WO2017142036A1 - 絶縁電線、モーターコイルおよび電気・電子機器 - Google Patents

絶縁電線、モーターコイルおよび電気・電子機器 Download PDF

Info

Publication number
WO2017142036A1
WO2017142036A1 PCT/JP2017/005766 JP2017005766W WO2017142036A1 WO 2017142036 A1 WO2017142036 A1 WO 2017142036A1 JP 2017005766 W JP2017005766 W JP 2017005766W WO 2017142036 A1 WO2017142036 A1 WO 2017142036A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulated wire
coating layer
resin layer
thermosetting resin
thickness
Prior art date
Application number
PCT/JP2017/005766
Other languages
English (en)
French (fr)
Inventor
真 大矢
武藤 大介
大 藤原
Original Assignee
古河電気工業株式会社
古河マグネットワイヤ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MYPI2018702880A priority Critical patent/MY188171A/en
Application filed by 古河電気工業株式会社, 古河マグネットワイヤ株式会社 filed Critical 古河電気工業株式会社
Priority to CN201780010311.8A priority patent/CN108604483B/zh
Priority to KR1020187022707A priority patent/KR102120678B1/ko
Priority to EP17753291.8A priority patent/EP3419029B1/en
Priority to JP2018500204A priority patent/JP6839695B2/ja
Publication of WO2017142036A1 publication Critical patent/WO2017142036A1/ja
Priority to US16/104,457 priority patent/US10483818B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/065Insulating conductors with lacquers or enamels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/305Polyamides or polyesteramides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/427Polyethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • H01B7/0216Two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • H01B13/148Selection of the insulating material therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/301Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen or carbon in the main chain of the macromolecule, not provided for in group H01B3/302
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/307Other macromolecular compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to an insulated wire, a motor coil, and an electric / electronic device.
  • the ratio of the cross-sectional area of the conductor to the slot cross-sectional area of the stator can be increased, and even when the coil is molded at a high pressure, the coating shape of the coating layer hardly changes. It is an object to provide an excellent insulated wire. Moreover, this invention makes it a subject to provide the motor coil and electric / electronic device which used the said insulated wire.
  • the present inventors have made extensive studies to achieve both improvement in the space factor of the conductor in the slot and improvement in the insulation characteristics of the electric wire.
  • the conductor has a substantially rectangular cross section, and a coating layer made of a specific resin material is provided on the outer periphery of the conductor, and then four coating layers corresponding to the four sides of the substantially rectangular conductor cross section. It has been found that by satisfying a specific relationship for the film thickness of the portion, it is possible to achieve both a high space factor of the conductor in the slot and a high insulation characteristic of the electric wire at a high level.
  • the present invention has been made based on these findings.
  • An insulated wire having at least one thermosetting resin layer and at least one thermoplastic resin layer in this order on the rectangular conductor as a covering layer, In each of the four coating layer portions corresponding to the four sides in the cross section of the insulated wire, the difference between the maximum value and the minimum value of the film thickness is 20 ⁇ m or less, and in the entire four coating layer portions.
  • the insulated wire is characterized in that a value obtained by dividing the maximum value of the film thickness by the minimum value is 1.3 or more.
  • the coating layer portion that gives the maximum value of the coating thickness in the entire four coating layer portions and the coating layer portion that gives the minimum value of the coating thickness in the entire four coating layer portions are adjacent to each other.
  • the average of the maximum and minimum film thicknesses of the pair of coating layer portions corresponding to the long sides facing each other is a set of coatings corresponding to the short sides facing each other. 4.
  • thermosetting resin constituting the thermosetting resin layer is a resin selected from polyamideimide and polyimide. Electrical wire.
  • the tensile elastic modulus at 25 ° C. of the thermosetting resin constituting the thermosetting resin layer is 2,000 MPa or more, (1) to (5), Insulated wires.
  • a motor coil formed by laminating a plurality of the insulated wires according to any one of (1) to (7).
  • An electric / electronic device in which a plurality of laminated bodies of insulated wires according to any one of (1) to (7) are incorporated.
  • the insulated wire of the present invention can increase the ratio (space factor) of the cross-sectional area of the conductor to the slot cross-sectional area of the stator, and the coating shape of the coating layer hardly changes even when the coil is molded at a high pressure. Excellent insulation properties. Further, the motor coil and the electric / electronic device of the present invention can increase the occupation ratio of the conductor with respect to the cross-sectional area of the slot in the stator in which the insulated wire is incorporated. Excellent characteristics. In other words, the insulated wire according to the present invention has a shape deformation of the coating layer, which is particularly problematic when a thermoplastic resin is used for the coating layer, a coiled winding is incorporated in the slot, and the coil is molded at a high pressure.
  • the electrical disconnection wire of the present invention is excellent in manufacturability, and electrical / electronic devices such as a rotary motor using the insulated wire of the present invention can be reduced in weight and size.
  • FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of the insulated wire of the present invention.
  • FIG. 2 is a schematic perspective view showing a preferred form of a stator used in the electric / electronic device of the present invention.
  • FIG. 3 is a schematic exploded perspective view showing a preferred embodiment of a stator used in the electric / electronic device of the present invention.
  • FIG. 4 is a schematic cross-sectional view of an insulated wire manufactured in the example.
  • FIG. 5 is a schematic layout diagram of two insulated wires in the measurement of the partial discharge start voltage (PDIV) evaluated in the examples.
  • FIG. 6 is a schematic cross-sectional view of a slot in which a conventional insulated wire is incorporated and a schematic cross-sectional view showing a state where two insulated wires are displaced.
  • PDIV partial discharge start voltage
  • the insulated wire (also referred to as an insulated wire) of the present invention has at least one thermosetting resin layer (thermoset resin layer) and at least one thermoplastic layer as a covering layer on a rectangular conductor.
  • the coating thickness of the covering layer is such that the difference between the maximum value and the minimum value is 20 ⁇ m or less on each side formed on the four sides on the rectangular conductor.
  • a value obtained by dividing the largest value (Tmax) among these by the smallest value (Tmin) is 1.3 or more.
  • the difference between the maximum value and the minimum value of the film thickness is 20 ⁇ m or less, and the four In the entire coating layer portion, the value obtained by dividing the maximum value (Tmax) of the film thickness by the minimum value (Tmin) is 1.3 or more.
  • the “cross section” means a cross section orthogonal to the longitudinal direction of the insulated wire.
  • the cross section of the coating layer means a similar cross section, and the coating layer is continuously coated in the longitudinal direction on the conductor in the shape of this cross section.
  • coating and baking are performed repeatedly and the thickness of a thermosetting resin layer is made into specific thickness.
  • the insulated wire of the present invention is typically an insulated wire 1 having a schematic cross-sectional shape shown in FIG.
  • FIG. 1 is an insulated wire observed macroscopically.
  • the maximum value of the coating thickness of the coating layer on each of the four sides may be a maximum value and a minimum value of the coating thickness of the coating layer on each of the four sides, but in the present invention, the maximum value of the coating thickness of the coating layer on each side. And the difference between the minimum values is 20 ⁇ m or less.
  • a value (Tmax / Tmin) obtained by dividing the largest value (Tmax) among the maximum values of each side by the smallest value (Tmin) among the minimum values of each side is 1.3 or more.
  • a covering layer 21 is provided on a rectangular conductor 11, and the covering layer has a laminated structure of a thermosetting resin layer 21a and a thermoplastic resin layer 21b.
  • the coating thickness of the coating layer on the two short sides is larger than the coating thickness of the coating layer on the two long sides, but as shown in FIG.
  • the coating thickness of the coating layer on the two long sides may be larger than the coating thickness of the coating layer on the two short sides.
  • two or more thermosetting resin layers may be provided, or two or more thermoplastic resin layers may be provided.
  • a layer having a specific function may be provided.
  • a conductor used for this invention what is conventionally used with the insulated wire can be used and metal conductors, such as a copper wire and an aluminum wire, are mentioned.
  • a copper conductor is preferable, and the copper used is preferably low oxygen copper having an oxygen content of 30 ppm or less, and more preferably 20 ppm or less low oxygen copper or oxygen-free copper. If the oxygen content is 30 ppm or less, when the conductor is melted with heat to prevent welding, voids due to oxygen contained in the welded portion are not generated, and the electrical resistance of the welded portion is prevented from deteriorating. The strength of the welded portion can be maintained.
  • various aluminum alloys can be used depending on the application after considering the required mechanical strength. For example, for applications such as rotating electrical machines, pure aluminum having a purity of 99.00% or more that can obtain a high current value is preferable.
  • a conductor having a rectangular cross section flat angle
  • the size of the conductor is determined according to the use and is not particularly specified.
  • the width (long side) is preferably 1.0 mm to 5.0 mm in the length of one side. More preferably, the thickness (short side) is preferably 0.4 mm to 3.0 mm, and more preferably 0.5 mm to 2.5 mm.
  • the range of the conductor size in which the effect of the present invention can be obtained is not limited to this.
  • a rectangular cross section is more common than a square cross section.
  • chamfers (curvature radius r) of the four corners of the rectangular conductor cross section be smaller in terms of increasing the conductor space factor in the stator slot.
  • r is preferably larger. Therefore, the curvature radius r is preferably 0.6 mm or less, and more preferably 0.2 mm to 0.4 mm.
  • the range in which the effect of the present invention can be obtained is not limited to this.
  • a rectangular conductor may be formed by twisting or combining a plurality of conductors.
  • thermosetting resin layer is particularly preferably provided on the outer periphery of the conductor in direct contact with the conductor.
  • a thermoplastic resin layer for example, the thermoplastic resin layer which consists of an amorphous thermoplastic resin, as needed and the objective.
  • the adhesiveness of a coating layer and a conductor improves by providing a thermosetting resin layer in contact with a conductor.
  • the thermosetting resin layer provided on the outer periphery of the conductor in direct contact with the conductor may be referred to as an enamel (resin) layer.
  • thermosetting resin in the insulated wire of the present invention, the thermosetting resin constituting the thermosetting resin layer may be any one as long as it is a thermosetting resin used in the insulated wire.
  • examples thereof include polyamideimide (PAI), polyimide (PI), polyetherimide (PEI), polyesterimide (PEsI), polyurethane, polyester (PEst), polybenzimidazole, melamine resin, and epoxy resin.
  • PAI polyamideimide
  • PI polyimide
  • PEI polyetherimide
  • PET polyesterimide
  • PEst polyurethane
  • thermosetting resins having an imide bond are preferable.
  • thermosetting resin having an imide bond examples include polyamideimide (PAI), polyimide (PI), polyetherimide (PEI), and polyesterimide (PEsI).
  • PAI polyamideimide
  • PI polyimide
  • PEI polyetherimide
  • PEsI polyesterimide
  • a resin selected from polyamideimide (PAI) and polyimide (PI) is particularly preferable.
  • the above polyamideimide (PAI) has a lower thermal conductivity than other resins, a high dielectric breakdown voltage, and can be baked and cured.
  • the polyamideimide is not particularly limited, but is obtained by a conventional method, for example, by directly reacting a tricarboxylic acid anhydride and a diisocyanate compound in a polar solvent, or by adding a diamine compound to the tricarboxylic acid anhydride in a polar solvent. And an imide bond first introduced and then amidated with a diisocyanate compound.
  • Examples of the polyamideimide (PAI) include trade name: HPC-9000 manufactured by Hitachi Chemical Co., Ltd. and trade name: HI406 manufactured by Hitachi Chemical Co., Ltd.
  • the polyimide (PI) is not particularly limited, and ordinary polyimides such as wholly aromatic polyimides and thermosetting aromatic polyimides can be used. Also obtained by imidization by heat treatment during baking using a polyamic acid solution obtained by reacting an aromatic tetracarboxylic dianhydride and an aromatic diamine compound in a polar solvent by a conventional method Can be used.
  • Polyimide (PI) is, for example, trade name: Uimide manufactured by Unitika Ltd., trade name: U-Varnish-A manufactured by Ube Industries, Ltd., trade name: Pire-M. L. Etc.
  • the above polyetherimide (PEI) may be any thermosetting resin having an ether bond and an imide bond in the molecule, such as an aromatic tetracarboxylic dianhydride and an aromatic diamine having an ether bond in the molecule. It is also possible to use a polyamic acid solution obtained by reacting a polymer in a polar solvent and imidizing it by a heat treatment during baking at the time of coating. Examples of polyetherimide (PEI) include trade name: Ultem 1000 manufactured by SABIC.
  • the polyesterimide (PEsI) is not particularly limited as long as it is a polymer having an ester bond and an imide bond in the molecule and is thermosetting.
  • an imide bond is formed from a tricarboxylic acid anhydride and an amine compound
  • an ester bond is formed from an alcohol and a carboxylic acid or an alkyl ester thereof
  • the free acid group or anhydride group of the imide bond is used in the ester forming reaction. What is obtained by adding can be used.
  • polyesterimide for example, those obtained by reacting a tricarboxylic acid anhydride, a dicarboxylic acid compound or an alkyl ester thereof, an alcohol compound and a diamine compound by a known method can also be used.
  • polyesterimide examples include Toyo Paint Co., Ltd. trade name: Neoheat 8600A.
  • the thermosetting resin preferably has a tensile modulus at 25 ° C. of 2,000 MPa or more, more preferably 2,000 to 9,000 MPa, further preferably 2,500 to 8,000 MPa, and 3,000. -7,000 MPa is particularly preferred.
  • a tensile elastic modulus By setting such a tensile elastic modulus, the dielectric breakdown voltage can be maintained at a higher level even after severe workability is performed.
  • the tensile elastic modulus of the thermosetting resin can be measured by the following method.
  • a sheet sample is prepared in advance (for example, a sheet sample having a length of 10 mm, a width of 2 mm, and a thickness of 0.05 mm).
  • This sheet sample was measured using a viscoelastic spectrometer, for example, a viscoelastic spectrometer (DMA8000) manufactured by PerkinElmer Japan Co., Ltd., in a tensile mode and a frequency of 1 Hz, and a measurement temperature was a heating rate of 5
  • the tensile modulus is measured at 25 ° C. while changing at a rate of ° C./min.
  • thermosetting resin may be used individually by 1 type, and may use 2 or more types together.
  • thermosetting resin layer is preferable because it can further enhance the adhesion to the conductor by adding an additive such as a trialkylamine, an alkoxylated melamine resin, or a thiol compound.
  • the trialkylamine is preferably a lower alkyl trialkylamine such as trimethylamine, triethylamine, tripropylamine or tributylamine. Among these, trimethylamine and triethylamine are more preferable in terms of flexibility and adhesion.
  • alkoxylated melamine resin for example, a melamine resin substituted with a lower alkoxy group such as a butoxylated melamine resin or a methoxylated melamine resin can be used, and a methoxylated melamine resin is preferable in terms of compatibility of the resin.
  • the thiol compound is an organic compound having a mercapto group (—SH), and specifically includes pentaerythritol tetrakis (3-mercaptobutyrate), 1,3,5-tris (3-mercaptobutyloxyethyl).
  • the content of the additive is not particularly limited, but is preferably 5 parts by mass or less and more preferably 3 parts by mass or less with respect to 100 parts by mass of the thermosetting resin.
  • the average film thickness of the thermosetting resin layer is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, further preferably 15 ⁇ m or more, and particularly preferably 20 ⁇ m or more.
  • the upper limit of the average film thickness is preferably 60 ⁇ m or less. Especially, it is preferable to satisfy
  • thermosetting resin layer has, for example, unevenness so as to have a maximum value and a minimum value when observed microscopically on each side in order to improve adhesion with the thermoplastic resin layer as the outer layer. You can attach it.
  • the film thicknesses on the long side and the short side are different in one set of short sides facing the one set of opposing long sides. May be the same, but the same case is preferable.
  • thermoplastic resin layer In the insulated wire of the present invention, at least one thermoplastic resin layer is provided on at least one thermosetting resin layer, and the thermoplastic resin layer has a laminated structure of one or more layers. Also good.
  • thermoplastic resin The thermoplastic resin constituting the thermoplastic resin layer includes polyamide (PA) (nylon), polyacetal (POM), polycarbonate (PC), polyphenylene ether (including modified polyphenylene ether), polybutylene terephthalate (PBT), polyethylene terephthalate (In addition to general-purpose engineering plastics such as PET), polyethylene naphthalate (PEN), and ultra-high molecular weight polyethylene, polysulfone (PSF), polyethersulfone (PES), polyphenylene sulfide (PPS), polyarylate (U polymer), polyamideimide, Polyetherketone (PEK), polyaryletherketone (PAEK), tetrafluoroethylene / ethylene copolymer (ETFE), polyetheretherketone (PEEK) (modified) Polyetheretherketone (including modified PEEK), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), polytetra
  • the thermoplastic resin may be crystalline or amorphous.
  • the thermoplastic resin may be one kind or a mixture of two or more kinds.
  • polyamide (PA), polysulfone (PSF), polyethersulfone (PES), polyphenylene sulfide (PPS), polyetherketone (PEK), polyaryletherketone (PAEK), polyetheretherketone (PEEK) ), Polyether ether ketone (PEEK), polyether ketone (PEK), polyaryl ether ketone (PAEK), polyphenylene sulfide (PPS), and polyamide (PA) are more preferable, polyether ether ketone (PEEK), polyphenylene Sulfide (PPS) and polyamide (PA) are more preferred, and in particular, polyether ether ketone (PEEK) or polyphenylene sulfide (PPS) is preferably contained from the viewpoint of solvent resistance.
  • thermoplastic resin layer is usually formed by extrusion because a thermoplastic resin is used.
  • the thermoplastic resin layer can contain various additives according to the purpose.
  • additives include pigments, crosslinking agents, catalysts, and antioxidants.
  • the content of such an additive is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the resin constituting the thermoplastic resin layer.
  • the outermost thermoplastic resin layer covering the conductor may be a self-lubricating resin obtained by dispersing and mixing wax or lubricant by a conventional method.
  • the wax those usually used can be used without particular limitation, and examples thereof include synthetic waxes such as polyethylene wax, petroleum wax and paraffin wax, and natural waxes such as carnauba wax, cadilla wax and rice wax.
  • synthetic waxes such as polyethylene wax, petroleum wax and paraffin wax, and natural waxes such as carnauba wax, cadilla wax and rice wax.
  • a lubricant For example, silicone, a silicone macromonomer, a fluororesin etc. are mentioned.
  • the average film thickness of the thermoplastic resin layer is preferably 20 to 250 ⁇ m, more preferably 30 to 190 ⁇ m, still more preferably 40 to 150 ⁇ m, and particularly preferably 50 to 130 ⁇ m.
  • the average of the long side and the short side in the one set of short sides facing the opposing long side may be the same or different, but the shorter side is preferred.
  • the average film thickness of the long side is preferably 25 to 150 ⁇ m, more preferably 30 to 150 ⁇ m, further preferably 40 to 120 ⁇ m, and particularly preferably 50 to 100 ⁇ m.
  • the average film thickness on the short side is preferably 15 to 250 ⁇ m, more preferably 40 to 200 ⁇ m, still more preferably 50 to 150 ⁇ m, and particularly preferably 60 to 150 ⁇ m.
  • the present invention is not limited to this mode.
  • the thickness of the coating layer and the cross-sectional shape of the coating layer are preferably prepared with a thermoplastic resin layer rather than with a thermosetting resin layer.
  • the coating thickness of the coating layer is such that the difference between the maximum value and the minimum value is 20 ⁇ m or less on each of the sides formed on the four sides on the cross-sectional rectangular conductor,
  • a value (Tmax / Tmin) obtained by dividing the largest value (Tmax) by the smallest value (Tmin) is 1.3 or more.
  • the Tmax / Tmin is preferably 1.3 to 6.0, more preferably 1.5 to 4.0, further preferably more than 1.5 and 4.0 or less, and particularly preferably 1.6 to 4.0. Most preferred is 1.7 to 3.0.
  • the side having Tmax and the side having Tmin are adjacent to each other. That is, the coating layer portion that gives the maximum value of the coating thickness in the entire four coating layer portions corresponding to the four sides in the cross section of the insulated wire, and the coating that gives the minimum value of the coating thickness in the entire four coating layer portions
  • the layer portions are preferably adjacent to each other.
  • the insulated wire has a cross-sectional shape as shown in FIG. 1 when observed macroscopically.
  • the coating thickness of the coating layer is a microscope (for example, a microscope VHX-2000 manufactured by Keyence Corporation) except for a portion that is curved by the chamfered curvature of the four corners based on the cross-sectional shape of the conductor.
  • the film thickness of the coating layer can be determined by image analysis of an image with a magnification of 500 times.
  • the average film thickness of the two long sides in the one set of short sides opposing the one set of opposing long sides May be different or the same, but the same is preferable.
  • the average film thicknesses of the two short sides may be the same or different, but the same is preferable.
  • the average film thickness of the long side and the short side in the cross-sectional shape of the coating layer is appropriately adjusted to increase the space factor of the insulated wire in the stator slot, and a plurality of insulated wires are laminated. It is preferable that the average film thickness of the direction side is thinner. As shown in FIG. 6, when the short side of the insulated wire is in contact with the side surface of the stator slot and the long side is in contact with another insulated wire, a high voltage is applied between the short side of the insulated wire and the stator. Therefore, it is preferable to increase the average film thickness on the short side. For this reason, when accommodating an insulated wire in the slot of a stator, conversely, when laminating with other insulated wires in the direction of the short side, it is preferable to increase the average film thickness on the long side.
  • the average film thickness of the long-side coating layer is preferably 35 to 200 ⁇ m, more preferably 40 to 160 ⁇ m, and even more preferably 50 to 120 ⁇ m.
  • the average film thickness of the short-side coating layer is preferably 40 to 250 ⁇ m, more preferably 50 to 180 ⁇ m, and still more preferably 60 to 130 ⁇ m.
  • the film thicknesses of the long side and the short side of the coating layer are appropriately adjusted when the insulated wire is put into the slot of the stator. Therefore, in the present invention, in the four sides (two opposing sides) of the coating layer, the average of the maximum value and the minimum value of the film thicknesses of the opposing long sides is the average of the opposing short sides.
  • the thickness can be made thinner than the average of the maximum value and the minimum value of the film thickness, and the relationship between the thickness of the long side and the short side can be reversed.
  • the average of the maximum and minimum film thicknesses of the set of coating layer portions corresponding to the long sides facing each other is a set of coatings corresponding to the short sides facing each other.
  • the form made thinner than the average of the maximum value and the minimum value of the film thickness of the layer portion is preferable as the form of the insulated wire of the present invention.
  • the ratio of the average film thickness of the coating layer of each of the short side and the long side, or the ratio of the average value of the maximum film thickness and the minimum value of the coating layer of each of the short side and the long side is The long side is preferably 20 to 500.
  • the long side is preferably 40 to 100 with respect to the short side 100, preferably 50 to 90 is more preferable.
  • the average of the maximum value and the minimum value of the film thickness in two coating layer portions corresponding to two short sides facing each other is 100, it corresponds to two long sides facing each other
  • the average of the maximum and minimum film thicknesses in the two coating layer portions is preferably 40 to 100, more preferably 50 to 90.
  • the present invention is not limited to this form.
  • the difference between the maximum value and the minimum value of the coating layer thickness of each of the four sides in the cross-sectional shape of the coating layer provided on the conductor is 20 ⁇ m or less.
  • the difference between the maximum value and the minimum value is preferably such that the lower limit exceeds 0 ⁇ m on at least one side, more preferably the lower limit exceeds 0 ⁇ m on at least two sides, and the lower limit on at least three sides exceeds 0 ⁇ m. It is more preferable that all of the lower limits of the four sides exceed 0 ⁇ m.
  • the difference between the maximum value and the minimum value of the film thickness of the coating layer on each of the four sides is preferably 0 to 15 ⁇ m, more preferably 0 to 10 ⁇ m, and further preferably 0 to 5 ⁇ m.
  • the maximum value and the minimum value of the coating thickness of the coating layer on each of these sides may be the same or different on each side. However, since the insulated wires overlap each other in the slot, usually on the long side, the difference between the maximum value and the minimum value of the coating thickness of the coating layer on each long side is the same between a pair of long sides facing each other. It is preferable that in the sides of T1, T2, T3, and T4 shown in FIG. 4, the shape of the sides of T1 and T3 may be a symmetric shape or a reverse symmetric shape with respect to the conductor. In the present invention, reverse symmetry (for example, (b) in FIG. 4 is inversely symmetric and (c) in FIG. 4 is symmetric) is preferable in terms of adhesion.
  • the maximum value of the coating thickness on the long side of the coating layer is preferably 50 to 250 ⁇ m, more preferably 60 to 180 ⁇ m, and even more preferably 70 to 140 ⁇ m.
  • the minimum value of the coating thickness on the long side of the coating layer is preferably 30 to 200 ⁇ m, more preferably 40 to 160 ⁇ m, and even more preferably 50 to 130 ⁇ m.
  • the maximum value of the film thickness on the short side of the coating layer is preferably 50 to 300 ⁇ m, more preferably 55 to 300 ⁇ m, further preferably 60 to 260 ⁇ m, and particularly preferably 70 to 220 ⁇ m.
  • the minimum value of the coating thickness on the short side of the coating layer is preferably 45 to 250 ⁇ m, more preferably 50 to 250 ⁇ m, still more preferably 60 to 210 ⁇ m, and particularly preferably 70 to 180 ⁇ m.
  • thermosetting resin varnish is applied to the outer periphery of the conductor and baked to form a thermosetting resin layer, and a composition containing a thermoplastic resin is extruded onto the thermosetting resin layer. And an insulated wire is manufactured by forming a thermoplastic resin layer.
  • the thermosetting resin varnish contains an organic solvent or the like for varnishing the thermosetting resin.
  • the organic solvent is not particularly limited as long as it does not inhibit the reaction of the thermosetting resin.
  • NMP N-methyl-2-pyrrolidone
  • DMAC N-dimethylacetamide
  • DMF N-dimethylformamide Amide solvents
  • urea solvents such as N, N-dimethylethyleneurea, N, N-dimethylpropyleneurea and tetramethylurea
  • lactone solvents such as ⁇ -butyrolactone and ⁇ -caprolactone, propylene carbonate, etc.
  • Carbonate solvents such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ester solvents such as ethyl acetate, n-butyl acetate, butyl cellosolve acetate, butyl carbitol acetate, ethyl cellosolve acetate, ethyl carbitol acetate, diglyme
  • Examples include glyme solvents such as triglyme and tetraglyme, hydrocarbon solvents such as toluene, xylene and cyclohexane, phenol solvents such as cresol, phenol and halogenated phenol, sulfone solvents such as sulfolane, dimethyl sulfoxide (DMSO) and the like. It is done.
  • 2-pyrrolidone (NMP) N, N-dimethylacetamide, N, N-dimethylethyleneurea, N, N-dimethylpropyleneurea, and tetramethylurea are more preferred, and N, N-dimethylacetamide, N-methyl-2- Pyrrolidone, N, N-dimethylformamide and dimethyl sulfoxide are particularly preferred.
  • An organic solvent etc. may be used individually by 1 type, and may use 2 or more types together.
  • thermosetting resin varnish a commercially available product may be used as described above.
  • the thermosetting resin varnish contains an organic solvent because it is dissolved in the organic solvent.
  • the method for applying the thermosetting resin varnish on the conductor may be a conventional method, for example, a method using a varnish application die having a similar shape to the conductor shape or a cross-sectional shape of the conductor is rectangular. A formed die called a “universal die” can be used.
  • the conductor coated with these thermosetting resin varnishes is baked in a baking furnace by a conventional method.
  • the specific baking conditions depend on the shape of the furnace used, but in the case of a natural convection type vertical furnace of approximately 8 m, the passage time is 10 to 90 seconds at a furnace temperature of 400 to 650 ° C. Can be achieved.
  • a conductor (also referred to as an enameled wire) on which a thermosetting resin layer is formed is a core wire, and a composition containing a thermoplastic resin is extrusion coated onto the enameled wire using a screw of an extruder.
  • An insulated wire can be obtained by forming a plastic resin layer.
  • the outer shape of the cross section of the extrusion-coated resin layer is similar to or substantially similar to the shape of the conductor so that predetermined side and corner thicknesses, predetermined maximum thickness and minimum thickness can be obtained.
  • thermoplastic resin is extrusion coated using an extrusion die at a temperature equal to or higher than the melting point of the thermoplastic resin (or higher than the glass transition temperature in the case of an amorphous resin).
  • the thermoplastic resin layer can also be formed using an organic solvent or the like and a thermoplastic resin.
  • thermoplastic resin varnish obtained by dissolving a thermoplastic resin in an organic solvent or the like is coated on the enameled wire using a die similar to the shape of the conductor. Then, it can be formed by baking.
  • the organic solvent of the thermoplastic resin varnish is preferably the organic solvent mentioned in the above thermosetting resin varnish.
  • specific baking conditions depend on the shape of the furnace used, the conditions described in the conditions for the thermosetting resin are preferable.
  • the insulated wire of the present invention has a high partial discharge start voltage (PDIV) and a high breakdown voltage (BDV).
  • PDIV partial discharge start voltage
  • BDV high breakdown voltage
  • the partial discharge start voltage was measured as shown in the examples, and (1) the partial discharge start voltage at the minimum side including the minimum value of the film thickness at the long side and (2) the film thickness at the long side. Any of the partial discharge start voltages at the maximum film thickness portion including the maximum value is high.
  • the partial discharge start voltage in (1) is preferably 1000 to 3000 Vp, more preferably 1200 to 2750 Vp, still more preferably 1250 to 2750 Vp, and particularly preferably 1300 to 2500 Vp.
  • the partial discharge start voltage in (1) is a characteristic that is not expected at the time of designing the motor
  • (2) partial discharge start voltage in the maximum film thickness portion including the maximum value of the film thickness on the long side The smaller the amount of change from (the absolute value of the difference), the higher the reliability.
  • the ratio of the change amount to the partial discharge start voltage shown in (1) is preferably 55% or less, more preferably 0 to 40%, and further preferably 0 to 38%.
  • the partial discharge start voltage in (2) depends on the balance with the space factor, but is preferably 1000 to 2500 Vp, more preferably 1100 to 2200 Vp, still more preferably 1200 to 2200 Vp, particularly preferably 1300 to 2000 Vp, and 1500 to 1800 Vp. Most preferred.
  • the breakdown voltage is particularly high after the notched edgewise bending process, which is measured by the method as shown in the examples.
  • the dielectric breakdown voltage may be 1 kV or more, more preferably 5 kV or more, and further preferably 8 kV or more.
  • the insulated wire of the present invention can be used as a coil in fields requiring electrical characteristics (voltage resistance) and heat resistance, such as various electric and electronic devices.
  • the insulated wire of the present invention is used for a motor, a transformer, etc., and can constitute a high-performance electric / electronic device.
  • it is suitably used as a winding for a drive motor of HV (Hybrid Vehicle) or EV (Electric Vehicle).
  • HV Hybrid Vehicle
  • EV Electric Vehicle
  • the insulated wire of this invention when used for a motor coil, it is also called the insulated wire for motor coils.
  • the coil obtained by processing the insulated wire of the present invention having the above-described excellent characteristics can further reduce the size or performance of the electric / electronic device. Therefore, the insulated wire of the present invention is suitably used as a winding for a HV or EV drive motor that has recently been remarkably reduced in size or performance.
  • the coil of the present invention only needs to have a form suitable for various electric and electronic devices, and is formed by coiling the insulated wire of the present invention, a predetermined portion after bending the insulated wire of the present invention Are formed by electrically connecting the two. It does not specifically limit as a coil formed by coiling the insulated wire of this invention, What wound the elongate insulated wire helically is mentioned. In such a coil, the number of windings of the insulated wire is not particularly limited. Usually, an iron core or the like is used when winding an insulated wire.
  • a coil formed by bending the insulated wire of the present invention and electrically connecting a predetermined portion a coil used for a stator such as a rotating electric machine can be cited.
  • a coil used for a stator such as a rotating electric machine
  • FIG. 3 such a coil is formed by cutting the insulated wire of the present invention into a predetermined length and bending it into a U shape or the like to produce a plurality of wire segments 34.
  • a coil 33 (see FIG. 2) manufactured by connecting two open ends (terminals) 34a such as a U-shape of the segment 34 alternately is mentioned.
  • the electric / electronic device using this coil is not particularly limited.
  • a rotating electric machine particularly, a drive motor for HV and EV
  • the rotating electrical machine can have the same configuration as that of a conventional rotating electrical machine except that the rotating electrical machine is provided.
  • the stator 30 can have the same configuration as the conventional stator except that the wire segment 34 is formed of the insulated wire of the present invention. That is, the stator 30 includes a stator core 31 and, for example, an electric wire segment 34 made of an insulated wire according to the present invention as shown in FIG. 3 and incorporated in the slot 32 of the stator core 31, and the open end 34a is electrically connected. And a coil 33.
  • the electric wire segments 34 may be incorporated into the slot 32 by one, but are preferably incorporated as a pair as shown in FIG.
  • a coil 33 formed by alternately connecting the open ends 34 a that are the two ends of the electric wire segment 34 bent as described above is housed in the slot 32 of the stator core 31.
  • the open end 34a of the electric wire segment 34 may be connected and then accommodated in the slot 32.
  • the open end 34a of the electric wire segment 34 is bent. May be connected.
  • the motor coil of the present invention is a plurality of laminates of the insulated wires of the present invention, and the electronic / electric equipment of the present invention incorporates a plurality of laminates of the insulated wires of the present invention.
  • the present invention it is preferable to use a combination of a plurality of types of wires having different shapes or thicknesses in motor coils and electrical / electronic devices.
  • the insulated wire of the present invention may be laminated such that the side having the smallest value (Tmin) among the minimum values of the coating thickness of the coating layer on each side is adjacent.
  • Tmin the side having the smallest value
  • the portion of the stator core that enters the slot is configured so that the coating on the long side is thinner than the coating on the short side, thereby reducing the size of the stator core in the circumferential direction without reducing the conductor space factor per slot.
  • the wire can be used as a spacer for maintaining the insulation distance at the coil end portion. By doing so, the insulating paper can be removed, and as a result, the motor can be miniaturized.
  • the present invention is not limited to this form.
  • the ratio (space factor) of the cross-sectional area of the conductor to the slot cross-sectional area of the stator core can be increased, and the characteristics of the electric / electronic device can be improved.
  • the insulated wire of the present invention can be used as a coil in fields requiring electrical characteristics (voltage resistance) and heat resistance, such as rotating electrical machines and various electric / electronic devices.
  • the insulated wire of the present invention is used for a motor, a transformer, and the like, and can constitute a high-performance rotating electrical machine and electrical / electronic device.
  • it is suitably used as a winding for a drive motor of a hybrid car (HV) or an electric car (EV).
  • Example 1 an insulated wire having a substantially rectangular cross section shown in FIG.
  • Polyamideimide (PAI) varnish (trade name: HPC-9000, manufactured by Hitachi Chemical Co., Ltd., tensile elastic modulus at 25 ° C .: 4,100 MPa) is used on a conductor and a die having a cross-sectional shape similar to that of a conductor is used.
  • PAI Polyamideimide
  • thermosetting resin layer having a thickness of 30 ⁇ m was formed, and an enameled wire composed of the thermosetting resin layer was obtained.
  • polyether ether ketone (trade name: KetaSpire KT-820, manufactured by Solvay Specialty Polymers Co., Ltd.) is used as the thermoplastic resin, and the outer shape and thickness of the cross section of the thermoplastic resin are shown in the table below.
  • the extrusion coating of a thermoplastic tree was performed at 370 ° C. (temperature of the extrusion die) using an extrusion die so as to have a shape and thickness as shown in FIG.
  • the insulated wire which has a thermosetting resin layer and a thermoplastic resin layer on a conductor was manufactured.
  • Example 2 an insulated wire having a substantially rectangular cross section shown in FIG. An insulated wire was manufactured in the same manner as in Example 1 except that the thickness of the thermosetting resin layer and the shape and thickness of the thermoplastic resin layer were changed as shown in Table 1 below.
  • Example 3 an insulated wire having a substantially rectangular cross section shown in FIG.
  • the resin of the thermosetting resin layer was changed to polyimide (PI) varnish [trade name: U-Varnish-A, manufactured by Ube Industries, Ltd., tensile elastic modulus at 25 ° C., 3,730 MPa], and the thermosetting resin layer
  • PI polyimide
  • Example 4 an insulated wire having a substantially rectangular cross section shown in FIG.
  • the resin of the thermosetting resin layer was changed to polyester (PEst) varnish [trade name: LITON 3300KF, manufactured by Tohoku Paint Co., Ltd., tensile elastic modulus at 25 ° C., 2,000 MPa], and the thermoplastic resin was changed to polyphenylene sulfide ( PPS) [trade name: PPS FZ-2100, manufactured by DIC Corporation], and the thickness of the thermosetting resin layer and the shape and thickness of the thermoplastic resin layer were changed as shown in Table 1 below.
  • PPS polyphenylene sulfide
  • An insulated wire was manufactured in the same manner as in Example 1 except that.
  • Example 5 an insulated wire having a substantially rectangular cross section shown in FIG.
  • the resin of the thermosetting resin layer was changed to a polyesterimide (PEsI) varnish [trade name: Neoheat 8600A, manufactured by Tohoku Paint Co., Ltd., tensile elastic modulus at 25 ° C., 2,500 MPa], and the thermosetting resin layer
  • An insulated wire was manufactured in the same manner as in Example 1 except that the thickness and the shape and thickness of the thermoplastic resin layer were changed as shown in Table 1 below.
  • PEsI polyesterimide
  • Example 6 an insulated wire having a substantially rectangular cross section shown in FIG.
  • the resin of the thermosetting resin layer was changed to polyimide (PI) varnish [trade name: U-Varnish-A, manufactured by Ube Industries, Ltd., tensile elastic modulus at 25 ° C., 3,730 MPa], and the thermosetting resin layer
  • PI polyimide
  • Example 7 an insulated wire having a substantially rectangular cross section shown in FIG.
  • the resin of the thermosetting resin layer was changed to polyester (PEst) varnish [trade name: LITON 3300KF, manufactured by Tohoku Paint Co., Ltd., tensile elastic modulus at 25 ° C., 2,000 MPa], and the thermoplastic resin was changed to polyamide (PA ) [Product name: Leona 1300S, manufactured by Asahi Kasei Co., Ltd.] and the thickness of the thermosetting resin layer and the shape and thickness of the thermoplastic resin layer were changed as shown in Table 1 below.
  • An insulated wire was manufactured in the same manner as in Example 1.
  • Example 8 an insulated wire having a substantially rectangular cross section shown in FIG. An insulated wire was manufactured in the same manner as in Example 1 except that the thickness of the thermosetting resin layer and the shape and thickness of the thermoplastic resin layer were changed as shown in Table 1 below.
  • thermoplastic resin polyether ether ketone (trade name: KetaSpire KT-820, manufactured by Solvay Specialty Polymers Co., Ltd.) is used as the thermoplastic resin, and the outer shape and thickness of the cross section of the thermoplastic resin are shown in the table below.
  • Extrusion coating of a thermoplastic tree was performed at 370 ° C. (temperature of the extrusion die) using an extrusion die so as to have a shape and thickness as shown in FIG.
  • the insulated wire which has a thermoplastic resin layer on a conductor was manufactured.
  • Comparative Example 2 In Comparative Example 2, an insulated wire having an insulating layer in which the difference between the maximum value and the minimum value of the film thickness of each of the two long sides exceeds 20 ⁇ m in the concave rectangular cross section shown in FIG. Manufactured. In Comparative Example 2, the thermosetting resin layer is not provided, and only the thermoplastic resin layer is provided. An insulated wire was manufactured in the same manner as in Comparative Example 1 except that the shape and thickness of the thermoplastic resin layer were changed as shown in Table 2 below.
  • Comparative Example 3 In Comparative Example 3, an insulated wire having a substantially rectangular cross section shown in FIG. In Comparative Example 3, the thermosetting resin layer is not provided and only the thermoplastic resin layer is provided. An insulated wire was manufactured in the same manner as in Comparative Example 1 except that the shape and thickness of the thermoplastic resin layer were changed as shown in Table 2 below.
  • Comparative Example 4 In Comparative Example 4, an insulated wire having a substantially rectangular cross section shown in FIG. An insulated wire was manufactured in the same manner as in Example 1 except that the thickness of the thermosetting resin layer and the shape and thickness of the thermoplastic resin layer were changed as shown in Table 2 below.
  • Comparative Example 5 In Comparative Example 5, an insulated wire having an insulating layer in which the difference between the maximum value and the minimum value of each of the four sides in the concave rectangle shown in FIG. An insulated wire was manufactured in the same manner as in Example 1 except that the thickness of the thermosetting resin layer and the shape and thickness of the thermoplastic resin layer were changed as shown in Table 2 below.
  • Comparative Example 6 In Comparative Example 6, an insulated wire having a substantially rectangular cross section shown in FIG. An insulated wire was manufactured in the same manner as in Example 1 except that the thickness of the thermosetting resin layer and the shape and thickness of the thermoplastic resin layer were changed as shown in Table 2 below.
  • thermosetting resin layer At the manufacturing stage of each insulated wire, the enameled wire made of the obtained thermosetting resin layer was used, and the cross-sectional shapes in (a) to (c) of FIG. The four sides are T1 to T4 as shown in Fig. 4, and the four sides other than the part that curves with the chamfered curvature of the four corners based on the cross-sectional shape of the conductor are used by Keyence Corporation microscope (VHX-2000).
  • the average film thickness of the thermosetting resin layer (denoted as the inner layer in the table) was determined by image analysis of an image with a magnification of 500 times.
  • the average film thickness here means that the inner layer and the coating layer coated on the four sides other than the portion curved by the chamfered curvature of the four corners based on the cross-sectional shape of the conductor are 10 points equally spaced on each side. It is the average value of the film thickness.
  • the maximum value is T1 ′ and the minimum value is T1 ′′.
  • a value (Tmax / Tmin) obtained by dividing the largest value (Tmax) of the four sides by the smallest value (Tmin) of the four sides is calculated. It was shown as the “total film thickness ratio”.
  • PDIV partial discharge start voltage
  • Partial discharge start voltage at the minimum side including the minimum value of the film thickness at the long side As shown schematically in FIG. 4A, two insulated wires are connected to T1 in FIG. Overlap the portion corresponding to T3 with the thick portion including the maximum value of the coating thickness of the coating layer of one insulated wire and the thin portion including the minimum value of the coating thickness of the coating layer of the other insulated wire This is the partial discharge start voltage in a state where the layers are shifted by 10 ⁇ m so that a space is formed at the center.
  • the electrode was connected between the two conductors, and the voltage was raised continuously at a temperature of 25 ° C. while applying an AC voltage of 50 Hz. Vp).
  • Partial discharge start voltage at the maximum film thickness including the maximum value of the film thickness at the long side As shown schematically in FIG. 4B, two insulated wires are connected to T1 in FIG. And a portion corresponding to T3 are overlapped with a thick portion including the maximum value of the coating thickness of the coating layer of one insulated wire and a thick portion including the maximum value of the coating thickness of the coating layer of the other insulated wire, and It is the partial discharge start voltage measured in the environment where the end portions of two insulated wires are expanded and various air gaps exist.
  • the electrode was connected between the two conductors, and the voltage was raised continuously at a temperature of 25 ° C. while applying an AC voltage of 50 Hz. Vp).
  • BDV dielectric breakdown voltage
  • the “winding test” is also called an edgewise bending test with a notch, which is a bending method in which one of the edge surfaces of the insulated wire is bent as an inner diameter surface, and is also called a bending method in which the insulated wire is bent in the width direction.
  • the surface in which the short side of the vertical cross section of the rectangular insulated wire is formed continuously in the axial direction is referred to as the “edge surface”, and the surface in which the long side of the flat cross section of the rectangular wire is formed continuously in the axial direction. Is called "flat surface”.
  • the notched edgewise bending test is a test that simulates bending and stretching during winding of an insulated wire, and is a test for evaluating the effect of preventing cracks reaching the conductor due to mechanical stress remaining after processing. .
  • Rank C or higher is a pass level.
  • Rank C or higher is a pass level.
  • the insulated wires of Examples 1 to 8 are compared with the insulated wires of Comparative Examples 1 to 6 and have the configuration of the present invention, so that partial discharge start voltages (PDIV) in two states are obtained. Is 1100 Vp or higher, and the breakdown voltage (BDV) after edgewise bending with notch is excellent, and the space factor in the slot is also high.
  • PDIV partial discharge start voltages
  • the cross-sectional shape as shown in FIG. 4C is a concave rectangle, and the covering layer is two layers of a thermosetting resin layer and a thermoplastic resin layer.
  • the in-slot space factor was inferior, and the partial discharge start voltage (Vp) measured by shifting the minimum side of (1) by 10 ⁇ m was 1069 Vp lower than that of the insulated wires of Examples 1 to 8.
  • the insulated wire of Comparative Example 3 has a substantially rectangular cross section as shown in FIG. 4 (a), but the coating layer does not have a thermosetting resin layer, and is a single layer of only a thermoplastic resin layer. It was inferior to the dielectric breakdown voltage (BDV) after the edgewise bend.
  • BDV dielectric breakdown voltage
  • Tmax / Tmin is as high as 2.14, and the space factor in the slot and the partial discharge start voltage are at a high level, it is composed of only a thermoplastic resin layer, so it reaches the conductor after notched edgewise bending. Cracks developed and the breakdown voltage could not be maintained at the required level.
  • the insulated wires of Comparative Examples 4 and 6 have a substantially rectangular cross section as shown in FIG. 4A. In either case, the largest value of the coating thickness of the covering layer on all sides is divided by the smallest value. The measured value (Tmax / Tmin) does not satisfy 1.3 or more, the insulated wire of Comparative Example 4 is inferior in the space factor in the slot, and the insulated wire of Comparative Example 6 has partial discharge start voltages (in two states) PDIV) was also poor, and the dielectric breakdown voltage (BDV) after notched edgewise bending was poor. In addition, the insulated wire of Comparative Example 6 is considered to be inferior to the partial discharge start voltage (PDIV) and the dielectric breakdown voltage (BDV) and excellent in the space factor in the slot because the coating thickness of the covering layer is thin overall. It is.
  • the insulated wire of the present invention eliminates unnecessary electrical characteristics (partial discharge start voltage (PDIV) and dielectric breakdown voltage (BDV)) and wasted space as much as possible, such as rotating electrical machines and various electric and electronic devices. It can be seen that it can be suitably used as a coil for a drive motor of a hybrid car (HV) or an electric vehicle EV, as a coil in a field requiring effective and efficient storage, particularly a coil of a motor or a transformer.
  • PDIV partial discharge start voltage
  • BDV dielectric breakdown voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Insulated Conductors (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

断面矩形導体上に、被覆層として、少なくとも1層の熱硬化性樹脂層及び少なくとも1層の熱可塑性樹脂層をこの順に有する絶縁電線であって、 該被覆層の皮膜厚さが、該断面矩形導体上の4つの辺部上に形成される各々の辺において、最大値と最小値の差がいずれも20μm以下であって、かつ全ての辺の前記最大値のうち最も大きな値を全ての辺の前記最小値のうち最も小さな値で除した値が1.3以上である絶縁電線、モーターコイル及び電気・電子機器。

Description

絶縁電線、モーターコイルおよび電気・電子機器
 本発明は、絶縁電線、モーターコイルおよび電気・電子機器に関する。
 近年の電子もしくは電気機器(以下、単に電子・電気機器ということがある)では、各種性能、例えば耐熱性、機械的特性、化学的特性、電気的特性を従来より一段と高度に高めることにより、信頼性を高めたものが要求されるようになってきている。
 一方で、モーターや変圧器に代表される電子・電気機器は、近年、機器の小型化および高性能化が進展している。そこで、絶縁電線を巻線加工(コイル加工)して、絶縁電線を非常に狭い部分へ押しこんで使用する様な使い方が多く見られるようになった。具体的には、モーターなどの回転機の性能向上のため、より多い本数の巻線をステータのスロット中に収容することが求められている。すなわち、ステータのスロット断面積に対する導体の断面積の比率(占積率)の向上に対する要求が高まっている。
 占積率を向上させる手段として、近年では導体の断面形状が矩形(正方形や長方形)に類似した平角線を使用することが行われている。
 しかしながら、平角線の使用は、占積率の向上には劇的な効果を示す一方、断面平角のコーナー部がコイル加工等の曲げ加工に対して極端に弱い。そのため、強い圧力をかけての加工によって皮膜が割れてしまう問題がある。特にコーナー部の曲率半径が小さいほど曲げ加工による皮膜の割れが発生しやすいことがわかっている。
 また、巻線の被覆層の厚さを薄くしたりして、導体間に十分な距離が確保できないと、絶縁性能が確保できず、しかも巻線の被覆層が損傷を生じたときに、露出した巻線の導体から放電が生じることになる。
 このような問題を解決するため、断面矩形の導体上の被覆層の厚さを変更して、一つの表面側に突出した突条部と、この表面側に背向した表面側に、突条部が挿入可能な凹溝部を形成することが提案(特許文献1参照)されている。
特開2009-232607号公報
 しかしながら、特許文献1で提案されている絶縁電線は、例えば、図6の(a)で示すように、コイル加工した巻線をスロット内に組込んで、高い圧力でコイル成型した場合、成型時に電線位置のずれが発生することがある。その場合、図6の(b)で示すように、上側の絶縁電線の被覆層と下側の絶縁電線の被覆層の重なり部分に隙間が生じ、この隙間に放電が発生し、絶縁不良を生じるという問題がある。ここで、高い圧力でコイル成型すると、被覆層の形状も変化し、電線の位置ずれだけでなく、この形状変化でも隙間が生じる。
 このように、絶縁電線をコイル加工した巻線をステータのスロット内に組込む場合、スロット内における導体の占積率の向上と、被覆層による絶縁特性の向上の両立が容易ではない。
 ここで、絶縁特性を高めるためには、部分放電開始電圧(PDIV)と絶縁破壊電圧(BDV)の両方を高める必要がある。
 本発明は、ステータのスロット断面積に対する導体の断面積の比率(占積率)を高められ、また、高い圧力でコイル成型した場合にも被覆層の皮膜形状の変化が生じにくい、絶縁特性に優れた絶縁電線を提供することを課題とする。また本発明は、上記絶縁電線を用いたモーターコイルおよび電気・電子機器を提供することを課題とする。
 本発明者らは、上記の従来の問題点を鑑み、スロット内における導体の占積率の向上と電線の絶縁特性の向上の両立を達成すべく、鋭意検討を重ねた。その結果、導体の断面形状を略矩形とし、この導体の外周に特定の樹脂材料で構成された被覆層を設けた上で、この略矩形の導体断面における4つの辺に対応する4つの被覆層部分の皮膜厚さを特定の関係を満たすようにすることにより、スロット内における導体の高占積率化と電線の高絶縁特性化の両立を高いレベルで実現できることを見出した。
 本発明は、これらの知見に基づきなされたものである。
 すなわち、本発明の上記課題は、以下の手段によって達成された。
(1)断面矩形導体上に、被覆層として、少なくとも1層の熱硬化性樹脂層と少なくとも1層の熱可塑性樹脂層とをこの順に有する絶縁電線であって、
 該絶縁電線の断面における4つの辺に対応する4つの被覆層部分の各々において、皮膜厚さの最大値と最小値の差がいずれも20μm以下であって、かつ前記4つの被覆層部分全体において、皮膜厚さの最大値を最小値で除した値が1.3以上であることを特徴とする絶縁電線。
(2)前記4つの被覆層部分の各々において、前記熱硬化性樹脂層の平均皮膜厚さが5μm以上であることを特徴とする(1)に記載の絶縁電線。
(3)前記4つの被覆層部分全体において皮膜厚さの最大値を与える被覆層部分と、前記4つの被覆層部分全体において皮膜厚さの最小値を与える被覆層部分とが互いに隣接することを特徴とする(1)または(2)に記載の絶縁電線。
(4)前記絶縁電線の断面において、互いに対向する長辺に対応する1組の被覆層部分の皮膜厚さの最大値と最小値の平均が、互いに対向する短辺に対応する1組の被覆層部分の皮膜厚さの最大値と最小値の平均より薄いことを特徴とする(1)~(3)のいずれか1項に記載の絶縁電線。
(5)前記熱硬化性樹脂層を構成する熱硬化性樹脂が、ポリアミドイミドおよびポリイミドから選択される樹脂であることを特徴とする(1)~(4)のいずれか1項に記載の絶縁電線。
(6)前記熱硬化性樹脂層を構成する熱硬化性樹脂の25℃における引張弾性率が、2,000MPa以上であることを特徴とする(1)~(5)のいずれか1項に記載の絶縁電線。
(7)前記熱可塑性樹脂層を構成する熱可塑性樹脂が、ポリエーテルエーテルケトンまたはポリフェニレンスルフィドを含むことを特徴とする(1)~(6)のいずれか1項に記載の絶縁電線。
(8)前記(1)~(7)のいずれか1項に記載の絶縁電線を複数個積層してなるモーターコイル。
(9)前記(1)~(7)のいずれか1項に記載の絶縁電線の複数個の積層体が組み込まれた電気・電子機器。
 本発明の絶縁電線は、ステータのスロット断面積に対する導体の断面積の比率(占積率)を高めることができ、また、高い圧力でコイル成型した場合にも被覆層の皮膜形状が変化しにくく、絶縁特性に優れる。また本発明のモーターコイルおよび電気・電子機器は、絶縁電線が組み込まれたステータにおいて、スロット断面積に対する導体の占有率を高めることができ、また当該絶縁電線の皮膜形状の変化が生じにくく、絶縁特性に優れる。
 すなわち、本発明の絶縁電線は、熱可塑性樹脂を被覆層に使用し、コイル加工した巻線をスロット内に組込んで、高い圧力でコイル成型した場合に特に問題となる、被覆層の形状変形、隙間の発生を抑え、スロット内での絶縁電線の高占積率化と高絶縁特性化の両立を実現することができる。しかも、本発明の絶電電線は製造適性にも優れ、そして本発明の絶縁電線を用いた回転モーターなどの電気・電子機器は、軽量化、小型化が可能となる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は、本発明の絶縁電線の好ましい形態を示す概略断面図である。 図2は、本発明の電気・電子機器に用いられるステータの好ましい形態を示す概略斜視図である。 図3は、本発明の電気・電子機器に用いられるステータの好ましい形態を示す概略分解斜視図である。 図4は、実施例で製造した絶縁電線の概略断面図である。 図5は、実施例で評価した部分放電開始電圧(PDIV)の測定における2つの絶縁電線の模式的な配置図である。 図6は、従来技術の絶縁電線が組み込まれたスロットの概略断面図および2つの絶縁電線がずれた状態を示す概略断面図である。
<<絶縁電線>>
 本発明の絶縁電線(絶縁ワイヤとも称す)は、断面矩形導体上に、被覆層として、少なくとも1層の熱硬化性樹脂層(熱硬化した状態にある樹脂の層)および少なくとも1層の熱可塑性樹脂層をこの順に有する絶縁電線である。
 本発明の絶縁電線は、該被覆層の皮膜厚さが、該断面矩形導体上の4つの辺部上に形成される各々の辺において、最大値と最小値の差がいずれも20μm以下であって、かつ全ての辺の被覆層の皮膜厚さにおいて、このうちの最も大きな値(Tmax)を最も小さな値(Tmin)で除した値が1.3以上である。
 すなわち本発明の絶縁電線は、その断面における4つの辺に対応する4つの被覆層部分の各々において、皮膜厚さの最大値と最小値の差がいずれも20μm以下であって、かつ前記4つの被覆層部分全体において、皮膜厚さの最大値(Tmax)を最小値(Tmin)で除した値が1.3以上である。
 ここで、絶縁電線を断面図に基づき説明する。本発明において「断面」とは、絶縁電線の長手方向と直交する断面を意味する。被覆層の断面も同様の断面を意味し、被覆層は、この断面の形状で導体上の長手方向に連続して被覆されている。
 また、熱硬化性樹脂層を設ける際、塗布と焼付を繰り返し行って、熱硬化性樹脂層の厚さを特定の厚さにする。ただし、単に厚さを増すために、全く同一の組成の熱硬化性樹脂ワニスを使用して繰り返す場合は、1層とカウントする。
 本発明の絶縁電線は、代表的には、図1で示される模式的な断面形状の絶縁電線1である。
 ここで、図1は、マクロ的に観察した絶縁電線である。ミクロ的に観察した場合、4つの各辺において、被覆層の皮膜厚さの最大値と最小値が存在してもよいが、本発明では、各辺において、被覆層の皮膜厚さの最大値と最小値の差は20μm以下である。また、被覆層の皮膜厚さについて、各辺の最大値の中で最も大きな値(Tmax)を、各辺の最小値の中で最も小さい値(Tmin)で除した値(Tmax/Tmin)は1.3以上である。
 図1(a)では、矩形導体11上に、被覆層21が設けられ、被覆層は熱硬化性樹脂層21aと熱可塑性樹脂層21bの積層構造である。ここで、図1(a)では、短辺側2辺の被覆層の皮膜厚さが長辺側2辺の被覆層の皮膜厚さより厚くなっているが、図1(b)のように、長辺側2辺の被覆層の皮膜厚さが短辺側2辺の被覆層の皮膜厚さより厚くなっていてもよい。
 本発明では、熱硬化性樹脂層を2層以上有していても、また、熱可塑性樹脂層が2層以上設けられていても構わない。また、これ以外に、特定の機能を有する層が設けられていてもよい。
<導体>
 本発明に用いる導体としては、従来、絶縁電線で用いられているものを使用することができ、銅線、アルミニウム線等の金属導体が挙げられる。本発明では、銅の導体が好ましく、なかでも、用いる銅は、酸素含有量が30ppm以下の低酸素銅が好ましく、20ppm以下の低酸素銅または無酸素銅がより好ましい。酸素含有量が30ppm以下であれば、導体を溶接するために熱で溶融させた場合、溶接部分に含有酸素に起因するボイドの発生がなく、溶接部分の電気抵抗が悪化することを防止するとともに溶接部分の強度を保持することができる。
 なお、導体がアルミニウムの場合、必要機械強度を考慮したうえで、用途に応じて様々なアルミニウム合金を用いることができる。例えば回転電機のような用途に対しては、高い電流値を得られる純度99.00%以上の純アルミニウムが好ましい。
 本発明では、断面形状が矩形(平角)の導体を使用する。これにより、ステータのスロット内における導体の占積率を高くできる。
 導体のサイズは用途に応じて決めるものであるため特に指定はないが、平角形状の導体の場合は、一辺の長さにおいて、幅(長辺)は1.0mm~5.0mmが好ましく、1.4mm~4.0mmがより好ましく、厚み(短辺)は0.4mm~3.0mmが好ましく、0.5mm~2.5mmがより好ましい。ただし、本発明の効果が得られる導体サイズの範囲はこの限りではない。また、平角形状の導体の場合、これも用途に応じて異なるが、断面正方形よりも、断面長方形が一般的である。用途が回転電機の場合には、平角形状の導体断面の4隅の面取り(曲率半径r)は、ステータのスロット内での導体占積率を高める観点においては、rは小さい方が好ましく、4隅への電界集中による部分放電現象を抑制するという観点においては、rは大きい方が好ましい。このため、曲率半径rは0.6mm以下が好ましく、0.2mm~0.4mmがより好ましい。ただし本発明の効果が得られる範囲はこの限りではない。
 また、複数の導体を撚り合わせ、あるいは、組合わせて矩形の導体を形成してもよい。
<熱硬化性樹脂層>
 本発明の絶縁電線において、熱硬化性樹脂層は、導体に直接接して導体の外周に設けられるのが特に好ましい。
 ただし、必要や目的に応じて、熱可塑性樹脂層、例えば、非晶性の熱可塑性樹脂からなる熱可塑性樹脂層を介して導体の外周に設けてもよい。
 なお、熱硬化性樹脂層を導体に接して設けることで、被覆層と導体との密着性が高まる。
 ここで、導体に直接接して導体の外周に設けられる熱硬化性樹脂層がエナメル(樹脂)層ということもある。
(熱硬化性樹脂)
 本発明の絶縁電線において、熱硬化性樹脂層を構成する熱硬化性樹脂は、絶縁電線で使用されている熱硬化性樹脂であればどのようなものでも構わない。
 例えば、ポリアミドイミド(PAI)、ポリイミド(PI)、ポリエーテルイミド(PEI)、ポリエステルイミド(PEsI)、ポリウレタン、ポリエステル(PEst)、ポリベンゾイミダゾール、メラミン樹脂、エポキシ樹脂等が挙げられる。
 このうち、ポリアミドイミド(PAI)、ポリイミド(PI)、ポリエーテルイミド(PEI)、ポリエステルイミド(PEsI)、ポリウレタン、ポリエステル(PEst)が好ましく、このなかでも、イミド結合を有する熱硬化性樹脂が好ましい。
 イミド結合を有する熱硬化性樹脂は、上記では、ポリアミドイミド(PAI)、ポリイミド(PI)、ポリエーテルイミド(PEI)、ポリエステルイミド(PEsI)が挙げられる。
 本発明では、特に、ポリアミドイミド(PAI)およびポリイミド(PI)から選択される樹脂が好ましい。
 上記のポリアミドイミド(PAI)は、他の樹脂に比べ熱伝導率が低く、絶縁破壊電圧が高く、焼付け硬化が可能である。ポリアミドイミドは、特に限定されないが、常法により、例えば極性溶媒中でトリカルボン酸無水物とジイソシアネート化合物とを直接反応させて得たもの、または、極性溶媒中でトリカルボン酸無水物にジアミン化合物を先に反応させて、最初にイミド結合を導入し、次いでジイソシアネート化合物でアミド化して得られるものが挙げられる。
 ポリアミドイミド(PAI)は、例えば、日立化成(株)製の商品名:HPC-9000、日立化成(株)製の商品名:HI406などが挙げられる。
 上記のポリイミド(PI)は、特に限定されず、全芳香族ポリイミドおよび熱硬化性芳香族ポリイミドなど、通常のポリイミドを用いることができる。また、常法により、芳香族テトラカルボン酸二無水物と芳香族ジアミン化合物とを極性溶媒中で反応させて得られるポリアミド酸溶液を用い、焼付け時の加熱処理によってイミド化させることによって得られるものを用いることができる。
 ポリイミド(PI)は、例えば、ユニチカ(株)製の商品名:Uイミド、宇部興産(株)製の商品名:U-ワニス-A、(株)IST製の商品名:Pyre-M.L.などが挙げられる。
 上記のポリエーテルイミド(PEI)は、分子内にエーテル結合とイミド結合を有する熱硬化性樹脂であればよく、例えば、芳香族テトラカルボン酸二無水物と分子内にエーテル結合を有する芳香族ジアミン類とを極性溶媒中で反応させて得られるポリアミド酸溶液を用い、被覆する際の焼き付け時の加熱処理によってイミド化させることによって得られるものを用いることもできる。
 ポリエーテルイミド(PEI)は、例えば、SABIC社製の商品名:ウルテム1000が挙げられる。
 上記のポリエステルイミド(PEsI)は、分子内にエステル結合とイミド結合を有するポリマーであって熱硬化性のものであれば特に限定されない。例えば、トリカルボン酸無水物とアミン化合物からイミド結合を形成し、アルコールと、カルボン酸またはそのアルキルエステルとからエステル結合を形成し、そして、イミド結合の遊離酸基または無水物基がエステル形成反応に加わることで得られるものを用いることができる。このようなポリエステルイミドは、例えば、トリカルボン酸無水物、ジカルボン酸化合物またはそのアルキルエステル、アルコール化合物およびジアミン化合物を公知の方法で反応させて得られるものを用いることもできる。
 ポリエステルイミド(PEsI)は、例えば、東特塗料(株)製の商品名:ネオヒート8600Aが挙げられる。
 本発明では、熱硬化性樹脂は、25℃における引張弾性率が、2,000MPa以上が好ましく、2,000~9,000MPaがより好ましく、2,500~8,000MPaがさらに好ましく、3,000~7,000MPaが特に好ましい。
 このような引張弾性率とすることで、厳しい加工性が行なわれた後でも絶縁破壊電圧をより高度に保つことができる。
 熱硬化性樹脂の引張弾性率は、以下の方法により測定することができる。
 予めシートサンプルを作製(例えば、長さ10mm、幅2mm、厚さ0.05mmのシートサンプル)する。このシートサンプルを、粘弾性スペクトロメーター、例えば、(株)パーキンエルマージャパン製の粘弾性スペクトロメーター(DMA8000)を用いて、測定モードは引張モード、周波数1Hzにて行い、測定温度は昇温速度5℃/分で変えながら測定し、25℃での引張弾性率を測定する。
 熱硬化性樹脂は、1種単独で用いてもよく、2種以上を併用してもよい。
(添加剤)
 熱硬化性樹脂層は、トリアルキルアミン、アルコキシ化メラミン樹脂、チオール系化合物のような添加剤を加えることで、導体との密着力をさらに高めることができ、好ましい。
 トリアルキルアミンとしては、好ましくはトリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン等の低級アルキルのトリアルキルアミンが挙げられる。この中でも可とう性および密着性の点でトリメチルアミン、トリエチルアミンがより好ましい。
 アルコキシ化メラミン樹脂としては、例えば、ブトキシ化メラミン樹脂、メトキシ化メラミン樹脂等の低級アルコキシ基で置換されたメラミン樹脂を用いることができ、樹脂の相溶性の点でメトキシ化メラミン樹脂が好ましい。
 チオール系化合物とは、メルカプト基(-SH)を有する有機化合物であり、具体的には、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、ブタンジオールビス(3-メルカプトブチレート)、ブタンジオールビス(3-メルカプトペンチレート)、5-アミノ-1,3,4-チアシアゾール-2-チオール、トリメチロールプロパントリス(3-メルカプトブチレート)、5-メチル-1,3,4-チアジアゾール-2-チオール、2,5-ジメルカプト-1,3,4-チアジアゾール、2-アミノ-1,3,4-チアジアゾール、1,2,4-トリアゾール-3-チオール、3-アミノ-5-メルカプト-1,2,4-トリアゾール等を挙げることができる。
 上記の添加剤の含有量としては、特に制限されないが、熱硬化性樹脂100質量部に対して、5質量以下が好ましく、3質量部以下がより好ましい。
(熱硬化性樹脂層の皮膜厚さ)
 熱硬化性樹脂層の平均皮膜厚さは、5μm以上が好ましく、10μm以上がより好ましく、15μm以上がさらに好ましく、20μm以上が特に好ましい。なお、平均の皮膜厚さの上限は、60μm以下が好ましい。なかでも、断面形状におけるいずれの辺においても、上記平均被膜厚さを満たすことが好ましい。
 ここで、熱硬化性樹脂層は、例えば、外層である熱可塑性樹脂層との密着性改善のため、各々の辺において、ミクロ的に観察した場合、最大値と最小値を有するように凹凸を付けても構わない。
 また、断面形状における4つの辺(対向する2組の辺)のうち、対向する1組の長辺と対向する1組の短辺において、長辺と短辺での皮膜厚さは、異なっても同じでも構わないが、同じである場合が好ましい。
<熱可塑性樹脂層>
 本発明の絶縁電線では、少なくとも1層の熱可塑性樹脂層が、少なくとも1層の熱硬化性樹脂層上に設けられるが、熱可塑性樹脂層は、1層でも2層以上の積層構造であってもよい。
(熱可塑性樹脂)
 熱可塑性樹脂層を構成する熱可塑性樹脂は、ポリアミド(PA)(ナイロン)、ポリアセタール(POM)、ポリカーボネート(PC)、ポリフェニレンエーテル(変性ポリフェニレンエーテルを含む)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、超高分子量ポリエチレン等の汎用エンジニアリングプラスチックの他、ポリスルホン(PSF)、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド(PPS)、ポリアリレート(Uポリマー)、ポリアミドイミド、ポリエーテルケトン(PEK)、ポリアリールエーテルケトン(PAEK)、テトラフルオロエチレン・エチレン共重合体(ETFE)、ポリエーテルエーテルケトン(PEEK)(変性ポリエーテルエーテルケトン(変性PEEK)を含む)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)、熱可塑性ポリイミド樹脂(TPI)、ポリアミドイミド(PAI)、液晶ポリエステル等のスーパーエンジニアリングプラスチック、さらに、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)をベース樹脂とするポリマーアロイ、ABS/ポリカーボネート、ナイロン6,6、芳香族ポリアミド樹脂(芳香族PA)、ポリフェニレンエーテル/ナイロン6,6、ポリフェニレンエーテル/ポリスチレン、ポリブチレンテレフタレート/ポリカーボネート等の前記エンジニアリングプラスチックを含むポリマーアロイが挙げられる。
 熱可塑性樹脂は、結晶性でも非晶性でも構わない。
 また、熱可塑性樹脂は1種でも2種以上の混合でも構わない。
 熱可塑性樹脂のうち、ポリアミド(PA)、ポリスルホン(PSF)、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド(PPS)、ポリエーテルケトン(PEK)、ポリアリールエーテルケトン(PAEK)、ポリエーテルエーテルケトン(PEEK)が好ましく、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトン(PEK)、ポリアリールエーテルケトン(PAEK)、ポリフェニレンスルフィド(PPS)、ポリアミド(PA)がより好ましく、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンスルフィド(PPS)、ポリアミド(PA)がさらに好ましく、特に、耐溶剤性の点で、ポリエーテルエーテルケトン(PEEK)又はポリフェニレンスルフィド(PPS)を含むことが好ましい。
 熱可塑性樹脂層は、熱可塑性樹脂を使用することから通常押出成形で形成される。
(添加剤)
 熱可塑性樹脂層には、目的に応じて、各種の添加物を含有させることができる。
 このような添加物としては、例えば、顔料、架橋剤、触媒、酸化防止剤が挙げられる。
 このような添加物の含有量は、熱可塑性樹脂層を構成する樹脂100質量部に対し、0.01~10質量部が好ましい。
 熱可塑性樹脂層のなかでも、本発明において、導体を被覆する最外層の熱可塑性樹脂層には、常法によりワックスや潤滑剤を分散、混合して自己潤滑樹脂としたものを使用することもできる。
 ワックスとしては、通常用いられるものを特に制限なく使用することができ、例えば、ポリエチレンワックス、石油ワックス、パラフィンワックス等の合成ワックスおよびカルナバワックス、キャデリラワックス、ライスワックス等の天然ワックスが挙げられる。
 潤滑剤についても特に制限はなく、例えば、シリコーン、シリコーンマクロモノマー、フッ素樹脂等が挙げられる。
(熱可塑性樹脂層の皮膜厚さ)
 熱可塑性樹脂層の平均の皮膜厚さは、20~250μmが好ましく、30~190μmがより好ましく、40~150μmがさらに好ましく、50~130μmが特に好ましい。
 また、熱可塑性樹脂層の断面形状における4つの辺(対向する2組の辺)のうち、対向する1組の長辺と対向する1組の短辺において、長辺と短辺での平均の皮膜厚さは異なっても同じでも構わないが、短辺の方が厚い場合が好ましい。
 長辺の平均の皮膜厚さは、25~150μmが好ましく、30~150μmがより好ましく、40~120μmがさらに好ましく、50~100μmが特に好ましい。
 一方、短辺の平均の皮膜厚さは、15~250μmが好ましく、40~200μmがより好ましく、50~150μmがさらに好ましく、60~150μmが特に好ましい。
 本発明においては、この態様に限定されるものではない。
 本発明では、被覆層の皮膜厚さの厚さや断面形状は、熱硬化性樹脂層で調製するよりも、熱可塑性樹脂層で調製する方が容易であり、好ましい。
<被覆層の形状および皮膜厚さ>
 本発明では、被覆層の皮膜厚さが、断面矩形導体上の4つの辺部上に形成される各々の辺において、最大値と最小値の差がいずれも20μm以下であって、かつ全ての辺の被覆層の皮膜厚さにおいて、このうちの最も大きな値(Tmax)を最も小さな値(Tmin)で除した値(Tmax/Tmin)が1.3以上である。
 上記Tmax/Tminは、1.3~6.0が好ましく、1.5~4.0がより好ましく、1.5を超え4.0以下がさらに好ましく、1.6~4.0が特に好ましく、1.7~3.0が最も好ましい。
 また、上記Tmaxを有する辺とTminを有する辺が、互いに隣接する辺であることが好ましい。すなわち、絶縁電線の断面における4つの辺に対応する4つの被覆層部分全体において皮膜厚さの最大値を与える被覆層部分と、前記4つの被覆層部分全体において皮膜厚さの最小値を与える被覆層部分とが互いに隣接することが好ましい。
 本発明では、絶縁電線は、マクロ的に観察した場合、図1に示すような断面形状を有する。このため、被覆層の皮膜厚さは、導体の断面形状に基づく四隅の面取りの曲率でカーブする部分以外の4つの辺を、マイクロスコープ〔例えば、(株)キーエンス製のマイクロスコープ VHX-2000〕を使用し、倍率500倍とした画像の画像解析で、被覆層の皮膜厚さを求めことができる。
 また、被覆層の断面形状における4つの辺(対向する2組の辺)のうち、対向する1組の長辺と対向する1組の短辺において、2つの長辺同士の平均の皮膜厚さは異なっても同じでも構わないが、同じである場合が好ましい。一方、2つの短辺同士の平均の皮膜厚さは異なっても同じでも構わないが、同じである場合が好ましい。
 被覆層の断面形状における長辺と短辺の平均の皮膜厚さは、ステータのスロットでの絶縁電線の高占積率化のために適宜調整されるものであり、複数の絶縁電線を積層する方向の辺の平均の皮膜厚さの方が薄いことが好ましい。
 図6で示すように、絶縁電線は、短辺側がステータのスロットの側面に接し、長辺側が他の絶縁電線と接するようにする場合、絶縁電線の短辺側とステータ間で高電圧がかかるために短辺側の平均の被膜厚さを厚くすることが好ましい。このため、絶縁電線をステータのスロットに収容する際、逆に、短辺の方向に他の絶縁電線と積層する場合は、長辺側の平均の皮膜厚さを厚くすることが好ましい。
 本発明では、長辺の被覆層の平均の皮膜厚さは、35~200μmが好ましく、40~160μmがより好ましく、50~120μmがさらに好ましい。
 一方、短辺の被覆層の平均の皮膜厚さは、40~250μmが好ましく、50~180μmがより好ましく、60~130μmがさらに好ましい。
 上記の通り、被覆層の長辺と短辺の被膜厚さは、絶縁電線をステータのスロットに入れる際に適宜調整されるものである。したがって本発明では、被覆層の4つの辺(対向する2組の辺)において、対向する1組の長辺の皮膜厚さの最大値と最小値の平均は、対向する1組の短辺の皮膜厚さの最大値と最小値の平均より薄くした形態とすることができるし、長辺と短辺の厚さの関係をこれとは逆にすることもできる。なかでも、前記絶縁電線の断面において、互いに対向する長辺に対応する1組の被覆層部分の皮膜厚さの最大値と最小値の平均が、互いに対向する短辺に対応する1組の被覆層部分の皮膜厚さの最大値と最小値の平均よりも薄くした形態が、本発明の絶縁電線の形態として好ましい。
 短辺と長辺それぞれの被覆層の平均の皮膜厚さの比、または、短辺と長辺それぞれの被覆層の被膜厚さの最大値と最小値の平均の比は、短辺100に対し、長辺は20~500が好ましい。なお、短辺よりも長辺の被覆層の皮膜厚さの最大値と最小値の平均皮膜厚さの方が薄い場合、短辺100に対し、長辺は40~100がより好ましく、50~90がさらに好ましい。すなわち、絶縁電線の断面において、互いに対向する2つの短辺に対応する2つの被覆層部分における皮膜厚さの最大値と最小値の平均を100とした場合、互いに対向する2つの長辺に対応する2つの被覆層部分における皮膜厚さの最大値と最小値の平均が40~100であることが好ましく、50~90であることがより好ましい。ただし、本発明においては、この形態に限定されるものではない。
 本発明では、導体上に設けられる被覆層の断面形状における4つの辺部の各々の辺において、被覆層の皮膜厚さの最大値と最小値の差がいずれも20μm以下である。ただし、これら最大値と最小値の差は少なくとも1つの辺において下限が0μmを超えることが好ましく、少なくとも2つの辺において下限が0μmを超えることがより好ましく、少なくとも3つの辺の下限が0μmを超えることがさらに好ましく、4つの辺の下限がいずれも0μmを超えることがより好ましい。
 ここで、上記の4つの辺部の各々の辺における被覆層の皮膜厚さの最大値と最小値の差は、0~15μmが好ましく、0~10μmがより好ましく、0~5μmがさらに好ましい。
 これらの各辺の各々における被覆層の皮膜厚さの最大値と最小値は、各辺で同じであっても異なっていてもよい。
 しかしながら、絶縁電線同士がスロット内で、通常は長辺側で重なることから、対向する1組の長辺同士では、各長辺における被覆層の皮膜厚さの最大値と最小値の差は同じであることが好ましい。
 なお、図4で示すT1、T2、T3、T4の辺では、T1とT3の辺の形状が、導体に対して、対称な形状であっても、逆対称な形状であっても構わない。なお、本発明では、逆対称(例えば、図4の(b)が逆対称で、図4の(c)が対称である)の方が、密着性の点で好ましい。
 本発明では、被覆層の長辺の皮膜厚さの最大値は、50~250μmが好ましく、60~180μmがより好ましく、70~140μmがさらに好ましい。
 一方、被覆層の長辺の皮膜厚さの最小値は、30~200μmが好ましく、40~160μmがより好ましく、50~130μmがさらに好ましい。
 また、被覆層の短辺の皮膜厚さの最大値は、50~300μmが好ましく、55~300μmがより好ましく、60~260μmがさらに好ましく、70~220μmが特に好ましい。
 一方、被覆層の短辺の皮膜厚さの最小値は、45~250μmが好ましく、50~250μmがより好ましく、60~210μmがさらに好ましく、70~180μmが特に好ましい。
<<絶縁電線の製造方法>>
 本発明では、導体の外周に、熱硬化性樹脂ワニスを塗布して焼付けし、熱硬化性樹脂層を形成し、この熱硬化性樹脂層上に、熱可塑性樹脂を含む組成物を押出成形して、熱可塑性樹脂層を形成することで、絶縁電線が製造される。
 熱硬化性樹脂ワニスは、熱硬化性樹脂をワニス化させるために有機溶媒等を含有する。
 有機溶媒としては、熱硬化性樹脂の反応を阻害しない限りは特に制限はなく、例えば、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAC)、N,N-ジメチルホルムアミド(DMF)等のアミド系溶媒、N,N-ジメチルエチレンウレア、N,N-ジメチルプロピレンウレア、テトラメチル尿素等の尿素系溶媒、γ-ブチロラクトン、γ-カプロラクトン等のラクトン系溶媒、プロピレンカーボネート等のカーボネート系溶媒、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、酢酸エチル、酢酸n-ブチル、ブチルセロソルブアセテート、ブチルカルビトールアセテート、エチルセロソルブアセテート、エチルカルビトールアセテート等のエステル系溶媒、ジグライム、トリグライム、テトラグライム等のグライム系溶媒、トルエン、キシレン、シクロヘキサン等の炭化水素系溶媒、クレゾール、フェノール、ハロゲン化フェノールなどのフェノール系溶媒、スルホラン等のスルホン系溶媒、ジメチルスルホキシド(DMSO)などが挙げられる。
 これらのうち、高溶解性、高反応促進性等に着目すると、アミド系溶媒、尿素系溶媒が好ましく、加熱による架橋反応を阻害しやすい水素原子をもたない等の点で、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド、N,N-ジメチルエチレンウレア、N,N-ジメチルプロピレンウレア、テトラメチル尿素がより好ましく、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、ジメチルスルホキシドが特に好ましい。
 有機溶媒等は、1種のみを単独で使用してもよく、2種以上を併用してもよい。
 熱硬化性樹脂ワニスは、前述のように市販品を使用してもよく、この場合は、有機溶媒に溶解されていることから、有機溶媒を含有している。
 上記熱硬化性樹脂ワニスを導体上に塗布する方法は、常法でよく、例えば、導体形状の相似形としたワニス塗布用ダイスを用いる方法や、導体断面形状が矩形であるため、井桁状に形成された「ユニバーサルダイス」と呼ばれるダイスを用いることができる。
 これらの熱硬化性樹脂ワニスを塗布した導体は、常法にて、焼付炉で焼付けされる。具体的な焼付け条件はその使用される炉の形状などに左右されるが、およそ8mの自然対流式の竪型炉であれば、炉内温度400~650℃にて通過時間を10~90秒に設定することにより、達成することができる。
 本発明では、熱硬化性樹脂層が形成された導体(エナメル線とも称す)を心線とし、押出機のスクリューを用いて熱可塑性樹脂を含む組成物をエナメル線上に押出被覆することにより、熱可塑性樹脂層を形成し、絶縁電線を得ることができる。この際、押出被覆樹脂層の断面の外形の形状が導体の形状と相似形もしくは略相似形で所定の辺部およびコーナー部の厚み、所定の最大厚さと最小厚さが得られる形状になるように、熱可塑性樹脂の融点以上の温度(非晶性樹脂の場合にはガラス転移温度以上)で押出ダイを用いて熱可塑性樹脂の押出被覆を行う。熱可塑性樹脂層は、有機溶媒等と熱可塑性樹脂を用いて形成することもできる。
 非晶性の熱可塑性樹脂を用いる場合には、押出成形の他に、熱可塑性樹脂を有機溶媒等に溶解させたワニスを、導体の形状と相似形のダイスを使用して、エナメル線上にコーティングして焼付けて、形成することもできる。
 熱可塑性樹脂ワニスの有機溶媒は、上記熱硬化性樹脂ワニスにおいて挙げた有機溶媒が好ましい。
 また、具体的な焼付け条件はその使用される炉の形状などに左右されるが、熱硬化性樹脂における条件で記載した条件が好ましい。
 ただし、本発明では、製造コストを考慮した製造適性の観点では、押出成形することが好ましい。
<絶縁電線の特性>
 本発明の絶縁電線は、部分放電開始電圧(PDIV)が高く、絶縁破壊電圧(BDV)が高い。
 部分放電開始電圧は、実施例で示すよう測定した、(1)長辺での皮膜厚さの最小値を含む最小辺部での部分放電開始電圧と(2)長辺での皮膜厚さの最大値を含む膜厚最大部分での部分放電開始電圧のいずれでも高い。
 (1)における部分放電開始電圧は、1000~3000Vpが好ましく、1200~2750Vpがより好ましく、1250~2750Vpがさらに好ましく、1300~2500Vpが特に好ましい。
 ここで、(1)における部分放電開始電圧は、モーター設計時に予期されていない特性のため、上記(2)長辺での皮膜厚さの最大値を含む膜厚最大部分での部分放電開始電圧からの変化量(差の絶対値)が小さい方が、信頼性が高いと考えられる。
 上記(1)で示される部分放電開始電圧に対する、上記の変化量の比率は、55%以下が好ましく、0~40%がより好ましく、0~38%がさらに好ましい。
 (2)における部分放電開始電圧は、占積率とのバランスによるが、1000~2500Vpが好ましく、1100~2200Vpがより好ましく、1200~2200Vpがさらに好ましく、1300~2000Vpが特に好ましく、1500~1800Vpが最も好ましい。
 絶縁破壊電圧は、本発明では、特に、実施例に示すような方法での測定される、ノッチ付きエッジワイズ曲げ加工を行った後の絶縁破壊電圧が高い。
 この絶縁破壊電圧は、1kV以上であればよく、5kV以上がより好ましく、8kV以上がさらに好ましい。
<<コイルおよび電気・電子機器>>
 本発明の絶縁電線は、コイルとして、各種電気・電子機器など、電気特性(耐電圧性)や耐熱性を必要とする分野に利用可能である。例えば、本発明の絶縁電線はモーターやトランス等に用いられ、高性能の電気・電子機器を構成できる。特にHV(Hybrid Vehicle)やEV(Electric Vehicle)の駆動モーター用の巻線として好適に用いられる。このように、本発明の絶縁電線をコイルとして用いた、電気・電子機器、特にHVおよびEVの駆動モーターを提供できる。なお、本発明の絶縁電線がモーターコイルに用いられる場合にはモーターコイル用絶縁電線とも称する。特に、上記の優れた特性を有する本発明の絶縁電線を加工したコイルにより、電気・電子機器のさらなる小型化または高性能化が可能になる。従って、本発明の絶縁電線は、近年の、小型化または高性能化が著しいHVやEVの駆動モーター用の巻線として好適に用いられる。
 本発明のコイルは、各種電気・電子機器に適した形態を有していればよく、本発明の絶縁電線をコイル加工して形成したもの、本発明の絶縁電線を曲げ加工した後に所定の部分を電気的に接続してなるもの等が挙げられる。
 本発明の絶縁電線をコイル加工して形成したコイルとしては、特に限定されず、長尺の絶縁電線を螺旋状に巻き回したものが挙げられる。このようなコイルにおいて、絶縁電線の巻線数等は特に限定されない。通常、絶縁電線を巻き回す際には鉄芯等が用いられる。
 本発明の絶縁電線を曲げ加工した後に所定の部分を電気的に接続してなるものとして、回転電機等のステータに用いられるコイルが挙げられる。このようなコイルは、例えば、図3に示されるように、本発明の絶縁電線を所定の長さに切断してU字形状等に曲げ加工して複数の電線セグメント34を作製し、各電線セグメント34のU字形状等の2つの開放端部(末端)34aを互い違いに接続して、作製されたコイル33(図2参照)が挙げられる。
 このコイルを用いてなる電気・電子機器としては、特に限定されない。このような電気・電子機器の好ましい一態様として、例えば、図2に示されるステータ30を備えた回転電機(特にHV及びEVの駆動モーター)が挙げられる。この回転電機は、ステータ30を備えていること以外は、従来の回転電機と同様の構成とすることができる。
 ステータ30は、電線セグメント34が本発明の絶縁電線で形成されていること以外は従来のステータと同様の構成とすることができる。すなわち、ステータ30は、ステータコア31と、例えば、図3に示されるように本発明の絶縁電線からなる電線セグメント34がステータコア31のスロット32に組み込まれ、開放端部34aが電気的に接続されてなるコイル33とを有している。ここで、電線セグメント34は、スロット32に1本で組み込まれてもよいが、好ましくは図3に示されるように2本一組として組み込まれる。このステータ30は、上記のように曲げ加工した電線セグメント34を、その2つの末端である開放端部34aを互い違いに接続してなるコイル33が、ステータコア31のスロット32に収納されている。この際、電線セグメント34の開放端部34aを接続してからスロット32に収納してもよく、また、絶縁セグメント34をスロット32に収納した後に、電線セグメント34の開放端部34aを折り曲げ加工して接続してもよい。
 なお、本発明のモーターコイルは、本発明の絶縁電線の複数個の積層体であり、本発明の電子・電気機器は、本発明の絶縁電線の複数個の積層体が組み込まれている。本発明では、モーターコイルおよび電気・電子機器では、形状もしくは厚みの異なる種類の線を複数個組み合わせて用いるのが好ましい。特に、本発明のモーターコイルは、本発明の絶縁電線が、各辺の被覆層の皮膜厚さの最小値のうち最も小さい値(Tmin)を有する辺が隣接するように積層されていることが好ましい。
 具体的には、以下の通りである。
 ステータコアのスロット内に入る部分は長辺の被覆の方が短辺の被覆より薄く構成することで、ステータコアの円周方向の大きさを、1スロットあたりの導体占積率を低下させることなく小型化することができる。また、スロット内の一部の線のみ長辺と短辺で被覆の厚さが異なるものを入れることで、コイルエンド部での絶縁距離を保つためのスペーサとして使用できる。このようにすることで絶縁紙を除くことができ、結果としてモーターの小型化が可能となる。ただし、本発明はこの形態に限定されるものではない。
 本発明の絶縁電線を用いると、例えば、ステータコアのスロット断面積に対する導体の断面積の比率(占積率)を高めることができ、電気・電子機器の特性を向上させることができる。
 本発明の絶縁電線は、コイルとして、回転電機、各種電気・電子機器など、電気特性(耐電圧性)や耐熱性を必要とする分野に利用可能である。例えば、本発明の絶縁電線はモーターやトランス等に用いられ、高性能の回転電機、電気・電子機器を構成できる。特にハイブリッドカー(HV)や電気自動車(EV)の駆動モーター用の巻線として好適に用いられる。
 以下に、本発明を実施例に基づいて、さらに詳細に説明するが、本発明をこれらに限定されない。
実施例1
 実施例1では、図4の(a)に示される断面略矩形の絶縁電線を製造した。
 導体11には、断面平角(長辺3.2mm×短辺1.5mmで、四隅の面取りの曲率半径r=0.3mm)の平角導体(酸素含有量15ppmの銅)を用いた。
 ポリアミドイミド(PAI)ワニス〔商品名:HPC-9000、日立化成(株)製、25℃における引張弾性率4,100MPa〕を、導体上に、断面形状が導体と相似形のダイスを使用して、導体11の表面に塗布し、炉内温度300~500℃に設定した炉長5mの自然対流式焼付炉内を、通過時間5~10秒となる速度で通過させ、これを数回繰り返すことで、厚さ30μmの熱硬化性樹脂層を形成し、熱硬化性樹脂層からなるエナメル線を得た。
 得られたエナメル線を芯線とし、30mmフルフライトスクリュー(スクリューL/D=25、スクリュー圧縮比=3)を備えた押出機を用いて、芯線の外側に、熱可塑性樹脂層を形成した。ここで、熱可塑性樹脂に、ポリエーテルエーテルケトン(ソルベイスペシャリティポリマーズ(株)製、商品名:キータスパイアKT-820)を使用し、熱可塑性樹脂の断面の外形の形状と厚さが、下記表1に示すような形状および厚さとなるように、押出ダイを用いて、熱可塑性樹の押出被覆を370℃(押出ダイの温度)で行った。
 このようにして、導体上に、熱硬化性樹脂層および熱可塑性樹脂層を有する絶縁電線を製造した。
実施例2
 実施例2では、図4の(a)に示される断面略矩形の絶縁電線を製造した。
 熱硬化性樹脂層の厚みと熱可塑性樹脂層の形状および厚さを、下記表1のように変更した以外は、実施例1と同様にして絶縁電線を製造した。
実施例3
 実施例3では、図4の(a)に示される断面略矩形の絶縁電線を製造した。
 熱硬化性樹脂層の樹脂をポリイミド(PI)ワニス〔商品名:U-ワニス-A、宇部興産(社)製、25℃における引張弾性率3,730MPa〕に変更し、かつ熱硬化性樹脂層の厚みと熱可塑性樹脂層の形状および厚さを、下記表1のように変更した以外は、実施例1と同様にして絶縁電線を製造した。
実施例4
 実施例4では、図4の(a)に示される断面略矩形の絶縁電線を製造した。
 熱硬化性樹脂層の樹脂を、ポリエステル(PEst)ワニス〔商品名:LITON3300KF、東特塗料(株)製、25℃における引張弾性率2,000MPa〕に変更し、熱可塑性樹脂を、ポリフェニレンスルフィド(PPS)〔商品名:PPS FZ-2100、DIC(株)製、〕にそれぞれ変更し、かつ熱硬化性樹脂層の厚みと熱可塑性樹脂層の形状および厚さを、下記表1のように変更した以外は、実施例1と同様にして絶縁電線を製造した。
実施例5
 実施例5では、図4の(a)に示される断面略矩形の絶縁電線を製造した。
 熱硬化性樹脂層の樹脂を、ポリエステルイミド(PEsI)ワニス〔商品名:ネオヒート8600A、東特塗料(株)製、25℃における引張弾性率2,500MPa〕に変更し、かつ熱硬化性樹脂層の厚みと熱可塑性樹脂層の形状および厚さを、下記表1のように変更した以外は、実施例1と同様にして絶縁電線を製造した。
実施例6
 実施例6では、図4の(a)に示される断面略矩形の絶縁電線を製造した。
 熱硬化性樹脂層の樹脂をポリイミド(PI)ワニス〔商品名:U-ワニス-A、宇部興産(株)製、25℃における引張弾性率3,730MPa〕に変更し、かつ熱硬化性樹脂層の厚みと熱可塑性樹脂層の形状および厚さを、下記表1のように変更した以外は、実施例1と同様にして絶縁電線を製造した。
実施例7
 実施例7では、図4の(a)に示される断面略矩形の絶縁電線を製造した。
 熱硬化性樹脂層の樹脂を、ポリエステル(PEst)ワニス〔商品名:LITON3300KF、東特塗料(株)製、25℃における引張弾性率2,000MPa〕に変更し、熱可塑性樹脂を、ポリアミド(PA)〔商品名:レオナ1300S、旭化成(株)製〕にそれぞれ変更し、かつ熱硬化性樹脂層の厚みと熱可塑性樹脂層の形状および厚さを、下記表1のように変更した以外は、実施例1と同様にして絶縁電線を製造した。
実施例8
 実施例8では、図4の(a)に示される断面略矩形の絶縁電線を製造した。
 熱硬化性樹脂層の厚みと熱可塑性樹脂層の形状および厚さを、下記表1のように変更した以外は、実施例1と同様にして絶縁電線を製造した。
比較例1
 比較例1では、図4の(b)に示される断面段差矩形において、2つの長辺の各々がいずれも、膜厚の最大値と最小値の差が20μmを超える絶縁層を有する絶縁電線を製造した。
 比較例1では、熱硬化性樹脂層を設けず、熱可塑性樹脂層のみを有する。
 実施例1で使用した導体上に、30mmフルフライトスクリュー(スクリューL/D=25、スクリュー圧縮比=3)を備えた押出機を用いて、芯線の外側に、熱可塑性樹脂層を形成した。ここで、熱可塑性樹脂に、ポリエーテルエーテルケトン(ソルベイスペシャリティポリマーズ(株)製、商品名:キータスパイアKT-820)を使用し、熱可塑性樹脂の断面の外形の形状と厚さが、下記表2に示すような形状および厚さとなるように、押出ダイを用いて、熱可塑性樹の押出被覆を370℃(押出ダイの温度)で行った。
 このようにして、導体上に熱可塑性樹脂層を有する絶縁電線を製造した。
比較例2
 比較例2では、図4の(c)に示される断面凹矩形において、2つの長辺の各々がいずれも、膜厚の最大値と最小値の差が20μmを超える絶縁層を有する絶縁電線を製造した。
 比較例2では、熱硬化性樹脂層を設けず、熱可塑性樹脂層のみを有する。
 熱可塑性樹脂層の形状および厚さを、下記表2のように変更した以外は、比較例1と同様にして絶縁電線を製造した。
比較例3
 比較例3では、図4の(a)に示される断面略矩形の絶縁電線を製造した。
 比較例3では、熱硬化性樹脂層を設けず、熱可塑性樹脂層のみを有する。
 熱可塑性樹脂層の形状および厚さを、下記表2のように変更した以外は、比較例1と同様にして絶縁電線を製造した。
比較例4
 比較例4では、図4の(a)に示される断面略矩形の絶縁電線を製造した。
 熱硬化性樹脂層の厚みと熱可塑性樹脂層の形状および厚さを、下記表2のように変更した以外は、実施例1と同様にして絶縁電線を製造した。
比較例5
 比較例5では、図4の(c)に示される断面凹矩形において、4つの辺の各々がいずれも、最大値と最小値の差が20μmを超える絶縁層を有する絶縁電線を製造した。
 熱硬化性樹脂層の厚みと熱可塑性樹脂層の形状および厚さを、下記表2のように変更した以外は、実施例1と同様にして絶縁電線を製造した。
比較例6
 比較例6では、図4の(a)に示される断面略矩形の絶縁電線を製造した。
 熱硬化性樹脂層の厚みと熱可塑性樹脂層の形状および厚さを、下記表2のように変更した以外は、実施例1と同様にして絶縁電線を製造した。
<測定、評価>
 得られた各絶縁電線に対して、熱硬化性樹脂の25℃での引張弾性率および皮膜厚さを測定した。
 また、各絶縁電線に対して、部分放電開始電圧(PDIV)の測定、絶縁破壊電圧(BDV)およびスロット内占積率の評価を以下のようにして行った。
[引張弾性率の測定]
 熱硬化性樹脂の引張弾性率の測定には、予め作製しておいた長さ10mm、幅4mm、厚さ0.05mmのシートサンプルを用いた。(株)パーキンエルマージャパン製の粘弾性スペクトロメーター(DMA8000)を用いて、測定モードは引張モード、周波数1Hzにて行い、測定温度は昇温速度5℃/分で変えながら測定し、25℃での引張弾性率を記録した。
[皮膜厚さの測定]
(1)熱硬化性樹脂層の皮膜厚さ
 各絶縁電線の製造段階において、得られた熱硬化性樹脂層からなるエナメル線を使用し、図4の(a)~(c)における断面形状の4つの辺を図4のようにT1~T4とし、導体の断面形状に基づく四隅の面取りの曲率でカーブする部分以外の4つの辺を、(株)キーエンス製マイクロスコープ(VHX-2000)を使用し、倍率500倍とした画像の画像解析で、熱硬化性樹脂層(表中では、内層と記載する。)の平均皮膜厚さを求めた。
 ここでの平均皮膜厚さとは、導体の断面形状に基づく四隅の面取りの曲率でカーブする部分以外の4つの辺上に被覆されている内層および被覆層について、それぞれの辺について等間隔10点の皮膜厚さの平均値である。
(2)被覆層の皮膜厚さ
 各絶縁電線を使用し、図4の(a)~(c)における断面形状の4つの辺を図4のようにT1~T4とし、導体の断面形状に基づく四隅の面取りの曲率でカーブする部分以外の4つの辺を、(株)キーエンス製マイクロスコープ(VHX-2000)倍率500倍とした画像の画像解析で、被覆層の皮膜厚さを求めた。
 各辺において、被覆層の皮膜厚さの最大値と最小値を求め、図4のT1を辺1、T2を辺2、T3を辺3、T4を辺4とし、各辺における最大値を「’」付きで、最小値を「”」付きで表示した。例えば、T1の辺1では、最大値をT1’、最小値をT1”とした。
 各辺での最大値と最小値の差、例えば、T1の辺1では△=T1’-T1”、を算出した。
 一方、4つの辺の最大値の最も大きな値(Tmax)を4つの辺の最小値の最も小さな値(Tmin)で除した値(Tmax/Tmin)を算出し、下記表1、2では、「全周皮膜厚比」として示した。
[部分放電開始電圧(PDIV)の測定]
 各絶縁電線の部分放電開始電圧を下記の2種類の状態で、部分放電試験機〔商品名:KPD2050、菊水電子工業(株)製〕を用いて測定した。
(1)長辺での皮膜厚さの最小値を含む最小辺部での部分放電開始電圧
 図4の(a)に模式的に示すように、2本の絶縁電線を、図4のT1およびT3に相当する部分を、一方の絶縁電線の被覆層の皮膜厚さの最大値を含む厚い部分と他方の絶縁電線の被覆層の皮膜厚さの最小値を含む薄い部分とを重ね、かつ重ねた中央に空間ができるように、10μmずらして重ねた状態での部分放電開始電圧である。
 絶縁電線を上記の状態で、2本の導体間に電極をつなぎ、温度25℃にて、50Hzの交流電圧かけながら連続的に昇圧し、10pCの部分放電が発生した時点の電圧をピーク電圧(Vp)で読み取った。
(2)長辺での皮膜厚さの最大値を含む膜厚最大部分での部分放電開始電圧
 図4の(b)に模式的に示すように、2本の絶縁電線を、図4のT1およびT3に相当する部分を、一方の絶縁電線の被覆層の皮膜厚さの最大値を含む厚い部分と他方の絶縁電線の被覆層の皮膜厚さの最大値を含む厚い部分とを重ね、かつ、2つの絶縁電線の端末部を広げ種々空気ギャップが存在する環境で測定した部分放電開始電圧である。
 絶縁電線を上記の状態で、2本の導体間に電極をつなぎ、温度25℃にて、50Hzの交流電圧かけながら連続的に昇圧し、10pCの部分放電が発生した時点の電圧をピーク電圧(Vp)で読み取った。
 なお、下記表1、2では、上記(1)を「最小辺部10μmずらした部分放電開始電圧(Vp)」、上記(2)を「膜厚最大部分の部分放電開始電圧(Vp)」として、それぞれ表示した。
[絶縁破壊電圧(BDV)の評価]
 各絶縁電線を、ノッチ付きエッジワイズ曲げ加工を行った後、絶縁破壊電圧を測定した。
(ノッチ付きエッジワイズ曲げ加工)
 JIS C 3216-3:2011に規定された「巻付け試験」に準じて、ノッチ付きエッジワイズ曲げ加工を行った。
 上記の「巻付け試験」は、ノッチ付きエッジワイズ曲げ試験とも称し、絶縁電線のエッジ面の1つを内径面として曲げる曲げ方をいい、絶縁電線を幅方向に曲げる曲げ方ともいう。ここで、平角形状の絶縁電線の縦断面の短辺が軸線方向に連続して形成する面を「エッジ面」といい、平角線の縦断面の長辺が軸線方向に連続して形成する面を「フラット面」という。
 なお、ノッチ付きエッジワイズ曲げ試験は、絶縁電線の巻き線加工時の曲げおよび伸張を模擬した試験であり、また加工後に残留する機械応力による導体まで達する亀裂の発生防止効果を評価する試験である。
(絶縁破壊電圧(BDV)の測定)
 絶縁電線の絶縁破壊電圧は、前記ノッチ付きエッジワイズ曲げ試験後のサンプルを、絶縁破壊試験機を使用して、電圧を測定して評価した。
 具体的には、絶縁電線の片側の端末を剥離した部分に接地電極を接続し、エッジワイズ曲げ試験を行なった部分を銅粒に埋め、この銅粒に高圧側電極を接続した。昇圧速度500V/秒で昇圧して、15mA以上の電流が流れたときの電圧を読み取った。n=5で実施し、その平均値で絶縁破壊電圧を評価し、下記の評価基準により、評価した。
評価基準
 A:8kV以上
 B:5kV以上8kV未満
 C:1kV以上5kV未満
 D:1kV未満
 ランクC以上が合格レベルである。
[スロット内占積率の評価]
 モーターコイルを組み込むためのステータコア31のスロット32に各絶縁電線を、図6の(a)で示すように収納した状態でのスロット内占積率を求めた。
 具体的には、スロット内絶縁電線の積層方向の総高さに占める導体高さの和の比率(%)で求め、下記の評価基準により、評価した。
評価基準
 A:94%を超え100%以下
 B:90%を超え94%以下
 C:86%を超え90%以下
 D:86%以下
 ランクC以上が合格レベルである。
 得られた結果を、下記表1および2にまとめて示す。
 ここで、「-」は、未使用、値が0、または対象とする層が存在しないため未評価であることを示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記表1および2から、実施例1~8の絶縁電線は、比較例1~6の絶縁電線と比較し、本発明の構成とすることで、2つの状態での部分放電開始電圧(PDIV)が1100Vp以上と高く、ノッチ付きエッジワイズ曲げ後の絶縁破壊電圧(BDV)も優れ、しかもスロット内占積率も高いことがわかる。
 これに対して、特開2009-232607号公報に記載のような被覆層が1層の樹脂層で図4の(b)のような断面形状が段差矩形の比較例1の絶縁電線では、(1)の最小辺部を10μmずらして測定した部分放電開始電圧(Vp)は986Vpと低く、ノッチ付きエッジワイズ曲げ後の絶縁破壊電圧(BDV)も劣った。
 また、比較例1の絶縁電線の断面形状を、図4の(c)のような凹矩形とした比較例2の絶縁電線では、ノッチ付きエッジワイズ曲げ後の絶縁破壊電圧(BDV)とスロット内占積率に劣った。
 一方、図4の(c)のような断面形状が凹矩形であって、被覆層を、熱硬化性樹脂層と熱可塑性樹脂層の2層としても、比較例5の絶縁電線で示すように、スロット内占積率に劣り、しかも、実施例1~8の絶縁電線と比較して、(1)の最小辺部を10μmずらして測定した部分放電開始電圧(Vp)が1069Vp低くかった。
 比較例3の絶縁電線は、図4の(a)のような断面が略矩形であるが、被覆層が熱硬化性樹脂層を有さず、熱可塑性樹脂層のみの1層であり、ノッチ付きエッジワイズ曲げ後の絶縁破壊電圧(BDV)に劣った。Tmax/Tminは2.14と高く、スロット内占積率や部分放電開始電圧は高い水準にあるものの、熱可塑性樹脂層のみの層で構成されているために、ノッチ付きエッジワイズ曲げ後に導体まで亀裂が進展し、絶縁破壊電圧を必要水準に保つことが出来なかった。
 比較例4および6の絶縁電線は、図4の(a)のような断面が略矩形であるが、いずれも、全ての辺の被覆層の皮膜厚さの最も大きな値を最も小さな値で除した値(Tmax/Tmin)が1.3以上を満たさず、比較例4の絶縁電線では、スロット内占積率に劣り、比較例6の絶縁電線では、2つの状態での部分放電開始電圧(PDIV)も悪く、しかもノッチ付きエッジワイズ曲げ後の絶縁破壊電圧(BDV)が劣った。なお、比較例6の絶縁電線は、被覆層の皮膜厚さが全体的に薄いため、部分放電開始電圧(PDIV)と絶縁破壊電圧(BDV)に劣り、スロット内占積率に優れるものと思われる。
 上記結果から、本発明の絶縁電線は、回転電機、各種電気・電子機器など、優れた電気特性〔部分放電開始電圧(PDIV)と絶縁破壊電圧(BDV)〕や、無駄な空間をできるだけなくして、有効かつ効率よく収納することを必要とする分野のコイル、特に、モーターやトランス等のコイルとして、ハイブリッドカー(HV)や電気自動車EVの駆動モーター用の巻線として好適に使用できることがわかる。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2016年2月19日に日本国で特許出願された特願2016-029455に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
1   絶縁電線
11  導体
21  被覆層
 21a 熱硬化性樹脂層
 21b 熱可塑性樹脂層
30  ステータ
31  ステータコア
32  スロット
33  コイル
34  電線セグメント
 34a 開放端部(末端)

Claims (9)

  1.  断面矩形導体上に、被覆層として、少なくとも1層の熱硬化性樹脂層および少なくとも1層の熱可塑性樹脂層をこの順に有する絶縁電線であって、
     該絶縁電線の断面における4つの辺に対応する4つの被覆層部分の各々において、皮膜厚さの最大値と最小値の差がいずれも20μm以下であって、かつ前記4つの被覆層部分全体において、皮膜厚さの最大値を最小値で除した値が1.3以上であることを特徴とする絶縁電線。
  2.  前記4つの被覆層部分の各々において、前記熱硬化性樹脂層の平均皮膜厚さが、5μm以上であることを特徴とする請求項1に記載の絶縁電線。
  3.  前記4つの被覆層部分全体において皮膜厚さの最大値を与える被覆層部分と、前記4つの被覆層部分全体において皮膜厚さの最小値を与える被覆層部分とが互いに隣接することを特徴とする請求項1または2に記載の絶縁電線。
  4.  前記絶縁電線の断面において、互いに対向する長辺に対応する1組の被覆層部分の皮膜厚さの最大値と最小値の平均が、互いに対向する短辺に対応する1組の被覆層部分の皮膜厚さの最大値と最小値の平均より薄いことを特徴とする請求項1~3のいずれか1項に記載の絶縁電線。
  5.  前記熱硬化性樹脂層を構成する熱硬化性樹脂が、ポリアミドイミドおよびポリイミドから選択される樹脂であることを特徴とする請求項1~4のいずれか1項に記載の絶縁電線。
  6.  前記熱硬化性樹脂層を構成する熱硬化性樹脂の25℃における引張弾性率が、2,000MPa以上であることを特徴とする請求項1~5のいずれか1項に記載の絶縁電線。
  7.  前記熱可塑性樹脂層を構成する熱可塑性樹脂が、ポリエーテルエーテルケトンまたはポリフェニレンスルフィドを含むことを特徴とする請求項1~6のいずれか1項に記載の絶縁電線。
  8.  請求項1~7のいずれか1項に記載の絶縁電線を複数個積層してなるモーターコイル。
  9.  請求項1~7のいずれか1項に記載の絶縁電線の複数個の積層体が組み込まれた電気・電子機器。
PCT/JP2017/005766 2016-02-19 2017-02-16 絶縁電線、モーターコイルおよび電気・電子機器 WO2017142036A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MYPI2018702880A MY188171A (en) 2016-02-19 2016-02-19 Insulated wire, motor coil, and electrical or electronic equipment
CN201780010311.8A CN108604483B (zh) 2016-02-19 2017-02-16 绝缘电线、马达线圈和电气/电子设备
KR1020187022707A KR102120678B1 (ko) 2016-02-19 2017-02-16 절연 전선, 모터 코일 및 전기·전자 기기
EP17753291.8A EP3419029B1 (en) 2016-02-19 2017-02-16 Insulated electrical wire, motor coil and electrical/electronic apparatus
JP2018500204A JP6839695B2 (ja) 2016-02-19 2017-02-16 絶縁電線、モーターコイルおよび電気・電子機器
US16/104,457 US10483818B2 (en) 2016-02-19 2018-08-17 Insulated wire, motor coil, and electrical or electronic equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-029455 2016-02-19
JP2016029455 2016-02-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/104,457 Continuation US10483818B2 (en) 2016-02-19 2018-08-17 Insulated wire, motor coil, and electrical or electronic equipment

Publications (1)

Publication Number Publication Date
WO2017142036A1 true WO2017142036A1 (ja) 2017-08-24

Family

ID=59626082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005766 WO2017142036A1 (ja) 2016-02-19 2017-02-16 絶縁電線、モーターコイルおよび電気・電子機器

Country Status (8)

Country Link
US (1) US10483818B2 (ja)
EP (1) EP3419029B1 (ja)
JP (1) JP6839695B2 (ja)
KR (1) KR102120678B1 (ja)
CN (1) CN108604483B (ja)
MY (1) MY188171A (ja)
TW (1) TW201802831A (ja)
WO (1) WO2017142036A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111566759A (zh) * 2018-02-16 2020-08-21 古河电气工业株式会社 绝缘线、线圈和电气/电子设备
WO2021106877A1 (ja) * 2019-11-25 2021-06-03 エセックス古河マグネットワイヤジャパン株式会社 絶縁電線、コイル、及び電気・電子機器

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188776A1 (ja) * 2018-03-30 2019-10-03 古河電気工業株式会社 絶縁電線材及びその製造方法、並びに、コイル及び電気・電子機器
TWI656712B (zh) * 2018-06-13 2019-04-11 東元電機股份有限公司 馬達繞線結構
KR101992576B1 (ko) * 2018-10-31 2019-06-24 에스케이씨코오롱피아이 주식회사 폴리이미드 피복물의 내열성을 향상시키기 위한 도체 피복용 폴리이미드 바니쉬 및 이로부터 제조된 폴리이미드 피복물
US20210367483A1 (en) * 2020-05-19 2021-11-25 Ge Aviation Systems Llc Method and system for thermally insulating portions of a stator core
KR20220014627A (ko) 2020-07-29 2022-02-07 현대자동차주식회사 절연 성능 확보를 위한 모터 제어 장치 및 방법
CN114334289B (zh) * 2021-02-24 2023-03-10 佳腾电业(赣州)有限公司 一种绝缘电线制备方法、绝缘电线和电子/电气设备
DE102021105812A1 (de) * 2021-03-10 2022-09-15 Schaeffler Technologies AG & Co. KG Stator und Verfahren zur Herstellung eines Stators

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203334A (ja) * 2003-12-17 2005-07-28 Furukawa Electric Co Ltd:The 絶縁ワイヤおよびその製造方法
JP2009232607A (ja) 2008-03-24 2009-10-08 Denso Corp 回転電機の固定子用巻線および回転電機
WO2015098637A1 (ja) * 2013-12-26 2015-07-02 古河電気工業株式会社 絶縁ワイヤ、モーターコイル、電気・電子機器および絶縁ワイヤの製造方法
JP2015176730A (ja) * 2014-03-14 2015-10-05 古河電気工業株式会社 絶縁電線、絶縁電線の製造方法、回転電機用ステータの製造方法および回転電機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6055470B2 (ja) * 2012-12-28 2016-12-27 古河電気工業株式会社 絶縁ワイヤ、電気機器および絶縁ワイヤの製造方法
JP6026446B2 (ja) * 2014-01-10 2016-11-16 古河電気工業株式会社 平角絶縁電線および電動発電機用コイル
JP5778332B1 (ja) * 2014-12-26 2015-09-16 古河電気工業株式会社 耐曲げ加工性に優れる絶縁電線、それを用いたコイルおよび電子・電気機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203334A (ja) * 2003-12-17 2005-07-28 Furukawa Electric Co Ltd:The 絶縁ワイヤおよびその製造方法
JP2009232607A (ja) 2008-03-24 2009-10-08 Denso Corp 回転電機の固定子用巻線および回転電機
WO2015098637A1 (ja) * 2013-12-26 2015-07-02 古河電気工業株式会社 絶縁ワイヤ、モーターコイル、電気・電子機器および絶縁ワイヤの製造方法
JP2015176730A (ja) * 2014-03-14 2015-10-05 古河電気工業株式会社 絶縁電線、絶縁電線の製造方法、回転電機用ステータの製造方法および回転電機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3419029A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111566759A (zh) * 2018-02-16 2020-08-21 古河电气工业株式会社 绝缘线、线圈和电气/电子设备
US11217364B2 (en) 2018-02-16 2022-01-04 Essex Furukawa Magnet Wire Japan Co., Ltd. Insulated wire, coil, and electric/electronic equipments
CN111566759B (zh) * 2018-02-16 2022-05-17 埃赛克斯古河电磁线日本有限公司 绝缘线、线圈和电气/电子设备
WO2021106877A1 (ja) * 2019-11-25 2021-06-03 エセックス古河マグネットワイヤジャパン株式会社 絶縁電線、コイル、及び電気・電子機器

Also Published As

Publication number Publication date
MY188171A (en) 2021-11-24
CN108604483A (zh) 2018-09-28
CN108604483B (zh) 2020-07-31
TW201802831A (zh) 2018-01-16
EP3419029A4 (en) 2019-10-09
JPWO2017142036A1 (ja) 2018-12-06
US20180358856A1 (en) 2018-12-13
EP3419029A1 (en) 2018-12-26
US10483818B2 (en) 2019-11-19
KR102120678B1 (ko) 2020-06-09
JP6839695B2 (ja) 2021-03-10
KR20180115264A (ko) 2018-10-22
EP3419029B1 (en) 2022-11-30

Similar Documents

Publication Publication Date Title
WO2017142036A1 (ja) 絶縁電線、モーターコイルおよび電気・電子機器
US10566109B2 (en) Insulated wire, coil and electrical or electronic equipment
JP5778332B1 (ja) 耐曲げ加工性に優れる絶縁電線、それを用いたコイルおよび電子・電気機器
JP7423509B2 (ja) 絶縁ワイヤ、コイル及び電気・電子機器
US10199139B2 (en) Insulated wire, motor coil, electric/electronic equipment and method of producing insulated wire
JP6614953B2 (ja) 絶縁電線、コイルおよび電気・電子機器
JP6974330B2 (ja) 絶縁電線、コイルおよび電気・電子機器
WO2017150625A1 (ja) 絶縁電線、コイル及び電気・電子機器
CN108028099B (zh) 绝缘电线、绝缘电线的制造方法、线圈、旋转电机和电气/电子设备
JP7257558B1 (ja) 絶縁電線、コイル、回転電機および電気・電子機器
JP2023047971A (ja) 絶縁電線、コイル、回転電機および電気・電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753291

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018500204

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187022707

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017753291

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017753291

Country of ref document: EP

Effective date: 20180919