copper halide solution can be used without damaging the surrounding structure. It becomes possible to form a layer containing

Abstract

Provided is a copper halide-containing solution that contains, as main solvents, various organic solvents including a solvent capable of dissolving copper (I) halide alone. A method for preparing a copper halide-containing solution is characterized by comprising: mixing copper (I) halide with a sulfide to form a complex compound containing copper (I) halide and a sulfide, wherein the copper halide-containing solution contains the complex compound dissolved in an organic solvent.

Description

含ハロゲン化銅溶液の作製方法、及び含ハロゲン化銅溶液Method for preparing copper halide solution, and copper halide solution
 本発明は、ハロゲン化銅(I)を含む被膜を形成するための前駆体として主に使用される含ハロゲン化銅溶液に係るものである。 The present invention relates to a copper halide-containing solution that is mainly used as a precursor for forming a coating containing copper (I) halide.
 1価の銅とハロゲン族元素とが結合したハロゲン化銅(I)、特にヨウ化銅(I)(CuI)及び臭化銅(I)(CuBr)は、可視・近赤外域の無色透明性を有する。また、これらは、ホール移動度とキャリア密度を有することで導電性を示す無機P型半導体材料である。このような特性を活かして、例えば、薄膜太陽電池のホール輸送層、電界発光(EL)素子のホール注入層、熱電変換素子などを構成する材料としてハロゲン化銅(I)の薄膜を使用することが期待されている。 Copper (I) halides in which monovalent copper and a halogen group element are combined, especially copper (I) iodide (CuI) and copper (I) bromide (CuBr), are colorless and transparent in the visible and near-infrared regions. have They are also inorganic P-type semiconductor materials that exhibit electrical conductivity due to their hole mobility and carrier density. Taking advantage of such properties, for example, a copper (I) halide thin film can be used as a material for constituting a hole transport layer of a thin film solar cell, a hole injection layer of an electroluminescence (EL) device, a thermoelectric conversion device, or the like. is expected.
 CuI薄膜の価電子帯の仕事関数は、約5.1eVであり、例えば、非特許文献1には、有機・無機ペロブスカイト(CHNHPbI)薄膜太陽電池において、CuI薄膜がホール輸送層として適することが記載されている。また、非特許文献2には、CuIの無色透明性と、高い移動度とキャリア密度に由来する高導電性を利用して全固体型色素増感太陽電池のホール輸送層とすることが記載されている。 The work function of the valence band of the CuI thin film is about 5.1 eV. It is stated that it is suitable as In addition, Non-Patent Document 2 describes that CuI is used as a hole transport layer of an all-solid-state dye-sensitized solar cell by utilizing its colorless transparency and high conductivity derived from its high mobility and carrier density. ing.
 一方、非特許文献3には、仕事関数がCuIに比べて深い位置(約5.7eV)にある臭化銅(I)(CuBr)は、CuIに比べてホールキャリア数が少ないことで電気伝導度が低いことから、薄膜トランジスタ(TFT)に好適に使用できることが記載されている。
 さらに、非特許文献4には、CuIとCuBrが類似する結晶構造を有することから、これらを任意の割合で相互に混合したCuBr1-x(x=0~1)は、単一相の形成が可能であることが記載されている。さらに、非特許文献4には、その混合割合(x)に応じて、ホールキャリア数や仕事関数を調整可能であり、上記用途において更に付加価値を高められることが記載されている。
On the other hand, in Non-Patent Document 3, copper (I) bromide (CuBr), whose work function is at a deeper position (about 5.7 eV) than CuI, has a smaller number of hole carriers than CuI. It is described that it can be suitably used for thin film transistors (TFTs) due to its low degree of resistance.
Furthermore, in Non-Patent Document 4, since CuI and CuBr have similar crystal structures, CuBr 1−x I x (x=0 to 1), which is a mixture of CuI and CuBr, has a single phase It is described that the formation of Furthermore, Non-Patent Document 4 describes that the number of hole carriers and the work function can be adjusted according to the mixing ratio (x), and added value can be further increased in the above applications.
 非特許文献2及び3においては、ハロゲン化銅(I)をアセトニトリルに溶解した溶液を前駆体として使用し、溶液プロセスでハロゲン化銅の薄膜を作製することが記載されている。また、非特許文献5では、ハロゲン化銅(ヨウ化銅(I)、臭化銅(I))をアセトニトリル、ジアルキルスルフィド等の溶媒を混合して溶液を得ること、及び、当該溶液を冷却すること又は貧溶媒に混合することで、各種の形態を有するハロゲン化銅とジアルキルスルフィドから構成される錯化合物が析出することが記載されている。 Non-Patent Documents 2 and 3 describe the use of a solution of copper (I) halide dissolved in acetonitrile as a precursor to produce a copper halide thin film by a solution process. In Non-Patent Document 5, copper halide (copper (I) iodide, copper (I) bromide) is mixed with a solvent such as acetonitrile or dialkyl sulfide to obtain a solution, and the solution is cooled. It is described that a complex compound composed of copper halide and dialkyl sulfide having various forms is precipitated by mixing with a poor solvent.
 また、特許文献1及び非特許文献6では、アルカノールアミンを含む溶液にCuIを投入し空気酸化させることによって、Cu(II)に、アルカノールアミンと、ハロゲン化物イオンとが配位してなるCuI薄膜作製用の前駆体溶液記載されている。また、非特許文献7では、アンモニア水のCuI溶液が記載されている。 Further, in Patent Document 1 and Non-Patent Document 6, a CuI thin film in which Alkanolamine and halide ions are coordinated to Cu(II) is prepared by introducing CuI into a solution containing alkanolamine and oxidizing it with air. Precursor solutions for preparation are described. In addition, Non-Patent Document 7 describes a CuI solution of aqueous ammonia.
特開2018-76220号公報JP 2018-76220 A
 本発明者らは、上記ペロブスカイト薄膜太陽電池又は全固体型色素増感太陽電池のホール輸送層としてハロゲン化銅(I)を使用する際に、CuIとCuBrの間で組成の異なるCuBr1-x(x=0~1)を逐次積層することにより、その内部で仕事関数が傾斜した構造を形成できる可能性があると考えた。これが実現できれば、そのホール輸送選択性が改善され、高光変換効率の薄膜太陽電池等が実現されることが考えられる。 The present inventors found that CuBr 1-x having different compositions between CuI and CuBr when using copper(I) halide as the hole transport layer of the perovskite thin film solar cell or all-solid-state dye-sensitized solar cell. By sequentially stacking I x (x=0 to 1), it was considered possible to form a structure with a tilted work function inside. If this can be realized, the hole transport selectivity will be improved, and thin-film solar cells with high light conversion efficiency will be realized.
 また、今後のペロブスカイト太陽電池、全固体型色素増感太陽電池、EL、TFT、熱電変換等の各種デバイスに使用する際には、簡便性及びエネルギー消費量の低減等の目的により、溶液中から各種物質を析出させることでデバイスを製造する溶液プロセスが用いられると予想される。そして、上記ハロゲン化銅(I)を含む層を形成する際にも溶液プロセスが導入されることで、各種デバイスの製造工程への適合性を確保することが期待される。 In addition, when used in various devices such as perovskite solar cells, all-solid-state dye-sensitized solar cells, EL, TFT, and thermoelectric conversion in the future, for the purpose of convenience and reduction of energy consumption, It is anticipated that solution processing will be used to fabricate devices by depositing various materials. Also, by introducing a solution process when forming the layer containing the copper (I) halide, it is expected to ensure suitability for manufacturing processes of various devices.
 一方、本発明者らは、溶液プロセスによってハロゲン化銅(I)を含む層を形成する等の目的で、ハロゲン化銅(I)を溶解可能であり、溶液プロセスを行う際に好適な溶媒の探索を行ってきたが、ハロゲン化銅(I)を溶解可能であることが見出された溶媒はごく僅かであった。これは、ハロゲン化銅(I)は銅イオンとハロゲン化物イオンが連続して強く結合した難溶性塩であると考えられる。 On the other hand, for the purpose of forming a layer containing copper (I) halide by the solution process, the present inventors have found a solvent that can dissolve copper (I) halide and is suitable for the solution process. A search has been made and only a few solvents have been found to be capable of dissolving copper(I) halides. This is thought to be due to the fact that copper (I) halide is a sparingly soluble salt in which copper ions and halide ions are continuously and strongly bonded.
 このように、各種デバイスの製造工程において、溶液プロセスによってハロゲン化銅(I)を含む層を形成することが期待される一方で、特にハロゲン化銅(I)を溶解する際に用いる溶媒が限定されることが課題となり、当該課題に起因して溶液プロセスによってハロゲン化銅(I)を含む層を形成する技術は必ずしも一般化されていない。 Thus, in the manufacturing process of various devices, while it is expected to form a layer containing copper (I) halide by a solution process, the solvent used for dissolving copper (I) halide is particularly limited. Due to this problem, the technique of forming a layer containing copper (I) halide by a solution process is not necessarily generalized.
 つまり、上記非特許文献2,3等において、ハロゲン化銅(I)の溶媒として使用されるアセトニトリルは、ハロゲン化銅(I)の溶解度が制限されて、ハロゲン化銅(I)を含む層等を形成するために十分な濃度のハロゲン化銅(I)を必ずしも溶解できない。また、その溶液は、ハロゲン化銅(I)を含む層が形成される際の下地となる物質によっては、その溶解、剥離、分解等による破壊等を生じさせることが懸念されるため、広く各種デバイスの製造工程に使用することが困難である。
 また、ジプロピルスルフィド及びジエチルスルフィドも、ハロゲン化銅(I)に対する溶媒として使用することができるが、アセトニトリルと同様に下地となる物質の溶解、剥離、分解等による破壊等を生じることが懸念され、広く各種デバイスの製造工程に使用することが困難である。
That is, in Non-Patent Documents 2, 3, etc., acetonitrile used as a solvent for copper (I) halide is limited in the solubility of copper (I) halide, and the layer containing copper (I) halide, etc. It is not always possible to dissolve a sufficient concentration of copper(I) halide to form In addition, there is concern that the solution may cause destruction due to dissolution, peeling, decomposition, etc., depending on the underlying material on which the layer containing copper (I) halide is formed. Difficult to use in device manufacturing processes.
Dipropyl sulfide and diethyl sulfide can also be used as a solvent for copper (I) halide, but there is concern that, like acetonitrile, they may cause destruction due to dissolution, peeling, decomposition, etc. of the underlying material. , it is difficult to use it widely in the manufacturing process of various devices.
 一方、溶液プロセスによって各種デバイス内のハロゲン化銅(I)を含む層を形成するためには、当該デバイス構造に応じて、特にハロゲン化銅(I)を含む層が形成される際の下地となる層の破壊等を生じない等、各種デバイスの製造工程に適した溶媒を適宜選択して使用可能な含ハロゲン化銅溶液が提供されることが望まれる。 On the other hand, in order to form a layer containing copper (I) halide in various devices by a solution process, depending on the device structure, in particular, a base for forming a layer containing copper (I) halide and It is desired to provide a copper halide-containing solution that can be used by properly selecting a solvent that is suitable for various device manufacturing processes, such as not causing breakage of other layers.
 本発明は、上記課題を解決しようとするものであり、単独でハロゲン化銅(I)を溶解可能な溶媒を含む含ハロゲン化銅溶液を提供することを課題とする。
 また、当該含ハロゲン化銅溶液を使用することによって得られるハロゲン化銅(I)を含む層の積層構造を提供することを課題とする。
An object of the present invention is to solve the above problems, and to provide a copper halide-containing solution containing a solvent capable of dissolving copper (I) halide by itself.
Another object of the present invention is to provide a laminate structure of layers containing copper (I) halide obtained by using the copper halide-containing solution.
 上記課題を解決するために、本発明は、以下の手段を提供する。
 (1)含ハロゲン化銅溶液の作製方法であって、ハロゲン化銅(I)とスルフィドを混合して、ハロゲン化銅(I)とスルフィドを含む錯体化合物を形成することを含み、かつ前記含ハロゲン化銅溶液が、有機溶媒に溶解された前記錯体化合物を含むことを特徴とする含ハロゲン化銅溶液の作製方法。
 (2)予め有機溶媒に溶解したスルフィドがハロゲン化銅(I)と混合されることを特徴とする(1)記載の含ハロゲン化銅溶液の作製方法。
 (3)ハロゲン化銅(I)とスルフィドを含む錯体化合物を含有する組成物と有機溶媒を混合する希釈工程を更に含むことを特徴とする(1)又は(2)に記載の含ハロゲン化銅溶液の作製方法。
 (4)ハロゲン化銅(I)と混合されるスルフィドのモル量が、ハロゲン化銅(I)に対して3倍モル量以下であることを特徴とする(1)~(3)のいずれかに記載の含ハロゲン化銅溶液の作製方法。
 (5)前記含ハロゲン化銅溶液に、さらに亜鉛系化合物が溶解されている、(1)~(4)のいずれかに記載の記載の含ハロゲン化銅溶液の作製方法。
 (6)前記亜鉛系化合物が、ヨウ化亜鉛である、(5)に記載の含ハロゲン化銅溶液の作製方法。
 (7)ハロゲン化銅(I)とスルフィドを含む錯体化合物が有機溶媒に溶解してなることを特徴とする含ハロゲン化銅溶液。
 (8)含有されるハロゲン化銅(I)の濃度が0.01mol/L以上であることを特徴とする(7)に記載の含ハロゲン化銅溶液。
 (9)さらに亜鉛系化合物が溶解されている、(7)又は(8)に記載の含ハロゲン化銅溶液。
 (10)前記亜鉛系化合物が、ヨウ化亜鉛である、(9)に記載の含ハロゲン化銅溶液。
 (11)上記(7)~(10)のいずれかに記載の含ハロゲン化銅溶液を塗布し、溶媒を除去することによって得られるハロゲン化銅(I)を含む層又はその製造方法。
 (12)(9)に記載の含ハロゲン化銅溶液を塗布し、溶媒を除去することによって得られるハロゲン化銅(I)を含む層又はその製造方法。
 (13)複数のハロゲン化銅(I)を含む層が積層された構造を有することを特徴とするハロゲン化銅(I)を含む層の積層構造又はその製造方法。
 (14)相互に異なる組成を有するハロゲン化銅(I)を含む層が積層されていることを特徴とする(7)に記載のハロゲン化銅(I)を含む層の積層構造又はその製造方法。
 (15)(7)~(12)のいずれかに記載のハロゲン化銅(I)を含む層、又は(13)又は(14)に記載のハロゲン化銅(I)を含む層の積層構造を含むことを特徴とするデバイス又はその製造方法。
In order to solve the above problems, the present invention provides the following means.
(1) A method for preparing a copper halide-containing solution, comprising mixing copper(I) halide and sulfide to form a complex compound containing copper(I) halide and sulfide, and A method for preparing a copper halide-containing solution, wherein the copper halide solution contains the complex compound dissolved in an organic solvent.
(2) A method for preparing a copper halide-containing solution according to (1), wherein a sulfide dissolved in advance in an organic solvent is mixed with the copper (I) halide.
(3) The copper halide-containing copper according to (1) or (2), further comprising a dilution step of mixing a composition containing a complex compound containing a copper (I) halide and a sulfide with an organic solvent. How to make a solution.
(4) Any one of (1) to (3), wherein the molar amount of the sulfide mixed with the copper(I) halide is 3 times or less the molar amount of the copper(I) halide. A method for producing a copper halide-containing solution according to 1.
(5) The method for producing a copper halide solution according to any one of (1) to (4), wherein a zinc-based compound is dissolved in the copper halide solution.
(6) The method for preparing a copper halide-containing solution according to (5), wherein the zinc-based compound is zinc iodide.
(7) A copper halide-containing solution, which is obtained by dissolving a complex compound containing a copper (I) halide and a sulfide in an organic solvent.
(8) The copper halide-containing solution according to (7), wherein the concentration of copper (I) halide contained is 0.01 mol/L or more.
(9) The copper halide-containing solution according to (7) or (8), further containing a zinc-based compound dissolved therein.
(10) The copper halide-containing solution according to (9), wherein the zinc-based compound is zinc iodide.
(11) A layer containing copper (I) halide obtained by applying the copper halide-containing solution according to any one of (7) to (10) above and removing the solvent, or a method for producing the same.
(12) A layer containing copper (I) halide obtained by applying the copper halide-containing solution according to (9) and removing the solvent, or a method for producing the same.
(13) A laminated structure of layers containing copper (I) halide, or a method for producing the same, characterized by having a structure in which a plurality of layers containing copper (I) halide are laminated.
(14) Laminated structure of layers containing copper (I) halide according to (7), characterized in that layers containing copper (I) halide having mutually different compositions are laminated, or a method for producing the same .
(15) A laminated structure of a layer containing the copper (I) halide according to any one of (7) to (12) or a layer containing the copper (I) halide according to (13) or (14) A device or a manufacturing method thereof, comprising:
 本発明によれば、各種の有機溶媒を溶媒とする含ハロゲン化銅溶液が提供される。また、当該含ハロゲン化銅溶液を使用することによってハロゲン化銅(I)を含む層の積層構造が提供される。 According to the present invention, a copper halide solution containing various organic solvents is provided. Moreover, a laminated structure of a layer containing copper (I) halide is provided by using the copper halide-containing solution.
各種の有機溶媒を溶媒として使用した含ヨウ化銅(I)溶液から析出したヨウ化銅(I)の被膜から得られたX線回折パターンを示す図である。FIG. 2 shows X-ray diffraction patterns obtained from copper (I) iodide films deposited from copper (I) iodide-containing solutions using various organic solvents as solvents. トルエンを溶媒として使用した含ヨウ化銅(I)溶液から析出した被膜の紫外可視領域の電子スペクトル(透過スペクトル)の測定結果を示す図である。FIG. 3 is a diagram showing the measurement results of the electron spectrum (transmission spectrum) in the ultraviolet-visible region of a film deposited from a copper (I) iodide-containing solution using toluene as a solvent. 各種の有機溶媒を溶媒として使用した含ヨウ化銅(I)溶液からガラス基板表面に析出したヨウ化銅(I)の被膜のSEM像である。1 is an SEM image of a copper (I) iodide film deposited on a glass substrate surface from a copper (I) iodide-containing solution using various organic solvents as solvents. トルエンを溶媒として使用した含ハロゲン化銅(I)溶液から析出した各種のハロゲン化銅(I)の被膜から得られたX線回折パターンを示す図である。FIG. 2 shows X-ray diffraction patterns obtained from various copper(I) halide coatings deposited from a copper(I) halide-containing solution using toluene as a solvent. ヨウ化銅(I)の表面に臭化銅(I)が析出した被膜の断面を示すSEM像である。1 is an SEM image showing a cross-section of a film in which copper (I) bromide is deposited on the surface of copper (I) iodide. 有機・無機ペロブスカイト層の表面にヨウ化銅(I)が析出した被膜から得られたX線回折パターンを示す図である。FIG. 2 is a diagram showing an X-ray diffraction pattern obtained from a film in which copper (I) iodide is deposited on the surface of an organic/inorganic perovskite layer. 有機・無機ペロブスカイト層の表面にヨウ化銅(I)が析出した被膜の断面を示すSEM像である。1 is an SEM image showing a cross-section of a film in which copper (I) iodide is deposited on the surface of an organic/inorganic perovskite layer. 実施例で作製したCu1-2xZnI膜のX線回折の結果を示している。3 shows the results of X-ray diffraction of a Cu 1-2x Zn x I film produced in Example. 実施例で作製したCu1-2xZnI膜の透過スペクトルから作成したTaucプロット図、Taucプロットからのバンドギャップの算出方法例、Znドープ量に対するバンドギャップ変化を示している。3 shows a Tauc plot diagram created from the transmission spectrum of the Cu 1-2x Zn x I film produced in the example, an example of a bandgap calculation method from the Tauc plot, and a change in the bandgap with respect to the Zn doping amount. 実施例A1のSEM―EDSマッピング像と、特性X線スペクトルを示している。2 shows an SEM-EDS mapping image and characteristic X-ray spectrum of Example A1. 実施例A9の膜のX線回折の結果を示している。2 shows the X-ray diffraction results of the film of Example A9. 実施例A9の膜の断面SEM像を示している。FIG. 4 shows a cross-sectional SEM image of the membrane of Example A9. FIG.
 上記で説明したように、溶液プロセスで使用される含ハロゲン化銅溶液は、当該溶液が塗布された際に、その下地として存在する既存の構造の破壊等を生じないことが求められる。また、各種デバイス内におけるハロゲン化銅(I)を含む層の厚みは、数10~1000nm程度とされることが予想される。この場合、含ハロゲン化銅溶液は、例えば、スピンコート法で塗布して乾燥等をした際に、当該厚みの層を生じる程度の濃度でハロゲン化銅(I)を含有可能であることが望まれ、例示的に、0.01~1mol/L程度の濃度範囲でハロゲン化銅(I)を含有可能であることが望まれる。 As explained above, the copper halide solution used in the solution process is required not to cause destruction of the existing structure that exists as the base when the solution is applied. Further, the thickness of the layer containing copper (I) halide in various devices is expected to be about several tens to 1000 nm. In this case, it is desirable that the copper halide-containing solution can contain copper (I) halide at a concentration such that a layer having the thickness is formed when the solution is applied by spin coating and dried. Rarely, as an example, it is desirable to be able to contain copper(I) halide in a concentration range of about 0.01 to 1 mol/L.
 また、含ハロゲン化銅溶液を塗布した後、比較的穏やかな条件下で溶媒を乾燥させる等によってハロゲン化銅(I)を含む層を形成することが可能であることによって、各種デバイスを構成する他の構成要素に対する負荷を抑制することが求められる。 In addition, various devices can be constructed by being able to form a layer containing copper (I) halide by drying the solvent under relatively mild conditions after applying the copper halide solution. It is required to suppress the load on other components.
 上記のような要請を満たす含ハロゲン化銅溶液について本発明者が種々の検討を行ったところ、意外にも非特許文献5に記載されるようなハロゲン化銅(I)とジアルキルスルフィド等のスルフィドを含む錯体化合物が広範な種類の有機溶媒に比較的高濃度で溶解して含ハロゲン化銅溶液を形成可能であることを見出し、また、当該含ハロゲン化銅溶液を使用することによって比較的穏やかな条件下でハロゲン化銅(I)を含む層を形成可能であることを見出し、本発明に至ったものである。 As a result of various studies conducted by the present inventors on a copper halide-containing solution that satisfies the above requirements, unexpectedly, copper (I) halide and sulfide such as dialkyl sulfide as described in Non-Patent Document 5 were found. It has been found that a complex compound containing the The present inventors have found that a layer containing copper (I) halide can be formed under these conditions, and have completed the present invention.
 ジプロピルスルフィド及びジエチルスルフィドは、単体でもハロゲン化銅(I)に対する溶媒として使用できるが、これらをそのまま溶媒として使用する場合、その溶液は広範囲で各種の物質を更に溶解可能であって、溶液プロセスによって各種デバイスを製造する際の問題を生じると共に、産業応用において高価であること、臭気・健康上の問題があること等が懸念される。これに対して、本発明によれば、当該スルフィドが希薄化することができ、その活性が低い状態でハロゲン化銅(I)を溶解した溶液を生成可能となる。
 また、上記非特許文献2,3において、ハロゲン化銅(I)に対する溶媒として記載されるアセトニトリルは、ハロゲン化銅(I)の溶解度が制限されるのに対して、本発明によれば、更に高濃度でハロゲン化銅(I)を含有可能な溶液を生成することが可能となる。
Dipropyl sulfide and diethyl sulfide can be used alone as solvents for copper (I) halides. In addition to causing problems when manufacturing various devices, there are concerns that it is expensive in industrial applications, and that it has odor and health problems. In contrast, according to the present invention, the sulfide can be diluted, and a solution in which copper (I) halide is dissolved can be produced while the activity is low.
Further, in Non-Patent Documents 2 and 3, acetonitrile described as a solvent for copper (I) halide is limited in solubility of copper (I) halide, whereas according to the present invention, further It becomes possible to produce a solution capable of containing copper(I) halide at a high concentration.
 ハロゲン化銅(I)を溶解可能である溶媒が限定される一方で、ハロゲン化銅とスルフィドの間に構成される錯体化合物が広範な種類の有機溶媒に溶解可能である理由は、以下のように考察される。
 ハロゲン化銅(I)では、銅(I)とハロゲン化イオンが連続して配位結合することにより、所定のスケールで配位高分子結晶が構成され、この結果として多くの溶媒に対して不溶性を示すものと考えられる。一方、非特許文献5に記載されるように、ハロゲン化銅(I)がアルキルスルフィドと混合されることでハロゲン化銅(I)の配位高分子結晶内の結合が分断される。その結果、ハロゲン化銅(I)に含まれる銅原子に対してスルフィドに含まれる硫黄原子が配位結合を生じることによって、ハロゲン化銅(I)を含む分子スケールの錯体化合物が形成され、溶媒中に溶質として存在することが可能になるものと考えられる。
The reason why the complex compound formed between copper halide and sulfide can be dissolved in a wide variety of organic solvents is as follows, while the solvents that can dissolve copper (I) halide are limited. is considered.
In the copper(I) halide, copper(I) and halide ions are continuously coordinated to form a coordination polymer crystal on a predetermined scale, and as a result, it is insoluble in many solvents. is considered to indicate On the other hand, as described in Non-Patent Document 5, when copper(I) halide is mixed with alkyl sulfide, the bond in the coordination polymer crystal of copper(I) halide is broken. As a result, a sulfur atom contained in the sulfide forms a coordinate bond with a copper atom contained in the copper(I) halide to form a molecular-scale complex compound containing the copper(I) halide, and the solvent It is thought that it becomes possible to exist as a solute in the
 また、この錯体化合物では、当該錯体化合物の表面をスルフィドに含まれるアルキル基等の官能基が修飾する構造をとると考えられる。その結果、当該官能基が有機溶剤に対して親和性を示すことによって、この錯体化合物は各種の有機溶媒中に溶質として存在することが可能になるものと考えられる。 In addition, it is believed that this complex compound has a structure in which the surface of the complex compound is modified by a functional group such as an alkyl group contained in the sulfide. As a result, it is thought that the complex compound can exist as a solute in various organic solvents due to the affinity of the functional group to the organic solvent.
 また、この錯体化合物が各種の有機溶媒において均一な溶液を生成して安定的に維持可能であることは、当該錯体化合物がハロゲン化銅(I)とスルフィド等に解離することがなく、錯体化合物の形態で有機溶媒中に存在可能であることを示すものと考察された。 In addition, the ability of this complex compound to generate a uniform solution in various organic solvents and maintain it stably means that the complex compound does not dissociate into copper (I) halide and sulfide, etc., and the complex compound It was considered to indicate that it can exist in an organic solvent in the form of
 更に、この錯体化合物を各種の有機溶媒に溶解してなる含ハロゲン化銅溶液を各種の基材に塗布した後、例えば、100℃程度以下の温度において当該基材の表面にハロゲン化銅(I)が生成することが観察される。このことは、含ハロゲン化銅溶液内においてこの錯体化合物が安定して存在することを示すと共に、基材の表面等において当該錯体化合物が容易に解離してハロゲン化銅(I)が再生されることを示すものと考えられる。 Furthermore, after applying a copper halide solution obtained by dissolving this complex compound in various organic solvents to various substrates, for example, copper halide (I ) is observed to form. This indicates that the complex compound is stably present in the copper halide-containing solution, and that the complex compound is easily dissociated on the surface of the substrate or the like to regenerate the copper (I) halide. This is considered to indicate that
 上記のように、本発明の方法では、ハロゲン化銅(I)に対して各種のスルフィドを混合することで容易に錯体化合物を形成できる共に、当該錯体化合物が各種の有機溶媒内で安定的に存在して含ハロゲン化銅溶液を形成可能である。当該含ハロゲン化銅溶液を基材等に塗布して加熱等を行うことで当該錯体化合物が容易に解離してハロゲン化銅(I)を再生する機構は明らかでないが、以下に説明するように、ハロゲン化銅(I)に対するスルフィドの配位結合の結合強度が適切であると共に、スルフィドが比較的高い蒸気圧を有することが有効に作用するものと考えられる。 As described above, in the method of the present invention, a complex compound can be easily formed by mixing various sulfides with copper(I) halide, and the complex compound can be stably formed in various organic solvents. can be present to form a copper halide-containing solution. The mechanism by which the complex compound is easily dissociated to regenerate the copper (I) halide by applying the copper halide solution to a base material or the like and heating the solution is not clear, but as described below, It is believed that the strength of the coordinate bond of the sulfide to the copper (I) halide is appropriate and the sulfide has a relatively high vapor pressure.
 上記ハロゲン化銅(CuX)とスルフィド(RSR’;R,R’は炭素原子を含む官能基)の間で生じる錯体化合物(CuX:RSR’)の生成反応、及びその解離反応は以下のように生じるものと考察される。 The formation reaction of the complex compound (CuX:RSR') occurring between the copper halide (CuX) and the sulfide (RSR'; R and R' are functional groups containing carbon atoms) and the dissociation reaction thereof are as follows. are considered to occur.
 (1)錯体化合物の生成反応:
  CuX + RSR’⇒ CuX:RSR’  (発熱反応)
 (2)錯体化合物の解離反応:
  CuX:RSR’  ⇒ CuX + RSR’↑ (吸熱反応)
(1) Formation reaction of complex compound:
CuX + RSR' ⇒ CuX: RSR' (exothermic reaction)
(2) Dissociation reaction of complex compound:
CuX:RSR' ⇒ CuX + RSR'↑ (endothermic reaction)
 この錯体化合物の形成反応が自発的に進行することから、錯体化合物の生成反応は発熱反応であり、ハロゲン化銅(I)に対してスルフィドが配位結合する際の結合強度を反映するものと考えられる。そして、仮に、当該反応の発熱量が大きい場合には、一般に錯体化合物は容易に生成し、有機溶媒に溶解させた際の安定性が高いと考えられる一方で、錯体化合物を解離させてハロゲン化銅(I)を再生する解離反応の進展が困難になるものと考えられる。このことは、ハロゲン化銅(I)を再生する際に高温への加熱、還元剤の使用等の必要を生じること意味し、必ずしも望ましくないものと考えられる。 Since the formation reaction of this complex compound proceeds spontaneously, the formation reaction of the complex compound is an exothermic reaction, which reflects the bond strength when the sulfide is coordinated to the copper(I) halide. Conceivable. If the reaction generates a large amount of heat, the complex compound is generally easily formed and is considered to be highly stable when dissolved in an organic solvent. It is considered that progress of the dissociation reaction for regenerating copper (I) becomes difficult. This means that the regeneration of the copper(I) halide requires heating to a high temperature, the use of a reducing agent, etc., and is not necessarily considered desirable.
 これに対して、上記で説明したように、この錯体化合物は、100℃程度以下の温和な温度においても容易に解離してハロゲン化銅(I)が再生することが観察される一方で、当該錯体化合物が有機溶媒中において安定的に存在することが観察された。このことは、スルフィドとハロゲン化銅(I)間の配位結合の結合強度が、ハロゲン化銅(I)を有機溶媒に可溶化すると共に、その後に基材等の表面でハロゲン化銅(I)を再生しようとする際に適切な範囲にあることを示すものと考えられる。 On the other hand, as explained above, it is observed that this complex compound is easily dissociated even at a mild temperature of about 100° C. or less to regenerate copper(I) halide. It was observed that the complex compound existed stably in the organic solvent. This indicates that the bond strength of the coordination bond between the sulfide and the copper(I) halide makes the copper(I) halide soluble in the organic solvent, and then the copper(I) halide on the surface of the substrate or the like. ) is considered to be within an appropriate range when trying to reproduce.
 なお、上記錯体化合物の生成反応と解離反応は可逆反応であると考えられる。一方、一般にスルフィドが高い蒸気圧を有することにより、ハロゲン化銅(I)から解離した後にスルフィドが速やかに反応の系外に脱離可能である。そのために、反応系を開放することにより錯体化合物の解離反応を実質的に不可逆的に生じさせることが可能である。その結果として錯体化合物の生成反応と解離反応を同一の温度域で行うことが可能になるものと考えられる。 The formation reaction and dissociation reaction of the complex compound are considered to be reversible reactions. On the other hand, since sulfide generally has a high vapor pressure, sulfide can quickly desorb out of the reaction system after being dissociated from the copper(I) halide. Therefore, by opening the reaction system, the dissociation reaction of the complex compound can be caused substantially irreversibly. As a result, it is considered that the formation reaction and the dissociation reaction of the complex compound can be carried out in the same temperature range.
 本発明において使用するハロゲン化銅(I)として、ヨウ化銅(I)(CuI)、臭化銅(I)(CuBr)、及びその複合塩(CuBr1-x I(x=0~1))を使用することができる。また、当該ヨウ化銅(I)等の特性を調整する等の目的で、フッ素(F),塩素(Cl)等の他のハロゲン族の元素を含むハロゲン化銅(I)を使用することができる。更に、銅以外の遷移金属のハロゲン化物等が添加されたハロゲン化銅を使用することができる。 Copper (I) halides used in the present invention include copper (I) iodide (CuI), copper (I) bromide (CuBr), and their composite salts (CuBr 1-x I x (x=0 to 1 )) can be used. In addition, for the purpose of adjusting the properties of the copper (I) iodide, etc., it is possible to use copper (I) halides containing other halogen group elements such as fluorine (F) and chlorine (Cl). can. Furthermore, a copper halide added with a transition metal halide other than copper can be used.
 上記スルフィドは、硫黄原子によって二つの1価の有機基(例えば、アルキル基)が結合された有機化合物であり、一般式:R-S-R’(R,R’は、それぞれ1価の有機基を示す)で示される構造の他、一般式:R-S-S-R’で示されるジスルフィド、一般式:R-S-S-S-R’で示されるトリスルフィド等を含むものである。本発明において使用されるスルフィドとして、ハロゲン化銅(I)との間で錯体化合物を生成するスルフィドであれば特に制限無く使用することが可能であるが、特に配位座が単一であり単純な構造の錯体化合物を生成可能な一般式:R-S-R’の構造で示されるスルフィド分子を好ましく使用することができる。 The above sulfide is an organic compound in which two monovalent organic groups (e.g., alkyl groups) are bonded by a sulfur atom, and has the general formula: RSR' (R and R' are each a monovalent organic group), disulfide represented by the general formula: R—S—S—R′, trisulfide represented by the general formula: R—S—S—S—R′, and the like. As the sulfide used in the present invention, any sulfide that forms a complex compound with copper (I) halide can be used without particular limitation. A sulfide molecule represented by the structure of the general formula: R—S—R′ that can form a complex compound having a structure can be preferably used.
 本発明において、上記スルフィド分子内において硫黄原子に結合する1価の有機基は、主に、錯体化合物を修飾することよって生じる各種の有機溶媒に対する親和性の観点、及び、各種基材表面等で当該錯体化合物が解離してハロゲン化銅(I)を再生する際の容易性の観点から、使用の目的に応じて適宜選択することができる。 In the present invention, the monovalent organic group bonded to the sulfur atom in the sulfide molecule is mainly from the viewpoint of affinity for various organic solvents generated by modifying the complex compound, various substrate surfaces, etc. From the viewpoint of easiness in regenerating the copper (I) halide by dissociation of the complex compound, it can be appropriately selected depending on the purpose of use.
 つまり、本発明において、使用する有機溶媒の種類に応じて親和性を発揮する有機基が結合されたスルフィド分子を使用することにより、錯体化合物の表面が当該有機基で修飾され、当該有機溶媒内で溶質として安定して存在させることができる。
 一方、スルフィド分子内において硫黄原子に結合する有機基の分子量、極性の有無等を考慮することによりスルフィド分子の蒸気圧が決定される。例えば、蒸気圧の高いスルフィド分子を使用することにより、含ハロゲン化銅溶液を基材等に塗布した際に、有機溶媒の蒸発に伴って速やかに錯体化合物の解離を生じてハロゲン化銅(I)を再生することが可能となる。
That is, in the present invention, the surface of the complex compound is modified with the organic group by using a sulfide molecule bonded with an organic group that exerts an affinity depending on the type of organic solvent used, and can exist stably as a solute at
On the other hand, the vapor pressure of the sulfide molecule is determined by considering the molecular weight of the organic group bonded to the sulfur atom in the sulfide molecule, the presence or absence of polarity, and the like. For example, by using a sulfide molecule with a high vapor pressure, when a copper halide-containing solution is applied to a substrate or the like, the organic solvent evaporates, causing rapid dissociation of the complex compound, resulting in the dissociation of the copper halide (I ) can be played.
 上記スルフィド分子の有機基として、ハロゲン化銅(I)へのスルフィド分子の配位結合を生成する際の立体障害等を抑制する観点から、飽和又は不飽和の炭素を含む有機基、例えば炭化水素基が好ましく使用される。特に飽和した炭素を有するメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等のアルキル基を含むスルフィドは広い範囲の有機溶媒に対して親和性を発現し、本発明において好ましく使用することができる。アルキル基の鎖長が長くなると、そのエントロピーと親和性によって、疎水性有機溶媒に代表される低極性溶媒への溶解性が向上する。その一部に芳香族等の不飽和結合を含む有機基も好適に用いることができる。また、炭化水素基に、例えばアルキル基に、適宜、水酸基、エステル基、エーテル基等の極性基を導入することで、ハロゲン化銅(I)を親水性有機溶媒に代表される高極性溶媒に溶解させることができる。 As the organic group of the sulfide molecule, from the viewpoint of suppressing steric hindrance and the like when forming a coordinate bond of the sulfide molecule to the copper (I) halide, an organic group containing saturated or unsaturated carbon, such as a hydrocarbon groups are preferably used. In particular, sulfides containing alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, and hexyl group having saturated carbons exhibit affinity for a wide range of organic solvents and are preferably used in the present invention. can do. As the chain length of the alkyl group increases, its entropy and affinity improve the solubility in low-polar solvents represented by hydrophobic organic solvents. An organic group partially containing an unsaturated bond such as an aromatic group can also be preferably used. In addition, by appropriately introducing a polar group such as a hydroxyl group, an ester group, an ether group, etc. into a hydrocarbon group, for example, an alkyl group, copper (I) halide can be converted into a highly polar solvent represented by a hydrophilic organic solvent. can be dissolved.
 スルフィド分子の2つの有機基は、同一であってもよく、相互に異なっていてもよい。また、目的に応じて、有機基が相互に異なる複数種のスルフィド分子を混合して使用することも可能である。
 また、ハロゲン化銅(I)を含む錯体化合物を形成する際に、上記スルフィドの一部を、ハロゲン化銅との錯体を形成可能な他の分子(配位子)で置き換えることで、スルフィドの使用量を低下させることが可能である。当該ハロゲン化銅(I)との錯体を形成可能な分子(配位子)として、例えば、アセトニトリルのように単独でハロゲン化銅(I)を溶解可能な分子種が使用可能である。
The two organic groups of the sulfide molecule may be the same or different from each other. Moreover, it is also possible to use a mixture of a plurality of types of sulfide molecules having mutually different organic groups depending on the purpose.
Further, when forming a complex compound containing copper (I) halide, by replacing part of the sulfide with another molecule (ligand) capable of forming a complex with copper halide, the sulfide It is possible to use less. As a molecule (ligand) capable of forming a complex with the copper(I) halide, a molecular species capable of dissolving the copper(I) halide by itself, such as acetonitrile, can be used.
 本発明に係る含ハロゲン化銅溶液においては、ハロゲン化銅(I)を実質的に溶解しない有機溶媒であっても使用することが可能である。これを利用することにより、溶液が塗布等される下地が損なわれない有機溶媒を適宜選択して使用することが可能となる。その際に、上記のように、当該使用する有機溶媒に応じて使用するスルフィド分子を選択することにより、使用可能な有機溶媒の範囲を拡張等することができる。 In the copper halide-containing solution according to the present invention, even an organic solvent that does not substantially dissolve copper (I) halide can be used. By utilizing this, it becomes possible to appropriately select and use an organic solvent that does not damage the substrate on which the solution is applied. At that time, as described above, by selecting the sulfide molecule to be used according to the organic solvent to be used, the range of usable organic solvents can be expanded.
 なお、本発明において、ハロゲン化銅(I)を溶解しない有機溶媒と記載する場合は、スピンコート等の手法によって有効な厚みのハロゲン化銅(I)を含む層を形成できる程度の濃度のヨウ化銅(I)及び/又は臭化銅(I)を溶解できない有機溶媒を意味するものとし、具体的には、室温におけるヨウ化銅(I)及び臭化銅(I)の溶解度が、それぞれ0.01mol/L以下である有機溶媒を意味するものとする。 In the present invention, when the organic solvent that does not dissolve the copper (I) halide is described as an organic solvent, the concentration of iodine is such that a layer containing the copper (I) halide having an effective thickness can be formed by a technique such as spin coating. An organic solvent that cannot dissolve copper (I) bromide and/or copper (I) bromide, specifically, the solubility of copper (I) iodide and copper (I) bromide at room temperature is It shall mean an organic solvent that is 0.01 mol/L or less.
 本発明において使用する有機溶媒として、各種のスルフィド以外の有機溶媒が使用可能である。先述したように、スルフィドの有機基として、例えば、アルキル鎖の長いアルキル基を使用することで無極性・疎水性有機溶媒への溶解性を向上することが可能である。例えば、有機溶媒としては、常温で液体のアルカン類、中でも炭素数の多いオクタン、ノナン、デカン、ドデカンの他に、ベンゼン及びトルエンなどのアルキル置換ベンゼン等が使用可能である。 Various organic solvents other than sulfides can be used as the organic solvent used in the present invention. As described above, by using, for example, an alkyl group having a long alkyl chain as the organic group of the sulfide, it is possible to improve the solubility in nonpolar/hydrophobic organic solvents. For example, as the organic solvent, alkanes that are liquid at room temperature, among which octane, nonane, decane, dodecane, and alkyl-substituted benzenes such as benzene and toluene, which have a large number of carbon atoms, can be used.
 また、スルフィドの有機基としてアルキル鎖の短いアルキル基を使用することで、スルフィドと結合しているハロゲン化銅(I)の極性の効果が相対的に高くなる。またスルフィドの有機基として水酸基等の極性基を含むものを使用することにより極性が高くなる。これにより、有機溶媒として、極性・疎水性有機溶媒、極性・親水性有機溶媒、プロトン性有機溶媒等を用いることができる。極性・疎水性有機溶媒としては、クロロベンゼン等のハロゲン置換ベンゼン、ニトロベンゼン、ベンゾニトリル等の極性基で置換したベンゼン;クロロホルム、ジクロロメタン、ニトロメタンなどの極性基置換アルキル及び極性基置換アルケン;テトラヒドロフラン (THF)、ジエチルエーテル等のエーテル類;酢酸エチル、酢酸ブチル等のエステル類;2-ブタノン等のケトン類;炭酸プロピレン類の炭酸アルキレン類等を挙げることができる。また、水に混和する極性・親水性有機溶媒としては、アセトニトリル、アセトン、N,N-ジメチルホルムアミド、 ジメチルスルホキシド、1,4-ジオキサン、1,2-ジメトキシエタン、γ-ブチロラクトン、N-メチルピロリドン等を挙げることができる。また、プロトン性有機溶媒としては、エタノール、イソプロパノール (IPA)、n-ブタノール、シクロヘキサノール、メトキシエタノール等を挙げることができる。これらの有機溶媒を単独又は相互に混合して使用することが可能であり、所定の濃度でハロゲン化銅(I)とスルフィドから構成される錯体化合物を溶解して、含ハロゲン化銅溶液として使用することができる。 Also, by using an alkyl group with a short alkyl chain as the organic group of the sulfide, the effect of the polarity of the copper (I) halide bonded to the sulfide is relatively enhanced. Polarity is increased by using a sulfide containing a polar group such as a hydroxyl group as the organic group. Accordingly, a polar/hydrophobic organic solvent, a polar/hydrophilic organic solvent, a protic organic solvent, or the like can be used as the organic solvent. Polar/hydrophobic organic solvents include halogen-substituted benzene such as chlorobenzene, benzene substituted with a polar group such as nitrobenzene and benzonitrile; polar group-substituted alkyl and polar group-substituted alkene such as chloroform, dichloromethane and nitromethane; tetrahydrofuran (THF). , ethers such as diethyl ether; esters such as ethyl acetate and butyl acetate; ketones such as 2-butanone; alkylene carbonates such as propylene carbonate. In addition, polar/hydrophilic organic solvents miscible with water include acetonitrile, acetone, N,N-dimethylformamide, dimethylsulfoxide, 1,4-dioxane, 1,2-dimethoxyethane, γ-butyrolactone, and N-methylpyrrolidone. etc. can be mentioned. Examples of protic organic solvents include ethanol, isopropanol (IPA), n-butanol, cyclohexanol, methoxyethanol and the like. These organic solvents can be used alone or mixed with each other. A complex compound composed of copper (I) halide and sulfide is dissolved at a predetermined concentration and used as a copper halide-containing solution. can do.
 また、ハロゲン化銅(I)を含む層を形成する際には、含ハロゲン化銅溶液をスピンコート法、スプレー法等によって下地表面に塗布して、その後に溶液に含まれる溶媒と、錯体化合物を形成していたスルフィドとを揮発除去してハロゲン化銅(I)を再生する工程を採ることが一般的である。 Further, when forming a layer containing copper (I) halide, a solution containing copper halide is applied to the base surface by spin coating, spraying, or the like, and then the solvent contained in the solution and the complex compound are applied. It is common to employ a step of regenerating copper (I) halide by volatilizing and removing the sulfide that formed the .
 当該下地表面にハロゲン化銅(I)を含む層を形成する工程において、例えば、下地表面との濡れ性を向上させて形成される層の均一性を向上する等の目的で、本発明に係る含ハロゲン化銅溶液に各種の添加成分等を添加することが可能である。 In the step of forming a layer containing copper (I) halide on the base surface, for example, for the purpose of improving the uniformity of the layer formed by improving the wettability with the base surface, the method according to the present invention Various additive components can be added to the copper halide-containing solution.
 また、下地表面に対して、予め各種の処理を行うことで含ハロゲン化銅溶液との濡れ性を向上させる処理、及び/又はハロゲン化銅(I)に対する核生成サイトを設ける処理等を行うことができる。 In addition, the substrate surface may be subjected to various treatments in advance to improve wettability with the copper halide-containing solution, and/or to provide nucleation sites for copper (I) halide. can be done.
 本発明において使用される錯体化合物は、ハロゲン化銅(I)とスルフィドを混合することにより形成することができる。その際に、ハロゲン化銅(I)が粉末状等の固体の場合には、液体状のスルフィドを使用することができる。また、固体のスルフィドを少量の有機溶媒に溶解してなる含スルフィド溶液の形態で、固体のハロゲン化銅(I)と混合することができる。これにより、ハロゲン化銅(I)とスルフィドが接触する接触面積が確保されて、錯体化合物の形成反応を円滑に生じさせることができる。 The complex compound used in the present invention can be formed by mixing copper (I) halide and sulfide. At that time, when the copper (I) halide is solid such as powder, liquid sulfide can be used. Alternatively, a solid copper (I) halide can be mixed in the form of a sulfide-containing solution obtained by dissolving a solid sulfide in a small amount of an organic solvent. As a result, the contact area between the copper(I) halide and the sulfide is ensured, and the formation reaction of the complex compound can be caused smoothly.
 非特許文献5に記載されるように、ハロゲン化銅(I)とスルフィドの間で生成する錯体化合物では、典型的にはハロゲン化銅(I)を構成する各銅原子に対してスルフィドに含まれる硫黄原子が1:1の比率により各種の形態で配位結合する。このため、上記錯体化合物を生成させる際には、略等モルのハロゲン化銅(I)とスルフィドを混合することで錯体化合物を生成させることができる。 As described in Non-Patent Document 5, in a complex compound generated between a copper(I) halide and a sulfide, each copper atom constituting the copper(I) halide is typically contained in the sulfide. Sulfur atoms in each are coordinated in various forms in a 1:1 ratio. Therefore, when the complex compound is produced, the complex compound can be produced by mixing substantially equimolar amounts of copper (I) halide and sulfide.
 また、スルフィドは一般に高い蒸気圧を示すことから、ハロゲン化銅(I)との反応の系外にスルフィドが脱離することが考えられる。それを防止するために、上記ハロゲン化銅(I)とスルフィドとの混合を密閉可能な容器内で行うことで、組成のズレを防止することが好ましい。
 また、スルフィドを含まない錯体化合物の生成においては、ハロゲン化銅(I)が配位高分子結晶を構成するのに対し、本発明においてはスルフィドがハロゲン化銅(I)分子間の配位結合を切断することで銅原子に配位結合を生じるものと考えられる。一方、上記で説明したように、ハロゲン化銅(I)とスルフィド間で錯体化合物を生成する反応の生成熱は必ずしも大きくなく、上記配位結合を生じる際の駆動力が限られることが予想される。このため、例えば、120℃程度以下の温度、特に50~80℃程度の温度に加熱することにより錯体化合物の生成を促進することができる。
Moreover, since sulfide generally exhibits a high vapor pressure, it is conceivable that sulfide is desorbed outside the reaction system with copper(I) halide. In order to prevent this, it is preferable to mix the copper(I) halide and the sulfide in a container that can be sealed to prevent the composition from shifting.
In the production of a complex compound containing no sulfide, copper(I) halide constitutes a coordination polymer crystal, whereas in the present invention, sulfide is a coordination bond between copper(I) halide molecules. Cleavage of the copper atom is thought to generate a coordinate bond. On the other hand, as explained above, the heat of formation of the reaction to form the complex compound between the copper(I) halide and the sulfide is not necessarily large, and it is expected that the driving force for the formation of the coordinate bond is limited. be. Therefore, for example, heating to a temperature of about 120° C. or less, particularly a temperature of about 50 to 80° C. can promote the formation of the complex compound.
 また、スルフィドの揮発及び/又は反応性の低さを補う観点からは、ハロゲン化銅(I)に対するスルフィドの混合比率を等モルよりも大きくし、3倍モル量程度以下とすることができる。これにより、錯体化合物の形成に伴うスルフィドの活性低下を防止して錯体化合物の形成反応を促進することも好ましい。ハロゲン化銅(I)に対して等モル以上のスルフィドを混合した際には、生成する錯体化合物は在留するスルフィドとの混合物となる。そのため、在留するスルフィドを抑制する観点からは、スルフィドの混合比率を、例えば、1.1~2.0倍モル量程度とすることが好ましい。 In addition, from the viewpoint of compensating for the volatilization and/or low reactivity of sulfide, the mixing ratio of sulfide to copper (I) halide can be made greater than equimolar and about 3 times the molar amount or less. Thereby, it is also preferable to prevent a decrease in the activity of sulfide accompanying the formation of the complex compound and promote the formation reaction of the complex compound. When equimolar or more of sulfide is mixed with copper(I) halide, the resulting complex compound is a mixture with residual sulfide. Therefore, from the viewpoint of suppressing residual sulfide, it is preferable to set the mixing ratio of sulfide to, for example, about 1.1 to 2.0 times the molar amount.
 一方、本発明に係る含ハロゲン化銅溶液中にスルフィド分子の形態で溶解するスルフィド成分の濃度を低減する観点からは、スルフィドの混合比率をハロゲン化銅(I)に対して等モル以下の割合とすることができる。その混合比率を、例えば0.8倍モル量程度にしてスルフィドの略全量を錯体化合物の形態とすることができる。この場合、残留するハロゲン化銅(I)を分離した後に有機溶媒に溶解することができる。あるいは、錯体化合物を有機溶媒に溶解した後に残留するハロゲン化銅(I)を分離等することが好ましい。当該方法によれば、スルフィドが有機溶媒中でスルフィド分子の形態で溶解することを抑制可能であり、特にスルフィドによって影響を受けやすい基材表面にハロゲン化銅(I)を含む層を形成する際に好適に使用することができる。 On the other hand, from the viewpoint of reducing the concentration of sulfide components dissolved in the form of sulfide molecules in the copper halide-containing solution according to the present invention, the mixing ratio of sulfide to copper (I) halide should be equimolar or less. can be By adjusting the mixing ratio to, for example, about 0.8 times the molar amount, substantially the entire amount of the sulfide can be converted into the form of the complex compound. In this case, the remaining copper(I) halide can be separated and then dissolved in an organic solvent. Alternatively, it is preferable to separate the remaining copper(I) halide after dissolving the complex compound in the organic solvent. According to the method, it is possible to suppress the dissolution of sulfide in the form of sulfide molecules in an organic solvent, and in particular when forming a layer containing copper (I) halide on a substrate surface that is easily affected by sulfide. can be suitably used for
 また、ハロゲン化銅(I)とスルフィド間の錯体化合物の生成を促進する観点からは、ハロゲン化銅(I)と混合される際のスルフィドの濃度が高いことが好ましく、例えば、実質的に希釈されていないスルフィドをハロゲン化銅(I)と混合することが好ましい。一方、錯体化合物が生成する範囲で、予め所定の濃度で有機溶媒に溶解したスルフィドに対してハロゲン化銅(I)を混合し、有機溶媒内で錯体化合物を形成させて含ハロゲン化銅溶液とすることも可能である。また、ハロゲン化銅(I)を含む錯体化合物に付加的な特性を付与する等の目的で、錯体化合物を生成する反応系内に適宜の有機物等を存在させることができる。 Moreover, from the viewpoint of promoting the formation of a complex compound between copper(I) halide and sulfide, it is preferable that the concentration of sulfide is high when mixed with copper(I) halide. It is preferred to mix the untreated sulfide with the copper(I) halide. On the other hand, copper (I) halide is mixed with sulfide dissolved in an organic solvent at a predetermined concentration in advance to the extent that a complex compound is formed, and a complex compound is formed in the organic solvent to form a copper halide solution. It is also possible to For the purpose of imparting additional properties to the complex compound containing copper(I) halide, an appropriate organic substance or the like can be present in the reaction system for producing the complex compound.
 本発明に係る含ハロゲン化銅溶液は、さらに溶解した亜鉛系化合物を含有することができる。亜鉛系化合物が含有されていることで、最終的に得られる薄膜の半導体特性を調整することができる。すなわち、ハロゲン化銅のみを含有する含ハロゲン化銅溶液によって製造される薄膜は、キャリア数が多く電気伝導度が高い傾向にあるが、このような薄膜は、一部の用途、例えば特定の型式の太陽電池、TFT等において、不適切になる場合がある。それに対して、亜鉛系化合物を含有した含ハロゲン化銅溶液は、亜鉛系化合物の含有量及び種類によって、得られる薄膜の半導体特性を制御することができるため、様々な用途において好適な薄膜を製造できることが分かった。薄膜の他の特性を悪化させずに、半導体特性を制御することは、このような無機材料系の薄膜では通常は非常に困難であるため、このような実施形態の本発明は特に有利である。ここで、ハロゲン化銅としてヨウ化銅を使用し、かつ亜鉛系化合物としてヨウ化亜鉛を使用した場合には、用途によっては高すぎるヨウ化銅のキャリア数を減らしながらも、ヨウ素イオンによる高い移動度を維持できると考えられるため、特に有効である。 The copper halide-containing solution according to the present invention can further contain a dissolved zinc-based compound. The semiconductor properties of the finally obtained thin film can be adjusted by containing the zinc-based compound. That is, although thin films produced by copper halide-containing solutions containing only copper halide tend to have high carrier counts and high electrical conductivity, such thin films are not suitable for some applications, such as certain types of solar cells, TFTs, etc., may be inappropriate. On the other hand, a copper halide solution containing a zinc-based compound can control the semiconducting properties of the resulting thin film depending on the content and type of the zinc-based compound, so that thin films suitable for various applications can be manufactured. I found it possible. Such embodiments of the invention are particularly advantageous because controlling the semiconducting properties without degrading other properties of the thin film is typically very difficult for thin films based on such inorganic materials. . Here, when copper iodide is used as the copper halide and zinc iodide is used as the zinc-based compound, it is possible to reduce the number of carriers of copper iodide, which is too high for some applications, while increasing the mobility of iodide ions. It is particularly effective because it is considered that the degree can be maintained.
 そのような亜鉛系化合物としては、含ハロゲン化銅溶液によって製造される薄膜の半導体特性を制御できるのであれば特に限定されないが、例えば半導体特性を有し、用いる溶媒に溶解可能な亜鉛系化合物を挙げることができる。そのような亜鉛系化合物としては、フッ化亜鉛、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、酸化亜鉛、硫化亜鉛、チオシアン酸亜鉛等を挙げることができる。ハロゲン化銅がヨウ化銅である場合には、これらの中でも特にヨウ化亜鉛を用いることができる。 Such a zinc-based compound is not particularly limited as long as it can control the semiconducting properties of a thin film produced from a copper halide solution. can be mentioned. Examples of such zinc compounds include zinc fluoride, zinc chloride, zinc bromide, zinc iodide, zinc oxide, zinc sulfide, and zinc thiocyanate. Among these, zinc iodide can be used when the copper halide is copper iodide.
 なお、含ハロゲン化銅溶液に含まれるハロゲン化銅がヨウ化銅である場合に、得られる薄膜の半導体特性は、ヨウ化銅に加えて臭化銅を混合することによってもある程度は制御することができるが、臭化銅を混合するよりも、ヨウ化亜鉛を混合するほうが、ヨウ素イオンによってキャリアの高い移動度を維持できる効果が期待されるため好ましい。 When the copper halide contained in the copper halide-containing solution is copper iodide, the semiconducting properties of the resulting thin film can be controlled to some extent by mixing copper bromide in addition to copper iodide. However, mixing zinc iodide is more preferable than mixing copper bromide because it is expected that iodide ions can maintain high carrier mobility.
 含ハロゲン化銅溶液に含有できる亜鉛系化合物の量は、実施例に記載のドープ量の計算方法に基づいて、0%超、1%以上、3%以上、5%以上、10%以上、15%以上、又は20%以上であってもよく、40%以下、35%以下、30%以下、25%以下、20%以下、15%以下、又は10%以下とすることができる。例えば、このドープ量は、0%超40%以下、1%以上30%以下、又は5%以上20%以下とすることができる。 The amount of the zinc-based compound that can be contained in the copper halide solution is more than 0%, 1% or more, 3% or more, 5% or more, 10% or more, 15% or more, based on the doping amount calculation method described in the Examples. % or more, or 20% or more, and can be 40% or less, 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, or 10% or less. For example, the doping amount can be greater than 0% and 40% or less, 1% or more and 30% or less, or 5% or more and 20% or less.
 含ハロゲン化銅溶液に亜鉛系化合物を溶解させる場合、ハロゲン化銅、亜鉛系化合物、スルフィド及び有機溶媒を様々な順序で混合して含ハロゲン化銅溶液を得ることができる。例えば、含ハロゲン化銅溶液を得る場合、ハロゲン化銅と亜鉛系化合物とを混合して混合粉末を得てから、混合粉末をスルフィドと混合し、さらに有機溶媒を混合してもよい。また、ハロゲン化銅と亜鉛系化合物とを別々にスルフィドと混合し、これらを混合してからさらに有機溶媒を混合してもよく、またハロゲン化銅を、予め有機溶媒に溶解したスルフィドと混合し、ここにさらに亜鉛系化合物を混合してもよい。さらに、ハロゲン化銅と亜鉛系化合物とをそれぞれ別々に、スルフィドと混合した後に有機溶媒を加えて、それぞれの溶液を混合して含ハロゲン化銅溶液を得てもよい。 When the zinc-based compound is dissolved in the copper halide-containing solution, the copper halide-containing solution can be obtained by mixing the copper halide, the zinc-based compound, the sulfide, and the organic solvent in various orders. For example, when obtaining a copper halide-containing solution, a copper halide and a zinc-based compound may be mixed to obtain a mixed powder, then the mixed powder may be mixed with sulfide, and further mixed with an organic solvent. Alternatively, the copper halide and the zinc-based compound may be separately mixed with the sulfide, and after mixing these, the organic solvent may be further mixed. , and a zinc-based compound may be further mixed therein. Furthermore, the copper halide and the zinc-based compound may be separately mixed with the sulfide, then the organic solvent may be added, and the respective solutions may be mixed to obtain a copper halide-containing solution.
 本発明に係る含ハロゲン化銅溶液は、上記のようにして生成した錯体化合物を適宜の有機溶媒に溶解することによって生成される。また、上記のように、適宜の有機溶媒に溶解したスルフィドを使用して、これにハロゲン化銅(I)を混合して有機溶媒内で錯体化合物を生成させることで、直接的に含ハロゲン化銅溶液を生成することができる。 The copper halide-containing solution according to the present invention is produced by dissolving the complex compound produced as described above in an appropriate organic solvent. Alternatively, as described above, a sulfide dissolved in an appropriate organic solvent is used, and a copper (I) halide is mixed with the sulfide to form a complex compound in the organic solvent. A copper solution can be produced.
 上記のように生成される含ハロゲン化銅溶液は、スルフィドに含まれる有機基と使用する有機溶媒の組合せを考慮することにより、析出物等を生じない状態で長期間の保存をすることが可能である。このことは、錯体化合物が有機溶媒中において安定に存在可能であることを意味すると考えられ、特に、錯体化合物に含まれるスルフィドが錯体化合物から脱離してスルフィド分子として有機溶媒中に溶出し難いことを意味するものと考えられる。 By considering the combination of the organic groups contained in the sulfide and the organic solvent used, the copper halide solution produced as described above can be stored for a long period of time without deposits. is. This is considered to mean that the complex compound can stably exist in the organic solvent, and in particular, the sulfide contained in the complex compound is desorbed from the complex compound and is difficult to be eluted as a sulfide molecule into the organic solvent. is considered to mean
 本発明に係る含ハロゲン化銅溶液は、例えば、スピンコート法によって基材等の表面に塗布され、その後に溶媒を揮発させることによって、錯体化合物の解離によりハロゲン化銅(I)が再生され、ハロゲン化銅(I)を含む層を基材等の表面に析出させることができる。本発明に係る含ハロゲン化銅溶液は、当該工程によって形成しようとするハロゲン化銅(I)を含む層の厚み、及びスピンコート法によって塗布された際の溶液の膜厚等を考慮して、所定の濃度で錯体化合物を含むように適宜調整されて使用することができる。 The copper halide-containing solution according to the present invention is applied to the surface of a substrate or the like by, for example, a spin coating method, and then the solvent is volatilized to dissociate the complex compound to regenerate the copper (I) halide, A layer comprising a copper(I) halide can be deposited on the surface of a substrate or the like. The copper halide-containing solution according to the present invention is prepared by considering the thickness of the layer containing the copper (I) halide to be formed by the process and the film thickness of the solution when applied by spin coating. It can be used after being appropriately adjusted so as to contain the complex compound at a predetermined concentration.
 上記スピンコート法によって塗布されてハロゲン化銅(I)を含む層を形成する際には、例えば、0.01mol/L程度の濃度で上記錯体化合物を含む含ハロゲン化銅溶液を使用することができる。これにより10nm程度までの厚みでハロゲン化銅(I)を含む層を形成することができ、TFTの活性層等を形成する際に好適に使用される。また、0.05mol/L程度の濃度で上記錯体化合物を含む含ハロゲン化銅溶液を使用することにより10~30nm程度の厚みでハロゲン化銅(I)を含む層を形成することができる。更に、0.1mol/L程度の濃度で上記錯体化合物を含む含ハロゲン化銅溶液を使用することにより30~100nm程度の厚みでハロゲン化銅(I)を含む層を一回のプロセスで形成することができ、薄膜太陽電池のホール輸送層、電界発光(EL)素子のホール注入層の他に、色素増感太陽電池のホール輸送層、熱電変換デバイスの活性としても利用できる。 When forming a layer containing copper (I) halide by coating by the above spin coating method, for example, a copper halide-containing solution containing the above complex compound at a concentration of about 0.01 mol / L can be used. can. As a result, a layer containing copper (I) halide can be formed with a thickness of up to about 10 nm, and is suitably used when forming an active layer of a TFT or the like. Further, by using a copper halide-containing solution containing the complex compound at a concentration of about 0.05 mol/L, a layer containing copper (I) halide can be formed with a thickness of about 10 to 30 nm. Furthermore, a layer containing copper (I) halide having a thickness of about 30 to 100 nm is formed in one process by using a copper halide solution containing the complex compound at a concentration of about 0.1 mol/L. In addition to the hole transport layer of thin-film solar cells and the hole injection layer of electroluminescence (EL) devices, it can also be used as the hole transport layer of dye-sensitized solar cells and the activity of thermoelectric conversion devices.
 また、本発明に係る含ハロゲン化銅溶液は、高い濃度で錯体化合物を含む溶液として作製して保存され、その使用の際に、使用目的に応じて適宜の濃度に希釈して使用することができる。 In addition, the copper halide-containing solution according to the present invention can be prepared and stored as a solution containing a complex compound at a high concentration, and when used, it can be diluted to an appropriate concentration according to the purpose of use. can.
 本発明に係る含ハロゲン化銅溶液をスピンコート法によって基材等の表面に塗布した後、例えば、100℃程度以下の温度に加熱することによって、溶媒の揮発と錯体化合物の解離を促進することが可能であり、製造するデバイスの構造等に影響しない範囲で加熱等を行うことが好ましい。これにより、容易にハロゲン化銅(I)を含む層を得ることができる。含ハロゲン化銅溶液が、亜鉛系化合物を含有する場合にも同様にして薄膜を製造することができる。 After applying the copper halide solution according to the present invention to the surface of a substrate or the like by spin coating, the solution is heated to a temperature of, for example, about 100° C. or less to promote volatilization of the solvent and dissociation of the complex compound. is possible, and it is preferable to perform heating and the like within a range that does not affect the structure and the like of the device to be manufactured. This makes it possible to easily obtain a layer containing copper (I) halide. A thin film can be produced in the same manner when the copper halide solution contains a zinc-based compound.
 本発明に係る含ハロゲン化銅溶液において、錯体化合物を溶解する溶媒としてスルフィドを含まない有機溶媒を使用した場合には、含ハロゲン化銅溶液に含まれるスルフィド成分の濃度は、錯体化合物を生成する際に使用されたスルフィドに起因するものに限定される。そして、当該含ハロゲン化銅溶液の内部に存在するスルフィド成分のほとんどを錯体化合物を形成した状態とすることができる。有機溶媒中にスルフィド分子として遊離する濃度を抑制することによって、溶液中において実質的にスルフィドとしての活性を示さないものとすることができる。 In the copper halide-containing solution according to the present invention, when an organic solvent containing no sulfide is used as the solvent for dissolving the complex compound, the concentration of the sulfide component contained in the copper halide-containing solution is such that the complex compound is formed. limited to those attributed to the sulfides used in the process. Then, most of the sulfide components present inside the copper halide solution can be brought into a state of forming a complex compound. By suppressing the concentration of liberation as sulfide molecules in an organic solvent, it is possible to substantially not exhibit activity as a sulfide in a solution.
 つまり、ハロゲン化銅(I)とスルフィドを略等モル程度で混合して錯体化合物を生成させ、当該錯体化合物を有機溶媒に溶解させて希釈した含ハロゲン化銅溶液においては、スルフィドの活性が十分に低くすることが可能である。例えば、当該溶液に新たにハロゲン化銅(I)等を投入等しても、これを溶解等することが困難である。また、当該錯体化合物の解離によって生じるスルフィドは、揮発によって気体として速やかに系外に放出されるため、本発明に係る含ハロゲン化銅溶液によって形成されるハロゲン化銅(I)を含む層の下地層等に対して実質的に影響を及ぼさないものと考えられる。 That is, in a copper halide-containing solution obtained by mixing approximately equimolar amounts of copper(I) halide and sulfide to form a complex compound, and diluting the complex compound by dissolving it in an organic solvent, the activity of sulfide is sufficient. can be lowered to For example, even if copper (I) halide or the like is newly added to the solution, it is difficult to dissolve it. In addition, since the sulfide generated by the dissociation of the complex compound is quickly released as a gas to the outside of the system by volatilization, the layer containing copper (I) halide formed by the copper halide-containing solution according to the present invention It is considered that there will be no substantial impact on strata and the like.
 このため、本発明に係る含ハロゲン化銅溶液を用いることによって、溶媒としてスルフィドを使用することで影響を受ける下地の表面に対しても、当該影響を抑制しながらハロゲン化銅(I)を含む層を形成することが可能となる。
 また、当該現象を利用することにより、既に形成されたハロゲン化銅(I)を含む層の表面に対して、本発明に係る含ハロゲン化銅溶液を塗布・乾燥等を行うことにより、ハロゲン化銅(I)を含む層が積層された構造を形成することが可能である。これにより、例えば、単一の工程によっては形成が困難な厚みを有するハロゲン化銅(I)を含む層の形成が可能となる。また、例えば、異なる組成のヨウ化銅(I)と臭化銅(I)の複合塩を含む錯体化合物を含む含ハロゲン化銅溶液を使用することで、異なる組成のハロゲン化銅(I)を含む層を積層することが可能となる。これにより、仕事関数等の物性が順次変化するハロゲン化銅(I)を含む層を形成することが可能であり、当該構造を含む電子デバイスの製造が可能となる。
Therefore, by using the copper halide-containing solution according to the present invention, it is possible to contain copper (I) halide while suppressing the effect even on the surface of the base that is affected by using sulfide as a solvent. Layers can be formed.
In addition, by utilizing this phenomenon, the surface of the already formed copper (I) halide-containing layer can be coated with the copper halide-containing solution according to the present invention and dried to achieve halogenation. It is possible to form a structure in which layers containing copper (I) are stacked. This allows, for example, the formation of a layer containing copper(I) halide having a thickness that is difficult to form by a single process. Further, for example, by using a copper halide-containing solution containing a complex compound containing a complex salt of copper (I) iodide and copper (I) bromide with different compositions, copper (I) halides with different compositions can be obtained. It becomes possible to laminate layers containing. As a result, it is possible to form a layer containing copper (I) halide whose physical properties such as work function change sequentially, and to manufacture an electronic device including the structure.
 以下、実施例によって本発明を具体的に説明するが、本発明は実施例に限定して解釈されるべきものではない。 Although the present invention will be specifically described below with reference to examples, the present invention should not be construed as being limited to the examples.
(実施例1)
 以下に説明する方法により、スルフィドの一種であるジプロピルスルフィド(以下、「PrS」と記載する場合がある。)を使用して、ヨウ化銅(I)を溶質として含むトルエン溶液を調製した。
(Example 1)
A toluene solution containing copper (I) iodide as a solute is prepared using dipropyl sulfide (hereinafter sometimes referred to as “Pr 2 S”), which is a kind of sulfide, by the method described below. bottom.
 スクリューキャップにより密封可能なガラス容器内で、白色固体(粉末状)のヨウ化銅(I)0.400g(2.10×10-3mol、和光純薬社製一級)に対して、1.3当量に相当する量のジプロピルスルフィド0.323g(2.73×10-3mol、和光純薬社製(純度;97.0%以上))を加え、70℃に加熱した状態で1時間の撹拌を行った。攪拌により粉末状のヨウ化銅(I)が消失して、容器内には透明で均一な粘性溶液が生成した。当該粘性溶液は、ヨウ化銅(I)及びジプロピルスルフィドから構成される錯体化合物と、過剰量のジプロピルスルフィドとの混合物であると推察された。 In a glass container that can be sealed with a screw cap, 0.400 g (2.10×10 −3 mol, first grade manufactured by Wako Pure Chemical Industries, Ltd.) of white solid (powder) copper (I) iodide is added with 1. Dipropyl sulfide 0.323 g (2.73×10 −3 mol, manufactured by Wako Pure Chemical Industries, Ltd. (purity: 97.0% or more)) in an amount equivalent to 3 equivalents was added, and the mixture was heated to 70° C. for 1 hour. was stirred. The powdery copper (I) iodide disappeared by stirring, and a transparent and uniform viscous solution was produced in the vessel. The viscous solution was presumed to be a mixture of a complex compound composed of copper (I) iodide and dipropyl sulfide and an excess amount of dipropyl sulfide.
 上記粘性溶液を室温まで冷却した後、これに試料の総質量が8.0gになるようにトルエン(関東化学・特級)を加えて攪拌することで、当該粘性溶液がトルエン中に溶解して無色透明で均一なトルエン溶液を得た。当該トルエン溶液中におけるヨウ化銅(I)の含有割合は5.0wt%であり、トルエンの密度等から2.4×10-1mol/L程度のモル濃度を有すると見積もられた。 After cooling the viscous solution to room temperature, toluene (Kanto Kagaku, special grade) is added and stirred so that the total mass of the sample is 8.0 g, and the viscous solution dissolves in toluene and becomes colorless. A clear and homogeneous toluene solution was obtained. The content of copper (I) iodide in the toluene solution was 5.0 wt %, and was estimated to have a molar concentration of about 2.4×10 −1 mol/L from the density of toluene and the like.
 上記トルエン溶液(75μL)を用いて、ガラス基板上にスピンコート薄膜を作製した。スピンコート条件は、1000rpmで5秒間回転した後、1500rpmで30秒間回転させた。その後、80℃に1時間保持してトルエン等を揮発させることにより、ガラス基板上に無色で透明性の高い被膜が生成した。 A spin-coated thin film was prepared on a glass substrate using the above toluene solution (75 μL). The spin coating conditions were 1000 rpm for 5 seconds and then 1500 rpm for 30 seconds. Thereafter, the glass substrate was held at 80° C. for 1 hour to volatilize toluene and the like, thereby forming a colorless and highly transparent film on the glass substrate.
 段差計(Bruker Dektak)により、上記被膜の膜厚は100nm程度と測定された。図1には、当該被膜が付着したガラス基板のX線回折(XRD、理学 MiniFlex II、Cuα1、30kV)の結果を示す。X線回折により観察された回折ピークは、ヨウ化銅(I)の結晶に由来する各ピークに対応付けられた。図2には、当該被膜について紫外可視領域の電子スペクトル(透過スペクトル)測定(島津UV-2600)を行った結果を示す。当該測定において、ヨウ化銅(I)特有の直接遷移に起因する405nm付近に鋭い吸収が観測された。また、以下の実施例2に示すように、当該被膜は、6.5kΩ/sq程度のシート抵抗値を示した。 The film thickness of the film was measured to be about 100 nm by a step meter (Bruker Dektak). FIG. 1 shows the results of X-ray diffraction (XRD, Rigaku MiniFlex II, Cuα1, 30 kV) of the glass substrate to which the film was attached. Diffraction peaks observed by X-ray diffraction corresponded to respective peaks derived from copper(I) iodide crystals. FIG. 2 shows the results of electron spectrum (transmission spectrum) measurement (Shimadzu UV-2600) in the ultraviolet-visible region of the coating. In the measurement, a sharp absorption was observed near 405 nm due to direct transition peculiar to copper (I) iodide. Further, as shown in Example 2 below, the film exhibited a sheet resistance value of about 6.5 kΩ/sq.
 以上の測定結果から、上記ガラス基板上に生成した被膜は結晶性のヨウ化銅(I)であると考察された。
 ヨウ化銅(I)は単独ではトルエン中に溶解しないこと、及び、上記トルエン溶液からトルエン等を揮発させることによりヨウ化銅(I)が再生されることから、上記トルエン溶液においてヨウ化銅(I)はジプロピルスルフィドとの錯体化合物の形態で溶解して存在し、トルエン等を揮発させる際に当該錯体化合物からジプロピルスルフィドが解離してヨウ化銅(I)が析出したものと考察された。
From the above measurement results, it was considered that the film formed on the glass substrate was crystalline copper (I) iodide.
Copper (I) iodide by itself does not dissolve in toluene, and copper (I) iodide is regenerated by evaporating toluene or the like from the toluene solution. I) is dissolved in the form of a complex compound with dipropyl sulfide, and when toluene or the like is volatilized, dipropyl sulfide is dissociated from the complex compound and copper (I) iodide is presumably deposited. rice field.
(実施例2)
 実施例1と同様に作製したヨウ化銅(I)とジプロピルスルフィドを混合して粘性溶液について、各種有機溶媒への当該粘性溶液の溶解性を検証した。検証は、当該粘性溶液に対して、密封可能な容器内でヨウ化銅(I)の含有割合が20.0wt%となるように各有機溶媒を加えて室温で攪拌することにより行った。
 表1には、使用した有機溶媒と、当該有機溶媒中への上記ヨウ化銅(I)とジプロピルスルフィドを含む粘性溶液の溶解性を示す。表1中で、溶解性が「○」と記載するものは、当該有機溶媒中に粘性溶液が溶解して、析出物等を形成せずに均一な溶液を形成したことを示す。
(Example 2)
A viscous solution prepared by mixing copper (I) iodide and dipropyl sulfide prepared in the same manner as in Example 1 was examined for its solubility in various organic solvents. Verification was performed by adding each organic solvent to the viscous solution in a sealable container so that the content of copper(I) iodide was 20.0 wt % and stirring at room temperature.
Table 1 shows the organic solvents used and the solubility of the viscous solutions containing copper(I) iodide and dipropyl sulfide in the organic solvents. In Table 1, the solubility described as "○" indicates that the viscous solution was dissolved in the organic solvent to form a uniform solution without forming precipitates or the like.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、表1に示す構造の異なる多種多様な性質の有機溶媒に対して、ヨウ化銅(I)とジプロピルスルフィドを含む粘性溶液が溶解して無色から淡黄色の均一な溶液を形成することが確認された。 As shown in Table 1, a viscous solution containing copper (I) iodide and dipropyl sulfide dissolves in organic solvents having a wide variety of properties and different structures shown in Table 1, giving a colorless to pale yellow homogeneous solution. Confirmed to form a solution.
 表1に記載した有機溶媒の内で、オクタン、酢酸エチル、酢酸ブチルにそれぞれ上記粘性溶液を溶解し、ヨウ化銅(I)の濃度が5.0wt%になるように調製した溶液(75μL)を用いて、それぞれガラス基板上にスピンコート薄膜を作製した。スピンコート条件は、1000rpmで5秒間回転した後、1500rpmで30秒間回転させた。その後、80℃に1時間保持してトルエン等を揮発させることにより、いずれもガラス基板上に無色で透明性の高い被膜が生成した。 A solution (75 μL) prepared by dissolving the above viscous solution in octane, ethyl acetate, and butyl acetate among the organic solvents listed in Table 1 so that the concentration of copper (I) iodide was 5.0 wt %. was used to prepare a spin-coated thin film on a glass substrate. The spin coating conditions were 1000 rpm for 5 seconds and then 1500 rpm for 30 seconds. After that, by holding at 80° C. for 1 hour to volatilize toluene and the like, a colorless and highly transparent film was formed on each of the glass substrates.
 図1には、上記オクタン、酢酸エチル、酢酸ブチルをそれぞれ溶媒とする含ハロゲン化銅溶液を用いてガラス基板上に生成した被膜のX線回折(XRD、理学 MiniFlex II、Cuα1、30kV)の結果を、トルエンを溶媒としたもの(実施例1)と併せて示す。各被膜の測定により得られた回折ピークは、いずれもヨウ化銅(I)の結晶に由来する各ピークに対応付けられた。 FIG. 1 shows the result of X-ray diffraction (XRD, Rigaku MiniFlex II, Cuα1, 30 kV) of a film formed on a glass substrate using a copper halide solution containing octane, ethyl acetate, and butyl acetate as solvents. is shown together with one using toluene as a solvent (Example 1). All of the diffraction peaks obtained by the measurement of each film corresponded to each peak derived from copper (I) iodide crystals.
 図3には、それぞれの被膜を走査型電子顕微鏡(SEM、日本電子JSM-7600F)で観察した結果を示す。図3に示すように、各ガラス基板表面には概ね均一な被膜が形成されていることが確認された。また、各被膜は70nm程度の粒径の結晶粒で構成され、使用する有機溶媒に応じて、当該結晶粒の間に生成する空隙の様子が異なることが観察され、使用した各溶媒に依存した表面張力や基板表面との濡れ性の違いや結晶成長速度の違いに起因するものと考察された。 Fig. 3 shows the results of observing each coating with a scanning electron microscope (SEM, JEOL JSM-7600F). As shown in FIG. 3, it was confirmed that a generally uniform film was formed on the surface of each glass substrate. In addition, each film is composed of crystal grains with a particle size of about 70 nm, and it was observed that the state of the voids generated between the crystal grains differed depending on the organic solvent used. It was considered that this was caused by differences in surface tension, wettability with the substrate surface, and differences in crystal growth rate.
 表2には、上記のそれぞれの被膜について、四探針法により測定したシート抵抗値(共和理研 K-705RS)を示す。表2に示すように、いずれの被膜も数kΩ/sq程度のシート抵抗を示し、被膜の面内で導電性を示すことが確認された。 Table 2 shows the sheet resistance value (Kyowa Riken K-705RS) measured by the four-probe method for each of the above coatings. As shown in Table 2, it was confirmed that all films exhibited a sheet resistance of several kΩ/sq and exhibited conductivity within the surface of the film.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記に示すように、本発明に係る含ハロゲン化銅溶液を使用することにより、各種有機溶媒を溶媒として、所定の導電性を示すヨウ化銅(I)の被膜を形成可能である。 As described above, by using the copper halide-containing solution according to the present invention, it is possible to form a coating of copper (I) iodide that exhibits a predetermined conductivity using various organic solvents as solvents.
(実施例3)
 使用するスルフィドとして、ジエチルスルフィド(富士フィルム和光純薬・一級)(以下、「EtS」と記載する場合がある。)、ジブチルスルフィド(東京化成・98%以上)(以下、「BuS」と記載する場合がある。)、2-(エチルチオ)エタノール(東京化成・98%以上)(以下、「Et(EtOH)S」と記載する場合がある。)を使用する以外は、実施例1,2と同様にして、ヨウ化銅(I)を含む錯体化合物を含む混合物の作製、及び、当該錯体化合物を含む混合物が各種有機溶媒に対して示す溶解性について評価した。
(Example 3)
As sulfides to be used, diethyl sulfide (Fuji Film Wako Pure Chemical, first grade) (hereinafter sometimes referred to as "Et 2 S".), dibutyl sulfide (Tokyo Kasei, 98% or more) (hereinafter, "Bu 2 S ), 2-(Ethylthio) ethanol (Tokyo Kasei, 98% or more) (hereinafter sometimes referred to as “Et (EtOH) S”.) Except for using In the same manner as in 1 and 2, preparation of a mixture containing a complex compound containing copper (I) iodide and evaluation of the solubility of the mixture containing the complex compound in various organic solvents were performed.
 上記BuSはヨウ化銅(I)に対して1.3当量、EtS及びEt(EtOH)Sはヨウ化銅(I)に対して2.0当量をそれぞれ加え、密封した容器内で70℃に加熱した状態で1時間の撹拌を行うことにより、粉末状のヨウ化銅(I)が消失して、透明で均一な粘性溶液が生成した。当該粘性溶液は、ヨウ化銅(I)と各スルフィドの錯体化合物と各スルフィドの混合物であると考察された。
 表3には、上記で各スルフィドを使用して得られた粘性溶液が各種有機溶媒に対して示す溶解性を評価した結果を示す。
1.3 equivalents of Bu 2 S and 2.0 equivalents of Et 2 S and Et(EtOH)S are added to copper (I) iodide and placed in a sealed container. By stirring for 1 hour while heating to 70° C. at , the powdery copper (I) iodide disappeared and a transparent and uniform viscous solution was produced. The viscous solution was considered to be a mixture of copper (I) iodide, a complex compound of each sulfide, and each sulfide.
Table 3 shows the results of evaluating the solubility of the viscous solutions obtained using the above sulfides in various organic solvents.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、ヨウ化銅(I)との間で錯体化合物を生成するためのスルフィドとして、ジエチルスルフィド、ジブチルスルフィド、2-(エチルチオ)エタノールを使用した際にも、各種有機溶媒に対して均一に溶解可能な錯体化合物を生成し、アルキルの鎖の長さや、OH基の効果等により、溶解可能な有機溶媒が変化する傾向が観察された。 As shown in Table 3, even when diethyl sulfide, dibutyl sulfide, and 2-(ethylthio)ethanol were used as sulfides for forming complex compounds with copper (I) iodide, On the other hand, it was observed that a uniformly soluble complex compound was formed, and the soluble organic solvent tended to change depending on the length of the alkyl chain, the effect of the OH group, and the like.
(実施例4)
 上記ヨウ化銅(I)とスルフィドの間で錯体化合物を生成するための条件、及び、当該錯体化合物を溶質として含む含ハロゲン化銅溶液を生成するための条件を検証するために、予め有機溶媒に溶解したスルフィドを使用して、当該スルフィドを含む有機溶媒中へのヨウ化銅(I)の溶解性を検討した。
(Example 4)
In order to verify the conditions for producing a complex compound between the copper (I) iodide and sulfide and the conditions for producing a copper halide-containing solution containing the complex compound as a solute, an organic solvent The solubility of copper (I) iodide in organic solvents containing the sulfide was investigated using sulfides dissolved in .
 検討は、投入されるヨウ化銅(I)50mg(2.6×10-4mol)を基準として、その1.3当量に相当するジプロピルスルフィド(PrS)40mg(3.4×10-4mol)を密封可能な容器内で予め有機溶媒としてのトルエンに溶解してなる溶液を使用し、当該PrSとトルエンの混合比率(重量比率)を、1:1~1:15の範囲で変化させた際のヨウ化銅(I)の溶解性を検討した(表4中のNo.1~5)。また、ヨウ化銅(I)の1.6当量に相当するジプロピルスルフィド(PrS)50mg(4.2×10-4mol)を予め1:8の割合でトルエンに溶解してなる溶液を使用してヨウ化銅(I)の溶解性を検討した(表4中のNo.6)。 In the study, 40 mg ( 3.4 ×10 −4 mol) is dissolved in toluene as an organic solvent in advance in a container that can be sealed, and the mixing ratio (weight ratio) of the Pr 2 S and toluene is 1:1 to 1:15. The solubility of copper (I) iodide was examined when changing within a range (Nos. 1 to 5 in Table 4). Also, a solution obtained by previously dissolving 50 mg (4.2×10 −4 mol) of dipropyl sulfide (Pr 2 S) corresponding to 1.6 equivalents of copper (I) iodide in toluene at a ratio of 1:8. was used to examine the solubility of copper (I) iodide (No. 6 in Table 4).
 表4には、各PrS/トルエン混合溶液を使用した際に、室温及び70℃での攪拌において、ヨウ化銅(I)の粉末が溶解して均一な溶液を形成するために要した時間を示す。 Table 4 shows the time required for the copper(I) iodide powder to dissolve and form a homogeneous solution at room temperature and 70° C. with stirring when using each Pr 2 S/toluene mixed solution. indicate the time.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、ヨウ化銅(I)に対して1.3当量のPrSを使用する場合には、PrSに対してトルエンが5倍量以下の混合溶液中であれば、ヨウ化銅(I)が速やかに溶解して均一な含ハロゲン化銅溶液を形成することが確認された(No.1~2)。一方、PrSに対してトルエンが7.5倍量の混合溶液中では、ヨウ化銅(I)の溶解に要する時間が著しく長くなることが観察され、特に加熱下(70℃)でその傾向が大きかった(No.3)。また、PrSに対してトルエンが10倍量の混合溶液中では、24時間以上の攪拌を行っても未溶解のヨウ化銅(I)が残留することが観察された。 As shown in Table 4, when using 1.3 equivalents of Pr 2 S with respect to copper (I) iodide, if the mixed solution contains 5 times or less of toluene with respect to Pr 2 S, , it was confirmed that copper (I) iodide dissolved rapidly to form a uniform copper halide-containing solution (Nos. 1 and 2). On the other hand, in a mixed solution containing 7.5 times the amount of toluene relative to Pr 2 S, it was observed that the time required for dissolving copper (I) iodide was remarkably long. There was a large tendency (No. 3). In addition, it was observed that undissolved copper(I) iodide remained in a mixed solution containing 10 times the amount of toluene relative to Pr 2 S even after stirring for 24 hours or longer.
 また、ヨウ化銅(I)に対して1.6当量のPrSを使用する場合には、PrSに対してトルエンが8倍量である混合溶液中においても、速やかにヨウ化銅(I)が溶解することが観察された。これは、上記PrSが1.3当量の場合と比較して、ヨウ化銅(I)の溶解が完了する時点において残留するPrS分子の濃度が高いためと考察された。 In addition, when using 1.6 equivalents of Pr 2 S with respect to copper (I) iodide, even in a mixed solution in which toluene is 8 times the amount of Pr 2 S, copper iodide (I) was observed to dissolve. This is thought to be due to the fact that the concentration of Pr 2 S molecules remaining at the completion of the dissolution of copper (I) iodide is higher than in the case of 1.3 equivalents of Pr 2 S.
 上記の結果は、ヨウ化銅(I)とスルフィド間で錯体化合物が形成される際の駆動力が小さいために、スルフィド分子が希薄であって活性が低い環境では、当該錯体化合物の形成が困難になることを意味するものと考察される。また、錯体化合物を形成する駆動力が低温側で強いことを示すものと考察される。 The above results show that the driving force for the formation of a complex compound between copper(I) iodide and sulfide is small, so that it is difficult to form the complex compound in an environment where sulfide molecules are rare and have low activity. is considered to mean that it becomes It is also considered that this indicates that the driving force for forming the complex compound is stronger on the low temperature side.
(実施例5)
 ヨウ化銅(I)を含む錯体化合物を生成する際の配位子として、スルフィド以外の成分を含む錯体化合物について検討するために、以下の検討を行った。
(Example 5)
The following studies were conducted in order to investigate complex compounds containing components other than sulfide as ligands for producing complex compounds containing copper (I) iodide.
 使用するヨウ化銅(I)150mg(7.88×10-4mol)に対して1.07当量に相当するジプロピルスルフィド(PrS)100mg(8.46×10-4mol)を、密封可能な容器内で予め2倍量のトルエン200mg(重量比1:2)と混合して混合溶液とし、当該混合溶液中に上記ヨウ化銅(I)150mgを投入して室温で24時間攪拌の攪拌を行った。
 上記攪拌でヨウ化銅(I)の一部が溶解する一方、残留するヨウ化銅(I)による白濁が残留した。当該白濁を含む混合液中に、アセトニトリル50mg(関東化学・特級、1.2×10-3mol)を加えて攪拌することで、5分以内に白濁が消失しヨウ化銅(I)が完全に溶解して均一な含ハロゲン化銅溶液が形成された。当該溶液中でのヨウ化銅(I)のモル濃度は、1.95mol/L程度であると見積もられる。
100 mg (8.46×10 −4 mol) of dipropyl sulfide (Pr 2 S) corresponding to 1.07 equivalents with respect to 150 mg (7.88×10 −4 mol) of copper (I) iodide used, In a sealable container, 200 mg of toluene (weight ratio: 1:2) is mixed in advance to form a mixed solution, and 150 mg of copper (I) iodide is added to the mixed solution and stirred at room temperature for 24 hours. was stirred.
While part of the copper (I) iodide was dissolved by the above stirring, white turbidity due to the remaining copper (I) iodide remained. By adding 50 mg of acetonitrile (Kanto Kagaku special grade, 1.2×10 −3 mol) to the mixture containing the cloudiness and stirring, the cloudiness disappears within 5 minutes and copper (I) iodide is completely formed. to form a homogeneous copper halide-containing solution. The molar concentration of copper (I) iodide in the solution is estimated to be about 1.95 mol/L.
 アセトニトリルは0.1mol/L程度の飽和濃度でヨウ化銅(I)を溶解可能であり、当該ヨウ化銅(I)の溶解はアセトニトリル分子がヨウ化銅(I)分子に配位結合を生じる結果と考えられ、アセトニトリル分子はヨウ化銅(I)分子に対する配位子として作用することが推察される。 Acetonitrile can dissolve copper (I) iodide at a saturation concentration of about 0.1 mol / L, and the dissolution of the copper (I) iodide causes the acetonitrile molecule to form a coordinate bond with the copper (I) iodide molecule. As a result, it is speculated that the acetonitrile molecule acts as a ligand for the copper (I) iodide molecule.
 上記の結果は、有機溶媒中において、アセトニトリル分子が配位子として、スルフィド分子と共にヨウ化銅(I)との間で安定な錯体化合物を形成可能であり、当該錯体化合物が有機溶媒中に高濃度で溶質として存在可能であることを示すものと考察された。 The above results show that acetonitrile molecules, as ligands, can form stable complex compounds with copper (I) iodide together with sulfide molecules in organic solvents, and the complex compounds are highly concentrated in organic solvents. It was considered to indicate that it can exist as a solute at high concentrations.
(実施例6)
 ハロゲン化銅として臭化銅(I)を使用して、臭化銅(I)を含む錯体化合物を溶質として含有する含ハロゲン化銅溶液を作製し、当該含ハロゲン化銅溶液を使用して臭化銅(I)を含む被膜の形成等を行った。
(Example 6)
Using copper (I) bromide as the copper halide, preparing a copper halide solution containing a complex compound containing copper (I) bromide as a solute, Formation of a film containing copper chloride (I) and the like were carried out.
 ハロゲン化銅として、ヨウ化銅(I)に換えて臭化銅(I)0.301g(2.10×10-3mol、富士フィルム和光純薬・一級(純度;95%以上))を使用した以外は、実施例1と同様の操作を行うことによって、臭化銅(I)とジプロピルスルフィドを含む錯体化合物とジプロピルスルフィドの混合物を生成し、有機溶媒としてトルエンを使用して、臭化銅(I)の含有割合が10.0wt%である含ハロゲン化銅溶液を調製した。 0.301 g of copper (I) bromide (2.10×10 -3 mol, Fuji Film Wako Pure Chemicals, First grade (purity: 95% or more)) was used as the copper halide instead of copper (I) iodide. A mixture of a complex compound containing copper (I) bromide and dipropyl sulfide and dipropyl sulfide was produced by performing the same operation as in Example 1, except that the odor was removed using toluene as an organic solvent. A copper halide-containing solution containing 10.0 wt % of copper(I) chloride was prepared.
 実施例1,2と同様にガラス基板上にスピンコート法によって、当該含ハロゲン化銅溶液(75μL)を塗布し、その後、80℃に1時間保持してトルエン等を揮発させることによりガラス基板上に無色で透明性の高い被膜が生成した。
 また、ヨウ化銅(I)の含有割合を10.0wt%とした以外は、実施例1と同様の手法で表面にヨウ化銅(I)の被膜を形成したガラス基板を使用して、上記と同様に、スピンコート法によって10.0wt%の臭化銅(I)を含む含ハロゲン化銅溶液(75μL)を塗布し、その後、80℃に1時間保持してトルエン等を揮発させた。
In the same manner as in Examples 1 and 2, the copper halide solution (75 μL) was applied onto a glass substrate by spin coating, and then held at 80° C. for 1 hour to volatilize toluene or the like. A colorless and highly transparent coating was produced.
Further, using a glass substrate having a copper (I) iodide film formed on the surface in the same manner as in Example 1, except that the content of copper (I) iodide was 10.0 wt%, the above Similarly, a copper halide solution (75 μL) containing 10.0 wt % copper (I) bromide was applied by spin coating, and then held at 80° C. for 1 hour to volatilize toluene and the like.
 図4には、(a)ヨウ化銅(I)の被膜を形成したガラス基板を試料としたX線回折の結果と対比して、(b)上記ガラス基板上に臭化銅(I)を含む含ハロゲン化銅溶液を塗布・乾燥させた試料、(c)予めヨウ化銅(I)の被膜を形成したガラス基板上に臭化銅(I)を含む含ハロゲン化銅溶液を塗布・乾燥させた試料を試料としたX線回折の結果を示す。 FIG. 4 shows (a) the results of X-ray diffraction using a glass substrate coated with copper (I) iodide as a sample, and (b) copper (I) bromide on the glass substrate. (c) A glass substrate on which a copper (I) iodide coating has been previously formed, and a copper halide-containing solution containing copper (I) bromide is applied and dried on the glass substrate. The results of X-ray diffraction are shown for the sample obtained by applying the
 上記臭化銅(I)を含む含ハロゲン化銅溶液を使用してガラス基板上に形成された被膜からは、臭化銅(I)の結晶に相当する回折パターン(b)が得られたことから、当該被膜は主に臭化銅(I)から構成されることが考察された。なお、当該臭化銅(I)に相当する回折パターン(b)は、ヨウ化銅(I)の被膜の回折パターン(a)を基準として、ヨウ化銅(I)と臭化銅(I)を構成する結晶の格子定数の違いに対応すると考えられる所定のシフト量を有することが観察された。 A diffraction pattern (b) corresponding to crystals of copper (I) bromide was obtained from the film formed on the glass substrate using the above copper halide-containing solution containing copper (I) bromide. , it was considered that the coating was mainly composed of copper (I) bromide. In addition, the diffraction pattern (b) corresponding to the copper (I) bromide is based on the diffraction pattern (a) of the copper (I) iodide film, and the copper (I) iodide and the copper (I) bromide It was observed that there is a certain amount of shift thought to correspond to the difference in the lattice constants of the crystals that make up the .
 一方、上記予めヨウ化銅(I)の被膜を形成したガラス基板上に臭化銅(I)の被膜を形成した試料においては、ヨウ化銅(I)と臭化銅(I)にそれぞれ由来する回折シグナルピーク(c)が観察された。図5には、ガラス基板に代えて、上記と同様の条件でシリコンウェハー表面にヨウ化銅(I)を含有する含ハロゲン化銅溶液、及び、臭化銅(I)を含む含ハロゲン化銅溶液を使用して被膜を形成した試料の断面をSEMで観察した結果を示す。図5に示すように、予め形成したヨウ化銅(I)の被膜上に臭化銅(I)の被膜を形成した試料では、それぞれヨウ化銅(I)、臭化銅(I)と考えられる二層が積層されて存在することが確認された。 On the other hand, in the sample in which the copper (I) bromide film was formed on the glass substrate previously formed with the copper (I) iodide film, A diffraction signal peak (c) was observed. In FIG. 5, instead of the glass substrate, a copper halide solution containing copper (I) iodide and a copper halide solution containing copper (I) bromide were formed on the surface of a silicon wafer under the same conditions as above. The results of SEM observation of a cross section of a sample on which a film was formed using a solution are shown. As shown in FIG. 5, the sample in which the copper (I) bromide film was formed on the previously formed copper (I) iodide film was considered to be copper (I) iodide and copper (I) bromide, respectively. It was confirmed that two layers are laminated and exist.
 上記の結果は、臭化銅(I)を含む含ハロゲン化銅溶液を塗布した際に、当該溶液がヨウ化銅(I)の被膜を溶解せず、当該ヨウ化銅(I)の被膜上に臭化銅(I)の被膜が積層された結果であると考察された。
 仮に、ジプロピルスルフィド等のスルフィドを主な溶媒とする臭化銅(I)溶液を使用して、これを予め形成されたヨウ化銅(I)の被膜上に塗布した場合、当該ジプロピルスルフィドによってヨウ化銅(I)が溶解することが考えられる。一方、上記のように、本発明に係る含ハロゲン化銅溶液を使用して、略等モルのスルフィドによって錯体化合物を形成した臭化銅(I)をトルエンに溶解した含ハロゲン化銅溶液は、既に存在するヨウ化銅(I)の被膜を溶解する能力に乏しいことから、ヨウ化銅(I)と臭化銅(I)の積層体を安定して形成可能であると考察された。
The above results show that when a copper halide solution containing copper (I) bromide is applied, the solution does not dissolve the copper (I) iodide film, and the copper (I) iodide film does not dissolve. It was thought to be the result of the lamination of a coating of copper(I) bromide on the .
If a copper (I) bromide solution containing a sulfide such as dipropyl sulfide as the main solvent is used and applied to a previously formed copper (I) iodide film, the dipropyl sulfide It is believed that copper (I) iodide is dissolved by On the other hand, as described above, the copper halide solution of the present invention is prepared by dissolving copper (I) bromide, which forms a complex compound with approximately equimolar sulfides, in toluene. It was considered that a laminate of copper (I) iodide and copper (I) bromide could be stably formed because of its poor ability to dissolve the existing copper (I) iodide film.
(実施例7)
 ハロゲン化銅としてヨウ化銅(I)及び臭化銅(I)を使用して含ハロゲン化銅溶液を作製し、当該含ハロゲン化銅溶液を使用してヨウ化銅(I)と臭化銅(I)の混合被膜の形成を行った。
(Example 7)
A copper halide solution is prepared using copper (I) iodide and copper (I) bromide as copper halides, and copper (I) iodide and copper bromide are prepared using the copper halide solution. Formation of the mixed film of (I) was carried out.
 ヨウ化銅(I)0.200g(1.05×10-3mol)と、臭化銅(I)0.150g(1.05×10-3 mol)をそれぞれ秤量して混合したものをハロゲン化銅として使用した以外は、実施例1と同様の操作を行うことによって、ヨウ化銅(I)、臭化銅(I)とジプロピルスルフィドを含む錯体化合物とジプロピルスルフィドの混合物を生成し、有機溶媒としてトルエンを使用して、ヨウ化銅(I)と臭化銅(I)の合計の含有割合が10.0wt%である含ハロゲン化銅溶液を調製した。 A halogen A mixture of a complex compound containing copper (I) iodide, copper (I) bromide and dipropyl sulfide and dipropyl sulfide was produced by performing the same operation as in Example 1 except that copper was used as copper chloride. , toluene was used as an organic solvent to prepare a copper halide-containing solution containing 10.0 wt % of copper (I) iodide and copper (I) bromide.
 実施例1と同様にガラス基板上にスピンコート法によって、上記含ハロゲン化銅溶液(75μL)を塗布し、その後、80℃に1時間保持してトルエン等を揮発させることによりガラス基板上に無色で透明性の高い被膜が生成した。 In the same manner as in Example 1, the above copper halide solution (75 μL) was applied onto a glass substrate by spin coating, and then held at 80° C. for 1 hour to volatilize toluene or the like, thereby forming a colorless coating on the glass substrate. A film with high transparency was formed.
 図4には、上記によりガラス基板上に生成した被膜のX線回折の結果(d)を、(a)実施例1で作製したヨウ化銅(I)を含む被膜、(b)実施例6で作製した臭化銅(I)を含む被膜についてのX線回折の結果と比較して示す。本実施例で作製した被膜(d)からは、ヨウ化銅(I)と臭化銅(I)のそれぞれに由来する回折シグナルピークの中間的な位置に回折シグナルピークを生じることが示された。 FIG. 4 shows the result (d) of X-ray diffraction of the film produced on the glass substrate as described above, (a) the film containing copper (I) iodide prepared in Example 1, (b) Example 6 It is shown in comparison with the X-ray diffraction results for the coating containing copper (I) bromide prepared in . It was shown that the film (d) produced in this example produced a diffraction signal peak at an intermediate position between the diffraction signal peaks derived from copper (I) iodide and copper (I) bromide. .
 上記の結果は、当該被膜を形成する結晶の格子定数が、ヨウ化銅(I)と臭化銅(I)が固有に有する格子定数の間で、中間的な値をとることを示すものであり、上記の方法で錯体化合物を形成する過程等において、ヨウ化銅(I)と臭化銅(I)が均一に混合した複合塩を生じ、当該複合塩にジプロピルスルフィドが配位した錯体化合物が形成された結果であると考察された。 The above results show that the lattice constant of the crystals forming the film takes an intermediate value between the lattice constants inherent to copper (I) iodide and copper (I) bromide. a complex salt in which copper (I) iodide and copper (I) bromide are uniformly mixed in the process of forming a complex compound by the above method, and dipropyl sulfide is coordinated to the complex salt It was thought to be the result of compound formation.
 上記のように、本発明に係る含ハロゲン化銅溶液を作製する過程において、複数種のハロゲン族元素を含むハロゲン化銅等を使用することにより、当該複数種のハロゲン族元素を含むハロゲン化銅の被膜が形成可能であり、特に、その電気的特性等の調整手法として使用可能であることが明らかとなった。 As described above, in the process of producing the copper halide-containing solution according to the present invention, by using a copper halide or the like containing a plurality of halogen group elements, the copper halide containing the plurality of halogen group elements can be formed, and in particular, it can be used as a method for adjusting its electrical characteristics.
(実施例8)
 本実施例では、薄膜太陽電池等に使用される有機・無機ペロブスカイト層(CHNHPbI)の表面に、本発明に係る含ハロゲン化銅溶液を使用してヨウ化銅(I)層を形成した。
(Example 8)
In this example, a copper (I) iodide layer was formed on the surface of an organic/inorganic perovskite layer (CH 3 NH 3 PbI 3 ) used in thin-film solar cells and the like using the copper halide-containing solution according to the present invention. formed.
・ガラス基板上への有機・無機ペロブスカイト層(CHNHPbI)の作製
 PbI280mg(6.07×10-4mol、東京化成(純度;99.99%))とCHNHI95mg(6.0×10-4mol、東京化成(純度;99%以上))を、N,N-ジメチルホルムアミド300μL(富士フィルム和光純薬・超脱水)とジメチルスルホキシド75μL(富士フィルム和光純薬・超脱水)の混合溶液(N,N-ジメチルホルムアミド:ジメチルスルホキシド=4:1(v/v))に加えて、70℃で1時間加熱撹拌し、得られた溶液を0.2μmシリンジフィルターで濾過することでペロブスカイト前駆体溶液を調製した。
・Preparation of organic/inorganic perovskite layer (CH 3 NH 3 PbI 3 ) on glass substrate PbI 2 280 mg (6.07×10 −4 mol, Tokyo Kasei (purity: 99.99%)) and CH 3 NH 3 I95 mg (6.0 × 10 -4 mol, Tokyo Kasei (purity: 99% or more)) was added to 300 µL of N,N-dimethylformamide (Fujifilm Wako Pure Chemical Industries, Ltd., ultra-dehydrated) and 75 µL of dimethyl sulfoxide (Fujifilm Wako Pure Chemical Industries, Ltd.).・Super dehydrated) mixed solution (N,N-dimethylformamide: dimethyl sulfoxide = 4:1 (v/v)), heated and stirred at 70 ° C. for 1 hour, and the resulting solution was passed through a 0.2 μm syringe filter. A perovskite precursor solution was prepared by filtering with .
 相対湿度を20%以下に制御したグローブボックス内で、UV-オゾン処理したガラス基板上にペロブスカイト前駆体溶液40μLを滴下し、5000rpmで30秒間スピンコートし、スピン開始から10秒時点で酢酸エチル(関東化学・特級)300μLを滴下した。その後、基板を100 ℃で15分間加熱することで、ガラス基板の上に有機・無機ペロブスカイト層(CHNHPbI)を形成した。 In a glove box where the relative humidity is controlled to 20% or less, 40 μL of the perovskite precursor solution is dropped onto a UV-ozone treated glass substrate and spin-coated at 5000 rpm for 30 seconds. Kanto Kagaku special grade) 300 μL was added dropwise. After that, the substrate was heated at 100° C. for 15 minutes to form an organic/inorganic perovskite layer (CH 3 NH 3 PbI 3 ) on the glass substrate.
・ペロブスカイト層の表面へのヨウ化銅(I)層の形成
 上記ガラス基板上に作製した有機・無機ペロブスカイト層の表面に、実施例1の方法で作製したヨウ化銅(I)トルエン溶液100μLを用いて、1000rpmで5秒、1500rpmで30秒のスピンコートを行い、80℃で30分間加熱することでヨウ化銅(I)の薄膜を形成した。
- Formation of a copper (I) iodide layer on the surface of the perovskite layer. A thin film of copper (I) iodide was formed by spin coating at 1000 rpm for 5 seconds and 1500 rpm for 30 seconds, followed by heating at 80° C. for 30 minutes.
 図6には、ガラス基板の上に形成した有機・無機ペロブスカイト層(CHNHPbI)、及び、当該層の表面にヨウ化銅(I)薄膜を積層した試料についてのX線回折の結果を示す。また、図7には、有機・無機ペロブスカイト層の表面にヨウ化銅(I)薄膜を積層した試料断面のSEM像を示す。 FIG. 6 shows X-ray diffraction of a sample in which an organic/inorganic perovskite layer (CH 3 NH 3 PbI 3 ) is formed on a glass substrate and a copper (I) iodide thin film is laminated on the surface of the layer. Show the results. Further, FIG. 7 shows a SEM image of a cross section of a sample in which a copper (I) iodide thin film is laminated on the surface of an organic/inorganic perovskite layer.
 図6に示すように、上記有機・無機ペロブスカイト層の表面にヨウ化銅(I)薄膜を積層した試料からは、有機・無機ペロブスカイト層に由来する回折パターンに加えて、ヨウ化銅(I)に由来する回折パターンが得られた。また、図7に示すように、当該試料の断面では、それぞれ有機・無機ペロブスカイト層、及びヨウ化銅(I)と考えられる層が積層されていることが観察された。 As shown in FIG. 6, from the sample in which the copper (I) iodide thin film was laminated on the surface of the organic/inorganic perovskite layer, in addition to the diffraction pattern derived from the organic/inorganic perovskite layer, the copper (I) iodide A diffraction pattern derived from was obtained. Moreover, as shown in FIG. 7, in the cross section of the sample, it was observed that an organic/inorganic perovskite layer and a layer thought to be copper (I) iodide were laminated, respectively.
 上記の結果から、本発明に係る含ハロゲン化銅溶液を使用してヨウ化銅(I)を形成する過程において、下地とされたペロブスカイト層を破壊することなく、当該層の表面にヨウ化銅(I)の薄膜が形成可能であることが示された。 From the above results, in the process of forming copper (I) iodide using the copper halide-containing solution according to the present invention, copper iodide was formed on the surface of the layer without destroying the underlying perovskite layer. It was shown that the thin film of (I) can be formed.
・溶液及び薄膜の製造
(実施例A2)
 ハロゲン化銅としてヨウ化銅(I)を使用し、さらにヨウ化亜鉛(I)を混合して含ハロゲン化銅溶液を作製し、当該含ハロゲン化銅溶液を使用してヨウ化銅(I)とヨウ化亜鉛(I)の混合被膜の形成を行った。
・Production of solution and thin film (Example A2)
Copper (I) iodide is used as the copper halide, and further mixed with zinc (I) iodide to prepare a copper halide solution, and the copper (I) iodide solution is used to prepare the copper halide solution. and zinc iodide (I) were formed.
 具体的には、0.952g(5.00×10-3mol)のヨウ化銅(I)(富士フィルム和光純薬株式会社、95%以上、1級)に、1.18g(10.0×10-3mol)のジプロピルスルフィド(東京化成工業株式会社、98.0%以上、1級)を加え(すなわち、ジプロピルスルフィドをヨウ化銅(I)に対して2当量で使用し)、70℃で一時間加熱することで、溶解させた。ここにさらにトルエン(関東化学株式会社、99.5%以上、特級)を加え、体積5.00mLの透明な溶液を得た。その後、遠心分離処理(4000rpm、5分)を行い、上澄みを分取した。さらにPTFEフィルター(細孔径0.22μm)を通し、粗大な粒子を除いて、ヨウ化銅(I)溶液(1.00M)を得た。 Specifically , 1.18 g (10.0 ×10 −3 mol) of dipropyl sulfide (Tokyo Chemical Industry Co., Ltd., 98.0% or more, first grade) is added (that is, dipropyl sulfide is used at 2 equivalents to copper (I) iodide). was dissolved by heating at 70° C. for 1 hour. Toluene (Kanto Kagaku Co., Ltd., 99.5% or more, special grade) was further added to obtain a transparent solution with a volume of 5.00 mL. After that, centrifugation treatment (4000 rpm, 5 minutes) was performed, and the supernatant was fractionated. Further, the solution was passed through a PTFE filter (0.22 μm pore size) to remove coarse particles to obtain a copper (I) iodide solution (1.00 M).
 1.60g(5.00×10-3mol)のヨウ化亜鉛(ZnI、富士フィルム和光純薬株式会社、99.5%以上、1級)に、1.18g(10.0×10-3mol)のジプロピルスルフィドを加え、70℃で一時間加熱することで、溶解させた。ここにさらにトルエンを加え、体積5.00mLの透明な溶液を得た。その後、遠心分離処理(4000rpm、5分)を行い、上澄みを分取した。さらにPTFEフィルター(GVS、細孔径0.22μm)を通し、粗大な粒子を除いたヨウ化亜鉛溶液(1.00M)を得た。 To 1.60 g (5.00 × 10 -3 mol) of zinc iodide (ZnI 2 , Fuji Film Wako Pure Chemical Industries, Ltd., 99.5% or more, grade 1), 1.18 g (10.0 × 10 -3 3 mol) of dipropyl sulfide was added and dissolved by heating at 70° C. for 1 hour. Further toluene was added here to obtain a clear solution with a volume of 5.00 mL. After that, centrifugation treatment (4000 rpm, 5 minutes) was performed, and the supernatant was fractionated. Further, it was passed through a PTFE filter (GVS, pore size 0.22 μm) to obtain a zinc iodide solution (1.00 M) from which coarse particles were removed.
 ヨウ化銅(I)溶液(1.00mol/L)818μLと、ヨウ化亜鉛溶液(1.00mol/L)90.9μLとを混同した。混合溶液を200μL分取し、10倍希釈することで、ヨウ化銅に対して10%ドープ量のヨウ化亜鉛からなるトルエン溶液(Cu1-2xZnIのトルエン溶液)を調製した。 818 μL of copper (I) iodide solution (1.00 mol/L) and 90.9 μL of zinc iodide solution (1.00 mol/L) were mixed. 200 μL of the mixed solution was taken and diluted 10-fold to prepare a toluene solution (a toluene solution of Cu 1-2x Zn x I) containing zinc iodide in a doping amount of 10% with respect to copper iodide.
 なお、Znドープ量(%)は下記の式により求められる。
  Znの物質量/(Cuの物質量+Znの物質量)×100
The Zn doping amount (%) is obtained by the following formula.
Zn material amount/(Cu material amount + Zn material amount) x 100
 また、ヨウ化銅とヨウ化亜鉛の混合溶液で作製した薄膜の組成をCu1-2xZnIとし表記する。 Also, the composition of a thin film formed from a mixed solution of copper iodide and zinc iodide is expressed as Cu 1-2x Zn x I.
 大気中の水分を除き相対湿度を20%以下に制御したグローブボックス内で、オゾン処理を行ったガラス基板(2.5cm×2.5cm)上に、このように調製したCu0.818Zn0.0909Iのトルエン溶液150μLを滴下し、スピンコート法により製膜を行った。その後、ホットプレートを用いて80℃で1時間加熱を行った。 Cu 0.818 Zn 0 thus prepared was placed on a glass substrate (2.5 cm × 2.5 cm) treated with ozone in a glove box controlled to a relative humidity of 20% or less by removing moisture in the atmosphere. 150 μL of a toluene solution of .0909 I was dropped, and a film was formed by a spin coating method. After that, heating was performed at 80° C. for 1 hour using a hot plate.
(実施例A0~A1及びA3~A6)
 ヨウ化銅(I)とヨウ化亜鉛の混合割合を変化させ、実施例A2と同様の操作によって、ヨウ化銅に対して0、5、15、20、25、30%ドープ量のヨウ化銅からなるトルエン溶液を調製した。ただし、実施例A0については、グローブボックス中ではなく大気下で焼成を行った。以下の表に1.00Mヨウ化銅溶液と1.00Mヨウ化亜鉛溶液との混合量及び組成を示す。
(Examples A0-A1 and A3-A6)
By changing the mixing ratio of copper (I) iodide and zinc iodide and performing the same operation as in Example A2, 0, 5, 15, 20, 25, and 30% doping amounts of copper iodide relative to copper iodide were obtained. A toluene solution consisting of was prepared. However, for Example A0, firing was performed in the air, not in the glove box. The following table shows the mixing amount and composition of the 1.00M copper iodide solution and the 1.00M zinc iodide solution.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 これらの実施例についても、実施例A2と同様の操作によって製膜を行った。 Film formation was also performed for these Examples by the same operation as in Example A2.
(実施例A7及びA8)
 実施例A2と同様の手法で、実施例A7及びA8のCu0.818Zn0.0909I膜の作製を行ったが、焼成温度は、それぞれ100℃及び130℃とした。
(Examples A7 and A8)
The Cu 0.818 Zn 0.0909 I films of Examples A7 and A8 were produced in the same manner as in Example A2, but the firing temperatures were 100° C. and 130° C., respectively.
・物性測定
 実施例A0~A8で作製したCu1-2xZnI膜のX線回折を測定した。その結果を、図8に示す。図8に示されるように、全ての薄膜でCuIと同様にシグナルが現れたが、実施例A1~A8については高角側にシフトが見られた。
Measurement of Physical Properties The X-ray diffraction of the Cu 1-2x Zn x I films produced in Examples A0 to A8 was measured. The results are shown in FIG. As shown in FIG. 8, all the thin films showed the same signal as CuI, but Examples A1 to A8 showed a shift to the high angle side.
 実施例A0~A6で作製したCu1-2xZnI膜の、成膜直後の抵抗値を測定した。なお、膜厚は、触針式段差計(Bruker Dektak)により測定した。その結果を、以下の表に示す。実施例A3~A6については、抵抗が非常に高く、今回の測定装置では測定ができなかった。 The resistance values of the Cu 1-2x Zn x I films produced in Examples A0 to A6 were measured immediately after film formation. The film thickness was measured with a stylus profilometer (Bruker Dektak). The results are shown in the table below. As for Examples A3 to A6, the resistance was very high and could not be measured with the measuring apparatus of this time.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 図9に、透過スペクトルから作成したTaucプロット図、Taucプロットからのバンドギャップの算出方法例、Znドープ量に対するバンドギャップ変化を示した。Znのドープ量の増加に伴い、バンドギャップは低下する傾向にあることが分かった。 FIG. 9 shows a Tauc plot diagram created from the transmission spectrum, an example of a bandgap calculation method from the Tauc plot, and bandgap change with respect to the Zn doping amount. It was found that the bandgap tends to decrease as the doping amount of Zn increases.
 図10に、実施例A1(Cu0.818Zn0.0909I)のSEM―EDSマッピング像と、特性X線スペクトルを示す。Cu、Zn及びIが、膜全体に一様に分布し、特性X線スペクトルからも各元素のシグナルが観測された。Znは分離しておらず、CuI膜に取り込まれていることを示唆している。 FIG. 10 shows the SEM-EDS mapping image and characteristic X-ray spectrum of Example A1 (Cu 0.818 Zn 0.0909 I). Cu, Zn and I were uniformly distributed over the entire film, and signals of each element were also observed from the characteristic X-ray spectrum. Zn is not segregated, suggesting that it is incorporated into the CuI film.
(実施例A9)
 実施例8と同様の手法でガラス基板上に有機・無機ペロブスカイト層を作製した。
(Example A9)
An organic/inorganic perovskite layer was formed on a glass substrate in the same manner as in Example 8.
 上記、ガラス基板上に作製した有機・無機ペロブスカイト層の表面に、実施例A1のトルエン溶液150μLを用いて、1000rpmで5秒、1500rpmで10秒のスピンコートを行い、80℃で30分間加熱することでCu0.818Zn0.0909I薄膜を作製した。 150 μL of the toluene solution of Example A1 is applied to the surface of the organic/inorganic perovskite layer formed on the glass substrate, and spin-coated at 1000 rpm for 5 seconds and 1500 rpm for 10 seconds, followed by heating at 80° C. for 30 minutes. Thus, a Cu 0.818 Zn 0.0909 I thin film was produced.
 X線回折を測定したところ、図11に示すように、有機・無機ペロブスカイト層に由来するX線回折シグナルに加えて、Cu0.818Zn0.0909Iに由来するX線回折シグナルが見られた。また、当該試料の断面SEM像(図12)では、それぞれ有機・無機ペロブスカイト層及びCu0.818Zn0.0909Iに由来する層が積層されていることが観察された。 When X-ray diffraction was measured, as shown in FIG. 11, X-ray diffraction signals derived from Cu 0.818 Zn 0.0909 I were observed in addition to X-ray diffraction signals derived from the organic/inorganic perovskite layers. rice field. Also, in the cross-sectional SEM image (FIG. 12) of the sample, it was observed that organic/inorganic perovskite layers and layers derived from Cu 0.818 Zn 0.0909 I were laminated.
(実施例A10~A13)
 上記の例においては、ヨウ化銅(I)溶液とヨウ化亜鉛溶液との混合溶液を用いて成膜したが、以下の例においては、ヨウ化銅(I)とヨウ化亜鉛とを粉末で混合し、その混合粉末にジプロピルスルフィド等を加えることによって、ヨウ化銅(I)-ヨウ化亜鉛混合溶液を調製した。
(Examples A10 to A13)
In the above example, the mixed solution of the copper (I) iodide solution and the zinc iodide solution was used to form the film. A copper (I) iodide-zinc iodide mixed solution was prepared by mixing and adding dipropyl sulfide or the like to the mixed powder.
 具体的には、ヨウ化銅(I)及びヨウ化亜鉛を以下の表に記載の量で秤量して、ジプロピルスルフィド1.18g(10.0×10-3mol)を加え、70℃で一時間加熱することで、溶解させた。ここに、さらにトルエンを加えて、体積5.00mLの透明な溶液を得た。この溶液に遠心分離処理(4000rpm、5分)を行い、上澄みを分取した。さらにPTFEフィルター(細孔径0.22μm)を通し、ヨウ化銅(I)-ヨウ化亜鉛混合溶液(1.00M)を得た。 Specifically, copper (I) iodide and zinc iodide were weighed in the amounts shown in the table below, 1.18 g (10.0×10 -3 mol) of dipropyl sulfide was added, and the mixture was heated at 70°C. Dissolved by heating for 1 hour. Toluene was added here to obtain a clear solution with a volume of 5.00 mL. This solution was subjected to centrifugal separation (4000 rpm, 5 minutes) to separate the supernatant. Further, it was passed through a PTFE filter (pore size 0.22 μm) to obtain a copper (I) iodide-zinc iodide mixed solution (1.00 M).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 ヨウ化銅(I)-ヨウ化亜鉛混合溶液(1.00M)をトルエンを用いて10倍希釈し、0.10M溶液を調製した。0.10Mの溶液を実施例A1と同様の手法で製膜し、Cu1-2xZnI膜を得た。これらの膜について、物性を測定したところ、概ね、亜鉛ドープ量が同じ例A2~A5と同様の結果となった。 A copper (I) iodide-zinc iodide mixed solution (1.00 M) was diluted 10-fold with toluene to prepare a 0.10 M solution. A 0.10 M solution was formed into a film in the same manner as in Example A1 to obtain a Cu 1-2x Zn x I film. When the physical properties of these films were measured, the results were generally similar to those of Examples A2 to A5 with the same zinc doping amount.
 本発明に係る含ハロゲン化銅溶液を使用することにより、各種デバイスの製造工程等において、難溶性であるハロゲン化銅(I)を含む層の形成を溶液プロセスによって行うことが可能となる。また、本発明に係る含ハロゲン化銅溶液を構成する溶媒成分は適宜選択することが可能であり、ハロゲン化銅を含む層を形成する際に、その周囲の構造体を害すること無くハロゲン化銅を含む層を形成することが可能となる。 By using the copper halide-containing solution according to the present invention, it is possible to form a layer containing a poorly soluble copper (I) halide by a solution process in the manufacturing process of various devices. In addition, the solvent component constituting the copper halide-containing solution according to the present invention can be appropriately selected, and when the layer containing copper halide is formed, the copper halide solution can be used without damaging the surrounding structure. It becomes possible to form a layer containing

Claims (15)

  1.  含ハロゲン化銅溶液の作製方法であって、
     ハロゲン化銅(I)とスルフィドを混合して、ハロゲン化銅(I)とスルフィドを含む錯体化合物を形成することを含み、かつ
     前記含ハロゲン化銅溶液が、有機溶媒に溶解された前記錯体化合物を含むことを特徴とする含ハロゲン化銅溶液の作製方法。
    A method for producing a copper halide-containing solution, comprising:
    A copper (I) halide and a sulfide are mixed to form a complex compound containing the copper (I) halide and the sulfide, and the copper halide-containing solution is dissolved in an organic solvent. A method for preparing a copper halide-containing solution, comprising:
  2.  予め有機溶媒に溶解したスルフィドがハロゲン化銅(I)と混合されることを特徴とする請求項1に記載の含ハロゲン化銅溶液の作製方法。 The method for preparing a copper halide-containing solution according to claim 1, wherein the sulfide dissolved in an organic solvent in advance is mixed with the copper (I) halide.
  3.  ハロゲン化銅(I)とスルフィドを含む錯体化合物を含有する組成物と有機溶媒を混合する希釈工程を更に含むことを特徴とする請求項1に記載の含ハロゲン化銅溶液の作製方法。 The method for preparing a copper halide-containing solution according to claim 1, further comprising a dilution step of mixing a composition containing a complex compound containing copper (I) halide and sulfide with an organic solvent.
  4.  ハロゲン化銅(I)と混合されるスルフィドのモル量が、ハロゲン化銅(I)に対して3倍モル量以下であることを特徴とする請求項1に記載の含ハロゲン化銅溶液の作製方法。 2. Preparation of the copper halide-containing solution according to claim 1, wherein the molar amount of sulfide mixed with the copper (I) halide is 3 times or less the molar amount of the copper (I) halide. Method.
  5.  前記含ハロゲン化銅溶液に、さらに亜鉛系化合物が溶解されている、請求項1に記載の含ハロゲン化銅溶液の作製方法。 The method for preparing a copper halide-containing solution according to claim 1, wherein a zinc-based compound is further dissolved in the copper halide-containing solution.
  6.  前記亜鉛系化合物が、ヨウ化亜鉛である、請求項5に記載の含ハロゲン化銅溶液の作製方法。 The method for preparing a copper halide-containing solution according to claim 5, wherein the zinc-based compound is zinc iodide.
  7.  ハロゲン化銅(I)とスルフィドを含む錯体化合物が有機溶媒に溶解してなることを特徴とする含ハロゲン化銅溶液。 A copper halide-containing solution characterized by being obtained by dissolving a complex compound containing copper (I) halide and sulfide in an organic solvent.
  8.  含有されるハロゲン化銅(I)の濃度が0.01mol/L以上であることを特徴とする請求項5に記載の含ハロゲン化銅溶液。 The copper halide-containing solution according to claim 5, characterized in that the concentration of contained copper (I) halide is 0.01 mol/L or more.
  9.  さらに亜鉛系化合物が溶解されている、請求項7に記載の含ハロゲン化銅溶液。 The copper halide-containing solution according to claim 7, further comprising a zinc-based compound dissolved therein.
  10.  前記亜鉛系化合物が、ヨウ化亜鉛である、請求項9に記載の含ハロゲン化銅溶液。 The copper halide-containing solution according to claim 9, wherein the zinc-based compound is zinc iodide.
  11.  請求項7に記載の含ハロゲン化銅溶液を塗布し、溶媒を除去することによって得られるハロゲン化銅(I)を含む層。 A layer containing copper (I) halide obtained by applying the copper halide-containing solution according to claim 7 and removing the solvent.
  12.  請求項9に記載の含ハロゲン化銅溶液を塗布し、溶媒を除去することによって得られるハロゲン化銅(I)を含む層。 A layer containing copper (I) halide obtained by applying the copper halide-containing solution according to claim 9 and removing the solvent.
  13.  複数のハロゲン化銅(I)を含む層が積層された構造を有することを特徴とするハロゲン化銅(I)を含む層の積層構造。 A laminated structure of layers containing copper (I) halide, characterized by having a structure in which a plurality of layers containing copper (I) halide are laminated.
  14.  相互に異なる組成を有するハロゲン化銅(I)を含む層が積層されていることを特徴とする請求項13に記載のハロゲン化銅(I)を含む層の積層構造。 The laminated structure of layers containing copper (I) halide according to claim 13, characterized in that layers containing copper (I) halide having mutually different compositions are laminated.
  15.  請求項11に記載のハロゲン化銅(I)を含む層の積層構造を含むことを特徴とするデバイス。 A device comprising a laminated structure of layers containing the copper (I) halide according to claim 11.
PCT/JP2022/036872 2021-10-03 2022-09-30 Method for preparing copper halide-containing solution, and copper halide-containing solution WO2023054724A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-163168 2021-10-03
JP2021163168 2021-10-03

Publications (1)

Publication Number Publication Date
WO2023054724A1 true WO2023054724A1 (en) 2023-04-06

Family

ID=85780792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036872 WO2023054724A1 (en) 2021-10-03 2022-09-30 Method for preparing copper halide-containing solution, and copper halide-containing solution

Country Status (1)

Country Link
WO (1) WO2023054724A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018076220A (en) * 2016-10-28 2018-05-17 国立大学法人山形大学 Precursor solution for producing thin film containing copper halide (i) or pseudo copper halide (i), method for preparing precursor solution therefor, film deposition method for thin film containing copper halide (i) or pseudo copper halide (i), and thin film containing copper halide (i) or pseudo copper halide (i)
KR102103999B1 (en) * 2018-10-31 2020-04-23 한국생산기술연구원 Carrier Selective Contact Silicon Solar Cell And Method For The Same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018076220A (en) * 2016-10-28 2018-05-17 国立大学法人山形大学 Precursor solution for producing thin film containing copper halide (i) or pseudo copper halide (i), method for preparing precursor solution therefor, film deposition method for thin film containing copper halide (i) or pseudo copper halide (i), and thin film containing copper halide (i) or pseudo copper halide (i)
KR102103999B1 (en) * 2018-10-31 2020-04-23 한국생산기술연구원 Carrier Selective Contact Silicon Solar Cell And Method For The Same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AO LIU; HUIHUI ZHU; YONG-YOUNG NOH: "8‐4: Invited Paper: Transparent Zn Doped‐CuI for High‐Performance p‐Channel Thin Film Transistors", SID SYMPOSIUM DIGEST OF TECHNICAL PAPERS, WILEY-BLACKWELL PUBLISHING, INC., US, vol. 52, no. 1, 28 June 2021 (2021-06-28), US , pages 89 - 91, XP071446619, ISSN: 0097-966X, DOI: 10.1002/sdtp.14617 *
JEFFREY A. CHRISTIANS, RAYMOND C. M. FUNG, PRASHANT V. KAMAT: "An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 136, no. 2, 15 January 2014 (2014-01-15), pages 758 - 764, XP055293066, ISSN: 0002-7863, DOI: 10.1021/ja411014k *
KNORR MICHAEL, BONNOT ANTOINE, LAPPRAND ANTONY, KHATYR ABDERRAHIM, STROHMANN CARSTEN, KUBICKI MAREK M., ROUSSELIN YOANN, HARVEY PI: "Reactivity of CuI and CuBr toward Dialkyl Sulfides RSR: From Discrete Molecular Cu 4 I 4 S 4 and Cu 8 I 8 S 6 Clusters to Luminescent Copper(I) Coordination Polymers", INORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, EASTON , US, vol. 54, no. 8, 20 April 2015 (2015-04-20), Easton , US , pages 4076 - 4093, XP093052757, ISSN: 0020-1669, DOI: 10.1021/acs.inorgchem.5b00327 *
KONDO T., Y. TANIDA, S. YOSHIDA, N. YAMADA: "Transparent p-n diodes based on widegap p-type cuprous halides", LECTURE PREPRINTS OF THE 80TH JSAP AUTUMN MEETING 2019, 4 September 2019 (2019-09-04), pages 16 - 055, XP093052761, Retrieved from the Internet <URL:https://www.jstage.jst.go.jp/article/jsapmeeting/2019.2/0/2019.2_4011/_pdf> [retrieved on 20230608] *
LIU AO, ZHU HUIHUI, PARK WON-TAE, KIM SE-JUN, KIM HYUNGJUN, KIM MYUNG-GIL, NOH YONG-YOUNG: "High-performance p-channel transistors with transparent Zn doped-CuI", NATURE COMMUNICATIONS, vol. 11, no. 1, 27 August 2020 (2020-08-27), XP093052759, DOI: 10.1038/s41467-020-18006-6 *

Similar Documents

Publication Publication Date Title
KR102301819B1 (en) Air-stable surface-passivated perovskite quantum dots(qds), methods of making these qds, and methods of using these qds
Chen et al. Advances to high‐performance black‐phase FAPbI3 perovskite for efficient and stable photovoltaics
Hasan et al. Present Status and Research Prospects of Tin‐based Perovskite Solar Cells
Hoang et al. Towards the environmentally friendly solution processing of metal halide perovskite technology
KR101931036B1 (en) Luminescent composite materials
Guo et al. Coordination engineering toward high performance organic–inorganic hybrid perovskites
WO2019046525A1 (en) Bandgap-tunable perovskite materials and methods of making the same
DE102011115311A1 (en) Selenium / Group 1b / Group 3a printing ink and method of making and using same
Bahadur et al. Enhanced moisture stability of MAPbI3 perovskite solar cells through Barium doping
Ding et al. Ligand engineering of perovskite quantum dots for efficient and stable solar cells
KR101840311B1 (en) A selenium/group 3a ink and methods of making and using same
KR102227977B1 (en) A precursor solution for forming metal calcogenide films
JP2020506557A (en) Method for producing a light absorbing material having a perovskite structure, and a variable composition liquid polyhalide for performing the same
Ke et al. Air-stable methylammonium lead iodide perovskite thin films fabricated via aerosol-assisted chemical vapor deposition from a pseudohalide Pb (SCN) 2 precursor
WO2016021402A1 (en) Organic-inorganic layered perovskite compound and method for producing organic-inorganic perovskite compound
JP2018076220A (en) Precursor solution for producing thin film containing copper halide (i) or pseudo copper halide (i), method for preparing precursor solution therefor, film deposition method for thin film containing copper halide (i) or pseudo copper halide (i), and thin film containing copper halide (i) or pseudo copper halide (i)
JPWO2017221837A1 (en) Compound, dispersion composition and resin composition
WO2023054724A1 (en) Method for preparing copper halide-containing solution, and copper halide-containing solution
JP6316410B2 (en) Method for dissolving chalcogen element and metal chalcogenide in harmless solvent
Baek et al. Enhancing the efficiency and scalability of perovskite solar cells through pseudo-halide salt addition
Wang et al. Organic Additive Engineering to Grow High‐Quality Inorganic CsPbX3 Perovskite Films for Efficient and Stable Solar Cells
Zhang et al. Suppressed phase transition of a Rb/K incorporated inorganic perovskite with a water-repelling surface
Ndione et al. Monitoring the stability of organometallic perovskite thin films
US20190330248A1 (en) Organic or inorganic metal halide perovskites via cation exchange
KR20190110300A (en) A perovskite thin film containing PEO, preparation method thereof and optoelectronic devices by using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876586

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551934

Country of ref document: JP